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via On- and Off-Resonant Coupling

Masaya Fukami ,1 Denis R. Candido ,2 David D. Awschalom ,1,3 and Michael E. Flatté 2,4,*

1
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA

2
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA

3
Center for Molecular Engineering and Materials Science Division, Argonne National Lab, Lemont, Illinois, USA

4
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, Netherlands

 (Received 17 January 2021; revised 6 July 2021; accepted 8 September 2021; published 21 October 2021)

The ability to manipulate entanglement between multiple spatially separated qubits is essential for
quantum-information processing. Although nitrogen-vacancy (NV) centers in diamond provide a promis-
ing qubit platform, developing scalable two-qubit gates remains a well-known challenge. To this end,
magnon-mediated entanglement proposals have attracted attention due to their long-range spin-coherent
propagation. Optimal device geometries and gate protocols of such schemes, however, have yet to be
determined. Here we predict strong long-distance (> μm) NV-NV coupling via magnon modes with
cooperativities exceeding unity in ferromagnetic bar and waveguide structures. Moreover, we explore
and compare on-resonant transduction and off-resonant virtual-magnon exchange protocols, and discuss
their suitability for generating or manipulating entangled states at low temperatures (T � 150 mK) under
realistic experimental conditions. This work will guide future experiments that aim to entangle spin qubits
in solids with magnon excitations.
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I. INTRODUCTION

Entanglement and quantum coherence are at the core
of quantum-information technologies. Among the exist-
ing qubit platforms for quantum-information processing,
nitrogen-vacancy (NV) centers in diamond have attracted
significant attention due to their long spin-coherence time,
quantum-state controllability, and the ability to initialize
and readout the spin state optically [1–7]. Although there
are remarkable applications of NV centers in the areas
of quantum sensing and quantum communication [8–20],
quantum computation using NV centers remains challeng-
ing due to the difficulty of engineering useful long-distance
gates, i.e., over an optically resolvable distance on the
order of micrometers [21–26], which entangle qubits faster
than decoherence rates. Once this long-distance two-NV
gate is established, NV centers will be a scalable plat-
form of quantum computation enabled by their nanoscale
localization and on-chip integratability [27].
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Recently, several potential solutions to this challenge
have been proposed by making use of boson modes as
an information mediator. While photon-mediated NV-NV
entanglement has been experimentally demonstrated over
a meter and a kilometer length scale [10–12,18,20], based
on indistinguishable single-photon detection, its extension
to two-qubit gates is still challenging due to its slow entan-
gling rate as a result of its low success probability. It has
been proposed, however, that the long-distance two-qubit
gates can be realized by harnessing such entangled NV-
center pair generation under both single-shot readout and
local gates based on the measurement outcome [28]. This
is possible if NV centers have access to quantum memo-
ries in the decoherence-free subspace [29], which survive
during the multiple entangling attempts of NV centers
that cause decoherence [13,18–20,28]. Alternatively, as a
means for extending NV-NV interaction on a wafer with-
out needing single boson detection and with faster gate
operations, hybrid quantum systems have been extensively
studied where NV centers interface other bosonic systems
[30–33]. In a carbon-nanotube-NV-center hybrid system
[31], for example, it has been proposed to couple NV cen-
ters and phonon modes in a suspended carbon nanotube by
injecting an electric current through the nanotube.

Hybrid quantum systems composed of NV centers and
magnons in ferromagnets have emerged and attracted
attention as another highly promising platform to extend

2691-3399/21/2(4)/040314(34) 040314-1 Published by the American Physical Society

https://orcid.org/0000-0001-6543-5572
https://orcid.org/0000-0002-6708-3280
https://orcid.org/0000-0002-8591-2687
https://orcid.org/0000-0001-5093-1549
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.040314&domain=pdf&date_stamp=2021-10-21
http://dx.doi.org/10.1103/PRXQuantum.2.040314
https://creativecommons.org/licenses/by/4.0/


FUKAMI, CANDIDO, AWSCHALOM, and FLATTÉ PRX QUANTUM 2, 040314 (2021)

FIG. 1. Schematic of NV centers in diamond placed on top of
an infinitely long magnon waveguide and a finite length magnetic
bar made of YIG.

such NV-NV interaction [34–44], where NV spins are
intrinsically coupled to magnon modes through their
dynamical fringe magnetic fields. Taking advantage of
virtual-magnon exchange in one-dimensional spin chains
[34] or transduction of energy quanta in ferromag-
netic discs [39], NV-NV entanglement has been investi-
gated theoretically [34,39], thus stimulating a variety of
experiments on the NV-magnon hybrid system [45–49].
Nonetheless, optimal device geometries and gate protocols
suitable for entangling separated NV centers have yet to
be explored. Moreover, several important practical aspects
and entangling schemes of these systems have not been
fully addressed theoretically, e.g., realistic ferromagnetic
structures, relevant magnetic interactions [50–52], finite
temperatures, and possible entanglement protocols.

Here we present a practical and realistic hybrid quan-
tum system to engineer NV-NV entanglement over micron
length scales via on- and off-resonant magnon excitations
at low temperatures (T � 150 mK). The entanglement
protocol in this hybrid quantum system is based on the
strong coupling of NV spins to the magnon modes in
yttrium-iron-garnet (YIG) nanodevices. Under a realistic
geometry and accurately taking into account both dipole
and exchange interactions, we obtain strong NV-magnon
interactions and high entangling gate to decoherence ratio
(GDR) in both an infinitely long YIG waveguide and a
finite length YIG bar structure (see Fig. 1). Particularly for
the latter, we obtain NV-magnon cooperativity C � 104 for
on-resonance conditions and NV-NV GDR ≈ 103 under
off-resonant magnon excitations for two NV centers sep-
arated by more than 2 μm. This leads to a usefully fast
entangling gate (relative to the qubit decoherence rate)
at optically resolvable NV-NV separations. These values
of GDR greatly exceed fidelities that were sufficient to
demonstrate error correction on other platforms [53]. All
of our results are obtained within a Hamiltonian formal-
ism [54,55], which allows for semianalytical expressions
for the coupling in terms of the relevant experimental and
geometrical quantities.

Finally, we explore and compare the calculated entan-
glement quality of both on-resonant transduction and
off-resonant virtual-magnon exchange entangling gate

protocols, which we regard as another major focus in
this work. We achieve this comparison by means of a
numerical simulation of the Lindblad master equation tak-
ing into account two NV centers and a magnon mode
near the resonance condition at finite temperatures. More
specifically, we analyze and compare the entanglement
negativity, fidelity, and degree of the Bell inequality vio-
lation for both cases under different parameters of the
NV-magnon hybrid system. Notably, our results show that
although the off-resonant protocols are robust at temper-
atures up to T ≈ 150 mK due to the absence of magnon
occupation decay, the transduction protocol outperforms it
due to its faster gate operations at lower temperatures if
the magnon damping parameter is sufficiently small α �
(�ω/ωμ)(1/4gμT∗

2)[π/(π − 1)], with magnon frequency
ωμ, NV center coherence time T∗

2, NV-magnon detuning
frequency �ω, and NV-spin-magnon-mode coupling gμ.
Our calculations and analysis serve as a guide for future
experiments to engineer on-chip long-distance entangling
gates between NV centers mediated by magnons in ferro-
magnetic nanostructures.

In this paper, we begin in Sec. II with the descrip-
tion of the Hamiltonian formalism for the dipole-exchange
magnons coupled to NV centers. In Sec. III we calculate
the full magnonic properties of a YIG waveguide inter-
acting with NV centers. We obtain the NV-NV coupling
strength, the entanglement rate, and the gate to deco-
herence ratio under the off-resonant NV-magnon inter-
action condition. Similarly, in Sec. IV we first calculate
the magnonic properties of a finite length YIG bar. Sec-
ondly, we evaluate both NV-magnon on-resonant coupling
strength and its cooperativity as well as the NV-NV cou-
pling strength under the off-resonant condition. We provide
for the latter the entanglement rate and the gate to deco-
herence ratio. Finally, in Sec. V we present a complete
comparison between the transduction and virtual-magnon-
exchange protocols in detail under different system param-
eters and physical conditions.

II. HAMILTONIAN FORMALISM OF
DIPOLE-EXCHANGE MAGNONS AND

NV-MAGNON INTERACTION

Here we outline the Hamiltonian formalism of dipole-
exchange magnons coupled to NV centers providing a
complete and accurate treatment of both magnetic dipole
and quantum exchange interactions between the spins in
YIG waveguides and bars with finite cross section. This is
crucial in our study as the NV centers have eigenfrequen-
cies typically on the order of gigahertz, thus interacting
with the so-called dipole-exchange magnons in ferromag-
nets [50]; using simpler, less accurate magnon dispersion
relations as in Ref. [34] leads to a substantial overestima-
tion of the NV-magnon coupling. As illustrated in Fig. 1,
we consider hybrid quantum devices where NV centers
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are placed on top of the YIG structures. Whereas multi-
ple NV centers can be placed on top of the infinitely long
YIG waveguide in a scalable fashion as shown in Fig. 1, in
the following calculations we focus only on coupling two
NV centers. The total Hamiltonian of our hybrid system is
written as H = HNV + Hm + Hint, where HNV is the NV
Hamiltonian, Hm is the magnon Hamiltonian, and Hint is
the interaction Hamiltonian,

HNV =
∑

i=1,2

DNV
(
n̂NV · SNVi

)2 + γμ0SNVi · Hext, (1)

Hm = −μ0

∫
drHext · M(r)+ μ0

2

∫
drαex(r)∇M : ∇M

+ μ0

2

∫
drdr′[∇ · M(r)]G

(
r − r′) [∇′ · M

(
r′)] ,

(2)

Hint =
∑

i=1,2

γμ0SNVi · ∇
∫

dr′G
(
r − r′)∇′ · M

(
r′)
∣∣∣∣
r=ri

.

(3)

Here, DNV = 2π × 2.877 GHz is the zero-field splitting of
the NV center, n̂NV is the unit vector along the NV main
symmetry axis, SNVi is the spin-1 operator of the NV center
labeled by i ∈ {1, 2}, γ = 2π × 28 MHz/mT is the abso-
lute value of the electron gyromagnetic ratio, μ0 is the
vacuum permeability, Hext is the external magnetic field,
M(r) is the magnetization with the constraint |M(r)| =
Ms(r) = MsF(r), Ms = 245.8 mT/μ0 is the YIG satu-
ration magnetization, F(r) = 1 (0) inside (outside) the
ferromagnetic structure, αex(r) = αexF(r), αex = λ2

ex =
Dex/γμ0Ms is the exchange-length squared, Dex = 5.39 ×
10−2γ mT μm2 is the YIG exchange constant, the double-
dot product is defined as ∇M : ∇M = ∂aMb∂

aM b, ri is the
position of NVi, G(r − r′) = 1/4π |r − r′| is Green’s func-
tion, and we set � = 1. We note that the first term in Eq. (2)
is the Zeeman energy, the second term is the exchange
energy, and the third term is the magnetic dipole energy.
Inclusion of both the second and the third term in Eq. (2)
results in the dipole-exchange magnons in ferromagnets.

III. INFINITELY LONG FERROMAGNETIC
WAVEGUIDE

Here we consider the case of an infinitely long YIG
waveguide with thickness, width, and length given by
d, w, and l(→ ∞), respectively. The external magnetic
field is applied along the YIG waveguide, Hext = Hextẑ,
and NV centers are positioned at height h from its top
surface [see illustration in Fig. 2(a)]. The equilibrium
magnetization is M0(r) = MsẑF(r), for which its contri-
bution in the interaction Hamiltonian Eq. (3) vanishes.
The NV main symmetry axis is set to be parallel to the

(a)

(c)

(d)

(e)

(b)

FIG. 2. (a) Schematic and coordinates of NV centers placed
on top of an infinitely long YIG waveguide with applied external
magnetic field Hext. (b) The NV center’s transition frequen-
cies and magnon spectrum as a function of external field Hext
for d = 20 nm and w = 120 nm. The shaded area represents
a continuum of magnon modes. The lowest magnon frequency
ωmin and the NV transition frequency ωNV of |g〉 ↔ |e〉 are
detuned by �f = 3 MHz at Hext = Hc. (c) Dispersion relation
f (k) = ωk,(0,0)/2π of magnons and the dimensionless coupling
g(k) = g(ρ, k) between magnons and the NV center at Hext =
Hc. The NV center is positioned at ρ = (x, y) = (d + h, w) with
h = 25 nm [see the white cross mark in (d)]. The minimum fre-
quency ωmin and its respective wave number kmin are shown.
(d) Spatial density plot of the dimensionless coupling g(kmin) at
Hext = Hc with contours at |g(kmin)| = 0.05, 0.1, 0.15, and 0.2.
(e) Effective NV-NV coupling strength geff [Eq. (9)] as a function
of the NV-NV distance under�f = 3 MHz and�f = 10 MHz.
The gray curve shows the coupling due to the direct magnetic
dipole-dipole interaction between NV centers. The entanglement
rate and the gate to decoherence ratio are shown on the right axis
for T∗

2 = 1 ms. Inset shows the time τ evolution of the entangle-
ment negativity at T = 0 from the initial state |g〉1|e〉2 scaled by
the Bell-state negativity NB.

external magnetic field, n̂NV = ẑ, for geometrical sim-
plicity. We further define the deviation from the equi-
librium magnetization δM(r) = M(r)− M0(r) ≈ m(r)−
[|m(r)|2/2Ms(r)]ẑ, where m(r) = mx(r)x̂ + my(r)ŷ is
a small two-dimensional magnetization deviation. The
linearized magnetization dynamics [56] are governed
by the Hamiltonian equation of motion for m−(r) =
[2γMs(r)]1/2a(r) and m+(r) = [2γMs(r)]1/2a∗(r) using
the magnon Hamiltonian Hm up to quadratic order in the
complex canonical variables a(r) and a∗(r), where we
perform the Holstein-Primakoff approximation [51] and
m±(r) = mx(r)± imy(r).
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To obtain the normal magnon-mode frequencies and
the dynamical fringe field spatial profiles, we diagonalize
the magnon Hamiltonian Eq. (2) by expanding the com-
plex canonical variables assuming totally unpinned surface
spins, i.e.,

a(r) =
∫

dk
2π

eikz
∑

nm

f X
n (x)f Y

m (y)ak,(n,m). (4)

Here, the basis functions are

f X
n (x) =

[
2FX (x)
(1 + δn,0)d

] 1
2

cos(κX
n x), (5)

f Y
m (y) =

[
2FY(y)

(1 + δm,0)w

] 1
2

cos(κY
my), (6)

where κX
n = nπ/d, κY

m = mπ/w, FX (x) = �(x)�(d − x),
FY(y) = �(y)�(w − y), and � is the Heaviside step
function. As we consider the case where both the thick-
ness and the width of the YIG waveguide are small,
we restrict our discussion to the magnon-mode subspace
with (n, m) = (0, 0), which presents uniform magnetiza-
tion deviations across the x-y plane and gives the lowest
energy magnon band in the dispersion relation.

After writing Hm up to the quadratic order in the com-
plex canonical variables, applying the Bogoliubov trans-
formation, and promoting the complex canonical variables
to the quantum creation and annihilation operators, we
obtain the diagonalized Hamiltonian (see Appendix B 1)

Hm =
∫

dk
2π
ωk,(0,0)β

†
k,(0,0)βk,(0,0), (7)

where ωk,(0,0) is the magnon energy and βk,(0,0) (β†
k,(0,0))

is the magnon annihilation (creation) operator satisfying
[βk,(0,0),β

†
k′,(0,0)] = 2πδ(k − k′).

The coupling strength between magnon modes and NV
centers can be obtained by applying the same Bogoli-
ubov transformation in the interaction Hamiltonian Eq. (3).
As we focus on external magnetic field values γHext <

DNV, the NV center’s ground state and the first excited
state are |g〉 = |Sz

NV = 0〉 and |e〉 = |Sz
NV = −1〉, respec-

tively. Up to the linear order in magnon creation and
annihilation operators and using the rotating-wave approx-
imation (|ωk,(0,0) − ωNV| � ωk,(0,0) + ωNV), we obtain the
interaction Hamiltonian (see Appendix B 2)

Hint =
√
ωMωd√
w/d2

∑

i=1,2

∫
dk
2π

g(ρ i, k)σ+
NVi
βk,(0,0)eikzi + H.c.,

(8)

in the NV centers’ subspaces spanned by {|g〉i, |e〉i}, where
ωM = γμ0Ms, ωd = μ0γ

2/d3, g(ρ i, k) is the dimension-
less coupling between the NV center spin and the

k-magnon mode, ρ i is the NVi’s position in the x-y
plane, σ+

NVi
= |e〉i〈g|, and σ−

NVi
= (σ+

NVi
)†. The virtual-

magnon-mediated NV-NV interaction can be obtained via
the Schrieffer-Wolff transformation [57] as HNV−NV

eff =
−
(

geffσ
+
NV1
σ−

NV2
+ H.c.

