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Quantum compiling, where a parameterized quantum circuit is trained to learn a target unitary, is an
important primitive for quantum computing that can be used as a subroutine to obtain optimal circuits or as
a tomographic tool to study the dynamics of an experimental system. While much attention has been paid
to quantum compiling on discrete-variable hardware, less has been paid to compiling in the continuous-
variable paradigm. Here we motivate several, closely related, short-depth continuous-variable algorithms
for quantum compilation. We analyze the trainability of our proposed cost functions and numerically
demonstrate our algorithms by learning arbitrary Gaussian operations and Kerr nonlinearities. We further
make connections between this framework and quantum learning theory in the continuous-variable setting
by deriving no-free-lunch theorems. These generalization bounds demonstrate a linear resource reduction
for learning Gaussian unitaries using entangled coherent-Fock states and an exponential resource reduction
for learning arbitrary unitaries using two-mode-squeezed states.
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I. INTRODUCTION

Progress in experimental implementations of quantum
optical neural networks [1–3] and extensions of quantum
machine learning frameworks to the continuous-variable
(CV) setting [4–6] indicate that quantum photonics is a
viable platform for near-term quantum algorithms. Vari-
ational quantum algorithms, where a problem-specific cost
function is evaluated on a quantum computer [7,8], while
a classical optimizer trains a parameterized quantum cir-
cuit to minimize this cost, have been implemented in
photonic systems. For instance, the variational quantum
eigensolver [9] and variational quantum unsampling [10],
i.e., partial characterization of a unitary operator, have
both been implemented on integrated photonic processors.
Beyond the fundamental physical advantages of photonic
systems, such as a well-characterized set of loss channels
and the possibility of room-temperature operation, there
are computational advantages to CV implementations of
variational quantum algorithms such as the existence of
efficient quantum error mitigation schemes [11–13].
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An important computational task that CV quantum pro-
cessors are well suited to is the variational compilation
[14–16] of CV unitaries. The task is to optimize a param-
eterized quantum circuit to learn a given target unitary.
The target unitary could take the form of a known gate
sequence that one seeks to compile into a shorter depth,
or more noise resistant, circuit. Hence, quantum compil-
ing could be used as a subroutine to reduce the resources
required to implement large-scale quantum algorithms.
Alternatively, the target unitary could be the unknown
dynamics of a quantum system. In this case, quantum
compilation plays a role analogous to, but potentially less
resource intensive than, a quantum sensing protocol [17] or
unitary process tomography [18,19]. Specifically, our CV
compiling algorithms make use of Gaussian measurements
and CV resources such as intensity and quadrature squeez-
ing, and so do not require preparation of exotic optimal
probe states as in an optimal quantum sensing protocol,
nor a large number of measured observables as in process
tomography. In this sense, CV compiling provides a new
tool for experimental physics.

In this paper, we establish frameworks for CV varia-
tional quantum compiling that are valid for arbitrary CV
target unitaries. In contrast to the variational compiling
method explored in Ref. [15], we include entanglement-
enhanced methods that can be used to learn an entire
unitary rather than just its action on a low lying subspace.
We illustrate the wide applicability of our cost functions
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for CV quantum compiling by numerically demonstrating
efficient learning of arbitrary single-mode Gaussian uni-
taries, the generalized beam splitter operation, and Kerr
nonlinearities.

We further make connections between this framework
and CV quantum learning theory by deriving “(no)-free-
lunch” theorems. These analytic theorems specify the min-
imal training data required to learn CV unitary operators
in increasingly general settings, providing fundamental
bounds on the limits of quantum learning. In particular,
the bounds highlight how utilizing entangled training states
can reduce the amount of training data required to learn an
unknown unitary and thus entanglement could be seen to
provide a “free lunch.” We further use these results as an
alternative motivation for the cost functions we propose for
quantum compiling.

This manuscript is structured as follows. Section II pro-
vides a background to quantum compiling, including a
discussion of its possible uses and a summary of previously
proposed methods for discrete-variable quantum compila-
tion. Section III presents our main results, including the
cost functions we propose for CV quantum compiling
and an analysis of their trainability. Section IV contains
numerical implementations of our proposed CV learning
algorithm. Section V presents our no-free-lunch theorems
for CV learning. Section VI summarizes and discusses our
results.

II. BACKGROUND

A. Applications of CV quantum compiling

The goal of CV quantum compiling is to take a (pos-
sibly unknown) unitary U and return a gate sequence V,
executable on a CV quantum computer, that has approxi-
mately the same action as U on any given input state (up
to possibly a global phase factor). Here we describe three
possible applications of this subroutine.

1. Optimal circuit design

Quantum compilation could be used to variationally
compile CV gate sequences to form optimal subcircuits.
By optimal, we primarily mean short depth. However,
compilation might also be used to find circuits that natu-
rally compensate for systematic gate errors or that are more
generally resistant to noise. The construction of such opti-
mal circuits may prove critical for the successful imple-
mentation of larger scale algorithms, including propos-
als for generating optimal bosonic states in protocols for
quantum metrology [20] and entanglement extraction [21].

2. Experimental quantum physics

More generally, variational quantum compilation could
be used to learn the unknown unitary dynamics of a
physical system. In the context of an optical system, one

FIG. 1. Learning experimental CV quantum systems. Here we
sketch an experimental circuit to learn the unitary U implemented
by a novel optical material (shown in orange) by training a
parameterized quantum circuit V†(θ) implemented on an optical
quantum computer (shown in gray). For specific details on the
proposed circuit, and the cost it calculates, see Fig. 2(d).

might be interested in studying the optical properties of
a new material as sketched in Fig. 1. For example, as
discussed further in Sec. IV, one might use quantum com-
piling to estimate the Kerr effect in nonlinear optical media
that cannot itself be directly implemented in a CV quantum
circuit. In this manner, variational quantum compilation
provides a new tool for experimental physics.

3. Structured learning

In discrete-variable systems, variational quantum com-
pilation has proven useful for learning the spectral decom-
position of a unitary operation. This in turn opens up
the possibility of simulating beyond the coherence time
of a quantum processor [22–24]. Similarly one could
use discrete-variable quantum compiling to learn block
decompositions of a given unitary that is useful to study
the entanglement properties of a system. It would be inter-
esting to explore whether CV quantum compiling could
similarly be used to study the spectral or entanglement
properties of a given CV unitary, or for simulating the
dynamics of CV quantum systems [25–27].

B. Discrete-variable quantum compilation

Before presenting our algorithm for continuous-variable
quantum compilation, let us first review the discrete-
variable quantum-assisted quantum compilation (QAQC)
algorithm of Ref. [14]. In QAQC a compilation is found
by variationally searching for a gate sequence that min-
imizes the Hilbert-Schmidt test (HST) cost. This cost,
which quantifies how close the compilation is to exact, can
be written as the normalized Hilbert-Schmidt inner product
between the target unitary U and possible compilation V,

CHST(V, U) := 1 − 1
d2 |Tr(V†U)|2. (1)
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Schematic of cost functions. In this figure we show how the three different cost functions we propose for CV quantum
compiling (d)–(f) are related to three different ways of measuring the Hilbert-Schmidt test cost for DV compilation (a)–(c). The
probability of measuring the all-zero state on all 2n qubits in (a) and (b) is equal to Tr[UV†]/d2 and hence can be used to compute
CHST. In (c) Wψj is the unitary that prepares the state |ψj 〉, i.e., Wψj |0〉 = |ψj 〉; therefore, the probability of measuring the all-zero state
on n qubits is equal to |〈ψj |UV†|ψj 〉|2. We could theoretically estimate CHST by running this circuit over a Haar random ensemble of
training states, but for large problems, this is exponentially inefficient. In (d) and (e) S(r) is the unitary single-mode squeeze operator
and 〉•〈 is a 50:50 beam splitter that entangles the squeezed registers. The probability of measuring the all-zero state on all 2m modes in
(d) and (e) is equal to 1 − CLE-TMSS and 1 − CR-TMSS, respectively. In (f) D(α) is the unitary single-mode displacement operator. The
mean probability of obtaining the all-zero state on m modes is equal to the average of the k values |〈αj |UV†|αj 〉|2, which is used to
estimate CACS.

This cost is faithful, vanishing if and only if U and V differ
by a global phase factor, i.e., V = eiϕU for some ϕ ∈ R.
Therefore, by minimizing CHST, we learn a unitary U that
implements a target V up to a global phase.

The Hilbert-Schmidt test cost may be computed by the
two closely related circuits shown in Figs. 2(a) and 2(b).
To see how, we first note that

1
d

Tr(V†U) = 〈�+|V†U ⊗ I|�+〉, (2)

where |�〉AB is the Bell entangled state of two qubit
registers A and B of n = log2 d qubits, i.e., |�〉AB :=
⊗n

j =1 |�+〉Aj Bj with |�+〉 := (1/
√

2)(|00〉 + |11〉). It thus
follows that we can write

CHST(V, U) = 1 − |〈�+|V†U ⊗ I|�+〉|2 (3)

and CHST can be computed using the circuit shown in
Fig. 2(a). Because of the ricochet property of the state |�〉,

viz., X ⊗ I|�+〉 = I ⊗ X T|�+〉 for linear operator X , the
Hilbert-Schmidt test cost can alternately be written as

CHST(V, U) = 1 − |〈�+|U ⊗ V∗|�+〉|2. (4)

Thus, CHST(V, U) can also be computed with the target
and ansatz unitaries applied in parallel, instead of in series,
reducing the total circuit depth as shown in Fig. 2(b).

