
PRX QUANTUM 2, 040337 (2021)

Learnability of Quantum Neural Networks

Yuxuan Du ,1 Min-Hsiu Hsieh,2,* Tongliang Liu,1 Shan You ,3 and Dacheng Tao1,†

1
School of Computer Science, Faculty of Engineering, The University of Sydney, Darlington, New South Wales

2008, Australia
2
Hon Hai Quantum Computing Research Center, Taipei 114, Taiwan

3
SenseTime Research, Beijing, China

 (Received 27 March 2021; revised 8 September 2021; accepted 20 October 2021; published 17 November 2021)

Quantum neural network (QNN), or equivalently, the parameterized quantum circuit (PQC) with a
gradient-based classical optimizer, has been broadly applied to many experimental proposals for noisy
intermediate-scale quantum (NISQ) devices. However, the learning capability of QNN remains largely
unknown due to the nonconvex optimization landscape, the measurement error, and the unavoidable gate
noise introduced by NISQ machines. In this study, we theoretically explore the learnability of QNN in
the view of the trainability and generalization. Particularly, we derive the convergence performance of
QNN under the NISQ setting, and identify classes of computationally hard concepts that can be efficiently
learned by QNN. Our results demonstrate that large gate noise, few quantum measurements, and deep
circuit depth will lead to poor convergence rates of QNN towards the empirical risk minimization. More-
over, we prove that any concept class, which is efficiently learnable by a quantum statistical query (QSQ)
learning model, can also be efficiently learned by PQCs. Since the QSQ learning model can tackle cer-
tain problems such as parity learning with a runtime speedup, our result suggests that PQCs established
on NISQ devices will retain the quantum advantage measured by generalization ability. Our work pro-
vides theoretical guidance for developing advanced QNNs and opens up avenues for exploring quantum
advantages beyond hybrid quantum-classical learning protocols in the NISQ era.

DOI: 10.1103/PRXQuantum.2.040337

I. INTRODUCTION

Deep neural network (DNN) has substantially impacted
the field of artificial intelligence in the past decade [1]
because numerous real-world applications, such as object
detection [2], question answering [3], and social recom-
mendation [4], could be accomplished by DNN-based
learning algorithms with state-of-the-art performance. The
success of DNN is mainly attributed to its versatile archi-
tecture, which is best understood by the following mul-
tilayer scheme. As shown in Fig. 1(a), the inputs are
processed through the feature embedding layers Fx(·), fol-
lowed by the fully connected layers

∏
� W�(·), where the

choice of each layer and the combination rule can be tai-
lormade for various learning tasks. Training DNN is a
process to uncover the intrinsic relation between the input

*min-hsiu.hsieh@foxconn.com
†dacheng.tao@sydney.edu.au

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

and the output of the given dataset. However, theoreti-
cal results to explain how DNN discovers such a relation
are largely unknown, hurdled by its flexible architectures
and the nonconvex optimization landscape. To this end,
a huge amount of effort has been dedicated to under-
standing the learnability of DNN. Concretely, based on
the formula “learnability = trainability+ generalization”
[5], there are two pipelines to explore the learnability of
DNN. For the trainability, several studies [6–9] illustrated
that DNN with specific structures can converge to the
global minima of the training objective function in polyno-
mial time. The generalization concerns whether DNN can
effectively output a hypothesis that well approximates the
target concept for a certain learning problem. For instance,
Ref. [5] proved that overparameterized DNN can learn
important concept classes, including the two- and three-
layer DNN with fewer parameters, in polynomial samples;
while Ref. [10] proved that two-layer DNN can effectively
learn polynomial functions.

Quantum machine learning has emerged as a cen-
tral application of quantum computing [11]. With the
aim of solving real-world problems beyond the reach of
classical computers, firm and steady progress has been
developed during the past decade [12–14]. In addition, a

2691-3399/21/2(4)/040337(28) 040337-1 Published by the American Physical Society

https://orcid.org/0000-0002-5997-7882
https://orcid.org/0000-0003-1964-0430
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.040337&domain=pdf&date_stamp=2021-11-17
http://dx.doi.org/10.1103/PRXQuantum.2.040337
https://creativecommons.org/licenses/by/4.0/

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

(b)(a)
x

UX

FIG. 1. Illustration of DNN and QNN. The left and right panel shows a DNN and QNN, respectively. For DNN, the feature embed-
ding layers Fx(·), which contain a sequence of operations with the arbitrary combination such as convolution and attention, maps the
input “0” to the feature space. Wl(·) is the lth fully connected layer. For QNN, an encoding quantum circuit Ux maps the classical input
“0” to the quantum feature space. Ul(θ) is the lth trainable quantum circuit layer. Classical information for optimization is extracted
by quantum measurements.

quantum extension of DNN, i.e., the quantum neural net-
work (QNN), which is separately proposed in Refs. [15–
20], received great attention due to the huge success of
DNN and the superior computational power of quantum
devices [21]. As shown in Fig. 1(b), QNN also adopts
the multilayer architecture: the inputs were converted
into quantum states by the encoding quantum circuit
Ux, followed by the trainable quantum circuits U(θ) =∏L

l=1 Ul(θ), where θ are adjustable parameters of quantum
gates, and a classical optimizer. There is a close correspon-
dence between DNN and QNN: the feature embedding
layer “Fx” of DNN corresponds to the encoding quantum
circuit Ux of QNN, while the fully connected layer Wl(·)
of DNN coincides with the trainable quantum circuit Ul(θ)

of QNN. Despite the high similarity, there are two key fea-
tures separating DNNs with QNNs. First, QNNs generally
lack nonlinear activation functions, caused by the linearity
of quantum mechanics. Second, U(θ) generally possesses
a strong expressive power to prepare classical distributions
[22,23]. Noticeably, the latter property enables the advance
of QNNs for a wide range of machine-learning problems
over their classical counterparts.

In parallel to empirically evaluate performance of QNNs
on different learning tasks such as classification [17,19,24]
and regression [18,25], there is a growing interest to
understand the learning capabilities of QNNs, i.e., their
trainability and generalization. Recent studies have par-
tially investigated these two issues from different angles
such as optimization [26,27], expressivity [28–30], and
generalization [31–38]. Nevertheless, to date, many fun-
damental theoretical results of QNNs still remain largely
unknown. Firstly, a rigorous analysis of the learning
performance of QNNs is lacking. The obstruction that
impedes the theoretic progress is due to a combination of
the following factors: the versatile structures of QNN, the
nonconvex optimization landscapes, the unavoidable gate
noise, and measurement errors. Classically, the empirical

risk-minimization (ERM) principle [39,40] is a learning
paradigm that has been broadly employed to benchmark
the training performance of the supervised learning algo-
rithms without prior knowledge of the data distributions.
To be more specific, ERM measures how fast the objec-
tive function used in the learning algorithm converges to
the stationary point in terms of the input size and feature
dimensions. Following the same routine, it is natural to ask
what is the convergence rate of QNN towards the empir-
ical risk minimizer with a specified optimization rule?
Answering this question not only enables the theoreti-
cal evaluation of the performance of various QNN-based
supervised learning algorithms, but more importantly, it
also provides guidelines to the design of better quantum
supervised learning protocols. Particularly, we believe that
the achieved convergence rates can guide us to devise
more advanced quantum learning protocols to avoid the
barren-plateau (i.e., the vanishing gradients) phenomenon
in training QNNs [41]. More discussion comes after we
formally introduce Theorem 1.

Secondly, understanding the generalization of QNNs
can facilitate the exploration of its applicability with
provable advantages. Specifically, generalization concerns
whether the learning model can efficiently output (i.e.,
using a polynomial sample or query complexity) a hypoth-
esis that can well approximate a target concept under a
specific learning paradigm. Despite the significance, the-
oretical analysis of the generalization property of QNN
remains largely open. That is, the existing literature mainly
focuses on studying the generalization of QNNs under
the quantum probably approximate correct (QPAC) learn-
ing paradigm [42–45]. However, it remains inconclusive
whether QNN possesses any theoretical advantages over
classical learning models under other learning paradigms
such as noisy QPAC learning [46–49], quantum statisti-
cal query learning (QSQ) [50], and quantum differentially
private learning [51,52]. A key reason for exploring the

040337-2

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

generalization of QNNs under different learning paradigms
is that different from QPAC learning, noisy QPAC and
QSQ learning can be applied to analyze the generaliza-
tion of QNNs when the gate noise and measurement error
are considered (see Sec. IV for elaborations). In this study,
we delve into investigating the generalization of QNNs
under the QSQ learning paradigm. In particular, we aim
to answer whether there exists any class of concepts that
can be efficiently learned by (noisy) QNNs but are com-
putationally hard for the classical learning models in the
regime of the statistical query learning. If the answer is
affirmative, it enables us to employ QNN implemented on
NISQ devices to accomplish certain tasks with theoretical
advantages.

The outline of this study is as follows. In Sec. II, we
theoretically explore the trainability of QNNs through the
lens of ERM. Then, in Sec. III, we conduct numerical sim-
ulations to validate the achieved theoretical results. Subse-
quently, we investigate the generalization ability of QNNs
under the statistical query learning protocol in Sec. IV. We
conclude this study in Sec. V. All proof details are deferred
to the Appendix.

II. TRAINABILITY OF QNN TOWARDS ERM

Before elaborating our theoretical results, we first for-
mulate ERM and the mechanism of QNN. Let z =
{zj }nj=1 ∈ Z be the given dataset with Z being the sample
domain, where the j th sample zj = (xj , yj) includes a fea-
ture vector xj ∈ R

Dc and a label yj ∈ R. ERM aims to find
the optimal θ∗ ∈ R

d by minimizing the objective function
L within the constraint set C ⊆ R

d, i.e.,

θ∗ = arg min
θ∈C

L(θ , z) := 1
2n

n∑

j=1

�(yj , ŷj)+ r(θ), (1)

where ŷj is the predicted label that is determined by θ

and xj , � is the loss function that measures the disparity
between true labels {yj }nj=1 and the predicted labels {ŷj }nj=1,
and r(·) is a regularizer. To ease the discussion, through-
out the paper, we consider the mean square error loss �
with �(yj , ŷi) = (ŷj − yj)

2, and use r(θ) = λ‖θ‖2
2/2 with

λ ≥ 0. Note that our analysis can be easily generalized to
other loss functions that satisfy S-smooth and G-Lipschitz
properties [53].

The common optimization rule to tackle ERM is the
batch gradient-descent method [1]. Depending on the
available resources, the sample indices are divided into
B disjoint batches {Bi}Bi=1 with equal size Bs, namely,
z = ∪j∈{Bi}Bi=1

zj . The optimization rule at the tth iteration

is θ (t+1) = θ (t) − (η/B)∑B
i=1 ∇L(θ (t),Bi), where η is the

learning rate, the gradient ∇L(·) is

∇L(θ (t),Bi) =
(

Ŷ(t)i − Yi

) ∂Ŷ(t)i

∂θ (t)
+ λθ (t), (2)

Yi = (1/Bs)
∑

j∈Bi
yj and Ŷ(t)i = (1/Bs)

∑
j∈Bi

ŷ(t)j are the
sum average of the true labels and the predicted labels
for the ith batch Bi, respectively. When no confusion will
occur, we use L(θ (t)) and Li(θ

(t)) instead of L(θ (t), z) and
L(θ (t),Bi) in the rest of study.

The general workflow of QNN is summarized in
Fig. 1(b). Specifically, QNN first employs a state prepa-
ration unitary Ux to encode classical inputs {xj |j ∈ Bi}
into quantum states, followed by the quantum circuit U(θ)
with tunable parameter θ to produce the state γBi ∈ C

D×D.
Note that some quantum kernel encoding methods may
lead to the varied feature dimensions, i.e., Dc 	= D. We
refer the interested reader to Appendix C for implemen-
tation details of Ux and U(θ). Finally, a quantum mea-
surement, e.g., a two-outcome positive operator-valued
measure (POVM) {�, I −�}, is applied to the state γBi
and produces the outcome Vi that can be viewed as a
binary random variable with the Bernoulli distribution
Ber(Ŷi), where Ŷi := Tr(�γBi). Note that, for a random
variable X that follows the Bernoulli distribution with X ∼
Ber(p), we have Pr(X = 1) = p and Pr(X = 0) = 1− p .
Denote the obtained statistics, i.e., the sample mean, by
Ȳi = (1/K)

∑K
k=1 Vk after repeating the above procedure

K times. The law of Born rule ensures Ȳi → Ŷi when
K →∞. However, in reality, only a finite number of mea-
surements is allowed, and this results in the sample error
(measurement error).

In addition, the quantum gates in NISQ chips, which
are used to implement Ux and U(θ), are prone to having
errors [54]. The gate noise can be simulated by apply-
ing certain quantum channels to each circuit layer, and
this can be done by considering the worst-case scenario,
i.e., modeling the gate noise at each circuit depth by a
quantum depolarization channel [55]. Specifically, given
a quantum state ρ ∈ C

D×D, the depolarization channel Np
acts on a D-dimensional Hilbert space follows Np(ρ) =
(1− p)ρ + pI/D, where I/D is the maximally mixed state
[55]. Throughout the whole study, we consider the case
that applying Np after each circuit depth of QNN, the
quantum state before measurement is denoted by γ̃Bi .
When the measurement is applied to γ̃Bi , the obtained out-
come Vi follows the Bernoulli distribution Ber(Ỹi) with
Ỹi := Tr(�γ̃Bi) instead of Ber(Ŷi). We remark that while
all results presented in the main text assuming the depolar-
ization noise, they can be easily extended to a more general
noisy channel (see Appendix I for details).

The optimization of QNN towards ERM is similar to
that of DNN. In particular, QNN also generates a sum
average of the predicted labels, based on θ and Bi, after
the measurement component in Fig. 1(b). However, the
main difference between the gradient-based optimization
of QNN and DNN is as follows. In DNN, the gradient
in Eq. (2) can be easily obtained via backpropagation
[1]. However, due to the nature of quantum mechanics,

040337-3

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

the gradient of a quantum unitary operator [e.g., trainable
quantum circuit layer Ul(θ)] is, in general, not a legitimate
quantum operator anymore [56]. To overcome this short-
coming, the parameter shift rule [18,56] is proposed to
estimate the gradients of a quantum unitary operator using
K measurements (see Appendix B for details).

Now we quantify the convergence of QNN towards the
empirical risk minimizer under the batch gradient-descent
optimization rule in Eq. (2). Particularly, analyzing the
convergence of QNN amounts to checking the following
two standard utility metrics:

R1
(
θ (T)

)
:= E

[∥
∥∇L(θ (T))∥∥2

]
,

R2
(
θ (T)

)
:= E[L(θ (T))]− L(θ∗),

(3)

where the expectation is taken over the randomness of
QNN resulted from the measurement error and gate noise,
θ (T) is the output of QNN after T iterations and ∇L(·)
denotes the gradient of the objective function L(·) defined
in Eq. (1), and θ∗ is the optimal parameters in Eq. (1) with-
out noise. The metric R1 evaluates how far QNN is away
from the stationary point, ‖∇L(θ (T), z)‖2 = 0, in expecta-
tion [57,58]. The utility metric R2 evaluates the expected
excess empirical risk [59,60].

The utility bounds of noisy QNN are summarized in the
following theorem.

Theorem 1: Let K be the number of measurements per
iteration, LQ be the circuit depth, p be the gate noise, and B
be the batch size. QNN outputs θ (T) ∈ R

d after T iterations
with the utility bound

R1 ≤ Õ
[

poly
(

d
T(1− p)LQ

,
d

BK(1− p)LQ
,

d
(1− p)LQ

)]

.

When λ satisfies a technical assumption such that λ ∈
[0, (1/3π)] ∪ [(1/π),∞], QNN outputs θ (T) ∈ (π , 3π]d

after T = Õ[d3/(1− p)LQ] with the utility bound

R2 ≤ Õ
[

poly
(

d
K2B(1− p)LQ

+ d
(1− p)LQ

)]

.

Proof sketch. Here we present the proof sketch of
Theorem 1. Refer to Appendix F for the full proof details.