)
with (see Appendix B 3)

geff = ωMωd

w/d2

∫
dk
2π

|g(k)|2 exp[ik(z1 − z2)]
ωk,(0,0) − ωNV

, (9)

where geff is the effective NV-NV coupling strength,
ωNV = DNV − γHext is the transition frequency of |g〉 ↔
|e〉, and we write g(k) = g(ρ i, k) assuming ρ1 = ρ2. The
above expression is valid when (ωMωdd2/2πw)

∫
dk|g(k)|2

(ωk,(0,0) − ωNV)
−2 � 1. We note that this effective cou-

pling strength geff for the off-resonant configuration does
not depend on the temperature, as it is independent of the
initial magnon number state |nm〉 (i.e., from second-order
perturbation theory) even though the NV-magnon coupling
strength matrix element is proportional to

√
nm + 1 (see

Appendix B 4).
In Fig. 2(b) we plot the NV center’s transition frequen-

cies and magnon-mode frequencies as a function of the
external magnetic field Hext, where we assume (d, w) =
(20 nm, 120 nm) for the waveguide dimensions [58]. As
we take the limit where the length of the YIG waveguide
is infinity (l → ∞), the magnon-mode frequencies form
a continuum with its minimum denoted as ωmin. At field
Hext = Hc, the NV center’s lower transition frequency ωNV
is detuned from the magnon dispersion minimum ωmin by
�ω = ωmin − ωNV = 2π�f = 2π × 3 MHz. Figure 2(c)
shows the magnon dispersion relation near ωmin and the
wave-number dependence of the dimensionless coupling
strength g(k) at Hext = Hc, ρ i = (d + h)x̂ + wŷ, and h =
25 nm [see the cross marker in Fig. 2(d)]. The coupling
strength also depends on the spatial position of the NV
center relative to the YIG waveguide, which is shown in
Fig. 2(d). As the dynamical fringe magnetic field generated
by a single magnon is confined near the YIG device, the
coupling strength is larger if the NV center is positioned
near the YIG waveguide.

Under the off-resonant condition shown in Fig. 2(c), the
NV centers on top of the YIG waveguide interact with each
other via the exchange of virtual magnons. In Fig. 2(e), we
plot the effective NV-NV coupling strength geff [Eq. (9)]
as a function of the NV-NV distance δz = |z1 − z2| for
both �f = 3 MHz and �f = 10 MHz cases represented
by the red and blue dots, respectively. The coupling decays
rapidly with detuning, which allows the entangling interac-
tion to be switched off by increasing the external magnetic
field from Hext = Hc by approximately 0.1 mT. We show
that the calculated coupling strength is well explained by
the analytical formula

geff ≈ ωMωd̄

�ω
|g(kmin)|2 cos(kminδz)e−δz/ξ0 (10)
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as shown by the solid red and blue curves in Fig. 2(e),
where ξ0 = √

Dex/�ω is the spin correlation length
and ωd̄ = μ0γ

2/(ξ0wd). The entangling gate rate ER =
4geff/π and the gate to decoherence ratio GDR =
4geffT∗

2/π are shown on the right axis, where a coherence
time T∗

2 = 1 ms of the NV center is used [7]. As we obtain
GDR > 10 for 1 μm separated NV centers, we predict a
useful and practical entangling gate.

To show that this system can manipulate the NV-NV
entanglement, we perform a simulation using the Lindblad
master equation. In the inset of Fig. 2(e) we plot the entan-
glement negativity [59] N at T = 0 as a function of the
NV-NV interaction time after the preparation of the initial
spin state in |g〉1|e〉2, where the negativity is normalized
by the Bell state’s negativity NB. As we obtain N > 0, we
clearly demonstrate that the NV centers are entangled. If
multiple NV centers are placed on top of the YIG waveg-
uide (see Fig. 1), neighboring two-NV gates can thus be
performed by locally changing the external magnetic field
around the two NV centers to shift their transition frequen-
cies relative to the minimum magnon-mode frequency in
the range �ω > 0. Alternatively, local electric field [60]
or strain [61] can be used to shift NV centers’ transition
frequencies to avoid applying a local magnetic field at the
underlying YIG location, the effect of which is discussed
in Appendix K.

In Fig. 3 we plot the NV-NV entanglement rate and the
gate to decoherence ratio as a function of the waveguide
thickness d for different waveguide dimensions and NV
centers’ heights h. We assume a fixed NV-NV distance of
1 μm, (xi, yi) = (d + h, w), and �ω = 2π × 3 MHz. The
red (blue) solid curve shows the waveguide thickness d
dependence of the ER and the GDR under the fixed aspect

FIG. 3. Entanglement rate and the gate to decoherence ratio
between two NV centers separated by 1 μm as a function of the
waveguide thickness d. NV centers are placed on the YIG waveg-
uide as drawn in Figs. 2(a) and 2(d). Red curves and blue curves
are calculated for h = 25 nm and 5 nm, respectively. Solid curves
and dashed curves are calculated for a fixed aspect ratio w/d
and width w of the waveguide, respectively. Sharp dips corre-
spond to the nodes in the oscillation of geff as shown in Fig. 2(e).
Calculation is performed for detuning �ω/2π = 3 MHz.

ratio w/d = 6 at h = 25 nm (5 nm), and the red (blue)
dashed curve shows the dependence where the waveguide
width is kept constant with w = 120 nm at h = 25 nm
(5 nm). From these graphs we see that in order to make the
entangling gate faster, one can either have the NV center
closer to the YIG waveguide (diminishing h) or make the
waveguide’s cross-section area smaller. As for placing NV
centers in proximity to the YIG waveguide, we note the
common challenge of making high coherence NV centers
near the diamond surface due to the surface noise known
in the area of NV-based quantum sensing [62].

IV. FINITE-LENGTH FERROMAGNETIC BAR

In this section we show that the NV-magnon coupling
strength can be strongly enhanced under the magnon con-
finement effect of a finite-length ferromagnetic bar. As the
magnon-mode frequencies are discretized for this case,
the system allows us to control the NV levels to be on-
and off-resonant to the magnon levels. Here, the interac-
tion Hamiltonian Eq. (8) can be transformed into the form
of the Jaynes-Cummings model [39,63], and the entan-
gling gate schemes used in both quantum optics and circuit
quantum electrodynamics can now be implemented in our
hybrid quantum system [64–66].

We first obtain the NV-magnon interaction Hamiltonian
for a finite-length YIG bar using a similar procedure as
done in Sec. III. For that, we first take the equilibrium
magnetization to be M0 = MsF(r)ẑ and approximate the
x, y component of the resulting static demagnetization field
in Eq. (2) to be negligible compared to its z component.
Although there is also a finite static demagnetization field
contribution in the interaction Hamiltonian Eq. (3), we ver-
ify that its value is small under the geometry parameters
and NV center positions we consider.

Accordingly, we diagonalize the magnon Hamiltonian
through the following expansion of the complex canonical
variable:

a(r) =
∑

nmp

f X
n (x)f Y

m (y)f
Z

p (z)a(nmp), (11)

where the z-directional basis function is

f Z
p (z) =

[
2FZ(z)
(1 + δp ,0)l

] 1
2

cos(κZ
p z), (12)

κZ
p = pπ/l, and FZ(z) = �(z)�(l − z). As we consider

the case with d, w � l, we restrict our discussion to the
magnon-mode subspace with (n, m) = (0, 0). Consider-
ing z-directional modes with p = 0, 1, . . . , N , where p =
N labels the highest z-directional wave-number mode
to be taken into account, and keeping terms up to
the quadratic order in the complex canonical variables,
we obtain a 2(N + 1)× 2(N + 1) nondiagonal quadratic
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boson Hamiltonian. After applying the Bogoliubov trans-
formation with the paraunitary matrix [54,56] and pro-
moting the complex canonical variables to the quan-
tum creation and annihilation operators, we obtain (see
Appendix C 1)

Hm =
∑

p=0,1,...

ω(00p)β
†
(00p)β(00p). (13)

In a similar way as in Sec. III, the NV-magnon interaction
Hamiltonian can be mapped into the form of the Jaynes-
Cummings model [39,63] (see Appendix C 2)

Hint =
∑

i=1,2

∑

μ=(00p)

gμ(ri)σ
+
NVi
βμ + H.c., (14)

where gμ(ri) ∝ √
ωMωdwl [ωdwl = μ0γ

2/(dwl)] is the cou-
pling strength between the NV center spin and the μ-
magnon mode in units of energy. As the magnon creation
operator β†

μ applied to the magnon number state |nμ〉 gives
rise to a factor of

√
nμ + 1, we expect the on-resonant

NV-magnon configuration to have
√

nμ + 1 faster energy-
transfer oscillations between the NV-center spin and the
μ-magnon mode. However, at finite temperature, which
can be thought of as a statistical mixture of different
magnon-number states, these different-period oscillations
will average out incoherently. Therefore, finite tempera-
ture does not improve the quality of NV-NV entanglement
via magnon modes even though the mean magnon number
〈nμ〉 is larger, indicating that magnon-mediated NV-NV
entanglement needs to be performed at low temperatures
T � 150 mK (see Sec. V).

In Fig. 4(a) we plot the external magnetic field
Hext dependence of the discretized magnon-mode fre-
quencies of a YIG bar with dimensions (d, w, l) =
(5 nm, 30 nm, 3 μm). The neighboring magnon-mode fre-
quencies are separated from each other by over 2π ×
10 MHz for modes with p ≥ 5, as shown in Fig. 4(b). At
field Hext = Hc, the NV center’s transition frequency ωNV
and the magnon-mode frequency ω(005) are resonant. We
plot in Fig. 4(c) the spatial distribution of the NV-magnon
coupling strength g(005) at Hext = Hc for a fixed NV center
height h = 5 nm [see Fig. 2(a)], and obtain g(005) ≈ 2π ×
0.5 MHz depending on the NV center positions. With the
Gilbert-damping parameter of YIG α = 10−5 [67] and the
coherence time of NV centers T∗

2 = 1 ms [7], we show on
the right axis of Fig. 4(c) the corresponding single magnon
μ-mode cooperativity [30,33]

Cμ = |gμ(r)|2
αωμ/T∗

2
, (15)

which is a dimensionless measure of the coupling. We
emphasize that because this represents the single-magnon-
mode cooperativity, the temperature dependence appears

(a)

(c)

(d)

(b)

FIG. 4. (a) The NV center’s transition frequencies and magnon
spectrum as a function of external field Hext for (d, w, l) =
(5 nm, 30 nm, 3 μm). The dark gray and red lines represent
frequencies ω(00,p=5) and ωNV, respectively. (b) Enlargement of
the crossing region between ω(005) and ωNV. (c) Spatial plot of
the coupling strength g = g(005) at Hext = Hc and h = 5 nm.
The white rectangle delimits the bar dimension, and the white
cross mark represents the position of NV1 referred to in (d).
The corresponding cooperativity C(005) is shown on the right
axis. (d) Effective NV-NV coupling strength geff between two
NV centers as a function of the NV-NV distance, where NV1
and NV2 are placed at r1 = (d + h)x̂ + wŷ + (400 nm)ẑ and
r2 = r1 + δzẑ, respectively. The red (blue) curve is calculated for
(d, p) = (5 nm, 5) [(d, p) = (20 nm, 12)]. The entanglement gate
rate (ER) and the gate to decoherence ratio (GDR) are shown on
the right axis. In both cases, the aspect ratio is w/d = 6, length of
the magnetic bar is l = 3 μm, and detuning is �f = �ω/2π =
(ω(00p) − ωNV)/2π = 3 MHz.

only in α and T∗
2, which for the purpose of our low-

temperature analysis are assumed to be independent of
temperature. We find C(005) � 104 over a wide range of
NV center positions, achieving the strong coupling regime
for our hybrid quantum system. In contrast to Sec. III,
where we have a translationally invariant infinitely long
waveguide, here the position of the NV center along the
z direction plays a major role in the coupling strength.
Our calculations enable us to optimize both the coupling
strength and the cooperativity in order to increase NV-NV
entanglement efficiency in our system.

The virtual-magnon-mediated NV-NV interaction is cal-
culated in a similar way as in Eq. (9) under the condition
|gμ(r)| � |ωμ − ωNV|, and we obtain

geff = gμ (r1) g∗
μ (r2)

ωμ − ωNV
(16)
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with μ = (005) (see Appendix C 3). In the same way as
in the waveguide case, this virtual-magnon-mediated cou-
pling strength is independent of temperature. Here, the two
NV centers are placed at r1 = (d + h)x̂ + wŷ + (400 nm)ẑ
[see a cross mark in Fig. 4(c)] and r2 = r1 + δzẑ, where δz
is the NV-NV distance along the bar length. In Fig. 4(d) we
plot geff as a function of δz for the detuning�ω = ω(005) −
ωNV = 2π × 3 MHz, which could be produced by elec-
tric field [60], strain [61] or magnetic field deviation from
Hext = Hc. The corresponding entangling gate rate and the
gate to decoherence ratio are shown on the right axis. Sur-
prisingly, useful entangling gates for 2.2 μm separated NV
centers with geff = 2π × 90 kHz and GDR > 700 are pre-
dicted for this YIG bar system. This makes experiments
more accessible in terms of the independent optical initial-
ization and the readout of NV centers than the waveguide
case.

We also calculate these quantities for a less chal-
lenging to fabricate YIG geometry with (d, w, l, h) =
(20 nm, 120 nm, 3 μm, 5 nm). The result is plotted as a
blue curve in Fig. 4(d), for which we obtain GDR > 100
for the 2.2 μm separated NV centers. This result clarifies
the significance of using the YIG bar structures to entangle
two NV centers separated by a few micrometers. More-
over, the discretized magnon-mode frequencies allows for
controlling the NV-center frequencies to be resonant with
one of the magnon-mode frequencies, which enables the
entanglement of two NV centers via the transduction of
energy quanta that we discuss in the next section. We also
comment that it would be possible to control the NV-
magnon coupling strength via parametric driving of the
discretized magnon modes as studied in cavity quantum
electrodynamics [68] (see Appendix I).

V. TRANSDUCTION AND VIRTUAL-MAGNON
EXCHANGE PROTOCOLS

In this section, we explore and compare two entangling
gate protocols for our hybrid quantum system, on-resonant
transduction and off-resonant virtual-magnon exchange.
Entanglement via the transduction protocol is simulated
by controlling the NV-center frequencies independently as
illustrated in the left schematic of Fig. 5(a). For this case,
the NV spins are initially prepared in the state |g〉1|e〉2, i.e.,
NV1 (NV2) is in its ground (excited) state. We first make
ωNV2 resonant with μ-magnon-mode frequency ωμ for a
certain time τvar during which ωNV1 is detuned from ωμ by
δω =2π × 5 MHz. Second, we swap the NV1 spin state
and the magnon state by making ωNV1 = ωμ for the swap
gate time τSWAP during which ωNV2 is detuned from ωμ
by δω. The total interaction time in this protocol is τint =
τvar + τSWAP and is varied by changing τvar. The control of
the NV centers’ transition frequencies can be performed by
applying a local magnetic field, electric field [60], or strain

(a)

(b) Time Time

FIG. 5. (a) Schematic of on-resonant transduction (left) and
off-resonant virtual-magnon exchange (right) entanglement pro-
tocols. (b) Comparison of the two protocols at T = 70 mK. The
top two figures show the NV center’s excited-state population pie
(i = 1, 2) and magnon population 〈n〉 = 〈n̂μ〉 [μ = (005)] at the
end of the gate operations as a function of the total system inter-
action time. NV centers are separated by 2.2 μm on top of the
YIG bar [see Fig. 4(c)]. For the transduction protocol, NV-center
frequencies are modulated as illustrated in the inset, where each
line represents the frequency of NV centers or the magnon mode.
The bottom two figures show entanglement measures as a func-
tion of the interaction time. The red, sky blue, and gray curves
are the entanglement negativity scaled by the Bell state’s nega-
tivity, the degree of the Bell inequality violation (violated if the
curve is above zero), and the fidelity to the target pure entangled
states, respectively.