Finally, we note that the Hilbert-Schmidt test cost can
be related to the average gate fidelity between U and V.
Specifically, it can be shown [28,29] that

CHST(U, V) = d + 1
d

[1 − F(U, V)], (5)

where

F(U, V) :=
∫

ψ

|〈ψ |V†U|ψ〉|2 dψ (6)

is the average fidelity of states acted upon by V versus
those acted upon by U, with the average being over all pure
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states according to the Haar measure. In theory, Eq. (5)
provides a third way of measuring CHST. One could per-
form a Loschmidt echo test, as shown in Fig. 2(c), using
different input states that are sampled according to the Haar
measure. However, in practice, this is not a viable train-
ing technique, since, as we discuss in Sec. V B, in order
to fully learn U, the average would need to be taken over
an exponentially large number of training states. Instead,
the significance of Eq. (5) lies in the fact that it imbues
CHST with operational meaning for nonzero values since
it entails that low cost values correspond to high average
gate fidelities.

III. UNIVERSAL CONTINUOUS-VARIABLE
QUANTUM COMPILING

A. Cost functions

For continuous-variable quantum compiling, we sup-
pose that the target and compiled unitaries U and V act
on m CV modes. More concretely, the mathematical set-
ting for CV quantum compiling is the Hilbert space H of
m quantum harmonic oscillators, and the operator alge-
bra B(H) of bounded linear operators. In this infinite-
dimensional space, the Hilbert-Schmidt inner product used
in Eq. (1) is not well defined and hence cannot be used for
CV quantum compilation. However, as indicated in Fig. 2,
we can use generalizations of the three different ways in
which Eq. (1) can be implemented, namely via Eqs. (3),
(4), and (5), to define costs for CV quantum compiling. In
contrast to the discrete-variable case where Eqs. (3), (4),
and (5) are three equivalent ways to estimate the same
cost, here the three costs Eqs. (10), (13), and (16) are
fundamentally distinct. Thus, these costs do not have a
direct operational meaning in terms of state-independent
distinguishability of U and V. Correspondingly, the varia-
tional compiling algorithms defined by these costs can be
viewed as heuristic optimization methods that are informed
by the task of efficiently learning CV unitary operations.
The subsections below introduce the cost functions for
CV quantum compiling, and the connection between these
functions and the task of unitary learning is detailed in
Sec. V.

1. Loschmidt echo two-mode-squeezed state cost

Let us start by defining a CV generalization of Eq. (3).
To do so, we first note that two-mode-squeezed states
(TMSSs) are a natural analogue of Bell states for CV sys-
tems. The two-mode-squeezed state, acting between two
m-mode registers A and B, is defined as

|ψm
TMSS(r)〉 :=

m⊗

j =1

|ψTMSS(r)〉Aj Bj

with |ψTMSS(r)〉Aj Bj ∝
∞∑

n=0

(tanh r)n|n〉Aj ⊗ |n〉Bj ,

(7)

where {|n〉}∞n=0 is the Fock basis and r is a squeezing
parameter. To highlight the connection between TMSSs
and Bell states, it is helpful to consider its truncated variant

|ψr
TMSS(r)〉 :=

√
1 − tanh2 r
1 − tanh2r r

r−1∑

n=0

(tanh r)n|n〉 ⊗ |n〉, (8)

which tends to the standard TMSS in the limit that r
tends to infinity, i.e., limr→∞ |ψr

TMSS(r)〉 = |ψTMSS(r)〉.
For finite r, the truncated TMSS tends to a Bell state as
r tends to infinity, that is,

lim
r→∞ |ψr

TMSS(r)〉 = 1√
r

r−1∑

n=0

|n〉 ⊗ |n〉 = |�+〉. (9)

In this sense, the TMSS may be viewed as a CV general-
ization of the Bell state.

More generally, TMSSs are highly entangled states that,
by reducing the number of measurements necessary to
attain a given signal-to-noise ratio, have proven to be an
important resource in quantum metrology [30–32]. More-
over, TMSSs were numerically shown to be nearly optimal
for measuring the fidelity of noisy CV quantum teleporta-
tion channels [33]. These examples suggest that TMSSs
may also be valuable for the unitary channel discrimina-
tion task we consider here. This is confirmed in Sec. V,
where we use the entanglement-enhanced no-free-lunch
theorem of Ref. [34] to argue that training on a single
TMSS minimizes the generalization error for learning a
CV unitary.

This motivates our first proposed cost function to train
an m-mode hypothesis unitary V to match an m-mode
target unitary U as follows:

CLE-TMSSr(V, U) := 1 − |〈ψm
TMSS(r)|UV† ⊗ 1|ψm

TMSS(r)〉|2.
(10)

This is the CV analogue of Eq. (3) obtained by using an m-
mode TMSS instead of a Bell state. We call this cost, which
is evidently faithful by construction, the Loschmidt echo
two-mode squeezed state (LE-TMSS) cost since it mea-
sures the inner product between V ⊗ 1|ψm

TMSS(r)〉 and U ⊗
1|ψm

TMSS(r)〉 using the Loschmidt echo circuit sketched in
Fig. 2(d).

To understand the structure of the circuit that we propose
to measure CLE-TMSSr , it is helpful to recall that the TMSS
can be written as

|ψTMSS(r)〉Aj Bj = eπ(aj b†
j −a†

j bj )/4S(−r)|0〉Aj ⊗ S(r)|0〉Bj ,
(11)

where aj and bj are the annihilation operators on the Aj
and Bj modes, respectively, and S(r) is the single-mode
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squeezing operator [35]. It follows that an m-mode TMSS
can be prepared across two m-mode registers A and B by
first negatively squeezing the modes on register A and pos-
itively squeezing the modes on register B and then pairwise
entangling the modes Aj and Bj (for j = 1 to j = m) using
a network of 50:50 beam splitters.

As shown in Fig. 2(d), preparing a TMSS in this man-
ner is the first step of the circuit to measure CLE-TMSSr .
The second step is to apply the target unitary U and the
inverse of the ansatz V† to register A. The final step is to
implement the inverse of the m-mode TMSS preparation
in order to measure the overlap with the m-mode TMSS.
This is done by first inverting the beam splitter network
and then reversing the initial local squeezing. The inverse
squeezing can be carried out either by a two-step process
consisting of an active optical unitary followed by an on-
off photodetection measurement, or in a one-step process
by an ideal general-dyne measurement [36]. The probabil-
ity of obtaining the measurement outcome in which all 2m
modes are in the |0〉 state, i.e., the vacuum state, is equal to
|〈ψm

TMSS(r)|UV† ⊗ 1|ψm
TMSS(r)〉|2. Hence, this circuit can

be used to measure CLE-TMSSr as claimed.

2. Ricocheted two-mode-squeezed state cost

Unlike the Bell states utilized in discrete-variable quan-
tum compiling algorithms, the TMSS only satisfies an
approximate ricochet property for finite r. That is, with
|ψm

TMSS(r)〉 defined as in Eq. (7),

UV† ⊗ 1B|ψm
TMSS(r)〉 ≈ UA ⊗ V∗

B|ψm
TMSS(r)〉 (12)

with the exact property only holding in the limit that r →
∞ or for specially chosen U and V. Consequently, the
Ricocheted version of the two-mode-squeezed state cost
function, i.e.,

CR-TMSSr(V, U) := 1 − |〈ψm
TMSS(r)|UA ⊗ V∗

B|ψm
TMSS(r)〉|2,

(13)

is equal to Eq. (10) in the limit r → ∞. The circuit for
computing Eq. (13), which is shown in Fig. 2(e), is iden-
tical to the circuit used to measure CLE-TMSS but with
the target and ansatz unitaries prepared in parallel rather
than series. The difference between cost functions (10)
and (13) depends on V. In Appendix A we show how
the cost functions differ in expectation over finite rank V.
The calculation shows that even if the size of V increases
multiplicatively, it is sufficient to increase the squeezing
parameter r additively in order to make the cost functions
(10) and (13) approximately equal.

Although the CR-TMSSr cost can be computed by a simple
circuit, it has a drawback that its minimum need not be zero
when optimizing V for a given U. Hence, when used for
variational compiling, it will be hard to determine when to

terminate the optimization loop. It is therefore helpful to
define a normalized version of Eq. (13):

C̃R-TMSSr(V, U) := 1 − |〈ψm
TMSS(r)|UA ⊗ V∗

B|ψm
TMSS(r)〉|2

NUNV
.

(14)

Here the normalization terms,

NX := |〈ψm
TMSS(r)|XA ⊗ X ∗

B |ψm
TMSS(r)〉| (15)

for X = U and X = V, can be calculated using the same
circuit to measure CR-TMSSr . As shown in Appendix B, this
normalized cost C̃R-TMSSr is faithful, vanishing if and only
if U and V agree up to a global phase.

Given the need to evaluate the normalization terms,
as well as the original cost term, this cost is slightly
more resource intensive than the LE-TMSS cost. How-
ever, the reduction in circuit depth achieved by using the
approximate ricochet property may compensate for this in
experimental contexts where coherence lifetimes are short.

