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If noisy-intermediate-scale-quantum-era quantum computers are to perform useful tasks, they will need
to employ powerful error mitigation techniques. Quasiprobability methods can permit perfect error com-
pensation at the cost of additional circuit executions, provided that the nature of the error model is fully
understood and sufficiently local both spatially and temporally. Unfortunately, these conditions are chal-
lenging to satisfy. Here we present a method by which the proper compensation strategy can instead be
learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford
gates are substituted with gates that are efficient to simulate classically. The process yields a configuration
that is near optimal versus noise in the real system with its non-Clifford gate set. Having presented a range
of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM
devices) and exactly emulated imperfect quantum computers. The systems suffer a range of noise severi-
ties and types, including spatially and temporally correlated variants. In all cases the protocol successfully
adapts to the noise and mitigates it to a high degree.
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I. INTRODUCTION

It is widely believed that we are entering the era
when the computational power of quantum machines sur-
passes any classical resource for certain specific problems
[1,2]. One of the main obstacles to achieving the practi-
cal application of quantum computing is the noise caused
by decoherence and imperfect control. There exist well-
understood solutions involving quantum error correction,
which can suppress the computing error to an arbitrar-
ily low level when the error rate of elementary gates
is lower than the threshold. However, implementing this
approach involves a multiplicative increase in the number
of physical qubits, potentially by a factor of a thousand
or more [3]. This appears prohibitive for the near future.
Therefore, for noisy intermediate-scale quantum (NISQ)
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devices, alternative approaches that are usually termed
quantum error mitigation have been developed.

At the base level, it is of course essential to minimize
noise during the physical execution of a gate, through opti-
mizing control parameters, etc. [4], and here we take it as
read that such measures have been taken. Above this level,
one can use error extrapolation and probabilistic error can-
celation [5–7]; here the estimator of the computing result
is carefully constructed and optimized using the knowl-
edge of error distribution, such that the impact of errors is
minimized [8–10]. Similar ideas have been used to correct
measurement errors [11–13]. By exploring the symme-
try of the quantum circuit, some errors in the circuit can
be detected and eliminated using postselection [14,15]. A
number of related ideas, such as subspace expansion [16]
and continuous error mitigation [17], are being explored.

In many potential NISQ applications, for example the
use of variational quantum algorithms in the eigensolver or
simulation [5,18,19], a key task is to evaluate mean values
of some observables—in essence, to measure the expected
value of one or more qubits as the output of a circuit. The
estimator of the mean is usually biased as a result of the
noise. Then the role of error mitigation is to remove the
bias by modifying the estimator. Because of the linearity of
quantum mechanics, a linear combination of noisy circuits
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with appropriate coefficients (both positive and negative)
can be equivalent to a noise-free circuit [6]. One can imple-
ment such a combination by randomly sampling from a
particular set of quantum circuits, derived from the pri-
mary circuit by (typically) the addition of certain gate(s),
and taking a weighted average over the recorded outcomes.
This can be called probabilistic error cancelation [6]. If
the error model, i.e., a precise theoretical characteriza-
tion of the errors in the physical gates, is available then
it may be possible to analytically derive the ideal distribu-
tion of circuits, both their nature and the proper weightings
with which their outputs should be combined. Then per-
fect compensation for errors is achievable [6,7]. However,
for this to be practical, the error model must be deter-
mined through some form of tomography [7]; this may
be difficult [20] or infeasibly costly unless error correla-
tions (either spatial or temporal) involve only a few qubits.
Nevertheless, when such conditions are even approxi-
mately met, then the approach can be very valuable, as
has been successfully demonstrated in small systems of
superconducting qubits and trapped ions [9,10].

In this paper, we present a novel and intuitive way to
mitigate the errors. Instead of determining the error model
that afflicts the experimental system and deriving the
proper circuit distribution (i.e., combination coefficients),
the distribution is determined via an ab initio learning pro-
cess. We choose the distribution by minimizing the error in
the final computing result for a set of training computing
tasks. The efficiency of the learning-based error mitiga-
tion is due to its simplicity and intuitivity. All potential
error correlations, i.e., spatial and temporal correlations,
are automatically taken into account in the learning pro-
cess. Therefore, it is a promising way to realize reliable
quantum computing with deep circuits on large systems.

An obvious difficulty for a learning-based error mit-
igation process, if it is to be relevant to real quantum
computers implemented at scale, is that one cannot deter-
mine the correct value of a given observable (the “goal” of
the mitigation) by any means other than the execution of an
ideal quantum circuit. Here we show that learning-based
error mitigation is indeed feasible because Clifford-circuit
training tasks are sufficient to find an optimal circuit distri-
bution, regardless of the error correlations. We derive suit-
able Clifford circuits from the original (primary) circuit,
and for such circuits, we can evaluate the correct result by
using efficient simulations on a classical computer [21–
23]. We note that in the present work the sufficiency is
proved under the assumption of negligible single-qubit
gate errors. In most quantum computing systems, single-
qubit gates do indeed attain a much higher fidelity than
other gates, e.g., an average gate fidelity of 99.9999% has
been achieved with trapped ions [24], whereas the record
for two-qubit fidelity is 3 orders of magnitude lower at
99.9% [25,26].

In the following we consider two types of quantum
computer, and argue that they are practically equivalent.
The distinction concerns the question of whether it is triv-
ial (zero resource cost) to reconfigure the computer from
one circuit to another. The more convenient theoretical
assumption is that it is indeed cost-free to reconfigure, in
which case the learning process is a structureless random
sampling. In real systems an experimentalist may prefer
to configure a circuit once and sample from it many times
before reconfiguring. The learning-based error mitigation
has two stages: the learning, in which we need to evalu-
ate a loss function, and the error-mitigated computation. If
the quantum circuit can be updated after each run, we use
the Monte Carlo summation in both the loss function eval-
uation and computing, in order to maximize the number
of training circuits. For scenarios where reconfiguration
is costly, we propose a method using significant-error
interventions.

We demonstrate our protocol both with real quantum
hardware and with exactly simulated virtual devices. We
consider various tasks that these devices are attempting
to perform, including variational quantum algorithms. For
the simulated machines, we are of course able to spec-
ify the noise model as we wish. In order to compare with
previously reported tomography-based methods [6,7], we
specify that there are local (two-qubit) errors that conform
to a known noise model but that the real noise model also
involves additional correlated errors: either spatial “cross
talk” or temporal correlations. The learning-based protocol
outperforms the tomography-based protocol by a factor of
approximately 4–5 depending on the task at hand. Indeed,
in all cases that we explore, with the real or virtual quantum
systems, we find that the learning-based protocol performs
very well.

We comment and show numerical data for the scalability
of our method to larger systems, and we consider vari-
ous learning strategies (including single parameter versus
multiparameter, and summation versus product ansatz) and
we consider the distinction between ideal “infinite time”
learning and resource-constrained learning. Because of the
simplicity, effectiveness, and flexibility of the learning-
based approach, we conclude that it is a promising way to
realize reliable value from NISQ-era quantum computing.

This paper is organized as follows. In Secs. II and III we
introduce and describe the general protocol. In Sec. IV we
discuss the practical implementation of the protocol and,
focusing on a Pauli error model (Sec. VI), we describe
three practical methods in detail in Secs. VII, VIII, and IX
with numerical results in the first two. Section V sepa-
rately introduces an alternative way to establish the cost
function. In Sec. X we demonstrate our protocol on real
quantum hardware. Finally, in Sec. XI we summarize the
protocol, conclude the main results, and discuss future
directions.
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II. THE GENERAL PROTOCOL

We consider the quantum circuit as shown in Fig. 1.
In the circuit, all qubits are initialized in the state |0〉
and measured in the Z basis at the end. Most errors are
caused by multiqubit quantum gates, e.g., controlled-NOT
and controlled-phase gates. We call these gates frame
gates. Suppose that the circuit has n qubits and N lay-
ers of frame gates; we use Gj , where j = 1, . . . , N , to
denote the overall n-qubit gate for the j th layer. We assume
that these multiqubit gates are all Clifford, which is the
only requirement for frame gates. Between frame opera-
tions, single-qubit unitary gates R = (R1, R2, . . . , Rn(N+1))

are performed [see Fig. 1(a)], which specify the quantum
computation. We call them computing gates. To imple-
ment the error mitigation, we introduce single-qubit Pauli
gates before and after each computing gate [see Fig. 1(b)],
which are denoted by P = (P1, P2, . . . , P2n(N+1)). We call
these Pauli gates error mitigating gates. In our protocol,
the frame gates Gj are fixed, and other gates (i.e., R
and P) are treated as variables. We remark that circuits
composed in this way are universal for quantum comput-
ing, and our protocol can be generalized to other circuit
configurations.

Let μ be a binary vector that represents measurement
outcomes of n qubits. A specific computation is to evaluate
the mean value of a function f (μ). For example, if the
observable is Z of the first qubit, the function is f (μ) =
1− 2μ1, where μ1 is the measurement outcome of the first
qubit. We use comEF(R, P) to denote the mean value when
the circuit is error-free and com(R, P) to denote the mean
value in the actual noisy circuit.

In probabilistic error mitigation, we use a linear com-
bination of computing results with different P to estimate
the error-free result. Given the combination coefficients
q(P), i.e., quasiprobabilities, the error-mitigated comput-
ing result is

comEM(R, I) ≡
∑

P

q(P)com(R, P), (1)

where I means that all error mitigating gates are identity
gates. Compared to the error-free result, the computing
error is

Error(R) ≡ |comEM(R, I)− comEF(R, I)|. (2)

Our goal is to find an optimal distribution q(P) such that
the error is minimized.

We consider the loss function in the quadratic form:

Loss ≡ 1
|T|

∑

R∈T
Error(R)2 (3)

with T a set of training computing tasks. To evaluate
the loss function, we can compute com(R, I) using the
actual noisy quantum computer and comEF(R, I) using a
classical computer. Because Clifford circuits can be effi-
ciently simulated on a classical computer according to the
Gottesman-Knill theorem [21–23], we choose the train-
ing set T as a subset of Clifford circuits, i.e., T ⊆ C ≡
{R | all Rj are Clifford}. By minimizing the loss function,
we can find the optimal distribution qopt(P) for the train-
ing set. Then, we apply the same distribution qopt(P) to our
primary computing task(s) R. We remark that R will be
non-Clifford in nontrivial quantum computations.

III. KEY PROPERTIES

An optimal distribution q(P) that works for all R exists
if single-qubit gates are ideal. The error-free computation
result can be expressed as (see Appendix A)

comEF(R, P) = Tr(SSRPLFEFPR). (4)

Each term in trace brackets is a map on n(N + 1) qubits:
FEF = [GN ]⊗ · · · ⊗ [G1]⊗ GEF

0 is a tensor that describes
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FIG. 1. Simple example of a circuit without and with error mitigation. Each circuit has four qubits and two layers of frame gates G1
and G2 (dashed boxes). Note that errors afflict the frame gates and may correlate over arbitrarily many qubits within a box and between
boxes (i.e., spatial and temporal errors). Frame operations (orange) include the qubit initialization, frame gates, and measurement.
There are three layers of computing gates Ri (blue) in each circuit. To implement the error mitigation, two layers of Pauli gates Pi
(brown) are introduced before and after each layer of computing gates. Usually, single-qubit gates next to each other in the circuit can
be combined into one single-qubit gate in the physical implementation.
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the effect of all error-free frame operations, R represents
computing gates, PL and PR respectively represent error
mitigating gates in odd and even layers, and SS is a swap
map. Here, [U](•) = U • U† is the completely positive
map of the operator U, GEF

0 (•) = ρEF
i Tr(EEF

f •) describes
the qubit initialization and measurement, and ρEF

i and EEF
f

are respectively the error-free initial state and measure-
ment operator. The actual computation result with error can
be expressed in the same form:

com(R, P) = Tr(SSRPLFPR). (5)

Here F describes the effect of all frame operations
with errors. In general, F cannot be written as a ten-
sor product similar to FEF, specifically in the pres-
ence of correlated errors. The error-mitigated computa-
tion result is comEM(R, I) = Tr(SSRFEM), where FEM =∑

P q(P)PLFPR. Therefore, the error is zero for all R if
q(P) is a solution of the equation FEM = FEF. The solu-
tion always exists if, for every nonzero element of FEF, the
corresponding element of F is also nonzero in the Pauli
transfer matrix representation [27,28]. It is very unlikely
that this condition does not hold, especially when the error
rate is low. See Appendix B for the proof.

The training set T = C is sufficient for finding an opti-
mal distribution q(P) that works for all R. The set C

contains all Clifford R. A single-qubit unitary map [Rj ] can
be written as a linear combination of single-qubit Clifford
maps [7]. For an arbitrary R, we haveR =∑

R′∈C αR,R′R′,
where αR,R′ are coefficients. See Appendix C for details.
Therefore, if we find the optimal distribution qopt(P) such
that Loss = 0 with T = C, the error is zero for all Clifford
and non-Clifford R after the error mitigation.

We remark that these two properties are proved under
the condition of ideal single-qubit unitary gates but do
not depend on the error model of frame operations. When
single-qubit-gate errors are gate independent, the proofs
still hold after some adaptation. The protocol works for all
Pauli, damping and coherent, uncorrelated and correlated
errors.

IV. PRACTICAL ISSUES

The spaces of computing gates R and error mitigat-
ing gates P increase exponentially with the circuit size.
Therefore, it is impractical to compute Error(R) for every
training circuit R ∈ C and optimize the quasiprobability
q(P) of each P. There are two approaches for the practical
implementation as follows.