[61]. An alternative possibility of controlling the transi-
tion frequencies would be to use a periodic modulation of
the external magnetic field [69,70] (see Appendix J). In
contrast, in the virtual-magnon exchange protocol the NV
centers’ frequencies are both detuned from the μ-magnon-
mode frequency by �ω = ωμ − ωNV1,2 = 2π × 3 MHz
[see the right schematic of Fig. 5(a)]. After the preparation
of the NV centers’ spin state in |g〉1|e〉2, the whole system
evolves over the interaction time τint.

The time evolution of our hybrid quantum system for
both protocols is simulated using the Lindblad master
equation [30,71,72] at a finite temperature T considering
two NV centers and a magnon mode μ,

ρ̇ = −i[H(t), ρ] + 2κ
(
1 + n̄th

m

)
D[a]ρ

+ 2κ n̄th
mD

[
a†] ρ + γ2

2

∑

i=1,2

D
[
σ z

NVi

]
ρ, (17)

where D[O]ρ = OρO† − 1
2 (O†Oρ + ρO†O), κ = αωμ,

γ2 = 1/T∗
2, a = βμ, a† = β

†
μ, n̄th

m = (exp[ωμ/kBT] − 1)−1

is the thermal magnon population, T is temperature, kB
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is the Boltzmann constant, and ρ is the density oper-
ator. Here, the magnon damping parameter κ = αωμ is
based on the dissipation term in the Landau-Lifshitz-
Gilbert equation ∂tM|diss = (α/Ms)M × ∂tM, resulting in
∂tβμ

∣∣
diss ≈ −αωμβμ under the assumption ∂ωμ/∂Hext ≈

μ0γ , which is verified by Fig. 4(b) (see Appendix D 1).
For the magnon-mode contribution in the total Hamilto-
nian H(t), we take only into account the magnon mode
with μ = (005), as this mode produces the dominant con-
tribution in the NV-NV interaction as well as the magnon-
induced decoherence of NV centers in both protocols. As
the NV center’s longitudinal decay rate is much smaller
than the transverse decoherence rate [6], we assume it to
be zero in the simulation. The two NV centers are sep-
arated by 2.2 μm along the YIG bar length with r1 =
(d + h)x̂ + wŷ + (400 nm)ẑ and r2 = r1 + (l − 800 nm)ẑ.
We use the Gilbert-damping parameter α = 10−5 of YIG
[67] and the NV center coherence time T∗

2 = 1 ms [7].
In the upper two panels of Fig. 5(b), we plot the NV cen-

ters’ excited-state population pie (i = 1, 2) and the magnon
population 〈n〉 = 〈n̂μ〉 [μ = (005)] at the end of the trans-
duction (on-resonant) and the virtual-magnon exchange
(off-resonant) protocols as a function of the total sys-
tem interaction time τint at T = 70 mK. In the lower two
panels we plot three different entanglement measures as
a function of the interacting time τint for each protocol.
More specifically, we plot the entanglement negativity
normalized by the Bell state’s negativity, the degree of
the Bell inequality violation, and the fidelity to the tar-
get pure entangled states, which are given by the red,
sky blue, and gray curves, respectively. The resulting
states are entangled if N > 0, and one expects to observe
the violation of the Clauser-Horne-Shimony-Holt (CHSH)
form of Bell inequality if CHSH violation > 0 [73,74] (see
Appendix D 1).

In Fig. 5(b) we first find that the transduction protocol is
faster in gate operation as compared to the virtual-magnon
exchange protocol. This is because the NV-magnon on-
resonant coupling rate gμ ≈ 2π × 0.5 MHz is larger than
the off-resonant NV-NV coupling rate geff ≈ 2π × 90 kHz.
On the other hand, it is observed that the virtual-magnon
exchange protocol results in larger amplitude oscillations
in the NV centers’ excited-state populations and higher
fidelity under the parameters and the temperature used in
the simulation. This result is understood by a combination
of two factors. First, the virtual-magnon exchange protocol
creates only magnons virtually (with magnon population
suppressed by gμ/�ω due to the energy mismatch), thus
being approximately insensitive to the magnon damping
parameter. Secondly, the magnon damping rate αωμ is
faster than the NV center’s decoherence rate 1/T∗

2, and
therefore there is more loss of information if a real magnon
is excited. Nonetheless, in both protocols we predict entan-
gled states can be manipulated and the violation of the Bell
inequality will be observed.

To further compare the two entanglement protocols,
we perform simulations under multiple temperatures and
observe that the virtual-magnon-exchange protocol is more
robust at higher temperatures up to approximately 150 mK
(see Appendices D 2 and E). Moreover, we show that
both protocols do not produce useful entanglement for
T � 150 mK due to the NV centers’ dephasing from
magnon number fluctuations of modes with μ �= (005).
We also evaluate the decay contribution due to these
magnon modes and verify that this is negligible for tem-
peratures T ≤ 150 mK for both upper and lower transi-
tions of NV centers (see Appendix H). Interestingly, the
transduction protocol improves more drastically at lower
temperatures than the virtual-magnon exchange protocol.
Based on the zero temperature analysis, we find an inequal-
ity for which the transduction protocol performs better (see
Appendix D 2)

α � �ω/gμ
4(1 − 1/π)

1
ωμT∗

2
. (18)

For the parameters used in this section, the transduc-
tion protocol is shown to outperform the virtual-magnon
exchange protocol (with�ω = 2π × 3 MHz) if α � 10−7.
In Appendix D 2 we provide phase diagrams in (α, 1/T∗

2)
space for which protocol gives higher fidelity under multi-
ple detuning values. Analytical expressions for the fidelity
in the limit αωμ/gμ � 1 and T∗−1

2 /gμ � 1 are also pro-
vided. To show that the magnon-mediated entanglement
scheme can directly be extended to two-qubit entangling
gates, we also calculate an average gate fidelity F̄ [75] as a
square-root-of-iSWAP gate for the off-resonance protocol,
and obtain F̄ ≈ 0.88 at T = 70 mK (see Appendix F).

As for keeping the system at low temperatures T �
150 mK, we note that the laser illumination and microwave
irradiation on the system for the initialization, manipu-
lation, and readout of NV centers may cause unwanted
heating. Although YIG has been studied under microwave
irradiations in superconducting qubit platforms [76] and
color centers have been studied under laser illumina-
tions in dilution refrigerator temperatures T < 100 mK
[77–80], it would be important to minimize the average
microwave irradiation and laser illumination power on the
system to maintain the required low temperatures. Here,
of particular interest is the possibility of cooling down
the target magnon mode to its ground state in analogy
to cavity optomechanics techniques [81–85], e.g., via the
optomagnonic interaction [86] or via the coupling to NV
centers [84,85]. For example in Fig. 5(b), we observe
that the mean magnon occupation number at the end of
the on-resonant protocol is smaller than its thermal level
[see 〈n(τint = 0)〉 in the off-resonant protocol], which is
reminiscent of the ground-state cooling of magnons and
motivates future studies on the alternative cooling methods
of the NV-magnon hybrid quantum system.
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We also note that the small Gilbert-damping parame-
ter α = 10−5 used in the current study may be optimistic
for small YIG structures as the value is obtained from
bulk YIG samples [67]. This is partially due to the non-
trivial magnetic behavior at millikelvin temperatures of
the gadolinium-gallium-garnet (GGG) substrates on which
YIG is typically grown [87], which would be mitigated by
employing a free-standing structure [88], and also due to
the impurity relaxation mechanism in YIG [89]. However,
with remarkable advances in recent magnonics research, it
has been shown that the damping of thin YIG films can
be improved considerably, e.g., with techniques based on
a recrystallization of amorphous YIG into single crystals
[90]. Additionally, we obtain a high cooperativity C ≈ 500
even with the larger Gilbert-damping parameter α = 10−3

as calculated from Fig. 4(c). We further perform simu-
lations with α = 10−3 in Appendix G, and find that the
entangled state can still be produced at T = 70 mK for the
off-resonant protocol, although further optimization on the
detuning frequency is needed to improve the quality of the
entanglement in order to avoid the overlap of the NV cen-
ters’ transition frequencies with the now broader linewidth
of the magnon-mode resonance (see Appendix G).

VI. CONCLUSION

We study hybrid quantum systems consisting of NV
centers in diamond and magnons in ferromagnetic bar and
waveguide structures. Based on the Hamiltonian formal-
ism of the dipole-exchange magnons, we predict useful
two-NV entangling gates over 1-2 μm NV-NV sepa-
rations at finite temperatures. Transduction and virtual-
magnon exchange protocols of entanglement are explored
and compared under realistic experimental conditions.
Although the transduction protocol is faster in gate oper-
ation, the virtual-magnon exchange protocol results in
higher fidelity as the typical Gilbert-damping parame-
ter of YIG makes the magnons less coherent than the
NV centers. We obtain the entangled state’s fidelity F ≈
0.81 for the transduction protocol and F ≈ 0.95 for the
virtual-magnon exchange protocol at T = 70 mK. The
virtual-magnon exchange protocol is also found to be
robust against thermal magnon fluctuations, although the
transduction protocol outperforms it close to zero temper-
ature for αωμT∗

2 � (�ω/gμ)/[4(1 − 1/π)]. Calculations
presented in this study help to implement optimal device
geometries and entangling gate protocols in future exper-
iments trying to entangle spatially separated NV centers
using magnons in ferromagnets.
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APPENDIX A: HAMILTONIAN FORMALISM OF
DIPOLE-EXCHANGE MAGNONS

1. Model Hamiltonian of the NV-magnon hybrid
system

The total Hamiltonian H of our hybrid system com-
posed of NV centers and magnons is presented in Sec. II.
We note that the interaction Hamiltonian Hint can also be
understood in terms of the dipolar tensor D̂(r − r′):

Hint =
∑

i=1,2

γμ0SNVi ·
∫

dr′D̂
(
r − r′) · M

(
r′)
∣∣∣∣
r=ri

,

(A1)

D̂(r − r′)

= −(∇ ⊗ ∇′)G(r − r′)

= 1
4π

(
3

|r − r′|5
(
r − r′)⊗ (

r − r′)− 1
|r − r′|3

)
,

when r �= r′. (A2)

The magnetization dynamics governed by the Landau-
Lifshitz-Gilbert (LLG) equation (without dissipation) is
obtained by the Hamiltonian equation of motion with the
following identification of the magnetization and the clas-
sical complex canonical variables following the Holstein-
Primakoff transformation:

M−(r) =
√

2γMs(r)a(r)f
[
a∗(r)a(r)

]
, (A3)

M+(r) =
√

2γMs(r)a∗(r)f
[
a∗(r)a(r)

]
, (A4)

Mz(r)v = Ms(r)− γ a∗(r)a(r), (A5)

where M± = Mx ± iMy , Mz =
√

M 2
s − M 2

x − M 2
y , and

f (x) = √
1 − γ x/[2Ms(r)]. Here, a(r) and a∗(r) are

the complex canonical variables satisfying ∂ta(r) =
−iδH/δa∗(r) and ∂ta∗(r) = +iδH/δa(r). The relation
between a(r), a∗(r) and M−(r), M+(r) is carefully cho-
sen such that it satisfies the dissipationless LLG equation
∂tM = −γμ0M × Heff. This is also consistent with the
standard sign convention of the time evolution of the cre-
ation and annihilation operators a ↔ â ∝ e−iωt and a∗ ↔
â† ∝ e+iωt. Note that we use γ > 0 as the absolute value
of the electron gyromagnetic ratio, so the electron gyro-
magnetic ratio is −γ . The Hamiltonian equation of motion
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gives

∂tMx = −γMz
δH
δMy

; ∂tMy = +γMz
δH
δMx

, (A6)

and writing H[Mx, My] = W[Mx, My , Mz(Mx, My)] with

Mz(Mx, My) =
√

M 2
s − M 2

x − M 2
y , we obtain

∂tMx = γ

[
My
δW
δMz

− Mz
δW
δMy

]
,

∂tMy = γ

[
Mz
δW
δMx

− Mx
δW
δMz

]
. (A7)

As the effective field is obtained by μ0Heff = −δW/δM,
the dissipationless LLG equation ∂tM = −γμ0M × Heff is
successfully derived.

In the following discussions, we apply an external field
along the ẑ direction of Fig. 2(a), Hext = Hextẑ, and for geo-
metrical simplicity we take the NV main symmetry axis
to be along ẑ axis, i.e., n̂NV = ẑ. We consider the case
where the equilibrium magnetization is uniform across the
ferromagnet and parallel to ẑ, M(r) = M0(r) = Ms(r)ẑ.
Although in principle we need to obtain the equilibrium
magnetization from the energy minimization of Hm, in the
infinitely long waveguide case M(r) = Ms(r)ẑ holds as the
field is applied along the direction where demagnetization
factor is zero. In the finite-length magnetic bar case, this
is still approximately correct as in our setting the length
l is much larger than both the width w and the thickness
d. Under this uniform equilibrium magnetization, compo-
nents of the small deviation from the equilibrium δM(r) =
M(r)− M0(r) are given by

δM−(r) ≈
√

2γMs(r)a(r) = m−(r), (A8)

δM+(r) ≈
√

2γMs(r)a∗(r) = m+(r), (A9)

δMz(r) = −γ a∗(r)a(r) ≈ −m2(r)/[2Ms(r)]. (A10)

Here, m(r) = mx(r)x̂ + my(r)ŷ is a small two-dimensional
magnetization deviation. Now the deviation can be written
as δM(r) ≈ m(r)− [m2(r)/2Ms(r)]ẑ.

2. Simplification of the magnon Hamiltonian

In the following calculation, we simplify the magnon
Hamiltonian Hm. We write Hm = HZ + Hex + Hdip,
where HZ is the Zeeman Hamiltonian, Hex is the exchange
Hamiltonian, and Hdip is the magnetic dipole Hamiltonian

given by

HZ = −μ0

∫
drHext · M(r), (A11)

Hex = μ0

2

∫
drαex(r)∇M(r) : ∇M(r), (A12)

Hdip = μ0

2

∫
drdr′[∇ · M(r)]G

(
r − r′) [∇′ · M

(
r′)] ,

(A13)

where the double-dot product is defined as ∇M : ∇M =
∂aMb∂

aM b. Firstly, we simplify the Zeeman Hamilto-
nian and the dipole Hamiltonian. Using M(r) = M0(r)+
δM(r), we obtain

HZ = −μ0

∫
drHext · δM(r)+ const., (A14)

Hdip = Hdem + Hdip(2) + const., (A15)

Hdem = −μ0

∫
drHd(r) · δM(r), (A16)

Hdip(2) = μ0

2

∫
drdr′[∇ · δM(r)]G

(
r − r′)

× [∇′ · δM (
r′)] . (A17)

Here, Hdem is the demagnetization field Hamiltonian,
Hdip(2) is the dipole Hamiltonian that is second order in
δM, and Hd(r) is the demagnetization field defined by

Hd(r) = ∇
∫

dr′G
(
r − r′) [∇′ · M0

(
r′)] . (A18)

For the infinitely long waveguide, we have Hd(r) = 0. For
the finite-length magnetic bar structure, we approximate
Hd(r) ≈ H z

d(r)ẑ as the z component is dominant compared
to the x and y components. Therefore, we obtain

Hdem ≈ −μ0

∫
drH z

d(r)δMz(r). (A19)

Up to quadratic order in m(r), we obtain

HZ ≈ μ0Hext

∫
dr

m2(r)
2Ms(r)

+ const., (A20)

Hdem ≈ μ0

∫
drH z

d(r)
m2(r)
2Ms(r)

, (A21)

Hdip(2) ≈ μ0

2

∫
drdr′[∇ · m(r)]G

(
r − r′) [∇′ · m

(
r′)] .

(A22)
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Using Ms(r) = MsF(r) and writing m(r) = �M(r)F(r),
we obtain

HZ ≈ μ0Hext

∫
drF(r)

�M2(r)
2Ms

+ const., (A23)

Hdem ≈ μ0

∫
drF(r)H z

d(r)
�M2(r)
2Ms

, (A24)

Hdip(2) ≈ μ0

2

∫
drdr′[∇ · �M(r)F(r)]G

(
r − r′)

× [∇′ · �M (
r′)F

(
r′)]. (A25)

Similarly, the exchange Hamiltonian can be written, using
M(r) = M0(r)+ δM(r), as

Hex = −μ0

∫
drδM(r) · ∂μ [αex(r)∂μM0(r)]

− μ0

2

∫
drδM(r) · ∂μ [αex(r)∂μδM(r)] + const.

