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Several quantum many-body models in one dimension possess exact solutions via the Bethe ansatz
method, which has been highly successful for understanding their behavior. Nevertheless, there remain
physical properties of such models for which analytic results are unavailable and which are also not well
described by approximate numerical methods. Preparing Bethe ansatz eigenstates directly on a quantum
computer would allow straightforward extraction of these quantities via measurement. We present a quan-
tum algorithm for preparing Bethe ansatz eigenstates of the spin-1/2 XXZ spin chain that correspond to
real-valued solutions of the Bethe equations. The algorithm is polynomial in the number of T gates and
the circuit depth, with modest constant prefactors. Although the algorithm is probabilistic, with a suc-
cess rate that decreases with increasing eigenstate energy, we employ amplitude amplification to boost the
success probability. The resource requirements for our approach are lower than for other state-of-the-art
quantum simulation algorithms for small error-corrected devices and thus may offer an alternative and
computationally less demanding demonstration of quantum advantage for physically relevant problems.
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I. INTRODUCTION

Quantum computers hold the promise of transformative
applications in a variety of fields, including cryptanalysis
[1], quantum chemistry [2,3], materials science [4,5], and,
potentially, combinatorial optimization [6,7]. To realize
the full potential of quantum computing, large-scale fault-
tolerant devices will ultimately be necessary. As these do
not yet exist, much recent work has studied possible near-
term applications in the present era of noisy intermediate-
scale quantum computers (NISQs) [8,9]. In this context,
a key question concerns the demonstration of “quantum
advantage”—that is, the ability to perform computations
that cannot be done efficiently with classical methods.
Recently, quantum advantage has been shown for a super-
conducting processor sampling random quantum circuits
[10] and photonic-based Gaussian boson sampling [11].
Although these are important achievements, the specific
tasks performed have not been closely related to the prac-
tical applications mentioned above but have essentially
been designed for the purpose of demonstrating advantage.
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Thus, the realization of quantum advantage for a problem
of practical interest remains open.

A question of increasing interest is what applications
become feasible with small-scale error-corrected devices,
i.e., in the intermediate era between NISQs and fault-
tolerant quantum computers with many logical qubits
and a high clock speed for non-Clifford gates. Recent
estimates suggest that algorithms that provide only a
quadratic speed-up over classical methods may have dif-
ficulty achieving quantum advantage on problem sizes
accessible with small devices [12–14]. The simulation of
quantum systems, on the other hand, can yield exponen-
tial improvement over conventional approaches. These still
require formidable resources, despite recent algorithmic
advances [15–18]. This motivates the search for physi-
cally interesting problems and algorithms that can lead to
quantum advantage with fewer resources in the near future.

We propose the study of Bethe ansatz (BA) states on a
quantum computer as a computationally less demanding
route to the demonstration of quantum advantage for prob-
lems relevant to physics, including quantum magnetism
[19,20], ultracold atoms [21], and unconventional super-
conductivity [22]. BA methods allow for deep insight into
the static and dynamic properties of these many-body sys-
tems and are able to explore not only ground states but
also interactions between complex collective excitations,
such as magnons, and the response to quantum quench
experiments [23].
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More specifically, the BA technique yields exact solu-
tions to a class of one-dimensional quantum many-body
models, including the spin-1/2 Heisenberg and Hubbard
models, among others [24–27]. The resulting wave func-
tions depend on algebraic equations that can be efficiently
solved classically. The exponential growth of the Hilbert
space with the system size L has historically limited the
direct computational studies of the eigenstates to small sys-
tems. Instead, various mathematical techniques have been
extensively developed to access physical quantities in the
thermodynamic limit L → ∞, bypassing the calculation of
the wave function itself. While many different quantities
can be determined, the difficulty of their calculation varies
widely. In particular, arbitrary-range and higher-order cor-
relation functions have been very challenging to access and
remain an active area of research [28–30]. Quantum com-
puters, however, can compute such correlation functions
[5,31] straightforwardly, thus suggesting the possibility of
quantum advantage for this task. The importance of higher-
order correlation functions for strongly correlated systems
has recently been emphasized [32]. The calculation of such
observables using a quantum computer in turn hinges on
the possibility of efficiently preparing the Bethe ansatz
states.

To this end, we demonstrate an efficient quantum
algorithm that can prepare a subset of the Bethe ansatz
eigenstates of the one-dimensional XXZ chain, a model
that is fundamental to the study of quantum magnetism.
Our algorithm uses the so-called coordinate Bethe ansatz
method and has polynomial scaling in the circuit depth
and T-gate complexity, along with low constant prefactors.
As we show with explicit gate counts for the correspond-
ing circuits, the approach scales to large enough systems
for the calculation of classically inaccessible quantities
in near-term error-corrected devices. While the algorithm
we present is probabilistic, we also show that amplitude
amplification can be used to increase the success rate [33].

Algorithms have been previously given (and also imple-
mented) that prepare exact eigenstates of quantum many-
body models [34–37]. However, these have been largely
limited to cases that are equivalent to noninteracting
fermions, for instance, under the Jordan-Wigner mapping.
In contrast, the XXZ model corresponds to an interact-
ing fermionic problem, which is computationally much
more difficult. We note that the possibility of constructing
circuits to diagonalize Bethe ansatz-solvable models and
measure challenging correlation functions has previously
been suggested, though without an indication of how this
could be done [34].