In the first approach, we truncate spaces of training cir-
cuits and error mitigating gates. We then require some
rationale for choosing truncated sets that can be expected
to be effective. This can be called the significant-error
approach. An effective approach is to consider the Pauli
error model. General errors can be converted into Pauli

errors using the Pauli twirling, which will be discussed
later. Pauli errors are erroneous Pauli gates. Usually, only a
small subset of Pauli errors is significant, which can be cor-
rected by corresponding error mitigating gates. Let SigE be
the set of significant Pauli errors; we can take quasiproba-
bilities q(P)|P∈SigE as optimization parameters and set the
rest q(P)|P/∈SigE to zero. Then, the number of optimization
parameters is the same as the number of significant errors,
which usually increases polynomially with the circuit size.
Similarly, we choose a selected subset T ⊂ C as the train-
ing set. Later, we show numerical evidence that the error
mitigation works well when the size of T is 3 times the size
of SigE.

In the second approach, instead of truncating the space
of training circuits and error mitigating gates, we con-
sider an error ansatz whose distribution admits a product
form. That is, we consider a case where each of the sig-
nificant Pauli errors has its own independent quasiproba-
bility distribution that we optimize. Then an application of
error mitigation consists of applying chains of individual
significant errors and has a corresponding quasiproba-
bility distribution described as a product of independent
quasiprobabilities for each significant error.

Finally, we may generalize the previous approach. We
parameterize the quasiprobability distribution as a varia-
tional function and compute the loss using the Monte Carlo
method. We take q(P) ∝ B(P, λ), where λ denotes a set of
parameters that determine the distribution. Here, B(P, λ)
can be any real-valued function describing the distribu-
tion on the large space of P but only using a relatively
small number of parameters λ, e.g., the restricted Boltz-
mann machine [29,30]. Instead of the truncated training
set, we can use the full set of Clifford circuits, i.e., T = C.
The loss function can be efficiently computed using the
Monte Carlo summation. We find that the sampling cost
scales polynomially with respect to the accuracy of the
Monte Carlo summation regardless of the size of C and
the space of P.

All three approaches will be discussed in this paper. We
note that one can combine the approaches in different ways
in a practical implementation. For example, we can use the
significant-error approach to parameterize the distribution
and use the Monte Carlo summation to evaluate the loss
function. Having obtained an optimized quasiprobability
distribution qopt(P) by any such method, we can implement
the error-mitigated computation by using either the trun-
cated space of error mitigating gates or the Monte Carlo
method.

V. MULTIPLE OBSERVABLES AND FIDELITY
LOSS

So far, we only considered the case of one observable
f (μ). In some algorithms, e.g., the variational quantum

040330-4



LEARNING-BASED QUANTUM ERROR MITIGATION PRX QUANTUM 2, 040330 (2021)

eigensolver [18], we need to measure multiple observ-
ables. The loss function can be generalized accordingly.
Let Lossf be the loss of the observable f (μ). Then, we can
take the loss of No observables as Loss ≡ N−1

o
∑No

i=1 Lossfi ,
where fi(μ) is the ith observable.

A further option is to base the cost function on the output
state fidelity, a measure of the correctness that is indepen-
dent of the observable. We can also use the fidelity to find
an optimal quasiprobability distribution. Let |ψ(R)〉 be the
ideal final state (just before the measurement) of the circuit
with gate sequences R and P = I. The quadratic fidelity
loss function reads

L̃oss ≡ 1
|T|

∑

R∈T
[1− F(R)]2, (6)

where F(R) = 〈ψ(R)|ρEM(R)|ψ(R)〉, the error-mitigated
state is ρEM(R) =∑

P q(P)ρ(R, P), and ρ(R, P) is the
actual noisy final state of the circuit with gate sequences
R and P. We remark that F(R) is a pseudofidelity, because
ρEM(R) may not be positive. The training circuit R ∈ C is
Clifford; therefore, |ψ(R)〉 is a stabilizer state [21]. Sup-
pose that SR is the stabilizer group of the state |ψ(R)〉; we
have (see Appendix D)

〈ψ(R)|ρ(R, P)|ψ(R)〉 = 1
2n

∑

g∈SR

Tr[gρ(R, P)]. (7)

By measuring the group elements g, which are Pauli opera-
tors with ± signs, we can evaluate the fidelity and then the
loss function. Compared with the loss of one observable,
the fidelity loss has an additional summation over the sta-
bilizer group, which can be realized using the Monte Carlo
method.

To measure the operators g, usually we need to change
the measurement basis. Given the physical measurement
setup in the Z basis, we can effectively change the basis by
adding single-qubit Clifford gates before the measurement,
i.e., another layer of computing gates. We remark that
single-qubit gates next to each other in the circuit can be
combined into one single-qubit gate in the physical imple-
mentation. Therefore, an additional layer of computing
gates does not increase the physical complexity.

VI. PAULI ERROR MODEL

In this section, we discuss the Pauli error model, which
is the underlying picture of the protocol. By using the error
mitigating gates, we can convert general errors into Pauli
errors. In the Pauli twirling method, stochastic Pauli gates
are implemented before and after a Clifford gate. Because
the gate is Clifford, two sets of Pauli gates cancel with each
other if they are properly chosen. Therefore, the Clifford
gate is unchanged if it is error-free, but the noise is sym-
metrized. In Eq. (5), we have Pauli gates before and after

the frame-operation tensor, i.e., PLFPP, which is similar
to the setup of Pauli twirling of a Clifford gate. Note that
FEF is a tensor product of Clifford gates except GEF

0 . Errors
in the qubit initialization and measurement, i.e., G0, can
also be converted into Pauli errors. See Appendix E for
details.

In the following, we assume that errors are Pauli for
simplification. We use [σ1] to denote the initialization
error, which occurs after the qubit initialization, we use
[σ2j+1] to denote the error of the j th layer frame gate,
which occurs after the corresponding frame gate Gj , and
we use [σ2N+2] to denote the measurement error, which
occurs before the measurement. Here, the σj are n-qubit
Pauli operators, σ1, σ2N+2 ∈ {I , X }⊗n and σ3, . . . , σ2N+1 ∈
{I , X , Y, Z}⊗n. Referring to Fig. 1(b) and its obvious gener-
alization to deeper circuits, we can understand [σj ] as the
j th layer of Pauli gates describing errors.

We can use σ = σ1 ⊗ σ3 ⊗ · · · ⊗ σ2N+1 ⊗ σ2N+2 to
describe the pattern of Pauli errors distributed in space-
time. If the probability of σ is p([σ ]), the error model can
be written as a map N =∑

σ p(σ )[σ ]. Usually, there is
an inverse map of N , which can be written as N−1 =∑

σ q(σ )[σ ], where q(σ ) is the quasiprobability. The dis-
tribution q(σ ) is a solution of the equation FEM = FEF

and, therefore, can correct all errors for all R. With the
quasiprobability q(σ ), we take the j th layer of error miti-
gating gates as [σj ], where j = 1, 3, . . . , 2N + 1, 2N + 2;
error mitigating gates in other layers are set to identity
gates.

We can observe that, if the error model is Pauli, error
mitigating gates in j = 2, 4, . . . , 2N layers are not in fact
needed. These layers are only used for general Pauli
twirling.

VII. SIGNIFICANT-ERROR APPROACH

The number of terms in the inverse map N−1 =∑
σ q(σ )[σ ] increases exponentially with the circuit size,

and so naively we would require an optimization of expo-
nentially many quasiprobabilities q(σ ), which is imprac-
tical. In this section and the next three we describe three
approaches to practically implement our protocol and pro-
vide convincing numerical and quantum hardware experi-
ments with various error models, circuits, and tasks.

As mentioned in Sec. IV, one approach is to assume a
Pauli error model N ≈∑

σ∈SigE p(σ )[σ ], where SigE is
the set of significant errors including the trivial error (i.e.,
identity operator). Probabilities of other errors are neg-
ligible. If p(σ )� 1 for all nontrivial errors, the inverse
map is approximately N−1 ≈∑

σ∈SigE q(σ )[σ ], which is
used as the ansatz in the learning process. This leaves
us with a truncated set of optimization parameters q(σ )
and, by choosing an appropriate construction of the set
SigE, it may be truncated to a degree where q(σ ) scales
polynomially with the circuit size.
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An example construction of a polynomially scaling set
SigE, which we have used in our numerical simulations, is
as follows.

1. Use gate set tomography to find the naive initial-
ization, measurement, and two-qubit gate errors, calculate
the respective quasiprobabilities q(σ )ini for all σ , assum-
ing that the error model for the whole circuit is only
composed from the combinations of these Pauli errors.
Here by “two-qubit gate errors” we mean the error model
inferred by an experimentalist purely from tomography of
the two-qubit gate mechanism operating on two otherwise-
isolated qubits. This task is tractable but will fail to capture
the spatial (e.g., cross talk to other qubits) and temporal
correlations that will generally occur in the real, compre-
hensive noise model. Our learning procedure will then
adapt the mitigation to encompass these more complex
errors. Because the quasiprobabilities eventually used in
the error mitigation are determined in the learning, a highly
accurate gate set tomography for this initialization is not
required.

In our numerical simulations, we assume that the gate
set tomography is accurate, up to the neglected time depen-
dence and correlations, in order to be compared with the
learning-based approach. According to the quasiprobabil-
ity decomposition, the error-correcting gate set is {σ |
q(σ )ini 
= 0}. This set, however, still scales exponentially
with the circuit size. This step draws parallels with the
protocol introduced in the original probabilistic error can-
celation works [6,7].

2. To restrict ourselves to a polynomially scaling set
SigE, we truncate the error-correcting gate set by leav-
ing only errors up to a constant order k, i.e., in any given
instance σ there will be error mitigating gates (P1, P2, . . .)
associated with at most k of the two-qubit gates. A straight-
forward extension would be to encompass the initialization
and measurement phases too in order to adapt to corre-
lated errors occurring there, but for our numerical simu-
lations, we focus on noise associated with the two-qubit
operations.

Similarly, the loss function can be estimated by truncat-
ing the complete training set C. We numerically show that
the randomly selected subset (i.e., truncated training set)
T ⊆ C to a size that is comparable to c|SigE| for some
overhead constant c is adequate for the learning process.

After the truncations, the loss function becomes

Loss = 1
|T|

∑

R∈T

∣∣∣∣comEF(R, I)−
∑

σ∈SigE

q(σ )com(R, σ )
∣∣∣∣
2

.

(8)

Since the sizes of T and SigE scale polynomially with the
circuit size, we may evaluate comEF(R, I) for all R ∈ T

and com(R, σ ) for all R ∈ T and all σ ∈ SigE using clas-
sical and quantum hardware, respectively. Finally, we opti-
mize the truncated quasiprobability q(σ ) using the method
of least squares (see Appendix 1). Error-mitigated com-
putation with any circuit R is implemented using qopt(σ )

and the error mitigation overhead cost C =∑
σ |q(σ )|.

As previously mentioned, this can be implemented either
by estimating each com(R, σ ) for all σ ∈ SigE or by the
Monte Carlo summation over SigE.

Alternative ways to parameterize the quasiprobability
distribution will be discussed later.

A. Numerical simulations

We present demonstrations of the learning-based quan-
tum error mitigation using the significant-error approach
discussed above. We use exact classical simulations of
quantum computers with eight qubits and certain practi-
cally motivated correlated error models. Our simulations
are performed using QuESTlink—a MATHEMATICA library
that integrates the framework of the Quantum Exact Sim-
ulation Toolkit (QuEST) [31,32]. The circuits are n = 8
qubits wide and N = 8 layers deep for a total of 100 gates
in a pattern following Fig. 1(a), where all two-qubit gates
are controlled-NOT gates. See Appendix G for the detailed
circuit.

We test our error mitigation scheme with two distinct
correlated Pauli error models, one representing spatially
and the other temporally correlated noise. In both of these
models the local noise, i.e., the noise afflicting the two
qubits that are nominally involved in the gate, is homo-
geneous (dephasing or depolarizing) and is assumed to
be fully characterized by the experimentalist (either by
gate set tomography or preexisting knowledge). No such
assumption is made for the correlated part of the error
model. For further model details, see Appendix H.

The set of significant errors SigE is generated from the
knowledge of the local noise model and truncated to the
k = 1 order (|SigE| = 85 or 421 for the dephasing or depo-
larizing noise model, respectively). In the loss function we
use the deviation from the ideal expectation value of the
observable Z = diag(1,−1) on the first qubit. The distri-
bution qopt(σ ) is found as indicated above in this section
using |T| = 3|SigE| filtered randomly generated Clifford
circuits (see Appendix I), where we have chosen the Clif-
ford overhead constant c = 3 (see Appendix J for our
rationale).

For a full assessment of the approach, we generate 500
pseudorandom circuits that satisfy |〈Z1〉EF| > 0.3 to rep-
resent a variety of computational tasks. The restriction to
cases with substantial |〈Z1〉EF| focuses us on cases where
noise can be fully impactful; typically, the effect of noise
without mitigation is to decrease expected values and thus
if a randomly generated circuit happens to produce an
expected value close to zero even with zero noise then
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FIG. 2. Empirical cumulative distribution function of estimated �〈Z1〉 for 500 pseudorandom circuits with spatially correlated
dephasing noise (a) and spatially correlated depolarizing noise (b). Results for circuits without error mitigation (black), with tomo-
graphic error mitigation (TEM; red), and with learning-based error mitigation (LBEM; green) are presented. Additionally, we include
the results for learning-based error mitigation when the sample size M →∞ (dashed green).

the impact of noise will be minimal. This would obfuscate
the performance difference between schemes that provide
good mitigation and those that do not.