(A26)

Up to the quadratic order in m(r), the above equation
becomes

Hex ≈ μ0

2

∫
dr

m2(r)
Ms(r)

∂μ [αex(r)∂μMs(r)]

− μ0

2

∫
drm(r) · ∂μ [αex(r)∂μm(r)] + const.

(A27)

Using Ms(r) = MsF(r), αex(r) = αexF(r), and writing
m(r) = �M(r)F(r), we obtain

Hex ≈ μ0αex

2

∫
drF3(r)∇ �M(r) : ∇ �M(r)+ const.,

= −μ0αex

2

∫
dr
(
F3(r) �M(r) · ∇2 �M(r)

+ [
∂μF3(r)

] �M(r) · ∂μ �M(r)
)

+ const. (A28)

Note that the term ∂μF3(r) in the second equation gives a
delta-functional contribution peaked at the ferromagnet’s
boundary. Using the totally free surface spin condition,
∂μ �M = �0 on the ferromagnet’s boundary, we obtain

Hex ≈ −μ0αex

2

∫
drF3(r) �M(r) · ∇2 �M(r)+ const.

(A29)

Combining Eqs. (A23), (A24), (A25), and (A29), we
obtain

Hm ≈ μ0

∫
drF(r)[Hext + H z

d(r)]
�M2(r)
2Ms

− μ0αex

2

∫
drF3(r) �M(r) · ∇2 �M(r)

+ μ0

2

∫
drdr′[∇ · �M(r)F(r)]G

(
r − r′)

× [∇′ · �M (
r′)F

(
r′)], (A30)

where we drop the constant shift in energy.

APPENDIX B: INFINITELY LONG
FERROMAGNETIC WAVEGUIDE

1. Diagonalization of the magnon Hamiltonian

To obtain the magnon dynamics and the magnon spa-
tial profiles for the infinitely long ferromagnetic waveg-
uide (l → ∞), we diagonalize the magnon Hamiltonian
Eq. (A30) by expanding �M(r) as

�M(r) =
∫

dk
2π

e−ikz
∑

nm

ψX
n (x)ψ

Y
m(y)

√
2γMs

1
2

× [
a∗

k,(n,m) a−k,(n,m)
] [ê−

ê+

]
, (B1)

ψX
n (x) =

√
2(

1 + δn,0
)

d
cos

(
κX

n x
)

, (B2)

ψY
m(y) =

√
2(

1 + δm,0
)

w
cos

(
κY

my
)

, (B3)

where κX
n = nπ/d, κY

m = mπ/w, n, m = 0, 1, . . ., ê± = x̂ ±
iŷ, and ak,(n,m) is the complex canonical variable in the new
basis. Note that we have m(r) = �M(r)F(r) and in the
current geometry F(r) = FX (x)FY(y), where FX (x) =
�(x)�(d − x), FY(y) = �(y)�(w − y), and � is the
Heaviside step function. Recalling Ms(r) = MsF(r) and
using Eqs. (A8) and (A9), the above expansion corre-
sponds to the following:

a(r) =
∫

dk
2π

eikz
∑

nm

f X
n (x)f Y

m (y)ak,(n,m), (B4)

a∗(r) =
∫

dk
2π

e−ikz
∑

nm

f X
n (x)f Y

m (y)a
∗
k,(n,m), (B5)
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f X
n (x) =

√
2FX (x)(

1 + δn,0
)

d
cos

(
κX

n x
)

, (B6)

f Y
m (y) =

√
2FY(y)(

1 + δm,0
)

w
cos

(
κY

my
)

, (B7)

which are presented in the main text. After simplification,
the magnon Hamiltonian Eq. (A30) becomes,

Hm = 1
2

∫
dk
2π

∑

n1m1
n2m2

[
a∗

k,(n1,m1)
a−k,(n1,m1)

]

×
[

Ak,(n1m1)(n2m2) Bk,(n1m1)(n2m2)

B∗
k,(n1m1)(n2m2)

A∗
k,(n1m1)(n2m2)

] [
ak,(n2,m2)

a∗
−k,(n2,m2)

]
,

(B8)

with

Ak,(n1m1)(n2m2) = �k,(n1m1)δ(n1m1)(n2m2) + ωM H 00
k,(n1m1)(n2m2)

,
(B9)

Bk,(n1m1)(n2m2) = ωM H 01
k,(n1m1)(n2m2)

, (B10)

�k,(nm) = ωH + DexK2
k,(nm), (B11)

where ωM = γμ0Ms, ωH = γμ0Hext, K2
k,(nm) = k2 +

(
κX

n

)2 + (
κY

m

)2, Dex = αexωM , and

H 00
k,(n1m1)(n2m2)

= 1
2

[
H XX

k,(n1m1)(n2m2)
+ H YY

k,(n1m1)(n2m2)
+ i
(

H XY
k,(n1m1)(n2m2)

− H YX
k,(n1m1)(n2m2)

)]
, (B12)

H 01
k,(n1m1)(n2m2)

= 1
2

[
H XX

k,(n1m1)(n2m2)
− H YY

k,(n1m1)(n2m2)
− i
(

H XY
k,(n1m1)(n2m2)

+ H YX
k,(n1m1)(n2m2)

)]
. (B13)

Here, H XX
k,(n1m1)(n2m2)

, H XY
k,(n1m1)(n2m2)

, H YX
k,(n1m1)(n2m2)

, and H YY
k,(n1m1)(n2m2)

are given by

H XX
k,(n1m1)(n2m2)

=
∫

dρ1dρ2[∂x1ϕ
XY
n1m1

(ρ1)]
K0[|k(ρ1 − ρ2)|]

2π
[∂x2ϕ

XY
n2m2

(ρ2)], (B14)

H XY
k,(n1m1)(n2m2)

=
∫

dρ1dρ2[∂x1ϕ
XY
n1m1

(ρ1)]
K0[|k(ρ1 − ρ2)|]

2π
[∂y2ϕ

XY
n2m2

(ρ2)], (B15)

H YX
k,(n1m1)(n2m2)

=
∫

dρ1dρ2[∂y1ϕ
XY
n1m1

(ρ1)]
K0[|k(ρ1 − ρ2)|]

2π
[∂x2ϕ

XY
n2m2

(ρ2)], (B16)

H YY
k,(n1m1)(n2m2)

=
∫

dρ1dρ2[∂y1ϕ
XY
n1m1

(ρ1)]
K0[|k(ρ1 − ρ2)|]

2π
[∂y2ϕ

XY
n2m2

(ρ2)], (B17)

where Kα is the modified Bessel function of the sec-
ond kind, ρ = xx̂ + yŷ, and ϕXY

nm(ρ) = FX (x)FY(y)ψX
n (x)

ψY
m(y). Note that we have relations Ak,(n1m1)(n2m2) =(

Ak,(n2m2)(n1m1)

)∗ and Bk,(n1m1)(n2m2) = Bk,(n2m2)(n1m1).
As we consider the case where the thickness d and

the width w are small such that the exchange energy
difference DexK2

k,(n1m1)
− DexK2

k,(n2m2)
[with (n1, m1) �=

(n2, m2)] is large as compared to the off-diagonal com-
ponents [elements of Ak,(n1m1)(n2m2) or Bk,(n1,m1)(n2m2)

with (n1m1) �= (n2, m2)] of the Hamiltonian, we apply
the block-diagonal approximation [50]. Note that we
can go beyond the block-diagonal approximation with
the procedure using a paraunitary matrix presented in
Ref. [54]. Under this block-diagonal approximation, we

obtain

Hm = 1
2

∫
dk
2π

∑

nm

[
a∗

k,(n,m) a−k,(n,m)
]

×
[

Ak,(n,m) Bk,(n,m)
B∗

k,(n,m) Ak,(n,m)

] [
ak,(n,m)

a∗
−k,(n,m)

]
, (B18)

Ak,(n,m) = Ak,(nm)(nm); Bk,(n,m) = Bk,(nm)(nm). (B19)

The Hamiltonian above can be diagonalized by the
standard 2 × 2 Bogoliubov transformation:

βk,(n,m) = λk,(n,m)ak,(n,m) + μk,(n,m)a∗
−k,(n,m), (B20)
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β∗
−k,(n,m) = μ∗

k,(n,m)ak,(n,m) + λk,(n,m)a∗
−k,(n,m), (B21)

λk,(n,m) =
√

Ak,(n,m) + ωk,(n,m)

2ωk,(n,m)
;

μk,(n,m) = Bk,(n,m)∣∣Bk,(n,m)
∣∣

√
Ak,(n,m) − ωk,(n,m)

2ωk,(n,m)
, (B22)

ωk,(n,m) =
√

A2
k,(n,m) −

∣∣Bk,(n,m)
∣∣2, (B23)

and we obtain

Hm =
∑

nm

∫
dk
2π
ωk,(n,m)β

∗
k,(n,m)βk,(n,m). (B24)

Now we limit our discussion to the subspace with (n, m) =
(0, 0) that gives the lowest energy magnon band, for which
magnetization dynamics is uniform across x-y plane in
the ferromagnet. After promoting the classical complex
canonical variables to the quantum creation and anni-
hilation operators via βk,(0,0) → √

�β̂k,(0,0) and β∗
k,(0,0) →√

�β̂
†
k,(0,0), we obtain

Hm =
∫

dk
2π

�ωk,(0,0)β
†
k,(0,0)βk,(0,0), (B25)

which is presented in the main text. Here, �ωk,(00) is
the magnon energy and βk,(00) is the normal mode
magnon annihilation operator satisfying [βk,(00),β

†
k′,(00)] =

2πδ(k − k′). For calculating the dispersion relation in the
main text, we numerically evaluate Eqs. (B14)–(B17). In
the subspace with (n, m) = (0, 0), ψX

n (x) and ψY
m(y) are

constant functions, so the derivatives act only on FX (x)
and FY(y), resulting in the surface integrals and the eval-
uation is simpler. Beyond the diagonal approximation
(n1, m1) = (n2, m2) made for Eq. (B8), we can diagonal-
ize the full Hamiltonian via the Bogoliubov transformation
with the paraunitary matrix [54] after a truncation of large
wave-number modes, which is used in the magnetic bar
calculations in Sec. IV and Appendix C.

2. NV-magnon coupling

The coupling strength between magnons and NV centers
is obtained by applying the same Bogoliubov transfor-
mation in the interaction Hamiltonian Eq. (3). Up to the
quadratic order in m(r), we obtain

Hint =
∑

i=1,2

γμ0SNVi ·
[

Hd(r)+ ∇
∫

dr′G
(
r − r′)

(
∇′ · �M (

r′)F
(
r′)− ∂ ′

zF
(
r′) �M2

(
r′)

2Ms

)]∣∣∣∣∣∣
r=ri

. (B26)

In the infinitely long waveguide case, we have Hd(r) = 0. Up to the lowest order (linear order) in m(r), we obtain

Hint =
∑

i=1,2

γμ0SNVi · h(r)
∣∣
r=ri

, (B27)

h(r) = ∇
∫

dr′G
(
r − r′) (∇′ · �M (

r′)F
(
r′)) . (B28)

As the NV axis is set n̂NV = ẑ, the rotating-wave term comes from the perpendicular contribution h⊥(r) = hx(r)x̂ +
hy(r)ŷ. Using the Bogoliubov transformation Eqs. (B20)–(B22), we obtain

μ0γh⊥(r) =
√

2ωMωd√
w/d2

1
4

∑

nm

∫
dk
2π

eikz [̂e+̂e−]
[
�

−,+
k,nm �

−,−
k,nm

�
+,+
k,nm �

+,−
k,nm

] [
λk,(n,m) −μk,(n,m)

−μ∗
k,(n,m) λk,(n,m)

] [
βk,(n,m)

β
†
−k,(n,m)

]
, (B29)

where ωd = μ0(�γ )
2/(�d3) and

�
−,+
k,nm = [

�XX
k,nm + �YY

k,nm + i
(
�XY

k,nm − �YX
k,nm

)]
, (B30)

�
−,−
k,nm = [

�XX
k,nm − �YY

k,nm − i
(
�XY

k,nm + �YX
k,nm

)]
, (B31)

�
+,+
k,nm = [

�XX
k,nm − �YY

k,nm + i
(
�XY

k,nm + �YX
k,nm

)]
, (B32)

�
+,−
k,nm = [

�XX
k,nm + �YY

k,nm − i
(
�XY

k,nm − �YX
k,nm

)]
. (B33)
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Here, �XX
k,nm, �XY

k,nm, �YX
k,nm, and �YY

k,nm are functions of ρ,
and they are given by

�XX
k,nm = −

∫
dρ ′|k|

(
ρ̂ − ρ ′

)
x

K1
[∣∣k
(
ρ − ρ ′)∣∣]

2π
∂ ′

xϕ̃
XY
nm(ρ

′),

(B34)

�XY
k,nm = −

∫
dρ ′|k|

(
ρ̂ − ρ ′

)
x

K1
[∣∣k
(
ρ − ρ ′)∣∣]

2π
∂ ′

y ϕ̃
XY
nm(ρ

′),

(B35)

�YX
k,nm = −

∫
dρ ′|k|

(
ρ̂ − ρ ′

)
y

K1
[∣∣k
(
ρ − ρ ′)∣∣]

2π
∂ ′

xϕ̃
XY
nm(ρ

′),

(B36)

�YY
k,nm = −

∫
dρ ′|k|

(
ρ̂ − ρ ′

)
y

K1
[∣∣k
(
ρ − ρ ′)∣∣]

2π
∂ ′

y ϕ̃
XY
nm(ρ

′),

(B37)

where ϕ̃XY
nm = √

dwϕXY
nm is a dimensionless function and

ρ̂ − ρ ′ = (ρ − ρ ′)/|ρ − ρ ′|. We consider the external field
range γHext < DNV, where the NV center’s ground state
is |g〉 = |Sz = 0〉 and the first excited state is |e〉 = |Sz =
−�〉. In the NV center’s subspace spanned by {|g〉, |e〉}, we
can write

HNV =
∑

i=1,2

�ωNV

2
σ z

NVi
, (B38)

where ωNV = DNV − γHext, σ z
NV = |e〉〈e| − |g〉〈g|, and

we drop a constant shift in energy. We also have S+
NV =√

2�σ−
NV and S−

NV = √
2�σ+

NV, where σ+
NV = |e〉〈g|, and

σ−
NV = |g〉〈e|. Under the rotating-wave approximation, we

obtain

Hint ≈ �

∑

i=1,2

√
ωMωd√
w/d2

∑

nm

∫
dk
2π

1
2
(
�

+,+
k,nmλk,(n,m) − �

+,−
k,nmμ

∗
k,(n,m)

)∣∣∣∣
ρ=ρi

σ+
NVi
βk,(n,m)eikzi + H.c.. (B39)

Limiting our discussion to the subspace with (n, m) = (0, 0), we obtain

Hint = �

√
ωMωd√
w/d2

∑

i=1,2

∫
dk
2π

g(ρ i, k)σ+
NVi
βk,(0,0)eikzi + H.c., (B40)

g(ρ i, k) = [(
�

+,+
k,nm/2

)
λk,(n,m) −

(
�

+,−
k,nm/2

)
μ∗

k,(n,m)

]∣∣
ρ=ρi

, (B41)

which is presented in the main text. Here, g(ρ i, k) is
the dimensionless coupling. To calculate the spatial dis-
tribution of the dimensionless coupling, we evaluate
Eqs. (B34)–(B37) numerically.

3. Effective NV-NV Hamiltonian

The NV-NV interaction mediated by magnons can be
calculated via the Schrieffer-Wolff transformation [57],
H → DHD† with D = exp(S − S†). Here, Eqs. (B25),
(B38), and (B40) are used in H = H0 + Hint with H0 =
HNV + Hm. We pick

S =
√
ωMωd√
w/d2

∑

i=1,2

∫
dk
2π

g(ρ i, k)σ+
NVi
βk,(0,0)eikzi

ωNV − ωk,(0,0)
, (B42)

such that [S − S†,H0] = −Hint. Noting that we can write
S − S† = (i/�)

∫ 0
−∞ dτHint(τ ), where Hint(τ ) is the inter-

action Hamiltonian in the interaction picture, we obtain the

following effective Hamiltonian:

Heff = 1
2

[S − S†,Hint] = i
2�

∫ 0

−∞
dτ [Hint(τ ),Hint],

(B43)

which is related to the linear response theory. This effective
Hamiltonian includes the Lamb shift, the Stark shift, and
the NV-NV interaction. The NV-NV interaction contribu-
tion is, assuming ρ1 = ρ2 and writing g(k) = g(ρ i, k),

HNV−NV
eff = −�

(
geffσ

+
NV1
σ−

NV1
+ H.c.

