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We demonstrate a method that merges the quantum filter diagonalization (QFD) approach for hybrid
quantum-classical solution of the time-independent electronic Schrödinger equation with a low-rank dou-
ble factorization (DF) approach for the representation of the electronic Hamiltonian. In particular, we
explore the use of a novel sparse “compressed” double factorization (C-DF) truncation of the Hamiltonian
within the time-propagation elements of QFD, while retaining a similarly compressed but numerically
converged double-factorized representation of the Hamiltonian for the operator expectation values needed
in the QFD quantum matrix elements. The new C-DF method is found to provide substantial additional
compression at any given accuracy metric over the traditional “explicit” double factorization approach.
Together with significant circuit reduction optimizations and number-preserving postselection and echo-
sequencing error mitigation strategies, the method is found to provide accurate predictions for low-lying
eigenspectra in a number of representative molecular systems, while requiring reasonably short cir-
cuit depths and modest measurement costs. The method is demonstrated by experiments on noise-free
simulators, simulations including models of decoherence and shot-noise, and real quantum hardware.
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I. INTRODUCTION

Solving the many-particle Schrödinger equation to com-
pute eigenpairs of a Hamiltonian operator is an important
application in computational science. For example, it arises
in the simulation of the electronic structure of molecules
and materials, as well as in mathematical optimization
problems. In the context of classical computation, different
strategies are employed to numerically determine approxi-
mate ground and excited Hamiltonian eigenpairs, typically
by assuming that eigenstates have a certain structure.

Digital quantum computers have been proposed as an
alternative and complementary approach to the deter-
mination of approximate ground and excited Hamilto-
nian eigenstates. While efficient ground- and excited-state
determination cannot be guaranteed for a generic Hamilto-
nian, since this is a QMA-complete problem [1], a wealth
of heuristic quantum algorithms have been designed and
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demonstrated in recent years. Simulation of the time-
dependent Schrödinger equation, on the other hand, is a
more natural application for a quantum computer, as it
lies in the bounded-error quantum polynomial time (BQP)
complexity class [2]. This observation has generated an
increasingly intense research effort, aimed at integrating
the simulation of the time-dependent Schrödinger equation
in the structure of quantum computational algorithms for
eigenstate determination [3–5].

Quantum filter diagonalization (QFD) (and two similar
methods developed simultaneously in the literature) [3,4,6]
is a quantum algorithm in which a Hamiltonian operator is
projected on a subspace spanned by a set of nonorthog-
onal quantum states generated via approximate quantum
time evolution (or other quantum circuit propagation), and
postfacto classically diagonalized. QFD can be regarded
to as a quantum computational equivalent of classical filter
diagonalization [7,8], from which it inherits the connection
with the Lanczos algorithm. Furthermore, it is an example
of a quantum subspace diagonalization method [6,9–11] in
which, starting from a set of approximate reference states
for the targeted eigenvectors that can be easily prepared
classically, a basis for a subspace is constructed using time
propagation.

The implementation of QFD on contemporary quan-
tum hardware poses a number of conceptual and technical
challenges. Among them, (i) the high gate complexity
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FIG. 1. Schematic representation of the techniques explored
in the present work: quantum filter diagonalization (QFD)
is combined with a compressed double factorization (C-DF)
approximation of the electronic Hamiltonian, and a set of error
mitigation (EM) techniques.

required by the simulation of time evolution under the
Hamiltonian, which is especially pronounced for the
electronic structure problem, (ii) the need of evaluat-
ing off-diagonal matrix elements that define overlap and
Hamiltonian matrices, which requires Hadamard or swap
quantum circuits, and (iii) the integration of dedicated error
mitigation techniques in the structure of the algorithm.

In the present work, we demonstrate a technique that
merges QFD with a compressed low-rank double factor-
ization of the electronic structure Hamiltonian, to achieve
substantially shortened circuit representations of the time
propagation steps, and to economize the evaluation of off-
diagonal matrix elements. Furthermore, we introduce a
combination of postselection and echo-sequencing aimed
at mitigating errors from violations of particle number and
spin-z conservation. The proposed techniques, sketched
in Fig. 1, are demonstrated using classical simulators of
quantum devices, and performing experiments on IBM
quantum hardware.

II. METHODS

A. “Compressed” double-factorized electronic
Hamiltonian

A key technical element of this manuscript is the
“compressed” double factorization (C-DF) approximate
representation of the electronic Hamiltonian, which pro-
vides for reduced gate count requirements in quantum cir-
cuits for QFD time propagation and reduced measurement
requirements for Hamiltonian expectation values. Below,
we review the representation of the electronic Hamilto-
nian in the double-factorized representation as previously
discussed by several authors in the literature [12–19],
including the popular “explicit” double factorization pro-
cedure [14,16,17,19] (X-DF) for numerically finding the
tensor factors. We then develop a new C-DF procedure

for numerically finding the tensor factors with enhanced
compression and accuracy.

1. The electronic Hamiltonian

In a real, orthonormal, and spin-restricted orbital basis
[spatial parts of each orbital {φp(�r1)} the same for each
spin orbital {ψp ,α(�x1) ≡ φp(�r1)α(s1)} and {ψp ,β(�x1) ≡
φp(�r1)β(s1)}], the electronic Hamiltonian may be written
as [20]

Ĥ ≡ EExt +
∑

pq

(p|κ̂|q)Ê+pq +
1
2

∑

pqrs

(pq|rs)Ê+pqÊ+rs , (1)

where the singlet spin-summed one-particle substitution
operator is Ê+pq ≡

∑
pq,σ p̂†

σ q̂σ . Here p̂†
σ (p̂σ ) is a fermionic

creation (annihilation) operator for spatial orbital p and
spin label σ .

The spatial orbital electron repulsion integral (ERI)
tensor is written in chemists’ notation as

(pq|rs) ≡
∫∫

R6
d�r1 d�r2 φp(�r1)φq(�r1)

1
r12
φr(�r2)φs(�r2). (2)

The modified spatial-orbital one-particle integrals are

(p|κ̂|q) ≡ (p|ĥ|q)− 1
2

∑

r

(pr|qr). (3)

The spatial-orbital one-particle Hamiltonian integrals are

(p|ĥ|q) ≡ (p| − ∇2
1 |q)+ (p| −

∑

A

ZA/r1A|q)

+ 2
∑

i

(pq|ii)−
∑

i

(pi|qi),

where {�rA} are the nuclear positions, {ZA} are the corre-
sponding nuclear charges, and {φi(�r1)} are the core spatial
orbitals in an active space picture. The external system
self-energy is

EExt ≡
∑

A>B

ZAZB

rAB
. (4)

The external system self-energy, one-particle Hamiltonian
integrals, and electron repulsion integrals are polynomially
tractable input quantities from classical electronic structure
codes.

When naïvely expanded into Pauli words in, e.g., the
Jordan-Wigner representation, this operator appears to
require O(n4

p) unique Pauli words (here np is the number of
spatial orbitals), with significant classical efforts required
to lower the prefactor and/or scaling by merging multiple
commuting Pauli words into a minimal set of noncom-
muting measurement groups [21,22]. It has recently been

040352-2



QUANTUM FILTER DIAGONALIZATION WITH COMPRESSED... PRX QUANTUM 2, 040352 (2021)

empirically demonstrated that this grouping can reduce
the scaling of the number of noncommuting measure-
ment groups to O(n3

p) [21] Even this reduced scaling
implies significant computational cost in time propagation
or evaluation of the expectation value of this Hamiltonian.
Recently, a number of authors have achieved substantial
practical reductions in this cost of both of these consider-
ations through an approach we will generically refer to as
“double factorization” (DF) [12,14,16–19,23]. The crux of
the idea is a representation of the ERI tensor as

(pq|rs) ≈
∑

t

∑

k

∑

l

Ut
pkUt

qkZt
klU

t
rlU

t
sl, (5)

where the “leaf tensor” Ut
pk is constrained to be orthonor-

mal (actually, we require this matrix to be special orthog-
onal without loss of generality for all cases encountered in
this work),

∑

k

Ut
pkUt

qk = δpq,
∑

k

Ut
kpUt

kq = δpq, for all t, (6)

and the “core tensor” Zt
pq is constrained to be symmetric,

Zt
kl = Zt

lk for all t. (7)

In Eq. (5), the sum over t goes up to a maximum value of
nDF. The value of nDF is a user-specified parameter of the
DF fitting procedure, and can either be specified by the user
or determined automatically to achieve a user-specified
error tolerance in the approximate ERI tensor, e.g., similar
to what is done in density fitting and Cholesky decomposi-
tion, respectively. We elect to use the former approach and
explicitly specify nDF for all examples herein. Similarly,
we can take the orthonormal eigendecomposition of

(p|κ̂|q) =
∑

k

U0
pkf 0

k U0
qk. (8)

Here only a single expansion index is needed due to the
analytical nature of the eigendecomposition (in contrast
to nDF expansion indices for the ERI tensor above) and
is denoted by the special index “0.” Provided that effi-
cient methods exist [24–26] to transform the representation
of the one-particle orbital basis according to the orbital
transformation Ut

pk, the Hamiltonian may now be written
as

Ĥ ≡ EExt +
∑

k

f 0
k Ê+kk(0)+

1
2

∑

t

∑

kl

Zt
klÊ
+
kk(t)Ê

+
ll (t).