Each circuit is formed by drawing its single-qubit com-
puting gates randomly from a circular unitary ensem-
ble. Having performed the learning-based error mitigation
once, we apply the same optimized solution to all 500 cir-
cuit instances. For direct comparison to earlier work, we
execute each circuit M = 10 000 times, selecting an appro-
priate σ ∈ SigE probabilistically and simply recording a
+1 or−1 for the observable Z1 in each case [inverted if the
sign of q(σ ) is negative]. In this way we obtain 〈Z1〉EM as
a fairly sampled instance of the value that an experimen-
talist estimates after M samples. We record the absolute
deviation

�〈Z1〉 = |〈Z1〉EM − 〈Z1〉EF|
for that circuit, and repeat the process for alternative strate-
gies (tomographic mitigation and no mitigation), before
moving to the next of the 500 circuits. The results are
displayed in Figs. 2 and 3.

In the figures, the label “TEM” refers to the case where
the experimentalist has knowledge only of the local error
model (i.e., the errors that directly afflict the two qubits
nominally involved in a gate) and she samples according
to q(σ )ini for all σ ∈ SigE generated with k = 2 and with
the same sample size M .

The results presented here are for multiparameter learn-
ing, i.e., the elements q(σ ) are independently adjusted
during the learning process. In Appendix K we include
results where the optimization of q(σ ) is constrained to a
single adjustable parameter ε, which describes the severity
of the local noise. Then qopt(σ ) is completely defined just
by εopt. Note that εopt is not necessarily equal to the severity

of the local noise found from two-qubit tomography. From
the results we can see that such an optimization strategy
yields no better results than tomography-based error miti-
gation with q(σ )ini generated with k = 2, which is slightly
above its lower bound on performance set by tomography-
based error mitigation with q(σ )ini generated with k = 1.
However, for sufficiently random circuits and observables,
we can expect its performance to increase beyond that of
tomography-based error mitigation.

To further test our protocol, we apply it to a hardware
efficient variational circuit presented in Appendix L. The

D·Z1Ò
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FIG. 3. Empirical cumulative distribution function of esti-
mated �〈Z1〉 for 500 pseudorandom circuits with temporally
correlated dephasing noise. Results for circuits without error mit-
igation (black), with tomographic error mitigation (red), and with
learning-based error mitigation (green) are presented. Addition-
ally, we include the results for learning-based error mitigation
when the sample size M →∞ (dashed green).
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circuit has eight qubits and consists of eight layers of ran-
dom single-qubit rotations around the y axis of the Bloch
sphere and two-qubit controlled-Z gates and we wish to
extract an expectation value of σZ observable on the bot-
tom qubit, which we denote 〈Z1〉. Qubits are assumed to be
laid out in a cycle graph pattern such that a local two-qubit
gate may be applied between qubits i and i+ 1 mod n or
i− 1 mod n.

To this circuit we introduce an error model that more
closely mimics the errors of current NISQ devices com-
pared to the previous error model—single-qubit gates are
considered error-free compared to two-qubit gates, but are
followed by a small probability of relaxation γ , while
two-qubit gates are followed by an error channel

D(ε) = (1− ε)[1]+ ε
(

η

η + 1
D∗Ph +

1
η + 1

D∗Pol

)
, (9)

where

D∗Ph =
1
3

∑

μ∈{I ,Z}⊗2\I⊗2

[μ],

D∗Pol =
1
15

∑

μ∈{I ,X ,Y,Z}⊗2\I⊗2

[μ].

Here η is noise bias between reduced dephasing D∗Ph
and depolarizing channels D∗Pol with η = 0 describing a
fully depolarizing channel and η = ∞ describing a fully
dephasing channel. In our simulations we use η = 10,
ε = 0.01, and γ = 0.001.

Our protocol is particularly powerful with dealing with
correlated noise. To that extent, similarly to the previous
numerical study, we introduce additional cross-talk errors
that are often unnoticed in local tomographic noise charac-
terization processes. We simulate these errors by an error
channel D′ = D(ε/10) that occurs after each two-qubit
gate (and its respective error channel described above)
between each qubit that is involved and a qubit that is not
involved in the two-qubit gate, but is locally connected (we
refer the reader to Fig. 4 to see a full error cycle after each
controlled-Z gate; for completeness, we also show errors
after every single-qubit gate layer).

With this error model we generate a single eight-qubit
noisy circuit (Appendix L) that satisfies |〈Z1〉EF| > 0.5
to better quantify the effect of our error mitigation pro-
tocol. We perform the learning part of the protocol to
find to q(σ )opt for all σ ∈ SigE using the significant-error
approach with SigE being the set of Pauli two-qubit gates
after each controlled-Z gate truncated to k = 1 order. We
compare 104 error-mitigated expectation values of this
circuit to that of an expectation value 〈Z1〉EF from an error-
free circuit after sampling M = 106 shots according to
|q(σ )opt| for each estimation of the expectation value; see
Fig. 5. For direct comparison, we include nonmitigated

U g

U g

U g

U g

D

D'

D'

FIG. 4. Error model after each set of single-qubit gates (blue)
and two-qubit gates (black). Unitary single-qubit gates U may
be either single-qubit Clifford gates or arbitrary rotations around
the y axis of the Bloch sphere. Here γ (orange) describes the
amplitude damping channel, while D (red) describes a biased
dephasing and depolarizing channel [the channel is described in
the main text, Eq. (9)].

expectation values as well as expectation values from pre-
vious work on probabilistic error cancelation. In the figure,
the label “TEM” refers to the case where the experimental-
ist has knowledge only of the local error model and she
samples according to q(σ )ini for all σ ∈ SigE generated
with k = 2 and with the same sample size M . Because the
learning set is truncated to the k = 1 order and because
the circuit involves non-Pauli error processes (relaxation
gates), our protocol does not perfectly mitigate the error,
but has substantial improvement compared to the pre-
viously studied tomography-based error mitigation. Note
that the variance of the LBEM approach is less than the
variance of the TEM approach, while achieving closer
expectation values to the ideal value. This is because, dur-
ing the learning process, the algorithm finds the required
result dependencies on gate errors, and if some error does

EF No mitigation
TEM
LBEM

–0.54 –0.52 –0.50 – 0.48 –0.46
0

50

100

150

Fr
eq

ue
nc
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·Z1Ò
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FIG. 5. Expectation values of 〈Z1〉 obtained from a single
experiment repeated 10 000 times with no error mitigation (blue),
tomography-based error mitigation (green), and learning-based
error mitigation (orange). Dashed line indicates an error-free
expectation value 〈Z1〉EF. The solid lines describe analytically
derived probability distributions for each approach.
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not affect the computational result outcome (in this cir-
cuit some two-qubit gate errors do not affect the resulting
expectation value on the bottom qubit) then this error is not
corrected to reduce the total quasiprobability overhead and
hence the variance. This is another feature of our protocol.

B. Performance with a variational quantum algorithm

In order explore the efficacy of learning-based miti-
gation using the significant-error approach in a realistic
setting, we employ it in the context of a quantum vari-
ational algorithm (QVA). The goal of our QVA is to
find the ground-state energy of a closed chain of four
nearest-neighbor interacting spins specified by

H =
3∑

i=0

Aiσ
x
i + J

3∑

i=0

∑

p∈{x,y,z}
σ

p
i σ

p
(i+1) mod 4

with spins labeled 0 to 3. Here the σ are the Pauli
matrices. We choose J = 1 and randomly select the
A values. For the data presented in Fig. 6, we use
A = {0.270 777, 0.192 014, 0.080 280 3, 0.123 018}); how-
ever, other simulations had very similar results. This class
of system is believed to be classically hard to simulate as
the system size grows [33].

We use a four-qubit “ansatz circuit” within which there
are 28 gates: 8 two-qubit phase gates and 20 single-qubit
rotations (see Fig. 6). Each single-qubit gate is associ-
ated with a unique classical parameter (the rotation angle)
and the VQA proceeds by adjusting these parameters in
order to minimize the expected energy 〈H 〉 of the output
state, which is therefore the task’s cost function. The opti-
mization method is a canonical gradient descent using the
“parameter shift” method [34,35] to estimate the gradient
with respect to each parameter.

Note that while the circuit noise severity and system size
in this task are consistent with currently available quantum
hardware “in the cloud,” the very large number of cir-
cuit executions required for QVA execution make it cost
prohibitive to use such a device in this context; instead,
we employ the QuESTlink emulation environment that,
as mentioned earlier, has comprehensive and exact noise
modeling capabilities.

The noise model here is similar to the previous one
used in the above numerical analysis but instead uses
higher severity errors with ε = 0.04 and γ = 0.002 [see
Eq. (9) and Fig. 4]. Noise severity is increased in order to
achieve a higher contrast between the mitigation schemes
given the QVA’s remarkably high resistance against gen-
eral noise (as explored in, e.g., Ref. [36]). We execute our
learning-based QEM algorithm by optimizing quasiprob-
ability distributions of a significant-error ansatz for each
term in the Hamiltonian separately. In our learning process
SigE is truncated to the k = 1 order and we take c = 3.

100 200 300 400

–8

–7

–6

–5

–4

–3

300 450 400

–8.10

–8.00

–7.90

Ground state

First excited state

Without LBEM
With LBEM
Noiseless

VQA interation count

O
bs

er
ve

d 
en

er
gy

 o
f c

irc
ui

t o
ut

pu
t

1.5

–1.5

0.0

0 410

(a) Anstaz circuit (b) Parameter evolution

Performance of circuit(c) Iteration

0000

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

Ry

FIG. 6. Performance of the learning-based mitigation proto-
col in the context of a QVA. The ansatz circuit (a) includes 20
parameterized gates Ry(θi) = exp(−iθi/2σy) and the parameters
are adjusted with the goal of finding the ground state of a certain
frustrated spin system. The processor is a virtual noisy four-qubit
device, emulated by the QuEST. When the QVA employs simple
extrapolation-based mitigation [(c), orange line], the final energy
is above the ideal target by 5.6%. Instead using learning-based
error mitigation, the final energy is below the target by only
0.7%. The parameter evolution for the latter case is shown in
panel (b). Further details of the two protocols are provided in the
main text.

We would expect that the QVA with the use of learning-
based mitigation would far surpass the performance of
the same process without any mitigation; therefore, for
a more meaningful appraisal, we compare the learning-
based method with the most commonly used alternative
mitigation method, i.e., “extrapolation.” In this approach,
the desired observables are evaluated both with the low-
est possible error rates and with an intentionally boosted
error rate, so as to estimate the impact of noise and thus
to extrapolate to the zero-noise limit. For the present case,
we assume that the dominant noise type, i.e., the biased
mixedness increasing channel, is fully controllable by the
experimentalist in the sense that it can be increased to
any level with perfect accuracy. However the minor corre-
lated noise contribution is not under the experimentalist’s
control in this fashion, and is instead fixed.

The orange line in panel (c) of Fig. 6 shows how
the QVA performs when extrapolation-based mitigation is
replied upon. The method works reasonably well consid-
ering the very high noise burden; the expected value of
the output energy falls from an initial +4.58 to −7.57,
whereas the true ground-state energy of the target systems
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is −8.002. Thus, the extrapolation method has an abso-
lute energy defect of 3.4% of the spectral width. The blue
line indicates the performance when learning-based mit-
igation is activated at the point when the extrapolation
method becomes slowly evolving. The abrupt downward
shift is due to the change in the means of evaluating the
energy, i.e., even without changing the ansatz parame-
ters we immediately gain advantage from switching to the
energy estimation method. There is then a further period of
optimization; ultimately, the energy estimate drops slightly
below the true ground state to −8.09, so that the absolute
defect is 0.71% of the spectral range. The performance
in both methods is in the limit of high sampling, i.e., we
presume that the experimentalist is willing to dedicate suf-
ficient repetitions to the process to achieve these optimal
trajectories.

It is notable that, although the dominant noise compo-
nent can be perfectly adjusted for extrapolation (an ideal-
ization that favors that technique), and the nonadjustable
component is an order of magnitude smaller, nevertheless
the ultimate output of the QVA when using learning-based
mitigation is nearly 5 times superior to the extrapolation
protocol (achieving a defect of only 0.71% rather than
3.4%).

VIII. PRODUCT-FORM ANSATZ APPROACH

Another practical approach to implement the learning-
based error mitigation protocol is by considering an error
ansatz whose distribution admits a product form described
below.

We denote the quasiprobability of each Pauli gate Pi ∈
SigE as qi, and we shall optimize qi in the learning process.
According to the product-form ansatz, we have

comEM(R, I) =
∑

b

qbcom(R, Pb), (10)

where b = (b1, b2, . . . , b|SigE|) is a binary vector, and bi =
0, 1 denotes that the ith Pauli gate Pi ∈ SigE is off or on.
Here,

qb =
|SigE|∏

i=1

[biqi + (1− bi)(1− qi)] (11)

is the quasiprobability distribution of the Pauli gate config-
uration

Pb =
|SigE|∏

i=1

Pbi
i . (12)

We note that we have used PP′ = (P1P′1, P2P′2, P3P′3, . . .)
to denote the product of two Pauli strings, and Pj P′j is a
Pauli operator up to a phase that can be ignored. In this
approach we always have

∑
b qb = 1.

TABLE I. Error rate parameter ε′ used for various size circuits.
Circuit sizes of n qubits and N layers are represented in shorthand
notation as n× N .

Circuit size ε′ Circuit size ε′

5× 5–8× 8 1 15× 15–16× 16 1.2
9× 9–12× 12 1.1 19× 19–20× 20 1.3

Details for evaluating and minimizing the loss function,
as well as learning rates used for different size circuits, can
be found in Appendix M.

A. Numerical simulations

We demonstrate the product-form ansatz approach by
numerically simulating various size noisy quantum circuits
with the same layout as in Appendix G. We take the error
model to be a spatially correlated depolarizing error model,
introduced in Sec. VII. That is, for each two-qubit gate on
qubits i and i+ 1, the error rate of the two-qubit depo-
larizing channel on qubits i and i+ 1 is ε = 2ε′/Nn for
an n-qubit, N -layer circuit, where ε′ is given in Table I.
To add spatially correlated noise, we also apply two-qubit
depolarizing channels on qubits i− 1 mod n and i as well
as qubits i+ 1 and i+ 2 mod n with the error rate ε/10.