)
, (B44)

geff = ωMωd

w/d2

∫
dk
2π

|g(k)|2 exp [ik (z1 − z2)]
ωk,(0,0) − ωNV

, (B45)

which is presented in the main text. Here, geff is the
effective NV-NV coupling strength. The entangling gate
rate presented in Fig. 2(e) is based on the inverse of the
time required for the

√
iSWAP gate, τ√iSWAP = π/(4|geff|),

under the interaction Hamiltonian Eq. (B44).
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The analytic expression of geff presented in the main
text is obtained by the following approximations. We
first expand the dispersion ωk,(0,0) around the two energy
minimum at k = ±kmin and approximate g(k) ≈ g(kmin).

Secondly, we also approximate the curvature to be
exchange dominated, i.e., ωl,(0,0) ≈ ωkmin,(0,0) + Dex(k ∓
kmin)

2. Then we obtain, after writing �ω = ωkmin,(0,0)
− ωNV,

geff ≈ ωMωd

w/d2
|g (kmin)|2

(∫ ∞

−∞

dk
2π

exp [ik (z1 − z2)]
Dex (k − kmin)

2 +�ω
+
∫ ∞

−∞

dk
2π

exp [ik (z1 − z2)]
Dex (k + kmin)

2 +�ω

)
,

= ωMωd̄

�ω
|g (kmin)|2 cos (kminδz) exp [δz/ξ0] , (B46)

where ξ0 = √
Dex/�ω, δz = |z1 − z2| and ωd̄ = μ0(γ�)2/

(�dwξ0). Note that the circle dots in Fig. 2(e) are obtained
by the numerical evaluation of Eq. (B45), while the
solid curves are obtained from the analytical expression
Eq. (B46), thus showing the great agreement between
them.

To evaluate how good the perturbation is, we consider
one NV case and recall the wave-function modification in
the first-order perturbation

|n(1)〉 = 1

E(0)n − H0
Hint|n0〉 =

∑

k( �=n)

〈k(0)|Hint|n(0)〉
E(0)n − E(0)k

|k(0)〉,

(B47)

where |n(0)〉 and E(0)n are the unperturbed eigenstate and
eigenenergy. The fraction of the finite magnon-number
state contribution in the original ground state |n(0)〉 =
|g〉|0〉m is, where |0〉m is the magnon vacuum,

∥∥∣∣n(1)
〉∥∥2 =

∑

k( �=n)

∣∣∣∣∣

〈
k(0)|Hint|n(0)

〉

E(0)n − E(0)k

∣∣∣∣∣

2

,

= ωMωd

w/d2

∫
dk
2π

|g(k)|2
(
ωk,(0,0) − ωNV

)2 . (B48)

Under the geometry presented in the red curve in Fig. 2(e),
we obtain ‖ ∣∣n(1)〉 ‖2 ≈ 10−3 � 1, which indicates the per-
turbation theory is valid.

To estimate the corresponding cooperativity of the red
solid curve in Fig. 2(e), we assume the waveguide has
a length l as in Ref. [36]. By discretizing the integral∫

dk using the periodic boundary condition and rescal-
ing the creation and annihilation operators via β̄k,(0,0) =
βk,(0,0)/

√
l to have a correct commutation relation for the

discretized modes, [β̄k,(0,0), β̃
†
k′,(0,0)] = δk,k′ , the interaction

Hamiltonian becomes

Hint =
∑

i=1,2

∑

k

�ḡ(k)σ+
NVi
β̄k,(0,0)eikzi + H.c., (B49)

ḡ(k) =
√
ωMωd√
lw/d2

g(k). (B50)

As we are mostly using magnons with |k| ≈ kmin in the
virtual-magnon mediated NV-NV coupling, it is reason-
able to calculate the equivalent cooperativity with ḡ =
ḡ(kmin):

Ceq = ḡ2

αωmin/T∗
2

. (B51)

Under the geometry presented in the red curve in Fig. 2(e),
and using the NV center’s coherence time [7] T∗

2 = 1 ms
and the Gilbert-damping parameter of YIG [67] α = 10−5,
we obtain ḡ ≈ 130 kHz and Ceq ≈ 3700.

4. Temperature independence of the effective NV-NV
coupling mediated by virtual magnons

Here we show that up to second order in perturba-
tion theory, the NV-NV coupling mediated by the virtual
magnons is insensitive to the temperature. For simplic-
ity, here we consider only the case where two NV cen-
ters are coupled to a common single k-magnon mode
with coupling strength gk for both NV centers, i.e.,
H0 = �ωNV(σ

z
NV1

+ σ z
NV2
)/2 + �(ωNV +�k)a

†
kak, Hint =

�[gk(σ
+
NV1

+ σ+
NV2
)ak + H.c.], and [ak, a†

k] = 1, although
the discussion can be generalized to a multimode or a
waveguide case. To demonstrate that, we calculate through
the transition matrix formalism the rate T|e1g2nk〉→|g1e2nk〉
from an initial pure state |e1g2nk〉 [|nk〉 = (a†

k)
nk |0〉/√nk!

with nk = 0, 1, 2, . . .] to the final state |g1e2nk〉,

T|e1g2nk〉→|g1e2nk〉 = 1
�

∑

i

〈g1e2nk|Hint |i〉 〈i|Hint |e1g2nk〉
E|g1e2nk〉 − E|i〉

,

(B52)
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where |i〉 represent the whole set of intermediates many-body states and E|i〉 is the energy of the state |i〉 without interaction.
The transition is only non-null for |i〉 = |NVstates〉 ⊗ |nk ± 1〉, yielding

T|e1g2nk〉→|g1e2nk〉 = 1
�

〈g1e2nk|Hint |g1g2nk + 1〉 〈g1g2nk + 1|Hint |e1g2nk〉
E|g1e2nk〉 − E|g1g2nk+1〉

+ 1
�

〈g1e2nk|Hint |e1e2nk − 1〉 〈e1e2nk − 1|Hint |e1g2nk〉
E|g1e2nk〉 − E|e1e2nk−1〉

,

= 1
�

�gk
√

nk + 1�g∗
k
√

nk + 1
E|g1e2nk〉 − E|g1g2nk+1〉

+ 1
�

�g∗
k
√

nk�gk
√

nk

E|g1e2nk〉 − E|e1e2nk−1〉
. (B53)

By identifying E|g1e2nk〉 − E|g1g2nk+1〉 = −��k and
E|g1e2nk〉 − E|e1e2nk−1〉 = ��k, we obtain

T|e1g2nk〉→|g1e2nk〉 = (nk + 1) |gk|2
−�k

+ nk|gk|2
�k

= −|gk|2
�k

,

(B54)

thus first proving the insensitivity to the initial magnon
state |nk〉. Moreover, we recall that for finite temperature
we do not have the pure initial state |e1g2nk〉 for a specific
nk but rather a statistic mix of them, given by the quantum
thermal state ρ0 = Z−1∑

nk
e−β�nkωk |e1g2nk〉 〈e1g2nk|,

Z = ∑
nk

e−β�nkωk with the inverse temperature β = 1/kBT
and ωk = ωNV +�k. Finally, using the linearity of the
quantum evolution it is straightforward to prove the
temperature independence of the off-resonance transition
|e1g2〉 → |g1e2〉.

APPENDIX C: FINITE-LENGTH
FERROMAGNETIC BAR

1. Diagonalization of the magnon Hamiltonian

The NV-magnon coupling strength is even stronger
under the magnon confinement effect where the ferromag-
net length l is finite. To diagonalize the magnon Hamilto-
nian Eq. (A30), in the same way as in Sec. III, we expand
the canonical variables as

a(r) =
∑

nmp

f X
n (x)f Y

m (y)f
Z

p (z)a(nmp), (C1)

a∗(r) =
∑

nmp

f X
n (x)f Y

m (y)f
Z

p (z)a
∗
(nmp), (C2)

f Z
p (z) =

√
FZ(z)ψZ

p (z), (C3)

ψZ
p (z) =

√
2(

1 + δp ,0
)

l
cos

(
κz

pz
)

, (C4)

where κZ
p = pπ/l, p = 0, 1, . . ., and FZ(z) = �(z)�(l −

z). Note that we have F(r) = FX (x)FY(y)FZ(z). After

simplification and writing μ = (nmp), the magnon Hamil-
tonian Eq. (A30) with corresponding parameters becomes

Hm = ωM

2

∑

μ1μ2

[
a∗
μ1

aμ1

] [Aμ1μ2 Bμ1μ2
B∗
μ1μ2

A∗
μ1μ2

] [
aμ2
a∗
μ2

]
,

(C5)

Aμ1μ2 = �̃μ1δμ1μ2 − Nμ1μ2 + H 00
μ1μ2

, (C6)

Bμ1μ2 = H 01
μ1μ2

, (C7)

�̃(nmp) = (ωH + DexK2
(nmp))/ωM , (C8)

Nμ1μ2 = −
∫

drH̃ z
d(r)f

XYZ
μ1

(r)f XYZ
μ2

(r), (C9)

where K2
(nmp) = (

κX
n

)2 + (
κY

m

)2 +
(
κZ

p

)2
, f XYZ

μ (r) =
f X
n (x)f Y

m (y)f
Z

p (z), H̃ z
d(r) is a dimensionless demagnetiza-

tion field

H̃ z
d(r) = H z

d(r)
Ms

= 1
Ms
∂z

∫
dr′G

(
r − r′) [∇′ · M0

(
r′)] ,

(C10)

and H 00
μ1μ2

and H 01
μ1μ2

are given by

H 00
μ1μ2

= 1
2

[
H XX
μ1μ2

+ H YY
μ1μ2

+ i
(

H XY
μ1μ2

− H YX
μ1μ2

)]
,

(C11)

H 01
μ1μ2

= 1
2

[
H XX
μ1μ2

− H YY
μ1μ2

− i
(

H XY
μ1μ2

+ H YX
μ1μ2

)]
.

(C12)

Here, H XX
μ1μ2

, H XY
μ1μ2

, H YX
μ1μ2

, and H YY
μ1μ2

are given by
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H XX
μ1μ2

=
∫

dr1dr2

[
∂x1ϕ

XYZ
μ1

(r1)
]

G (r1 − r2)
[
∂x2ϕ

XYZ
μ2

(r2)
]

, (C13)

H XY
μ1μ2

=
∫

dr1dr2

[
∂x1ϕ

XYZ
μ1

(r1)
]

G (r1 − r2)
[
∂y2ϕ

XYZ
μ2

(r2)
]

, (C14)

H YX
μ1μ2

=
∫

dr1dr2

[
∂y1ϕ

XYZ
μ1

(r1)
]

G (r1 − r2)
[
∂x2ϕ

XYZ
μ2

(r2)
]

, (C15)

H YY
μ1μ2

=
∫

dr1dr2

[
∂y1ϕ

XYZ
μ1

(r1)
]

G (r1 − r2)
[
∂y2ϕ

XYZ
μ2

(r2)
]

, (C16)

where ϕXYZ
nmp (r) = F(r)ψX

n (x)ψ
Y
m(y)ψ

Z
p (z). Note that we

have relations Aμ1μ2 = A∗
μ2μ1

and Bμ1μ2 = Bμ2μ1 .
Finally, the Hamiltonian Eq. (C5) can be written in the

matrix form

Hm = ωM

2
[
α∗ α

]
Ĥ
[

α

α∗

]
, (C17)

where α = [aμ0 aμ1 · · · ], α∗ = [a∗
μ0

a∗
μ1

· · · ], and we
transpose α or α∗ if necessary. No confusion is expected
for the column or row vectors for α and α† as in Refs. [54]
and [56]. This Hamiltonian matrix can be diagonalized by
the paraunitary matrix [54] T via

[
α

α∗

]
= T

[
β

β∗

]
, (C18)

Hm = ωM

2
[
β∗ β

] [E O
O E

] [
β

β∗

]
, (C19)

where, β = [βμ0 βμ1 · · · ] and β∗ = [β∗
μ0
β∗
μ1

· · · ] are
normal mode magnon complex canonical variables, and
ωM E = diag[ωμ0 ,ωμ1 , . . .] is a diagonal matrix whose
entries are magnon eigenfrequencies with 0 ≤ ωμ0 ≤
ωμ1 ≤ · · · . The paraunitary matrix T satisfies

T†σ 3T = σ 3, (C20)

σ 3 = diag[+1, +1, . . . , +1, −1, −1, . . . , −1].
(C21)

Based on Ref. [54], one can find the paraunitary matrix T
using a method based on the Cholesky decomposition. The
outline of the method is shown in the following.

1. Firstly, we decompose Ĥ into a product of an upper
triangle matrix K and its Hermitian conjugate using
the Cholesky decomposition

Ĥ = K†K. (C22)

2. Next, we define a new Hermitian matrix W =
Kσ 3K† and diagonalize this matrix with a unitary

matrix U:

U†WU =
[

E O
O −E

]
. (C23)

Note that one can find U such that the right-hand
side becomes the desired form, which is proven in
Ref. [54].

3. Lastly, we define the following matrix T̃:

T̃ = K−1U
[

E1/2 O
O −E1/2

]
=
[

T̃pp T̃pn

T̃np T̃nn

]
.

(C24)

Then the desired paraunitary matrix is

T =
[

Tpp Tpn

Tnp Tnn

]
=
[

T̃pp
(
T̃np

)∗

T̃np
(
T̃pp

)∗
]

. (C25)

To obtain the eigenfrequencies of the magnons for the
finite magnetic bar case, we restrict our discussion for
(n, m) = (0, 0) and consider p = 0, 1, . . . , N , where p = N
is the highest z-directional wave number to be taken into
account and we truncated the sum. We set μ0 = (000),
μ1 = (001), · · · , μN = (00N ). After the above Bogoli-
ubov transformation with the paraunitary matrix, we obtain

Hm =
∑

p=0,1,...

ω(00p)β
∗
(00p)β(00p), (C26)

with corresponding transformation given by

⎡
⎢⎢⎣

a(000)
a(001)

...
a(00N )

⎤
⎥⎥⎦ = Tpp

⎡
⎢⎢⎣

β(000)
β(001)

...
β(00N )

⎤
⎥⎥⎦+ Tpn

⎡
⎢⎢⎢⎣

β∗
(000)
β∗
(001)
...

β∗
(00N )

⎤
⎥⎥⎥⎦ , (C27)

⎡
⎢⎢⎢⎣

a∗
(000)

a∗
(001)
...

a∗
(00N )

⎤
⎥⎥⎥⎦ = (Tpn)∗

⎡
⎢⎢⎣

β(000)
β(001)

...
β(00N )

⎤
⎥⎥⎦+ (Tpp)∗

⎡
⎢⎢⎢⎣

β∗
(000)
β∗
(001)
...

β∗
(00N )

⎤
⎥⎥⎥⎦ . (C28)

To calculate the magnon eigenfrequencies, we evaluate
numerically Eqs. (C9), (C10), and (C13)–(C16). After
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promoting βμ → √
�β̂μ and β∗

μ → √
�β̂

†
μ, we obtain

Hm =
∑

p=0,1,...

�ω(00p)β
†
(00p)β(00p), (C29)

which is presented in the main text.

