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With the development of delegated quantum computation, clients will want to ensure confidentiality
of their data and algorithms and the integrity of their computations. While protocols for blind and verifi-
able quantum computation exist, they suffer from high overheads and from oversensitivity: when running
on noisy devices, imperfections trigger the same detection mechanisms as malicious attacks, resulting
in perpetually aborted computations. We introduce the first blind and verifiable protocol for delegat-
ing bounded-error quantum polynomial (BQP) computations to a powerful server, with repetition as the
only overhead. It is composable and statistically secure with exponentially low bounds and can tolerate a
constant amount of global noise.
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I. INTRODUCTION

Remotely accessible quantum computing platforms free
clients from the burden of maintaining complex physical
devices in house. Yet, when delegating computations, they
want their data and algorithms to remain private and these
computations to be executed as specified. Several meth-
ods have been devised to achieve this (e.g., Refs. [1,2]; for
a review, see Ref. [3]). Nonetheless, a practical solution
remains to be found, as all known protocols are too sensi-
tive to noise. Indeed, they have been designed for perfect
devices, thus aborting as soon as the smallest deviation is
detected. Unfortunately, the replacement of such machines
by even slightly noisy ones would make the verification
procedure abort constantly, mistaking plain imperfections
for the signature of malicious behavior.

To deal with this oversensitivity, previous research has:
given up on blindness [4]; imposed restrictions on the
noise model [5]; switched to a setting with two noncom-
municating servers and classical clients [6]; or introduced
computational assumptions [7]. Yet, these protocols either
only achieve inverse-polynomial security or obtain expo-
nential security by requiring an additional fault-tolerant
encoding of the computation on top of the one used to
suppress device noise.
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We tackle this problem for bounded-error quan-
tum polynomial (BQP) computations—i.e., the class
of decision problems that quantum computers can
solve efficiently—by introducing a protocol that pro-
vides noise robustness, verification, blindness, and del-
egation. The protocol repeats the client’s computation
framed in the measurement-based quantum computation
(MBQC) model—a natural choice for delegating computa-
tions—several times in a blind fashion while interleaving
these executions with test rounds that aim at detecting
dishonest behavior of the server. A final majority vote
over the computation rounds mitigates possible errors, thus
providing the desired robustness.

Combined with blindness, this forces the server to attack
at least a constant fraction of the rounds to corrupt the com-
putation, hence increasing its chances of getting caught by
the tests. Information-theoretic security is proven in the
composable framework of abstract cryptography (AC) [8],
ensuring that security is not jeopardized by sequential or
simultaneous instantiations with other protocols.

Crucially, our protocol has no space overhead for each
round when compared to the insecure computation in the
MBQC model: the only price to pay for exponential secu-
rity and correctness is a polynomial number of repetitions
of computations similar to the unprotected one. This lets
the client use the full extent of the available hardware
for its computational tasks and any increase in the capa-
bilities of the quantum devices can be used entirely to
scale up these computations. These properties make it, to
our knowledge, the first experimentally realizable solution
for verification of BQP computations, thus going beyond
experimental feasibility demonstrations of verifiable
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building blocks [9–12] and potentially serving as a
blueprint for the development of future quantum network
applications.

II. PRELIMINARIES

A. BQP computations

The complexity class BQP contains the decisions prob-
lems that can be solved with bounded error probability
using a polynomial-size quantum circuit. More formally, a
language L is in BQP if there is a family of polynomial-
size quantum circuits that decides the language with an
error probability of at most p . The chosen value for p is
arbitrary as long as it is fixed and is usually taken to be
1/3. Hence, a BQP computation for L will have output
F(x) = 1 for x ∈ L with probability at least 1 − p , while
it will have output F(x) = 0 for x /∈ L with probability at
least 1 − p . In the following, for a given BQP computa-
tion, p will be referred to as the inherent error probability
to distinguish it from errors due to external causes such as
the use of noisy devices.

B. Measurement-based quantum computation

An MBQC algorithm (also called a measurement pat-
tern) consists of a graph G = (V, E), two vertex sets I
and O defining input and output vertices, a list of angles
{φv}v∈V with φv ∈ � := {kπ/4}0≤k≤7, and a flow. To run
it, the client instructs the server to prepare the graph state
|G〉: for each vertex in V, the server creates a qubit in the
state |+〉 and performs a control-Z (CZ) gate for each pair
of qubits in E. The client then asks the server to measure
each qubit of V along the basis {|+φ′

v
〉〈+φ′

v
|, |−φ′

v
〉〈−φ′

v
|}

in the order defined by the flow of the computation, with
|+α〉 = (|0〉 + eiα |1〉)/√2. The corrected angle φ′

v is given
by φ′

v = (−1)sX
v φv + sZ

vπ for binary values of sX
v and sZ

v

that depend only on the outcomes of previously measured
qubits and the flow. More details about the flow and the
update rules for the measurement angles can be found in
Refs. [13,14].