The importance of Bethe ansatz-solvable models for
benchmarking NISQ devices has been previously recog-
nized [37–39], as they provide exact values for quanti-
ties (such as the energy) to compare against the results
of noisy quantum computations. On the other hand, the
direct preparation of Bethe ansatz states has been relatively

unexplored. This question has recently been studied in
Ref. [40], which considered treating Bethe ansatz states
variationally (using the algebraic Bethe ansatz) and con-
cluded that the approach was not scalable. Furthermore,
that work did not make a connection to the possibility of
quantum advantage. Apart from direct preparation of Bethe
ansatz eigenstates, other works have considered varia-
tional approaches using generic ansatzes [38,39,41–43].
The comparison of the computational complexity of these
methods to that of the direct construction is an interesting
question for future studies, as are probabilistic algorithms
for preparing other strongly correlated states [44].

The paper is organized as follows. Section II introduces
the XXZ model and the elements of the Bethe ansatz solu-
tion needed for the construction of the algorithm. Section
III describes the Bethe ansatz state-preparation algorithm.
Section IV presents numerical results that validate the
method and studies its success probability. This section
also includes resource estimates for classically intractable
problem sizes. Section V describes the amplitude amplifi-
cation procedure for our algorithm and presents numerical
calculations that confirm its success. Section VI com-
pares our algorithm with conceptually simpler but less
efficient approaches to the same task, explicitly verify-
ing the enormous speed-up of our method. Section VII
argues that quantum advantage can be achieved with
Bethe-state preparation by comparison with classical com-
putational methods, and presents additional applications of
the algorithm. Finally, we conclude in Sec. VIII.

II. MODEL AND SOLUTION

We consider the one-dimensional spin-1/2 XXZ chain on
L sites with periodic boundary conditions, the Hamiltonian
of which is given by

H =
L−1∑

i=0

Jxy
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)+ JzSz
i Sz

i+1, (1)

with SαL ≡ Sα0 (α = x, y, z). Here, the Sαj are the spin oper-
ators with eigenvalues ±1/2. The exact solution of this
model via the Bethe ansatz method has been presented in
Ref. [45] and many introductions to the problem (in both
the coordinate and algebraic formulations) exist [46–50].
We follow the account of the Bethe ansatz method given
in Ref. [48]. The eigenstates of the above Hamiltonian are
given by

ψ(x1, . . . , xM ) =
∑

P

AP exp

⎡

⎣i
M∑

j =1

kPj xj

⎤

⎦ , (2)

where x1, . . . , xM label the positions of the M down spins
in the chain (the Hamiltonian conserves the z component
of the total spin, Sz

tot = ∑
i Sz

i ) and the momenta ki label
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the different states. The wave function of Eq. (2) gives
the amplitude for the M down spins to occur on the sites
xj = 0, . . . , L − 1. The summation here is over the M ! per-
mutations of the down-spin sites. These permutations arise
from the fact that, within Bethe ansatz models, scattering
processes exchange momenta between particles but do not
alter their magnitudes. The coefficients AP are related by

AP

AP′
= − 1 + ei(kPl+kP′l) − 2�eikPl

1 + ei(kPl+kP′l) − 2�eikP′l

≡ −e−i�(kPl,kP′l). (3)

To fix the coefficients, we take AI = 1, where I is the
identity permutation. Here, � = Jz/Jxy is the anisotropy
in the interactions and P and P′ are permutations that dif-
fer by a single transposition between adjacent elements,
P(l + 1) = P′(l) and P(l) = P′(l + 1). The momenta ki are
constrained by the quantization conditions,

Lki = 2π Ii +
∑

j

�(ki, kj ), (4)

where Ii is an integer (half-integer) for M odd (even). Phys-
ically, these constraints on ki arise from imposing periodic
boundary conditions on the model. Equations (3) and (4)
are a set of algebraic equations (the Bethe equations) for
the quantum numbers {ki}. In general, these equations
admit complex solutions but for the special case when all
{ki} are real, �(ki, kj ) is also real and is given by

�(ki, kj ) = 2 arctan

[
� sin(k−

ij /2)

� cos(k−
ij /2)− cos(k+

ij /2)

]
. (5)

where k±
ij = ki ± kj .

In the spirit of hybrid quantum-classical algorithms,
we solve the Bethe equations classically to obtain the
momenta {ki} and phases �(ki, kj ). These values are then
used as input to our quantum algorithm for generating
the corresponding eigenstate. Our algorithm allows for the
preparation of Bethe ansatz eigenstates for which the {ki}
are real, such that AP and eikPj xj amount to complex phases
applied to the second-quantized basis states of the system.

III. BETHE ANSATZ STATE-PREPARATION
ALGORITHM

The quantum algorithm for preparing a Bethe ansatz
state consists of several steps and is summarized in
Algorithm 1. The general structure of our approach
is based on the linear-combination-of-unitaries (LCU)
method (which also finds application in the Taylor-series
approach to Hamiltonian simulation) [51,52]. However,
a key difference is that our algorithm aims to generate
specific quantum states starting from a particular initial

Algorithm 1. Bethe-state preparation.

state, rather than compiling a generic unitary evolution
operator. In addition to the L qubits representing the sys-
tem, a register of M 2 ancilla qubits are used to label the
different permutation terms in Eq. (2). By preparing a
superposition of the allowed label values on these ancillas,
using these to apply controlled operations on the system,
and finally disentangling the label and system registers, we
perform the summation over all permutations present in
Eq. (2). This process is facilitated by introducing a sec-
ond ancillary register of M qubits that we call the “faucet
register,” along with one additional ancilla work qubit.
Thus, the algorithm requires a total of M 2 + M + 1 ancilla
qubits.