2. NV-magnon coupling

The coupling strength between magnons and NV centers
is obtained by applying the same Bogoliubov transforma-
tion with the paraunitary matrix T [Eq. (B26)]. Although
the demagnetization field Hd contribution in Eq. (B26) is
not negligible when NV centers are placed near the two
edges of the ferromagnetic bar, we verify it is small in the
calculations for Figs. 4(d) and 5. In the same way as in
Appendix B 2, the perpendicular component of the fringing
field h⊥ is given by

γμ0h⊥(r) =
√

2ωMωdwl
1
4

[̂e+ ê−]

×

⎡
⎢⎣

[
�−,+
μ0

· · ·�−,+
μN

] [
�−,−
μ0

· · ·�−,−
μN

]

[
�+,+
μ0

· · ·�+,+
μN

] [
�+,−
μ0

· · ·�+,−
μN

]

⎤
⎥⎦

×
[

Tpp Tpn

Tnp Tnn

] [
β

β†

]
, (C30)

where ωdwl = μ0(γ�)2/(�wld) and

�−,+
μ = [

�XX
μ + �YY

μ + i
(
�XY
μ − �YX

μ

)]
, (C31)

�−,−
μ = [

�XX
μ − �YY

μ − i
(
�XY
μ + �YX

μ

)]
, (C32)

�+,+
μ = [

�XX
μ − �YY

μ + i
(
�XY
μ + �YX

μ

)]
, (C33)

�+,−
μ = [

�XX
μ + �YY

μ − i
(
�XY
μ − �YX

μ

)]
. (C34)

Here �XX
μ , �XY

μ , �YX
μ , and �YY

μ are functions of r, and they
are given by

�XX
μ =

∫
dr′ −

(
r − r′)

x

4π |r − r′|3 ∂
′
xϕ̃

XYZ
μ

(
r′) , (C35)

�XY
μ =

∫
dr′ −

(
r − r′)

x

4π |r − r′|3 ∂
′
y ϕ̃

XYZ
μ

(
r′) , (C36)

�YX
μ =

∫
dr′ −

(
r − r′)

y

4π |r − r′|3 ∂
′
xϕ̃

XYZ
μ

(
r′) , (C37)

�YY
μ =

∫
dr′ −

(
r − r′)

y

4π |r − r′|3 ∂
′
y ϕ̃

XYZ
μ

(
r′) , (C38)

where ϕ̃XYZ
μ = √

wldϕXYZ
μ is a dimensionless function.

In the same way as in Appendix B 2, and under
the rotating-wave approximation, we obtain the NV-
magnon interaction Hamiltonian in the form of the Jaynes-
Cummings model

Hint =
∑

i=1,2

∑

μ=(00p)

�gμ(ri)σ
+
NVi
βμ + H.c. (C39)

g(00p)(ri) = √
ωMωdwl

×
∑

q=0,1,...,N

[(
�

+,+
(00q)/2

)
[Tpp ]qp

+
(
�

+,−
(00q)/2

)
[Tnp ]qp

]∣∣∣
r=ri

, (C40)

which is presented in the main text. To calculate the spa-
tial distribution of the dimensionless coupling, we evaluate
numerically Eqs. (C35)–(C38).

3. Effective NV-NV Hamiltonian

When we introduce a detuning between the target mode
frequency ω(00p) and the NV frequency ωNV, we obtain an
effective Hamiltonian in the same way as in Appendix B 3.
Now the total Hamiltonian H = H0 + Hint with H0 =
HNV + Hm is given by Eqs. (B38), (C29), and (C39). For
the Schrieffer-Wolff transformation, we choose

S =
∑

i=1,2
μ=(00p)

gμ (ri) σ
+
NVi
βμ

ωNVi − ωμ
, (C41)

in the same way as in Eq. (B42). Following Eq. (B43), we
obtain

Heff = �

∑

i,μ

∣∣gμ (ri)
∣∣2

ωNV − ωμ

(|e〉i〈e| + σ z
NVi
β†
μβμ

)

+ �

2

∑

i,μ�=v

(
gμ (ri) g∗

v (ri)

ωNV − ωμ
σ z

NVi
β†
vβμ + H.c.

)

+ �

∑

μ

(gμ (r1) g∗
μ (r2)

ωNV − ωμ
σ+

NV1
σ−

NV2
+ H.c.

)
,

(C42)

where the first right-hand side term is the Lamb shift and
the Stark shift, respectively. The interaction Hamiltonian
between the two NV centers is given by the last right-hand
side term. If we detune the NV frequency from the mode
frequency for μ = (00p) by ωNV = ω(00p) −�ω and if
we consider only the effect from the mode μ = (00p),
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we obtain

HNV-NV
eff = −�

(
geffσ

+
NV1
σ−

NV2
+ H.c.

)
, (C43)

geff = g(00p) (r1) g∗
(00p) (r2) /�ω. (C44)

In Fig. 4(c), we focus on the magnon mode with p = 5
and plot the bare coupling g(00p)(r). In Fig. 4(d), we use
Eq. (C44) focusing on the magnon mode with p = 5 and
plot the effective coupling strength geff.

APPENDIX D: TRANSDUCTION AND
VIRTUAL-MAGNON EXCHANGE PROTOCOLS

1. Governing equations for numerical simulations

The comparison between the two entanglement proto-
cols discussed in the main paper is performed with the
Lindblad master equation simulation [71,72] focusing only
on the magnon mode with μ = (00p), p = 5, as presented
in Eq. (17). The total Hamiltonian H = HNV + Hm + Hint
to be used is given by Eqs. (B38), (C29), and (C39),

HNV =
∑

i=1,2

�ωNV

2
σ z

NVi
, (D1)

Hm = �ω(00p)β
†
(00p)β(00p), (D2)

Hint =
∑

i=1,2

�g(00p)(ri)σ
+
NVi
βμ + H.c., (D3)

where we consider only a single magnon mode μ =
(00p) = (005). The identification κ = αωμ presented in
Sec. V is appropriate as the dissipation term in the LLG
equation ∂tM|diss = +(α/Ms)M × ∂tM results in ∂tβμ ≈
−iωμβμ − αωμβμ, which is consistent with the master
equation result ∂t〈a〉 = −iωμ〈a〉 − κ〈a〉 when considering
only the Boson Hamiltonian. More specifically, as we are
considering the case where the equilibrium magnetization
is along the z axis, the linearized equation of motion yields
∂tm(r) = ∂tm(r)|coh + αẑ × ∂tm(r), where ∂tm(r)|coh is
the coherent evolution part described by Eq. (A6). This
leads to

∂ta(r) = −i
H

δa∗(r)
− iα∂ta(r), (D4)

∂ta∗(r) = +i
H
δa(r)

+ iα∂ta∗(r). (D5)

The positive frequency solutions [solutions propor-
tional to exp(−iωt)] are obtained by finding nontrivial

solutions of

−iωa(r) = −i
H

δa∗(r)
− αωa(r)

= −i
δ

δa∗(r)
[H − iαω

∫
dra∗(r)a(r)], (D6)

−iωa∗(r) = +i
H
δa(r)

+ αωa∗(r)

= +i
δ

δa(r)
[H − iαω

∫
dra∗(r)a(r)]. (D7)

Here we notice that one can write H − iαω
∫

dra∗(r)
a(r) = H|ωH →ωH −iαω [see Eqs. (B8)–(B11) and
Eqs. (C5)–(C8)], i.e., the Gilbert-damping term can be
included in the external magnetic field contribution via
ωH → ωH − iαω [51,91]. To find ω that gives nontrivial
solution, we firstly set α = 0 and obtain ω = ωμ. Then we
obtain the solution in the case α �= 0 (α � 1) as [51,91]

ω = ωμ − iαω
∂ωμ

∂ωH
. (D8)

As we can see from Fig. 4(b), we have (∂ωμ/∂ωH ) ≈
1, so we obtain ω ≈ ωμ/(1 + iα) ≈ ωμ − iαωμ + O(α2),
yielding ∂tβμ ≈ −i(ωμ − iαωμ)βμ. In the simulation pre-
sented in Fig. 5, the two NV centers are placed at
(x1, y1, z1) = (d + h, w, 400 nm) and (x2, y2, z2) = (d +
h, w, 400 nm + δz) with δz = 2.2 μm, which results
in g(005)(r1) = g and g(005)(r2) = −g with g = 2π ×
517 kHz. The simulation is performed under the field
Hc, which gives the magnon frequency ω(005) ≈ 2π ×
2.78 GHz. Moreover, we solve the Lindblad equation in the
rotating frame with frequency ω(005) for the transduction
protocol and with frequency ωNV for the virtual-magnon
exchange protocol. As the NV center’s longitudinal relax-
ation time T1 is longer than both T∗

2 and 1/(αωμ), we do
not include its corresponding terms D[σ−

NVi
] and D[σ+

NVi
]

in the current simulation.
As shown in the left schematic of Fig. 5(a), idler fre-

quencies of NV1 and NV2 in the transduction protocol
are ωNV1 = ωμ + δωidle and ωNV2 = ωμ − δωidle, respec-
tively. The detuning δωidle = 2π × 5 MHz is chosen as
the neighboring frequencies around ω(005) are separated
by more than 2π × 10 MHz from ω(005), as shown in
the Fig. 4(b). The iSWAP gate time is τiSWAP = π/(2g).
Starting from the initial state |g〉1|e〉2, the fidelity is
calculated as the state overlap between the NV state
and the expected entangled state |ψ〉 ∝ 1/

√
2(|g〉1|e〉2 +

e−iδωidleτiSWAP |e〉1|g〉2). On the other hand, the detuning in
the virtual-magnon exchange protocol is ωNV = ωμ −�ω

with �ω = 2π × 3 MHz, and the fidelity is calculated as
the state overlap with |ψ〉 = 1/

√
2(|g〉1|e〉2 − i|e〉1|g〉2).

The indicator of the violation of the Bell inequality
presented in Fig. 5 is calculated following Refs. [73]
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and [74] as

CHSH violation = max[0,M(ρ)− 1], (D9)

M(ρ) = max
j<k

{
hj + hk

}
, (D10)

where hj (j = 1, 2, 3) are eigenvalues of the matrix U =
TTT with Tij = Tr[ρ(σi ⊗ σj )]. When (CHSH violation)>
0, the CHSH form of Bell inequality is violated. As shown
in Fig. 5, this is a stricter condition than the inseparabil-
ity of the two-qubit state captured by the entanglement
negativity [59], N > 0.

2. Supplementary simulations

In Fig. 6, we show the temperature dependence of the
two entanglement protocols as mentioned in the main text.
While we present only the T = 70 mK case in Fig. 5,
here we present simulations under T = 30 mK, 70 mK,
150 mK, and 300 mK. As the virtual-magnon exchange
protocol does not populate the magnon level in the limit
�ω/g → ∞, i.e., magnons are created only virtually, it is
observed that this protocol is robust against thermal fluctu-
ations. At the same time, as shown in the simulation under
T = 30 mK, the transduction protocol improves drasti-
cally from T = 70 mK compared to the virtual-magnon
exchange protocol.

To explore the parameters α and T∗
2 dependence of

the fidelity on the final entangled state for each pro-
tocol, we show in Fig. 7 the parameter dependence of
the fidelity at T = 0. The rightmost figure in Fig. 7
shows the phase diagram for which protocol gives better
fidelity, where the maximum fidelities from both protocols
are compared. In the virtual-magnon exchange protocol
denoted as detuned, we choose�ω = 10g. To simplify the
numerical calculation, fidelity at the time t = (integer)×
π/
√

2 + (�ω/g)2/g is evaluated for the virtual-magnon
exchange protocol, which gives approximately optimal
fidelity (see small oscillations observed in the �f =
3 MHz cases in Fig. 6). For the transduction protocol,
fidelity is evaluated at the time after a τiSWAP/2 inter-
action time entangling NV2 and magnons followed by a
τiSWAP iSWAP-gate time between NV1 and magnons. Here,
the coupling strength gμ(ri) is controlled to be gμ(ri) = 0
for the noninteraction duration instead of inserting the idler
frequency δωidle, for simplicity. As the resulting fidelity
in the virtual-magnon exchange protocol depends on the
amount of the detuning �ω/g, we show in Fig. 8 the same
simulation as in Fig. 7 under multiple detuning values. As
shown in the right-top figure in Fig. 8, when the detuning
is large�ω/g = 30, the higher fidelity entangled state can
be created even when the magnon damping αω is not very
small. This is because magnons are excited only virtually
in the virtual-magnon exchange protocol.

FIG. 6. Temperature dependence of the two entangling protocols presented in Fig. 5, where the T = 70 mK simulation presented on
the right-top corner is the same as Fig. 5.
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FIG. 7. Comparison between the transduction (on-resonant) and the virtual-magnon exchange (detuned) protocol of entanglement
generation. Maximum fidelity is calculated for each protocol under different Gilbert-damping parameters α and NV-center-coherence
times T∗

2 , where ω = ω(005). Contours indicate fidelity = 0.5, 0.6, 0.7, 0.8, and 0.9. A phase diagram for which protocol gives better
fidelity is presented on the rightmost figure, where the red cross marker represents the parameters used in Fig. 5. We choose�ω = 10g
for this simulation. For the simplicity of the numerical simulation, we turn on and off the coupling strength instead of inserting the
idler frequency δωidle.

As indicated from the phase diagrams presented in
Figs. 7 and 8, in the regions where α and T∗−1

2 are both
sufficiently small, the transduction protocol is better when
αω is much smaller than T∗−1

2 . On the other hand, the
virtual-magnon exchange protocol is better when T∗−1

2 is
much smaller than αω. This trade-off comes from the fact
that the transduction protocol is the faster in gate opera-
tion but populates real magnons that are sensitive to the
magnon damping, while the virtual-magnon exchange pro-
tocol is slower in gate operation but it does not populate
magnon states and hence the protocol is insensitive to the
magnon damping. In Fig. 9, we present the behavior of
the boundary line between the two regions for small α
and T∗−1

2 , where the boundary can be approximated to

αω/g = (slope)× (T∗−1
2 /g)+ (offset). We note that the

offset has nodes for detuning values

�ω/g = 2
√

2(2n − 1)√
4n − 1

, n = 1, 2, . . . . (D11)

This comes from the small and fast oscillation on top
of the slow envelope oscillation observed in the virtual
magnon exchange protocol of Fig. 6. The virtual-magnon
exchange protocol without the magnon damping and the
NV decoherence gives a perfect entangled state only
when the condition represented by Eq. (D11) is satisfied.
Under this condition, fidelity in the region αω/g � 1 and
T∗−1

2 /g � 1 is calculated as

(fidelity) = 1 − (4n − 1)3/2π

16
√

2n2
(αω/g)−

√
4n − 1(−3 + 24n − 80n2 + 128n3 + 256n4)π

1024
√

2n4
(T∗−1

2 /g). (D12)

On the other hand, fidelity in the transduction protocol in
the region αω/g � 1 and T∗−1

2 /g � 1 is calculated as

(fidelity) = 1 − π − 1
2

(αω/g)− 15π
32

(T∗−1
2 /g). (D13)

Combining Eqs. (D12) and (D13), we obtain the slope
value of the boundary line shown in Fig. 9 for detun-
ings �ω/g that give zero offset. When �ω/g is large, the

asymptotic behavior of the slope is

(slope) ∼ π

4(π − 1)
(�ω/g) ≈ 0.367(�ω/g), (D14)

which matches with the numerical simulation presented in
Fig. 9. However, note that in the real magnonic system the
detuning is limited by the neighboring mode’s frequency
separation.
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FIG. 8. Detuning �ω dependence of the final entangled state’s fidelity, as shown in the middle figure in Fig. 7. The lower figures
show the corresponding phase diagrams as in the rightmost figure in Fig. 7 for the corresponding detuning frequency values.

Based on the simulation in Fig. 9, the boundary line
under the detuning �ω = 2π × 3 MHz is numerically
obtained as (αω/g) = 1.24 × 10−4 + 1.95(T∗−1

2 /g). The

Gilbert-damping parameter α that makes the two protocols
comparable is α = 1.35 × 10−7. In Fig. 10, we show the
same simulation as in Fig. 5 with parameters T = 0 and

FIG. 9. Small α and T∗−1
2 behavior of the boundary curves between the two regions as shown in the lower figures in Fig. 8 for

multiple detuning values. The boundary is approximately αω/g = (slope)× (T∗−1
2 /g)+ (offset), and the slope and its offset are shown

on the left-top and left-bottom figures. The right figure shows the parameter region where there exist a detuning value for �ω > 3g
where the virtual-magnon exchange protocol gives better fidelity than the transduction protocol.
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FIG. 10. The same simulation
as in Fig. 5 for Gilbert-damping
parameter α = 1.35 × 10−7,
which makes the two protocols
comparable. Temperature is
T = 0 and we controlled the
strength of the coupling instead
of inserting the idler frequency
δωidle for consistency with
Figs. 7–9.

α = 1.35 × 10−7 where we see comparable entanglement
values for both protocols, although the transduction
protocol is faster in gate operation. For consistency with

the analysis presented in Figs. 7–9, the coupling strength
g was turned on and off as a function of time instead of
inserting the idler frequency δωidle.