As shown in Ref. [15], the MBQC model is equivalent to
the circuit model, so that any BQP algorithm in the circuit
model can be translated into the MBQC model with at most
polynomial overhead.

C. Hiding the computation

A computation can easily be hidden if, instead of the
server preparing each qubit, the client: (i) for all v ∈ V
sends

∣
∣+θv

〉

with θv chosen uniformly at random in �;
(ii) asks the server to measure the qubits in the basis
defined by the angle δv = φ′

v + θv + rvπ for rv a random
bit, while keeping θv and rv hidden from the server; and
(iii) uses sv = bv ⊕ rv, where bv is the measurement out-
come to compute sX

v and sZ
v defined above. Here, the angle

θv acts as a one-time pad for φ′
v , while rv does the same

for the measurement outcomes. This idea was first formal-
ized in the universal blind quantum computation (UBQC)
Protocol in Ref. [1].

D. Verifiability through trap insertion

Verifiable protocols allow the client to check that its
computation has been done correctly. To do this, the client
enlarges the graph used for the computation to insert
traps. These traps are made from qubits randomly prepared
in |+θ 〉 states and disconnected from the subgraph used
for performing the desired computation with the help of
dummy qubits—i.e., randomly initialized qubits sent by the
client in states {|0〉 , |1〉}. The first verification protocol via
trapification has been introduced in Ref. [2]. It has been
further optimized into the verifiable blind quantum compu-
tation (VBQC) protocol of Refs. [16,17], achieving a linear
overhead.

III. NOISE-ROBUST VERIFIABLE PROTOCOL

Our noise-robust VBQC protocol is formally defined in
Protocol 1, where test rounds are used in conjunction with
computation rounds to provide verifiability. We introduce
it more intuitively in the following paragraphs and discuss
the features that make it suitable for practical purposes.

A. Trap insertion for BQP computations

Because BQP computations have classical inputs and
classical outputs, there exists a more economical trap inser-
tion than is available for quantum input and quantum
output computations. More concretely, it does not require
any enlargement of the graph to insert traps alongside the
computation. Rather, the idea is to interleave pure com-
putation rounds (i.e., without inserted traps) and pure test
rounds (i.e., only made up of traps).

Given a UBQC computation defined by a graph G, we
construct test rounds based on a k coloring {Vi}i∈[k] of
G. A partition of a graph in k sets—called colors—is
a valid k coloring if all adjacent vertices in the graph
have different colors. Therefore, by definition, a k color-
ing satisfies

⋃k
i=1 Vi = V, and ∀i ∈ [k], ∀v ∈ Vi : NG(v) ∩

Vi = ∅, where NG(v) are the neighbors of v in G. Hence,
for each color i, the client can decide to insert traps
for all vertices of Vi and dummies in all other posi-
tions. This defines the test round associated with color i.
These tests require the same sequence of operations for
the server as regular UBQC computations, making them
undetectable.

B. Informal presentation of the protocol

Suppose that the client wishes to delegate a BQP compu-
tation corresponding to a measurement pattern on a graph
G to the server. The client chooses a coloring {Vi}i∈[k] of
G and two integers d and t. All these parameters are fixed
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for a given instantiation of the protocol and are publicly
available to both parties.

The client runs the UBQC protocol n := t + d times suc-
cessively. For d of the rounds chosen at random (compu-
tation rounds), the client updates the measurement angles
according to the measurement pattern of its desired com-
putation. The remaining t rounds are test rounds. For each
such test round, the client secretly chooses a color at ran-
dom and sends traps for vertices of that color and dummies
everywhere else. The client instructs the server to measure
all qubits as in computation rounds but with the mea-
surement angle of trap qubits corresponding to the basis
in which they are prepared and a random measurement
basis for the dummies. Because the trap qubits are isolated
from each other, they should remain in their initial state.
A test round is said to have passed if all the traps yield
the expected measurement results and failed otherwise.
Figure 1 depicts such a possible succession of rounds.

At the end of the protocol, the client counts the number
of failed test rounds. If this number is higher than a given
threshold w, it aborts the protocol by sending the message
Abort to the server [18]. Otherwise, it sets the majority
outcome of the computation rounds as its output and sends
message Ok to the server.

In this construction, all rounds share the same
underlying graph G and the same order for the

measurements of qubits, and all angles are chosen from
the same uniform distribution. We prove formally later that
this implies blindness—i.e., the server cannot distinguish
computation and test rounds, nor tell which qubits are
traps—which in turn makes this trap-insertion strategy effi-
cient to obtain verifiability. The range and influence of the
parameters on verifiability and noise-robustness bounds
are detailed in the next section.