The algorithm begins by preparing the Dicke state on
L sites with M down spins, |DL,M 〉. Relabeling |↑〉 ≡ |0〉,
|↓〉 ≡ |1〉, |DL,M 〉 is the equal superposition (that is, with-
out relative phases) of all basis states on L qubits with
Hamming weight M . This state forms the underlying “can-
vas” on which the phases in Eq. (2) are applied. Dicke-state
preparation can be accomplished using the recent deter-
ministic algorithm of Ref. [53], for which the gate count
has been improved in Ref. [54]. This algorithm uses an
inductive method to prepare smaller Dicke states that are
subsequently combined to yield the desired one. We use
this algorithm in our explicit circuit constructions, though
any other deterministic method of preparing |DL,M 〉 would
also work.

As discussed above, the amplitudes that must be applied
to |DL,M 〉 to generate a Bethe ansatz state depend on the
permutations {P} of M objects. We use the permutation-
label register to create the different permutations and their
associated phases AP. Naively, one could use an inte-
ger encoded in a binary representation to label each of
the permutations. The difficulty with this approach is that
the number of permutations is M !, so that imprinting the
phases AP and eikPj xj onto |DL,M 〉 would require combi-
natorially many operations. This leads to circuit depths
and complexities that are superexponential in M , quickly
becoming unfeasible as M grows (we explore a concrete
realization of this approach in Sec. VI). To overcome
this fundamental limitation of this method and design
an efficient algorithm, we introduce a conceptually dis-
tinct approach for labeling the permutations. Rather than
assigning an arbitrary number to a given permutation, we
implement its explicit action on the string consisting of the
numbers 1, . . . , M . As described below, this allows for an
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efficient generation of the permutation labels, while also
generating the distinct AP simultaneously.

The permutation-label register consists of M subreg-
isters, each of which can store an integer value k ∈
{1, . . . , M }. To represent a valid permutation, the subreg-
isters must contain distinct values (for instance, |213〉 is
valid whereas |233〉 is not). We use a one-hot encoding
such that each subregister consists of M qubits and the
number k is represented by a 1 on the kth qubit and 0s
on the rest. Thus, for M = 3, the allowed states on each
subregister are |1〉 ≡ |001〉, |2〉 ≡ |010〉, and |3〉 ≡ |100〉.
This one-hot encoding requires M 2 qubits to represent the
complete label. The use of the one-hot encoding facilitates
a trade-off between time and space resources [15,55,56] by
reducing the number of controls required to implement the
necessary phase gates.

The goal of step 2 of Algorithm 1 is to create the state
(1/

√
M !)

∑
P AP |P〉 on the permutation-label register. The

phases AP are kicked back onto the system qubits, while
the |P〉 are used to apply the conditional gates needed in
step 3, as explained below. For clarity, we first describe
the construction of the equal superposition of all permu-
tation labels. We then show how to slightly modify this
procedure to simultaneously generate the phases AP for
all M ! permutations. We use an iterative method to con-
struct the permutation-label state, starting from the vacuum
state |00 . . . 0〉 on M 2 qubits. The complete label superpo-
sition state is built up sequentially from the first (rightmost)
subregister to the last (leftmost) using a series of exchange-
type gates. We describe the method inductively as follows.
The zeroth sublabel is prepared by setting the zeroth qubit
of the zeroth subregister to 1 (in the following, the index
k is enumerated starting from 0). Assume that the kth
sublabel (i.e., an equal superposition of permutations of
integers 1 through k + 1) is constructed on the k + 1 right-
most subregisters. Set the (k + 1)th qubit of the (k + 1)th
subregister to 1, thus introducing the next integer value
to be included in the permutation-label state. Perform the
exchange-type ASWAP gate [57,58],

A(θ ,φ) =

⎛

⎜⎝

1 0 0 0
0 cos(θ) eiφ sin(θ) 0
0 e−iφ sin(θ) − cos(θ) 0
0 0 0 1

⎞

⎟⎠ , (6)

between the (k + 1)th qubits of subregisters k + 1 and
k, with θ = arccos(1/

√
k + 2), φ = 0. This generates a

superposition state consisting of two sets of terms, those
in which the 1 remains in the (k + 1)th subregister and
those in which it is transferred to the kth. In the latter case,
the (k + 1)th subregister now contains all zeros, while the
kth has two qubits with 1, which is not valid. This is
fixed by applying controlled-SWAP gates between all qubits
l < k + 1 in subregisters k and k + 1, controlled on the
state of qubit k + 1 in subregister k. Taken together, these

operations produce a partial SWAP between subregisters
k + 1 and k,

|k + 1〉k+1 |m〉k → 1√
k + 2

|k + 1〉k+1 |m〉k

+
√

k + 1
k + 2

|m〉k+1 |k + 1〉k , (7)

where |i〉j is the one-hot encoded state for i on subregis-
ter j , and m < k by construction. One repeats this partial
swapping process, now between subregisters k and k − 1,
then between k − 1 and k − 2, and so on, until the last
register is swapped. By implementing the inductive pro-
cess up to the (M − 1)th subregister, the complete equally
weighted superposition of permutation labels is formed. As
an example, for M = 3, the above algorithm generates the
following sequence of state transformations:

|000〉 |000〉 |000〉 X−→ |000〉 |000〉 |001〉
X−→ |000〉 |010〉 |001〉
ASWAP−−−−→ 1√

2
|000〉 ( |010〉 |001〉 + |000〉 |011〉 )

CSWAPs−−−−→ 1√
2

|000〉 ( |010〉 |001〉 + |001〉 |010〉 )

X−→ 1√
2

|100〉 ( |010〉 |001〉 + |001〉 |010〉 )