3. Averaged coherent states cost

It is not possible to define a cost that is directly anal-
ogous to Eq. (5) in a CV context as there is no direct
equivalent to the Haar measure for CV states because of
the infinite dimensionality of the Hilbert space for CV sys-
tems. Instead, one can consider averaging over a family of
states up to a specific energy bound. In Ref. [15] a cost
is defined in this manner as an average over Fock states.
However, large Fock states are hard to produce experimen-
tally, and so we argue that a more natural choice, given the
ease with which they can typically be produced in the lab-
oratory, is coherent states. With this in mind, one could
consider using the cost function

CACSE (V, U) := 1 −
∫

‖α‖2≤E
dμ(α)|〈α|V†U|α〉|2, (16)

where dμ(α) is a normalized measure on the set of m-mode
coherent states |α〉 with energy [37] less than E. Each of
the coherent state overlaps in Eq. (16) can be computed
using local heterodyne measurements on the m modes.
That Eq. (16) is faithful can be seen from the fact that if
it takes the value 0, the modulus of the Q symbol of the
unitary operator V†U is equal to 1 almost everywhere on
the domain, from which it follows that V†U = eiφ due to
the overcompleteness of coherent states [38].

In practice, this cost, which we call the averaged coher-
ent state (ACS) cost, can only be estimated by sampling k
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coherent states with energy less that E, i.e., using

CACSE (V, U) ≈ 1 − 1
k

k∑

j =1

|〈αj |V†U|αj 〉|2, (17)

where ‖αj ‖2 < E for all j . In Sec. V we use a NFL
theorem for Gaussian operations to argue that k = 2m
training states will suffice to learn any Gaussian unitary U.
In Sec. IV we provide numerics that suggest that to learn
weakly non-Gaussian operations, in particular a small Kerr
nonlinearity, k = 2m modes is also sufficient. However, in
general, to learn an arbitrary operation, we expect that k
will scale with E.

Thus, in general, estimating CACSE will be more
resource intensive than the TMSS costs, CLE-TMSSr and
CR-TMSSr , in the sense that it requires a larger number of
cost evaluations. However, CACSE does not require gen-
erating large, highly entangled two-mode-squeezed states,
and therefore may in some contexts be less experimentally
demanding. In particular, we expect this cost to be most
useful for learning (approximately) Gaussian operations
where the number of training states required is reduced.

B. Trainability

For a variational quantum algorithm to run successfully,
i.e., for it to be possible to minimize cost and thereby find
the optimum solution, the cost landscape must have suf-
ficiently large gradients to allow for training. Recently, it
has been shown that discrete-variable variational quantum
algorithms can exhibit so-called “barren plateaus,” where,
under certain conditions, the gradient of the cost func-
tion vanishes exponentially with the size of the system
[39–51]. Preliminary results further indicate continuous-
variable systems [52] may exhibit an analogous barren
plateau phenomenon where the cost gradients vanish expo-
nentially with the number of system modes. On such
barren plateau landscapes (potentially untenably) precise
measurements are required to determine the direction of
steepest descent and navigate to the minimum. Thus, for
any learning algorithm to be scalable to large problem
sizes, it is essential to use a cost that does not exhibit a
barren plateau.

Even from basic examples, one can see that the cost
functions for CV quantum compiling exhibit a barren
plateau. To demonstrate this, we focus on the Loschmidt
echo TMSS cost, but analogous arguments follow for the
ricocheted TMSS cost and the averaged coherent state cost.
Consider using the Loschmidt echo TMSS cost to com-
pile the m-mode identity operation using the ansatz com-

posed of a product of phase gates, i.e., V = ei
∑m

j =1 φj a†
j aj ,

where the φj are uniform in [−π ,π ]. Then the cost takes

the form

CLE-TMSSr(φ)

= 1 − 1
cosh4m r

m∏

j =1

[(1 − 2 cosφj tanh2 r + tanh4 r)−1].

(18)

It follows (examining φ1 without loss of generality) that

E(|∂φ1CLE-TMSSr |) = 1
(2π)m

∫ 2π

0
dφ|∂φ1CLE-TMSSr |

=
(

2
π(1 + 2 sinh2 r)2

)m tanh2 r
1 + tanh4 r

,

(19)

which vanishes exponentially with the number of modes
m. It therefore follows from Chebyshev’s inequality

P(|∂φCLE-TMSSr | > ε) ≤ E(|∂φCLE-TMSSr |)
ε

(20)

that the probability that the cost gradient deviates from
zero vanishes exponentially. Thus, the landscape exhibits
a barren plateau [52]. If r is allowed to vary with m then
taking sublinear scaling of the total squeezing, e.g., local
squeezing r(m) = O(ln mα/m), α > 0, causes Eq. (20) to
vanish only polynomially.

For fixed r, the barren plateau phenomenon can be cir-
cumvented by using a local variant of our proposed costs.
Analogously to the local version of the Hilbert-Schmidt
test introduced in Ref. [14], where pairs of qubits, rather
than all 2n qubits, are measured to compute the local cost,
our proposed local TMSS costs can be calculated from
measurements on pairs of CV modes instead of 2m CV
modes. Specifically, as shown in Fig. 3(a), the local version
of the Loschmidt echo TMSS cost is defined as

C(L)LE-TMSSr
(V, U) := 1 − 1

m

m∑

j =1

Pr(00)Aj Bj , (21)

where Pr(00)Aj Bj is the probability of observing outcome
00 on the pair of modes Aj Bj from registers A and B in
Fig. 2(d). This cost function can be shown to be faith-
ful using the same probability theoretic argument used to
prove the faithfulness of the local Hilbert-Schmidt test cost
in Ref. [14].

The local cost C(L)LE-TMSSr
can be expressed as a sum of

entanglement fidelities. To see how, first note that the local
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(a) (b) (c)

FIG. 3. Local cost functions. Here we show the circuit diagrams for the local versions of the (a) Loschmidt echo TMSS cost
C(L)LE-TMSS, (b) ricocheted TMSS cost C(L)R-TMSS, and (c) averaged coherent state cost C(L)ACS. Crucially, in contrast to their respective
global variants, only a pair of modes (in the case of C(L)LE-TMSS and C(L)R-TMSS) and a single mode (in the case of C(L)ACSE

) is measured per
circuit evaluation.

marginal states of UV† ⊗ IB|ψm
TMSS(r)〉 on Aj Bj , i.e.,

ρAj Bj := TrAj Bj
[(EUV† ⊗ IB)|ψm

TMSS(r)〉〈ψm
TMSS(r)|],

where Aj (Bj ) is the complement of Aj (Bj ) in mode set A
(B) and EUV†(·) = UV†(·)VU†, can be written as

ρAj Bj = TrAj
[EUV† ⊗ IBj {ρTMSS

Aj Bj
(r)⊗ ρ⊗m−1

β(r) }]. (22)

Here ρβ(r) is a thermal state at the inverse temperature
β(r) := −2 ln tanh r,

ρβ(r) := 1
cosh2 r

∞∑

n=0

tanh2 r|n〉〈n|, (23)

and ρTMSS
Aj Bj

(r) := |ψm
TMSS(r)〉〈ψm

TMSS(r)|Aj Bj . It follows that

C(L)LE-TMSS can be written as

C(L)LE-TMSSr
(V, U) := 1 − 1

m

m∑

j =1

Fj , (24)

where Fj is the entanglement fidelity of the channel

Ej (ρAj ) := TrAj
UV†[ρAj ⊗ (ρβ(r))

⊗m−1]VU† (25)

with respect to the TMSS. That is,

Fj := Tr[ρTMSS
Aj Bj

(Ej ⊗ 1Bj )(ρ
TMSS
Aj Bj

)]. (26)

Thus, not only is the local cost faithful, it also has a natural
conceptual interpretation.

Crucially, the local TMSS cost (24) appears not to
exhibit a barren plateau. For example, for the problem

of compiling the identity with multimode phase shifters
considered at the beginning of this section, one obtains

E(|∂φ1C(L)LE-TMSSr
|) = 2

πm cosh4 r(1 + tanh2 r)2

×
(

m − 1 + tanh2 r
1 + tanh4 r

)

, (27)

which, for fixed r, is constant as m → ∞.
We note that, for a fixed number of modes m, the

costs CLE-TMSSr and C(L)LE-TMSSr
concentrate to 1 when the

squeezing parameter r is large. It follows that the gradi-
ents of CLE-TMSSr and C(L)LE-TMSSr

, as seen from Eqs. (19)
and (27), vanish exponentially with r. Consequently, train-
ing becomes exponentially more resource intensive for
larger r. A similar exponential vanishing with respect
to r was observed for approximations of CV energy-
constrained channel fidelities that compare the actions of
CV channels on two-mode-squeezed states [33]. This van-
ishing gradient problem is conceptually different to the
barren plateau phenomenon that may be resolved using a
local cost. In Sec. IV, we propose a practical resolution for
this vanishing gradient problem.

Finally, we note that, for the example of compiling the
identity operation considered earlier, the averaged coher-
ent state cost function CACSE in Eq. (16), and its approx-
imation in Eq. (17), do not exhibit barren plateaus if the
energy bound E is taken to depend on the mode num-
ber m in such a way that the maximal energy per mode
E(m)/m grows sublinearly as a function of m (see Sec. 2
of Ref. [52]). However, we expect that more general com-
piling problems, such as Gaussian compiling or compiling
of Kerr nonlinearities, will exhibit barren plateaus. Such
trainability issues could again be mitigated by defining a
local version of CACSE . A natural choice in local cost would
be [analogously to Eq. (21)] to compute a spatial average
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of the probability of measuring the vacuum state on each
of the modes at the end of the circuit in Fig. 2(f). More
concretely, one could use

C(L)ACSE
(V, U) := 1 − 1

k

k∑

j =1

Tr[O(j )
LocalV

†U|αj 〉〈αj |U†V],

O(j )
Local = 1

m

m∑

=1

|(αj )〉〈(αj )|A ⊗ IA

subject to ‖αj ‖2 ≤ E for all j ,

where |αj 〉 = ⊗m
=1 |(αj )〉A is a coherent state in the

2m-dimensional phase space, and we have used the dis-
crete version of CACSE (V, U) in Eq. (17). Computation of
one term in the double sum defining C(L)ACSE

is shown in
Fig. 3(c).