C. Redo feature

Because the client or the server may experience unin-
tentional device failures, they might wish to discard and
redo a round j ∈ [n]. In this case, our protocol allows each
party to send a Redoj request to the other, in which case
both parties simply repeat the exact same round, albeit
with fresh randomness. Redoj requests are allowed only
so long as the party asking for them is still supposed to
be manipulating the qubits of round j . We show that this
does not impact the blindness or the verifiability of the
scheme. This means that a dishonest server cannot use
Redo requests to trick the client into accepting an incor-
rect result. Such a capability of our protocol is crucial in
practice: without it, detected honest failures of devices
happening during a test round would be counted as a
failed test round, thus drastically decreasing the likelihood
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FIG. 1. An example of rounds of the proposed protocol. Graphs in gray denote computation rounds, while graphs containing red
nodes (traps) and green nodes (dummies) are test rounds. Each qubit is always included in one type of test round. The server remains
completely oblivious to the differences between the rounds, which are solely known to the client.

of successfully completing the protocol. Since the rounds
concerned can be safely repeated, the only consequence
of experimental failures caught during an execution is an
increase in the expected number of rounds.

D. Exponential security amplification

The above approach to trap insertion is efficient as the
only overhead is the repetition of the same subprotocol.
Yet, the use of a single computation round and n − 1 test
rounds would leave at least a 1/n chance for the server
to corrupt the computation. The only previously known
method to obtain an exponentially low cheating proba-
bility has been to insert traps into a single computation
round at the expense of drastically increasing the com-
plexity of the graph and then using fault-tolerant encoding
on top to amplify the security. By restricting the com-
putation to BQP computations, we prove that a classical
repetition error-correcting code is sufficient to achieve an
exponentially low cheating probability. This amplification
technique is common in purely classical scenarios, where
attacks can be classically correlated across various rounds.
Although this claim has also been made in the quantum
case in previous works [2,5,16], up to now it has remained
unproven. The difficulty, which we address below, is that
quantum attacks entangled across rounds are much more
powerful than classical correlations allow.

IV. SECURITY RESULTS AND NOISE
ROBUSTNESS

This section presents the security properties of the pro-
tocol in the AC framework of Ref. [8] and its noise
robustness on honest devices. See the Appendix for formal
definitions and proofs of Theorems 1 and 2.

A. Security analysis

In AC, security is defined as indistinguishability
between an ideal resource, which is secure by definition,
and its real-world implementation, i.e., the protocol. This
framework ensures a higher standard of security than in
other approaches (see, e.g., Ref. [19] and Sec. 5.1 of Ref.
[20]) and is inherently composable, meaning that secu-
rity holds when the protocol is repeated sequentially or

in parallel with others. This property is crucial, as dele-
gated protocols are important stepping stones toward more
complex functionalities (e.g., a subroutine for building
multiparty-quantum-computation protocols [21]).

Our security proof uses the results of Ref. [22] that
reduce the composable security of a verifiable dele-
gated quantum computation protocol to four stand-alone
criteria:

(a) εcor-local-correctness: the protocol with honest play-
ers produces the expected output.

(b) εbl-local-blindness: the server’s state at the end of
the protocol is indistinguishable from the one that it
could have generated on its own.

(c) εver-local-verifiability: the client either accepts a
correct computation or aborts the protocol.

(d) εind-independent-verification: the server can deter-
mine on its own, using the transcript of the protocol
and its internal registers, whether or not the client
will decide to abort.

Then, the local-reduction theorem (Corollary 6.9 from
Ref. [22]) states that if a protocol implements a uni-
tary transformation on classical inputs and is εcor-locally-
correct, εbl-locally-blind and εver-locally-verifiable with
εind-independent-verification, then it is ε-composably-
secure with:

ε = max{εsec, εcor} and εsec := 4
√

2εver + 2εbl + 2εind.
(1)

With this at hand, we can state our main result:

Theorem 1 (Security of Protocol 1). For n = d + t such
that d/n and t/n are fixed in (0, 1) and w such that w/t
is fixed in [0, (1/k)(2p − 1)/(2p − 2)], where p is the
inherent error probability of the BQP computation, Pro-
tocol 1 with d computation rounds, t test rounds, and a
maximum number of tolerated failed test rounds of w is
ε-composably-secure, with ε exponentially small in n.

B. Simple upper bound on the probability of failure

The εver-local-verifiability amounts to upper bounding
the probability that an erroneous result is accepted by εver.
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Computation runs

FIG. 2. The four cases needed to determine a closed-form upper bound for the probability of failure. First, we determine the proba-
bility for the number of affected computation rounds. If it is low enough [Z < d(2p − 1)/(2p − 2)], there is no need to abort. If it is
high [Z ≥ d(2p − 1)/(2p − 2)], we find a bound on the probability that the number of failed test rounds Y is below or above w.