ASWAP−−−−→ 1√
6

|100〉 |010〉 |001〉 + 1√
3

|000〉 |110〉 |001〉

+ 1√
6

|100〉 |001〉 |010〉 + 1√
3

|000〉 |101〉 |010〉

CSWAPs−−−−→ 1√
6

|100〉 |010〉 |001〉 + 1√
3

|010〉 |100〉 |001〉

+ 1√
6

|100〉 |001〉 |010〉 + 1√
3

|001〉 |100〉 |010〉

ASWAP−−−−→ 1√
6

|100〉 |010〉 |001〉 + 1√
6

|010〉 |100〉 |001〉

+ 1√
6

|010〉 |000〉 |101〉 + 1√
6

|100〉 |001〉 |010〉

+ 1√
6

|001〉 |100〉 |010〉 + 1√
6

|001〉 |000〉 |110〉

CSWAPs−−−−→ 1√
6

|100〉 |010〉 |001〉 + 1√
6

|010〉 |100〉 |001〉

+ 1√
6

|010〉 |001〉 |100〉 + 1√
6

|100〉 |001〉 |010〉

+ 1√
6

|001〉 |100〉 |010〉 + 1√
6

|001〉 |010〉 |100〉 .

(8)
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The explicit circuit for M = 3 is shown in Fig. 1, where
the gates inside the red dashed rectangles are excluded at
this point. Furthermore, gates acting on distinct qubits are
pushed to the left, thereby reducing the circuit depth. This
produces a different sequence of intermediate states than
above, but the final state is the same.

A slight modification of the above procedure allows one
to simultaneously apply the phases AP to the appropriate
terms in the superposition. After each partial subregis-
ter swap, one applies a controlled-phase gate with angle
�(ki, kj )+ π , where i, j are the integer values that are
swapped and where the additional phase π implements
the signature of the permutation (red dashed rectangles in
Fig. 1). Suppose, as in Eq. (7), that the value (k + 1) is
swapped to the right. Then the (k + 1)th qubit of the right
subregister can serve as the target qubit in the required
controlled phase. Since the left subregister can store any
value m < k + 1, a separate controlled phase is used for
each possibility, where the control bits are given by the
values m. This leads to a total of M 3/3 − M 2/2 + M/6
controlled-phase gates for this part of the algorithm.

By the end of the construction, the phases AP have
been applied to the corresponding permutation-label state,
having been successively built up from the elementary
transpositions of which they are composed. The explicit
circuit for M = 3 is displayed in Fig. 1, where now the
gates in the red dashed rectangles are included, in order to
produce the phases AP. At this point in the construction,
the total state of the physical system and the permutation
label is

(
1√
M !

∑

P

AP ⊗1
j =M |Pj 〉p

)
∣∣DL,M

〉
s , (9)

where |· · ·〉p is a state of the permutation-label qubits and
|· · ·〉s is a state of the system qubits.

In the next step, one applies the position-dependent
phase factors eikPj xj to the relevant basis states on the sys-
tem qubits (step 3 of Algorithm 1). To do this, we introduce
an efficient method that acts on all the

(
L
M

)
basis states

in
∣∣DL,M

〉
simultaneously, yielding an enormous speed-up

over classical approaches. The technique, which we call
the “faucet” method, is based on the observation that the
positions xj take integer values xj = 0, . . . , L − 1, so that
the total phase eikPj xj can be produced by xj repetitions of
the phase eikPj .

For this part of the algorithm, we use the M additional
ancilla qubits comprising the faucet register. Each of these
new qubits is initialized to |1〉. In the outer loop of the
faucet subroutine, one traverses the register of the system
qubits site by site from x = 0 to x = L − 1. At each site, if
it is occupied by a down spin (i.e., the bit is 1), one turns
off the next faucet ancilla qubit, |1〉 → |0〉. This is achieved
through a sequence of multicontrolled X gates, which are
controlled on the previous ancilla being in the state |0〉 and
the next one being in the state |1〉, along with the additional
control that the current system site is a |1〉. Since the mean-
ing of the “next faucet ancilla” at a given site depends on
the bit string, one must generically apply a multicontrolled
X gate for each ancilla at every step. We note that one can
decrease the number of gates for sites near the edges of
the chain. For instance, at site 2 at most two faucets could
have been turned off, so that the later ones do not need to
be checked.

Next, the phases eikPj (j = 1, . . . , M ) are applied to the
system qubits, each being controlled on the state of one of
the faucet ancillas. For the j th ancilla, this gate is also con-
trolled on the state of the permutation-label subregister j
(since the value of kPj is permutation dependent). By the

Rz Ry

Rz Ry

Rz Ry

Ry Rz

Ry Rz

Ry Rz

FIG. 1. The circuit to prepare the permutation-label ancilla state for M = 3. When the gates inside the red dashed rectangles are
excluded, the circuit realizes the equally weighted superposition encoding the permutations of three objects. With these gates included,
the circuit applies the additional permutation-dependent phases AP. The three subregisters are indicated by shading and the initial state
of each qubit is |0〉. The alternating CNOT gates interleaved with Ry and Rz rotations realize the ASWAP gates.
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FIG. 2. A schematic diagram illustrating the idea of the faucet
method. Phases eikPj are applied for each system qubit while
traversing the bit string. When a “1” is encountered, the next
faucet in the list is turned off, so that no more phases with the
given kPj value are applied.

end of the system bit string, all the faucet-register qubits
are in state |0〉. Thus, the subroutine can be compared to a
set of M running faucets (that correspond to applying the
phases eikPj ), which are turned off at the appropriate times
(upon encountering a “1” in the traversal of the system reg-
ister). This analogy is illustrated in Fig. 2. In total, this step
requires M 2L doubly controlled-phase gates and a num-
ber of Toffoli gates that scales as ML (as mentioned above,
some gates can be skipped near the edge of the system).
In our numerical implementation of the method, we intro-
duce additional work qubits to facilitate the construction of
these gates using chains of Toffolis [59].