The proof of deriving the upper bound of R1 is estab-
lished on a well-known result in optimization theory [61],
i.e., when a function satisfies the smooth property, its
stationary point can be efficiently located by a simple
gradient-based algorithm. To this end, we first prove that
the loss function L(θ , z) in Eq. (1) is S smooth with
∇2L(θ , z) � SI with S > 0 and ∀θ ∈ C. Then, supported
by an alternative representation of S smooth, we establish

a relationship between the loss difference and the gradients
at the tth iteration, i.e., for ∀t ∈ [T]

L(θ (t+1))− L(θ (t))

≤ 〈∇L(θ (t)), θ (t+1) − θ (t)〉 + S
2
‖θ (t+1) − θ (t)‖2. (4)

Note that in the NISQ scenario, the term θ (t+1) − θ (t) is
equal to the estimated gradients−(η/B)∑B

i=1 ∇L̄(θ (t),Bi)

instead of the analytic gradient −(η/B)∑B
i=1 ∇L(θ (t),Bi)

as defined in Eq. (2), where the error is caused by the
inevitable gate noise and sample error. Our key technical
contribution is deriving the relation between the ana-
lytic and estimated gradients, i.e., the gradient for the j th
parameter with j ∈ [d] follows

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + ς
(t,j)
i , (5)

where p̃ = 1− (1− p)LQ , LQ is the circuit depth, the con-
stant C(i,t)j ,1 depends only on Yi, θ (t), and p̃ , and ς

(t,j)
i follows

the distribution PQ that is formed by Yi, θ (t), the number of
measurements K , and p̃ with zero mean.

In conjunction with Eqs. (4) and (5), we obtain the rela-
tion between the loss discrepancy and the analytic gradeint
when the classical optimizer can only access the estimated
gradients, i.e.,

L(θ (t+1))− L(θ (t))

≤ −1
S

d∑

j=1

∇jL(θ (t))[(1−p̃)2∇jLi(θ
(t))+C(i,t)j ,1 +ς

(t,j)
i]

+ 1
2S

d∑

j=1

[(1− p̃)2∇jLi(θ
(t))+ C(i,t)j ,1 + ς

(t,j)
i]2. (6)

After taking expectation over the randomness and
simplification, we can obtain the norm of gradi-
ents at the tth iteration is upper bounded by the
loss difference and other factors, i.e., ‖L(θ (t))‖2 ≤
2S[L(θ (t))−E[L(θ (t+1))]/(1− p̃)2] + [(2p̃ − p̃2)(2G +
d)(1+ 10λ)2/(1− p̃)2]+ [(6dK + 8d)/(1− p̃)2BK2]. By
induction, with summing over t = 0, . . . , T − 1, we
achieve the upper bound of R1.

The proof of deriving the upper bound of R2 utilizes the
Polyak-Lojasiewicz (PL) condition to connect stationary
points with the global minimum. Mathematically, a func-
tion f satisfies the PL condition if there exists μ > 0 and
for every possible θ ∈ C, ‖∇L(θ)‖2 ≥ 2μ(L(θ)− L∗),
where L∗ = minθ∈C L(θ). Intuitively, if a nonconvex func-
tion satisfies the PL condition [62], every stationary point
of such a function is the global minimum [62,63]. To
this end, we prove that when the hyperparameter λ sat-
isfies a mild technical assumption with λ ∈ [0, (1/3π)] ∪

040337-4

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

[(1/π),∞], the loss function L(θ , z) in Eq. (1) obeys the
PL condition. Combining the PL condition and the results
achieved in analyzing R1, we have

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))]

≤ − 1
2S
(1− p̃)2‖∇L(θ (t))‖2 + g

≤ −μ(1− p̃)2

S
[L(θ (t))− L∗]+ g, (7)

where g = [(2G+ d)/2S](2− p̃)p̃(1+ 10λ)2 + [(6dK +
8d)/2SBK2]. By induction, we can effectively achieve the
upper bound of R2. �

We emphasize two key points in our proof. First, the
consequence of the derived bounded discrepancy between
the estimated and analytic gradient of QNN is one of our
key technical contributions, which may be of independent
interest to understand the trainability of other variational
quantum algorithms. Namely, the collected gradient infor-
mation of QNN is generally biased. This property sepa-
rates the convergence analysis of QNNs with DNNs, where
the randomness assigned to classical DNNs is unbiased to
ensure good convergence. This biased gradient informa-
tion requests us to adopt different relaxation techniques
to analyze the upper bound of R1 and R2. Second, the
introduced technical assumption of λ is reasonable. Due
to the hardness of finding the global optima L(θ∗) in the
nonconvex landscape, R2 can only be applied to some spe-
cial nonconvex objective functions. Compared with other
conditions such as the strong convexity and the restricted
strong convexity to achieve the linear convergence towards
the global minimum, the PL condition is much easier to
satisfy by QNN with λ ∈ [0, (1/3π)] ∪ [(1/π),∞].

The result achieved in Theorem 1 shows that a larger
amount of measurements K , a larger batch size B, a smaller
depolarizing error p , a smaller parameter space d, and a
shallower quantum circuit depth LQ, can yield better utility
bounds R1 and R2. In addition, the achieved utility bound
R1 explains how the unavoidable gate noise affects the con-
vergence behavior of QNN. Specifically, no matter how
large T or K would become, QNN could still diverge for
large d, p , and LQ because of the term d/(1− p)LQ in
both R1 and R2. Notably, unlike other factors, the circuit
depth LQ associated with the system noise p exponentially
scales the utility bounds R1 and R2. Such a dependence
suggests that to enhance the trainability of QNNs and seek
a near-optimal solution on NISQ devices, it is signifi-
cant to control the circuit depth and suppress the system
noise p . The above observation coincides with the clas-
sical ERM results, where a sufficiently large perturbation
noise imposed on the gradient may result in the optimiza-
tion of ERM to diverge [53]. Moreover, the dependence of
gate and measurement noise in R1 and R2 accords with the

empirical observations [64] that certain quantum learning
models, which achieve the promising performances under
the ideal setting, may not be applicable to experiments.
For example, when the quantum approximate optimiza-
tion algorithm [20] is applied to accomplish maximum
cut problem on three-regular graphs, the success prob-
ability drops to zero once the gate error level is larger
than 0.1.

The convergence towards the global optima as shown
in R2, which evaluates the convergence rate of QNN to
the global minima, implies that regularization techniques
may contribute to avoiding the barren plateau encountered
in training QNN [41]. The barren-plateau phenomenon
claimed that the optimization may be terminated at a point
that is far away from the global minimum, since the gra-
dient will be exponentially vanished with respect to the
increased number of qubits and the circuit depth. By con-
trast, R2 shows that when λ in Eq. (1) is sufficient large,
with improving the number of measurements K , the opti-
mized result of QNN will converge to the global optima
once the gate noise is not too large. Hence, the regu-
larization techniques allow the optimization of QNN to
be released from the barren-plateau dilemma. Remark-
ably, the prior literature delves into developing effective
methods to alleviate barren plateaus for all variational
quantum algorithms, including adopting local measure-
ments [26,65], operating trainable parameters by involv-
ing correlation or specific optimization strategy [66–68],
and controlling entanglement such as the number of two-
qubit quantum gates [69–72]. Unlike these general meth-
ods, regularization techniques, which modify only the
loss function instead of variational quantum circuits, are
another efficient approach to alleviate barren plateaus
when focusing on conventional machine-learning tasks,
where near-optimal results are sufficient to attain good per-
formance [73]. To this end, the introduced regularization
term aims to slightly reshape the loss landscape to facil-
itate optimization. In other words, the setup of this work
excludes all other known explanations of the absence of
barren plateaus. Our results provide a positive response
towards the conjecture raised by Refs. [41,67], where
both of them speculate that regularization techniques may
eliminate barren plateaus but lack theoretical evidence.

Remark: We note that the achieved utility bounds R1 and
R2 are very general, and cover various types of encod-
ing quantum circuits Ux and trainable quantum circuits
U(θ). Specifically, our results cover all typical encoding
circuits, e.g., amplitude encoding [74–76], kernel map-
ping [17–19], the dimension reduction methods [77], basis
encoding methods [16], and diverse architectures of the
trainable quantum circuits, as long as it is composed of the
parameterized single-qubit gates and two-qubit gates [78].
Theorem 1 provides theoretical guidances to design QNN-
based learning algorithms on NISQ devices, considering

040337-5

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

x

FIG. 2. The simulation results of using QNN to learn a handwritten digit dataset. The lower left panel illustrates the original and
reconstructed training examples, as highlighted by the blue and gray regions, respectively. The upper left panel shows the implemen-
tation of the data encoding circuit and trainable circuit used in QNN. The label “×3” and “×L” means repeating the quantum gates in
blue and brown boxes with 3 and L times, respectively. The lower center panel, highlighted by the yellow region, shows the training
loss under different hyperparameter settings. In particular, the label “Loss_baseline_depL” refers to the obtained loss with circuit depth
L (i.e., L = 20 or L = 5), p = 0, and K →∞, where p , and K refer to the depolarization rate and the number of measurements to
estimate expectation value used in QNN. Similarly, the label “Loss_QNN_depL” refers to the obtained loss of QNN with setting the
circuit depth as L (i.e., L = 5, 20), p = 0.0025, and K = 20. The label “Loss_FCNN” represents the obtained loss of FCNN. The upper
right and lower right panels separately exhibit the training and test accuracy of FCNN and QNN with different hyperparameter settings.

that the gate and measurement noise are ubiquitous in these
devices.

The tantalizing results indicated by the utility bound R2
requests a technical assumption such that the loss func-
tion applied to QNNs should satisfy the PL condition
(see Appendix B), which may not be applicable for most
loss functions without regularization operations. In other
words, the key message delivered by the utility bound R2
is that the barren plateaus encountered by QNNs could be
alleviated by reshaping the loss landscape assisted by the
regularization operations. How to effectively modify the
loss landscape without shifting the optimal solution is left
as future work.

III. NUMERICAL SIMULATIONS

We employ the UCI ML handwritten digit datasets [79]
to exhibit the correctness of utility bounds R1 and R2 of
QNN, as achieved in Theorem 1. The employed dataset
includes in total 1797 handwritten digit images with ten
class labels, where each label refers to a digit and each
image has 64 attributes. The data preprocessing has three
steps. First, we clean the dataset and collect only images
with labels 0 and 1. After cleaning, the total number
of images is 360, where the number of examples with

label 0 (label 1) is 178 (172). In other words, our sim-
ulation focuses on the binary classification task. Some
collected examples are shown in the lower left panel of
Fig. 2. Second, we utilize a feature reduction technique,
i.e., principal component analysis (PCA) [80], to reduce
the feature dimension of each data example from 64 to
3. The lower left panel of Fig. 2, highlighted by the gray
region, exhibits the reconstructed handwritten digit images
using the reduced data features. Such a step aims to balance
the relatively high-dimension features of the data example
and the limited quantum resources available in the present
day. After applying PCA, we denote the employed dataset
as z = {(xi, yi)}360

i=1, where xi ∈ R
3 is the ith data feature

and yi ∈ {0, 1} is the ith label. The last step is randomly
splitting z into two groups, i.e., the training dataset zt and
the test dataset zp . The size of the training dataset zt and
the test dataset zp is 280 and 80, respectively.

We now employ the preprocessed handwritten digit
dataset z and quantum learning model as used in Ref. [17]
(see Appendix G for the implementation details) to study
the learnability of QNN under the depolarization noise.
Specifically, we apply depolarization channel Np to every
quantum circuit depth, where the depolarization rate is
set as p = 0.0025. The depth of trainable circuits U(θ) is
set as L = 5 and L = 20, respectively. The corresponding

040337-6

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

[]

FIG. 3. The mechanism of different quantum learning models. The key difference of PAC (or QPAC), SQ, and QSQ learning is the
way to acquire accessible data information, which is used to infer hypothesis h(·). In particular, the left panel exhibits the mechanism
of PAC or QPAC learning. To inference h(·), the PAC learner requires access to the example oracle to acquire the accurate information
of each example. The two middle panels represent the mechanism of SQ and QSQ learning, respectively. The SQ (QSQ) learner feeds
a sequence of queries {[φi(·, ·), τi]} into a SQ (QSQ) oracle and receives the statistical results {αi} about the target concept c∗(·). The
collected results {αi} are then employed to infer the hypothesis h(·) to approximate c∗(·). The right panel compares the power of SQ,
QSQ, and PAC learning modes. Namely, restricted by the accessible information of the dataset, some problems can not be efficiently
tackled by SQ and QSQ learning models, while they can be effectively solved by PAC learning models.

number of trainable parameters is 15 and 60, respectively.
The number of measurements to estimate the expectation
value is set as K = 20. We also train QNN without noisy
channels Np under the setting L = 5, 20 with the infinite
measurements, which is utilized to evaluate how the sys-
tem noise and the measurement shots affect the learning
performance of QNNs. Since seeking the optimal solution
θ and the minimized objective function L∗ is NP hard
[81], in the following, we employ the results achieved by
noiseless QNN to approximate the optimal results. As a
reference, we utilize classical deep neural network learn-
ing models, i.e., fully connected neural network (FCNN)
[1], to tackle the same binary classification task. The num-
ber of trainable parameters of FCNN is set as 15, which is
at the same level with QNNs. The optimization strategy is
identical to QNNs as described in the main text, where the
mean square error is exploited as the loss function and the
batch gradient-descent method is adopted to update train-
able parameters (see Appendix G for the implementation
details). The number of iterations for all numerical simu-
lations described above is set as T = 400. The source code
related to numerical simulations is available at the Github
repository [82].

The simulation results, as shown in Fig. 2, accord with
our theoretical results. Specifically, as shown in the lower
center of Fig. 2, even though the gate noise and the
finite number of measurements are considered, the train-
ing loss can still converge after a sufficient number of
iterations. Moreover, the gap between the optimal result
L∗ (noiseless) and the results L(θ (T)) under the varied
noise setting, as indicated by two red arrows, becomes
large with increasing the circuit depth L. Such a phe-
nomenon echoes with the result such that a larger L
and p lead to a poorer utility bound. In addition, the
achieved training and test accuracies as shown in the
right panel of Fig. 2 implies that the noisy QNN can
also learn a useful decision rule while its performance
has slightly degenerated. In Appendix G, we quantitatively
investigate whether the exponential dependence on L and

the inverse dependence on K claimed in Theorem 1 can
be observed in the above binary classification task. Com-
pared with QNNs, FCNN attains a better performance with
respect to the investigated learning task. In particular, after
25 iterations, its train accuracy (test accuracy) achieves
98.7% (99.4%), respectively. Moreover, its training loss
converges to 0.01 after 150 iterations. We note that the
superiority of QNNs versus DNNs highly depends on the
explored dataset. This topic is systematically studied in our
recent work [34].

IV. GENERALIZATION OF QNN

We next examine the generalization of QNN in the
regime of the statistical query learning [83]. For con-
creteness, let us first elucidate the key difference between
QPAC [42] and QSQ learning [50] paradigms before mov-
ing on to present the achieved main results. Recall that
for both the classical and quantum machine learning, the
generalization concerns whether the exploited learning
model can effectively output a hypothesis h ∈ H with H
being the hypothesis set that well approximates the target
concept for a certain learning problem; namely, using a
polynomial sample or query complexity. Define C ⊆ {c :
{0, 1}N → {0, 1}} as a concept class and D : {0, 1}N →
[0, 1] as an unknown distribution. In QPAC learning
[40,42], the learner continuously collects the labeled exam-
ples {|xi〉, c∗(xi)} and then uses these examples to infer a
hypothesis h(·) to approximate c∗(·) ∈ C, as shown in the
right panel of Fig. 3. In other words, the QPAC learners
can directly access accurate information about a sequence
of quantum examples to proceed inference. It is notewor-
thy that in the NISQ scenario, the generalization of QNNs
can not be analyzed by QPAC learning theory, since the
system and measurement noise forbids us to access the
accurate information c∗(xi). A potential solution to address
this issue is QSQ learning paradigm given below.