IV. NUMERICAL IMPLEMENTATIONS

Here we present results for implementing CV quantum
compilation to learn commonly encountered CV oper-
ations. In particular, we focused on learning arbitrary
single-mode Gaussian operations, Kerr nonlinearities, and
a general beam splitter operation. In each case, we per-
formed continuous parameter optimization in order to
minimize the TMSS cost function, Eq. (13). We focus on
the Loschmidt echo variant of the cost, but similar results
are obtained for the Ricocheted variant. We note that it is
unnecessary to use the local version of the cost here since,
for these proof-of-principle implementations, we consider
learning single- and two-mode unitaries for which the cost
gradients are expected to be manageable even with a global
cost.

Given the close connections between the TMSS cost and
the HST cost for large r, and the operational meaning of
CHST as a measure of the average fidelity between U and
V, ideally we would use a large r value, i.e., large squeez-
ing, to learn U. However, as discussed in Sec. III B, and
as demonstrated numerically in Fig. 4, the landscape of the
TMSS cost becomes overwhelmingly flat for large r, mak-
ing it difficult to train. We therefore found it more effective
to train initially using a small r value. Then once reason-
ably accurate pre-trained parameters have been obtained
using a small r, we trained on a larger r to refine the quality
of the solution.

A. Gaussian operations

An arbitrary single-mode Gaussian operation

UGaus(α,β,φ) := e−iHGaus(α,β,φ) (28)
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Kerr
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r = 2.5
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FIG. 4. Cost landscapes. The cost landscape for learning (a) an
arbitrary Gaussian operation and (b) a χ = 3 Kerr nonlinearity
using four layers of the general ansatz defined in Eq. (31). Here
ε is a noise parameter that determines the deviation of the ansatz
parameters, θ , from the optimum parameters, θopt. Specifically,
we set θk = θ

opt
k + εR, where R is a random number between −1

and 1.

is generated by the quadratic Hamiltonian

HGaus(α,β,φ) := αa + α∗a† + βa2 + β∗a†2 + φa†a,
(29)

where α and β are arbitrary complex numbers and φ is an
arbitrary real number. We generated a random target Gaus-
sian operation Utarg := UGaus(αtarg,βtarg,φtarg) by choosing
Re(αtarg), Im(αtarg), Re(βtarg), and Im(βtarg) randomly in
the range [0, 1] and φtarg in the range [0, 2π ]. We then used
CLE-TMSS to learn Utarg using an ansatz of the same form.
That is, using an ansatz of the form Vanz = UGaus(α,β,φ),
where α, β, and φ are parameters to be variationally learnt.
Since UGaus is readily factorizable into the product of dis-
placement, squeezing, and phase operations, this ansatz
can be straightforwardly implemented using standard gates
on a CV quantum computer.

The results of learning [53] an arbitrary Gaussian oper-
ation are shown in the top row of Fig. 5. To quantify the
quality of the optimization, we take the optimal parame-
ters obtained at each iteration of the optimization algorithm
and plot both the Hilbert-Schmidt cost, CHST, and the
errors in the individual optimized parameters. As shown in
Fig. 5(a), we start with r = 0.1 and successfully optimize
the TMSS cost (using the COBYLA algorithm) down to
10−6. This corresponds to errors in the HST cost and indi-
vidual parameters in the region of 10−1 to 10−4. We then
took the optimal parameters from minimizing the TMSS
cost with r = 0.1 and optimized using the HST cost with

040327-8



UNIVERSAL COMPILING... PRX QUANTUM 2, 040327 (2021)

0 2000 4000

100

10−2

10−4

10−6

10−8

10−10

co
st

/e
rr

or
G

au
ss

ia
n

r = 0.1

TMSS cost
HST cost

5000 5250 5500 5750 6000

r = 0.5

100

10−2

10−4

10−6

10−8

10−10

P
ar

am
.

er
ro

rs

6025 6050 6075 6100 6125

r = 2.5

Lin. error (Re)
Lin. error (Im)
Phase error
Quad. error (Re)
Quad. error (Im)

0 20 40 60 80

100

10−2

10−4

10−6

10−8

10−10

co
st

/e
rr

or
K

er
r

no
nl

in
ea

ri
ty

Displacement error
Squeezing error
Phase error
Kerr error

80 85 90 95 100 105

100

10−2

10−4

10−6

10−8

10−10

P
ar

am
.

er
ro

rs

105 110 115 120 125

0 20 40 60
Iteration

100

10−2

10−4

10−6

10−8

10−10

co
st

/e
rr

or
B

ea
m

 s
pl

it
te

r

Displacement error
Squeezing error
Phase error
Kerr error
Beamsplitter (φ) error
Beamsplitter (θ) error

70 80 90 100
Iteration

100

10−2

10−4

10−6

10−8

10−10

P
ar

am
.

er
ro

rs

100 105 110
Iteration

FIG. 5. Learning using TMSS cost. The CLE-TMSSr cost (blue) as a function of iteration for learning a Gaussian (top row), Kerr
nonlinearity (middle row), and beam splitter (bottom row). To mitigate the problem of vanishing cost gradients for large r, we take
a perturbative approach starting with r = 0.1 (left column), and after convergence increasing r to 0.5 (middle column) and then 2.5
(right column). To quantify the quality of the optimization, we take the optimal parameters obtained at each iteration of the optimization
algorithm and plot both the Hilbert-Schmidt cost CHST (red dashed) and the errors in the individual optimized parameters (dotted). The
parameter errors are given in natural units with � = 1 and the mass and frequency of the modes equal to 1.

r = 0.5. The cost value and parameter errors initially go
sharply up (because the old parameters that optimized the
cost with r = 0.1 are no longer optimal) before decreas-
ing again as the new cost is optimized. After optimizing
with r = 2.5 we get both the TMSS and HST costs down to
10−9 with errors in the individual parameters in the region
of 10−5. Thus, Fig. 5 both demonstrates the effectiveness of
our perturbative strategy and highlights how the difference
between CTMSS and CHST decreases with increasing r.

B. Kerr nonlinearity

The second optimization task we consider is learning a
Kerr nonlinearity of the form

UKerr(χ) := e−iχ(a†a)2 . (30)

Since there is no simple ansatz that can capture an arbitrary
non-Gaussian operation, in this case we use the general
layered ansatz advocated in Refs [54,55]. This ansatz is

composed of multiple layers that each consist of a displace-
ment, squeeze, phase shift, and nonlinear Kerr shift. That
is, a single layer is of the form

Vlayer(α,β,φ,χ) := UKerr(χ)R(φ)D(α)S(β) (31)

and the total ansatz is composed of a product of L such
layers, Vans(θ) := ∏L

l=1 Vlayer(αl,βl,φl,χl), where θ :=
{αl,βl,φl,χl}L

l=1. Since the gates in every layer constitute
a universal set [55], this ansatz can be used to implement
any single-mode quantum operation.

We focus on the task of learning a large Kerr non-
linearity (of, perhaps, some new, yet to be classified,
material). To make this task both nontrivial and phys-
ically pertinent, we suppose that the Kerr nonlinear
components used as part of the ansatz are limited to
implementing some maximum nonlinearity that is less
than that of the target nonlinearity. Specifically, we sup-
pose that the components of θ are bounded between
0 and 1, and we consider trying to learn χtarg = 3
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using a four-layered ansatz. To perform the optimiza-
tion, we employ the gradient-based limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

To assess the performance of the optimization in Fig. 5,
we again plot the HST cost as well as a measure of the
error in the individual parameters. Given the noncommu-
tativity of the displacement, squeezing, phase shift, and
Kerr operations, there are multiple possible choices in
the parameters θ such that V(θ) = UKerr(χtarg). Despite
this, in practice, we find that the optimization algorithm
found the “obvious” solution where the displacement
parameters αl, squeezing parameters βl, and phase shift
parameters φl each sum to zero and the Kerr nonlin-
earity parameters χl summed to χtarg. We therefore take
the difference between these values (i.e., |∑l=1 αl − 0|,
| ∑l=1 βl − 0|, |∑l=1 φl − 0|, and |∑l=1 χl − χtarg|) as
the measure of our displacement, squeezing, phase, and
Kerr errors, respectively.

Similarly to the Gaussian case we find that starting with
a small r allows for successful training. Then increasing
the value of r improves the quality of the training in the
sense that the HST error and parameter errors can be fur-
ther decreased. We achieve a final TMSS and HST cost of
10−8 and parameter errors of approximately 10−5.

C. Beam splitter operation

Finally, we attempt to learn a beam splitter operation of
the form

UBS(θ ,φ) = eθ(ab†eiφ−a†be−iφ) (32)

for a two-mode system with annihilation operators a and b,
respectively, where θ and φ are randomly chosen phases in
the range [0, 2π ]. To learn this operation, we use a single-
layer ansatz of the form

V(12)
layer(θ) := UBS(θ ,φ)V(1)layer(α1,β1,φ1,χ1)

× V(2)layer(α2,β2,φ2,χ2), (33)

where V(1)layer and V(2)layer indicate the single-mode gate
sequence defined in Eq. (31) on the first and second modes,
respectively. The optimization was successful, with the
TMSS and HST costs reduced to approximately 10−7.