After the relevant phases have been applied, it remains
to disentangle the system from the permutation label (the
entanglement having been generated during the faucet
method, since the phases there are permutation dependent).
This is accomplished by applying the inverse of the circuit
that generates the permutation-label superposition, without
the additional controlled-phase gates that are used to pro-
duce the AP phases. The fact that the phases AP and eikPj xj

have been applied to the initial Dicke state implies that the
permutation-label reversal will not completely disentan-
gle the system qubits from the permutation-label register.
However, it turns out that the |00 . . . 0〉 component of the
permutation state corresponds precisely with the occur-
rence of the target Bethe ansatz state on the system qubits.
That is, the full state vector takes the form

|ψ〉 = α|00 . . . 0〉p |ψB〉s + β|φj 〉, (10)

where |ψB〉s is the normalized target Bethe ansatz
state on the system qubits |φj 〉 is a junk state with
(|00 . . . 0〉〈00 . . . 0|p ⊗ 1s)|φj 〉 = 0. Thus, by measuring
the permutation-label qubits, the target Bethe ansatz state
is successfully prepared on the outcome |00 . . . 0〉. This
result is essentially that obtained from LCU methods [52],

though here we have the additional construction of AP dur-
ing the label-preparation step, which is not present in the
standard LCU. To illustrate the full algorithm, the com-
plete circuit to construct a BA eigenstate with L = 4, M =
2 is given in Appendix A. As discussed in our numerical
simulations below, the success probability |α|2 depends on
the system parameters and also varies between different
eigenstates. Thus, in general one must repeat the proce-
dure multiple times to obtain the correct state, which can
then be used to calculate physical quantities or in other
applications, as we discuss in Sec. VII. We also show in
Sec. V that amplitude amplification can be used to boost
the success rate, thereby reducing the overall resource
requirements.

IV. NUMERICAL SIMULATIONS

To calculate the momenta {ki} defining the Bethe eigen-
states, we solve the Bethe equations iteratively using the
approach presented in Ref. [48]. We then perform numer-
ical simulations of Algorithm 1 using the IBM QISKIT
library’s state-vector simulator [60]. These calculations
verify the correctness of our algorithm and reveal its
success probabilities for the sufficiently small systems
that can be studied on a classical computer. However,
we can also explicitly construct the circuits that would
need to be run for much larger instances, far beyond
what is classically tractable. The corresponding circuit
depths and gate counts in these cases indicate that our
algorithm is feasible for near-term error-corrected quan-
tum computers. We stress that our analysis does not rely
on asymptotic resource scaling arguments but, rather, pro-
vides exact gate counts, since the corresponding circuits
are precisely known. Although we do not compile our
algorithm down to an error-correcting code such as the
surface code, we estimate the required number of T gates
below.

In Fig. 3(a) we present the numerically calculated suc-
cess probability of the algorithm for preparing selected
eigenstates when L = 2M and M = 2, 3, 4, with Jxy = 1,
Jz = −1/2. The interaction strength in this case corre-
sponds to the critical regime of the ferromagnetic model.
We note the eigenstates included in Fig. 3 are not meant
to comprise the complete set of real-valued solutions but,
rather, are simply those for which we obtain numerical
solutions of the Bethe equations by using the algorithm
presented in Ref. [48]. Two general trends are apparent:
a significant suppression of the success rate with increas-
ing M and a more moderate suppression as a function of
the eigenstate energy, within each set of system parameters
L, M . The worst-case probabilities are roughly consistent
with 1/M !, although we have only limited values of M
to support this (larger M being outside of our compu-
tational resources for classical simulation). This value is
further supported by Fig. 3(b), which shows the success
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FIG. 3. (a) The success probabilities for the preparation of
selected eigenstates as a function of their energies, when L = 2M
and M = 2, 3, 4. (b) The success probabilities of selected eigen-
states for M = 3 and varying L. The Hamiltonian parameter
values are Jxy = 1 and Jz = −1/2.

probabilities for various eigenstates when M = 3 and for
different values of L, with the clear trend that increasing L
tends to flatten the success probability across the spectrum.
Although the low-energy states enjoy less of an advantage
over the higher-energy ones in this case, the lowest prob-
abilities are still around 1/M ! on average. However, the
behavior of the success rate changes significantly depend-
ing on the value of Jz. These effects are considered in
Appendix B.

These results suggest that one can go to very large
system sizes L while still preserving a reasonably large
success probability, if M is sufficiently small. We note
that the case of small M is particularly interesting for
physics applications in the ferromagnetic regime of the
model. In this case, the all-up state |0〉⊗L is a ground state
of the model, while small M states are low-lying excited
states of interacting magnons (spin waves). The ability to
study these states as a function of M , as enabled by our
algorithm, would yield deeper insight into the develop-
ment of strong correlations in these systems as the number
of interacting quasiparticles grows. While the ferromag-
netic regime is especially natural for our algorithm, we
note that interesting physics in the paramagnetic and anti-
ferromagnetic regimes can also be explored at small values
of M . These correspond to highly excited eigenstates,

which are relevant, for instance, in the study of quantum
thermalization [61,62].

For these applications (and others discussed below), it
appears feasible to access values of L and M that would not
be classically simulable (even by approximate methods),
while maintaining relatively modest resource requirements
for the algorithm. This is demonstrated in Fig. 4, which
provides circuit depths [Fig. 4(a)], Toffoli-gate counts
[Fig. 4(b)], controlled-phase gate counts [Fig. 4(c)], and
the number of qubits required [Fig. 4(d)] for the Bethe-
state-preparation algorithm. The linear scaling of all these
metrics in L is immediately apparent. The slopes of these
lines for the case M = 5 are (a) 39, (b) 11, (c) 25,
and (d) 1, respectively. The results for the number of
controlled-phases and qubits are in exact agreement with
the analytical results of Sec. III.