040337-7

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

Definition 1 (Quantum statistical query learning oracle,
[50]): Let c∗ : {0, 1}N → {0, 1} be an unknown concept
sampled from a known concept class C ⊆ {c : {0, 1}N →
{0, 1}}. Define the quantum example as

|ψc∗〉 =
∑

x∈{0,1}N

√
D(x)|x〉|c∗(x)〉, (8)

where D : {0, 1}N → [0, 1] is some unknown distribution.
A QSQ oracle receives a tolerance τ ≥ 0 and an observ-
able M ∈ (C2)⊗N+1 × (C2)⊗N+1 with Tr(M) ≤ 1, and
outputs a number α satisfying

|α − 〈ψc∗ |M|ψc∗〉| ≤ τ . (9)

The above definition indicates that in the case of QSQ
learning, the learner can receive only the collected behav-
ior of the whole examples |ψc∗〉 instead of information
of the individual example |x〉|c∗(x)〉. The characteristic of
employing statistics about |ψc∗〉 to infer h ∈ H ensures
that QSQ learners are more practically feasible than gen-
eral QPAC learners, especially in the NISQ era [50]. As
shown in the middle panel of Fig. 3, the generalization of
QSQ learning models means that if there is an algorithm
A such that for every c∗ ∈ C, the learner makes at most Q
queries to the QSQ oracle, i.e., {Mi, τi}Qi=1, and then uses
the returned {αi}Qi=1 to output a hypothesis h satisfying

Pr
x∼D

[h(x) 	= c∗(x)] ≤ ε. (10)

When the required number of queries Q for the QSQ learn-
ing model to achieve Eq. (10) is less than the classical
SQ learning model (as shown in the left panel of Fig. 3),
we say that the QSQ learning model possesses a better
generalization property.

The QSQ oracle can be well realized by noisy QNNs.
Recall that three ingredients in the QSQ oracle are the
preparation of the quantum example |ψc∗〉, the implemen-
tation of observable M, and a tolerance τ . Following
the description in Fig. 1(b), |ψc∗〉 can be prepared by a
predefined input oracle Ux with basis encoding, as dis-
cussed in Appendix C. Moreover, the observable M can
be implemented by the trainable unitary U(θ) associated
with a fixed measurement �, supported by Stinespring’s
dilation theorem [55]. With this regard, the expectation
value of the QSQ oracle 〈ψc∗ |M|ψc∗〉 is equivalent to
〈0⊗(N+1)U†

xU(θ)†�U(θ)Ux0⊗(N+1)〉. Last, the estimation
error τ between the output value α and the expectation
value is determined by the system noise and the finite num-
ber of measurements. The following theorem analytically
quantifies the relationship between QSQ oracle and noisy
QNN, whose proof is provided in Appendix H.

Theorem 2: Denote the total number of measurements
applied to QNN as shown in Fig. 1(b) as K and the mea-
sured result at the kth time as Vk. Following notations in

Definition 1, suppose that Ux prepares |ψc∗〉, U(θ)†�U(θ)
is equal to M, and the system noise is modeled by the depo-
larization channel Np̃ . When K = ln(2/b)/2(τ − 5p̃/4)2,
with probability 1− b, we have

∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − 〈ψc∗ |M|ψc∗〉
∣
∣
∣
∣
∣
≤ τ . (11)

The achieved results imply that noisy QNNs with access
to a unitary Ux, which prepares a quantum example state
|ψc∗〉, provide a concrete framework for realizing QSQ
oracles. In other words, the sample mean (1/K)

∑K
k=1 Vk

amounts to the output of QSQ oracle α in Eq. (9). Accord-
ing to the definition of generalization in Eq. (10), given a
sequence of queries {Mi, τi}Qi=1, the sample mean of noisy
QNNs corresponds to {αi}Qi=1 and hence can be used to
infer a hypothesis h that well approximates c∗. According
to Refs. [50,83], these quantum statistical query oracles, or
equivalently noisy QNNs, allow for more efficient learning
of parities, juntas, and disjunctive normal form over classi-
cal SQ models. As a result, we attain a positive answer that
noisy QNNs have the potential to possess superior gen-
eralization abilities over classical learning models in the
regime of statistical query learning.

We note that the process of inferring h can be catego-
rized into two classes, depending on how the set {αi}Qi=1

is collected. In the first class, the observables {Mi, τi}Qi=1

used to obtain {αi}Qi=1 are agnostic or correlated. That is,
the observable Mi, or equivalently U(θ)†�U(θ), should
be adaptively constructed via updating θ [as shown in
Fig. 1(b)] or may be dependent on previous observables,
e.g., {Mi−1, Mi−2, . . . , M1}. For example, the optimization
of θ can be completed using some available training data.
Interestingly, recent studies have envisioned the power of
data in pursuing quantum advantages [36,84]. Neverthe-
less, how to conduct an efficient optimization on U(θ) to
accurately estimate {Mi}Qi=1 with provable quantum advan-
tages is beyond the scope of this study and will be left as
future work.

In the second class, the observables {Mi, τi}Qi=1 are pre-
defined and fixed. Under this setting, for each i ∈ [Q], the
optimal parameters in U(θ), i.e., θ∗, can be explicitly cal-
culated at the initialization step without optimization, i.e.,
U(θ∗)†�U(θ∗) =M. Note that under this scenario, noisy
QNNs can be exploited to efficiently construct QSQ ora-
cles and hence attain quantum advantages. For illustration,
we exemplify how to use noisy QNN to construct the QSQ
oracle adopted in parity learning without optimization.
According to the analysis in Ref. [50, Lemma 4.2], for ∀i ∈
[Q] and Q = N the observable Mi is equal to |1〉〈1|i ⊗
H⊗N−1

(|0〉〈0|⊗[N]\{i})H⊗N−1, where the ith qubit is fixed
to |1〉〈1| and the remaining N − 1 qubits can be obtained
by applying the Hadamard gates. When � is set as

040337-8

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

|0〉〈0|⊗N , the trainable quantum circuit aims to simulate
U∗ = Xi ⊗ H⊗N−1, where the ith qubit is applied to and
X gate and the remaining N − 1 qubits are operated with
the Hadamard gates. Note that U∗ can be effectively con-
structed by the universal parameterized quantum circuits
such as hardware-efficient ansatz and the ansatz proposed
by Ref. [85, Sec. II.B and Theorem 1] with O[poly(N)]
gate complexity. With this regard, we conclude that noisy
QNNs allow for efficient learning of parities.

We remark that the results achieved in Theorem 2 paves
a new way to explore generalization advantages of QNNs.
More specifically, besides the QPAC learning paradigm,
QNNs can also achieve certain superiority over their
classical counterparts under the statistical query learning
paradigm. More precisely, it is intriguing to understand
the potential of noisy QNNs on diverse statistical learn-
ing problems such as support vector machines, linear and
convex optimization, simulated annealing, matrix decom-
position, and so on [86,87]. In particular, we can first
examine whether QSQ learning models can tackle these
tasks that outperform their classical counterparts. If the
answer is positive, we can leverage the result in Theorem
2 to design a noisy QNN that achieves these tasks with
quantum advantages.

V. DISCUSSION AND CONCLUSION

To summarize, we explore the learnability of QNNs
from the aspect of the trainability and generalization. The
achieved utility bounds towards ERM indicate that, more
measurements, lower noise, and shallower circuit depth
contribute to a better performance of QNNs. These results
can guide us to devise more advanced QNN-based learn-
ing models that are robust to inevitable gate noise and
insensitive to the barren-plateau phenomenon.

The analysis technique established in this study can be
applied to explain the heuristic result achieved in other
quantum learning protocols. More precisely, we can com-
pare the performance of different optimizers (e.g., quantum
natural gradient-descent methods [88] and other high-order
gradient-descent methods [89]) and different loss functions
(e.g., the cross-entropy loss) in the measure of the utility
bounds R1 and R2. In other words, our study contributes
to a better understanding of QNNs and other variational
quantum algorithms.

We stress that optimization theory and statistical learn-
ing theory adopted in this study are powerful tools to
facilitate us to deeply understand the capabilities and limi-
tations of QNNs. Indeed, there is an incremental interest
of utilizing these tools to explore the power of QNNs
and variational quantum algorithms from different angles,
where representative examples include analyzing the gen-
eralization error bounds of quantum machine learning
models and deriving the expressivity of various ansatzes
[29–31,35–37]. Notably, a recent study [27] has analyzed

how the utility bound R2 is bounded by a quantity related
to the quantum fisher information of the variational state
for a fixed number of iterations T. The corresponding
consequences allow us to identify the fundamental differ-
ence between QNNs and DNNs, which is crucial to seek
quantum advantages in the NISQ era.

Besides studying the trainability of QNNs, we also
demonstrate that in the regime of statistical query learning,
noisy QNN can be applied to accomplish parity, juntas, and
disjunctive normal form (DNF) with better generalization
property over classical SQ learning models. Although the
achieved results are established on the setting in which the
query set {Mi, τi} is predefined at the initialization step, it is
of great importance to explore where noisy QNNs possess
better generalization ability when the query set {Mi, τi} is
adaptive. A positive answer could broaden the applications
of NISQ machines.

ACKNOWLEDGMENTS

This work received support from the Faculty of Engi-
neering and Information Technologies at the University
of Sydney (the Engineering and Information Technolo-
gies Research Scholarship) and Australian Research Coun-
cil (Australian Research Council Project with ID FL-
170100117).

APPENDIX

The organization of the Appendix is as follows. In
Appendix A, we unify the notations used in the whole
Appendix. In Appendix B, we introduce the parameter
shift rule and analyze the analytic and estimateed gradients
of QNN. In Appendix C, we elaborate the implementation
details of the quantum encoding circuit Ux and the train-
able quantum circuit U(θ) used in QNN. In Appendix D,
we quantify the properties of the objective function with
respect to the optimization theory, which will be employed
to prove the utility bounds of QNN. Then, in Appendix E,
we exhibit the proof of Theorem 3, as the precondition
to achieve utility bounds of QNN. In Appendix F, we
exhibit the proof details of Theorem 1 that achieves the
utility bounds of QNN towards ERM. In Appendix G,
we present more simulation details. Next, in Appendix H,
we prove Theorem 2, which shows that any QSQ ora-
cle can be efficiently simulated by noisy QNN. Finally, in
Appendix I, we generalize all achieved results to a more
general quantum channel.

APPENDIX A: THE SUMMARY OF NOTATIONS

We unify the notations throughout the whole paper. We
denote d as the number of training parameters (θ ∈ R

d).
Define N as the number of qubits and n as the number
of training examples. Denote the set {1, 2, . . . , m} as [m].
With a slight abuse of notations, we denote �b as the b

040337-9

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

norm, while � (without subscript) is the loss function. We
denote the �p norm of v as ‖v‖p . In particular, ‖v‖ refers
to the �2 norm. We use O(·) [or Õ(·)] to denote the com-
plexity bound (hide polylogarithmic factors). A random
variable X that follows Delta distribution is denoted as
X ∼ Del(x0), i.e., Pr(X = x0) = 1 and Pr(X 	= x0) = 0.
A random variable X that follows uniform distribution
is denoted as X ∼ U(a, b), where P(X = x0) = 1/(b− a)
with a ≤ x0 ≤ b.

APPENDIX B: THE PROPERTY OF GRADIENTS
IN QNNS

In this section, we first review the parameter shift rule,
which is used to calculate the gradients of QNN. We next
leverage the parameter shift rule to analyze the relation
between the analytic and estimated gradients of QNN.

1. Parameter shift rule

Denote the updating rule of QNN at the tth iteration as

θ (t+1) = θ (t) − η
B

B∑

i=1

∇Li(θ
(t)).

To acquire the analytic gradient ∇jLi(θ
(t)) = (Ŷ(t)i −

Yi)∂Ŷ(t)i /∂θ
(t)
j + λθ (t)j with j ∈ [d], the parameter shift rule

proceeds by separately feeding tunable parameters θ (t)

and θ (t,±j) := θ (t) ± (π/2)ej to the trainable circuit U(θ),
where ej is the basis vector with the j th entry being 1 and
zero otherwise. Following the above notations, we denote
Ŷ(t)i and Ŷ

(t,±j)
i as expectation values of quantum measure-

ments when feeding parameters θ (t) and θ (t,±j) into the
trainable quantum circuit U(θ) in the noiseless scenario.
The corresponding analytic gradient of QNN is

∇jLi(θ
(t)) = (Ŷ(t)i − Yi)

Ŷ
(t,+j)
i − Ŷ

(t,−j)
i

2
+ λθ (t)j .

However, in practice, QNN could generate only statistics
Ȳ(t)i = (1/K)

∑K
k=1 V(t)k and Ȳ

(t,±j)
i = (1/K)∑K

k=1 V
(t,±j)

k ,
where V(t)k ∼ Ber(Ỹ(t)i) and V

(t,±j)

k ∼ Ber(Ỹ
(t,±j)
i), and Ỹ(t)i

and Ỹ(t,±j)
i refer to expectation values of quantum mea-

surements when feeding parameters θ (t) and θ (t,±j) into
the noisy trainable quantum circuit U(θ). This leads to the
estimated gradient as

∇j L̄i(θ
(t)) = (Ȳ(t)i − Yi)

Ȳ
(t,+j)
i − Ȳ

(t,−j)
i

2
+ λθ (t)j .

Note that the difficulties of optimizing QNN arise when
only the approximated Ŷ(t)i and ∂Ŷ(t)i /∂θ

(t) are available
caused by the finite number of measurements, and the
precision deteriorates when more iterations occur.

The analytic and estimated gradients of QNN. As
explained in the main text, the key component to prove
Theorem 1 is quantifying the relation between the ana-
lytic and the estimated gradient of QNN. Here we show
that the estimated gradient, which is caused by the gates’
noise and the sample errors, can be explicitly formulated
to relate with its analytic gradient. An informal result is
summarized below (see Appendix E for details).

Theorem 3: It follows that

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + ς
(t,j)
i ,

where p̃ = 1− (1− p)LQ, LQ is the circuit depth, the con-
stant C(i,t)j ,1 depends only on Yi, θ (t), and p̃, and ς

(t,j)
i follows

the distribution PQ that is formed by Yi, θ (t), the number of
measurements K, and p̃ with zero mean.

Theorem 3 indicates that the estimated gradient
∇j L̄i(θ

(t)) is centralized around the (1− p̃)2∇jLi(θ
(t))+

C(i,t)j ,1 and perturbed by a random variable ς
(t,j)
i . This

enables us to quantitively measure how far the estimated
gradient is away from the analytic gradient, which is the
precondition to leverage the optimization theory to analyze
the performance of QNN. Moreover, the result of Theorem
3 implies that, compared with the finite measurements,
the gate error is more harmful for the QNN’s optimiza-
tion, which may lead to diverging. In particular, the term
C(i,t)j ,1 , which is independent with K , will always exist and
induce a biased optimization direction when p̃ 	= 0. For the
worst case, with p̃ = 1, the analytic gradient information
is exactly lost. In contrast, K determines only the variance
of the distribution PQ with zero mean, where classical and
quantum literatures [90,91] have provided the convergence
guarantee even if K = 1.

APPENDIX C: IMPLEMENTATION DETAILS OF
ENCODING CIRCUIT AND TRAINABLE CIRCUIT

OF QNN

The selection of encoding circuits Ux and trainable cir-
cuit U(θ) is flexible in QNN. We now separately explain
the implementation details of these two circuits supported
by QNN.

Encoding circuit Ux. The typical encoding circuits
of QNN can be divided into four categories. A com-
mon feature of these encoding methods is that their
implementation only costs a low circuit depth, driven
by the restricted quantum resources. Let the feature
dimension of the classical example xi be Dc with i ∈
[n]. The first category is the direct amplitude encod-
ing [74–76,92]. Specifically, the encoder circuit satis-
fies Ux : Bi → (1/

√
Bs)

∑Bs
b=1

∑Dc
j=1 x̂(i)b,j |b〉|j 〉 with x̂(i)b,j =

x(i)b,j /‖x(i)b,j ‖. This method requires a low feature dimension

040337-10

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

Dc, since the quantum gates’ complexity to build Ux
is O(Dc). The second category is the kernel mapping
[17–19], where Bi is encoded into a set of single-
qubit gates with a specified arrangement, e.g., Ux(Bi) =∑Bs

b=1(|b〉〈b|)⊗Dc
j=1 RY(x

(i)
b,j). The third category is the

dimension-reduction method proposed by Ref. [77].
Specifically, instead of encoding Bi, the amplitude or
kernel encoder circuits Ux is exploited to encode a
projected features g(Bi) ∈ R

Bs×D′c , where g(·) is a pre-
defined function and D′c � Dc. The fourth category is
the basis encoding [16,42,50], which is broadly used
in quantum learning theory. Specifically, the encoding
circuit Ux is employed to prepare a quantum exam-
ple |ψ〉 =∑x∈{0,1}N

√D(x)|x, c(x)〉 with N = �log2 Dc�,
where D(x) is the data distribution over x, c(x) corre-
sponds to the label of the bit string x [42,43]. In most cases,
the distribution D(x) is uniform. Hence, the state |ψ〉
can be efficiently prepared by setting B = 1, and applying
Hadamard gates and control NOT gates [55] to the initial
state |0〉⊗N+1.