(9)

The operators Ê+kk(t) are diagonal in qubit representa-
tions such as the Jordan-Wigner and parity representa-
tions. Therefore, the expectations over separate k and l

terms can be measured simultaneously for each t, dras-
tically reducing the number of required measurements to
evaluate Hamiltonian expectation values. Similarly, the
implementation of time propagation (Trotterized across t)
can be accomplished by commuting and highly paral-
lelized controlled-Ẑ rotations. The generic idea of double
factorization can therefore substantially reduce the cost
of quantum circuit implementation of quantum chemistry
methods. However, the specific practical cost of imple-
mentation will depend on the number of t factors required
to achieve an accurate factorization of the ERI tensor, i.e.,
on nDF. We try to reduce this cost in the methodology
developed below.

2. “Explicit” double factorization

In the straightforward “explicit” approach to double fac-
torization (which we label as X-DF) [14,16,17,19], we first
eigendecompose the ERI tensor into a form of density
fitting factorization:

(pq|rs) =
∑

t

Vt
pqλtVt

rs (10)

with Vt
rs = Vt

sr (up to numerical noise in accidental degen-
eracies). Next, for each eigenvector, we eigendecompose

Vt
rs =

∑

k

Ut
pkUt

qkγ
t
k , (11)

and then form

Zt
kl ≡ γ t

kλtγ
t
l . (12)

Note that the only approximation in X-DF involves the
number of terms nDF retained in the sum over t in Eq.
(10)—the subsequent eigendecomposition of Eq. (11) is
lossless. In principle, all terms can be retained, leading
to zero error at the cost of O(n2

p) scaling of nDF. How-
ever, it is well known from resolution of the identity or
synonymously density fitting (RI—used to avoid the unfor-
tunate elision with double factorization’s DF), Cholesky
decomposition (CD), and general eigenstructure studies
that the eigenvalues of the ERI tensor decay roughly geo-
metrically with rank, allowing for practical approximate
truncation with O(np) scaling of nDF for any reason-
able user-specified error tolerance. Unfortunately, even
this advantageous level of truncation retains O(n3

p) scal-
ing information in the Ut

pk tensors (as with RI or CD),
with a numerically redundant form of Zt

kl as seen in Eq.
(12). One could imagine that it might be possible to push
below the O(np) scaling limit in nDF (or at the very least,
lower the prefactor at this scaling) by allowing both Ut

pk
and Zt

kl to be unconstrained in rank structure, as has been
done previously in nonorthogonal tensor hypercontrac-
tion (THC). We numerically attempt to move toward this
more-compressed factorization in the next section.
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3. “Compressed” double factorization

The X-DF procedure provides a straightforward and
explicit recipe for obtaining the double-factorized quan-
tities Ut

pk and Zt
kl, but it may be a nonoptimal factoriza-

tion due to the nested form of the eigendecompositions.
Here, we consider an alternative C-DF based on global
optimization of a least-squares objective function.

The least-squares objective function for C-DF is

O(Ut
pk, Zt

kl)

≡ 1
2

∣∣∣∣(pq|rs)−
∑

t

∑

kl

Ut
pkUt

qkZt
klU

t
rlU

t
sl

∣∣∣∣
2

F
, (13)

where F denotes the vector-type Frobenius norm. Defining

�pqrs ≡ (pq|rs)−
∑

t

∑

kl

Ut
pkUt

qkZt
klU

t
rlU

t
sl, (14)

then the gradients are

∂O
∂Zt

kl
= −

∑

pqrs

�pqrsUt
pkUt

qkUt
rlU

t
sl (15)

and

∂O
∂Ut

pk
= −4

∑

qrsl

�pqrsUt
qkZt

klU
t
rlU

t
sl. (16)

Note that the recent paper on the Jastrow-Factor varia-
tional quantum eigensolver (VQE) [18] briefly considers
in an appendix direct fitting of the doubly factorized ten-
sors of the ERI tensor to the exact ERI tensor, which goes
beyond X-DF in the direction of C-DF. However, no details
are given as to the numerical procedure used to perform
this fit.

Unconstrained form in terms of orbital rotation
generators.—To remove the orthogonality constraints, one
can always define the special orthogonal orbital rotation
matrices Ut

pk in terms of matrix exponentials of antisym-
metric orbital rotation generator matrices X t

pk:

Ut
pk ≡ [exp(X̂ t)]pk. (17)

Here

X̂ t ≡ X t
pq|p〉〈q| (18)

subject to

X t
pq = −X t

qp for all t. (19)

In Eq. (17), the notation exp(M̂ ) means the matrix expo-
nential of the matrix operator symbolically defined as

M̂ . In this form, the C-DF objective function becomes
unconstrained,

O(Ut
pk, Zt

kl)→ O(X t
pq, Zt

kl), (20)

and the gradient of the C-DF objective function is easily
evaluated through the chain rule, yielding

∂O
∂X t

k′l′
=

∑

pk

∂O
∂Ut

pk

∂Ut
pk

∂X t
k′l′

. (21)

Efficient linear algebraic operations for the matrix expo-
nential and the matrix exponential gradient exist in the
form of the Wilcox identity [27]. These have been spe-
cialized to the cases of antisymmetric generators X̂ , and
may be considered to be universal library functions for any
X t

pk. With this unconstrained formulation, one may sup-
ply the objective function and analytical gradient function
to a numerical unconstrained continuous optimizer such
as limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm (L-BFGS), and numerically optimize the X t

pk and
Zt

kl factors of C-DF simultaneously. We have implemented
this and found that while it provides a straightforward and
simple approach, convergence can be markedly slow. For
this reason, we pursue a nested “two-step” C-DF fitting
procedure below.

Core tensor analytical fitting.—An interesting avenue
to explore is the form of the fitting equations when the fac-
tors Ut

pk are known (in analogy to the least-squares tensor
hypercontraction procedure [28] in nonorthogonal tensor
hypercontraction, in which an analytical formula for Zkl
resulted):

O(Zt
kl|Ut

pk) =
1
2

∣∣∣∣(pq|rs)−
∑

t

∑

kl

Ut
pkUt

qkZt
klU

t
rlU

t
sl

∣∣∣∣
2

F
.

(22)

Here the weak form of the objective function is

∂O
∂Zt

kl
= −

∑

pqrs

�pqrsUt
pkUt

qkUt
rlU

t
sl = 0 for all k, l, t.

(23)

Expanding yields

∑

t′

∑

k′l′
M tt′

kk′Z
t′
k′l′M

tt′
ll′ = Rt

kl for all k, l, t, (24)

where

Rt
kl ≡

∑

pqrs

Ut
pkUt

qk(pq|rs)Ut
rlU

t
sl (25)
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and

M tt′
kk′ ≡

[∑

p

Ut
pkUt′

pk′

][ ∑

q

Ut
qkUt′

qk′

]

=
[∑

p

Ut
pkUt′

pk′

]2

≡ [Stt′
kk′]

2. (26)

The “2” notation is the elementwise square in the last
expression. The Ŝtt′

kk′ are metric matrices (symmetric, posi-
tive definite, with singular values in [0, 1]) when unrolled
in kt× k′t′. The M tt′

kk′ are thus also metric matrices, with the
extra specialization of having wholly positive values.

These equations can be effectively written as

∑

t′k′l′
Atkl,t′k′l′Zt′k′l′ = Rtkl for all k, l, t, (27)

where

Atkl,t′k′l′ ≡ M tt′
kk′M

tt′
ll′ , (28)

i.e., a simple set of linear equations. It should be noted that
the matrix Â has formal singularities of degeneracy nDF −
1, and may also contain numerical near singularities if the
active Ut

pk matrices are numerically similar. In practice,
the eigendecomposition-based Moore-Penrose pseudoin-
verse approach to solve these equations costs O[(nDFn2

p)
3],

which is tractable for medium-sized problems. Moreover,
conjugate gradient and L-BFGS approaches appear to
also provide reliable convergence with lowered cost. The
matrix-vector product primitive needed for such iterative
approaches is

σtkl ≡
∑

t′k′l′
Atkl,t′k′l′bt′k′l′ . (29)

This can be efficiently implemented in terms of matrix
multiplications with a cost of O(n2

DFn3
p).