Figure 2 presents the four possible configurations for cor-
rupted computations and traps. Given a BQP computation
that decides whether or not x belongs to the language L,
our protocol would yield the correct result after the major-
ity vote whenever less than d/2 computation rounds yield
F(x) ⊕ 1. These erroneous results can be due to malicious
behavior of the server, to its use of noisy devices, or to
inherent errors of the BQP algorithm. It is expected that,
in pd computation rounds, the BQP computation will give
an inherently erroneous result and that this will happen for
a fraction greater than p only with negligible probability.
Therefore, the result obtained by running our protocol will
be correct whenever it is possible to guarantee that there
is a negligible probability that the server corrupts more
than [(1/2) − p − ϕ] d computation runs for some ϕ > 0.
To this end, we use the trapification paradigm. First, this
ensures that each nontrivial deviation to the computation
will be detected by at least one of the k possible types of
test rounds. Second, because the deviations are distributed
equally among test and computation runs, we can con-
clude that if fewer than [(1/2) − p − ϕ − ε1]t test runs are
corrupted for some ε1 > 0, then fewer than [(1/2) − p −
ϕ]d computations are corrupted with overwhelming prob-
ability. This implies that setting w = [(1/k) − ε2][(1/2) −
p − ϕ − ε1]t for ε2 > 0 yields an exponentially low prob-
ability of failure. Since ϕ, ε1, ε2 can be chosen arbitrarily
small, we conclude that εver can be made negligible for
0 < w/t < (1/k)[(1/2) − p].

C. Improved upper bound on the probability of failure

The former bound can be improved by realizing that
some situations leading to incorrect results are double
counted. Indeed, we need to consider inherent errors from
the BQP computation solely for the computation rounds
that are unaffected by the server’s malicious behavior. This
is due to the blindness of the scheme ensuring that the

server’s deviation will be distributed equally among com-
putation rounds with or without inherent errors. Denot-
ing by m the total number of rounds affected by the
server’s deviation, we expect [md + (n − m)pd]/n compu-
tation rounds to be erroneous. The first term comes from
deviations of the server, while the second comes from
inherent errors in the BQP computation when the server
has not deviated on these rounds. The requirement that
this quantity is below d/2 amounts to guaranteeing that
m < n(2p − 1)/(2p − 2), which can be obtained follow-
ing the line of argument given in the previous paragraph
whenever w satisfies 0 < w/t < (1/k)(2p − 1)/(2p − 2).

D. Local correctness on honest-but-noisy devices

None of the stand-alone criteria introduced above
consider device imperfections. In fact, the analysis of
correctness, blindness, and verification makes no distinc-
tion between device imperfections and potentially mali-
cious behavior. Although satisfactory—these properties
make our protocol a concrete implementation of the ideal
resource for verifiable delegated quantum computation—it
could still fall short of expectations in terms of usability
because nonmalicious device imperfections could cause
unintentional aborts. Fortunately, for a class of realistic
imperfections, our protocol is capable of correcting their
impact and accepts with high probability. In such case, the
final outcome is the same as that obtained on noiseless
devices with honest participants.

This additional noise-robustness property, the main
innovation of this paper, means that Protocol 1 also sat-
isfies the local-correctness property with negligible εcor for
a noisy but honest client and/or server. This property holds
under the following restrictions:

(a) The noise can be modeled by round-dependent
Markovian processes—i.e., a possibly different
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arbitrary completely positive trace-preserving (CPTP)
map acting on each round.

(b) The probability that at least one of the trap measure-
ments fails in any single test round is upper bounded
by some constant pmax < (1/k)(2p − 1)/(2p − 2)

and lower bounded by pmin ≤ pmax.

Theorem 2 states that, in order for the protocol to terminate
correctly with overwhelming probability on these noisy
devices, w should be chosen such that w/t > pmax. Con-
versely, for any choice of w/t < pmin, we show that the
protocol aborts with overwhelming probability.

Theorem 2 (Local Correctness of VDQC Protocol on
Noisy Devices, Informal). As before, p denotes the inher-
ent error probability for the BQP computation. Assume
a Markovian round-dependent model for the noise on
the client and server devices and let pmin ≤ pmax <

(1/k)(2p − 1)/(2p − 2) be, respectively, a lower and an
upper bound on the probability that at least one of the trap-
measurement outcomes in a single test round is incorrect.
If w/t > pmax, Protocol 1 is εcor-locally-correct with expo-
nentially low εcor. On the other hand, if w/t < pmin, then
the probability that Protocol 1 terminates without aborting
is exponentially low.