We note that, while it may superficially appear from
Fig. 5 that fewer iterations are required to learn the Kerr
nonlinearity and beam splitter operation than an arbitrary
Gaussian operation, this is a feature of our choice in opti-
mization algorithm. Namely, the BFGS algorithm uses a
gradient-based approach that involves evaluating the cost
nparam times, where nparam is the number of parameters
that need to be learnt at every iteration step. Once this is
accounted it requires more cost evaluations to learn the
general beam splitter or a Kerr nonlinearity than to learn a

Gaussian operation. This is precisely as one would expect
since these are more complex optimization problems.

V. NO-FREE-LUNCH THEOREMS FOR CV
QUANTUM LEARNING

In classical machine learning, the no-free-lunch (NFL)
theorems consider the task of learning a target function f ,
where f maps a discrete input set X to a discrete output
set Y (both of size d). The learning is performed using a
training set S consisting of |S| input-output training pairs,

S = {(xj , f (xj ) : xj ∈ X }|S|
j =1. (34)

In the limit of perfect learning, one assumes that it is pos-
sible to train a hypothesis function hS to match the target
function f on all training pairs in S. The no-free-lunch the-
orems then quantify the “generalization error,” i.e., how
well the hypothesis function matches the target on unseen
data. In general terms, the theorems demonstrate that the
generalization error of a given learning algorithm is not
less than that of a random learning algorithm in expecta-
tion over target functions f [56–60]. That is, the average
performance of a learning algorithm is determined not by
the choice in learning algorithm but rather by the amount
of training data |S|.

Specifically, the generalization error can be quantified
by the risk function

Rf (hS) =
∑

x∈X

π(x)1[f (x) �= hS(x)], (35)

where 1[S] is the indicator function taking value 1 (0) if
condition S is satisfied (not satisfied). This is the probabil-
ity that the hypothesis function hS(x) and target function
f (x) differ across X, the domain of f , when x is sampled
from the uniform probability distribution π(x). The aver-
age risk, averaged over training sets S and functions f , can,
for any optimization method, be lower bounded as [60]

Ef [ES[Rf (hS)]] �
(

1 − 1
d

)(

1 − |S|
d

)

. (36)

Hence, the average risk is determined by the number of
training pairs |S|, vanishing if and only if S spans the full
domain of f , i.e., if |S| = d.

Similar NFL theorems exist for finite-dimensional quan-
tum circuit learning, in which a target function f cor-
responds to a unitary quantum channel U and the train-
ing set is generalized to a set of quantum state pairs
S = {|ψj 〉, U|ψj 〉}|S|

j =1. By defining the generalization error
using a suitable distance on quantum state space, it is
shown that in general an exponential number of train-
ing states, |S| ∼ 2n, are required to learn an n qubit
unitary [61].
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TABLE I. No-free-lunch theorems for CV unitary learning.

Target Training Entangled Cost
unitary set S training NFL motivated

Linear optical Coherent states No 1
2 − |S|/4m CACSE (17)

Linear optical Coherent-Fock states Yes 1
2 − r|S|/4m CECFS (47)

Fock truncated Schmidt rank r TMSS Yes 1 − (r2|S|2 + d + 1)/d(d + 1) CLE-TMSS (10)

Furthermore, by allowing the training set to con-
sist of pairs of states that are entangled with a ref-
erence system, i.e., S = {|ψj 〉, U ⊗ IR|ψj 〉}|S|

j =1, where
|ψj 〉 ∈ H ⊗ HR are entangled pure states of Schmidt
rank r, an entanglement-enhanced quantum no-free-lunch
theorem can be derived. In this case, the lower bound of the
expected error of a quantum learning algorithm, over all
target unitaries U is reduced linearly in r [34]. This has the
important practical implication that, by using entanglement
as a resource, the number of unique input-output state pairs
needed to learn a target unitary, U, may be exponentially
reduced in the limit of perfect learning.

In Sec. V A we derive NFL theorems in a restricted
setting where the task is learning a linear optical uni-
tary operation. Specifically, Theorems 1 and 2 quantify
learning with classical training data (coherent states) and
quantum training data (entangled coherent-Fock states),
respectively. Section V B shows how the entanglement-
assisted NFL theorem of Ref. [34] can be applied in an
unrestricted CV learning setting. We further discuss how
CV quantum NFL theorems can be used to motivate cost
functions for CV quantum compiling. These results are
summarized in Table I.

A. Learning linear optical unitaries from Gaussian
training data

Linear optical unitaries capture the dynamics of mul-
timode beam splitters, phase shifters, and displacement
operators. Such unitaries, on m CV modes, can be written
in the form U = eiH , where H = H † and [H ,

∑m
j =1 a†

j aj ] =
0. Here we consider the task of training a hypothesis uni-
tary VS to emulate a target linear optical unitary U using a
set of training data S composed of m-mode coherent states.
We analyze the expected performance of a generic learn-
ing algorithm, over all target linear optical unitaries U and
all training sets containing |S| training states.

To fix the notation, an m-mode coherent state with mean
vector w is written |w〉. Here w is a row vector in R

2m

given by w = 〈R〉 with R = (q1, p1, . . . , qm, pm) the vec-
tor of canonical quadrature operators. The action of the
target linear optical unitary U on |w〉 is given by U|w〉 =
|wO〉, where O is a 2m × 2m orthogonal matrix. The set of
2m by 2m orthogonal matrices will be denoted Orth(2m).
Equipped with this notation, the training set to learn a lin-
ear optical unitary U using |S| pairs of m-mode coherent

states can be written as

S = {(wj , wj O)}|S|
j =1 ∈ (R2m × R

2m)×|S|. (37)

Similarly, the action of the hypothesis linear optical unitary
VS on |w〉 can be written as VS|w〉 = |wTS〉, where TS ∈
Orth(2m). We focus on the limit of perfect learning and
assume that the learning algorithm outputs an orthogonal
matrix TS that agrees perfectly with O on all coherent states
wj in the training set. That is, we assume that wj TS = wj O
for the training data mean vectors (wj , wj O) ∈ S.

To quantify how well the hypothesis unitary VS matches
the target unitary U on all possible coherent states, i.e., not
just the training states, we define a risk function. To do
so, we utilize a simple loss function of the form L(y, z) =
‖y − z‖2, where y = xO and z = xTS are the output vectors
of the target and hypothesis orthogonal matrices, respec-
tively. Throughout this section, ‖ · ‖ refers to the 2-norm
on the Euclidean space R

2m. The total risk is then defined
as the average loss over a multivariate Gaussian distribu-
tion of input vectors x, i.e., over the distribution π(x) =
e−‖x‖2/2σ /(2πσ)m. The total risk thus takes the form

RO(TS) = 1
8mσ

∫

d2mx π(x)L(xTS, xO), (38)

where the normalization factors have been chosen to
ensure that RO(TS) takes values between 0 and 1. In
essence, RO(TS) is a measure of how well TS matches O
isotropically in phase space. Risk values of RO(TS) = 0
and RO(TS) = 1 are both totally informative, correspond-
ing to TS = O and TS = −O, respectively, i.e., perfect
learning (up to a possible sign error). In contrast, a risk
value of RO(TS) = 1/2 implies that the hypothesis unitary
matches the target no better than a typical random linear
optical unitary.

The following theorem quantifies the expected risk for
learning a linear optical unitary using the training set S,
Eq. (37), in the limit of perfect learning.

Theorem 1: Let O be distributed according to the nor-
malized Haar measure on Orth(2m), and let the training
data S of cardinality |S| be chosen uniformly from a com-
pact connected set of m-mode coherent states, as defined
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in Eq. (37). Then

ES{EO[RO(TS)]} = 1
2

− |S|
4m

. (39)

Proof. For fixed S, simplify Eq. (38) to

RO(TS) = 1
2

− 1
4mσ

∫

d2mx xTSOTxTπ(x)

= 1
2

− TrTSOT

4m
. (40)

Under the assumption that the learning algorithm outputs
TS that agrees with O on the |S|-dimensional subspace of
R

2m spanned by the training data (i.e., wj T = wj O for the
training data mean vectors wj ), we can write

TSOT =
(

I 0
0 Y

)

, (41)

where Y ∈ Orth(2m − |S|). Taking the expectation over O
gives

EO[RO(TS)] =
∫

dO
[

1
2

− TrTSOT

4m

]

= 1
2

− |S|
4m

−
∫

dY
TrY
4m

= 1
2

− |S|
4m

. (42)

Because S is taken from a subset of R
2m with no isolated

points, one always obtains a set of |S| linearly independent
coherent states when S is sampled. Therefore, taking the
expectation over S does not change the right-hand side of
Eq. (42). �

Theorem 1 shows that the generalization error for learn-
ing generic linear optic unitaries reduces linearly with the
number of pairs of coherent states trained on, vanishing
completely for |S| = 2m. (We stress that |S| is the number
of unique training pairs required to learn the unitary, not
the total number, which, due to shot noise and the iterative
optimization procedure, will be substantially larger.) This
implies that the averaged coherent state cost in Eq. (17)
can be approximated using only 2m training states when
learning m-mode linear optical unitaries. More broadly,
Theorem 1 can be viewed as a “classical” NFL theorem
for CV systems.