To show the effect of error mitigation, we test the com-
putation accuracy before and after error mitigation using
random unitary single-qubit gates. The results are shown in
Fig. 7. Because simulating quantum circuits with general
single-qubit unitaries is costly, we only benchmark circuits
with the size up to eight qubits with eight layers. Note that
in these simulations we do not require the pseudorandom
circuits to satisfy some value of |〈Z1〉EF|.

B. Average error rescaling factor

To numerically demonstrate the effect of error mitigation
for larger circuits (up to 20 qubits), we test the computation
accuracy before and after error mitigation using configura-
tions of Clifford computing gates, such that the circuit can
be efficiently simulated using a classical computer. We use
the average error rescaling factor to quantify the effect of
error mitigation, which is defined as

r =
〈 |comEM(R, I)− comEF(R, I)|
|com(R, I)− comEF(R, I)|

〉
. (13)

The error rescaling factor as a function of the circuit size
is plotted in Fig. 8. We find that the error rescaling fac-
tor does not increase with the circuit size when the size is
larger than nine qubits, indicating the efficient scalability
of our protocol. The remaining error after error mitiga-
tion is mainly due to the statistical fluctuations caused
by a finite number of samples in the learning and error
mitigation stages.
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FIG. 7. Empirical cumulative distribution function of estimated�〈Z1〉 = |〈Z1〉 − 〈Z1〉EF| for 500 configurations of randomly gener-
ated computing gates R. Each computing gate is uniformly sampled from the single-qubit unitary group according to the Haar measure.
For each computing-gate configuration, M = 10 000 random configurations of error-correcting gates P are generated to evaluate the
error-mitigated result. In the inset in (d), we show 〈Z1〉 of 100 configurations for the eight-qubit circuit. Error bars represent estimated
standard errors.

IX. VARIATIONAL DISTRIBUTION AND MONTE
CARLO EVALUATION

In addition to the summation and product-form ansatz of
the Pauli error model described above we can potentially
use variational functions such as the restricted Boltzmann
machine to tackle error models with unknown features
[37]. The restricted Boltzmann machine [29] can effi-
ciently express the distribution in a large state space, which
can represent the complex-valued wavefunction by using
complex weights [30]. The quasiprobability distribution is
real valued in our case.

In general, we can express the ansatz in the form
q(P) = CB(P, λ)/A(λ), where C and λ are variational
parameters that are optimized in the learning process. The
function B(P, λ)must be computable on the classical com-
puter, and A(λ) =∑

P |B(P, λ)| is the normalization factor.

Even if we cannot compute A(λ), samples of the distri-
bution |B(P, λ)/A(λ)| can be efficiently generated using
the Metropolis method. The number C =∑

P |q(P)| is
the error mitigation overhead cost [7]. When we already
have the optimal parameters, we can implement the error-
mitigated computing by using the Monte Carlo summation
with samples of P generated according to the optimal dis-
tribution. The variance of the error-mitigated computing
is Var[ ˆcomEM] ≤ (1/M )|f |2maxC2, where M is the number
of samples and |f |max is the maximum value of |f (μ)|.
Here, we have assumed that the circuit only runs for once
(without repeating) for each sample of P.

The Monte Carlo method can also be used to compute
the loss function. The loss function is in the quadratic form
with respect to C. Therefore, it is straightforward to find
the optimal C given the value of λ. To find the optimal
λ, we usually need to evaluate the loss for different val-
ues of λ. Instead of generating samples for each value,
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FIG. 8. Average error rescaling factor for various circuit sizes.
The circuit size is equal to the number of qubits and layers
in the circuit. For each circuit layout, we randomly generate
1000 configurations of Clifford computing gates R. We choose
the configuration such that the error-free computation result is
nonzero. For each computing-gate configuration, M = 1 000 000
random configurations of error-correcting gates P are generated
to evaluate the error-mitigated result.

we can compute the loss for λ using samples generated
according to a different value λ′. In this way, we can reduce
the sampling cost in the learning process. Once the opti-
mal λ is found, we need to generate samples according
to the optimal λ in order to compute the optimal C. The
variance of the loss is Var[ ˆLoss] � (1/M )|f |4max(1+ C4 +
4C2), if samples are generated according to the same value
of λ.

The details of the Monte Carlo summation, including the
application in the significant-error approach, can be found
in Appendix N.

X. EXPERIMENTAL DEMONSTRATIONS

A. Two-qubit DQCp circuit

We demonstrate our learning-based QEM protocol on
three IBMQ machines, ibmq_5_yorktown, ibmq_ourense,

|0〉
Z

|0〉

H

H

Circuit for experimental demonstration

RP

H

Error-1

Error-2

Error-3

FIG. 9. Two-qubit DQCp circuit used in the experimental
demonstration of the learning-based quantum error mitigation
protocol.

and ibmq_santiago. On all three cases we observe an
improvement of the computation result when executing
the two-qubit deterministic quantum computation with
pure states (DQCp) circuit given in Fig. 9. Taking R =
e−iθZ/2 and P = I , the error-free result (which we take
to be the mean of Z of the upper qubit) is given by
comEF(e−iθZ/2, I) = cos(θ), as shown in Fig. 10.

To perform this demonstration, we simplify our pro-
tocol to reduce the amount of Pauli gates we introduce
in the circuit compared to the original protocol in which
layers of Pauli gates are being used (see Fig. 1). This is
done by assuming a Pauli error model and noting that all
Clifford gates map Pauli errors back to other Pauli errors.
Hence, we only need to introduce error correcting Pauli
gates before any non-Clifford gate (gate R in Fig. 9). In
our circuit only a single Pauli gate is inserted to correct
the error labeled Error-1, while errors labeled Error-2 and
Error-3 either do not impact the computational result or
act as a measurement error. The measurement errors can
be corrected by modifying the original formula of error
mitigation, Eq. (1).

For the two-qubit DQCp circuit, the computation result
with the error mitigation can be written as

comEM(R, I) =
∑

P=I ,X ,Y,Z

q(P)com(R, P)+ q0, (14)

where q0 is the term associated with the measurement
error. Suppose that the measurement error can be modeled

Ibmq_5_yorktown Ibmq_santiagoIbmq_ourense
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Error-free result
Raw result
Error-mitigated
result

(a) (b) (c) 

FIG. 10. Computation results of the two-qubit DQCp circuit, obtained from three different quantum hardware. Here 〈Z〉 =
com(e−iθZ/2, I) is the raw result without error mitigation and 〈Z〉 = comEM(e−iθZ/2, I) is the error-mitigated result.
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as follows: the measurement outcome is flipped with prob-
ability pμ for some correct output state |μ〉, where μ =
0, 1. According to this model, the mean value 〈Z〉c describ-
ing the correct measurement outcome and the mean value
〈Z〉e describing the erroneous measurement outcome have
a simple relation 〈Z〉c = (〈Z〉e + p0 − p1)/(1− p0 − p1).
Hence, the optimal value of q0 is given as (p0 − p1)/(1−
p0 − p1). We may include the factor 1/(1− p0 − p1) in the
quasiprobability distribution q(P), e.g., if the quasiproba-
bility distribution for correcting Error-1 is q′(P), we have
q(P) = q′(P)/(1− p0 − p1).

In the learning part of the algorithm, we run 24 different
circuits on each of the three IBMQ quantum machines to
evaluate com(Ci, I), where Ci is one of the 24 single-qubit
Clifford gates. By minimizing the loss function

Loss = 1
24

24∑

i=1

[∑

P

q(P)com(Ci, P)+ q0

− comEM(Ci, I)
]2

, (15)

we obtain optimal quasiprobability distribution q(P) and
optimal q0. We note that com(Ci, P) = com(CiP, I) and
that CiP is one of the 24 single-qubit Clifford gates;
therefore, all com(Ci, P) can be derived from the set
{com(Ci, I)}. Since the loss is a quadratic function, the
minimization is straightforward.

Next, we test our error mitigation protocol by tak-
ing R = e−iθZ/2, where θ = 2mπ/10 and m = 0, 1, . . . , 9.
The results are shown in Fig. 10. For each machine, we
implement 40 circuits to evaluate com(e−iθZ/2, P) with θ
taking ten different values, and P = I , X , Y, Z. We write
com(e−iθZ/2, I) to denote computation results without error
mitigation, which deviate from the error-free values due
to the quantum hardware being noisy. The error-mitigated
results are computed according to Eq. (14), in which we
take R = e−iθZ/2 and the optimal values of q(P) and q0
obtained by minimizing the loss function. It is clear that
the error mitigation reduces the computation error.

Potential causes of residual errors after error mitigation
are statistical fluctuations and non-Pauli errors. For each
circuit, we run 8192 shots to evaluate the mean value 〈Z〉.
Pauli twirling is not used in this experiment, i.e., gen-
eral errors are not converted into Pauli errors. Even then,
our error mitigation protocol can significantly improve
the computation result accuracy, which demonstrates the
robustness of the learning approach. We remark that error
mitigation of the two-qubit DQCp circuit has been demon-
strated in Ref. [9], in which gate set tomography is used to
work out the quasiprobability distribution. This tomogra-
phy of a two-qubit gate requires at least 256 circuits, while
in our approach only 24 circuits are used in the learning
part for determining the error mitigation parameters.

B. Variational quantum eigensolver

In addition to the two-qubit DQCp circuit, we also
experimentally demonstrate our learning-based quantum
error mitigation (LBEM) protocol by applying it to the
variational quantum eigensolver (VQE) algorithm. We
compute the ground-state energy of the H2 molecule
at different nuclear separations on IBMQ machine
ibmq_santiago with and without LBEM. The results are
shown in Fig. 11. We find that LBEM can significantly
improve the accuracy of VQE.

In this demonstration, we compute the ground-state
energy of H2 in the minimal basis (STO-3G basis), which
includes four spin orbitals (each atom contributes two spin
orbitals {1s↑, 1s↓}). The electronic wavefunction is pro-
jected onto these four spin orbitals, and then we use the
Jordan-Wigner transformation to map fermions to qubits.
The corresponding Hamiltonian of qubits reads

H = H1 + H2, (16)

where

H1 = h0I + h1Z0 + h2Z1 + h3Z2 + h4Z3

+ h5Z1Z0 + h6Z2Z0 + h7Z3Z0

+ h8Z2Z1 + h9Z3Z1 + h10Z3Z2 (17)

and

H2 = h11X3X2Y1Y0 + h12Y3Y2X1X0

+ h13X3Y2Y1X0 + h14Y3X2X1Y0. (18)

Here we have written H into two parts according to the
commutation relation between Pauli operators. Pauli oper-
ators in H1 (H2) commute with each other; therefore, they
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FIG. 11. Ground-state energy surface of H2 in the minimal
basis computed using the variational quantum eigensolver. The
blue solid line is computed using package Qiskit. Square and
triangular scatters represent results without and with the learning-
based quantum error mitigation computed on ibmq_santiago.
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FIG. 12. Circuit used in the error-mitigated variational quantum eigensolver. The gates Rx(φ) = e−iφX /2.

can be measured using the same circuit. We use Qiskit to
calculate the coefficients in Eqs. (17) and (18).

Similar to the two-qubit DQCp circuit, we imple-
ment the error-mitigated VQE by randomly inserting a
Pauli gate into the UCCSD-circuit (unitary coupled clus-
ter ansatz truncated to single and double excitations).
We directly adapt the simplified UCCSD circuit given in
Ref. [38], shown in Fig. 12(a), parameterized by only one
rotational angle of a single-qubit gate R = e−iθZ/2. The
Pauli gate P is inserted before the gate R. Without gates in
the dashed box, the circuit can be used to evaluate the mean
of H1, while gates in the dashed box effectively change the
measurement basis and transform H2 into

H ′2 = h11Z3Z1 + h12Z2Z0

+ h13Z3Z0 + h14Z2Z1. (19)

Then, we can use the circuit with gates in the dashed box
to evaluate the mean of H2.

There are ten nontrivial Pauli operators in H1 and four
Pauli operators in H2. We apply LBEM to each Pauli oper-
ator individually, i.e., com(R, P) is the mean of one Pauli
operator; hence, the error mitigation for one Pauli oper-
ator is the same as for the two-qubit DQCp circuit—the
error-mitigated computation result of the Pauli operator
is given by Eq. (14), and the loss function is given in
Eq. (15). At the learning stage, similarly, 24 Clifford gates
are implemented instead of the R gate for each one of the
two circuits, with and without gates in the dashed box in
Fig. 12. The data are used to obtain coefficients q(P) and
q0. We note that the coefficients are different for each Pauli
operator. To demonstrate the effect of LBEM, we take ten
different R gates, where each of them is the optimal gate
in VQE that minimizes the mean of the Hamiltonian for a
given nuclear separation; see Fig. 11.

XI. CONCLUSIONS

In this paper we present a novel way of mitigating quan-
tum errors based on the probabilistic error cancelation
technique. We introduce a new learning component of the
protocol that replaces the need of reconstructing an error

model in the experiment. The learning component exploits
the efficient simulatability of Clifford circuits and finds the
optimal quasiprobability distribution that then defines the
next step of probabilistic error cancelation. Numerically,
we have shown that the learning-based protocol can be
practically implemented for the circuit sizes comparable
to those currently run on NISQ-era quantum computers.
In the presence of correlated noise, it outperforms the
tomography-based protocol for which tomography on a
smaller subset of qubits is only available. We confirm that
our protocol maintains its high performance on real quan-
tum hardware by running multiple experiments on the IBM
quantum devices.