Using the local-reduction theorem from Ref. [22] again,
this new bound concerning local correctness on noisy
devices can be combined with noise-independent blind-
ness, input-independent verification, and verifiability to
yield a composably secure protocol for ε = max{εsec, εcor}.
Here, ε might depend on the noise level of the devices
through εcor.

V. DISCUSSION

A. Role of noise assumptions in correctness analysis

Our security proof does not rely on any assumption
regarding the form or amplitude of the noise: it considers
any deviation as potentially malicious and shows that the
protocol provides information-theoretic verification and
blindness. The assumptions on the noise—limited strength
and Markovianity—are used only to show that correctness
holds not only in the honest and noiseless case but also
when the imperfections of the devices are mild. In such
cases, their impact on the computation can be mitigated
and the protocol will accept with high probability.

B. Fine-tuning the number of repetitions

For specific computations with fixed security and cor-
rectness targets as well as noise levels, several parameters
can be tuned to optimize the total run time of our protocol.
First, distributing rounds across different machines is an
effective way to reduce the overall execution time, while
composability ensures that security is preserved. Second,

for a fixed graph, a smaller value of k allows a larger value
of pmax, since exponential verification and correctness
require pmax < w/t < (1/k)(2p − 1)/(2p − 2): finding a
small k coloring of the graph used for the computation
widens the gap between the chosen threshold ratio w/t and
(1/k)(2p − 1)/(2p − 2), thereby reducing the number of
rounds required to obtain the desired security and correct-
ness levels [23]. Third, the ratio d/t also influences the
number of repetitions. Given fixed values for p , k, w/t,
and the security and correctness levels, the optimal ratio
can be determined numerically using Eqs. (E5) and (F1),
which explicitly relate the failure and success probabilities
to these parameters.

C. Decoupling verifiability and fault tolerance

Because a single trap has bounded sensitivity—the prob-
ability α of not detecting an attack at a given vertex
is bounded away from 0—it must be boosted to obtain
exponential security. Previous work has resorted to fault-
tolerant encoding of the computation path to ensure that
r errors can be corrected (see Ref. [2,16]). This forces
attackers to corrupt at least r locations to affect the com-
putation, which decreases the probability of not detecting
such attacks to αr. Increasing the security of these proto-
cols simultaneously increases the minimum distance of the
fault-tolerant amplification scheme, thereby reducing the
number of available qubits to perform the computation.

The repetition of test rounds and the majority vote in
our protocol serve the same purpose but with a much
lighter impact. Because our detection-probability ampli-
fication relies on a classical procedure, all qubits can be
devoted to useful computations irrespective of the desired
security level.

Additionally, our protocol does not abort at the first
failed trap, while previous approaches do. This means
that, in the presence of noise, other protocols always
require an exponentially low global residual-error level
to accept with overwhelming probability. On the con-
trary, our protocol only needs the average ratio of failed
test rounds to be upper bounded away from (1/k)(2p −
1)/(2p − 2), which requires us to bring the global residual
error level to a constant only. This promises to drasti-
cally ease the experimental feasibility of verified quantum
computations.
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APPENDIX A: USEFUL INEQUALITIES FROM
PROBABILITY THEORY

The following definitions and lemmata are useful tools
for our proof: for more in-depth definitions, see Ref. [24].

Definition 1 (Hypergeometric distribution). Let N , K , n ∈
N, with 0 ≤ n, K ≤ N. A random variable X is said to
follow the hypergeometric distribution, denoted as X ∼
Hypergeometric(N , K , n), if its probability mass function
is described by

Pr [X = k] =

(

K
k

)(

N − K
n − k

)

(

N
n

) .

As one possible interpretation, X describes the number of
drawn marked items when drawing n items from a set of
size N containing K marked items, without replacement.

Lemma 1 (Tail bound for the hypergeometric distri-
bution). Let X ∼ Hypergeometric(N , K , n) be a random
variable and 0 < t < K/N. It then holds that

Pr
[

X ≤
(

K
N

− t
)

n
]

≤ exp
(−2t2n

)

.

Corollary 1. Let X ∼ Hypergeometric(N , K , n) be a ran-
dom variable and 0 < λ < (nK/N ). It then holds that

Pr [X ≤ λ] ≤ exp

[

−2n
(

K
N

− λ

n

)2
]

.

Lemma 2 (Serfling’s bound for the hypergeometric dis-
tribution [25,26]). Let X ∼ Hypergeometric(N , K , n) be a
random variable and λ > 0. It then holds that

Pr
[√

n
(

X
n

− N
K

)

≥ λ

]

≤ exp

(

− 2λ2

1 − n−1
N

)

.

Corollary 2. Let X ∼ Hypergeometric(N , K , n) be a ran-
dom variable and λ > (nK/N ). It then holds that

Pr [X ≥ λ] ≤ exp

[

−2n
(

λ

n
− K

N

)2
]

.