Two-step C-DF fitting.—The above finding of an analyt-
ical fit for Zt

kl for any proposed Ut
pk leads to the following

“two-step” C-DF fitting:

O(Ut
pk) =

1
2

∣∣∣∣(pq|rs)−
∑

t

∑

kl

Ut
pkUt

qkZ↓t
kl Ut

rlU
t
sl

∣∣∣∣
2

F
. (30)

Here Z↓t
kl is shorthand for the optimal Zt

kl predicated on the
current Ut

pk discussed in the section above. In practice, one
actually works with the unconstrained form O(X t

pq) within
this two-step C-DF fitting procedure, with the uncon-
strained optimization in X t

pq being handled by L-BFGS.
The explicit two-step C-DF procedure is as follows.

Stage 0. Use the X-DF factorization to obtain a guess
for the factors {Ut

pk} and {Zt
kl}.

Stage 1. For {Ut
pk} from stage 0, find the globally opti-

mal {Zt
kl} via least squares (analytical). Note

that the stage-1 Ut
pk tensor is the same as in

stage 0, but the stage-1 Zt
kl tensor is differ-

ent, and in particular does not have the highly
constrained rank structure of Eq. (12), lead-
ing to a positive definite improvement in the
approximation at stage 1.

Stage 2. For Ut
pk from stage 0 or stage 1 (identical),

run two-step C-DF fitting to find the globally
optimal {Ut

pk} and {Zt
kl}.

Note that the Ut
pk “leaf tensor” is the same in stage 0 and

stage 1, but the Zt
kl “core tensor” changes between stage

0 (where it is definitionally numerically redundant) and
stage 1 (where it is permitted to be full rank). Both ten-
sors change from stage 1 to stage 2, though the Ut

pk and
Zt

kl tensors from stage 1 can be used as a guess to seed the
optimization process of stage 2. This procedure is analo-
gous to the “two-step complete active space self-consistent
field” method, where the orbitals are rotated and optimized
in an outer loop, with the active space configuration inter-
action exactly solved at each orbital point in an inner loop
[20,29].

4. Example numerical performance of C-DF: integral
metrics

The C-DF approach outlined above was implemented in
a simple PYTHON numpy environment. L-BFGS (scipy)
with analytical gradients is used to drive the optimiza-
tion loop in X t

pk. The matrix exponential needed to form
Ut

pk is evaluated from the complex Hermitian eigende-
composition of iX t

pk, and the corresponding exponential
derivative is evaluated by the Wilcox formula [27]. The
linear equations used to solve for the optimal Zt

pk for
a given Ut

pk, e.g., Eq. (27), are solved explicitly via an
eigendecomposition-based Moore-Penrose pseudoinverse
with eigenvalue cutoff of 10−10.

Figure 2 shows representative performance of the X-DF
and C-DF methods. The test case is a 10 orbital active
space of the lowest lying π and π∗ orbitals of naphtha-
lene, with the orbitals computed at restricted Hartree-Fock
at cc-pVDZ level of theory (RHF/cc-pVDZ). The C-DF
objective function O(Ut

pk, Zt
kl) and the maximum absolute

deviation (MAD) in the ERI tensor |�pqrs|∞ are plotted as
a function of DF rank expansion nDF for the stage-0, stage-
1, and stage-2 outcomes of the C-DF procedure. Stage 0
is the result that would be obtained by the older X-DF
approach, while stage 2 corresponds to a complete C-DF
procedure.
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FIG. 2. Error metrics for stage-0 (X-DF), stage-1, and stage-2
(C-DF) two-step double factorization approaches. The test case
is naphthalene with an np = 10 active space of low-lying π and
π∗ orbitals computed at RHF/cc-pVDZ. Here O is the C-DF
least-squares objective function, and MAD is the mean absolute
deviation |�pqrs|∞.

The results are generally straightforward. Using the
shortest possible DF factorization nDF = 1, the stage-0 X-
DF obtains a rather coarse representation of the ERI tensor,
with objective function value δ of O(100) and ERI MAD
of O(10−1). Adding more X-DF factors monotonically
improves matters, with roughly geometric convergence (as
expected from density fitting); however, the prefactor is
rather slow, and only a fourfold reduction in objective
function value and ERI MAD are achieved by nDF = 4.
Moving to stage 1, one finds that refitting the Zt

kl fac-
tors with fixed X-DF Ut

kl factors does not significantly
improve matters. However, moving to the full stage-2 C-
DF method, one finds substantial improvement of at least
one order of magnitude in O and roughly one order of
magnitude in δ for all nDF. Particularly striking is the fact
that it is better to use the coarsest nDF = 1 C-DF factor-
ization than to use the largest nDF = 4 factorization shown
here.

5. Example numerical performance of C-DF: energy
errors and scaling trends

At the request of a reviewer, we have elected to per-
form an extended study of the error characteristics of
X-DF versus C-DF in the context of chemically mean-
ingful observables such as total adiabatic state energies
computed at full configuration interaction (FCI) within the
DF-truncated Hamiltonian. For the first part of the study,
we have elected to use the π/π∗ active spaces of all-
trans linear alkenes taken from restricted Hartree-Fock at
STO-3G level of theory (RHF/STO-3G) orbitals—similar
results are obtained with linear acenes and several other
classes of test systems, but the linear alkenes provide more

datapoints that are tractable with FCI [here we study linear
alkenes with up to K = 6 double bonds (dodecahexene)
involving active spaces up to (12e, 12o)], thus providing a
better view of the trends.

Figure 3 shows the error characteristics as a function
of nDF for the (12e, 12o) minimal π/π∗ RHF/STO-3G
active space of (K = 6)-double-bond dodecahexene. Here,
we find strong concordance between error characteristics
in the ERI tensor (top panel) and error characteristics in
the total FCI energies for the lowest singlet or triplet state
(lower panel). For this test case, X-DF exhibits slow but
regular convergence with seemingly geometric character
in both the ERI and total energy characteristics. Note that
state energy errors are still > 100 mEh even for nDF = 6.
By contrast C-DF errors are always at least 10× smaller
than X-DF errors, and the improvement increases with
nDF, i.e., C-DF converges faster than X-DF for this test
case. Note however that the C-DF convergence is not reg-
ular, and may even be slightly nonmonotonic due to the
nonvariational characteristics of C-DF and/or numerical

FIG. 3. Error metrics for stage-0 (X-DF), stage-1, and stage-
2 (C-DF) two-step double factorization approaches for (K =
6)-double-bond dodecahexene. Minimal π/π∗ active space com-
puted from RHF/STO-3G orbitals yielding a (12e, 12o) active
space. Top: error characteristics in the ERI tensor, includ-
ing ‖�(pq|rs)‖2 (solid lines) and ‖�(pq|rs)‖∞ (dashed lines)
as a function of DF auxiliary basis size nDF. Bottom: error
characteristics in lowest FCI singlet and triplet state ener-
gies �ES0 (solid lines) and �ET1 (dashed lines) as a func-
tion of DF auxiliary basis size nDF. In the bottom panel,
approximate ERIs are reformed from the DF factorization and
then passed into the FCI solver, i.e., the errors shown are
for fully variational FCI states computed within the truncated
Hamiltonian.

040352-6



QUANTUM FILTER DIAGONALIZATION WITH COMPRESSED... PRX QUANTUM 2, 040352 (2021)

difficulties in the two-step C-DF fitting procedure. Note
also that the apparent even-odd oscillating convergence
behavior in Fig. 3 is an artifact of this particular test case,
and is not globally representable over other cases that
we have encountered. Despite this, the pragmatic error
reduction behavior is highly compelling, with < 1 mEh
errors achieved by nDF = 6, at which point C-DF provides
> 100× error reduction versus X-DF. In the consideration
of stage-1 C-DF versus stage-2 C-DF, full C-DF provides
up to approximately 10× reduction of error for small nDF
in each error characteristic, but the gains appear to narrow
somewhat for larger nDF.