Trainable quantum circuits U(θ). The trainable quan-
tum circuits, also known as parameterized quantum cir-
cuits [78,93], used in QNN can be written as a product
of layers of unitaries in the form U(θ) =∏L

l=1 Ul(θ l),
where Ul(θ l) is composed of parameterized single-qubit
gates and fixed two-qubit gates. Each trainable layer can
be decomposed into Ul(θ l) = [

⊗N
k=1 Ul,k(θ l)]Ueng, where

Ul,k(θ l) represents the composition of trainable single-
qubit gates and Ueng refers to the entanglement layer that
contains two-qubit gates. Depending on the detailed archi-
tecture, the implementation of Ul(θ l) can be categorized
into three classes. The first class is the hardware-efficient
circuit architecture, where the selection of Uk(θ l) and Ueng
is according to the given NISQ machine that has the spe-
cific sparse qubit-to-qubit connectivity and a specified set
of quantum gates [26,41]. The second class is the tensor-
network-inspired architecture. In particular, the layout
of quantum gates is following different tensor networks,
e.g., the matrix product state, the tree tensor network,
and the multiscale entanglement renormalization ansatz
(MERA) [94]. The third class is the Hamiltonian-
based architecture, where the entanglement layer Ueng
refers to a specific Hamiltonian, e.g., Ref. [18] employs
Ueng = e−iHT with H =∑N

j=1 aj Xj +
∑N

j=1
∑j−1

k=1 JjkZiZk.
Notably, almost all quantum approximate optimization
algorithms follow the Hamiltonian-based architecture [20].

APPENDIX D: THE S-SMOOTH, G-LIPSCHITZ,
AND PL CONDITION PROPERTIES FOR THE

OBJECTIVE FUNCTION

Before quantifying properties of the objective function
used in QNN from the perspective of the optimization the-
ory, we first present the formal definition of S-smooth,
G-Lipschitz, and PL condition properties.

Definition 2: A function f is S smooth over a set C if
∇2f (u) � SI with S > 0 and ∀u ∈ C. A function f is
G Lipschitz over a set C if for all u, w ∈ C, we have
|f (u)− f (w)| ≤ G‖u− w‖2. A function f satisfies PL
condition if there exists μ > 0 and for every possible θ ∈
C, ‖∇f (θ)‖2 ≥ 2μ[f (θ)− f ∗], where f ∗ = minθ∈C f (θ).

To ease the discussion, let us formulate the explicit
form of L(θ). Without loss of generality, we set B = n,
where each batch Bi contains only the ith input xi with
Bs = 1. Denote the prepared quantum states as {ρBi}ni=1,

i.e., ρBi = |φBi〉〈φBi | and |φBi〉
Ux←− {xi} refers to the quan-

tum example corresponding to the classical input batch Bi
(or equivalently, xi). The explicit form of the objective
function is

L(θ) = 1
n

n∑

i=1

(
ŷi − yi

)2 + λ
2
‖θ‖2

2, (D1)

where ŷi = Tr[�U(θ)ρBiU(θ)
†] refers to the prediction of

QNN given the ith input xi, U(θ) is the trainable circuit,
� is the employed two-outcome POVM, and yi is the true
label of the ith input. Moreover, since the tunable parame-
ters θ in QNN refer to the rotation angles, we set its range
as θ ∈ [π , 3π]d.

Given Definition 2 and Eq. (D1), the properties of the
objective function L are summarized in the following
lemma.

Lemma 1: Following the notations in Eq. (D1), L(θ) is S
smooth with S = [(3/2)+ λ]d2 and G Lipschitz with G =
d(1+ 3πλ). Assuming λ ∈ [0, (1/3π)] ∪ [(1/π),∞], L
satisfies PL condition with μ= (−1+λπ)2/[1+λd(3π)2].

Proof of Lemma 1. We employ the three lemmas presented
below to prove Lemma 1, whose proofs are given in the
following subsections. �

Lemma 2: The objective function L is S smooth with S =
(3/2+ λ)d2.

Lemma 3: The objective function L is G Lipschitz with
G = d(1+ 3πλ).

Lemma 4: Assume λ ∈ [0, (1/3π)] ∪ [(1/π),∞]. The
objective function L satisfies the PL condition with μ =
(−1+ λπ)2/[1+ λd(3π)2].

In conjunction with the results of Lemmas 2–4, the proof
of Lemma 1 is completed. �

040337-11

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

1. Proof of Lemma 2: S smooth

Proof of Lemma 2. Recall the function L(θ) is S smooth if

∇2L(θ) � SI, (D2)

with S > 0. In other words, to promise SI−∇2L(θ) is a
positive semidefinite matrix as required in Eq. (D2), we
need to obtain the upper bound of the second derivative of
L(θ), i.e., S ≥ ‖∇2L(θ)‖2.

Following the notation used in Eq. (D1), the gradient for
the parameter θ j is

∂L(θ)
∂θ j

= 2
n

n∑

i=1

(
ŷi − yi

) ∂ ŷi

∂θ j
+ λ

2
∂‖θ‖2

2

∂θ j

= 2
n

n∑

i=1

(
ŷi − yi

) ŷ
(+j)
i − ŷ

(−j)
i

2
+ λθ j

≤ 1+ 3λπ , (D3)

where ŷ
(±j)
i = Tr{�U[θ ± (π/2)ej]ρBiU[θ ± (π/2)ej]†}, the second equality employs the conclusion of the parame-

ter shift rule with ∂ ŷi/∂θ j = (ŷ(+j)
i − ŷ

(−j)
i)/2 [18,56], and the last inequality uses the facts π ≤ θ j ≤ 3π , (ŷi − yi)

≤ 1, and ŷ
(+j)
i − ŷ

(−j)
i ≤ 1, since ŷi, yi, ŷ

(±j)
i ∈ [0, 1].

The upper bound of the derivative ∂2L(θ)/∂θ j ∂θ k can be derived using the results of Eq. (D3). In particular,

∂2L(θ)
∂θ j ∂θ k

=
∂(∂L(θ)

∂θ j
)

∂θ k
= 1

n

n∑

i=1

∂
[(

ŷi − yi
) (

ŷ
(+j)
i − ŷ

(−j)
i

)
+ λθ j

]

∂θ k

= 1
n

n∑

i=1

⎡

⎣ ∂ ŷi

∂θ k

(
ŷ
(+j)
i − ŷ

(−j)
i

)
+ (ŷi − yi

) ∂
(

ŷ
(+j)
i − ŷ

(−j)
i

)

∂θ k
+ λ

⎤

⎦

≤ 3
2
+ λ, (D4)

where the first equality comes from the last equality of
Eq. (D3), and the last inequality employs (ŷi − yi) ≤ 1,
ŷ
(+j)
i − ŷ

(−j)
i ≤ 1, and

∂ ŷi

∂θ k
,
∂ ŷ

(+j)
i

∂θ k
,
∂ ŷ

(−j)
i

∂θ k
∈ [−1/2, 1/2],

supported by the parameter shift rule and ŷi, ŷ
(±j)
i ∈ [0, 1].

The result of Eq. (D4) implies that ‖∇2L‖2 ≤
d‖∇2L‖∞ ≤ d2(3

2 + λ). In conjunction with Eq. (D2), the
objective function is S smooth with S = d2(3

2 + λ). �

2. Proof of Lemma 3: G Lipschitz

Proof of Lemma 3. Recall a function f (x) is G Lipschitz if
it satisfies

|f (b)− f (a)| ≤ G‖b− a‖. (D5)

Moreover, the mean value theorem gives that, if f : R
d →

R is differentiable and [a, b] ⊆ R
d, then ∃c ∈ (a, b) such

that

f (b)− f (a) = 〈∇f (c), b− a〉. (D6)

Combining Eqs. (D5) and (D6), the G-Lipschitz condition
in Eq. (D5) is equivalent to

|〈∇f (c), b− a〉| ≤ G‖b− a‖. (D7)

We now replace f , b, and a used in Eq. (D7) with L, θ (1),
and θ (2) to prove that the objective function L is G Lip-
schitz. Specifically, we need to find a real value G that
satisfies

∣
∣
〈∇L(θ), θ (1) − θ (2)

〉∣
∣ ≤ G‖θ (1) − θ (2)‖, (D8)

where θ ∈ (θ (2), θ (1)).
The upper bound of the term

〈∇L(θ), θ (1) − θ (2)
〉

is

〈∇L(θ), θ (1) − θ (2)
〉 ≤ ‖∇L(θ)‖ ‖θ (1) − θ (2)‖
≤ d ‖∇L(θ)‖∞ ‖θ (1) − θ (2)‖. (D9)

040337-12

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

In conjunction with Eqs. (D8) and (D9), G Lipschitz of L
requests

d ‖∇L(θ)‖∞ ≤ G. (D10)

By leveraging the result of Eq. (D3) with ∇jL(θ) ≤
1+ 3λπ , we obtain the upper bound of the left side in
Eq. (D10) is

d ‖∇L(θ)‖∞ ≤ d(1+ 3πλ). (D11)

This leads to the objective function L of QNN satisfying
G Lipschitz with G = d(1+ 3πλ). �

3. Proof of Lemma 4: the PL condition

Proof of Lemma 4. Recall the definition of Polyak-
Lojasiewicz as formulated in Definition 2, it requires that
the objective function L satisfies

‖∇L(θ)‖2 ≥ 2μ[L(θ)− L∗], (D12)

where L∗ = minθ∈C L(θ).
We first derive a lower bound of ‖∇L(θ)‖2. In particu-

lar, we have

‖∇L(θ)‖2 =
d∑

j=1

[∇jL(θ j)]2 ≥ max
j

[∇jL(θ)]2. (D13)

The lower bound of maxj [∇jL(θ)]2 as shown in Eq. (D13)
follows

max
j

[∇jL(θ)]2 ≥ min
θ j ∈[π ,3π]

(−1+ λθ j)
2, (D14)

where the last inequality is achieved by exploiting the last
second line of Eq. (D3), and the fact ŷi, yi, ŷ

(±j)
i ∈ [0, 1]

and λ > 0, i.e.,

∇jL(θ)= 2
n

n∑

i=1

(
ŷi− yi

) ŷ
(+j)
i − ŷ

(−j)
i

2
+ λθ j ≥−1+ λθ j .

Combining the assumption λ ∈ [0, (1/3π)] ∪ [(1/π),∞]
and the above results, the lower bound of Eq. (D13)
satisfies

‖∇L(θ)‖2 ≥ (−1+ λθ j)
2 > 0.

We then derive the upper bound of the term [L(θ)− L∗]
in Eq. (D12). In particular, we have

L(θ)− L∗ ≤ L(θ)+ 0 ≤ 1+ λd(3π)2, (D15)

where the first inequality comes from the definitions of L∗,
i.e.,

−L∗ = −1
n

n∑

i=1

(ŷ∗i − yi)
2 − λ

2
‖θ‖2 ≤ 0,

with ŷ∗i = Tr[�U(θ∗)ρiU(θ∗)†], and the second inequality
employs the definition of L(θ) with

L(θ) = 1
n

n∑

i=1

(ŷi − yi)
2 + λ

2
‖θ‖2 ≤ 1+ λ

2
‖θ‖2,

and (λ/2)‖θ‖2 ≤ (λ/2)d‖θ‖2
∞ = (3π)2λd/2.

By combining Eqs. (D14) and (D15) with Eq. (D12), we
obtain the following relation:

‖∇L(θ)‖2 ≥ (−1+ λπ)2 ≥ 2μ[1+ λd(3π)2]

≥ 2μ[L(θ)− L∗]. (D16)

The above relation indicates that the objection function
L(θ) satisfies the PL condition with

μ = (−1+ λπ)2
1+ λd(3π)2

. �

APPENDIX E: PROOF OF THEOREM 3

Theorem 3 establishes the relation between the analytic
gradient ∇jLi(θ

(t)) and the estimated gradient ∇j L̄i(θ
(t))

of QNN. Its formal description is as follows.

Theorem 4 (The formal description of Theorem 3):
Denote p̃ = 1− (1− p)LQ with LQ being the quantum cir-
cuit depth. At the tth iteration, we define five constants
with

C(i,t)j ,a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− p̃)p̃(1/2− Yi)(Ŷ
(t,+j)
i − Ŷ

(t,−j)
i)− (2p̃ − p̃2)λθ

(t)
j , a = 1

(1− p̃)(Ŷ
(t,+j)
i − Ŷ

(t,−j)
i), a = 2

[(1− p̃)Ŷ(t)i + p̃/2− Yi], a = 3
−(1−p̃)(Ŷ(t)i)2+(1−p̃)2Ŷ(t)i +(p̃/2)−(p̃2/4)

K , a = 4

−(1−p̃)[(Ŷ
(t,+j)
i)2+(Ŷ(t,−j)

i)2]+(1−p̃)2(Ŷ
(t,+j)
i +Ŷ

(t,−j)
i)+p̃−(p̃2/2)

K , a = 5,

040337-13

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

where Ŷ
(t,±j)
i = Tr[�U(θ ± ej)ρBiU(θ ± ej)

†], K refers to
the number of quantum measurements, and Ŷ(t)i and Yi are
the sum average of the predicted and true labels for the ith
batch Bi.

The relation between the estimated and analytic gradi-
ents of QNN follows

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + ς
(t,j)
i

with ς
(t,j)
i = C(i,t)j ,2 ξ

(t)
i + C(i,t)j ,3 ξ

(t,j)
i + ξ (t)ξ (t,j)i , where ξ

(t)
i

and ξ (t,j)i are two random variables with zero mean and
variances C(i,t)j ,4 and C(i,t)j ,5 , respectively.

The intuition to achieve Theorem 4 is as follows. As
explained in the main text, the discrepancy between the
estimated gradient ∇j L̄i(θ

(t)) and the analytic gradient
∇jLi(θ

(t)) is caused by the difference between the esti-
mated results Ȳ(t)i (or Ȳ

(t,±j)
i) and the expected results Ŷ(t)i

(or Ŷ(t,±j)
i), due to the involved depolarization noise Np

and the finite number of measurements K . Specifically,
the noisy channel Np shifts the expectation values, and
the finite number of measurements K turns the output
of the quantum circuit from the determination to be ran-
dom. Under the above observation, the estimated gradients
∇j L̄i(θ

(t)) can be treated as the random variable that is
formed by three random variables Ȳ(t)i and Ȳ

(t,±j)
i , where the

probability distributions of Ȳ(t)i and Ȳ
(t,±j)
i are determined

by K , Np , Ŷ(t)i , and Ŷ(t,±j)
i . Therefore, to explicitly build the

relation between ∇j L̄i(θ
(t)) and ∇jLi(θ

(t)), we should first
formulate the distribution of the estimated gradients using
Ȳ(t)i and Ȳ

(t,±j)
i , and then connect the obtained distribution

with the analytic gradients. The following lemma summa-
rizes the distribution of the estimated gradients using Ȳ(t)i

and Ȳ
(t,±j)
i , whose proof is given in Sec. 1.

Lemma 5: The mean ν(t)i and variance (σ (t)i)
2 of the estimated result Ȳ(t)i are

ν(t) = (1− p̃)Ŷ(t)i + p̃
Tr(�)

D
,

(σ
(t)
i)

2 = −(1− p̃)2(Ŷ(t)i)
2 + (1− p̃) {1− 2p̃[Tr(�)/D]} Ŷ(t)i + p̃[Tr(�)/D]− p̃2{[Tr(�)]2/D2}

K
.

(E1)

The mean ν
(t,±j)
i and variance (σ

(t,±j)
i)2 of the estimated results Ȳ

(t,±j)
i are

ν(t,±j) = (1− p̃)Ŷ
(t,±j)
i + p̃

Tr(�)
D

,

(σ
(t,±j)
i)2 = −(1− p̃)2(Ŷ

(t,±j)
i)2 + (1− p̃){1− 2p̃[Tr(�)/D]}Ŷ(t,±j)

i + p̃[Tr(�)/D]− p̃2{[Tr(�)]2/D2}
K

.