Note the symmetry of Corollaries 1 and 2.

Lemma 3 (Hoeffding’s inequality for the binomial distri-
bution). Let X ∼ Binomial(n, p) be a random variable.

For any k ≤ np, it then holds that

Pr [X ≤ k] ≤ exp
(

−2
(np − k)2

n

)

.

Similarly, for any k ≥ np, it holds that

Pr [X ≥ k] ≤ exp
(

−2
(np − k)2

n

)

.

APPENDIX B: FORMAL SECURITY DEFINITIONS

We model N -round two-party protocols between play-
ers A (the honest client) and B (the potentially dishonest
server) as a succession of 2N -CPTP maps {Ei}i∈[1,N ] and
{Fj }j ∈[1,N ]. The maps {Ei}i act on A, the register of A, and
C, a shared communication register between A and B. Sim-
ilarly, the maps {Fj }j act on B and C. Note that B and the
maps {Fj }j can be chosen arbitrarily by B and, thus, unless
B is specified to be behaving honestly, there is no guarantee
that they are those implied by our protocol. Since we are
only interested in protocols where A is providing a classical
input x, we will equivalently write the input as the corre-
sponding computational-basis state |x〉 used to initialize A,
whereas B and C are initialized in a fixed state |0〉.

Below, we denote by �(ρ, σ) = (1/2)‖ρ − σ‖, the dis-
tance on the set of density matrices induced by the trace
norm ‖ρ‖ = Tr

√

ρ†ρ. We first define S the ideal resource
for verifiable delegated quantum computation and then the
local properties from Ref. [22].

1. Ideal resource for verifiable delegated quantum
computation

The ideal resource S has interfaces for two parties, inter-
face of A and interface of B. The interface of A takes two
inputs: a classical input string x and the description of U ,
the computation to perform. The interface of B is filtered
by a bit b. When b = 0, there is no further legitimate input
from B, while for b = 1, it is allowed to send a bit c that
determines the output of the computation available at the
interface of A. When b = 0 or c = 0, the output at the inter-
face of A is equal to MComp ◦ U(|x〉), where MComp is the
computational-basis measurement. This corresponds to a
“no cheating” behavior. When c = 1, B decides to cheat
and A receives the Abort message, which can be given
as a quantum state of A that is taken orthogonal to any
other possible output state. At the interface of B, S out-
puts nothing for b = 0, while for b = 1, B receives l(U , x),
the permitted leakage. For generic MBQC computations,
the permitted leakage is set to G, the graph used in the
computation. When G is a universal graph for MBQC com-
putation, the permitted leakage reduces to an upper bound
on the size of the computation No. U .

For this ideal resource, the blindness is an immediate
consequence of the server receiving at most the permitted
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leak, while verifiability is a consequence of the computa-
tion being correct when the server is not cheating, while
being aborted otherwise.

2. εcor-local-correctness

Let PAB be a two-party protocol as defined above with
the honest CPTP maps for players A and B. We say that
such a protocol implementing U is εcor-locally-correct if
for all possible inputs x for A, we have

� [TrB ◦ PAB(|x〉),U(|x〉)] ≤ εcor. (B1)

3. εbl-local-blindness

Let PAB be a two-party protocol as defined above and
where the maps {Ei}i are the honest maps. We say that such
a protocol is εbl-locally-blind if, for each choice of {Fi}i,
there exists a CPTP map F ′ : L(B) → L(B) such that, for
all inputs x for A, we have

�
[

TrA ◦ PAB(ρ),F ′ ◦ TrA(|x〉)] ≤ εbl. (B2)

4. εind-independent verification

Let PAB be a verifiable two-party protocol as defined
above, where the maps {Ei}i are the honest maps. Let B̄
be a qubit extending the register of B and initialized in |0〉.
Let QAB̄ : L(A ⊗ B̄) → L(A ⊗ B̄) be a CPTP map which,
conditioned on A containing the state |Abort〉, switches
the state in B̄ from |0〉 to |1〉 and does nothing in the other
cases.

We say that the verification procedure for such a pro-
tocol is εind-independent from the input of player A if
there exist CPTP maps F ′

i : L(C ⊗ B ⊗ B̄) → L(C ⊗ B ⊗
B̄) such that

�
[

TrA ◦ QAB̄ ◦ PAB(ρ), TrA ◦ P ′
ABB̄(ρ)

] ≤ εind, (B3)

where

P ′
ABB̄ := E1 ◦ F ′

1 ◦ . . . ◦ En ◦ F ′
n.

5. εver-local-verifiability

Let PAB be two-party protocols as defined above, where
the maps for A are the honest maps, while the maps {Fj }j
for B are not necessarily corresponding to the ideal (hon-
est) ones. Let x be the input given by A in the form of
a computational state |x〉 and let U be the computation
it wants to perform. The protocols PAB are εver-locally-
verifiable for A if, for each choice of CPTP maps {Fj }j ,
there exists p ∈ [0, 1] such that we have

�[trBPAB(|x〉), pU(|x〉) + (1 − p)|Abort〉〈Abort|] ≤ εver.