APPENDIX E: MAGNON-ORIGINATED NV CENTER DECOHERENCE

1. Higher-order magnon contribution

In this section, we estimate the decay and decoherence of NV centers due to the interaction with magnon modes
with μ �= (005) at field Hc, which were not taken into account in the Lindblad simulation in the main text. Based on
the interaction Hamiltonian Eq. (C39), as the modes with μ �= (005) are well separated in frequency, they do not affect
the decay and decoherence of NV centers as long as the linewidth αωμ is small. Here we go beyond the linear order
interaction, and consider the following NV-magnon interaction [see Eq. (B26)],

Hint = γμ0SNV ·
[

Hd(r)+ ∇
∫

dr′G
(
r − r′)

(
∇′ · �M (

r′)F
(
r′)− ∂ ′

ZF
(
r′) �M2

(
r′)

2Ms

)]∣∣∣∣∣
r=rNV

,

= γμ0SNV · [Hd(r)+ h(r)+ h2(r)]|r=rNV
,

= γμ0SNV · [h(r)+ δh2(r)]|r=rNV
+ const., (E1)

where h(r) is provided in Eq. (B28) and we define

h2(r) ≡ −∇
∫

dr′G
(
r − r′) ∂ ′

zF
(
r′) �M2

(
r′)

2Ms
, (E2)

δh2(r) = h2(r)− 〈h2(r)〉 . (E3)

Here, the average is taken with the magnon thermal state
ρm = exp[−∑μ �ωμβ

†
μβμ/kBT], i.e., 〈· · · 〉 = Tr[· · · ρm].

In the NV center’s subspace spanned by {|g〉, |e〉}, we can
write

Hint = �

(
σ−

NVb+ + σ+
NVb− + 1

2
σ z

NVbz

)
, (E4)

b± = γμ0√
2

[
h∓(r)+ δh∓

2 (r)
]∣∣∣∣

r=rNV

, (E5)

bz = − γμ0
[
hz(r)+ δhz

2(r)
]∣∣

r=rNV
. (E6)

Assuming a Markovian magnon bath, the NV center’s
longitudinal decay rates (1/T1) are

�1
|e〉→|g〉 =

∫
dte+iωNVt 〈b−(t)b+(0)

〉
, (E7)

�1
|g〉→|e〉 =

∫
dte−iωNVt 〈b+(t)b−(0)

〉
. (E8)

Under the same assumption, the NV center’s decoherence
rate (1/T∗

2) is related to the ω ≈ 0 region of S(ω) with

S(ω) =
∫

dte−iωt 〈bz(t)bz(0)〉 , (E9)

where the Ramsey decoherence follows

ρeg ∼ exp

[
1
2

∫
dω
2π

S(ω)
(

sin(ωt/2)
ω/2

)2
]

. (E10)
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The longitudinal relaxation rate �1
|e〉→|g〉 will include terms

like
∫

dteiωNV
〈
βμ(t)β

†
μ(0)

〉
and

∫
dteiωNV

〈
βμ(t)β

†
v (t)β

†
μ(0)

βv(0)
〉
. The former is the one-magnon decay contribution

(ωNV = ωμ) and the latter is the two-magnon decay con-
tribution (ωNV = ωμ − ων). However, in our discretized
magnon modes, the chances of having ωNV = ωμ or
ωNV = ωμ − ων are small, at least when the linewidth αωμ
of magnons is narrow.

In contrast, for the decoherence that is obtained from
ω ≈ 0 part of S(ω), there is a big contribution from terms
of the form

∫
dte−iωt

〈
δnμ(t)δnμ(0)

〉
, where δnμ = β

†
μβμ −

〈β†
μβμ〉. This arises from the second-order noise corre-

lation of δhz
2(r). Furthermore, we notice that this noise

contribution is coming not only from the magnon mode
with ωμ ≈ ωNV, but also from high energy magnons up to
ωμ < kBT/�. As the decoherence contribution is expected
to be dominant, we estimate the order of its timescale. To
simplify the calculation and to avoid the paraunitary matrix
diagonalization of a large matrix, we approximate that aμ
is a normal mode, i.e., aμ ∼ e−iωμt. We take ωμ = ωmin +
DK2

μ, where ωmin is the minimum frequency obtained from
the paraunitary matrix diagonalization in Sec. IV. Hence
we write

γμ0h2(r) = ωdwl

∑

μμ′
�μμ′a†

μaμ′ , (E11)

�μμ′ = dwl
∫

dr′ [(−∇)G (r − r′)]
z

× ∂ ′
z

[
F
(
r′)ψμ(r′)ψμ′(r′)

]
. (E12)

The terms that affect the NV center’s decoherence are the
contributions from μ = μ′. Thus, to estimate the decoher-
ence rate, we take

Happrox
int = −1

2
σ z

NV

(
�ωdwl

∑

μ

�μμδnμ

)
, (E13)

δnμ = a†
μaμ − 〈

a†
μaμ

〉
. (E14)

In the limit α → 0 (although this is not compatible with the
Markov approximation) we have 〈δnμ(t)δnμ〉 = 〈n2

μ〉 −
〈nμ〉2 that yields

S(ω) = ω2
dwl

∑

μ

(
�μμ

)2
(〈

n2
μ

〉− 〈
nμ
〉2) · 2πδ(ω),

(E15)

ρge(t) ∼ exp
[
− t2

2 (τ2)
2

]
, (E16)

1
τ2

= ωdwl

√∑

μ

(
�μμ

)2
(〈

n2
μ

〉− 〈
nμ
〉2), (E17)

FIG. 11. Decoherence times calculated from Eqs. (E17)
and (E20) as a function of temperature. The lower figure is
calculated using α = 10−5.

where τ2 is the decoherence timescale. This expression
is acceptable as long as the magnon damping 2αωμ is
much smaller than 1/τ2. When 2αωμ is not small, we take
〈δnμ(t)δnμ〉 = (〈n2

μ〉 − 〈nμ〉2)e−2αωμt and obtain

S(ω) = ω2
dwl

∑

μ

(
�μμ

)2
(〈

n̂2
μ

〉− 〈
n̂μ
〉2) 4αωμ

ω2 + (2αωμ)2
,

(E18)

ρge(t) ∼ exp
[
−1

2
S(ω = 0)t

]
= exp

[
− t

T∗
2

]
, (E19)

1
T∗

2
= ω2

dwl

∑

μ

(
�μμ

)2
(〈

n̂2
μ

〉− 〈
n̂μ
〉2) 1

2αωμ
, (E20)

where T∗
2 is the decoherence rate. In Fig. 11, we show the

two decoherence times from Eqs. (E17) and (E20).

2. Dispersive coupling contribution

While the Hamiltonian Eq. (C39) does not appear to
cause decoherence, after performing the Schrieffer-Wolff
transformation in the dispersive regime [|ωμ − ωNV| >∣∣gμ (rNV)

∣∣], we obtain Eq. (C44), where we can securely
affirm that the second term (Stark shift term) will cause
decoherence, as considered in Ref. [34]. In this section
we calculate the decoherence due to this contribution. We
consider the effect of

Hdispersive
eff = 1

2
σ z

NV

∑

μ�=(005)

(
2�

∣∣gμ (rNV)
∣∣2

ωNV − ωμ
δnμ

)
, (E21)

δnμ = β†
μβμ − 〈β†

μβμ〉. (E22)

We exclude μ = (005) in the sum as we are considering
the field Hc where ωNV and ω(005) are resonant. In the same
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FIG. 12. Decoherence times calculated from Eqs. (E23)
and (E24) as a function of temperature. The lower figure is
calculated using α = 10−5.

way as in Eqs. (E17) and (E20), we obtain

1
τ2

=

√√√√√
∑

μ�=(005)

(
2
∣∣gμ (rNV)

∣∣2

ωNV − ωμ

)2 (〈
n2
μ

〉− 〈
nμ
〉2), (E23)

1
T∗

2
=

∑

μ�=(005)

(
2
∣∣gμ (rNV)

∣∣2

ωNV − ωμ

)2 (〈
n̂2
μ

〉− 〈
n̂μ
〉2) 1

2αωμ
.

(E24)

In Fig. 12, we show the two decoherence times from
Eqs. (E23) and (E24). From the T ≤ 70 mK and α =
10−5 parts of Figs. 11 and 12, the magnon-induced deco-
herence time is T∗

2 > 20 μs, and it is expected that
this dephasing contribution does not change the gen-
eral trend of the result of the simulation presented in
Fig. 5.

In Fig. 13, we show figures corresponding to Fig. 6 with
the NV centers’ dephasing rate calculated in Fig. 12. The
simulation confirms that the general tendency presented in
Fig. 5 does not change due to the dephasing contribution
calculated in Fig. 12.

APPENDIX F: AVERAGE GATE FIDELITY
FOR THE OFF-RESONANT

PROTOCOL

To show that the magnon-mediated entanglement pro-
tocols can directly be extended to two-qubit gates, in this
section we calculate the average gate fidelity as a square-
root-of-iSWAP gate for the off-resonant protocol under
the same condition as in Fig. 5. To calculate the average
gate fidelity, we employ a method based on the entangle-
ment fidelity Fe [75]. For that we introduce two auxiliary
qubits aux1 and aux2 and prepare the following maximally

FIG. 13. Temperature dependence of the two entangling protocols presented in Fig. 6 with the NV centers’ dephasing due to the
magnon number fluctuations of the neighboring magnon modes calculated in Fig. 12.
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FIG. 14. Average gate fidelity as a function of the interaction
time for multiple temperatures for the off-resonant protocol.

entangled state [92]:

|φ〉 = 1√
4

⎛
⎜⎜⎝

|e〉NV1 |e〉NV2 |e〉aux1 |e〉aux2

+|e〉NV1 |g〉NV2 |e〉aux1 |g〉aux2

+|g〉NV1 |e〉NV2 |g〉aux1 |e〉aux2

+|g〉NV1 |g〉NV2 |g〉aux1 |g〉aux2

⎞
⎟⎟⎠ , (F1)

as an initial qubit state. Then we evolve in time the NV and
magnon states according to the Lindblad master equation
of the previous sections, and calculate the fidelity Fe as the
state overlap between the calculated state and the desired
state after the following gate:

Ugate = exp{−i[|geff|
(
σ+

NV1
σ−

NV2
+ H.c.

)

− |geff|
(
σ+

NV1
σ−

NV1
+ σ+

NV2
σ−

NV2

)
]t}
∣∣∣
t=τ√iSWAP

,

= [|ee〉|eg〉 |ge〉 |gg〉]NV1NV2

⎡
⎢⎢⎣

i 0 0 0
0 1+i

2
1−i

2 0
0 1−i

2
1+i

2 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎣

〈ee|
〈eg|
〈ge|
〈gg|

⎤
⎥⎦

NV1NV2

, (F2)

where τ√iSWAP = π/(4|geff|). As the square of Ugate is
equivalent to the iSWAP gate up to single-qubit operations,
Ugate can be thought of as a square-root-of-iSWAP gate.
The average gate fidelity F̄ is calculated via [75]

F̄ = dFe + 1
d + 1

, (F3)

where d = 4. We have calculated the average gate fidelity
for temperatures T = 30, 70, and 150 mK, as shown in
Fig. 14, and have obtained F̄ = 0.94, 0.88, and 0.78,
respectively.

APPENDIX G: SIMULATION UNDER A LARGER
GILBERT-DAMPING PARAMETER

The Gilbert-damping parameter α = 10−5 that is
observed in bulk YIG crystals [67] would be optimistic for

FIG. 15. Simulation analogous to Fig. 5 under a larger Gilbert-
damping parameter α = 10−3.

small YIG structures that we consider in this work. How-
ever, as one can calculate from Fig. 4(c), we obtain a high
cooperativity C ≈ 500 even with a larger Gilbert-damping
parameter α = 10−3. In Fig. 15, we show a simulation
analogous to the one presented in Fig. 5 with α = 10−3.
From this simulation, we find that the off-resonance pro-
tocol produces entangled states, as the entanglement nega-
tivity is larger than zero. However, this turns out to be not
a useful entanglement as (CHSH violation) = 0 indicates
that the state does not violate the Bell inequality. This hap-
pens because of the increased T1 decay rate of NV centers
due to the overlap of the broad magnon-mode resonance
with the NV-center transition. Although the off-resonant
protocol is less sensitive to the magnon decay, the detun-
ing�ω needs to be sufficiently larger than the linewidth of
the magnon-mode resonance αωμ in order to suppress this
decay contribution.

The resulting entangled mixed state presented in Fig. 15
can be understood in the following way. As the inter-
action Hamiltonian is Hint = ga(σ+

NV1
− σ+

NV2
)+ H.c., we

notice that |D〉 = (|g〉NV1 |e〉NV2 + |e〉NV1 |g〉NV2)/
√

2 is a
dark state with respect to the magnon mode, or alterna-
tively, |D〉 is a state within a subspace that is free from the
magnon-induced T1 decay (decoherence free subspace),
because Hint|D〉|nm〉 = 0 with a magnon number state
|nm〉. Accordingly, the initial state of NV centers can be
written as |ψinit〉 = |g〉NV1 |e〉NV2 = (|D〉 + |B〉)/√2, with
|B〉 = (|g〉NV1 |e〉NV2 − |e〉NV1 |g〉NV2)/

√
2, and initial den-

sity operator ρinit = |ψinit〉〈ψinit| = (|D〉〈D| + |D〉〈B| +
|B〉〈D| + |B〉〈B|)/2. After the time evolution, the part
related to |D〉〈D| remains constant as |D〉 is in the decoher-
ence free subspace. Assuming that the system is at absolute
zero temperature for simplicity, and that the other terms
eventually evolve to the ground state |D〉〈B| + |B〉〈D| +
|B〉〈B| → |00〉〈00| due to energy relaxation, where |00〉 =
|g〉NV1 |g〉NV2, we obtain the final density operator

ρfin = (|D〉〈D| + |00〉〈00|)/2. (G1)
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FIG. 16. Simulation analogous to Fig. 5 for the off-resonance
case for a larger Gilbert-damping parameter α = 10−3 and larger
frequency detuning �f = 30 MHz.

As the partial transpose of this density matrix has a neg-
ative eigenvalue −(√2 − 1)/4, we obtain the entangle-
ment negativity of the final state Nfin = (

√
2 − 1)/4 and

Nfin/NB = (
√

2 − 1)/2 ≈ 0.21. This explains the lower-
right panel of Fig. 15 with an additional note that at
T = 70 mK the final density operator that evolved from
|D〉〈B| + |B〉〈D| + |B〉〈B| is no longer |00〉〈00|, but rather
a mixture of |00〉〈00|, |B〉〈B|, and |11〉〈11|, where |11〉 =
|e〉NV1 |e〉NV2.

To mitigate the magnon-induced T1 decay in the case
of the larger Gilbert-damping parameter, one can make the
detuning�f larger. Although in our case this is limited by
the frequency spacing of the neighboring magnon modes
[see Fig. 4(b)], we show in Fig. 16 the simulation with a
larger detuning value �f = 30 MHz. We note, however,
that this is not possible for the magnonic system we have
considered in the main text as the neighboring magnon-
mode frequency separations are smaller than 30 MHz [see
Fig. 4(b)] in the main text. Conversely, this simulation clar-
ifies that the system will make useful entanglement that can
violate the Bell inequality. This implies that to improve the
quality of the resulting entanglement further optimization
on the length l of the magnetic bar structure is needed, as
it defines the frequency spacing of magnon modes.

APPENDIX H: LONGITUDINAL DECAY OF NV
CENTER DUE TO THE COUPLING TO MAGNON

MODES

In this section, we evaluate the longitudinal decay con-
tribution of the magnon modes on the NV center placed on
top of the YIG bar under the conditions shown in Fig. 5.
Although in the case where two NV centers exist, there are
collective decay contributions (Purcell relaxation or Pur-
cell decay [93]) described by extra Lindblad terms, e.g.,
L[σ±

NV1
+ σ±

NV2
], we do not take this effect into account for

simplicity.
In order to also take into account the effect of NV

center’s upper frequency transition (|0〉 ↔ | + 1〉) on the

longitudinal NV center decay, we redefine the coupling
in Eq. (C40) as (with X = L, U representing the lower
and the upper frequency transitions of the NV centers,
respectively):

H(X )
int =

∑

p

�g(X )p σ+
NV(X )β(00p) + H.c., (H1)

g(L)p = √
ωMωdwl

∑

q=0,1,...,N

[(
�

+,+
(00q)/2

)
[Tpp ]qp

+
(
�

+,−
(00q)/2

)
[Tnp ]qp

]∣∣∣
r=rNV

, (H2)

g(U)p = √
ωMωdwl

∑

q=0,1,...,N

[(
�

−,+
(00q)/2

)
[Tpp ]qp

+
(
�

−,−
(00q)/2

)
[Tnp ]qp

]∣∣∣
r=rNV

, (H3)

where σ+
NV(L) = | − 1〉〈0| and σ+

NV(U) = | + 1〉〈0|. Under
the condition where the NV center is placed at the cross
marker position in Fig. 4(c), the coupling strength as a
function of the magnon mode label p is shown in Fig. 17.
The difference in strength between g(L)p and g(U)p is due to
the smaller character of circular polarization of the mag-
netic field generated by our magnon length modes [41].