Apart from the asymptotic scaling behavior, the abso-
lute values of the circuit depths and gate counts are seen to
be very low, on the order of 103–104, even for large sys-
tems of L ∼ 100 sites. Furthermore, the total number of
qubits required (approximately 102) is also quite reason-
able for small error-corrected devices. In Fig. 5, we show
the total gate and measurement counts for the case M = 5
as L is varied. This indicates that the controlled-phase,
Ry , and Toffoli gates are the most prevalent non-Clifford
operations in the algorithm. To estimate the fault-tolerant
resources needed, we therefore convert the counts for these
gates into the corresponding numbers of T gates. Fol-
lowing Ref. [63], we assume a worst-case scenario for
the number of T gates needed to realize an arbitrary z
rotation to be given by 4 log2(1/ε)+ 11, where ε is the
rotation synthesis error [64]. Similarly, arbitrary y rotations
can be performed by conjugation with Clifford opera-
tions. As in Ref. [16], we replace each Toffoli gate with
two T gates [65]. For L = 100, M = 5, this leads to a
T count of approximately 6.2 × 105 for a single run of
the state-preparation algorithm, with ε = 10−10. Assum-
ing a worst-case success probability of 1/M !, approx-
imately 120 attempts would need to be performed on
average to correctly generate the target eigenstate. This
yields approximately 7.4 × 107 T gates overall, which
is comparable to the estimates for simulating the Hub-
bard model using the methods of Ref. [16]. We note that
the estimates in that work involve optimizing an error
budget between multiple sources (Trotterization, phase
estimation, and rotation synthesis) and do not appear to
include the cost of preparing a good initial state for the
phase estimation routine. Furthermore, the above estimate
for our algorithm assumes the seemingly worst-case sce-
nario in the number of repetitions (approximately M !),
whereas the results in Fig. 3 suggest that lower-energy
states require fewer repetitions in general. To reduce
the number of repetitions required for our algorithm,
we implement amplitude amplification in the following
section.
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FIG. 4. The Bethe-state-
preparation (a) circuit depth,
(b) number of Toffoli gates,
(c) number of controlled-phase
gates, and (d) number of qubits
versus the system size L, for
different numbers of down
spins M .

V. AMPLITUDE AMPLIFICATION

Amplitude amplification, a generalization of the well-
known Grover search algorithm, is a quantum subroutine
that can boost the probability of a desired measurement
outcome, leading in general to a square-root improvement
in the number of repetitions required for the success of a
probabilistic algorithm [33]. For our problem, we use B to
denote Algorithm 1 with the measurement step removed.
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FIG. 5. The Bethe-state-preparation gate and measurement
counts for M = 5 as a function of L.

Amplitude amplification defines an operator

Q = −BS0B−1SB, (11)

where SB changes the relative sign of the “good” states in
the Hilbert space, while S0 changes the relative sign of
the vacuum state |00 . . . 0〉. In the present case, the good
states are the components of the Bethe ansatz state, which
correspond to |00 . . . 0〉p on the permutation-label qubits.
SB can therefore be implemented using a OR circuit on
the permutation label, followed by Z on the work qubit
that stores the result, after which the OR is uncomputed.
In our numerical calculations of the success probability,
we use the ancilla-free implementation of OR in the stan-
dard QISKIT circuit library. The ancilla-free approach is
used here to decrease the number of qubits needed for
the simulation, allowing us to study larger system sizes.
Below, we examine an ancilla-based method for which the
gate counts at large sizes are reduced. To produce S0, we
use the same approach, with the OR circuit extended to
include the system qubits (we do not implement the −1
in Eq. (11), as it is an overall phase). We present numer-
ical results for amplitude amplification in Fig. 6(a). This
confirms the clear enhancement of the algorithm success
probability using this method. Although only one round of
amplification is applied here, the protocol can be repeated
in the standard way to further increase the success rate.
Applying this improvement to the resource estimate of the
previous section, the M = 5 worst-case eigenstates should
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cation (“AA”). In the former case, a single round of amplification
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without (solid lines) and with one round of amplitude amplifica-
tion (dashed lines). The inset shows the total number of qubits
without (solid) and with (dashed) amplitude amplification.

require on average
√

120 ≈ 11 repetitions of the algorithm
B to achieve success, leading to an overall T count of
approximately 4.1 × 106 (neglecting the costs of SB and
S0).

To estimate the resources needed for amplitude amplifi-
cation more precisely, we implement the multicontrolled
OR operation using elementary gates and ancillas [59].
The Toffoli count, controlled-phase count, and number of
qubits are shown in Fig. 6(b) for a single round of ampli-
fication when M = 5. Since the S0 reflection depends on
the state of both the system and the permutation label,
the implementation requires an additional L + M 2 − M
ancillas (we can reuse the M faucet ancillas for the amplifi-
cation). The additional gates required are dominated by the
cost of executing B three times. Although the total num-
ber of qubits is approximately doubled in this approach,

we note that it may be possible to reduce this number
by acting with the OR operation on only a subset of the
qubits that are nominally necessary to identify the state.
For example, although SB is an OR circuit acting on the
M 2 permutation-label qubits, in practice the computational
basis states appearing in the junk state |φj 〉 can be dis-
tinguished from |00 . . . 0〉p by only acting on a reduced
number of qubits. While the particular subset of qubits
needed will depend on the state under consideration, it is
possible to confirm the success of this approach by mea-
suring the energy or other quantities that can be compared
to exact analytic expressions.