Different tactics may be employed for learning the opti-
mal quasiprobability distribution depending on the quan-
tum device at hand and the required computations. For
example, if one wants to evaluate multiple observables of
a computation, the learning process needs to include these
observables. Using fidelity as a cost function is also a valid
strategy, which is not difficult to estimate for Clifford cir-
cuits, and then the error-mitigated expectation value can
be estimated for any observable. Similarly, procedures for
estimating mean values of functions can be specifically tai-
lored, for example, in cases where modifying the circuit
between consecutive runs is difficult or expensive.

Possible extensions to this work include specifically
modifying the learning component of the protocol in cases
where some information about the noise model is given
or easily accessible, for example, a scenario where the
whole circuit undergoes an unknown global phase shift.
Another extension would be to sample Clifford circuits
respective to the unitary circuits they replace. This would
lead to a circuit-specific error mitigation. The same learn-
ing approach based on Clifford circuit sampling can also
be applied for finding the optimal physical parameters of a
quantum computing system.

There are of course a number of quantum error miti-
gation techniques that have already been proposed in the
literature. Each of the these protocols have their advan-
tages and disadvantages; in some cases our method rep-
resents an alternative and in other cases the methods can
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be concatenated. For example, given complete knowledge
of the noise processes in a quantum system, theoreti-
cally one can compensate perfectly for errors using the
quasiprobability error mitigation technique [6,7]. In the
previous literature (see Ref. [7]), the required decomposi-
tion formula is worked out using the gate set tomography,
which practically yields high performance only when the
error correlations are negligible. The present protocol is an
alternative where adaptive learning is shown to be capa-
ble of replacing the exhaustive tomography, achieving a
near-ideal outcome with a profoundly reduced cost.

Another common protocol of quantum error mitigation
is the noise extrapolation technique that can efficiently sup-
press the errors by boosting the noise and extrapolating
to the zero limit [5,6,8]. However, due to the discrepancy
between the fitting curve and the genuine curve of “compu-
tation result versus noise,” and the challenge of homoge-
neously boosting noise, practically speaking extrapolation
cannot be expected to perfectly compensate for errors [39].
Finally, error mitigation based on symmetries postselec-
tion can correct errors that violate such symmetries; it is a
powerful method where such symmetries exist [14,15].

One day, when we use a quantum computer to solve
some meaningful practical problems, we may need to com-
bine different error mitigation protocols in order to achieve
the required accuracy. The learning-based approach is flex-
ible and can be used as a framework of error mitigation that
serves the purpose of integrating different protocols. For
example, the learning-based approach can be applied to
noise extrapolation, e.g., use the loss function to determine
how to choose the fitting curve and how to boost the noise.
We can combine noise extrapolation, postprocessing based
on symmetries, and quasiprobability decomposition tech-
niques, and optimize the overall error mitigation strategy
by again using the loss function. In this way, advantages of
all the mentioned protocols may be exploited.

Overall, our protocol paves a new way of implementing
NISQ-era quantum error mitigation and is especially suit-
able for remote users without any access to the information
about the noise model. It is intuitively simple and can be
readily implemented on current quantum computers.
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Note added.—Shortly after the original version of this
work was posted online, a related work was posted by P.
Czarnik et al. [40]. They exploit “near-Clifford” circuits
to obtain an error-mitigated estimator of some observable

for a circuit of interest. Both papers reveal the power of
Clifford variants in error mitigation; however, the meth-
ods differ fundamentally in the ways the error mitigation
is applied and the noise assumptions made, and in the
necessity of non-Clifford gates in the learning part of the
algorithm.

APPENDIX A: THE FORMALISM OF QUANTUM
CIRCUITS WITH A FRAME

We consider a circuit with n qubits and N layers of frame
gates between the qubit initialization and measurement.
All qubits are initialized in the state |0〉 at the beginning
and measured in the Z basis at the end. Each layer of frame
gates is formed by multiqubit Clifford gates, as shown in
Fig. 1(a). Single-qubit unitary gates are between frame
operations (including the qubit initialization, frame gates,
and measurement), and we call them computing gates.
The frame operations are fixed, but computing gates are
treated as variables. For the error mitigation, single-qubit
Pauli gates are introduced before and after each computing
gate, as shown in Fig. 1(b). We call these Pauli gates error
mitigating gates, which are also variables.

1. Notation

We use R ≡ (R1, R2, . . . , Rn(N+1)) and P ≡ (P1, P2, . . . ,
P2n(N+1)) to denote the computing gate sequence and
error mitigating gate sequence, respectively. By P = I we
denote that all error mitigating gates are identity gates.

We use μk = 0, 1 to denote the measurement outcome
of the kth qubit. We use μ ≡ (μ1,μ2, . . . ,μn) to denote
the binary vector that represents the outcome of all qubits.
The task is to compute the mean value of a function f (μ).

We use com(R, P) to denote the mean value of the func-
tion f (μ) given the gate sequences R and P. When the
entire computing is error-free, comEF(R, P) is the value of
com(R, P).

We use q(P) to denote a quasiprobability function, and
the error-mitigated computing result is

comEM(R, I) ≡
∑

P

q(P)com(R, P). (A1)

The error function is

Error(R) ≡ |comEM(R, I)− comEF(R, I)|. (A2)

The loss function of the computing error is

Loss ≡ 1
|T|

∑

R∈T
Error(R)2, (A3)

where T is a set of computing gate sequences.
The training set T is a subset of Clifford gate
sequences, i.e., T ⊆ C ≡ {R | all Rj are Clifford}. We use
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U ≡ {R | all Rj are unitary} to denote the set of unitary
gate sequences; then T ⊆ C ⊂ U.

2. Quantum formalism

We use ρEF
i ≡ |0〉〈0|⊗n to denote the error-free initial

state. We use [U]• ≡ U • U† to denote the completely pos-
itive map of the unitary operator U. If frame gates are
error-free, the overall map of the j th-layer frame gates
is GEF

j ≡ [Gj ], where Gj is an n-qubit Clifford gate, as
shown in Fig. 1. We use EEF

μ ≡
⊗n

m=1 |μm〉〈μm| to denote
the error-free positive operator-valued measure (POVM)
operator of the measurement outcome μ.

In our theoretical analysis, we assume that all single-
qubit unitary gates are error-free. The overall map of
the j th-layer computing gates is Rj ≡ [

⊗n
m=1 R(j−1)n+m].

Similarly, the overall map of the j th-layer error mitigat-
ing gates is Pj ≡ [

⊗n
m=1 P(j−1)n+m]. Both Rj and Pj are

error-free. Then, the error-free computing result is [see
Fig. 13(a)]

comEF(R, P)

= Tr
[

EEF
f

( N+1∏

j=1

GEF
j P2jRjP2j−1

)
(ρEF

i )

]
, (A4)

where

EEF
f ≡

∑

μ

f (μ)EEF
μ , (A5)

GEF
N+1 = [1S] is the identity map, and 1S is the identity

operator of n qubits. Here, Rj and Pj depend on R and
P, respectively.

In order to describe temporally correlated errors, we
introduce the environment in addition to the system (i.e.,

(a)

(b)

Error-free computation

Computation with correlated errors

S

E

S

ρEF
i EEF

f

Ef

Gef

G

P

ρ
i

×N

PP P

P P P P

I I I I I I

×N

R R

RR

FIG. 13. The computing without and with errors. From left to
right, R = R1,R2, . . . ,RN+1, P = P1,P2, . . . ,P2N+2, GEF =
GEF

1 ,GEF
2 , . . . ,GEF

N , and G = G1,G2, . . . ,GN . Here I = [1E] is
the identity map on the environment; S denotes system and E
denotes environment.

n qubits in the circuit). We use ρi to denote the initial state
of the system and the environment. We use Gj to denote
the actual map acting on both the system and the environ-
ment for the j th-layer frame gates. We use Eμ to denote
the actual POVM operator of the system and the envi-
ronment corresponding to the measurement outcome μ.
We define R′j ≡ Rj ⊗ [1E] and P ′j ≡ Pj ⊗ [1E], where
1E is the identity operator of the environment. Then, the
computing result with errors is [see Fig. 13(b)]

com(R, P)

= Tr
[

Ef

( N+1∏

j=1

GjP ′2jR′jP ′2j−1

)
(ρi)

]
, (A6)

where

Ef ≡
∑

μ

f (μ)Eμ, (A7)

and GN+1 = [1S]⊗ [1E] is the identity map on both the
system and the environment.

3. Tensor-product representation of quantum circuits

Let {|l〉} be the orthonormal basis of the Hilbert space.
The trace of a map M reads

Tr(M) ≡
∑

l,l′
Tr[|l′〉〈l|M(|l〉〈l′|)]. (A8)

We can express the identity map as

[1](•) =
∑

l,l′
|l〉〈l′|Tr(|l′〉〈l|•). (A9)

For two arbitrary maps M1 and M2, we have

Tr(M2M1)

= Tr(M2[1]M1)

=
∑

l1,l′1,l2,l′2

Tr[|l′1〉〈l1|M2(|l2〉〈l′2|)]

× Tr[|l′2〉〈l2|M1(|l1〉〈l′1|)]
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=
∑

l1,l′1,l2,l′2

Tr[|l′2〉〈l2| ⊗ |l′1〉〈l1|M1

⊗M2(|l1〉〈l′1| ⊗ |l2〉〈l′2|)]
=

∑

l1,l′1,l2,l′2

Tr[|l′2〉〈l2| ⊗ |l′1〉〈l1|S1,2M2

⊗M1(|l2〉〈l′2| ⊗ |l1〉〈l′1|)]
= Tr(S1,2M2 ⊗M1), (A10)

where S1,2 is the swap map on two systems defined by

S1,2(•) ≡
∑

l1,l′1,l2,l′2

|l1〉〈l′1| ⊗ |l2〉〈l′2|

× Tr(|l′2〉〈l2| ⊗ |l′1〉〈l1|•). (A11)

Similarly, for a product of M maps, we have

Tr(MM · · ·M2M1)

= Tr(SM−1,MMM ⊗MM−1 · · ·M1)

= Tr(SM−2,M−1SM−1,MMM

⊗MM−1 ⊗MM−2 · · ·M1)

= · · ·
= Tr(SMM ⊗ · · · ⊗M2 ⊗M1), (A12)

where S ≡ S1,2S2,3 · · ·SM−1,M . Here, we label the Hilbert
spaces with M , . . . , 2, 1 from left to right in the tensor
product.

a. Error-free frame-operation tensor

We introduce the map

GEF
0 (•) ≡ ρEF

i Tr(EEF
f •). (A13)

This map is linear, always Hermitian preserving, trace pre-
serving if and only if EEF

f = 1, completely positive if and
only if EEF

f ≥ 0. For an arbitrary map M on the system,
we have

Tr(MGEF
0 ) =

∑

μ,μ′
Tr[|μ〉〈μ′|MGEF

0 (|μ′〉〈μ|)]

= Tr[EEF
f M(ρEF

i )]. (A14)

We define the error-free frame-operation tensor as

FEF ≡ GEF
N ⊗ · · · ⊗ GEF

1 ⊗ GEF
0 , (A15)

which is a map on N + 1 systems. Similarly, we define

R ≡ RN+1 ⊗ · · · ⊗R2 ⊗R1,

PL ≡ P2N+1 ⊗ · · · ⊗ P3 ⊗ P1,

PR ≡ P2N ⊗ · · · ⊗ P2 ⊗ P2N+2.

(a) Error-free frame-operation tensor

Erroneous frame-operation tensor(b)

ρEF
i

EEF
f

S

S

S

GEF

GEF

GEF

P

P

P

P

P

P

P

P
S

Swap

Ef

G

ρ
i

G

G

S

S

S

S

E

R

R

R

R

FEF

F

FIG. 14. The error-free frame-operation tensor FEF and
the erroneous frame-operation tensor F . The arrows
denote the direction of the time. Along the direction of
arrows, R = R1,R2, . . . ,RN+1, P = P1,P2, . . . ,P2N+2,
GEF = GEF

1 ,GEF
2 , . . . ,GEF

N , and G = G1,G2, . . . ,GN . Here S
denotes system and E denotes environment.

Let SS be the swap map on N + 1 systems. As shown in
Fig. 14(a), we have

comEF(R, P)

= Tr
[( N+1∏

j=1

GEF
j P2jRjP2j−1

)
GEF

0

]

= Tr(SSS−1
S PRSSRPLFEF)

= Tr(SSRPLFEFPR). (A16)

Here, we have used the fact that

S−1
S PRSS = P2N+2 ⊗ P2N ⊗ · · · ⊗ P2. (A17)
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b. Erroneous frame-operation tensor

Similar to the error-free case, we define

G0(•) = ρiTr(Ef •),
F ′ ≡ GN ⊗ · · · ⊗ G1 ⊗ G0,

R′ ≡ R′N+1 ⊗ · · · ⊗R′2 ⊗R′1,

P ′L ≡ P ′2N+1 ⊗ · · · ⊗ P ′3 ⊗ P ′1,

P ′R ≡ P ′2N ⊗ · · · ⊗ P ′2 ⊗ P ′2N+2.