Figure 4 shows the error characteristics as a function
of system/active space size K for the (2Ke, 2Ko) minimal
π/π∗ RHF/STO-3G active spaces of K-double-bond linear
alkenes ranging from K = 2 (butadiene) to K = 6 (dodec-
ahexene), with fixed nDF = 6. Note that the K = 1 case of
(2e, 2o) ethylene is not shown, as both X-DF and C-DF

FIG. 4. Error metrics for stage-0 (X-DF), stage-1, and stage-2
(C-DF) two-step double factorization approaches for a constant
rank size of nDF = 6. Minimal π/π∗ active space computed from
RHF/STO-3G orbitals for K = 2 (butadiene) to K = 6 (dodec-
ahexene) systems with active spaces ranging from (4e, 4o) to
(12e, 12o), respectively. Note that K = 1 (ethylene) with (2e,
2o) active space is numerically exact with X-DF or C-DF with
nDF = 6. Top: error characteristics in the ERI tensor, including
‖�(pq|rs)‖2 (solid lines) and ‖�(pq|rs)‖∞ (dashed lines) as a
function of DF auxiliary basis size nDF. Bottom: error charac-
teristics in lowest FCI singlet and triplet state energies �ES0
(solid lines) and �ET1 (dashed lines) as a function of DF aux-
iliary basis size nDF. In the bottom panel, approximate ERIs are
reformed from the DF factorization and then passed into the FCI
solver, i.e., the errors shown are for fully variational FCI states
computed within the truncated Hamiltonian.

are exact with nDF = 6 for this case. As in the previous
paragraph, we find that trends in the integral error char-
acteristics are largely representative of trends in the FCI
state energy characteristics. The X-DF error characteristics
[with the possible exception of MAD ‖�(pq|rs)‖∞] show
nontrivial size dependence, as expected given the linear-
scaling expected auxiliary basis of density fitting methods.
The C-DF error characteristics are significantly smaller
in magnitude (2–3 orders of magnitude of improvement),
and also show moderate size dependence. The stage-1
C-DF errors are intermediate between X-DF and C-DF,
and show an interesting near-constant scaling character-
istic for K > 2. From this test case, it is not yet clear
whether the stage-1 or stage-2 C-DF is asymptotically
constant scaling, linear scaling, or some intermediate (see
the conclusion for a discussion in terms of tensor hyper-
contraction)—any of these might be possible, and further
empirical and theoretical analysis is required to resolve
this matter. This point notwithstanding, the substantial
pragmatic error reduction of C-DF is clear from this test
case.

Additional insights are provided by considering the
same observables for a (6e, 6o) RHF/6-31G* active space
of bacteriochlorophyll a (BChl a), with an extensive scan
across nDF. Here the moderate active space size allows for
tightly converged two-step C-DF fittings, while the glob-
ular (e.g., nonlinear) nature of the active space orbitals
provides a more challenging test for the C-DF in the
regime before pure linear-locality-based asymptotics satu-
rate. Figure 5 shows the error characteristics for this system
as a function of nDF ranging from 1 to 21. Note that for
this np = 6 orbital active space, np(np + 1)/2 = 21 unique
orbital pairs, so we expect density fitting and X-DF to sat-
urate exactly at nDF. This behavior is indeed observed:
the X-DF error characteristics converge roughly monoton-
ically and geometrically, with a sudden drop to double
precision exactness at nDF = 21. The state energy errors
drop below 1 mEh at nDF = 13, but the convergence of
the state energy errors stagnates somewhat beyond this
point. Stage-1 C-DF converges similarly as X-DF (i.e.,
roughly monotonically and geometrically), albeit with a
faster convergence prefactor. The state energy errors drop
below 1 mEh at nDF = 10 for stage-1 C-DF. Numerical sat-
uration of stage-1 C-DF is achieved for nDF = 14. Full
C-DF converges much more rapidly, with state energy
errors off less than 1 mEh at nDF = 6, and onset of numer-
ical saturation at nDF ∼ 8. The saturation limits of the
various approaches are presumably due to the factoriza-
tions having a number of continuous parameters in Zt

kl
and/or X t

kl that exceed the number of degrees of freedom
in the ERI tensor. This numerical saturation should not
be relied on for larger active spaces, as it will asymptot-
ically require a quartic number of parameters for medium-
sized, globular systems. Overall, these data are not yet
sufficient to firmly establish the asymptotic scalings of
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FIG. 5. Error metrics for stage-0 (X-DF), stage-1, and stage-
2 (C-DF) two-step double factorization approaches for BChl
a. Valence active space computed from RHF/6-31G* orbitals,
yielding a (6e, 6o) active space. Top: error characteristics in the
ERI tensor, including ‖�(pq|rs)‖2 (solid lines) and ‖�(pq|rs)‖∞
(dashed lines) as a function of DF auxiliary basis size nDF. Bot-
tom: error characteristics in lowest FCI singlet and triplet state
energies�ES0 (solid lines) and�ET1 (dashed lines) as a function
of DF auxiliary basis size nDF. In the bottom panel, approximate
ERIs are reformed from the DF factorization and then passed into
the FCI solver, i.e., the errors shown are for fully variational FCI
states computed within the truncated Hamiltonian.

C-DF. However, the substantial pragmatic reduction in
nDF from 13 (X-DF) to 6 (C-DF) to achieve chemical
accuracy in total state energies is a compelling numerical
finding.

6. Two-step C-DF iterative convergence characteristics

It should be noted that C-DF is not a panacea in the sense
that (1) often a very large number of L-BFGS optimiza-
tion epochs are required to obtain substantive convergence
and (2) in some cases, substantive numerical convergence
is not obtained at all within 104 L-BFGS epochs. This
is highlighted in Fig. 6, which shows the convergence
characteristics of the two-step C-DF fitting procedure as a
function of L-BFGS iteration for the representative case of
BChl a with (6e, 6o) valence active space of RHF/6-31G*
orbitals. Here we see three paradigms of convergence
behavior. (1) At small nDF of approximately 1–3, very tight
convergence of the gradient can be obtained to a fixed
point with a minimal but nonzero objective function O. (2)
At intermediate nDF of approximately 4–7, the objective
function O is significantly reduced by the two-step C-DF
iterative procedure, but a tightly converged gradient is not

FIG. 6. Convergence characteristics of the two-step C-DF fit-
ting procedure as a function of L-BFGS iteration for the case
of BChl a with (6e, 6o) valence active space of RHF/6-31G*
orbitals. Top: convergence behavior of the C-DF objective func-
tion O. Bottom: convergence of the infinity norm of the C-DF
objective function gradient �G ≡ ∂O/∂X t

pk .

obtained in the 104 iterations allowed here. (3) At large nDF
of approximately 8–9, very tight convergence of the gradi-
ent can be obtained to a fixed point with a numerically zero
objective function O. This indicates that additional work
should be done to improve the convergence behavior of
the two-step C-DF optimization procedure, particularly for
intermediate sizes of nDF. This issue aside, C-DF seems
to provide remarkable improvement over X-DF in many
cases, particularly including the highly important case of
small nDF DF rank expansion.

We use C-DF for all QFD cases discussed later in this
work.

B. Quantum filter diagonalization

Quantum filter diagonalization is a technique for
approximating eigenpairs of a Hamiltonian operator Ĥ
[3,4]. It makes use of a set of time-propagated states,

|�m〉 = e−i�tmĤ |�0〉 = Ûm
�t|�0〉, (31)

as a variational basis for approximate diagonalization of
Ĥ . In Eq. (31), Û�t is the time-evolution operator under
the Hamiltonian Ĥ for time �t, m = 0, . . . , nQFD − 1 is
an integer number, and |�0〉 is a “guess” quantum state
determined by classical preprocessing that can be prepared
efficiently by a quantum circuit, such as a Slater determi-
nant. A straightforward variant of the method allows for
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σx,y

ĥµ

|0〉 H

|Ψ0〉 Ûm
Δt Ûn−m

Δt

FIG. 7. Quantum circuits for measuring the QFD matrix ele-
ment Hm,n. Here ĥμ denotes a term of the Hamiltonian, and Û�t
the circuit implementing time evolution under the Hamiltonian
for a time step �t. The overlap matrix element Sm,n is measured
replacing ĥμ with the identity operator.

the use of a basis of multiple nonredundant guess states
[3], but in this work, we always use a single guess state.
Approximations for the eigenstates of Ĥ are constructed
as linear combinations of the basis vectors,

|�I 〉 =
nQFD−1∑

m=0

cmI |�m〉, (32)

where the coefficients are determined by classically solv-
ing the generalized eigenvalue equation HcI = εI ScI ,
where

Sm,n = 〈�m|�n〉, Hm,n = 〈�m|Ĥ |�n〉. (33)

The overlap and Hamiltonian matrices S and H are com-
puted using a set of extended Hadamard quantum circuits
[30] with a single ancilla, illustrated in Fig. 7.

Indeed, it can be easily shown that

〈�m|ĥμ|�n〉 = 〈χ |X ⊗ ĥμ|χ〉 + i〈χ |Y ⊗ ĥμ|χ〉, (34)

where

|χ〉 = |0〉 ⊗ Ûm
�t|�0〉 + |1〉 ⊗ Ûn−m

�t |�0〉√
2

(35)

is the output state of the quantum circuit in Fig. 7.
In general, the exact time-evolution operator Û�t is not

known. On a digital quantum computer, it can be approxi-
mated with accuracy δ at cost up to poly(np ,�t, δ−1) [2]. A
prominent example is the primitive Trotter approximation

Û�t �
∏

μ

e−i�tĥμ , Ĥ =
∑

μ

ĥμ, (36)

where, for each operator ĥμ, the quantum circuits imple-
menting e−i�tĥμ are known.