We also implement a different version of amplitude
amplification, which is a modified form of the oblivious
amplitude amplification of Ref. [52]. Unfortunately, this
method leads to a reduced fidelity of the actually pre-
pared state with the exact target state, though in some
cases the overlap remains quite high (> 0.99). We attribute
this reduced fidelity to the nonunitarity of summing expo-
nentials with unit modulus, since |eia + eib| �= 1 in gen-
eral. We note, however, that nearly deterministic success
of the oblivious amplitude amplification procedure was
obtained for the application of Ref. [52] (simulation of
Hamiltonian dynamics with Taylor-series expansions). For
this reason, it is less clear how the approach will fare
for the Bethe-state-preparation problem at larger values
of M . In addition, further modification to the method
of Ref. [52] may ameliorate some of the difficulties
with applying it to Bethe-state preparation in its present
form.

VI. COMPARISON WITH ALTERNATIVE
ALGORITHMS

To highlight the advantages of Algorithm 1, we com-
pare it with conceptually simpler, but much less efficient,
methods of preparing Bethe ansatz states on a quantum
computer. First, one could imagine applying controlled-
phase gates directly to each term in the Dicke-state super-
position to generate the desired eigenstate. This approach
still requires permutation-label ancillas to generate the lin-
ear combination of phases needed in Eq. (2). However, it
has the seeming advantage of allowing one to combine the
phases AP and eikPj xj into a single controlled-phase rota-
tion, whereas the former term requires order M 3 and the
latter one order M 2 controlled phases to implement using
Algorithm 1. Nevertheless, it is clear that this benefit is
vastly outweighed by the large number of terms in the
superposition that must be separately addressed, M !

(
L
M

)
.

For the case L = 100, M = 5 this amounts to approxi-
mately 9.0 × 109 controlled phases, compared to the 2530
of Algorithm 1.

A more promising approach is to use the “faucet”
method of Algorithm 1 to handle the eikPj xj phases
whilestill applying the full AP in a single multicontrolled
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phase gate, rather than decomposing it into its elemen-
tary transpositions. This replaces the M !

(
L
M

)
dependence

above with M !LM . While the scaling is still inferior
to that of Algorithm 1 for large M , it is conceivable
that for small M this alternative method may be com-
petitive. In particular, one can replace the complicated
permutation label of Algorithm 1, which requires M 2

qubits to construct AP in terms of individual transposi-
tions, with a compressed label that simply assigns a num-
ber to each permutation. This approach uses significantly
fewer qubits, at the expense of requiring more controls
for the relevant phase gates. Since the permutation-label
construction still needs to be reversed to disentangle the
system from the ancillas, it is important that it can still
be executed in a unitary fashion. This in turn requires
an efficient method for generating an equal superposi-
tion of M ! states. We implement such states using the
prime factorization M ! = 2n23n3 · · · . We then construct
the permutation label as the tensor product of the binary
representation of 2n2 (using n2 qubits) and Wn states for
the odd prime factors. The equal superposition for the
binary part of the label is easily generated by apply-
ing Hadamard gates to the relevant qubits, while var-
ious efficient algorithms exist for Wn state preparation
[66–68]. We implement this algorithm numerically and
verify that it successfully prepares Bethe ansatz eigen-
states. Since the fundamental approach for creating the
linear combination of phases is the same between this
method and Algorithm 1, their success probabilities are
equal. Unfortunately, explicit construction of the circuits
for the alternative method indicates that the resource
requirements are significantly higher, even for small M .
This is shown in Fig. 7, which reveals that the number of
controlled-phase and Toffoli gates required for the alterna-
tive method vastly exceeds those of Algorithm 1, even for
M = 5.

It is also useful to compare Algorithm 1 with other more
standard techniques, such as adiabatic state preparation
[2,69,70]. As is well known, the evolution time to produce
a large overlap with the desired eigenstate is expected to
scale as the inverse square of the gap between the energy
of the given state and that of the next closest one. This
time can be short, for instance, in the ordered regime of
the XXZ chain, where the gap between the ground and
first excited state remains finite in the large system limit.
However, in the critical regime of the model, the spec-
trum is gapless and so the evolution time is expected to
diverge. Furthermore, even in the ordered regime, the spec-
trum at higher energies above the ground state generically
has dense regions, preventing an efficient preparation of
those eigenstates by the adiabatic approach. Our algorithm
does not suffer from such complications, as it implements
the exact analytic expression for the wave function, irre-
spective of the gap between the target eigenstate and the
other ones.
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FIG. 7. A comparison between Algorithm 1 and the alterna-
tive method of the number of (a) Toffoli and (b) controlled-phase
gates used, for M = 5.

VII. DISCUSSION

To achieve quantum advantage for a physically relevant
problem, it should be the case that no classical method can
deliver results of a comparable accuracy. Since the present
quantum algorithm exactly prepares eigenstates of the XXZ
chain, it is reasonable to compare it to the numerical exact
diagonalization of finite-size systems (i.e., using classi-
cal computers). In a recent study, a matrix-free approach
has been used to investigate Heisenberg spin chains up
to length L = 26 [71]. In this work, the memory require-
ments have been vastly reduced compared to conventional
methods, though the scaling remains exponential with the
system size. Specifically the Sz = 0 subspace (M = 13)
has been considered, for which the dimension is approx-
imately 107. In contrast, the L = 100, M = 5 subspace
is roughly seven times larger (dimension approximately
7.5 × 107). Although state vectors of this size can still be
stored in memory, we note that the computation time is
also exponential in the system size, ultimately limiting the
practicality of exact diagonalization.