(E2)

Proof of Theorem 4. We now utilize the established rela-
tions as shown in Lemma 5 to obtain the relation between
the estimated and the analytic gradients. Recall that, at the
tth iteration, given the input Bi and K measurements,
the estimated gradient for the j th parameter θ j of noisy
QNN is

∇j L̄i(θ
(t)) = (Ȳ(t)i − Yi)

(
Ȳ
(t,+j)
i − Ȳ

(t,−j)
i

)
+ λθ (t)j . (E3)

Combining Lemma 5 and Eq. (E3), the term �
(t,j)
i :=

Ȳ
(t,+j)
i − Ȳ

(t,−j)
i in Eq. (E3) can be treated as the differ-

ence of two random variables. The term (Ȳ(t)i − Yi) in
Eq. (E3) can also be treated as a random variables. We now
separately investigate their moment properties.

The term �
(t,j)
i . Following the notations used in

Lemma 5, the mean and variance of the term �
(t,j)
i are

ν
(t,+j)
i − ν(t,−j)

i and (σ (t,j)i)2 = (σ (t,+j)
i)2 + (σ (t,−j)

i)2, sup-
ported by the definition of moments and the independent
relation between Ȳ

(t,+j)
i and Ȳ

(t,−j)
i .

By leveraging the explicit form of ν
(t,±j)
i , the random

variable �(t,j)
i can be rewritten as

�
(t,j)
i = (1− p̃)(Ŷ(t,+j) − Ŷ(t,−j))+ ξ (t,j), (E4)

where ξ (t,j) is a random variable with zero mean and
variance (σ (t,j)i)2.

040337-14

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

The term (Ȳ(t)i − Yi). Following the notations used in Lemma 5, an equivalent representation of (Ȳ(t)i − Ȳ(t)i) is

(Ȳ(t)i − Ȳ(t)i) = (1− p̃)Ŷ(t)i + p̃
Tr(�)

D
+ ξ (t) − Ȳ(t)i , (E5)

where ξ (t) is a random variable with zero mean and variance (σ (t)i)
2.

The reformulated terms as shown in Eq. (E4) and Eq. (E5) indicate that the estimated result ∇j L̄i(θ
(t)) can be

rewritten as

∇j L̄i(θ
(t)) = (Ȳ(t)i − Yi)(Ȳ

(t,+j)
i − Ȳ

(t,−j)
i)+ λθ (t)j

=
(

(1− p̃)Ŷ(t)i + p̃
Tr(�)

D
− Yi

)

(1− p̃)(Ŷ(t,+j) − Ŷ(t,−j))

+
(

(1− p̃)Ŷ(t)i + p̃
Tr(�)

D
− Yi

)

ξ (t,j)

+ (1− p̃)(Ŷ(t,+j) − Ŷ(t,−j))ξ (t) + ξ (t)ξ (t,j) + λθ (t)j

= (1− p̃)2∇jLi(θ
(t))+ (1− p̃)p̃

(
Tr(�)

D
− Yi

)

(Ŷ(t,+j) − Ŷ(t,−j))+ (2p̃ − p̃2)λθ
(t)
j

+ (1− p̃)(Ŷ(t,+j) − Ŷ(t,−j))ξ (t) +
(

(1− p̃)Ŷ(t)i + p̃
Tr(�)

D
− Yi

)

ξ (t,j) + ξ (t)ξ (t,j). (E6)

Combining the above equation and the explicit expression of ξ (t) and ξ (t,j), we obtain the relation between the estimated
and the analytic gradients. Specifically, the estimated gradient can be formulated as

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + ς
(t,j)
i ,

where ς
(t,j)
i = C(i,t)j ,2 ξ

(t)
i + C(i,t)j ,3 ξ

(t,j)
i + ξ (t)ξ (t,j)i , the first three constants {C(i,t)j ,1 }3i=1 are defined as

C(i,t)j ,a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− p̃)p̃
(

Tr(�)
D − Yi

)
(Ŷ(t,+j) − Ŷ(t,−j))+ (2p̃ − p̃2)λθ

(t)
j , a = 1

(1− p̃)(Ŷ
(t,+j)
i − Ŷ

(t,−j)
i), a = 2

(
(1− p̃)Ŷ(t)i + p̃ Tr(�)

D − Yi

)
, a = 3,

and the last two constants, which separately correspond to the variance (σ (t)i)
2 and (σ (t,j)i)2 of the random variables ξ (t)i

and ξ (t,j)i , are

C(i,t)j ,a =

⎧
⎪⎨

⎪⎩

−(1−p̃)2(Ŷ(t)i)2+(1−p̃){1−2p̃[Tr(�)D]}Ŷ(t)i +p̃[Tr(�)/D]−p̃2{[Tr(�)]2/D2}
K , a = 4

−(1−p̃)2[(Ŷ
(t,+j)
i)2+(Ŷ(t,−j)

i)2]+(1−p̃){1−2p̃[Tr(�)/D]}(Ŷ(t,+j)
i +Ŷ

(t,−j)
i)+2p̃[Tr(�)/D]−2p̃2{[Tr(�)]2/D2}

K , a = 5.
�

1. Proof of Lemma 5

To achieve Lemma 5, we first simplify the learning model of QNN with the depolarization noise. In particular, all noisy
channels Np , which are separately applied to each quantum circuit depth, can be merged together to a specific circuit
depth and presented by a new depolarization channel Np̃ .

Lemma 6: Let Np be the depolarization channel. There always exists a depolarization channel Np̃ with p̃ = 1− (1−
p)LQ that satisfies Np{ULQ(θ) · · ·U2(θ)Np [U1(θ)ρU1(θ)

†]U2(θ)
† · · ·ULQ(θ)

†} = Np̃ [U(θ)ρU(θ)†], where ρ is the input
quantum state.

040337-15

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

Proof of Lemma 6. Denote ρ(k) as ρ(k) =∏k
l=1 Ul(θ)ρ

Ul(θ)
†. Applying Np to ρ(1) gives

Np(ρ
(1)) = (1− p)ρ(1) + p

ID

D
, (E7)

where D refers to the dimensions of Hilbert space inter-
acted with Np .

Supporting by the above equation, applying U2(θ) to the
state Np(ρ

(1)) gives

U2(θ)Np(ρ
(1))U2(θ)

† = (1− p)ρ(2) + p
ID

D
. (E8)

Then interacting Np with the state U2(θ)Np(ρ
(1))U2(θ)

†

gives

Np [U2(θ)Np(ρ
(1))U2(θ)

†]

= (1− p)2ρ(2) + (1− p)p
ID

D
+ p

ID

D

= (1− p)2ρ(2) + [1− (1− p)2]
ID

D
. (E9)

By induction, suppose at kth step, the generated state is

ρ(k) = (1− p)lρ(k) + [1− (1− p)k]
ID

D
. (E10)

Then applying Uk+1(θ) followed by Np gives

ρ(k+1) = Np
(
Uk+1(θ)ρ

(k)Uk+1(θ)
†)

= (1− p)k+1ρ(k+1) + [1− (1− p)k+1]
ID

D
. (E11)

According to the formula of the depolarization channel, an
immediate observation is that the noisy QNN is equivalent
to applying a single depolarization channel Np̃ at the last
circuit depth LQ, i.e.,

Np̃(ρ) = (1− p)LQρ(LQ) + [1− (1− p)LQ]
I

D
, (E12)

where

p̃ = 1− (1− p)LQ . (E13)

�

Proof of Lemma 5. We now use the simplified QNN given
by Lemma 6 to explore the relation between the generated
statistic Ȳ(t)i and the expectation value Ŷ(t) (the same rule
applies to connect Ȳ

(t,±j)
i with Ŷ(t,±j)).

At the tth iteration, given the tunable parameters θ (t)

and inputs Bi, the ensemble corresponding to the gener-
ated state of QNN before taking quantum measurements is
{pl, γ

(t)
i,l }2l=1, i.e., p1 = 1− p̃ with γ (t)i,1 = U(θ (t))ρBiU(θ

(t))†

and p2 = p̃ with γ
(t)
i,2 = ID/D. After applying a two-

outcome POVM � to measure such an ensemble K
times, the generated statistics (sample mean) is Ȳ(t)i =
(1/K)

∑K
k=1 V(t)k , where each measured outcome V(t)k with

k ∈ [K] is a random variable that satisfies Fact 1. �

Fact 1: V(t)k is a random variable that follows the dis-
tribution PQ′(V

(t)
k) =

∑2
c=1 Pr(z = c)Pr(V(t)k |z = c). The

explicit formula of PQ′ is as follows.

1. Pr(z = 1) = 1− p̃ with V(t)k |z = 1 ∼ Ber(Ŷ(t)i) and
Ŷ(t)i = Tr(�γ (t)i,1);

2. Pr(z = 2) = p̃ with V(t)k |z = 2 ∼ Ber[Tr(�)/D] with
Tr(�)/D = Tr(�γ (t)i,2).

Fact 1 implies that the mean and variance of V(t)k are

(1− p̃)Ŷ(t)i + p̃
Tr(�)

D
and − (1− p̃)2(Ŷ(t)i)

2

+ (1− p̃)
(

1− 2p̃
Tr(�)

D

)

Ŷ(t)i

+ p̃
Tr(�)

D
− p̃2 [Tr(�)]2

D2 ,

respectively. Moreover, since each outcome V(t)k follows the distribution PQ′ , the mean ν(t)i and the variance (σ (t)i)
2 of the

sample mean Ȳ(t)i are

ν(t) = (1− p̃)Ŷ(t)i + p̃
Tr(�)

D
,

(σ
(t)
i)

2 = −(1− p̃)2(Ŷ(t)i)
2 + (1− p̃) {1− 2p̃[Tr(�)/D]} Ŷ(t)i + p̃[Tr(�)/D]− p̃2{[Tr(�)]2/D2}

K
.

(E14)

040337-16

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

Following the same routine, the mean ν
(t,±j)
i and the variance (σ

(t,±j)
i)2 of the sample mean Ȳ

(t,±j)
i satisfy

ν(t,±j) = (1− p̃)Ŷ
(t,±j)
i + p̃

Tr(�)
D

,

(σ
(t,±j)
i)2 = −(1− p̃)2(Ŷ

(t,±j)
i)2 + (1− p̃) {1− 2p̃[Tr(�)/D]} Ŷ(t,±j)

i + p̃[Tr(�)/D]− p̃2{[Tr(�)]2/D2}
K

.

(E15)

APPENDIX F: PROOF OF THEOREM 1

Theorem 1 quantifies the utility bounds R1 and R2 of
QNN under the depolarization noise towards ERM frame-
work. For ease of illustration, we restate Theorem 1 below.

Theorem 5 (Restate of Theorem 1): QNN outputs
θ (T) ∈ R

d after T iterations with utility bounds R1 ≤
Õ{poly[d/T(1− p)LQ , d/BK(1− p)LQ , d/(1− p)LQ]} and
R2 ≤ Õ{poly[d, 1/K2B, 1/(1− p)LQ]}, where K is the
number of quantum measurements, LQ is the quantum cir-
cuit depth, p is the gate noise, and B is the number of
batches.

The high level idea to achieve the utility bounds R1 and
R2 is as follows. Recall that R1 measures how far the train-
able parameter of QNN is away from the stationary point.
A well-known result in optimization theory [61] is that
when a function satisfies the smooth property, its stationary
point can be efficiently located by a simple gradient-based
algorithm. By leveraging this observation and the relation
between the estimated and analytic gradients as achieved
in Theorem 4, we can quantify how the estimated gra-
dients of QNN converge to the stationary point, which
corresponds to the utility bound R1.

Recall that the utility bound R2 evaluates the dispar-
ity between the expected empirical risk and the optimal
risk that is determined by the global minimum. To achieve
R2, we utilize the result of the PL condition [63]. Con-
cretely, the PL condition is a sufficient condition for the
gradient-descent methods to achieve a linear convergence
rate towards the optimal solution, i.e., if a nonconvex func-
tion satisfies the PL condition [62], every stationary point
of such a function is the global minimum [62,63]. In other
words, the PL condition connects stationary points with the
global minimum. Meanwhile, compared with other condi-
tions such as the strong convexity and the restricted strong
convexity to achieve the linear convergence towards the
global minimum, the PL condition is much easier to satisfy
by QNN with a mild technical assumption, as proved in
Lemma 1. Therefore, by leveraging the result of R1, which
measures how far the optimized loss of QNN is away from
a stationary point and the result of Lemma 1 that QNN sat-
isfies the PL condition, we can effectively obtain the utility
bound R2 for QNN.

Proof of Theorem 5. We employ the following two theo-
rems to achieve Theorem 5, whose proofs are given in
Secs. 1 and 2, respectively. �

Theorem 6: Given the dataset z, QNN outputs θ (T) after T
iterations with utility bound

R1 ≤ 2S(1+ 90λd)
T(1− p̃)2

+ (2p̃ − p̃2)(2G+ d)(1+ 10λ)2

(1− p̃)2

+ 6dK + 8d
(1− p̃)2BK2 .

Theorem 7: Given the dataset z, QNN outputs θ (T) after T
iterations with utility bound

R2 ≤ (1+ 90λd) exp
(

−μ(1− p̃)2T
S

)

+ T
(2p̃ − p̃2)(G+ 2d)(1+ 10λ)2BK2+ 6dK + 8d

2SBK2 .

As for R1, with setting T←∞ and after the simplifica-
tion, the utility bound as shown in Theorem 6 follows

R1 ≤ Õ
[

poly
(

d
T(1− p)LQ

,
d

BK(1− p)LQ
,

d
(1− p)LQ

)]

.

(F1)

As for R2, with setting T=O{[S/μ(1−p̃)2] ln [(1+90λd)
2SBK2/(2p̃ − p̃2)(G+ 2d)(1+ 10λ)2BK2 + 6dK + 8d

]}
and after simplification, the utility bound as shown in
Theorem 7 follows

R2 ≤ Õ
[

poly
(

d,
1

K2B
,

1
(1− p)LQ

)]

. (F2)

1. Proof of Theorem 6: The utility bound R1

The proof of Theorem 6 employs the following lemma,
where its proof is given in Sec. 3.

040337-17

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

Lemma 7: Taking expectation over the randomness of ξ (t)i and ξ (t,j)i in the estimated gradient ∇j L̄(θ (t)) as formulated in

Theorem 4, the term (1/2S)
∑d

j=1 E
ξ
(t)
i ,ξ(t,j)i

{ [∇j L̄(θ (t))
]2 }

with S being the smooth parameter is upper bounded by

(1− p̃)4

2S
‖∇L(θ (t))‖2 + (1− p̃)2G

2S
max

i,j
C(i,t)j ,1 +

d
2S

max
i,j

(
C(i,t)j ,1

)2
+ 6dK + 8d

2SBK2 .

Proof of Theorem 6. Recall that the optimization rule of noisy QNN at the tth iteration follows

θ (t+1) = θ (t) − η∇L̄(θ (t)). (F3)

Since the objective function L(θ) is S smooth, as indicated in Lemma 1, we have

L(θ (t+1))− L(θ (t)) ≤ 〈∇L(θ (t)), θ (t+1) − θ (t)〉 + S
2
‖θ (t+1) − θ (t)‖2. (F4)

Combine the above two equations and setting η = 1/S, we have

L(θ (t+1))− L(θ (t)) ≤ 〈∇L(θ (t)), θ (t+1) − θ (t)〉 + S
2
‖θ (t+1) − θ (t)‖2

= −1
S
〈∇L(θ (t)),∇L̄(θ (t))〉 + 1

2S
‖∇L̄(θ (t))‖2

= −1
S

d∑

j=1

(
∇jL(θ (t))∇j L̄(θ (t))

)
+ 1

2S

d∑

j=1

(
∇j L̄(θ (t))

)2
. (F5)

Recall the definition of the estimated gradient is ∇j L̄(θ (t)) = (1/B)∑B
i=1 ∇j L̄i(θ

(t)) and the explicit expression of
∇j L̄i(θ

(t)) is

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + C(i,t)j ,2 ξ
(t) + C(i,t)j ,3 ξ

(t,j)
i + ξ (t)i ξ

(t,j)
i .