In this work, we introduce primitive Trotter approx-
imation (36) into the definition of the basis vectors
|�m〉. Within such an approximation, the Toeplitz prop-
erty Sm,n = S0,n−m, Hm,n = H0,n−m enjoyed by the exact
overlap and Hamiltonian matrix elements (32) is lost,

so that the number of quantum circuits to be evaluated
scales as O(nQFD

2). Nevertheless, the QFD algorithm
retains a number of desirable features, especially numeri-
cal stability and the structure of a variational wavefunction
ansatz [3].

In the next section, we explore how the C-DF repre-
sentation of the electron repulsion integral can be used
to economize QFD circuits, and the measurement of QFD
matrix elements.

C. Circuit reduction strategies

To describe the circuit reductions allowed by the com-
bination of QFD and DF, we express the Hamiltonian as in
Eq. (9),

Ĥ = EExt +
∑

k

f 0
kk Ê+kk(0)+

∑

t

∑

kl

Zt
kl

2
Ê+kk(t)Ê

+
ll (t)

= EExt + Ĝ0←HF

[ ∑

kσ

f 0
kk n̂k,σ

]
ĜHF←0

+
∑

t

Ĝt←HF

[ ∑

kl,στ

Zt
kl

2
n̂k,σ n̂l,τ

]
ĜHF←t. (37)

Here, ĜHF←l denotes a unitary transforming from the
Hartree-Fock basis to the eigenbasis of the lth term of
the Hamiltonian. The index l = 0 represents the one-body
term, and the indices l = 1, . . . , nDF represent the terms of
the double-factorized Hamiltonian.

Under the Jordan-Wigner mapping, number operators
n̂k,σ and products of number operators n̂k,σ n̂l,τ take the
form

n̂k,σ = (1− Zk,σ )

2
,

n̂k,σ n̂l,τ = (1− Zk,σ )

2
(1− Zl,τ )

2
.

(38)

As seen, products of number operators contain terms that
are linear in Zk,σ . We also note here a slight abuse of nota-
tion where Zt

lk is used to denote the core tensors and Zk,σ
is used to denote the Pauli-Z operator. The notation is dif-
ferentiated by the use of a superscript for the core tensors
throughout the text. Our goal is to reorganize the Hamilto-
nian into a new one-body part and a set of two-body factors
involving only products of the form Zk,σZl,τ . To this end,
we introduce the operators ẑk,σ = 1− 2n̂k,σ and recall that
ẑ2

k,σ = 1; we can readily recast Eq. (9) in the form

Ĥ = E′Ext + Ĝ′0←HF

[∑

kσ

f ′kk ẑk,σ

]
Ĝ′HF←0

+
∑

t

Ĝt←HF

[ ∗∑

kl,στ

Zt
kl

8
ẑk,σ ẑl,τ

]
ĜHF←t, (39)
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where the asterisk denotes summation over strings kl, στ
with k �= l, or k = l and σ �= τ , and primes denote a sim-
ple redefinition of the Hamiltonian coefficients and of the
unitary transforming from the Hartree-Fock basis to the
eigenbasis of the one-body part of the Hamiltonian.

In this form, time evolution under the Hamiltonian for a
time step �t can be approximated by

Û�t � e−i�tE′Ext ĜnDF←HF

[∏

t

V̂2b,t Ĝt−1←t

]
V̂1b Ĝ′HF←0,

(40)

where

V̂1b =
∏

k,σ

e−i�tf ′kk ẑk,σ ,

V̂2b,t =
∗∏

kl,στ

e−i�tZt
klẑk,σ ẑl,τ /8,

(41)

and Ĝt−1←t = ĜHF←tĜt−1←HF.
In this form, each of the change-of-basis unitaries Ĝ fac-

tors in two identical parts, acting on spin-up and spin-down
spin orbitals, respectively. Such parts can be compiled into
networks of Givens rotations, which can in turn be repre-
sented with one- and two-qubit gates, as discussed in the
Appendix A 1. Furthermore, in the Jordan-Wigner repre-
sentation, evolution under the one-body part of the Hamil-
tonian can be implemented by a network of single-qubit
Z rotations, and each of the terms exp(−i�t Zt

kl ẑk,σ ẑl,τ )

can be implemented with two controlled-NOT (CNOT) and
single-qubit Z rotations, as discussed in the Appendix A 1.

The quantum circuit implementing the controlled ver-
sion of the unitary transformation Eq. (40) is shown in
Fig. 8. It is useful to observe that unitaries Ĝ multiply
to the identity and thus, as seen in Fig. 8, they need not
be controlled. In the Jordan-Wigner representation, each
controlled exp(−i�tf ′kkẑk,σ ) can be constructed with two
CNOT and two single-qubit Z rotations, whereas each con-
trolled exp(−i�tZt

klẑk,σ ẑl,τ ) can be constructed with four
CNOT and two two-qubit ZZ rotations.

D. Error mitigation strategies

1. Postselection

The structure of the Hamiltonian highlighted in Eq. (40)
allows for a simple scheme for measurement postselection,
based on enforcing the correct numbers Nα , Nβ of particles
for each spin species [19]. The ĥμ referenced in Fig. 7 are

Ĝ′
HF→0

V̂1b

Ĝ0→1

V̂2b ,1

Ĝ1→2

V̂2b ,2

Ĝ2→HF

Ĝ′
HF→0 Ĝ0→1 Ĝ1→2 Ĝ2→HF

ηα,0
ηβ,0

−ηα,0
−ηβ,0

ηα,1
ηβ,1

−ηα,1
−ηβ,1

ηα,2
ηβ,2

−ηα,2
−ηβ,2

FIG. 8. Quantum circuit implementing time evolution under
the DF Hamiltonian for a time step �t. Green, red, and orange
blocks denote change-of-basis unitaries and evolutions under
diagonal one-body and diagonal two-body operators, respec-
tively, and violet lines denote echo unitaries parametrized by
angles ηk.

represented by our operators

ĥ0 =
∑

kσ

f ′kkẑk,σ ,

ĥt =
∗∑

kl,στ

Zt
kl

8
ẑk,σ ẑl,τ , t = 1, . . . , nDF.

(42)

As shown in Fig. 9, we can measure each of these oper-
ators in their respective diagonal basis by first applying
an appropriate unitary transformation, and then making a
projective measurement in the computational basis.

The benefit of this measurement scheme is that Nα and
Nβ are simultaneously diagonalized in each basis. This
means that Nα and Nβ can be extracted from each mea-
surement shot of each operator in our Hamiltonian. From
this information we can discard any shots that return an
incorrect number of particles of each spin polarization.

ĜHF→μ

ĜHF→μ

f(x) = f∗

FIG. 9. Quantum circuit implementing the measurement of a
term of the C-DF Hamiltonian. Green blocks denote change-of-
basis unitaries, and yellow meters denote measurement of single
qubits. Only measurement outcomes x with the correct number of
spin-up and spin-down particles are retained in the postselection
algorithm.
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2. Echo sequencing

In Ref [31] the authors introduced the idea of echo
sequencing each full Trotter step by the inherent symme-
tries of the Hamiltonian. A standard simulation

e−itĤ ≈
∏

j

Û�t (43)

is replaced with a symmetry-protected one,

e−itĤ ≈
∏

j

Ĉ†
j Û�tĈj , [Ĉj , Ĥ ] = 0, (44)

resulting in a reduction of the second-order Trotter error.
In this work, the Trotter step takes the form

Utarget(�t) =
∏

μ

e−i�tĥμ ,

and, to first order in the Schrödinger representation, time
evolution acts as

ρ(�t) = ρ(0)− i�t
∑

μ

[ρ(0), ĥμ].

Here, [N̂α/β , ĥμ] = 0, which provides the opportunity to
simultaneously echo both the α and β spin sectors for each
term exp[−i�tĥμ]. We assume that gate errors exhibited
on the hardware induce an additional coherent bias term V̂μ
for each operator ĥμ. When implementing time evolution,
each block exp(−i�tĥμ) takes the form

Uexp(�t) =
∏

μ

e−i�t(ĥμ+V̂μ); (45)

then, when expanding to first order in the Heisenberg
representation, we now have

ρ(�t) = ρ(0)− i�t
∑

μ

[ρ(0), ĥμ + V̂μ]. (46)

On the other hand, if we echo with both N̂α and N̂β for each
term exp[−i�tĥμ], this leaves

Uecho(�t) =
∏

μ

Ĉμe−i�t(ĥμ+V̂μ)Ĉ†
μ,

Ĉμ = eiηα,μN̂αeiηβ,μN̂β ,

(47)

where ηα/β,μ is a random phase with uniform distribu-
tion in the interval [0, 2π ]. The average of the first-order

expansion over the random phases is

ρ̄(�t) = ρ(0)− i�t
∑

μ

[ρ(0), ĥμ + P†
Nα ,Nβ V̂μPNα ,Nβ ],

(48)

where PNα ,Nβ is the projection operator on the proper
symmetry sector.