In addition to numerically exact calculations, approxi-
mate tensor-network methods have been highly successful
for studying one-dimensional quantum many-body sys-
tems with the matrix product state (MPS) ansatz [72,73].
However, these approaches are best suited for states with
a relatively low amount of entanglement, such as gapped
ground states obeying an area law for the entanglement
entropy. This makes simulation of long-time dynamics
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challenging, due to the growth of entanglement from,
for instance, an initial product state. Our Bethe ansatz
algorithm can prepare eigenstates throughout the spectrum
at the same computational cost, including highly excited
states the entanglement entropy of which grows more
quickly than logarithmically, even in the small-M limit
[74]. This yields an advantage over MPS methods for large
systems when targeting these strongly entangled states. An
explicit link between the Bethe ansatz and MPS has been
developed in Refs. [75,76], which uses the algebraic Bethe
ansatz to produce exact tensor-network representations
for generic eigenstates. These networks have a PEPS-like
structure (but with fewer physical indices), which under-
scores the computational intractability of such states for
large systems.

In addition to computing arbitrary-range and higher-
order correlation functions that are inaccessible with tradi-
tional Bethe ansatz methods, our algorithm has a number
of other applications. Simulation of the real-time dynam-
ics of many-body systems is widely recognized as a task
allowing for quantum advantage. Such simulations often
take the form of quench experiments, for which the sys-
tem is initialized in an easy-to-prepare product state, then
allowed to evolve under the influence of an interact-
ing many-body Hamiltonian. Our algorithm would enable
interesting variations on this approach, for instance by ini-
tializing the system in an eigenstate of a given value of
the interaction strength, then subsequently evolving it with
a different value. The evolution here can be performed
using any of the known algorithms for quantum simulation,
whether by Trotterization [16,77,78], Taylor expansions
[52,79], or other approaches [51,80].

In a different direction, one could use our algorithm
as a starting point to explore integrability-breaking per-
turbations. Thus, we consider a Hamiltonian of the form
H = H0 + Hp , where H0 is solvable by the Bethe ansatz
and Hp includes perturbations that break the integrability
of the total Hamiltonian H (such as disorder in the cou-
pling strengths). In this case, the Bethe-state-preparation
algorithm is used to prepare an eigenstate of H0, which
then serves as an initial state for quantum annealing or
phase estimation on H. For sufficiently weak perturba-
tions, the overlap of this state with the corresponding exact
eigenstate of H should be much greater than that of a
mean-field or noninteracting trial state.

Although we focus on deploying our algorithm on
small error-corrected quantum computers, one may also
consider implementing it on present-day or near-term
NISQ devices. Many of the controlled-phase gates in
our algorithm involve repetitions of the same basic rota-
tion angles, of which there are only (M 2 + M )/2 distinct
values. This suggests replacing the exact values with vari-
ational parameters, similarly to Ref. [40]. The resulting
variational form can then be optimized under the cost func-
tion |E − EB|, where E is the energy calculated on the

quantum computer and EB is the exact value, known ana-
lytically from the Bethe ansatz solution. We note that the
present optimization problem should be significantly eas-
ier than that of a standard VQE, since the ideal values
of the rotation angles can serve as a good initial guess.
Updates to the parameters then serve to directly mitigate
systematic errors due to over- or under-rotation in the
controlled-phase gates.

VIII. CONCLUSIONS

We present a quantum algorithm for the efficient prepa-
ration of Bethe ansatz eigenstates of the XXZ model. To
our knowledge, this is the first quantum algorithm for the
direct preparation of eigenstates of an interacting many-
body problem. The circuit depth and gate counts of the
algorithm scale linearly in the system size, for a fixed
number of down spins. Our algorithm is feasible to per-
form on small error-corrected devices of order 100 qubits,
provided that the number of down spins is small. The
usefulness of the approach can be extended through ampli-
tude amplification. In particular, quantum advantage over
classical computational methods appears to be achievable,
with resource estimates that are comparable to the most
efficient known quantum simulation algorithms. Our work
suggests directions for future research, including the mod-
ification of the algorithm for the case of complex-valued
{ki}, and its generalization to other Bethe ansatz-solvable
models, such as the one-dimensional Hubbard model.
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APPENDIX A: FULL CIRCUIT FOR L = 4, M = 2

In Fig. 8, we present the full quantum circuit to prepare
a Bethe ansatz eigenstate with L = 4 and M = 2. We note
that the work qubit is not needed in the M = 2 case but we
include it here as a reminder that it is used to implement
multicontrolled gates for M > 2.

APPENDIX B: SUCCESS PROBABILITY FOR
DIFFERENT JZ

The success rate of the Bethe ansatz state preparation
changes qualitatively with both the sign of Jz and whether
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FIG. 8. The quantum circuit to prepare the Bethe ansatz eigenstate with L = 4, M = 2, k1 = 1.14676529, and k2 = 3.56562369.
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FIG. 9. The success probabilities for the preparation of
selected eigenstates as a function of their energies, for L = 12,
M = 3, Jxy = 1, with varying interaction strengths Jz .

it lies in the critical (|Jz| < 1) or noncritical (|Jz| ≥ 1)
regimes. These effects are illustrated in Fig. 9. Whereas
the ferromagnetic model in the critical regime has higher
success probabilities for lower-energy states, the antifer-
romagnetic case shows the opposite behavior. In fact, the
success probabilities for different states are exactly mir-
rored across the E = 0 axis. This is especially interesting
since the corresponding eigenstates at E = −Ei for the FM
case and E = Ei for the AFM one are different in general.
It is unclear at present why these distinct states should have
the same success probability. When Jz is outside the critical
regime, we find that the success probability can be lower
than the 1/M ! value (approximately 0.17 for M = 3) that
appears to bound the critical case.
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