Alternatively, the gradient for the j th parameter ∇j L̄(θ (t)) follows

∇j L̄(θ (t)) = 1
B

B∑

i=1

(1− p̃)2∇jLi(θ
(t))+ C(i,t)j ,1 + C(i,t)j ,2 ξ

(t)
i + C(i,t)j ,3 ξ

(t,j)
i + ξ (t)i ξ

(t,j). (F6)

Combining Eq. (F5) with Eq. (F6) and taking expectation over ξ (t)i and ξ (t,j)i , we obtain

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ −1
S
(1− p̃)2‖∇L(θ (t))‖2 − 1

S

d∑

j=1

∇jL(θ (t))
(

1
B

B∑

i=1

C(i,t)j ,1

)

− 1
S

d∑

j=1

∇jL(θ (t)) 1
B

B∑

i=1

E
ξ
(t)
i

[
C(i,t)j ,2 ξ

(t)
i

]
− 1

S

d∑

j=1

∇jL(θ (t)) 1
B

B∑

i=1

E
ξ
(t,j)
i

[
C(i,t)j ,3 ξ

(t,j)
i

]

− 1
S

d∑

j=1

∇jL(θ (t)) 1
B

B∑

i=1

E
ξ
(t)
i ,ξ(t,j)i

[
ξ
(t)
i ξ

(t,j)
i

]
+ 1

2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

− 1
S
(1− p̃)2‖∇L(θ (t))‖2 + G

2S
max

i,j
C(i,t)j ,1 +

1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

. (F7)

The first inequality uses the result of Eq. (F6). The second inequality uses E[ξ (t)i] = 0, E[ξ (t,j)i] = 0 as shown in Theorem
4, and −G/d ≤ ∇jL(θ (t)) ≤ G/d supported by the G-Lipschitz property.

040337-18

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

By leveraging Lemma 7, Eq. (F7) can be further simplified as

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ −1
S
(1− p̃)2‖∇L(θ (t))‖2 + G

2S
max

i,j
C(i,t)j ,1 +

(1− p̃)4

2SB
‖∇jL(θ (t))‖2

+ (1− p̃)2G
2S

max
i,j

C(i,t)j ,1 +
d

2S
max

i,j

(
C(i,t)j ,1

)2
+ 6dK + 8d

2SBK2

≤ − 1
2S
(1− p̃)2‖∇L(θ (t))‖2 + 2G+ d

2S
(2− p̃)p̃(1+ 10λ)2 + 6dK + 8d

2SBK2 . (F8)

The first inequalities comes from Lemma 7, and the second inequality employs (1− p̃)4/2SB ≤ (1− p̃)2/2S and the
following result:

G
2S

max
i,j

C(i,t)j ,1 +
(1− p̃)2G

2S
max

i,j
C(i,t)j ,1 +

d
2S

max
i,j

(
C(i,t)j ,1

)2

≤ [1+ (1− p̃)2]G
2S

(2− p̃)p̃(1+ 10λ)+ d
2S
(2− p̃)p̃(1+ 10λ)2

≤ 2G+ d
2S

(2− p̃)p̃(1+ 10λ)2, (F9)

where the first inequality uses the upper bound of C(i,t)j ,1 and (C(i,t)j ,1)
2, i.e., maxi,j C(i,t)j ,1 ≤ (1− p̃)p̃ + 10(2− p̃)p̃λ ≤ (2−

p̃)p̃(1+ 10λ) and maxi,j

(
C(i,t)j ,1

)2
≤ [(2− p̃)p̃(1+ 10λ)]2 ≤ (2− p̃)p̃(1+ 10λ)2, and the second inequality uses (1−

p̃)2 ≤ 1.
An equivalent representation of Eq. (F8) is

‖∇L(θ (t))‖2 ≤ 2S
L(θ (t))− E

ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))]

(1− p̃)2
+ (2p̃ − p̃2)(2G+ d)(1+ 10λ)2

(1− p̃)2
+ 6dK + 8d
(1− p̃)2BK2 . (F10)

By induction, with summing over t = 0, . . . , T − 1 and taking expectation of Eq. (F10), we obtain

Et
[‖∇L(θ (t))‖2] ≤ 2S

L(θ (0))− E
ξ
(T)
i ,ξ(T,j)

i
[L(θ (T))]

T(1− p̃)2

+ (2p̃ − p̃2)(2G+ d)(1+ 10λ)2

(1− p̃)2
+ 6dK + 8d
(1− p̃)2BK2

≤ 2S + 2Sλd(3π)2

T(1− p̃)2
+ (2p̃ − p̃2)(2G+ d)(1+ 10λ)2

(1− p̃)2
+ 6dK + 8d
(1− p̃)2BK2

≤ 2S(1+ 90λd)
T(1− p̃)2

+ (2p̃ − p̃2)(2G+ d)(1+ 10λ)2

(1− p̃)2
+ 6dK + 8d
(1− p̃)2BK2 , (F11)

where the second inequality uses L(θ (0))− E
ξ
(T)
i ,ξ(T,j)

i
[L(θ (T))] ≤ L(θ (0))− L∗, L∗ > 0 and L(θ (0)) ≤ 1+ λd(3π)2. �

2. Proof of Theorem 7: The utility bound R2

Proof of Theorem 7. The proof of Theorem 7 is similar with that of Theorem 6. In particular, following the same routine,
we obtain the result of Eq. (F8), i.e.,

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ − 1
2S
(1− p̃)2‖∇L(θ (t))‖2 + 2G+ d

2S
(2− p̃)p̃(1+ 10λ)2 + 6dK + 8d

2SBK2 . (F12)

040337-19

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

Then, we call the conclusion of the PL condition as formulated in Lemma 1 and acquire

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ −μ(1− p̃)2

S
[L(θ (t))− L∗]+ 2G+ d

2S
(2− p̃)p̃(1+ 10λ)2 + 6dK + 8d

2SBK2 . (F13)

An equivalent reformulation of Eq. (F13) is

Eς (t)[L(θ (t+1))]− L∗ ≤
(

1− μ(1− p̃)2

S

)

[L(θ (t))− L∗]+ 2G+ d
2S

(2− p̃)p̃(1+ 10λ)2 + 6dK + 8d
2SBK2 . (F14)

By induction, with summing over t = 0, . . . , T and taking expectation, we obtain

Eς (t)[L(θ (T))]− L∗ ≤
(

1− μ(1− p̃)2

S

)T

[L(θ (0))− L∗]+ T
2G+ d

2S
(2− p̃)p̃(1+ 10λ)2 + T

6dK + 8d
2SBK2

≤ (1+ 90λd) exp
(

−μ(1− p̃)2T
S

)

+ T
(2p̃ − p̃2)(G+ 2d)(1+ 10λ)2BK2 + 6dK + 8d

2SBK2 , (F15)

where the second inequality uses L(θ (0))− L∗ ≤ 1+ 90λd and 1+ x ≤ ex for all real x. �

3. Proof of Lemma 7

Proof of Lemma 7. As shown in Theorem 4, the explicit formula of the estimated gradient is

∇j L̄(θ (t)) = 1
B

B∑

i=1

(1− p̃)2∇jLi(θ
(t))+ C(i,t)j ,1 + C(i,t)j ,2 ξ

(t)
i + C(i,t)j ,3 ξ

(t,j)
i + ξ (t)i ξ

(t,j). (F16)

By using the above result, we obtain

1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

≤ (1− p̃)4

2S
‖∇L(θ (t))‖2 + (1− p̃)2

2SB

d∑

j=1

∇jL(θ (t))
(

B∑

i=1

C(i,t)j ,1

)

+ (1− p̃)2

SB

d∑

j=1

∇jL(θ (t))
B∑

i=1

E
ξ
(t)
i

[ξ (t)i]

+ (1− p̃)2

SB

d∑

j=1

∇jL(θ (t))
B∑

i=1

E
ξ
(t,j)
i

[ξ (t,j)i]+ (1− p̃)2

SB

d∑

j=1

∇jL(θ (t))
B∑

i=1

E
ξ
(t)
i ξ

(t,j)
i

[ξ (t)i ξ
(t,j)
i]

+ d
2SB2

(
B∑

i=1

C(i,t)j ,1

)2

+ 1
2S

d∑

j=1

E
ξ
(t)
i

[ξ (t)i]+ 1
2S

d∑

j=1

E
ξ
(t,j)
i

[ξ (t,j)i]+ 1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[ξ (t)i ξ
(t,j)
i]

+ 1
2SB2

d∑

j=1

B∑

i=1

E
ξ
(t)
i

[(ξ (t)i)
2]+ 1

SB2

d∑

j=1

B∑

i=1

(
E
ξ
(t)
i ,ξ(t,j)i

[ξ (t)i ξ
(t,j)
i]+ E

ξ
(t)
i ,ξ(t,j)i

[(ξ (t)i)
2ξ
(t,j)
i]

)

+ 1
2SB2

d∑

j=1

B∑

i=1

E
ξ
(t,j)
i

[(ξ (t,j)i)2]+ 1
SB2

d∑

j=1

B∑

i=1

E
ξ
(t)
i ,ξ(t,j)i

[ξ (t)i (ξ
(t,j)
i)2]+ 1

2SB2

d∑

j=1

B∑

i=1

E
ξ
(t)
i ξ

(t,j)
i

[(ξ (t)i)
2(ξ

(t,j)
i)2]

040337-20

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

≤ (1− p̃)4

2S
‖∇L(θ (t))‖2 + (1− p̃)2G

2S
max

i,j
C(i,t)j ,1 +

d
2S

max
i,j

(
C(i,t)j ,1

)2

+ dC(t)j ,4,max

2SB
+ dC(t,j)j ,5,max

2SB
+ dC(t)j ,4,maxC(t,j)j ,5,max

2SB
. (F17)

The first and second inequalities uses C(i,t)j ,2 ≤ 1, C(i,t)j ,3 ≤ 1, E[ξ (t)i] = 0, E[ξ (t,j)i] = 0, and −G/d ≤ ∇jL(θ (t)) ≤ G/d sup-

ported by the G-Lipschitz property. The term C(t)j ,4,max refers to C(t)j ,4,max = maxi C(i,t)j ,4 . Similarly, the term C(t,j)j ,5,max refers to

C(t,j)j ,5,max = maxi C(i,t)j ,5 .
Since Theorem 4 indicates that

C(t)j ,4,max ≤
(1− p̃) {1− 2p̃[Tr(�)/D]}

K
+ p̃

Tr(�)
DK

≤ 2
K

,

and

C(t,j)j ,5,max ≤
(1− p̃) {1− 2p̃[Tr(�)/D]} (Ŷ(t,+j)

i + Ŷ
(t,−j)
i)+ 2p̃[Tr(�)/D]

K
≤ 4

K
,

we obtain

1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

≤ (1− p̃)4

2S
‖∇L(θ (t))‖2 + (1− p̃)2G

2S
max

i,j
C(i,t)j ,1

+ d
2S

max
i,j

(
C(i,t)j ,1

)2
+ 6dK + 8d

2SBK2 . (F18)

�

APPENDIX G: MORE NUMERICAL SIMULATION
DETAILS

1. The construction of QNNs

The implementation of the data encoding circuit Ux
and the trainable unitary U(θ) follows the proposal [17].
In particular, the data encoding circuit Ux uses the ker-
nel encoding method, and the architecture of the trainable
unitary U(θ) follows the multilayer structure. The right
panel of Fig. 2 illustrates the implementation of data
encoding circuit and the trainable circuit used in QNN.
Three qubits are employed to build two such circuits. The
data encoding circuit Ux is composed of Hadamard gates
H = 1√

2

(
1 1
1 −1

)
, RY gates with RY(2a) = (cos(a) − sin(a)

sin(a) cos(a)

)
,

and controlled-RY gates with CRY(2a) = |0〉〈0| ⊗ I2 +
|1〉〈1| ⊗ RY(2a). Specifically, the rotation angle in RY(x)
is (π − xi,1)(π − xi,2)(π − xi,3). The construction of the
trainable circuit U(θ) uses RY gates and controlled-NOT
gates CX = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ X with X = (0 1

1 0

)
.

The implementation of FCNN is exhibited in Fig. 4. The
employed FCNN consists of one input layer, one hidden

layer, and one output layer with dimensions 3, 3, 2, respec-
tively. The softmax function is applied to the output layer
for normalization.

The hyperparameter settings adopted in the numerical
simulations are as follows. For QNNs, the learning rate η
for all simulations is set as 2. For FCNN, the learning rate
η for all simulations is set as 0.1. The batch size in each
updating for both QNNs and FCNN is set as 280.

2. More simulation results for the utility R1

We conduct additional numerical simulations to quan-
titively investigate whether the exponential dependence
on the circuit depth L and the inverse dependence on the
number of measurements K claimed in Theorem 1 can be
observed in the binary classification task introduced in the
paper. The appended numerical simulations mainly follow
the setup introduced in the original submission. Particu-
larly, a three-qubit QNN with the hardware-efficient ansatz
U(θ) =∏L

l=1 Ul(θ) as shown in the upper left panel in
Fig. 2 is employed to classify the preprocessed handwritten

Input layer ε R3 Hidden layer ε R3 output layer ε R2

FIG. 4. The implementation of FCNN used in numerical sim-
ulations.

040337-21

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

FIG. 5. The left panel depicts how the utility R1 scales with the number of shots K . The label “Sim-res” refers to the collected
simulation results with the varied settings. The label “Fit-curve” refers to the fitting curve, i.e., the mathematical form is aK−1 + b
with a, b ∈ R, with respect to the collected results. The right panel depicts how the utility R1 scales with L. The label “Sim-res” has the
same meaning as the left panel. The label “Fit-curve-exp” refers to the fitting curve for the exponential function, i.e., the mathematical
form is aeK + b with a, b ∈ R, with respect to the collected results.

digit dataset z = {(xi, yi)}360
i=1, where xi ∈ R

3 is the ith data
feature and yi ∈ {0, 1} is the ith label. The gate encoding
method is adopted to load classical data xi into quantum
states.

To examine whether the utility bound R1 inversely
scales with the number of shots K , as claimed in Theorem
1, we proceed with the following numerical simulations.
We fix the depth of trainable quantum circuits as L = 3
and the depolarization rate as p = 0.1. The total number
of iterations is set as T = 50. Through varying the number
of shots from K = 1 to K = 30, we calculate the utility R1
at the last iteration. For computational efficiency, the size
of the training dataset zt and the test dataset zp is 80 and
280, respectively. Each setting is repeated 5 times to collect
the statistical results. The obtained results are exhibited
in the left panel of Fig. 5. Through fitting the simulation
results, we observe R1 ∝ O(1/K), which accords with our
theoretical results.

We last explore whether the utility bound R1 exponen-
tially scales with the circuit depth L. To do so, we fix
the number of shots as K = 20 and the depolarization
rate as p = 0.2. The total number of iterations is set as
T = 20. Through varying the depth from L = 1 to L = 5,
we calculate the utility R1 at the last iteration. For computa-
tional efficiency, we set |zt| = 5. Each setting is repeated 5
times to collect the statistical results. The achieved results
are exhibited in the left panel of Fig. 5. Through fit-
ting the simulation results with both the exponential and
polynomial functions, we observe R1 ∝ O[exp(L)], which
accords with our theoretical results.

APPENDIX H: PROOF OF THEOREM 2

Proof of Theorem 2. Following Definition 1, we observe
that the QSQ algorithm can be efficiently simulated by

QNN once each query {Mi, τi}Qi=1 can be efficiently sim-
ulated by noisy QNN, i.e., given the query {Mi, τi}, the
noisy QNN returns an estimated result αi that is ε-close
to ν = 〈ψc∗ |M|ψc∗〉 by taking O[poly(N)] copies of |ψc∗〉.
In the following, we prove that each query to the QSQ
oracle can be efficiently simulated by noisy QNN up to
a polynomial overhead.

Without loss of generality, we set the tuple fed into the
QSQ oracle as {M, τ }. Let |ψc∗〉 be the quantum exam-
ple given in Definition 1. In this way, following notations
in Theorem 2, the expectation value of quantum mea-
surements for noisy QNN under the depolarization noise
setting Np̃ yields ν̃ = (1− p̃)ν + [p̃ Tr(M)/2N+1] with
ν = 〈ψc∗ |M|ψc∗〉. In addition, the measurement outcome
Vk is a random variable that satisfies Vk ∼ Ber(ν̃).