Therefore, this echo-sequencing scheme results in the
suppression of error terms that couple different symme-
try sectors together [32,33]. The ability to conduct L+ 1
echoes per Trotter step instead of a single echo should
result in a higher capacity for error mitigation, especially
when L is large.

Under the Jordan-Wigner mapping, the echo terms for
each spin species is simply a product of single-qubit Z
rotations, which can be implemented with minimal over-
head. The echo scheme can be implemented under the
parity mapping as well, but this requires applying the oper-
ators exp[−iη(Z0 + Z0Z1 + Z1Z2 + · · · + ZN−1ZN )], and
thus involves a greater overhead.

III. RESULTS AND DISCUSSION

The strategy for the calculations performed in this work
involved initial preprocessing by classical quantum chem-
istry codes on conventional computers, to generate opti-
mized Hartree-Fock orbitals and matrix elements of the
Hamiltonian in active spaces of 2, 4, or 6 orbitals, prior
to performing computations with quantum simulators or
devices.

The chemical species studied in this work are shown
in Fig. 10 at geometries listed in Appendix A. These
medium-sized photoactive molecules have interesting pho-
tochemistry dictated by a handful of active orbitals. These
systems provide realistic test cases with active spaces of
(2e, 2e) and upwards. The Hamiltonian is constructed from
an active space of restricted Hartree-Fock (RHF) singlet
spatial orbitals, computed via the Lightspeed/TeraChem
package, for all computations performed herein.

Quantum calculations are performed using IBM’s open-
source PYTHON library for quantum computing, Qiskit

(a) (b) (c) (d)

FIG. 10. Molecular species studied in the present work: cis-
and trans-stilbene, bacteriochlorophyll a (BChl a), and ethylene
[left to right, (a) to (d)].
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[34]. Qiskit provides tools for various tasks such as cre-
ating quantum circuits, performing simulations, and com-
putations on quantum devices. We ran our experiments
on both the statevector and qasm simulators in Qiskit,
and performed hardware experiments on 16- and 28-qubit
devices available through IBM Quantum Experience with
a quantum volume [35] of 32, namely, ibmq_guadalupe,
ibmq_montreal, and ibmq_mumbai [36].

A. Classical simulations

We begin our analysis by computing, in Fig. 11, the
exact singlet-triplet and singlet-singlet gaps, �ES0T1 and
�ES0S1 , respectively, for stilbene and BChl a. We use
the exact and doubly factorized Hamiltonian, with nDF =
1, 2, 3, 4 layers of tensors, with the purpose of assessing the
accuracy of the double factorization. As seen, for active
spaces of M = 2 orbitals, nDF = 2 layers are sufficient to
obtain an exact representation of the electron repulsion
integral, and thus exact gaps. For M = 4, 6 orbitals, on the
other hand, nDF = 4 layers are needed to achieve accuracy
of the order of a milli-Hartree.

In Figs. 7, 8, and 9 we perform exact simulations of the
QFD algorithm for cis-stilbene, trans-stilbene, and BChl
a, respectively, using active spaces of M = 2 to 6 orbitals.
As naturally expected, and in accordance with the observa-
tions of Fig. 11, increasing the number nDF of layers in the
doubly factorized representation of the Hamiltonian brings
energy differences systematically closer to exact values
for the full Hamiltonian. Indeed, with nDF = 1, deviations
between singlet-triplet and singlet-singlet gaps of the exact
and doubly factorized Hamiltonian are of the order of 2
to 40 mHa, and decrease as nDF increases. For all species
considered here, the singlet-singlet gap from the doubly
factorized Hamiltonian is closer to the exact value than
the singlet-singlet gap, indicating that the latter quantity is
more sensitive to approximations in the electron repulsion
integral.

For cis- and trans-stilbene, increasing the number nQFD
of time evolution steps in the QFD algorithm has little
effect on energy differences. A different behavior is seen
in Fig. 9 for BChl a, where energy differences show vari-
ations of the order of a few milli-Hartree as nQFD varies.
The difference between the behavior of stilbene and BChl
a stems from the different point group symmetries of the
geometries studied here (C2 and C1 for stilbene and BChl
a, respectively). Such a difference is particularly visible
in the case of active spaces with M = 2 orbitals: for C2-
symmetric species, the ground and S2 excited states lie in
the A irrep of the C2 symmetry group, and are thus auto-
matically orthogonal to the triplet and S1 excited states,
which instead lie in the B irrep. Therefore, a single step of
time evolution applied to the Hartree-Fock state (A irrep)
or to a configuration with a single HOMO-LUMO excita-
tion (B irrep) is sufficient to completely span the subspaces

0.17

0.21

0.25 Cis-stilbene

C-DF, M = 2, ΔES0T1

C-DF, M = 4, ΔES0T1

C-DF, M = 6, ΔES0T1

C-DF, M = 2, ΔES0S1

C-DF, M = 4, ΔES0S1

C-DF, M = 6, ΔES0S1

Exact, M = 2, ΔES0T1

Exact, M = 4, ΔES0T1

Exact, M = 6, ΔES0T1

Exact, M = 2, ΔES0S1

Exact, M = 4, ΔES0S1

Exact, M = 6, ΔES0S1

0.15

0.20

0.25

Δ
E

(H
a)

Trans-stilbene

1 2 3 4
nDF

0.06

0.09

0.12 BChl a

FIG. 11. Singlet-triplet �ES0T1 and singlet-singlet �ES0S1 gap
from the exact (dashed, dash-dot lines) and the C-DF Hamil-
tonian (markers) with nDF = 1, 2, 3, 4 layers for cis-stilbene,
trans-stilbene, and BChl a (top to bottom) in active spaces of
M = 2 (red and green symbols), 4 (orange and teal symbols),
and 6 (yellow and blue symbols) orbitals.

of A and B symmetric wavefunctions. In the more general
case of BChl a, where such a simplification does not occur,
two time evolution steps are needed.

In Fig. 12, we perform exact simulations of the QFD
algorithm for cis-stilbene, trans-stilbene, and BChl a,
respectively, using active spaces of M = 6 orbitals. As
seen, and in accordance with the observations of Fig. 11,
increasing the number nDF of layers in the doubly fac-
torized representation of the Hamiltonian brings energy
differences closer to exact values for the full Hamiltonian
(faint shades of blue and red). Increasing nDF is more criti-
cal to converge energy differences than nQDF. It should also
be noted that, when nDF is small, C-DF can underestimate
energy differences. This is demonstrated in Appendix A 2
with Fig. 19.

Increasing the number of QFD steps nQFD affects energy
differences on a milli-Hartree scale. This effect is docu-
mented in Fig. 13, using BChl a as an example with M = 6
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1 2 3 4

1

2

3

4

5

n
Q

F
D

Cis-stilbene

nDF

Trans-stilbene

1 2 3 4 1 2 3 4

BChl a

ΔES0T1 (Ha) ΔES0T1 (Ha)
−0.02 −0.01 0.00 0.01 0.02 0.03 0.04 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04

ΔES0T1 (Ha)

FIG. 12. Deviation between QFD and FCI singlet-triplet �ES0T1 gap as a function of the number of QFD steps (nQFD) and C-DF
layers (nDF) for cis-stilbene, trans-stibene, and BChl a (left to right) using active spaces of M = 6 orbitals. Calculations use a time step
of �t = 20/(nQFDnDF) Ha−1.

orbitals. We see that there is a clear bias coming from the
QFD method compared to FCInDF . As seen, when nQFD is
increased, the energies decrease by a few milli-Hartree.
Such a decrease is naturally expected, given the varia-
tional nature of QFD, and the fact that increasing nQFD
means projecting the Schrödinger equation onto increas-
ingly larger variational subspaces. The slow convergence
is likely due to the choice of time step. When referring
back to Fig. 11, singlet-triplet gaps have weaker depen-
dence on nQFD than total singlet and triplet energies, due
to cancelation of errors. Direct comparisons between the

0

25

50

75

100

E
−

E
F

C
I,

n
D

F
=

∞
(m

H
a)

1 2 3 4 5
nQFD

–6

0

6

12

18

24

E
−

E
F

C
I,

n
D

F
(m

H
a)

ES , nDF = 1
ES , nDF = 2
ES , nDF = 3
ES , nDF = 4

ET , nDF = 1
ET , nDF = 2
ET , nDF = 3
ET , nDF = 4

FIG. 13. Singlet and triplet (cool, warm colors) energies for
BChl a, as a function of nQFD, and for several values of nDF, com-
pared against results from the exact electron repulsion integral
(top) and the C-DF electron repulsion integral with nDF layers
(bottom) using active spaces of M = 6 orbitals.