Now we consider the contribution of the coupling
with magnon modes other than p = 5 to the NV cen-
ter’s longitudinal (T1) decay rates. When we write
B− = ∑

p �g(X )p β(00p) and B+ = (B−)† under the Markov
approximation, we obtain the dissipation (non-Hermitian

FIG. 17. NV-magnon coupling strength g(X )p as a function of
the mode label p for the lower (|0〉 ↔ | − 1〉, X = L) and the
upper (|0〉 ↔ | + 1〉, X = U) NV center’s transitions.
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evolution) terms

∂tρ|diss = γ 1
−,X L[σ−

NV(X )]ρ + γ 1
+,X L[σ+

NV(X )]ρ, (H4)

γ 1
−,X =

∫ ∞

−∞
dtei�X t 〈B−(t)B+(0)

〉
/�2, (H5)

γ 1
+,X =

∫ ∞

−∞
dtei�X t 〈B+(0)B−(t)

〉
/�2, (H6)

where B±(t) is written in the interaction picture,
〈· · · 〉 = Tr[ρm · · · ], ρm is the thermal magnon den-
sity operator, and �L = DNV − γHext for the lower
frequency transition (X = L) and �U = DNV + γHext
for the upper frequency transition (X = U), respec-
tively. Assuming

〈
βμ(t)β

†
v (0)

〉
=
〈
βμ(0)β

†
v (0)

〉
e−iωμt−|κ|t

and
〈
β

†
μ(0)βv(t)

〉
=
〈
β

†
μ(0)βv(0)

〉
e−iωμt−|κ|t with κ =αωμ,

we obtain [93,94]

γ 1
−,X =

∑

μ=(00p)
p=0,1,...

∣∣∣g(X )p

∣∣∣
2
(
nB
(
ωμ
)+ 1

) · 2κ
(
�X − ωμ

)2 + κ2
,

≈
∑

μ=(00p)
p=0,1,...

∣∣∣g(X )p

∣∣∣
2
(
nB
(
ωμ
)+ 1

) · 2κ
(
�X − ωμ

)2 , (H7)

γ 1
+,X =

∑

μ=(00p)
p=0,1,...

∣∣∣g(X )p

∣∣∣
2 nB

(
ωμ
) · 2κ

(
�X − ωμ

)2 + κ2
,

≈
∑

μ=(00p)
p=0,1,...

∣∣∣g(X )p

∣∣∣
2 nB

(
ωμ
) · 2κ

(
�X − ωμ

)2 , (H8)

where nB(ω) = [exp(�ω/kBT)− 1]−1 is the Bose-Einstein
distribution function and we approximate (�L/U − ωμ) �
κ to obtain the last expressions. Note that for the lower
frequency transition, we do not include p = 5 in the sum-
mation as this is the on-resonant magnon mode and its
effect is directly included in the simulation in Fig. 5. With
the Gilbert-damping parameter α = 10−5, we evaluate the
above expression and obtain Fig. 18. As the calculated
relaxation time is much longer than the timescale that
is simulated in Fig. 5, this T1 decay contribution from
magnon modes other than p = 5 is negligible for the
condition we consider.

APPENDIX I: NV-MAGNON COUPLING
STRENGTH UNDER PARAMETRIC DRIVING OF

MAGNON MODES

We comment that the discretized magnon-mode lev-
els studied in Figs. 4 and 5 may enable a control of the
NV-magnon coupling strength under parametric driving of

FIG. 18. Longitudinal (T1) decay rates of NV centers for the
NV center’s lower and upper transitions due to the coupling
to magnon modes other than p = 5, under the condition where
the NV center’s lower transition frequency is on-resonant to
the magnon mode with p = 5 as calculated in Fig. 5. The
Gilbert-damping parameter α = 10−5 is used.

magnons via the squeezing effect that is studied in cavity
quantum electrodynamics [68]. When a modulated exter-
nal magnetic field is applied along the z axis, hmod

z (t)ẑ,
we obtain the additional magnon Hamiltonian Hmod

m =
−μ0hmod

z (t)
∫

drδMz(r), which includes terms propor-
tional to hmod

z (t)β2
μ + H.c. due to the Bogoliubov trans-

formation. In this respect, the control of the NV-magnon
coupling strength can be performed by modulating hz(t)
with a frequency near 2ωμ in analogy to the parametric
excitations of magnons under parallel pumping [51].

APPENDIX J: PERIODIC MODULATION OF THE
EXTERNAL MAGNETIC FIELD

In Fig. 5, we consider a modulation of the NV-center
transition frequencies with respect to the magnon-mode
frequency to generate entanglement between NV centers.
Alternatively, the NV center or the magnon-mode fre-
quency can also be controlled by a periodic modulation
of the external magnetic field hmod

z (t) with frequency near
the detuning frequency δω [69,70]. In Ref. [70], interac-
tion between photons in a microwave cavity and magnons
in a bulk YIG sphere under a periodic modulation of the
z-directional external field is experimentally studied with
a use of Floquet theory. In Ref. [69] and others, it has
been studied that the periodic modulation of qubit tran-
sition frequencies results in sideband transitions known
as Landau-Zener-Stückelberg interference. Although these
may enable different protocols of entangling NV centers
under the ac modulation of the external magnetic field, this
is beyond the scope of this work.
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APPENDIX K: EFFECT OF NONUNIFORM
LOCAL MAGNETIC FIELD AT YIG

When we consider the case where multiple NV centers
are placed on top of the YIG waveguide, we mentioned
in the main text that one can use local magnetic field
to change the NV centers’ frequencies with respect to
the magnon mode’s lowest frequency. We note, however,
that there would be an unavoidable and undesirable local
magnetic field h(2)ext(r) at the underlying YIG location, the
effect of which can be captured by an additional magnon
Hamiltonian

H(2)
m = −μ0

∫
drh(2)ext(r) · M(r). (K1)

Although we do not fully study the nontrivial effect of
H(2)

m on the magnon transport properties in the YIG waveg-
uides and bars, as the effect can be mitigated by using
local electric field [60] or strain [61] instead, we note that
it can directly be calculated for the finite-length YIG bar
case through the diagonalization of the magnon Hamilto-
nian (Sec. IV). Alternatively, in the following subsections,
we briefly discuss a perturbative approach to consider the
effect of the nonuniform local magnetic field on our YIG
bar and waveguide cases. To this end, we consider the z-
directional magnetic field contribution only, as we need
only a z-directional magnetic field to shift NV centers’ fre-
quencies. Therefore, what we consider in this section is the
effect of the following Hamiltonian

H(2)
m = −μ0

∫
drh(2)z,ext(r)δMz(r),

= γμ0hext

∫
drh̄(r)a∗(r)a(r),

= ωh

∫
drh̄(r)a∗(r)a(r), (K2)

where we write h(2)z,ext(r) = hexth̄(r) with a dimensionless
function h̄(r) describing the position dependence of the
nonuniform magnetic field and ωh = γμ0hext is the fre-
quency scale corresponding to the strength of the local
nonuniform magnetic field.

1. Perturbative approach to the YIG waveguide case

In this section, we consider the case of the infinitely
long YIG waveguide. Following the expansion Eqs. (B4)
and (B5), using the Bogoliubov transformation
Eqs. (B20)–(B22), and considering the magnon modes

with (n, m) = (0, 0) only, we obtain

H(2)
m = �ωh

∫
dk
2π

∫
dk′

2π
Dk−k′

×
(
−μ∗

k,(0,0)β−k,(0,0) + λk,(0,0)β
†
k,(0,0)

)

×
(
λk′,(0,0)βk′,(0,0) − μk′,(0,0)β

†
−k′,(0,0)

)
, (K3)

where

Dk−k′ =
∫

drh̄(r)e−i(k−k′)z [f X
0 (x)f Y

0 (y)
]2 , (K4)

has the dimension of length. To know the effect of this
additional perturbative Hamiltonian H(2)

m on the NV-NV
effective coupling strength, we can consider how H(2)

m
modifies the advanced Green’s functions [see Eq. (B43)],
defined by

iGA(t) = −θ(−t)〈[βk,(0,0)(t),β
†
k′,(0,0)(0)]〉Heis, (K5)

where the subindex “Heis” indicates that the operators
inside the bracket are in the Heisenberg picture, i.e., the
dynamics of our system is governed by Hm + H(2)

m . To
evaluate the effect of H(2)

m perturbatively, one can use
a standard diagrammatic perturbation theory. For exam-
ple, at T = 0, one can calculate the left-hand side of
Eq. (K5) by first calculating the time-ordered Green’s
function [95],

iG(t) = 〈T βk,(0,0)(t)β
†
k′,(0,0)(0)〉Heis,

= 〈0|T S(∞)βk,(0,0)(t)β
†
k′,(0,0)(0)|0〉

〈0|S(∞)|0〉 , (K6)

S(∞) = T exp
[
− i

�

∫ +∞

−∞
dt′H(2)

m (t′)
]

, (K7)

where T represents the time-ordered product and oper-
ators without subindex “Heis” are in the interaction
picture. We have considered a standard treatment of
gradually turning on and off the interaction H(2)

m at
infinitely early and late times. Then we obtain the retarded
Green’s function by shifting the position of the pole
in the frequency domain. The lowest-order contribution
in Eq. (K6) is

〈0|T βk,(0,0)(t)β
†
k′,(0,0)(0)|0〉 = θ(t)e−iωk,(0,0) · 2πδ(k − k′)

=
∫

dω
2π

e−iωtiG0(ω, k) · 2πδ(k − k′), (K8)

where we define

G0(ω, k) = 1
ω − ωk,(0,0) + i0

. (K9)
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The next order contribution is, using Wick’s theorem,
〈
T
(

−i
∫ ∞

−∞
dt′H(2)

m

(
t′
))
βk,(0,0)(t)β

†
k′,(0,0)(0)

〉

conn

= (−i)
∫ ∞

−∞
dt′ωh

∫
dk1

2π

∫
dk2

2π
D̃k1,k2

〈
0
∣∣∣T βk,(0,0)(t)β

†
k1,(0,0)

(
t′
)∣∣∣ 0
〉 〈

0
∣∣∣T βk2,(0,0)

(
t′
)
β

†
k′,(0,0)(0)

∣∣∣ 0
〉

= (−i)
∫ ∞

−∞
dt′ωhD̃k,k′

(∫
dω
2π

e−iω(t−t′)iG0(ω, k)
)(∫

dω′

2π
e−iω′t′ iG0

(
ω′, k′)

)

=
∫

dω
2π

e−iωtiG0(ω, k)ωhD̃k,k′G0
(
ω, k′) , (K10)

where the subindex “conn” indicates the connected dia-
grams and

D̃k,k′ = Dk−k′(λk,(0,0)λk′,(0,0) + μk,(0,0)μ
∗
k′,(0,0)), (K11)

which has the dimension of length. Therefore, we obtain

iG(ω) =
∫

dteiωtiG(t) ≈ iG0(ω, k)2πδ(k − k′)

+ iG0(ω, k)ωhD̃k,k′G0
(
ω, k′) . (K12)

According to Eqs. (B43) and (B45), the effective NV-
NV interaction is related to the ω = ωNV contribu-
tion of the Green’s function GA(ωNV). Assuming D̃k,k′
will contribute to the effective NV-NV coupling on
the same order as 2πδ(k − k′) in Eq. (K12) for sim-
plicity to evaluate the scale of the contribution of the
perturbation and as they have the same dimension of
length, and using ωhG0(ωNV, k′) ∼ ωh/(ωNV − ωk′,(0,0)) ∼
ωh/(ωmin − ωNV), the effect of the local magnetic field hext
on the NV-NV effective coupling, based on Eqs. (B43),
(B45), and (K12), is given by

geff − geff|hext=0

geff|hext=0
∼ ωhG0(ωNV, k′) ∼ ωh

ωmin − ωNV
,

(K13)

although further investigation is needed for the full com-
parison of the two terms in Eq. (K12) as well as for
higher-order terms.

2. Perturbative approach to the YIG bar case

In the case of the YIG bar, with the use of Eqs. (C1)
and (C2), the Hamiltonian H(2)

m can be written as

H(2)
m = ωh

2

∑

μ1,μ2

[
a∗
μ1

aμ1

] [[hext
]
μ1μ2

O
O

[
hext

]
μ1μ2

]

×
[

aμ2
a∗
μ2

]
, (K14)

[
hext

]
μ1μ2

=
∫

drh̄(r)f XYZ
μ1

(r)f XYZ
μ2

(r). (K15)

Now we define the perturbation Hamiltonian matrix λV as

λ[V]μ1μ2 ≡ ωh

[[
hext

]
μ1μ2

O
O

[
hext

]
μ1μ2

]
. (K16)

In the following, we consider the effect of λV in the expan-
sion with the order λ for the case of the diagonalization
with a paraunitary matrix. We want to diagonalize the total
Hamiltonian matrix Ĥ = Ĥ0 + λV in the form

T†HT = � =
[

E O
O E

]
, (K17)

T†σ 3T = σ 3, (K18)

and we assume we know this expansion in the case with
λ = 0 as

T†
0H0T0 = �0, (K19)

T†
0σ 3T0 = σ 3. (K20)

Based on these, we expand the perturbed paraunitary T and
eigenvalues � matrices as

T = T0 + λT1 + · · · . (K21)

� = �0 + λ�1 + · · · . (K22)

Substituting these into Eqs. (K17) and (K18), and taking
leading-order terms in λ, we obtain

�1 =
∑

i

|i〉
[
T†

0VT0

]
ii
〈i|, (K23)

T1 = −T0σ 3

∑

i�=j

|i〉

[
T†

0VT0

]
ij

[σ 3�0]ii − [σ 3�0]jj
〈j | + T0σ 3D,

(K24)

040314-30



OPPORTUNITIES FOR LONG-RANGE... PRX QUANTUM 2, 040314 (2021)

where D is an arbitrary diagonal matrix with purely
imaginary entries. This is due to the degrees of
freedom of the paraunitary matrix T → Texp[iλ×
(real diagonal matrix)], which we encounter in the uni-
tary diagonalization case as well. Therefore, we simply set
D = 0 and obtain

T1 = T0L, (K25)

L = −σ 3

∑

i�=j

|i〉

[
T†

0VT0

]
ij

[σ 3�0]ii − [σ 3�0]jj
〈j |. (K26)

As | [σ 3�0]ii − [σ 3�0]jj | = ωμ + ων � ωh when [σ ]ii
[σ ]jj = −1, we approximately neglect the off-block-
diagonal sector of L, and write

L ≈
[

Lpp O
O Lnn

]
. (K27)

Then the perturbed paraunitary matrix becomes
[

Tpp Tpn

Tnp Tnn

]
≈
[

Tpp
0 Tpn

0
Tnp

0 Tnn
0

]
+
[

Tpp
0 Tpn

0
Tnp

0 Tnn
0

] [
Lpp O
O Lnn

]
.

(K28)

Based on Eq. (C40), we obtain the coupling strength as

g(00p) = g0
(00p) +

∑

q=0,1,...,N

g0
(00q) [Lpp ]qp , (K29)

g0
(00p) = √

ωMωdwl

∑

q=0,1,...,N

[(
�

+,+
(00q)/2

) [
Tpp

0

]
qp

+
(
�

+,−
(00q)/2

) [
Tnp

0

]
qp

]
, (K30)

where g0
(00p) is the coupling strength we obtained with-

out the perturbation Hamiltonian H(2)
m . From Eqs. (K23)

and (K26) with �1 ∼ ωh and L ∼ ωh/(ων − ωμ), we find
the following scaling behavior for the change in the
magnon-mode frequency and the NV-magnon coupling
strength due to the local nonuniform magnetic field hext,

ωμ − ωμ
∣∣
hext=0 ∼ ωh, (K31)

gμ − gμ
∣∣
hext=0

gμ
∣∣
hext=0

∼ ωh

ων( �=μ) − ωμ
, (K32)

although Eq. (K32) strongly depends on how much the
additional magnetic field mixes different normal magnon
modes, described by the off-diagonal components of
T†

0VT0.
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