By the Chernoff-Hoeffding bound for real-valued vari-
ables, we obtain the relation between the sample mean
Ỹ = (1/K)∑K

k=1 Vk with K measurements and the target
result ν̃, i.e.,

Pr

(∣
∣
∣
∣
∣

1
K

K∑

i=1

Vk − ν̃
∣
∣
∣
∣
∣
≥ δ

2

)

≤ 2 exp(−δ2K/2). (H1)

Denote b = 2 exp(−δ2K/2). Equation (H1) implies that
when K = 2 ln(2/b)/δ2, with probability at least 1− b,
we have |(1/K)∑K

i=1 Vk − ν̃| ≤ δ/2. Moreover, the dis-
tance between the result ν (i.e., the target value of the QSQ
oracle) and the shifted expectation value ν̃ follows

|ν − ν̃| ≤ p̃ν + p̃
Tr(M)

2N+1 . (H2)

040337-22

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

In conjunction with the above two equations, we obtain
that with probability at least 1− b,

∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − ν
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − ν̃ + ν̃ − ν
∣
∣
∣
∣
∣
≤ p̃ν

+ p̃
Tr(M)

2N+1 +
δ

2
≤ p̃

(

ν+ 1
2N+1

)

+ δ
2

,

(H3)

where the last equality uses Tr(M) ≤ 1 given in Definition
1.

Note that, to guarantee that QNN can simulate the QSQ
oracle as formulated in Definition 1, the most right term in
Eq. (H3) should be upper bounded by τ , i.e.,

∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − ν
∣
∣
∣
∣
∣
≤ p̃

(

ν + 1
2N+1

)

+ δ
2
≤ 5

4
p̃ + δ

2
≤ τ ,

where the last second inequality uses the upper bounds
ν ≤ 1 and (1/2N+1) ≤ 1

4 . Note that the above inequality
implicitly requests that p̃ < 4

5 , since the threshold τ is in
the range (0, 1). After simplification, we have

δ ≤ 2
(

τ − p̃
5
4

)

.

In other words, when δ = 2(τ − p̃ 5
4), with probability at

least 1− b, the sample mean of noisy QNN satisfies

∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − ν
∣
∣
∣
∣
∣
≤ τ , (H4)

which accords with the output of the QSQ oracle.
We now quantify the number of measurements K to

promise Eq. (H4). Recall K = 2 ln(2/b)/δ2. By employing
the explicit form of δ, we obtain

K = ln(2/b)
2[τ − p̃(5/4)]2 .

The achieved result indicates that the successful proba-
bility of noisy QNN (i.e., 1− 2b) to estimate the QSQ
oracle can be exponentially improved by linearly increas-
ing the number of measurements. Moreover, the term

1/[τ − p̃(5/4)] implies that the lower gate noise and lower
circuit depth result in the smaller number of measurements,
which guarantees the efficiency of noisy QNN to simulate
the QSQ oracle. �

APPENDIX I: GENERALIZATION OF THE
RESULTS TO MORE GENERAL QUANTUM

CHANNELS

Here we generalize the achieved results in the main text
from the depolarization channel to a more general channel
Ep1 . Specifically, after applying Ep1 to each circuit depth,
the generated state of QNN follows

Ep1{UL(θ) · · ·U2(θ)Ep1 [U1(θ)ρU1(θ)
†]U2(θ)

† · · ·UL(θ)
†}

= (1− p1)
LQ [U(θ)Ux] ρ [U(θ)Ux]† + p ′2κ + p

LQ
3

ID

D
,

(I1)

where (1− p1)
LQ + p ′2 + p

LQ
3 = 1, and κ is a mixed

state that can either be correlated or uncorrelated with
[U(θ)Ux] ρ [U(θ)Ux]†. Without confusion, we set p̃ = 1−
(1− p1)

LQ . It is worth noting that the quantum chan-
nel Ep1 formulated above is sufficiently universal, which
closely relates to most Pauli channels associated with the
depolarization channel [55,95].

The outline of this section is as follows. In Sec. 1, we
discuss the utility bounds of QNN under ERM. Then, in
Sec. 2, we quantify the generalization property of QNN.

1. Utility bounds of QNN

We now employ the noisy quantum model, i.e., the right-
hand side of Eq. (I1), to establish the relation between the
estimated gradients ∇j L̄i(θ

(t)) and the analytic gradients
∇jLi(θ

(t)). Recall that

∇j L̄i(θ
(t)) = (Ȳ(t)i − Yi)

(
Ȳ
(t,+j)
i − Ȳ

(t,−j)
i

)
+ λθ (t)j ,

where Ȳ(t)i =
∑K

k=1 V(t)k /K and Ȳ
(t,±j)
i =∑K

k=1 V
(t,±j)

k /K
refer to the sample means when feeding θ (t) and θ (t,±j) into
the trainable circuit. As with the depolarization channel,
the sample mean Ȳ(t)i or Ȳ

(t,±j)
i is a random variable that

follows a certain distribution. In particular, following the
notations used in Theorem 4, the mean and variance of Ȳ(t)i
follows

⎧
⎪⎨

⎪⎩

ν(t) = (1− p̃)Ŷ(t)i + p ′2 Tr(�κ(t))+ p
LQ
3
2 ,

σ (t) = −
(
(1−p̃)Ŷ(t)i +p ′2 Tr(�κ(t))

)2

K + (1−p
LQ
3)

(
(1−p̃)Ŷ(t)i +p ′2 Tr(�κ(t))

)

K + p
LQ
3
2 −

(p
LQ
3)2

4 .

040337-23

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

Similarly, the mean and variance of Ȳ
(t,±j)
i follows

⎧
⎪⎨

⎪⎩

ν(t,±j) = (1− p̃)Ŷ
(t,±j)
i + p ′2 Tr(�κ(t,±j))+ p

LQ
3
2 ,

σ (t,±j) = −
(

(1−p̃)Ŷ
(t,±j)
i +p ′2 Tr(�κ(t,±j))

)2

K +
(1−p

LQ
3)

(

(1−p̃)Ŷ
(t,±j)
i +p ′2 Tr(�κ(t,±j))

)

K + p
LQ
3
2 −

(p
LQ
3)2

4 .

By expanding the sample means using their explicit forms as shown above, we obtain the relation between the estimated
and analytic gradients, i.e.,

∇j L̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t))+ C(i,t)j ,1 + ς
(t,j)
i , (I2)

where ς
t,j
i = C(i,t)j ,2 ξ

(t)
i + C(i,t)j ,2 ξ

(t,j)
i + ξ (t)i ξ

(t,j)
i , and two random variables ξ (t)i and ξ (t)i have zero means and their variances

are C(i,t)j ,4 and C(i,t)j ,5 , respectively. The explicit formula of the five parameters {C(i,t)j ,a }ta=1 is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(i,t)j ,1 =
(

p ′2 Tr(�κ(t))+ p
LQ
3
2 − p̃Yi

)

(1− p̃)(Ŷ
(t,+j)
i − Ŷ

(t,−j)
i)

+ p ′2(1− p̃)(Ŷ(t)i − Yi)[Tr(�κ(t,+j))− Tr(�κ(t,−j))]

+
(

p ′2 Tr(�κ(t))+ p
LQ
3
2 − p̃Yi

)

[Tr(�κ(t,+j))− Tr(�κ(t,−j))]+ [1− (1− p̃)2]λθ (t)j ,

C(i,t)j ,2 =
(
(1− p̃)(Ŷ

(t,+j)
i − Ŷ

(t,−j)
i)+ p ′2[Tr(�κ(t,+j)]− Tr[�κ(t,−j))]

)
,

C(i,t)j ,3 =
[

(1− p̃)(Ŷ(t)i − Yi)+
(

p ′2 Tr(�κ(t))+ p
LQ
3
2 − p̃Yi

)]

,

C(i,t)j ,4 = −
(
(1−p̃)Ŷ(t)i +p ′2 Tr(�κ(t))

)2

K + (1−p
LQ
3)

(
(1−p̃)Ŷ(t)i +p ′2 Tr(�κ(t))

)

K + p
LQ
3
2K −

(p
LQ
3)2

4K ,

C(i,t)j ,5 = −
(

(1−p̃)Ŷ
(t,+j)
i +p ′2 Tr(�κ(t,+j))

)2

K −
(

(1−p̃)Ŷ
(t,−j)
i +p ′2 Tr(�κ(t,−j))

)2

K

+
(1−p

LQ
3)

(

(1−p̃)(Ŷ
(t,+j)
i −Ŷ

(t,−j)
i)+p ′2[Tr(�κ(t,+j))−Tr(�κ(t,−j))]

)

K + p
LQ
3
K −

(p
LQ
3)2

2K .

We next use the relation between the estimated and analytic gradients to separately quantify the utility bounds R1 and R2
of QNN under the noisy channel Ep1 setting.

Utility bound R1. As with Eq. (F7), with taking expectation over ξ (t)i and ξ (t,j)i , we obtain

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ −1
S
(1− p̃)2‖∇L(θ (t))‖2 + G

2S

(
1
B

B∑

i=1

C(i,t)j ,1

)

+ 1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

,

(I3)

where the inequality employs E[ξ (t)i] = 0, E[ξ (t,j)i] = 0, and −G/d ≤ ∇jL(θ (t)) ≤ G/d.

For the term (1/2S)
∑d

j=1 E
ξ
(t)
i ,ξ(t,j)i

{
[
∇j L̄(θ (t))

]2
} in the above equation, its upper bound satisfies

1
2S

d∑

j=1

E
ξ
(t)
i ,ξ(t,j)i

[(
∇j L̄(θ (t))

)2
]

≤ (1− p̃)4

2S
‖∇L(θ (t))‖2 + (1− p̃)2G

2SB

B∑

i=1

C(i,t)1

+ d
2SB2

(
B∑

i=1

C(i,t)1

)2

+ d
σ (t)max + σ (t,j)max + σ (t)maxσ

(t,j)
max

SB
, (I4)

where the first and second inequalities uses C(i,t)2 ≤ 2, C(i,t)3 ≤ 2, E[ξ (t)i] = 0, and E[ξ (t,j)i] = 0. The term σ (t)max refers to
σ (t)max = maxi σ

(t)
i ≤ 3/K . Similarly, the term σ

(t,j)
max refers to σ (t,j)max = maxi σ

(t,+j)
i + σ (t,−j)

i ≤ 3/K .

040337-24

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

In conjunction with the above two equations, we achieve

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ − 1
2S
(1− p̃)2‖∇L(θ (t))‖2

+ (2G+ d){5+ 3[1− (1− p̃)2]λπ}
2S

+ 6dK + 9d
SBK2 , (I5)

where the inequality uses C(i,t)j ,1 ≤ 5+ 3[1− (1− p̃)2]λπ .
After rewriting and taking induction, we have

‖∇L(θ (t))‖2 ≤ 2S
1+ 9λd

T(1− p̃)2
+ (2G+ d){5+ 3[1− (1− p̃)2]λπ}

(1− p̃)2
+ 12dK + 18d
(1− p̃)2BK2 . (I6)

With setting T→∞, we achieve the utility bound R1, i.e.,

R1 ≤ Õ
(

1
(1− p̃)2

, d,
1

BK

)

. (I7)

Utility bound R2. With combining Eq. (I5) and the PL condition, we obtain

E
ξ
(t)
i ,ξ(t,j)i

[L(θ (t+1))− L(θ (t))] ≤ −μ(1− p̃)2

S
[L(θ (t))− L∗]

+ (2G+ d){5+ 3[1− (1− p̃)2]λπ}
2S

+ 6dK + 9d
SBK2 . (I8)

After rewriting and induction, we have

Eς (t)[L(θ (T))]− L∗ ≤ 15λd exp
(

−μ(1− p̃)2T
S

)

+ T
(2G+ d){5+ 3[1− (1− p̃)2]λπ}

2S
+ T

6dK + 9d
SBK2 . (I9)

With setting T = O{[S/μ(1− p̃)2] ln
(
30λdSBK2/(2G+ d){5+ 3[1− (1− p̃)2]λπ}BK2 + 12dK + 18d

)}, the utility
bound is

R2 ≤ O
(

1
(1− p̃)2

,
1

SBK2 , d
)

. (I10)

2. Generalization property of (noisy) QNN

The generalization of Theorem 2. Analogous to the depolarization noise setting, the distance between the target result
ν = Tr(M|ψc∗〉〈ψc∗ |) and the shifted expectation value ν̃ = (1− p̃)ν + p ′2 Tr(Mκ)+ p

LQ
3 Tr(M)/D of QNN under the

noisy channel Ep1 follows |ν − ν̃| ≤ p̃ν + p ′2 + p
LQ
3 /D. Then by employing Chernoff-Hoeffding bound, we achieve, with

probability at least 1− 2 exp(−δ2n/2),

∣
∣
∣
∣
∣

1
k

K∑

k=1

Vk − ν
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

1
k

K∑

k=1

Vk − ν̃ + ν̃ − ν
∣
∣
∣
∣
∣
≤ p̃ν + p ′2 +

p
LQ
3

D
+ δ

2
.

With setting δ = 2(τ − p̃ν − p ′2 − p
LQ
3 /D), the relation between the number of measurements K and the successful

probability b obeys

Pr

[∣
∣
∣
∣
∣

1
K

K∑

k=1

Vk − ν̃
∣
∣
∣
∣
∣
≥
(

τ − p̃ν − p ′2 −
p

LQ
3

D

)]

≤ 2 exp

⎡

⎣−2

(

τ − p̃ν − p ′2 −
p

LQ
3

D

)2

K

⎤

⎦ = b. (I11)

040337-25

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

After simplification, we conclude that, when p̃ ≤
[τ − p ′2 − (p

LQ
3 /D)− (δ/2)]/ν (to promise the existence

of the feasible solution), with the successful probability at
least 1− b, the required number of measurements to attain∣
∣
∣1/K

∑K
k=1 Vk − ν

∣
∣
∣ ≤ τ is

K = ln (2/b)

4
[
τ − p̃ν − p ′2 − (p

LQ
3 /D)

]2 . (I12)

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, USA, 2016).

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, in Proceed-
ings of the IEEE International Conference on Computer
Vision (IEEE, Manhattan, New York, USA, 2017), p. 2961.

[3] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le, in Advances in Neural Information Process-
ing Systems (Curran Associates Inc., New York, NY, USA,
2019), p. 5754.

[4] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua,
in Proceedings of the 26th International Conference on
World Wide Web (Association for Computing Machinery,
New York, NY, USA, 2017), p. 173.

[5] Z. Allen-Zhu, Y. Li, and Y. Liang, in Advances in Neural
Information Processing Systems (Curran Associates Inc.,
New York, NY, USA, 2019), p. 6158.

[6] R. Livni, S. Shalev-Shwartz, and O. Shamir, in Advances
in Neural Information Processing Systems (MIT Press,
Cambridge, MA, USA, 2014), p. 855.

[7] Y. Li and Y. Yuan, in Advances in Neural Information Pro-
cessing Systems (Curran Associates Inc., New York, NY,
USA, 2017), p. 597.

[8] Z. Allen-Zhu, Y. Li, and Z. Song, in International Confer-
ence on Machine Learning (Microtome Publishing, Brook-
line, MA, USA, 2019), p. 242.

[9] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, in International
Conference on Machine Learning (Microtome Publishing,
Brookline, MA, USA, 2019), p. 1675.

[10] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang, in Inter-
national Conference on Machine Learning (Microtome
Publishing, Brookline, MA, USA, 2014), p. 1908.

[11] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N.
Wiebe, and S. Lloyd, Quantum machine learning, Nature
549, 195 (2017).

[12] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A.
Rocchetto, S. Severini, and L. Wossnig, Quantum machine
learning: A classical perspective, Proc. R. Soc. A 474,
20170551 (2018).

[13] V. Dunjko and H. J. Briegel, Machine learning & artifi-
cial intelligence in the quantum domain: A review of recent
progress, Rep. Prog. Phys. 81, 074001 (2018).

[14] A. W. Harrow and A. Montanaro, Quantum computational
supremacy, Nature 549, 203 (2017).

[15] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R.
Salzmann, D. Scheiermann, and R. Wolf, Training deep
quantum neural networks, Nat. Commun. 11, 1 (2020).

[16] E. Farhi and H. Neven, Classification with quantum neu-
ral networks on near term processors, ArXiv:1802.06002
(2018, to be published).