X-DF and C-DF methods of FCInDF as a function of nDF
can be found in Appendix A 2.

In Fig. 14, we perform classical emulations of the
QFD algorithm, using a simulator (qasm) that accounts
for statistical uncertainties affecting results of quantum
mechanical measurements, and incorporate the effect of
various decoherence phenomena through noise models.
Errors arising from decoherence are mitigated with a com-
bination of the postselection and echo-sequencing tech-
niques described in Sec. II. Deviations between exact and
computed energies are listed in Table I in Appendix B.

The energies of ground S0 and T1, S1, and S2 excited
states are found to be in agreement with exact results
across torsion of the C—C bond. The effect of postselec-
tion and echo-sequencing are illustrated in the right part
of the figure: raw (i.e., unmitigated) data have deviations
from exact results and statistical uncertainties of the order
of a few tens of milli-Hartrees. Upon postselection, both
deviations and statistical uncertainties decrease to order 10
mHa.

A similar effect is seen when the echo-sequencing
technique is applied, which arises because of echo sam-
pling, and because averaging results over necho cal-
culations reduces statistical uncertainties by a factor
necho

−1/2. Finally, the combination of postselection and
echo sequencing is seen to reduce statistical uncertainties
to 1–2 mHa, and deviations between computed and exact
results are statistically compatible with zero within such
statistical uncertainties.

B. Hardware experiments

All of the hardware experiments are run with a HOMO-
LUMO active space, with nDF = 1, and a single time step.
We also compare the calculations performed using par-
ity mapping and two-qubit reduction (P2QR) and Jordan
Wigner (JW) that require a total of three and five qubits,
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FIG. 14. Left: exact (black) and QFD (colored) energies as a function of torsion angle for ethylene, using a M = 2 orbital active
space, nDF = nQFD = 1, and �t = 0.1 Ha−1. Postselection and echo sequencing with necho = 10 samples are used, and calculations
are carried out on a classical simulator with noise model from ibmq_montreal. Right: differences between QFD and exact energies
for calculations with no error mitigation (raw), postselection (ps), echo sequencing (echo), and postselection and echo sequencing
(ps+ echo).

respectively. The restriction to a single time step and sin-
gle C-DF factor is due to constraints on the circuit depth
by the inherent noise present in the hardware.

While JW calculations face a considerable handicap,
compared to P2QR, in terms of qubit and total gate count,
JW mapping generally has favorable gate count for the
time evolution of the electronic structure Hamiltonian as
the number of orbitals increases. As such, our five-qubit
JW results serve as an important benchmark on the path to
simulating larger systems.

We also employ the use of two reference states to extract
the full spectra containing three singlets and a triplet state
in this active space. This requires a total of 24 circuits
(two reference states each require measurements of three
matrix elements, each of which requires the real and imag-
inary parts of the one-body and two-body parts of the
Hamiltonian) per geometry and each circuit is measured
with 8× 103 shots. Measurement error mitigation is also
employed, and calibrated using 8× 103 shots.
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FIG. 15. Exact (black lines) and computed (colored points)
energy spectra for twisted configurations of ethylene. Compu-
tations are performed on ibmq_mumbai, using JW (red plus
symbols; blue crosses for raw, error-mitigated results) and P2QR
(green stars) representations.

In Fig. 15, we explore the spectra of ethylene, as a func-
tion of torsion angle. Unsurprisingly, the P2QR results
outperform the JW results, but they fail to accurately reflect
the proper excited state energies when twisted more than
40◦. Within the P2QR HOMO-LUMO active space, the
number of particles in each spin species is automatically
conserved, so our error mitigation strategies add no benefit.

The accuracy of the JW results follow a similar trend
with the torsion angle, but induce larger systematic bias, as
it requires deeper circuits. Implementing the postselection
scheme within JW reduces the bias on the ground-state and
lowest excited-state energies, but increases the bias on the
other excited energies.

In Fig. 16, we report results for cis-stilbene, trans-
stilbene, and BChl a. Most of the P2QR results are sta-
tistically compatible with exact energies, with slightly
larger hardware errors on the highest energy in each of
these experiments. As expected, the JW experiments yield
larger systematic errors for the high-energy states. In the
cis-stilbene plots it is clear that postselection provides a
substantial correction to the first and second excited states.
A similar effect is observed in the trans-stilbene case.

Conversely, in the BChl a result, postselection mildly
reduced the systematic error for the first excited state, but
simultaneously shifted the second and third excited states
further from their exact values. Given that there is a general
trend for postselection to decrease the energies, it is likely
that typical errors generate transitions to particle sectors
with larger energies.

This still leaves open the source of error for the large
bias in some of these data points. We suspect that noise
on the ancilla qubit may dramatically affect the results, but
leave a rigorous investigation of noise sources to future
work.

IV. SUMMARY AND OUTLOOK

In this work, we have considered a number of
related techniques that can be stacked to substantially
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FIG. 16. Exact and computed energies for cis-stilbene, trans-
stilbene, and BChl a using the Jordan-Wigner representation
(red, blue crosses for raw and corrected results) and parity rep-
resentation with two-qubit reduction (green stars). The gray
band has a width of 10 mHa. Computations are carried out on
ibmq_mumbai and ibmq_guadalupe.

lower the quantum resources required to perform
accurate computations of low-lying spectra of electronic
Hamiltonians. The most straightforward step is the merger
of the QFD approach with the low-rank DF representa-
tion of the electronic Hamiltonian, which provides con-
siderable reductions of both the circuit size needed for

QFD time propagation and the number of measurements
needed for Hamiltonian expectation value calculation. This
merger of QFD and DF is further accelerated by intrin-
sic reductions in the required DF rank expansion afforded
by moving from an X-DF representation to a C-DF rep-
resentation. It is important to note that the choice of
QFD in the present work was made to provide a prac-
tical demonstration of the C-DF representation, but it
would be straightforward to also use C-DF with other
methods for ground- or excited-state properties such as
VQE [37], quantum subspace expansion VQE [9], MC
VQE [38], subspace search VQE [39], non-orthogonal
VQE [6], multi-reference selected quantum Krylov [4],
VQPE [5], or QPE. Within these methods, reduced cir-
cuit depths will be obtained for Hamiltonian simulation
steps and reduced required measurement costs will be
obtained for Hamiltonian expectation values. For an exam-
ple of how such speedups might be achieved, the interested
reader is referred to the recent work by Burg et al. [40],
which merged X-DF with qubitized QPE and achieved
significant reduction in circuit depth. Here one could sim-
ply substitute the C-DF factors for the X-DF factors and
achieve an additional speedup.

One interesting point that was approached but not
fully solved within this work involves the positioning of
double factorization between density fitting and tensor
hypercontraction. Density fitting [41–49] and the closely
related Cholesky decomposition approach for ERIs [50–
54] reduces the rank-4 ERI tensor to a product of two
rank-3 tensors (pq|rs) ≈∑

A LA
pqLA

rs, where the auxiliary
index size nA is found to scale linearly in np . Tensor
hypercontraction [28,55,56] reduces the ERI tensor to a
product of five rank-2 tensors, with a structure (pq|rs) ≈∑

kl XpkXqkZklXrlXsl that is very similar to double factor-
ization, but without the requirement that the leaf tensors
Xpk are orthogonal or square (i.e., nk may be differ-
ent from, and usually larger than np , though is found
to scale linearly in np ). The nonorthogonality of tensor
hypercontraction appears to be somewhat problematic for
quantum algorithms, e.g., as evidenced by the need for lin-
ear combination of unitaries and qubitization approaches
in a recent approach for the adoption of tensor hyper-
contraction into quantum algorithms by the Google team
[57]. At the very least, the nonorthogonal operators of
standard THC require additional conceptual and physical
overhead to represent within quantum circuits, mandat-
ing that we seek an alternative unitary variant of THC.
Explicit double factorization reduces the ERI tensor to an
nDF-depth sum over unitary tensor hypercontractions, each
indexed by t, i.e., (pq|rs) ≈∑

tkl Ut
pkUt

qkZt
klU

t
rlU

t
sl with the

size of nDF scaling linearly in np . The unitary nature of
the leaf tensors Ut

pk in double factorization makes the
approach immediately amenable to implementation within
quantum algorithms. However, explicit double factoriza-
tion retains the rank-3 information content and cost of
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density fitting, rather than the rank-2 information content
and cost of tensor hypercontraction. It seems incongruous
to us that simply constraining the tensor hypercontraction
factorization to use unitary factors to facilitate deploy-
ment within quantum algorithms should cause a rise in the
information content from rank 2 to rank 3. This motivated
our development of the compressed double factorization
approach in this work as a pragmatic attempt to reduce the
information content in the double factorization approach.
Substantial numerical gains were demonstrated, but it is
not clear if the resulting method achieves the constant
nDF depth required to obtain rank-2 information content.
More work must be done to pursue an analog to the ana-
lytical exact tensor hypercontraction result [56] (which
rigorously demonstrated the rank-2 information content of
tensor hypercontraction) in closed basis sets, and to extend
compressed double factorization to a more reliable and
practical method for nonclosed basis sets.