APPENDIX C: COMPOSABLE SECURITY

In the paragraphs below, we show that our protocol sat-
isfies each of the stand-alone criteria before combining
them to obtain composable security.

1. Perfect local correctness

On perfect (non-noisy) devices, local correctness is
implied by the correctness of the underlying UBQC proto-
col. This is because all the completed computation rounds
correspond to the same deterministic UBQC computation
and that on such devices, general UBQC protocols have
been proven to be perfectly correct [1,22]. Thus εcor = 0.

2. Perfect local blindness

In the event that the computation is accepted, each round
looks exactly like a UBQC computation to the server.
Therefore, the blindness comes directly from the com-
posability of the various UBQC rounds that make up our
protocol [22]. In the event that the computation is aborted,
we need to take into account the fact that a possibly mali-
cious server could deduce the position of a trap qubit.
That could be the case if it attacked a single position in
the test rounds and got caught. Yet, as the position of the
traps is not correlated to the input or to the computation
itself, knowing it does not grant additional attack capa-
bilities to the server and blindness is recovered again as
a consequence of the blindness of UBQC. More detailed
statements can be found in Appendix D, where it is also
shown that Redo requests have no effect on the local
blindness of the scheme.

3. Perfect local independent verification

Because in our protocol, the client shares with the server
whether the computation is a success or an abort, this is
trivially verified.

4. Exponential local verifiability

Local verifiability is satisfied if any deviation by the
possibly malicious server yields a state that is εver close
to a mixture of the correct output and the Abort mes-
sage. Equivalently, the probability that the server makes
the client accept an incorrect outcome is bounded by εver.
Let d/n, t/n, and w/t be the ratios of test, computation, and
tolerated failed test rounds. The local verifiability of our
protocol is given by Theorem 3 and proven subsequently.

5. Proof of exponential composable security

Our protocol has perfect correctness (for noiseless
devices), blindness, and input-independent verification. In
addition, it is εver-locally-verifiable, with εver exponentially
small in n. Therefore, by the local-reduction theorem, it
is ε-composably-secure, with ε = εsec = 4

√
2εver and ε
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exponentially small in n. Note that because we use the
local-reduction theorem to obtain fully composable secu-
rity, we incur an additional square root on our verifiability
bound given by Eq. (1) and need to satisfy the additional
independence property. This is, of course, not required if
the protocol is only used sequentially with other schemes,
which will probably be the case in early quantum com-
putations, since the machines will not be able to handle
multiple protocols at the same time. In this case, the stand-
alone model would be sufficient, since it provides sequen-
tial composition, but would fail if parallel composition is
needed.

APPENDIX D: PROOF OF PERFECT LOCAL
BLINDNESS

Proof. To prove that Eq. (B2) holds for εbl = 0, first note
that at the end of our protocol, the client A reveals to the
server B whether the computation is accepted or aborted.
Hence, each case can be analyzed separately. Second, we
show that the interrupted rounds that have triggered a
Redo can be safely ignored. Indeed, each one of them is
the beginning of an interrupted UBQC computation and,
because UBQC is composable and perfectly blind [22], no
information can leak to the server through the transmitted
qubits. In addition, our protocol restricts the honest party
A in its ability to emit Redo requests, so that no corre-
lations are created between the index of the interrupted
rounds and U or the secret random parameters used in the
rounds (angle and measurement padding, and trap prepa-
rations). As a consequence, from the point of view of B,
the state of the interrupted rounds is completely indepen-
dent of the state of the noninterrupted ones and does not
contain information regarding the input, the computation,
or secret parameters. That is, its partial trace over A can be
generated by B alone.

For the noninterrupted rounds, we can invoke the same
kind of independence argument between the computation
rounds and the test rounds. As a result, blindness of our
protocol stems from the blindness of the underlying com-
putation rounds. In the event that the full protocol is a
success, we can rely on the composability of the per-
fect blindness of each UBQC computation round to have
perfect local blindness. For an abort, we can consider a sit-
uation that is more advantageous for B by supposing that
alongside the Abort message sent by A, it also gives away
the location of the trap qubits. In this modified situation,
the knowledge of the computation being aborted does not
convey additional information to B, as it only reveals that
one of the attacked positions is a trap qubit, which B now
already knows. Using our independence argument between
the trap location on the one hand and the inputs, the com-
putation, and other secret parameters, we conclude that
revealing the location of the trap qubits does not affect the

blindness of the computation rounds. Hence, using com-
posability again and combining the abort and accept cases,
we arrive at Eq. (B2), with εbl = 0. �

APPENDIX E: PROOF OF VERIFIABILITY

Theorem 3 (Local Verifiability of Protocol 1). Let 0 <

w/t < (1/k)(2p − 1)/(2p − 2) and 0 < d/n < 1 be fixed
ratios, for k different test rounds and where p is the
inherent error probability of the BQP computation. Then,
Protocol 1 is εver-locally-verifiable for exponentially low
εver.