[17] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised
learning with quantum-enhanced feature spaces, Nature
567, 209 (2019).

[18] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quan-
tum circuit learning, Phys. Rev. A 98, 032309 (2018).

[19] M. Schuld and N. Killoran, Quantum Machine Learning
in Feature Hilbert Spaces, Phys. Rev. Lett. 122, 040504
(2019).

[20] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approx-
imate optimization algorithm, ArXiv:1411.4028 (2014, to
be published).

[21] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D.
A. Buell, et al., Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[22] S. Aaronson and A. Arkhipov, in Proceedings of the
Forty-Third Annual ACM Symposium on Theory of Com-
puting (ACM, New York, NY, USA, 2011), p. 333.

[23] M. J. Bremner, R. Jozsa, and D. J. Shepherd, Classical
simulation of commuting quantum computations implies
collapse of the polynomial hierarchy, Proc. R. Soc. A 467,
459 (2011).

[24] C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione,
Quantum classifier with tailored quantum kernel, npj Quan-
tum Inf. 6, 1 (2020).

[25] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld,
N. Quesada, and S. Lloyd, Continuous-variable quantum
neural networks, Phys. Rev. Res. 1, 033063 (2019).

[26] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J.
Coles, Cost function dependent barren plateaus in shal-
low parametrized quantum circuits, Nat. Commun. 12, 1
(2021).

[27] L. Gentini, A. Cuccoli, S. Pirandola, P. Verrucchi, and
L. Banchi, Noise-resilient variational hybrid quantum-
classical optimization, Phys. Rev. A 102, 052414
(2020).

[28] C.-C. Chen, M. Watabe, K. Shiba, M. Sogabe, K.
Sakamoto, and T. Sogabe, On the expressibility and over-
fitting of quantum circuit learning, ACM Trans. Quantum
Comput. 2, 1 (2021).

[29] Y. Du, Z. Tu, X. Yuan, and D. Tao, An efficient mea-
sure for the expressivity of variational quantum algorithms,
ArXiv:2104.09961 (2021, to be published).

[30] K. Bu, D. E. Koh, L. Li, Q. Luo, and Y. Zhang, On the sta-
tistical complexity of quantum circuits, ArXiv:2101.06154
(2021, to be published).

[31] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and
S. Woerner, The power of quantum neural networks, Nat.
Comput. Sci. 1, 403 (2021).

[32] M. C. Caro and I. Datta, Quantum learning with noise and
decoherence: A robust quantum neural network, Quantum
Mach. Intell. 2, 1 (2020).

[33] M. C. Caro, E. Gil-Fuster, J. J. Meyer, J. Eisert, and
R. Sweke, Encoding-dependent generalization bounds for
parametrized quantum circuits, ArXiv:2106.03880 (2021,
to be published).

040337-26

https://doi.org/10.1038/nature23474
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1038/nature23458
https://doi.org/10.1038/s41467-020-14454-2
https://arxiv.org/abs/1802.06002
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevLett.122.040504
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1103/PhysRevResearch.1.033063
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1103/PhysRevA.102.052414
https://doi.org/10.1145/3466797
https://arxiv.org/abs/2104.09961
https://arxiv.org/abs/2101.06154
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1007/s42484-020-00013-x
https://arxiv.org/abs/2106.03880

LEARNABILITY OF QUANTUM NEURAL NETWORKS PRX QUANTUM 2, 040337 (2021)

[34] Y. Qian, X. Wang, Y. Du, X. Wu, and D. Tao, The dilemma
of quantum neural networks, ArXiv:2106.04975 (2021, to
be published).

[35] L. Banchi, J. Pereira, and S. Pirandola, Generalization in
quantum machine learning: a quantum information per-
spective, ArXiv:2102.08991 (2021, to be published).

[36] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush,
S. Boixo, H. Neven, and J. R. McClean, Anomalous col-
lapses of nares strait ice arches leads to enhanced export of
arctic sea ice, Nat. Commun. 12, 1 (2021).

[37] H.-Y. Huang, R. Kueng, and J. Preskill, Information-
Theoretic Bounds on Quantum Advantage in Machine
Learning, Phys. Rev. Lett. 126, 190505 (2021).

[38] C. Gyurik, D. van Vreumingen, and V. Dunjko, Generaliza-
tion in quantum machine learning: a quantum information
perspective, ArXiv:2105.05566 (2021, to be published).

[39] V. Vapnik, in Advances in Neural Information Process-
ing Systems (Morgan Kaufmann Publishers, San Francisco,
CA, USA, 1992), p. 831.

[40] V. Vapnik, The Nature of Statistical Learning Theory
(Springer-Verlag, Berlin, Germany, 1995).

[41] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush,
and H. Neven, Barren plateaus in quantum neural network
training landscapes, Nat. Commun. 9, 1 (2018).

[42] S. Arunachalam and R. de Wolf, Guest column, ACM
SIGACT News 48, 41 (2017).

[43] A. Atici and R. A. Servedio, Improved bounds on quantum
learning algorithms, Quantum Inf. Process. 4, 355 (2005).

[44] E. Bernstein and U. Vazirani, Quantum complexity theory,
SIAM J. Comput. 26, 1411 (1997).

[45] R. A. Servedio and S. J. Gortler, Equivalences and separa-
tions between quantum and classical learnability, SIAM J.
Comput. 33, 1067 (2004).

[46] M. C. Caro, Measurement-device-independent quantum
key distribution with uncharacterized coherent sources,
Quantum Inf. Process. 19, 1 (2020).

[47] A. W. Cross, G. Smith, and J. A. Smolin, Quantum
learning robust against noise, Phys. Rev. A 92, 012327
(2015).

[48] A. B. Grilo, I. Kerenidis, and T. Zijlstra, Learning-with-
errors problem is easy with quantum samples, Phys. Rev.
A 99, 032314 (2019).

[49] A. Gollakota and D. Liang, On the hardness of PAC-
learning stabilizer states with noise, ArXiv:2102.05174
(2021, to be published).

[50] S. Arunachalam, A. B. Grilo, and H. Yuen, Quantum sta-
tistical query learning, ArXiv:2002.08240 (2020, to be
published).

[51] S. Arunachalam, Y. Quek, and J. Smolin, Private learning
implies quantum stability, ArXiv:2102.07171 (2021, to be
published).

[52] Y. Du, M.-H. Hsieh, T. Liu, S. You, and D. Tao,
Quantum differentially private sparse regression learning,
ArXiv:2007.11921 (2020, to be published).

[53] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, United King-
dom, 2004).

[54] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[55] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, United Kingdom, 2010).

[56] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Kil-
loran, Evaluating analytic gradients on quantum hardware,
Phys. Rev. A 99, 032331 (2019).

[57] V. Koltchinskii, Oracle Inequalities in Empirical Risk Min-
imization and Sparse Recovery Problems: Ecole d’Eté de
Probabilités de Saint-Flour XXXVIII-2008 (Springer Sci-
ence & Business Media, Berlin, Germany, 2011), Vol.
2033.

[58] J. Zhang, K. Zheng, W. Mou, and L. Wang, in Proceed-
ings of the 26th International Joint Conference on Artifi-
cial Intelligence (AAAI Press, Cambridge, USA, 2017), p.
3922.

[59] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, Convexity,
classification, and risk bounds, J. Am. Stat. Assoc. 101, 138
(2006).

[60] P. L. Bartlett and S. Mendelson, Empirical minimization,
Probab. Theory. Relat. Fields 135, 311 (2006).

[61] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jor-
dan, in Proceedings of the 34th International Conference
on Machine Learning (Microtome Publishing, Brookline,
MA, USA, 2017), Vol. 70, p. 1724.

[62] H. Karimi, J. Nutini, and M. Schmidt, in Joint European
Conference on Machine Learning and Knowledge Discov-
ery in Databases (Springer, Berlin, Germany, 2016), p.
795.

[63] Y. Nesterov and B. T. Polyak, Cubic regularization of New-
ton method and its global performance, Math. Program.
108, 177 (2006).

[64] K. J. Sung, M. P. Harrigan, N. C. Rubin, Z. Jiang, R.
Babbush, and J. R. McClean, An exploration of practical
optimizers for variational quantum algorithms on supercon-
ducting qubit processors, ArXiv:2005.11011 (2020).

[65] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger,
and P. J. Coles, Absence of Barren Plateaus in quantum
convolutional neural networks, Phys. Rev. X 11, 041011
(2021).

[66] T. Volkoff and P. J. Coles, Large gradients via correlation
in random parameterized quantum circuits, Quantum Sci.
Technol. 6, 025008 (2021).

[67] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[68] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt,
and M. Leib, Layerwise learning for quantum neural net-
works, Quantum Mach. Intell. 3, 1 (2021).

[69] C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement
induced barren plateaus, ArXiv:2010.15968 (2020, to be
published).

[70] K. Zhang, M.-H. Hsieh, L. Liu, and D. Tao, Toward train-
ability of quantum neural networks, ArXiv:2011.06258
(2020, to be published).

[71] C. Zhao and X.-S. Gao, Analyzing the barren plateau phe-
nomenon in training quantum neural networks with the
ZX-calculus, Quantum 5, 466 (2021).

[72] T. L. Patti, K. Najafi, X. Gao, and S. F. Yelin, Entangle-
ment devised barren plateau mitigation, Phys. Rev. Res. 3,
033090 (2021).

[73] K. Kawaguchi, Deep learning without poor local minima,
Adv. Neural Inf. Process. Syst. 29, 586 (2016).

[74] M. Plesch and Č. Brukner, Quantum-state preparation with
universal gate decompositions, Phys. Rev. A 83, 032302
(2011).

040337-27

https://arxiv.org/abs/2106.04975
https://arxiv.org/abs/2102.08991
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/PhysRevLett.126.190505
https://arxiv.org/abs/2105.05566
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1145/3106700.3106710
https://doi.org/10.1007/s11128-005-0001-2
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539704412910
https://doi.org/10.1007/s11128-019-2494-0
https://doi.org/10.1103/PhysRevA.92.012327
https://doi.org/10.1103/PhysRevA.99.032314
https://arxiv.org/abs/2102.05174
https://arxiv.org/abs/2002.08240
https://arxiv.org/abs/2102.07171
https://arxiv.org/abs/2007.11921
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1198/016214505000000907
https://doi.org/10.1007/s00440-005-0462-3
https://doi.org/10.1007/s10107-006-0706-8
https://arxiv.org/abs/2005.11011
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1007/s42484-020-00036-4
https://arxiv.org/abs/2010.15968
https://arxiv.org/abs/2011.06258
https://doi.org/10.22331/q-2021-06-04-466
https://doi.org/10.1103/PhysRevResearch.3.033090
https://doi.org/10.1103/PhysRevA.83.032302

YUXUAN DU et al. PRX QUANTUM 2, 040337 (2021)

[75] M. Schuld, M. Fingerhuth, and F. Petruccione, Implement-
ing a distance-based classifier with a quantum interference
circuit, EPL 119, 60002 (2017).

[76] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe,
Circuit-centric quantum classifiers, Phys. Rev. A 101,
032308 (2020).

[77] C. Wilson, J. Otterbach, N. Tezak, R. Smith, G. Crooks,
and M. da Silva, Quantum kitchen sinks: An algorithm
for machine learning on near-term quantum computers,
ArXiv:1806.08321 (2018, to be published).

[78] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Param-
eterized quantum circuits as machine learning models,
Quantum Sci. Technol. 4, 043001 (2019).

[79] D. Dua and C. Graff, UCI Machine Learning Repository
(University of California, Irvine, 2017), http://archive.ics.
uci.edu/ml.

[80] S. Wold, K. Esbensen, and P. Geladi, Principal com-
ponent analysis, Chemometr. Intell. Lab. Syst. 2, 37
(1987).

[81] L. Bittel and M. Kliesch, Training variational quantum
algorithms is NP-hard—even for logarithmically many
qubits and free fermionic systems, ArXiv:2101.07267
(2021, to be published).

[82] https://github.com/yuxuan-du/Learnability-of-QNN.
[83] A. Blum, A. Kalai, and H. Wasserman, Noise-tolerant

learning, the parity problem, and the statistical query
model, J. ACM 50, 506 (2003).

[84] X. Wang, Y. Du, Y. Luo, and D. Tao, Towards under-
standing the power of quantum kernels in the NISQ era,
Quantum 5, 531 (2021).

[85] H. Cai, Q. Ye, and D.-L. Deng, Sample complexity of
learning quantum circuits, ArXiv:2107.09078 (2021, to be
published).

[86] V. Feldman, A complete characterization of statistical query
learning with applications to evolvability, J. Comput. Syst.
Sci. 78, 1444 (2012).

[87] V. Feldman, C. Guzman, and S. Vempala, in Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SIAM, Philadelphia, PA, USA, 2017), p.
1265.

[88] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum
natural gradient, Quantum 4, 269 (2020).

[89] J. Gacon, C. Zoufal, G. Carleo, and S. Woerner, Simulta-
neous perturbation stochastic approximation of the quan-
tum fisher information, ArXiv:2103.09232 (2021, to be
published).

[90] R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Fährmann,
B. Meynard-Piganeau, and J. Eisert, Stochastic gradi-
ent descent for hybrid quantum-classical optimization,
Quantum 4, 314 (2020).

[91] M. Zhou, T. Liu, Y. Li, D. Lin, E. Zhou, and T. Zhao,
Towards understanding the importance of noise in train-
ing neural networks, ArXiv:1909.03172 (2019, to be pub-
lished).

[92] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, A grover-search
based quantum learning scheme for classification, New J.
Phys. 23, 023020 (2021).

[93] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, Expressive
power of parametrized quantum circuits, Phys. Rev. Res.
2, 033125 (2020).

[94] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E.
M. Stoudenmire, Towards quantum machine learning with
tensor networks, Quantum Sci. Technol. 4, 024001 (2019).

[95] K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles, Noise
resilience of variational quantum compiling, New J. Phys.
22, 043006 (2020).

040337-28

https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1103/PhysRevA.101.032308
https://arxiv.org/abs/1806.08321
https://doi.org/10.1088/2058-9565/ab4eb5
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/0169-7439(87)80084-9
https://arxiv.org/abs/2101.07267
https://github.com/yuxuan-du/Learnability-of-QNN
https://doi.org/10.1145/792538.792543
https://doi.org/10.22331/q-2021-08-30-531
https://arxiv.org/abs/2107.09078
https://doi.org/10.1016/j.jcss.2011.12.024
https://doi.org/10.22331/q-2020-05-25-269
https://arxiv.org/abs/2103.09232
https://doi.org/10.22331/q-2020-08-31-314
https://arxiv.org/abs/1909.03172
https://doi.org/10.1088/1367-2630/abdefa
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1088/1367-2630/ab784c

	I.. INTRODUCTION
	II.. TRAINABILITY OF QNN TOWARDS ERM
	III.. NUMERICAL SIMULATIONS
	IV.. GENERALIZATION OF QNN
	V.. DISCUSSION AND CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX
	. APPENDIX A: THE SUMMARY OF NOTATIONS
	. APPENDIX B: THE PROPERTY OF GRADIENTS IN QNNS
	1.. Parameter shift rule

	. APPENDIX C: IMPLEMENTATION DETAILS OF ENCODING CIRCUIT AND TRAINABLE CIRCUIT OF QNN
	. APPENDIX D: THE S-SMOOTH, G-LIPSCHITZ, AND PL CONDITION PROPERTIES FOR THE OBJECTIVE FUNCTION
	1.. Proof of Lemma 2: S smooth
	2.. Proof of Lemma 3: G Lipschitz
	3.. Proof of Lemma 4: the PL condition

	. APPENDIX E: PROOF OF THEOREM 3
	1.. Proof of Lemma 5

	. APPENDIX F: PROOF OF THEOREM 1
	1.. Proof of Theorem 6: The utility bound R1
	2.. Proof of Theorem 7: The utility bound R2
	3.. Proof of Lemma 7

	. APPENDIX G: MORE NUMERICAL SIMULATION DETAILS
	1.. The construction of QNNs
	2.. More simulation results for the utility R1

	. APPENDIX H: PROOF OF THEOREM 2
	. APPENDIX I: GENERALIZATION OF THE RESULTS TO MORE GENERAL QUANTUM CHANNELS
	1.. Utility bounds of QNN
	2.. Generalization property of (noisy) QNN

	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