It is possible formulate a quasiclassical CV NFL
theorem in which the training data consist of squeezed,
rather than coherent, states. In this case we use a risk
function that compares the actions of O and TS on the
phase space fluctuations of a compact set of centered, pure
CV Gaussian states. We find that squeezing in general

inhibits the learning process. However, intriguingly, for
this definition of the risk, the risk may be reduced by the
training set size as a function of |S|2 instead of |S|. This
CV NFL theorem is discussed and proved in Appendix D.

We now show, similarly to the entanglement-assisted
discrete-variable NFL theorem [34], that utilizing entan-
gled training states can lower the expected risk. This
improvement is achieved by modifying the training data
set in Theorem 1, while keeping the risk (38) the same.
Specifically, we now consider a training set

S = {(|ψr
j 〉, U ⊗ IR|ψr

j 〉)}|S|
j =1 ⊂ (HX ⊗ HR)×2|S| (43)

composed of |S| pairs of m-mode entangled coherent-Fock
states of the form

|ψr
j 〉 := 1√

r

r∑

k=1

|w(j )k 〉X ⊗ |k〉R. (44)

Here {|w(j )k 〉X }r
k=1 is a set of linearly independent coherent

states acting on a system X and |k〉R denotes the k-th Fock
state of an ancilla register R. The positive integer r acts
as an analogue of Schmidt rank in this context, although
we note that the linearly independent mean vectors w(j )k
need not be approximately orthogonal, so r is not strictly
related to the entanglement entropy. To use a precise term,
r is equal to the exponential of the entropy of coherence
[62] with respect to the orthonormal set {|w(j )k 〉 ⊗ |k〉}r

k=1

for any j . If ‖w(j )k ‖ is sufficiently large, |ψj 〉 has entangle-
ment entropy approximately equal to log2 r with respect
to the partition consisting of m CV modes X and the CV
register R of the training set.

Analogously to the NFL for coherent state training
above, we derive the following theorem on the expected
risk.

Theorem 2: Let O be distributed according to the nor-
malized Haar measure on Orth(2m), and let the training
data S of cardinality |S| consist of pairs of entangled
coherent-Fock states as defined in Eqs. (43) and (44). Then

ES{EO[RO(TS)]} = 1
2

− |S|r
4m

. (45)

Proof. As in the setting of Theorem 1, the objective is to
learn the orthogonal matrix O corresponding to an m-mode
linear optical unitary U. The assumption of perfect agree-
ment of TS and O on the training data set now corresponds
to the condition VS ⊗ IR|ψr

j 〉 = U ⊗ IR|ψr
j 〉 for all j . Pro-

ceeding up to Eq. (40) in the same way as in the proof of
Theorem 1, we now note that the assumption of perfect
agreement on training data implies that w(j )k O = w(j )k TS for
all k, j . Taking into account linear independence of the
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mean vectors w(j )k in R
2m, this means that TS and O are

identical on a r|S|-dimensional subspace of the phase space
R

2m. So TSOT = Ir|S| ⊕ Y with Y ∈ Orth(2m − r|S|) and,
instead of Eq. (42) above, one gets

EO[RO(TS)] =
∫

dO
[

1
2

− TrTSOT

4m

]

= 1
2

− r|S|
4m

−
∫

dY
TrY
4m

= 1
2

(

1 − r|S|
2m

)

. (46)

Again the expectation over training sets S of fixed car-
dinality |S| is trivial when the mean vectors w(j )k are
chosen uniformly from some compact connected subset
of R

2m. �
Theorem 2 shows that, for a fixed training data set size,

increasing the parameter r in the training data (for large
‖w(j )k ‖, this approximately corresponds to increasing the
entanglement entropy of the training data) can reduce the
generalization error. In this sense, entanglement could be
seen to provide a “free-lunch.” However, as with all appar-
ently free lunches, there are caveats. Namely, there may be
a hidden cost in obtaining the entangled training data in
the first place since entanglement is generally experimen-
tally challenging to create and preserve. Thus, how “free”
this lunch is will depend on the relative scarcity of training
states and entanglement.

It is also important to note that the enhancement pro-
vided by entanglement here is less necessary than the
enhancement found in the discrete-variable case. In the
discrete-variable case an exponential number of training

pairs are required in the absence of entangled training data,
whereas to learn linear optical unitaries, the number of
unentangled pairs scales linearly in the number of modes.

Theorem 2 could be viewed as motivating a cost func-
tion of the form

C(r,k)
ECFS(V, U) = 1 − 1

k

k∑

j =1

|〈ψr
j |V†U ⊗ IR|ψr

j 〉|2, (47)

where the |ψr
j 〉 are the entangled coherent-Fock states

defined in Eq. (44). We note that this is a generalization
of CACS in the sense that it reduces to CACS in the limit that
r = 1. To learn a linear optical unitary, Theorem 2 implies
that it suffices to use k = 2m/r training pairs. One could
also potentially use this cost to learn more general uni-
taries; however, Theorem 2 does not apply in that case and
therefore one may need to use a significantly larger rk to
minimize the generalization error.

In Appendix C we prove that Theorems 1 and 2 gen-
eralize to learning arbitrary Gaussian operations. We thus
expect it to be possible to learn a single-mode Gaussian
operation using a single entangled training pair (r = 2,
|S| = 1), or two unentangled training pairs (r = 1, |S| =
2), but not a single unentangled training pair (r = 1, |S| =
1) since for the former the expected risk vanishes whereas
the latter corresponds to a finite risk.

This is indeed supported by our numerical results shown
in Fig. 6 where we optimize C(1)ACS (corresponding to train-
ing on a single unentangled training state pair), C(2)ACS
(corresponding to training on two unentangled training
state pairs), and C(2,1)

ECFS (corresponding to training on a
single entangled training state pair) using the same vari-
ational framework set out in Sec. IV. We find that, while
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FIG. 6. Learning Gaussian operations using coherent states and entangled coherent-Fock states. Cost as a function of iteration for
learning a Gaussian operation. In the left and middle plots we use CACS with a single training pair (k = 1) and two training pairs
(k = 2), respectively. In the right plot we optimize C(r=2,k=1)

ECFS (V, U) that is defined in Eq. (47) from one training state of the form (44).
In all cases the coherent states trained on had a random energy up to a maximum of 1 and a random phase in the range 0 to 2π .
To quantify the quality of the optimization, we take the optimal parameters obtained at each iteration of the optimization algorithm
and plot both the Hilbert-Schmidt cost CHST (red) and the errors in the individual optimized parameters in arbitrary units (dotted). The
dashed and dash-dot red lines show the Hilbert-Schmidt cost CHST on the first 50 Fock states and on the first 5 Fock states, respectively.
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FIG. 7. Learning Kerr nonlinearities using coherent states and entangled coherent-Fock states. Cost as a function of iteration for
learning a χ = 0.1 (top) and χ = 0.5 (bottom) nonlinearity. In the left and middle columns we use CACS with a single training pair
(k = 1) and two training pairs (k = 2), respectively. In the right-hand column we use CECFS with a single entangled training pair (k = 1
and r = 2). In all cases the basic coherent state training states have a random energy up to a maximum of 1 and a random phase in the
range 0 to 2π . To quantify the quality of the optimization, we take the optimal parameters obtained at each iteration of the optimization
algorithm and plot both the Hilbert-Schmidt cost CHST (red) and the errors in the individual optimized parameters in arbitrary units
(dotted). The dashed red line and dash-dot red lines show the truncated Hilbert-Schmidt cost CHST on the first 50 Fock states and on
the first 5 Fock states, respectively.

it is possible to minimize C(1)ACS, this does not correspond
to the Gaussian operation being successfully learnt. This
is shown by the large learning errors, as measured by
the truncated Hilbert-Schmidt test cost, which quantifies
the average error over all possible input states, and indi-
vidual parameter errors, in the left-hand panel of Fig. 6.
Conversely, as shown in the middle and right-hand panels
of Fig. 6, when using entangled training data or multiple
training states, the learning errors are iteratively minimized
as the cost is minimized.

In Fig. 7 we present analogous results for the learning
of a weak single-mode Kerr nonlinearity. Specifically, as
shown in Fig. 7 we find that a single-mode (m = 1) Kerr
nonlinearity of χ = 0.1 and χ = 0.5 can be learnt using
either a single entangled training pair (r = 2, |S| = 1), or
two unentangled training pairs (r = 1, |S| = 2), but not a
single unentangled training pair (r = 1, |S| = 1).

B. Learning arbitrary unitaries and motivation of
compiling cost functions

Theorems 1 and 2 concern learning linear optical
unitaries. The question remains whether similar

entanglement-assisted NFL theorems can be derived for
learning arbitrary CV unitaries.

To answer this question, it is useful to recall the
discrete-variable (i.e., finite-dimensional) entanglement-
assisted quantum NFL theorem in Ref. [34]. Specifically,
the analog of Theorem 2 takes the form

ES{EU[RU(VS)]} = 1 − r2|S|2 + d + 1
d(d + 1)

, (48)

where U is the target unitary, VS is the output of the learn-
ing algorithm on entangled training states in S, r is the
Schmidt rank of the training data states, and the risk is

RU(VS) := 1
4

∫

dψ‖U|ψ〉〈ψ |U† − VS|ψ〉〈ψ |V†
S‖2

1. (49)

In Eq. (49), the integral is over all pure states according to
the Haar measure.

A continuous-variable NFL theorem cannot be derived
that is strictly analogous to Eq. (48) in the discrete-variable
setting because there is no Haar measure over the unitary
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group in B(H) for infinite dimensional H. On the other
hand, one is often only interested in the action of the tar-
get unitary U on Fock states only up to a finite cutoff. For
example, recent proposals for efficient updates and deriva-
tives of Gaussian gates in parameterized CV circuits utilize
cutoff recursion relations for the Fock matrix elements of
the gates [5].