Let SE be the swap map on N + 1 environments and S ′ =
SS ⊗ SE be the swap map on N + 1 system-environment
composite systems. Then,

com(R, P) = Tr(S ′R′P ′LF ′P ′R). (A18)

Because R′ = R⊗ [1E]⊗(N+1), P ′L = PL ⊗ [1E]⊗(N+1),
and P ′R = PR ⊗ [1E]⊗(N+1), we have

com(R, P) = Tr(SSRPLFPR), (A19)

where the erroneous frame-operation tensor, as shown in
Fig. 14(b), is defined as

F ≡ TrE(SEF ′). (A20)

APPENDIX B: EXISTENCE OF A SOLUTION

Using the tensor-product representation, the error-
mitigated computing result reads

comEM(R, I) = Tr(SSRFEM), (B1)

where the error-mitigated frame-operation tensor is

FEM =
∑

P

q(P)PLFPR. (B2)

It is straightforward to prove that the error-mitigated com-
puting is error-free, i.e.,

Error(R) = |comEM(R, I)− comEF(R, I)| = 0 (B3)

for all R ∈ U, if there exists a quasiprobability distribution
q(P) satisfying

∑

P

q(P)PLFPR = FEF. (B4)

To solve this equation, we introduce the Pauli trans-
fer matrix representation, i.e., express maps using Pauli
operators as the basis of the operator space.

Let τ be the Pauli operator of n(N + 1) qubits. The Pauli
transfer matrix of an n(N + 1)-qubit map M is

Mτ1,τ2 = 2−n(N+1)Tr[τ1M(τ2)]. (B5)

Using Pauli transfer matrices, the equation becomes

∑

P,τ2,τ3

q(P)PL;τ1,τ2F τ2,τ3PR;τ3,τ4 = FEF
τ1,τ4 . (B6)

The Pauli transfer matrix of a Pauli gate is always diagonal,
i.e., PL(R);τ1,τ2 = δτ1,τ2PL(R);τ1,τ1 , where PL(R);τ1,τ1 = ±1.
Therefore, we can rewrite the equation as

∑

P

q(P)PL;τ1,τ1F τ1,τ4PR;τ4,τ4 = FEF
τ1,τ4 . (B7)

If F τ1,τ4 is nonzero for every nonzero element FEF
τ1,τ4 , we

have
∑

P

q(P)PL;τ1,τ1PR;τ4,τ4 = FEF
τ1,τ4/F τ1,τ4 . (B8)

For the 42n(N+1) error mitigating gate sequences P, the
corresponding Pauli transfer matrices PL ⊗ PR are lin-
early independent. Therefore, the solution of the equation
always exists.

One can check that Pauli transfer matrices of Pauli gates
are linearly independent diagonal matrices by computing
Pauli transfer matrices of single-qubit Pauli gates. The
Pauli transfer matrices of multiqubit Pauli gates are tensor
products of single-qubit matrices.

APPENDIX C: INFORMATION COMPLETENESS

We have proven the existence of a quasiprobability
distribution q(P) satisfying

Loss =
∑

R∈T
Error(R)2 = 0. (C1)

The training set T is information complete if Error(R) = 0
for all R ∈ U when q(P) is a solution of Loss = 0.

The set T = C containing all Clifford gate sequences is
information complete. We only need to consider a subset
of C, which is B = {R | Rj ∈ B1} ⊂ C, where B1 is a set
of ten single-qubit Clifford gates

B1 = {I , X , Y, Z, (I + iX )/
√

2,

(I + iY)/
√

2, (I + iZ)/
√

2, (Y + Z)/
√

2,

(Z + X )/
√

2, (X + Y)/
√

2}. (C2)

The maps of these ten Clifford gates are linearly inde-
pendent. An arbitrary single-qubit unitary map [R] can be
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decomposed as

[R] =
∑

R′∈B1

αR,R′[R′]. (C3)

Accordingly,

R =
∑

R′∈B
αR,R′R′, (C4)

where αR,R′ =
∏n(N+1)

j=1 αRj ,R′j .
When T = C, Loss = 0 if and only if Error(R) = 0 for

all R ∈ C, which means that comEM(R, I) = comEF(R, I)
for all R ∈ B. Then, we have

Error(R) =
∣∣∣∣
∑

R′∈B
αR,R′[comEM(R′, I)− comEF(R′, I)]

∣∣∣∣

= 0 (C5)

for all R ∈ U. Therefore, T = C and T = B are both
information complete.

APPENDIX D: FIDELITY MEASUREMENT

The Pauli group of n qubits is

Pn ≡ {±1,±i} × {I , X , Y, Z}⊗n. (D1)

The stabilizer group is a subgroup of the Pauli group,
which reads

S ≡ 〈s1, s2, . . . , sn〉 =
{ n∏

i=1

sbi
i

}
, (D2)

where si = s†
i ∈ Pn are n independent operators, [si, sj ] =

0 for all i and j , and bi = 0, 1 are binary numbers.
The stabilizer state |ψS〉 of the stabilizer group S is the

common eigenstate of all generators with the eigenvalue
+1, i.e., si|ψS〉 = |ψS〉. The density matrix of the state can
be written as

ρS = |ψS〉〈ψS| =
∏

i

1S + si

2
= 1

2n

∑

g∈S

g. (D3)

For a state ρ, the fidelity in the stabilizer state is

〈ψS|ρ|ψS〉 = Tr(ρSρ) = 1
2n

∑

g∈S

Tr(gρ). (D4)

APPENDIX E: PAULI TWIRLING AND ERROR
MODEL

We decompose error mitigating gates into Pauli twirling
gates and error-correcting gates, i.e.,

PL = Pc
LP t

L, (E1)

PR = P t
RPc

R, (E2)

where Pauli twirling gates are

P t
L ≡ P t

G ⊗ P t
ρ , (E3)

P t
R ≡ (GEF−1P t

GGEF)⊗ P t
E , (E4)

and error-correcting gates are

Pc
L ≡ Pc

G ⊗ Pc
ρ , (E5)

Pc
R ≡ [1S]⊗N ⊗ Pc

E . (E6)

Here, the total frame gate is

GEF ≡ GEF
N ⊗ · · · ⊗ GEF

1 . (E7)

We define

P t ≡ P t
E ⊗ P t

G ⊗ P t
ρ ,

Pc ≡ Pc
E ⊗ Pc

G ⊗ Pc
ρ , (E8)

which are n(N + 2)-qubit Pauli gates. We use

σ ≡ σ2N+2 ⊗ σ2N+1 ⊗ · · · ⊗ σ3 ⊗ σ1 (E9)

to denote an n(N + 2)-qubit Pauli operator, where the σj
are n-qubit Pauli operators. The Pauli twirling gates are
selected from the set

Twirling

≡ {I , Z}⊗n ⊗ {I , X , Y, Z}⊗nN ⊗ {I , Z}⊗n, (E10)

and the error-correcting gates are selected from the set

Errors

≡ {I , X }⊗n ⊗ {I , X , Y, Z}⊗nN ⊗ {I , X }⊗n, (E11)

where I , X , Y, Z are single-qubit Pauli operators. Then,
P t ∈ {[σ ] | σ ∈ Twirling} and Pc ∈ {[σ ] | σ ∈ Errors}.

To implement the Pauli twirling, we take q(P) =
qc(Pc)/4n(N+1), i.e., P t is uniformly distributed. Then, we
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have
∑

P

q(P)PLFPR

=
∑

Pc∈{[σ ]|σ∈Errors}
qc(Pc)Pc

LFpePc
R, (E12)

where the Pauli error frame-operation tensor reads

Fpe = 1
4n(N+1)

∑

P t∈{[σ ]|σ∈Twirling}
P t

LFP t
R

=
∑

Pe∈{[σ ]|σ∈Errors}
p(Pe)Pe

LFEFPe
R. (E13)

Here, we have assumed that the measurement is balanced
(see Sec. 1). See Sec. 2 for the proof. The Pauli errors are
denoted by

Pe ≡ Pe
E ⊗ Pe

G ⊗ Pe
ρ , (E14)

Pe
L ≡ Pe

G ⊗ Pe
ρ , (E15)

Pe
R ≡ [1S]⊗N ⊗ Pe

E; (E16)

p(Pe) ≥ 0 is the probability of the error and∑
Pe∈{[σ ]|σ∈Errors} p(Pe) = 1.

1. Balanced measurement

We use Xb =
⊗n

m=1 X bm to denote an n-qubit Pauli
operator, where b = (b1, b2, . . . , bn) is a binary vector. The
balanced measurement is defined as a measurement that
satisfies Eμ⊕b = [Xb ⊗ 1E](Eμ), where μ⊕ b = (μ1 +
b1,μ2 + b2, . . . ,μn + bn) mod 2.

For a balanced measurement, we have Eμ = [Xμ ⊗
1E](E0), where 0 = (0, 0, . . . , 0). Because

∑
μ Eμ =∑

μ[Xμ ⊗ 1E](E0) = 1S ⊗ 1E , E0 satisfies TrS(E0) = 1E .
Under the condition that Pauli gates are error-free, an

arbitrary raw measurement with POVM operators {Eraw
μ }

can be converted into a balanced measurement by ran-
domly applying the gate Xb before the measurement and
recording the outcome, taking into account the applied
gate, i.e., record the outcome as μ if the raw measurement
outcome is μ⊕ b. As a result, the POVM operator of the
effective measurement is Eμ = 2−n ∑

b[Xb ⊗ 1E](Eraw
μ⊕b).

One can find that {Eμ} is a balanced measurement.

2. Pauli error model

In this section we prove Eq. (E13).
Let ρi =

∑
a,b |a〉〈b| ⊗ ρE;a,b be the initial state,

where a = (a1, a2, . . . , an) is a binary vector and |b〉 =

Xb|0〉⊗n =⊗n
m=1 |bm〉. Here, ρE;a,b are matrices acting on

the Hilbert space of the environment and satisfy ρ†
E;a,b =

ρE;b,a, ρE;b,b ≥ 0, and Tr(ρE) = 1, where the initial state of
the environment ρE =

∑
b ρE;b,b. By applying the twirling

gates, we get the effective initial state

ρeff =
(

[I ]+ [Z]
2

)⊗n

⊗ [1E](ρi)

=
∑

b

|b〉〈b| ⊗ ρE;b,b

=
∑

b

[Xb](ρEF
i )⊗ ρE;b,b, (E17)

where ρEF
i = |0〉〈0|.

For a balanced measurement {Eμ}, we have Ef =∑
μ f (μ)Eμ =

∑
μ f (μ)[Xμ ⊗ 1E](E0). Similar to the

state, we can express the POVM operator as E0 =∑
a,b |a〉〈b| ⊗ EE;a,b. Here, EE;a,b are matrices acting on

the Hilbert space of the environment and satisfy E†
E;a,b =

EE;b,a, EE;b,b ≥ 0, and EE =
∑

b EE;b,b = 1E . By applying
the twirling gates, we get the effective POVM operator

Eeff =
(

[I ]+ [Z]
2

)⊗n

⊗ [1E](Ef )

=
∑

μ

f (μ)[Xμ]
( ∑

b

|b〉〈b|
)
⊗ EE;b,b

=
∑

b

[Xb]
( ∑

μ

f (μ)|μ〉〈μ|
)
⊗ EE;b,b

=
∑

b

[Xb](EEF
f )⊗ EE;b,b. (E18)

For a gate Gj , because GEF
j is a unitary map, we can always

rewrite it in the form Gj = Nj (GEF
j ⊗ [1E]), where Nj is

the noise map acting on both the system and the environ-
ment, which is completely positive and trace preserving.
By applying the twirling gates, we get the effective gate

Geff;j = 1
4n

∑

σ∈{I ,X ,Y,Z}⊗n

([σ ]⊗ [1E])

× Gj (GEF−1
j [σ ]GEF

j ⊗ [1E])

= Neff;j (GEF
j ⊗ [1E]), (E19)

where the effective noise map

Neff;j = 1
4n

∑

σ∈{I ,X ,Y,Z}⊗n

([σ ]⊗ [1E])Nj ([σ ]⊗ [1E])

=
∑

σ

[σ ]⊗NE;j ,σ , (E20)
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the NE;j ,σ are completely positive maps acting on the
environment, and NE;j =

∑
σ NE;j ,σ is trace preserving.

To prove Eq. (E20), we consider a completely posi-
tive map acting on one qubit and an ancillary system A.
The map reads M =∑

K [K] and K =∑
P=I ,X ,Y,Z P ⊗ KP,

where {KP} are matrices acting on the ancillary system.
The effective map with the Pauli twirling reads

Meff = 1
4

∑

P=I ,X ,Y,Z

([P]⊗ [1A])M([P]⊗ [1A])

=
∑

K

∑

P

[P]⊗ [KP]

=
∑

P

[P]⊗MP, (E21)

where 1A is the identity operator of the ancillary sys-
tem and MP =

∑
K [KP] is a completely positive map

acting on the ancillary system. Because
∑

K K†K =∑
K

∑
P,P′ PP′ ⊗ K†

PKP′ , we have
∑

K
∑

P K†
PKP = 1

2 Trqubit

(
∑

K K†K). Therefore, if M is trace preserving,
∑

P MP
is also trace preserving. By applying this approach to
qubits one by one, we can obtain Eq. (E20).

Now, we can see that the frame-operation tensor with
the Pauli twirling is in the Pauli error form, as given in
Eq. (E13). For the Pauli error Pe = [σ ] = [Xb ⊗ σ2N+1 ⊗
· · · ⊗ σ3 ⊗ Xa], the corresponding error probability is

p([σ ])

= Tr(EE;b,bNE;N ,σ2N−1 · · ·NE;2,σ3NE;1,σ1ρE;a,a). (E22)

We have p([σ ]) ≥ 0, because ρE;a,a and EE;b,b are positive,
and the NE;j ,σ are completely positive. We also have

∑

[σ ]|σ∈Errors

p([σ ]) = Tr(EENE;N · · ·NE;2NE;1ρE)

= 1, (E23)

because ρE is normalized, EE is identity, and the NE;j are
trace preserving.