We also investigated methods for circuit reduction and
error mitigation to improve performance on noisy quantum
hardware. The circuit reduction is performed by reorganiz-
ing our Hamiltonian so that the two-body DF terms only
contain quadratic Pauli-Z terms (Zk,σZl,τ ) while simulta-
neously defining a new one-body term. When performing
controlled time evolution, this process results in a saving
of (2× N × nDF) CNOT gates, where N is the number of
qubits and nDF is the number of double-factorized terms in
the Hamiltonian.

In our measurement scheme we rotate to a diagonal
basis of each factor of the double factorized C-DF Hamil-
tonian as shown in Fig. 9. This enables us to postselect
only the results with the proper number of particles in
each spin species. An extra layer of error mitigation can
be employed by echoing with exp(−iηk,σ N̂σ ), as shown
in Fig. 8. The combined benefit of both these mitigation
strategies is demonstrated with the qasm noise simula-
tion of the ethylene in Fig. 14. As the depth of these
circuits increase, and the hardware noise is constrained to
a modest level, the echo self-averaging effect can enable
substantial error reduction within each individual instance.
At shorter depths, it is important to average over ran-
dom instances to smooth out the results. There are many
other error mitigation strategies that can be implemented
for these calculations. The benefit of the postselection and
echo-sequencing schemes we present is that they naturally
fit into the structure of these circuits with minimal resource
overhead.

The methods presented in this work were also imple-
mented on IBM’s quantum devises with calculations of
energy spectra for twisted ethylene, cis- and trans-stilbene,
and BChl a. As expected, calculation using P2QR outper-
formed results that used JW mapping. The JW results were
still able to modestly reproduce the proper energy spectra
and should be seen as a benchmark for moving to larger
systems.

The postselection scheme produced a modest improve-
ment in the JW results and we still need to experiment
with the echo sequences. It is clear that the noise-simulated
backend does not faithfully emulate the true hardware
noise in our experiments, which is to be expected as the
simulated noise models are only meant to capture simple
noise channels such as depolarization, amplitude damping,
and bit flipping. This is readily seen when comparing the
ethylene curves in Figs. 14 and 15. Given that the results
are highly sensitive to noise on the ancilla qubit it will
be important to investigate these noise sources further and
determine how well they can mitigated.

Molecular structures and electronic Hamiltonian matrix
elements are available from the authors upon reasonable
request.
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APPENDIX A

1. Example circuits

In this section, we describe the detailed structure of the
QFD circuits sketched in Figs. 8 and 9, focusing on a
system of electrons in M = 2 spatial orbitals, and using
the Jordan-Wigner representation. In Fig. 17, we show the
quantum circuit corresponding to a step of time evolution
under the Hamiltonian, using a C-DF approximation of the
ERI tensor with nDF = 1 layers.

Gϕ01 Zθ0
Gϕ′

01
ZZθ01 ZZθ01 ZZθ00

Gϕ′′
01

Gϕ01 Zθ1
Gϕ′

01
ZZθ01 ZZθ01 ZZθ11

Gϕ′′
01

Gϕ01 Zθ0
Gϕ′

01
ZZθ01 ZZθ01 ZZθ00

Gϕ′′
01

Gϕ01 Zθ1
Gϕ′

01
ZZθ01 ZZθ01 ZZθ11

Gϕ′′
01

FIG. 17. Quantum circuit implementing a single step of time
evolution under a Hamiltonian with nDF = 1 layers acting on
M = 2 spatial orbitals in a Jordan-Wigner representation. Green,
red, and orange blocks denote Givens rotations implement-
ing basis changes, single-qubit Z rotations, and two-qubit Z
rotations, respectively.
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−→

−→

Gϕ S Y−ϕ S†

Gϕ S H Y−ϕ H S†

ZZθ

ZZθ Zθ

FIG. 18. Implementation of a Givens rotation (top) and of a
two-qubit Z rotation (bottom) with CNOT gates and single-qubit
rotations.

The matrices ĜHF←t and Ĝt←t′ , connecting eigenbases
of the Fock and C-DF operators, are represented as prod-
ucts of Givens transformations with standard linear algebra
techniques [14,16]. Givens transformations correspond to
operators of the form

Ĝr−1,r(ϕr−1,r) =
∏

σ

e−ϕr−1,r(â
†
r−1σ ârσ−â†

rσ âr−1σ ), (A1)

which, in a Jordan-Wigner representation, are represented
by two quantum circuits (one for spin-α and one for spin-
β particles), each acting on two qubits and comprising two
CNOT gates, as shown in the upper portion of Fig. 18.

The representation of the Givens transformation as
second-quantization operators, Eq. (A1), is also the start-
ing point for deriving the corresponding quantum circuit
under other representations of fermionic degrees of free-
dom with qubits (e.g., parity, Bravyi-Kitaev [58]), as well
as in presence of qubit reduction techniques.

The one-body part of the Hamiltonian, on the other
hand, is represented by the diagonal operator

V̂1b = e−i�t
∑

kσ f ′kk ẑkσ =
∏

kσ

e−i�tf ′kk ẑkσ . (A2)

Since, under the Jordan-Wigner representation, ẑk↑ → Zk

and ẑk↓ → Zk+M , the operation V̂1b is implemented by a
product of 2M single-qubit Z rotations with angles θk =
−2�tf ′kk,

V̂1b →
∏

kσ

Zθk ,kσ . (A3)

Such single-qubit operations are shown as red blocks in
Fig. 17. For the same reason, the terms describing the two-
body part of the Hamiltonian,

V̂2b,t =
∗∏

kl,στ

e−i�tZt
klẑkσ ẑlτ /2 (A4)

are implemented, in a Jordan-Wigner representation, by a
product of O(M 2) two-qubit ZZ rotations with angles θkl =

�tZt
kl,

V̂2b,t →
∗∏

kl,στ

ZZθkl,kσ ,lτ . (A5)

Such two-qubit transformations, shown as orange blocks
in Fig. 17, are exponentials of the operator Z ⊗ Z, and can
thus be compiled into a product of two CNOT transforma-
tions and a single-qubit Z rotation, as shown in the lower
portion of Fig. 18.

It is useful to remark that the controlled version of V̂2b,t
only requires to control the single-qubit Z rotation, and not
the two CNOT operations. Furthermore, a network of SWAP
gates can be used to ensure that all ZZ and controlled-
ZZ rotations act on adjacent qubits (assuming linear chip
topology) [16].

2. DF energy convergence

For reference, we study the convergence of the X-DF
and C-DF methods in terms of correlation energy and
singlet-triplet gaps for each of our reference molecules
with an active space of M = 6. In Fig. 19, we plot the dif-
ferences in correlation energy and the singlet-triplet gap
are with respect to FCI(nDF = ∞) in the M = 6 active
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FIG. 19. Correlation energies (top) and singlet-triplet (ST)
gaps (bottom) as a function of the number of layers for the X-DF
and C-DF electron repulsion integrals (light, dark colors). Corre-
lation energies and gaps are computed for the species studied in
this work, with active spaces of M = 6 orbitals, and values from
the exact electron repulsion integral are used as reference.
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TABLE I. Deviations between exact and computed energies for
ethylene. Energy deviations are computed as in the right portion
of Fig. 14, averaged over torsion angle, and measured in milli-
Hartrees.

�Eraw �Eps �Eecho �Eps+echo

S0 24(11) 4(7) 3(4) 1(2)
S2 133(14) 12(10) 4(5) 3(4)
T1 14(19) 9(12) 11(6) 2(3)
S1 13(16) 9(11) 7(5) 1(3)

space of each molecule. When it comes to the corre-
lation energies, the C-DF method yields more accurate
estimates than X-DF for all values of nDF. Conversely,
for the singlet-triplet gap, the X-DF only produces more
accurate results when nDF > 2.

APPENDIX B: EFFECT OF POSTSELECTION AND
ECHO SEQUENCING

In Table I, we list the deviations between exact and com-
puted energies for ethylene. Energies are computed as in
Fig. 14, and averaged over the torsion angle for illustra-
tion purposes. As seen, use of postselection reduces the
magnitude of the deviations in the case of S2. Use of echo
sampling, on the other hand, primarily reduces statistical
uncertainties on energy deviations.
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