Equation (48) implies that a single full rank state, i.e.,
a state with rank d, can be used to fully learn a unitary
of rank d. Thus, the truncated TMSSs defined in Eq. (8)
can be used to learn arbitrary d-dimensional unitaries with-
out incurring a generalization error. Taking the limit that
d tends to infinity, this implies that the Loschmidt echo
TMSS cost can be used to learn arbitrary CV unitaries, thus
further motivating its use.

VI. DISCUSSION

In this work we establish a framework for quantum
compiling in continuous-variable systems. We start by
motivating the TMSS cost (both the Loschmidt echo and
ricocheted variants) and the averaged coherent state cost
as natural CV analogues of the Hilbert-Schmidt state cost.
Our numerical implementations demonstrate the success-
ful learning of single-mode Gaussian operations, a general-
ized beam splitter operation, and Kerr nonlinearities using
these costs.

We subsequently show how these costs may be alterna-
tively motivated via a series of increasingly general “(no-
)free lunch” theorems. Firstly, the NFL theorem for Gaus-
sian operations using coherent state mean vector training
data establishes that it is possible to perfectly learn an m-
mode Gaussian operation by training on only 2m coherent
states. This implies that it is possible to learn arbitrary
Gaussians by training on an approximation of the averaged
coherent state cost using only 2m coherent states. Next,
the NFL theorem for Gaussian operations using entangled
coherent-Fock states both shows how entanglement may
be used to reduce the amount of training data required
to learn Gaussian operations and motivates an alterna-
tive entanglement-enhanced cost function for compiling
that makes use of entangled coherent-Fock states. Finally,
we argue that taking the continuum limit of the discrete-
variable entanglement-enhanced NFL theorem implies that
to learn an arbitrary unitary on a single training state
requires a full rank state. This motivates training using the
TMSS cost.

It is worth highlighting that these (no-)free-lunch the-
orems quantify the number of different training pairs
required to learn a unitary in the ideal case of perfect train-
ing. That is, they do not give the total number of copies of
training pairs that are required to learn the unitary. Indeed,
given shot noise, a large number of copies of each pair
will in fact be required to evaluate the cost. More gener-
ally, training may be imperfect not only due to shot noise

but also hardware noise or the presence of barren plateaus
or local minima in the training cost function landscape. A
valuable extension would be to generalize the theorems to
account for imperfect learning.

It would also be interesting to derive further NFL theo-
rems for alternative classes in training data. For example,
one might be concerned with learning a unitary U from
homodyne or heterodyne detection data, in which case a
risk function could be defined in terms of the difference
in the expected quadrature vector of the output state for
the hypothesis and target unitaries. General unitary learn-
ing protocols based on other CV measurement-motivated
risk functions, such as those associated with CV distin-
guishability norms [63,64], are expected to have associated
NFL theorems and quantum compiling protocols that are
adapted to the measurement class under consideration.

We further note that two-mode-squeezed states are not
the only choice of state to saturate the entanglement-
enhanced NFL bound for arbitrary unitaries. One could
alternatively use any full rank state, such as cluster states.
A finite energy CV cluster state is defined by |CLr〉 =
eiq⊗q[S(−r)|0〉]⊗2, where q is the single-mode position
quadrature and S(r) is the unitary squeezing operator. The
state |CLr〉 limits to the well-known CV cluster state for
r → ∞ [65]. One could use |CLr〉 to define a faithful cost
function analogous to the Loschmidt echo and ricocheted
TMSS costs.

As quantum hardware develops, the CV quantum com-
piling algorithms we have presented here are expected
to find use optimizing short-depth CV quantum circuits,
thereby aiding the implementation of larger scale quan-
tum algorithms. Furthermore, we envision that tuning CV
quantum resources such as intensity or squeezing could
allow one to implement our CV quantum compiling algo-
rithms in a noise resistant way. For example, results of
Ref. [52] indicate that sublinear scaling (with mode num-
ber m) of the coherent state intensity and number of
quantum-limited attenuator layers does not induce barren
plateaus in cost functions such as CACSE when restricted to
linear optical unitaries. More generally, we are excited by
the idea that these quantum compilation algorithms may
be used to study the optical properties of new materials. It
would be interesting to explore whether these algorithms
could be combined with metalearning strategies to actively
design new materials with desirable properties such as
controllable squeezing amplitudes or nonlinearities.
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APPENDIX A: COMPARISON OF LOSCHMIDT
ECHO (10) AND RICOCHETED (13) TMSS COSTS

We show how the difference between cost functions (10)
and (13) depends on the squeezing parameter r and the
rank of the variational ansatz V. Consider the truncated
two-mode-squeezed state in Eq. (8) and variational ansatz
V such that the rank of V is r. For V distributed with respect
to the Haar measure on the unitary group U(r), one can
see that the states V† ⊗ I|ψr

TMSS(r)〉 and I ⊗ V∗|ψr
TMSS(r)〉

are nearly equal in expectation for large r. Specifically, the
expected modulus of the inner product of these states is
given by

EV{|(V† ⊗ I|ψr
TMSS(r)〉, I ⊗ V∗|ψr

TMSS(r)〉)|}

= 1 − tanh2 r
1 − tanh2r r

EV

( r∑

,′=0

tanh+
′
r|V,′ |2

)

= 1
r

1 − tanh2 r
1 − tanh2r r

(
1 − tanhr r
1 − tanh r

)2

= 1
r

1 + tanh r
1 + tanhr r

1 − tanhr r
1 − tanh r

∼ tanhr−1 r for r → ∞. (A1)

For fixed r, the r → ∞ limit is 1. Furthermore, even
if r is increased by a multiplicative factor r �→ λr, i.e.,
the unitaries considered are in U(λr), the value of the
expectation remains close to 1 if one simply adjusts the
squeezing r according to r �→ r + ln λ. To see this, just
expand the asymptotic function in Eq. (A1) with respect to
the small number e−2r to get tanhr−1 r ∼ 1 − 2(r − 1)e−2r

for large r.

APPENDIX B: FAITHFULNESS OF C̃R-TMSSr

To prove the faithfulness of C̃R-TMSSr we start by
showing that it can be written in terms of the inner
product (V, U)ρ⊗m

β
:= Tr√ρβ⊗mU√

ρβ
⊗mV†, where ρβ ∝

∑∞
n=0 e−βn|n〉〈n| is a single-mode thermal state with

inverse temperature β. This inner product appears in
the theory of generalized conditional expectations [66]
and quantum relative entropies [67]. Despite its compli-
cated appearance, (V, U)ρ⊗m

β
is actually efficiently com-

putable using pure entangled Gaussian state preparation.
To demonstrate this fact, consider m copies of a two-
mode-squeezed state prepared in mode pairs (Aj , Bj ),
j = 1, . . . , m:

|ψm
TMSS(r)〉 ∝

m⊗

j =1

∞∑

=0

(tanh r)|〉Aj ⊗ |〉Bj (B1)

with squeezing parameter r satisfying −2 ln tanh r = β. It
follows that

(V, U)ρ⊗m
β

= (1 − e−β)m
∑

�,�′
e−β‖�+�′‖1/2U�,�′(V†)�′,�

= (1 − tanh2 r)m
∑

�,�′
(tanh r)‖�+�′‖1U�,�′V∗

�,�′

= Tr|ψm
TMSS(r)〉〈ψm

TMSS(r)|⊗mUA ⊗ V∗
B, (B2)

where the sums over �, �′ are over Z
×m
≥0 . It fol-

lows from definition (13) that CR-TMSSr(V, U) = 1 −
|(V, U)ρ⊗m

β
|2 and from Eq. (14) that C̃R-TMSSr(V, U) =

1 − |(V, U)ρ⊗m
β

|2/|(V, V)ρ⊗m
β

|2|(U, U)ρ⊗m
β

|2. The facts that
(X , Y)ρ⊗m

β
is linear in Y, conjugate linear in X ,

(X , X )ρ⊗m
β

∈ R (with value 0 if and only if X = 0) are
clear. Therefore, the Cauchy-Schwarz inequality

|(V, U)ρ⊗m
β

|2 ≤ |(V, V)ρ⊗m
β

||(U, U)ρ⊗m
β

| (B3)

holds. It implies the faithfulness of Eq. (14), i.e.,
C̃R-TMSSr(V, U) = 0 if and only if U = eiφV for some
φ ∈ [0, 2π).

APPENDIX C: CV NFL THEOREMS FOR
GAUSSIAN OPERATIONS

Here, we show that Theorems 1 and 2 can be generalized
to learning arbitrary Gaussian operations.

In Corollary 1 below, the target unitary U is associ-
ated with L ∈ Sp(2m, R) by U†RU = RL and the learning
algorithm outputs TS ∈ Sp(2m, R) when given training set
S in Eq. (37). A 2m × 2m real matrix L is symplectic if and
only if LT�L = �, where

� =
(

0 1
−1 0

)⊕m

is the standard symplectic form on R
2m.

Corollary 1: For any m ∈ N, define G(2m) := {O1ZO2},
where O1, O2 ∈ Orth(2m) ∩ Sp(2m, R) and Z = ⊕m

j =1

diag(zj , z−1
j ) with zj ∈ R+. Let S be the training data (37)

with |S| ≡ 0 mod 2, and let L ∈ Sp(2m, R). If RL(TS) is
the risk (38) and G(2m) is equipped with the probabil-
ity measure dO1 dO2 μ(dz), with dO1 and dO2 Haar
measures and μ(dz) a probability measure on R

m, then
ES{EL[RL(TS)]} is given by Eq. (39).