APPENDIX F: EXAMPLE OF SigE GENERATION

Let us start with the set of all possible circuit variations
S = {σ } described by the pattern of Pauli errors σ = σ1 ⊗
σ3 ⊗ · · · ⊗ σ2N+1 ⊗ σ2N+2 = (σ1, σ2, . . . , σ2N+2), i.e., S =
{(I⊗n, I⊗n, . . . , I⊗n), (I⊗n, I⊗n, . . . , I⊗n−1 ⊗ X ), . . . , (X ⊗n,
Z⊗n, . . . , X ⊗n), . . .}. Assume the gate set tomography per-
fectly identifies or we have preexisting knowledge of the
local two-qubit depolarizing noise after each application

of a two-qubit gate,

DPol = (1− ε)[1]+ ε

15

∑

μ∈{I ,X ,Y,Z}⊗2\I⊗2

[μ] (F1)

with some severity ε ∈ [0, 15/16]. Inverting this map
yields

D−1
Pol = η1[1]+ η2

∑

μ∈{I ,X ,Y,Z}⊗2\I⊗2

[μ], (F2)

where η1 = 1+ 15ε(15− 16ε)−1, η2 = −ε(15− 16ε)−1,
and |η1| > |η2| (note that, for ε = 15/16, the map is not
invertible). In the error-mitigated computation according
to this error model, after each two-qubit gate in the circuit,
we either apply [1] with probability |η1|/γ or each [μ] ∈
{I , X , Y, Z}⊗2 \ I⊗2 with probability |η2|/γ in each run
of the circuit, with γ = |η1| + 15|η2| being the overhead
factor.

Now consider that we have P noisy two-qubit gates in
the circuit. In the error-mitigated computation we can also
sample circuits according to their quasiprobability distri-
bution. We have |ηP

1 |/γ P chance to run a circuit variation
σ = (I⊗n, I⊗n, . . . , I⊗n); |ηP−1

1 η2|/γ P chance to run a cir-
cuit with some [μ] applied after one of the two-qubit
gates, but nowhere else, e.g., σ = (I⊗n, I⊗n, . . . , I⊗n−1 ⊗
X , I⊗n); |ηP−2

1 η2
2|/γ P chance to apply some [μ] only after

two two-qubit gates, but nowhere else, etc. In this example,
these are the variations of the circuit with nonzero initial
quasiprobability q(σ )ini 
= 0 and they do not necessarily
form the full set S. The first step in the SigE construc-
tion filters out all other variations for which q(σ )ini = 0.
For example, σ = (I⊗n−1 ⊗ X , I⊗n, . . . , I⊗n, I⊗n), because
there is a nonidentity gate applied after assumed perfect
initialization.

The second step truncates the set SigE by excluding
variations with the lowest chance of being selected when
randomly picking one of the circuit variations. For exam-
ple, the circuit with σ2j+1 = Z⊗n for all j has an order con-
stant k = P, there are nonidentity Pauli gate/s directly after
all P two-qubit gates, and all circuits with that order con-
stant have a probability |ηP

2 |/γ P of being randomly chosen.
In this step we exclude all circuit variations with lowest
probabilities up to some order constant k = z, meaning
that all variations in SigE will have at least probability
|ηP−z

1 ηz
2|/γ P of being implemented. In our simulations we

have set k = 1.
In this way we neglect the lowest chance variations of

the circuit in the optimization stage of the protocol, and by
doing that we limit the number of quasiprobabilities that
we need to optimize to a polynomially scaling number with
the circuit size.

APPENDIX G: CIRCUIT LAYOUT

See Fig. 15 for the circuit layout used in our simulations.
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FIG. 15. Eight-qubit wide and eight-layer deep circuit layout.
Gates U represent single-qubit unitary gates, and the two-qubit
gates are controlled-NOT gates. For circuits in T, gates U are all
Clifford. The initial state is |0〉⊗n, and the measurement is done
in the Z basis on the bottom qubit.

APPENDIX H: ERROR MODEL FOR NUMERICAL
SIMULATIONS

All noisy quantum circuits share the same base error
model—every controlled-NOT gate with control qubit i and
target qubit i+ 1 is followed by a two-qubit channel D
acting on qubits i and i+ 1. Here D represents either the
two-qubit depolarizing channel

DPol = (1− ε)[1]+ ε

15

∑

μ∈{I ,X ,Y,Z}⊗2\I⊗2

[μ] (H1)

or the two-qubit dephasing channel

DPh = (1− ε)[1]+ ε
3

∑

μ∈{I ,Z}⊗2\I⊗2

[μ] (H2)

with the error rate ε = 0.01. To incorporate spatially or
temporally correlated errors, which are partially or fully
unnoticed in the two-qubit tomography, we modify the
base error model in two ways separately.

(A) After each channel Dx on qubits i and i+ 1, we
apply another two channels Dx with the same error rate ε
on qubits i+ 1 and i+ 2 mod n and qubits i− 1 mod n
and i. Here x may denote depolarizing x = Pol or dephas-
ing channel x = Ph. Note periodic boundary conditions,
i.e., qubit 1 can cross talk to qubit n. Here, the sequenc-
ing for a two-qubit gate layer is such that after each ideal
gate, the three Dx noise channels are implemented before
the next two-qubit ideal gate. Gates in the same layer
are implemented from the top one to the bottom one; see
Fig. 15.

(B) Every time the circuit is run, a single qubit i, follow-
ing a probability distribution Prob(i), has a chance to be
worse than other qubits. Meaning that every channel Dx,
the qubit i is part of, has an increased error rate ε∗ = gε.
In our numerical simulations we use a uniform distribution
Prob(i) and set g = 10.

APPENDIX I: SAMPLING OF CLIFFORD
CIRCUITS

We consider the case in which the circuit is used to mea-
sure the mean value of a physical quantity EEF

f , which is a
Pauli operator.

For a Clifford circuit, the final state is a stabilizer state,
i.e., the eigenstate of a set of Pauli operators. These Pauli
operators generate the stabilizer group. If EEF

f commutes
with all stabilizer operators, it is an element of the stabi-
lizer group up to a sign. In this case, the mean value of EEF

f

is either+1 or−1. If EEF
f anticommutes with any stabilizer

operator, the mean value of EEF
f is 0. Pauli errors in the

circuit do not change the stabilizer group but flip eigenval-
ues. Therefore, given a Pauli error configuration, the mean
value of EEF

f may be flipped from +1 to −1 or from −1 to
+1. If the error-free mean value is 0, Pauli errors do not
change it.

We consider the example with only one qubit and one
gate. The qubit is initialized in the state |0〉, a Clifford gate
R is performed on the qubit, and we measure EEF

f = Z. If
R = I , 〈Z〉 = 1; if R = H , 〈Z〉 = 0; and if R = X , 〈Z〉 =
−1. If there is an X error on the qubit, which occurs just
before the measurement, then: if R = I , 〈Z〉 = −1; if R =
H , 〈Z〉 = 0; and if R = X , 〈Z〉 = 1. If the X error occurs
with the probability p then: if R = I , 〈Z〉 = 1− 2p; if R =
H , 〈Z〉 = 0; and if R = X , 〈Z〉 = −(1− 2p).

We find that, given a Clifford circuit R, if comEF(R, I) =
0, we always have com(R, P) = 0 and comEM(R, I) = 0.
Therefore, such a circuit does not contribute to the loss
function. According to the importance sampling, when we
compute the loss function, we only need to sample Clif-
ford sequences R with comEF(R, I) = ±1. In the numerical
simulations, Clifford circuits are randomly generated and
selected in this way.

APPENDIX J: CLIFFORD CIRCUIT OVERHEAD

Here we present a numerical study showing the effect
of different Clifford overhead constants c for circuits up to
eight qubits using the significant-error approach (Fig. 16).
While no asymptotic scaling for c can be undeniably deter-
mined with respect to the circuit size, our data suggest
that, for small systems, a Clifford overhead constant c = 7
is sufficient to introduce only negligible errors due to the
truncation of the training set T. In our simulations we set
c = 3, since the error due to a finite sampling (shot noise)
dominates the error due to the size of the training set being
|T| = 3|SigE|.

APPENDIX K: SINGLE-PARAMETER
OPTIMIZATION

For single-parameter learning, we optimize q(σ )ini for
all σ ∈ SigE generated with k = 1, where the optimization
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FIG. 16. Normalized inner product qx.q20/(|qx||q20|) between
quasiprobability distributions that are obtained in the learning
part of the protocol, as described in Sec. VII, with Clifford over-
head constants c = x (qx) and c = 20 (q20). We plot the inner
product for different circuit sizes nxn, where n is both the number
of qubits and the number of layers of two-qubit gates. Here we
have chosen q20 as the reference for other distributions, assum-
ing that q20 deviates only marginally from q′opt, which is obtained
from the full training set T. This allows us to estimate the impact
on errors due to the truncation of the training set and, hence,
lets us choose a suitable Clifford overhead constant c for our
simulations.

is constrained to a single adjustable parameter. The sever-
ity of the local noise ε is chosen as the parameter and,
hence, the respective q(σ ) is then classically derived by
inverting the local noise channel (see Appendix F). Find-
ing qopt(σ ) is equivalent to finding εopt. The lower bound
on performance of single-parameter learning is then set by
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FIG. 17. Empirical cumulative distribution function of esti-
mated�〈Z1〉 for 500 pseudorandom circuits with spatially corre-
lated dephasing noise. Results for circuits without error mitiga-
tion (black), with tomographic error mitigation for k = 1 (dashed
red) and k = 2 (red), with a single-parameter learning-based
error mitigation (orange), and with a multiparameter learning-
based error mitigation (green) are presented.

tomography-based error mitigation with q(σ )ini generated
with k = 1, assuming that the optimizer can always find
the global minima.

As an example, here we present results for single-
parameter learning compared to multiparameter learning
for a seven-qubit, seven-depth circuit with spatially corre-
lated dephasing errors described in Appendices G and H;
see Fig. 17.

The numerical results indicate that single-parameter
learning just marginally outperforms its lower bound and
is comparable to a tomography-based error mitigation with
q(σ )ini generated with k = 2. Results for the other two
error models follow suit.

APPENDIX L: HARDWARE EFFICIENT
VARIATIONAL CIRCUIT

See Fig. 18 for the hardware efficient variational circuit
used in our numerical study.

APPENDIX M: EVALUATING AND MINIMIZING
THE LOSS FUNCTION FOR THE

PRODUCT-FORM ANSATZ

The loss function reads

Loss = 1
|T|

∑

R∈T
|comEM(R, I)− comEF(R, I)|2. (M1)

We define two functions, the quasiprobability function

V(q, b) =
|SigE|∏

i=1

[biqi + (1− bi)(1− qi)] (M2)

and the probability function

W(q, b) =
|SigE|∏

i=1

bi|qi| + (1− bi)|1− qi|
|qi| + |1− qi| . (M3)

Given a configuration of computing gates R, to evaluate
the error-mitigated result comEM(R, I), we randomly gen-
erate M configurations of error-correcting gates P. We can
label each of them with bk, where k = 1, 2, . . . , M , and
the corresponding configuration of error-correcting gates
is Pbk . These gate configurations are randomly generated
according to the distribution W(p , b). We always take p =
q in order to minimize the variance. Then, we compute

ĉomEM(R, I) = 1
M

M∑

k=1

V(q, bk)

W(p , bk)
fk, (M4)

where fk is the value of the observable obtained in one
shot of the circuit (R, Pbk ). To evaluate the loss function
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FIG. 18. Qubits follow the cycle graph pattern with the first qubit being adjacent to the last one. Gates are implemented from bottom
up if they are on the same vertical line. Black two-qubit gates are control-Z gates and single qubit Ry gates are rotations around the y
axis of the Bloch sphere. Here Mz denotes a single-qubit measurement along the z axis of the Bloch sphere.

Loss(q), we randomly generate N configurations of com-
puting gates R with a nonzero error-free computing result,
i.e., comEF(R, I) = ±1. We label these N configurations
with Rj , where j = 1, 2, . . . , N . Given the error-mitigated
result of each Rj , we compute

L̂oss = 1
N

N∑

j=1

|ĉomEM(Rj , I)− comEF(Rj , I)|2; (M5)

ĉomEM(R, I) and L̂oss are estimators of comEM(R, I) and
Loss, respectively.

To minimize the loss function, we compute the gradient
of the loss function with respect to the quasiprobability q,
i.e.,

∂L̂oss
∂qi

= 2
N

N∑

j=1

[ĉomEM(Rj , I)− comEF(Rj , I)]

× 1
M

M∑

k=1

∂V(q, bk)/∂qi

W(p , bk)
com(Rj , Pbk ). (M6)

TABLE II. Learning rate used for different size circuits. Cir-
cuit sizes of n qubits and N layers are represented in shorthand
notation as n× N .

Circuit size γ ′ Circuit size γ ′

5× 5 10−4 11× 11 7× 10−5

6× 6 10−4 12× 12 7× 10−5

7× 7 9× 10−5 15× 15 5× 10−5

8× 8 9× 10−5 16× 16 5× 10−5

9× 9 8× 10−5 19× 19 3× 10−5

10× 10 8× 10−5 20× 20 3× 10−5

Then, we update the quasiprobabilities according to

qi ← qi − γ ∂L̂oss
∂qi

, (M7)

where γ is the learning rate. To make sure that parameters
are updated at a reasonable level, a trick we implement for
gradient descent is to use a dynamical learning rate

γ = max{|qi − 1|}
max{|∂L̂oss/∂qi|}

γ ′, (M8)
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FIG. 19. Values of the loss function in the gradient descent.
We use n× N to denote an n-qubit, N -layer circuit. For each
circuit size, we randomly generate N = 1000 computing-gate
configurations R, and for each computing-gate configuration, we
randomly generate M = 1000 configurations of error-correcting
gates P. Note that the estimated cost function does not converge
to zero with a finite number of samples due to a biased estimator.
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and we take a fixed value of γ ′, which is listed in Table II.
The decreasing estimated loss functions are plotted in
Fig. 19.