Proof. Every symplectic matrix L is in G(2m) due to the
Bloch-Messiah decomposition [68]. From Eq. (40), it fol-
lows that RL(TS) = 1

2 − TrTSLT/4m. Since TS and L are
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assumed to agree on the subspace of R
2m spanned by the

training data, one can write

TSLT =
(

I|S| A
B Y

)

.

But TSLT ∈ Sp(2m, R) implies that

�|S| + BT�2m−|S|B = �|S|, (C1a)

YT�2m−|S|Y + AT�|S|A = �2m−|S|, (C1b)

where � = �|S| ⊕�2m−|S|. Equation (C1a) implies that
B = 0 from nondegeneracy of the symplectic form. Let
V be the Gaussian unitary that acts on the canoni-
cal operators as V†RV = RTSLT. Then the action of V
on the 2m vector of operators (0, . . . , 0, R̃) with R̃ :=
(q|S|+1, p|S|+1, . . . , qm, pm) is (R̃B, R̃Y) = (0, . . . , 0, R̃Y), so
the unitary invariance of the canonical commutation rela-
tion implies that Y ∈ Sp(2m − |S|). It then follows from
Eq. (C1b) that A = 0. One concludes that

EL[RL(TS)] = 1
2

− |S|
4m

− EY

(
TrY
4m

)

, (C2)

where EY is taken with respect to the measure on Y induced
by the measure on G(2m). Since Y is a symplectic matrix,
it can be written W1FW2 with W1, W2 ∈ Orth(2m − |S|).
The fact that W1 and W2 are independent and distributed
according to the Haar measure follows from restricting the
Haar measure on O1 and O2. Therefore, the expectation
over Y in Eq. (C2) is zero. �

An entirely equivalent argument can be used to general-
ize Theorem 2 to learning Gaussian operations.

APPENDIX D: CV NFL THEOREM WITH
GAUSSIAN TRAINING DATA

A centered Gaussian state is a Gaussian state that sat-
isfies 〈R〉 = 0 and, therefore, is uniquely defined by its
covariance matrix �i,j = 1

2 〈[Ri, Rj ]+〉, which is a positive
2m × 2m matrix. For example, the only centered coherent
state is the vacuum �|0〉 = diag( 1

2 , . . . , 1
2 ). For examples

with entanglement, the two-mode-squeezed states and CV
cluster states are pure, centered Gaussian states with m =
2. Let |ψ〉 be a centered Gaussian state, and let U be
a linear optical unitary that satisfies U†RU = RO. Then
�U|ψ〉 = OT�|ψ〉O. Instead of training with coherent state
mean vectors, consider now linearly independent training
data S = {(�(j ), OT�(j )O)}|S|

j =1, where �(j ) is the covari-
ance matrix of an m-mode pure, centered Gaussian state
satisfying rank I2m

2 −�(j ) = 2 for each j , i.e., the state is
squeezed only in one phase space direction. We consider

the risk function

RO(TS) = 1
m(log D)m

∫

�

d�
∫

‖TT
S�TS − OT�O‖2

2,

(D1)

where the integral d� is taken over a compact subset � of
covariance matrices that satisfy ‖�‖ ≤ D

2 and |det2�| =
1. Physically, � is the set of covariance matrices of pure
Gaussian states with maximal squeezing parameter r =
1
2 log D. We assume that the learning algorithm outputs an
orthogonal matrix TS such that TT

S�
(j )TS = OT�(j )O for

all j , i.e., the algorithm produces perfect agreement with
the target on the training data set. With the cost function
(D1), Theorem 3 shows that the expected risk is reduced
by a function scaling as |S|2 instead of |S| in Theorem 1.

Theorem 3: Let O be distributed according to the normal-
ized Haar measure on Orth(2m), and let the training data
S of cardinality |S| be chosen uniformly from a compact
subset of m-mode pure, centered Gaussian states satisfy-
ing the rank condition above. Then, for the risk function
(D1),

ES{EO[RO(TS)]} = D2 − D−2

4 log D

(

1 − 1
2(m + 1)

)

− (D − D−1)2(|S|2 + 1)
8m(log D)2

+ O(m−2).

(D2)

Proof. The integral defining the risk (D1) is over a
compact set � of pure, centered Gaussian states that
have squeezing parameters with magnitude uniformly dis-
tributed between r = − 1

2 log D and r = 1
2 log D, where

D > 1. Specifically, the covariance matrices � appearing
in the integral have the form

� ∈
{

WTdiag
(

e−2r1

2
,

e2r1

2
, . . . ,

e−2rm

2
,

e2rm

2

)

W

: W ∈ Orth(2m), rj ∈
[

− 1
2

log D,
1
2

log D
]}

. (D3)

For calculating the expected risk function, it is advanta-
geous to use the vec functor. For a matrix A ∈ End(R2m),

vecA =
2m∑

i=1

2m∑

j =1

Ai,j ei ⊗ ej ∈ R
4m2

, (D4)

where {ej }2m
j =1 is an orthonormal basis of R

2m. For example,
vec(WTAW) = (W ⊗ W)vec(A). Also, vec is an isometry
from End(R2m) as a finite-dimensional Hilbert space with
Hilbert-Schmidt inner product to R

4m2
as a Hilbert space

with Euclidean inner product: ‖A‖2
2 = ‖vecA‖2. The risk

(D1) becomes
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RO(TS) = 1
m(log D)m

∫ (1/2) log D

−(1/2) log D
dr1 · · ·

∫ (1/2) log D

−(1/2) log D
drm

∫

dW

×
[

‖TT
S WTdiag

(
e−2r1

2
,

e2r1

2
, . . . ,

e−2rm

2
,

e2rm

2

)

WTS − OTWTdiag
(

e−2r1

2
,

e2r1

2
, . . . ,

e−2rm

2
,

e2rm

2

)

WO‖2
2

]

= 1
4m(log D)m

∫

drdW‖(TS ⊗ TS − O ⊗ O)(W ⊗ W)
m∑

j =1

(e−2rj e2j −1 ⊗ e2j −1 + e2rj e2j ⊗ e2j )‖2 (D5)

with dW the normalized Haar measure over Orth(2m), where the second equality follows from using the isometric property
of vec. In the last equality, we also shortened the integral notation. Expanding the square of the Euclidean distance gives
a sum of two integrals:

RO(TS) = 2
4m(log D)m

∫

dr
m∑

j =1

(e−4rj + e4rj )− 2
4m(log D)m

∫

dr

×
∫

dW
m∑

k,j =1

[e−2(rj +rk)(eT
2j −1WTTT

S OWe2k−1)
2 + e−2(rj −rk)(eT

2j −1WTTT
S OWe2k)

2

+ e2(rj −rk)(eT
2j WTTT

S OWe2k−1)
2 + e2(rj +rk)(eT

2j WTTT
S OWe2k)

2]. (D6)

The integral in the first line evaluates to (D2 − D−2)/

4 log D. In the second integral, it is useful to break up the
sum over j , k to the j = k and j �= k parts. Then we use the
following lemma.
Lemma 1: Let V be a real vector space with orthonormal
basis {ei}2m

i=1, and let W, L ∈ Orth(2m). Then, for any i, j ∈
{1, . . . , 2m} with j �= i,

∫

dW(eT
i WTLWei)

2 = 2m + TrL2 + (TrL)2

4m2 + 4m
,

∫

dW(eT
i WTLWej )

2 =
2m∑

r=1

L2
r,r

4m2 + 4m

+
∑

r �=r′

Lr,rLr′,r′(2m + 1)
4m(m + 1)(2m − 1)

→ (TrL)2

4m2 + 4m
as m → ∞. (D7)

The proof of the lemma involves integration over the
orthogonal group with respect to the Haar measure [69].
We apply the lemma with L = TT

S O, using the first integral
from the lemma exactly to evaluate the j = k part of the
second integral in Eq. (D6) and using the second integral
from the lemma in its asymptotic form to evaluate the j �=
k part of the second integral in Eq. (D6). The result for

integration over W is

RO(TS) = D2 − D−2

4 log D

− (D2 − D−2)[2m + TrTT
S OTT

S O + (TrTT
S O)2]

16m(m + 1) log D

− (D − D−1)2(TrTT
S O)2

8m(log D)2
. (D8)

The assumption that TS and O agree on the training
dataset S is now taken into account. Recall that the
training covariance matrices �(j ) are associated with dis-
tinct directions in R

2m. Therefore, we can write TT
S O =

I|S| ⊕ Y with Y ∈ Orth[(2m − |S|)]. Note that
∫

dY TrY =
0,

∫
dY TrY2 = 1, and

∫
dY (TrY)2 = 1. From this, it

follows that EO[(TrTT
S O)2] = EY[(|S| + trY)2] = |S|2 + 1

and EO{Tr[(TT
S O)2]} = EY(|S| + Y2) = |S| + 1. Applying

these to Eq. (D8) gives

EO[RO(T)] = D2 − D−2

4 log D
− (D2−D−2)(2m + |S|2+|S|+2)

16m(m + 1) log D

− (D − D−1)2(|S|2 + 1)
8m(log D)2

+ O(m−2), (D9)

where the O(m−2) comes from the asymptotic in Eq. (D7).
Absorbing the remaining O(m−2) terms and carrying
out the trivial average over the finite set S results in
Eq. (D2). �
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