APPENDIX N: MONTE CARLO SUMMATION

We consider two cases. In the first case, the quasiproba-
bility q(P) is nonzero only if P ∈ SigE, where SigE is the
set of significant Pauli errors including the trivial error I,
and the value of each q(P) is the variational parameter, i.e.,
the number of parameters is |SigE|. In the second case, the
quasiprobability is expressed as

q(P) = C
B(P, λ)

A(λ)
, (N1)

where B(P, λ) is a real-valued function with an explicit and
computable expression, and A(λ) =∑

P |B(P, λ)|. Here,
λ and C are variational parameters, in which λ is a set
of parameters that determine the distribution, and C =∑

P |q(P)| is a real number that represents the overhead
cost of the error mitigation.

Let f be the measurement outcome of the quantum
circuit specified by R and P, and its distribution is
Pro(f |R, P). Then, the computing result, i.e., the mean
value of f , reads

com(R, P) =
∑

f

Pro(f |R, P)f . (N2)

Similarly, the error-free computing result can be expressed
as

comEF(R, P) =
∑

f

ProEF(f |R, P)f . (N3)

In the Monte Carlo summation, the distribution Pro(f |R, P)
is realized using the quantum computer, and all other dis-
tributions, including ProEF(f |R, P), are realized on the
classical computer.

1. Significant-error parameterization

We consider the first case. The error-mitigated comput-
ing result reads

comEM(R, I) =
∑

P∈SigE

q(P)com(R, P). (N4)

Now, we consider the loss function, which is

Loss = 1
|T|

∑

R∈T
|comEM(R, I)− comEF(R, I)|2

=
∑

P,P′∈SigE

aP,P′q(P)q(P′)

− 2
∑

P∈SigE

bPq(P)+ c, (N5)

where

aP,P′ = 1
|T|

∑

R

com(R, P)com(R, P′), (N6)

bP = 1
|T|

∑

R

com(R, P)comEF(R, I), (N7)

c = 1
|T|

∑

R

comEF(R, I)2. (N8)

The optimal quasiprobability distribution is

qopt = a−1b, (N9)

where q is a |SigE|-dimensional column vector with the
elements q(P), a is a |SigE|-dimensional matrix with the
elements aP,P′ , and b is a |SigE|-dimensional column vec-
tor with the elements bP. The minimum value of the loss
function is

Lossmin = c− b
T
a−1b. (N10)

a. The computation of aP,P′

We have

aP,P′ = 1
|T|

∑

R,f ,f ′
Pro(f |R, P)Pro(f ′|R, P′)ff ′. (N11)

To compute aP,P′ , we generate independent and identically
distributed samples {(Ri, fi, f ′i )|i = 1, 2, . . . , Ns} according
to the distribution

Pro(R)Pro(f |R, P)Pro(f ′|R, P′),

where

Pro(R) = 1
|T| . (N12)

The estimator of aP,P′ is

âP,P′ = 1
Ns

Ns∑

i=1

fif ′i . (N13)

The variance of the estimator is

Var[âP,P′] = 1
Ns

Var[ff ′]. (N14)

Let |f |max be the maximum value of |f (μ)|; we have ff ′ ≤
|f |2max. Therefore,

Var[âP,P′] ≤ 1
Ns
|f |4max. (N15)
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b. The computation of bP

We have

bP = 1
|T|

∑

R,f ,f ′
Pro(f |R, P)ProEF(f ′|R, I)ff ′. (N16)

To compute bP, we generate independent and identically
distributed samples {(Ri, fi, f ′i )|i = 1, 2, . . . , Ns} according
to the distribution

Pro(R)Pro(f |R, P)ProEF(f ′|R, I).

The estimator of bP is

b̂P = 1
Ns

Ns∑

i=1

fif ′i . (N17)

The variance of the estimator is

Var[b̂P] = 1
Ns

Var[ff ′] ≤ 1
Ns
|f |4max. (N18)

c. The computation of c

We have

c = 1
|T|

∑

R,f ,f ′
ProEF(f |R, P)ProEF(f ′|R, I)ff ′. (N19)

To compute c, we generate independent and identically dis-
tributed samples {(Ri, fi, f ′i )|i = 1, 2, . . . , Ns} according to
the distribution

Pro(R)ProEF(f |R, P)ProEF(f ′|R, I).

The estimator of c is

ĉ = 1
Ns

Ns∑

i=1

fif ′i . (N20)

The variance of the estimator is

Var[ĉ] = 1
Ns

Var[ff ′] ≤ 1
Ns
|f |4max. (N21)

d. The computation of Lossmin

The estimator of Lossmin is

ˆLossmin = ĉ− b̂
T
â
−1

b̂. (N22)

The variance of the estimator is

Var[ ˆLossmin]

� E
[(
δc+ b̂

T
â
−1
δaâ
−1

b̂− 2b̂
T
â
−1
δb̂

)2]

� Var[ĉ]+
∑

P,P′
qopt(P)2Var[âP,P′]qopt(P′)2

+ 4
∑

P

qopt(P)2Var[b̂P]

≤ 1
Ns
|f |4max(1+ |qopt|4 + 4|qopt|2), (N23)

where δa = â− a, δb = b̂− b, δc = ĉ− c and |qopt|2 =∑
P qopt(P)2. The overhead cost of the error mitigation is

C =∑
P |qopt(P)|. Because C2 ≥ |qopt|2, we have

Var[ ˆLossmin] � 1
Ns
|f |4max(1+ C4 + 4C2). (N24)

e. The computation of comEM

Given the optimal quasiprobability distribution qopt(P),
we can implement error-mitigated computing accordingly.
Taking q(P) = qopt(P), we have

comEM(R, I)

=
∑

P,f

q(P)Pro(f |R, P)f

=
∑

P,f

|q(P)|
C

Pro(f |R, P)C
q(P)
|q(P)| f . (N25)

To compute comEM(R, I), we generate independent and
identically distributed samples {(Pi, fi)|i = 1, 2, . . . , Ns}
according to the distribution

Pro(P)Pro(f |R, P),

where

Pro(P) = |q(P)|
C

. (N26)

The estimator of comEM(R, I) is

ˆcomEM
(R, I) = 1

Ns

Ns∑

i=1

C
q(Pi)

|q(Pi)| fi. (N27)
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The variance of the estimator is

Var[ ˆcomEM
(R, I)] = 1

Ns
Var

[
C

q(P)
|q(P)| f

]

≤ 1
Ns
|f |2maxC2. (N28)

2. General parameterization

We consider the second case. The error-mitigated com-
puting result reads

comEM(R, I) =
∑

P

C
B(P, λ)

A(λ)
com(R, P). (N29)

Here, |B(P, λ)|/A(λ) is a normalized distribution. Because
the number of P grows exponentially with the number of
single-qubit Pauli gates in the circuit, it could be diffi-
cult to compute the normalization factor A(λ) given the
explicit expression of B(P, λ). Although we may not be
able to compute A(λ), we can sample the distribution
|B(P, λ)|/A(λ) using the Metropolis method.

Now, we consider the loss function, which depends on λ
and C, i.e.,

Loss(C, λ) = 1
|T|

∑

R∈T
|comEM(R, I)− comEF(R, I)|2

= aC2 − 2bC+ c, (N30)

where

a = 1
|T|

∑

R,P,P′

B(P, λ)B(P′, λ)
A(λ)2

× com(R, P)com(R, P′), (N31)

b = 1
|T|

∑

R,P

B(P, λ)
A(λ)

com(R, P)comEF(R, I). (N32)

Our purpose is to minimize the loss function and find the
optimal C and λ. Given the quadratic form of the loss
function, the optimal value of C is

Copt = b
a

, (N33)

and the corresponding minimum value of the loss function
is

Lossmin(λ) = c− b2

a
, (N34)

which is still a function of λ. We note that c− b2/a ≥ 0 is
always true.

We find that, in expressions of a and b, coefficients are
normalized distributions. Therefore, we can compute a and
b using the Monte Carlo summation and generate samples
using the Metropolis method.

a. Importance sampling

Usually, only a small subset of Pauli errors are domi-
nant. Accordingly, the optimal solution q(P) is only signif-
icant for a small subset of error mitigating gate sequences,
and q(P) is close to zero for most of P. Therefore, if
the variance of f is finite, generating samples according
to q(P) [i.e., B(P, λ)] is suboptimal for the Monte Carlo
summation.

We evaluate the loss function in order to find the opti-
mal distribution. Usually, we need to actively update the
distribution q(P) (i.e., λ and C). For efficiently utilizing
the samples, we need to use the samples generated accord-
ing to the distribution B(P, λ′), which is close to B(P, λ),
to compute a and b. Then, it is not necessary to generate
new samples every time when we update λ.

b. The computation of a

We have

a = 1
|T|

∑

R,P,P′,f ,f ′

B(P, λ)B(P′, λ)
A(λ)2

× Pro(f |R, P)Pro(f ′|R, P′)ff ′

= A(λ′)2

A(λ)2
∑

R,P,P′,f ,f ′

1
|T|
|B(P, λ′)B(P′, λ′)|

A(λ′)2

× Pro(f |R, P)Pro(f ′|R, P′)

× B(P, λ)B(P′, λ)
|B(P, λ′)B(P′, λ′)|ff

′

= A(λ′)2

A(λ)2
ã. (N35)

To compute ã, we generate independent and identically
distributed samples {(Ri, Pi, P′i, fi, f ′i )|i = 1, 2, . . . , Ns}
according to the distribution

Pro(R)Pro(P)Pro(P′)Pro(f |R, P)Pro(f ′|R, P′),

where

Pro(P) = |B(P, λ′)|
A(λ′)

. (N36)

The estimator of ã is

ˆ̃a = 1
Ns

Ns∑

i=1

B(Pi, λ)B(P′i, λ)
|B(Pi, λ′)B(P′i, λ′)|

fif ′i . (N37)
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The variance of the estimator is

Var[ ˆ̃a] = 1
Ns

Var
[

B(P, λ)B(P′, λ)
|B(P, λ′)B(P′, λ′)|ff

′
]

. (N38)

If λ′ = λ, we have

Var[ ˆ̃a] ≤ 1
Ns
|f |4max. (N39)

c. The computation of b

We have

b = 1
|T|

∑

R,P,f ,f ′

B(P, λ)
A(λ)

× Pro(f |R, P)ProEF(f ′|R, I)ff ′

= A(λ′)
A(λ)

∑

R,P,f ,f ′

1
|T|
|B(P, λ′)|

A(λ′)

× Pro(f |R, P)ProEF(f ′|R, I)

× B(P, λ)
|B(P, λ′)|ff

′

= A(λ′)
A(λ)

b̃. (N40)

To compute b̃, we generate independent and identically
distributed samples {(Ri, Pi, P′i, fi, f ′i )|i = 1, 2, . . . , Ns}
according to the distribution

Pro(R)Pro(P)Pro(f |R, P)ProEF(f ′|R, I).

The estimator of b̃ is

ˆ̃b = 1
Ns

Ns∑

i=1

B(Pi, λ)
|B(Pi, λ′)| fif

′
i . (N41)

The variance of the estimator is

Var[ ˆ̃b] = 1
Ns

Var
[

B(P, λ)
|B(P, λ′)|ff

′
]

. (N42)

If λ′ = λ, we have

Var[ ˆ̃b] ≤ 1
Ns
|f |4max. (N43)

d. The computation of Lossmin

We have

Lossmin(λ) = c− b2

a
= c− b̃2

ã
. (N44)

Therefore, the estimator of Lossmin(λ) is

ˆLossmin(λ) = ĉ−
ˆ̃b2

ˆ̃a
. (N45)

The variance of the estimator is

Var[ ˆLossmin(λ)]

� E
[(
δc+ b̃2

ã2 δã−
2b̃
ã
δb̃

)2]

� Var[c̃]+ b̃4

ã4 Var[ ˜̄a]+ 4b̃2

ã2 Var[ ˆ̃b], (N46)

where δã = ˆ̃a− ã and δb̃ = ˆ̃b− b̃. If λ′ = λ, we have
Copt = b̃/ã and

Var[ ˆLossmin(λ)] � 1
Ns
|f |4max(1+ C4

opt + 4C2
opt). (N47)

e. Computation of comEM

By minimizing Lossmin(λ) we can obtain the optimal
value of λ, which is λopt. Then, the optimal quasiprobabil-
ity distribution is given by λopt and the corresponding Copt,
and we can implement error-mitigated computing accord-
ingly. We remark that, to compute Copt = b/a, we need
to generate samples with λ′ = λ; then a = ã and b = b̃.
Taking λ = λopt and C = Copt, we have

comEM(R, I) =
∑

P,f

C
B(P, λ)

A(λ)
Pro(f |R, P)f

=
∑

P,f

|B(P, λ)|
A(λ)

Pro(f |R, P)

× C
B(P, λ)
|B(P, λ)| f . (N48)

To compute comEM(R, I), we generate independent and
identically distributed samples {(Pi, fi)|i = 1, 2, . . . , Ns}

040330-28



LEARNING-BASED QUANTUM ERROR MITIGATION PRX QUANTUM 2, 040330 (2021)

according to the distribution

Pro(P)Pro(f |R, P),

where

Pro(P) = |B(P, λ)|
A(λ)

. (N49)

The estimator of comEM(R, I) is

ˆcomEM
(R, I) = 1

Ns

Ns∑

i=1

C
B(Pi, λ)
|B(Pi, λ)| fi. (N50)

The variance of the estimator is

Var[ ˆcomEM
(R, I)] = 1

Ns
Var

[
C

B(P, λ)
|B(P, λ)| f

]

≤ 1
Ns
|f |2maxC2. (N51)
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