Proof. The proof of the verifiability of a computation
amounts to upper bounding the probability of yielding a
wrong output while not aborting. This could be the result
of the inherent randomness of the BQP computation that
gives the wrong outcome with probability p or of the
server deviating from the instructed computation. In the
following, although rounds are expected to be run sequen-
tially, the proof will examine the state of the combined
computation. This state corresponds to the server having
simultaneous unrestricted access to all quantum systems
sent by the client and possibly operating on them as a
whole irrespective of the underlying rounds to which they
belong. In particular, the server could decide to perform
some action on a qubit given measurements in one or
several of the underlying runs or to entangle the various
underlying runs together.

Note that because the parties can only ask for redoing
a run independently of the input, of the computation, of
the used randomness, and of the output of the computa-
tion itself (comprising the result of trap measurements),
interrupted runs can be safely ignored in the verifica-
tion analysis, as the state corresponding to these runs is
uncorrelated to that of the completed runs. �

1. Output of the combined computation

First, consider the output density operator B({Fj }j , ν)

representing all the classical messages that the client A
receives during its interaction with the server B, compris-
ing the final message containing the encrypted measure-
ment outcomes. Below, the CPTP maps {Fj }j represent the
chosen deviation of B on the combined computation. By
encoding the classical messages as quantum states in the
computational basis, the output density operator satisfies

B({Fj }j , ν) = TrB

{
∑

b

|b + cr〉〈b|FP

× (|0〉〈0|B ⊗ |�ν,b〉〈�ν,b|)

× P†F†, |b〉〈b + cr|
}

(E1)
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where b is the list of measurement outcomes defining the
computation branch; ν is a composite index relative to
the secret parameters chosen by A, i.e., the type of each
underlying run, the padding of the measurement angles
and measurement outcomes, and the trap setup; |b + cr〉〈b|
ensures that only the part corresponding to the current
computation branch is taken into account and removes
the one-time-pad encryption on nonoutput and nontrap
qubits while leaving output and trap qubits unaffected,
i.e., encrypted; |0〉〈0|B is some internal register for B in
a fixed initial state; and

∣
∣�ν,b

〉

is the state of the qubits sent
by A to B at the beginning of the protocol tensored with
quantum states representing the measurement angles of the
computation branch b.

To obtain this result, the line of proof of Ref. [2] can
be applied to the combined computation. This works by
noting that for a given computation branch b and given
random parameters ν, all the measurement angles are
fully determined. Therefore, provided that the computa-
tion branch is b, the measurement angles can be included
in the initial state. This defines

∣
∣�ν,b

〉

. Then, each Fj is
decomposed into an honest part and a pure deviation. All
the deviations are commuted and collected into F , applied
after P , the unitary part of the honest protocol, is applied.
The projections onto |b〉 then ensures that, after the devi-
ation induced by B, the perceived computation branch is
b. This, together with the decrypting of nonoutput nontrap
qubits, gives Eq. (E1).

2. Probability of failure

Recall that a failure for the combined computation on
input x occurs when the result after decrypting the outputs
and performing the majority vote differs from F(x) while
the computation is accepted.

For the combined computation to be accepted, no more
than w test runs should have a trap-qubit measurement
outcome opposite to what is expected. Let T denote the
set of trap qubits, which is determined by T, the set of
test runs, and the type of each test run. In the absence of
any deviation on the combined computation, their expected
value is |rT〉 = ⊗

t∈T |rt〉, where rT = (rt)t∈T denotes the
measurement-outcome padding values restricted to trap
qubits. Therefore, the projector onto the states of the
trap qubits yielding to an accepted combined computation
can be written as Q⊥ = ∑

w∈W X w
T |rT〉〈rT|X w

T , with X w
T =

⊗

t∈T X wt
t and where W is the set of length |T| binary vec-

tors w that have at least a one in no more than w underlying
(test) runs.

Similarly, define the set of output qubits by O. The cor-
rect value for these output qubits is |F(x)O + rO〉. Then, for
V the set of length #O binary vectors v that have at least
d/2 ones in the underlying (computation) runs, the oper-
ator P⊥ = ∑

v∈V X v
O |F(x) + rO〉〈F(x) + rO|X v

O with X v
O =

⊗

o∈O X vo
o is the projector onto the subspace of states that

yield an incorrect result for the whole computation. This
is because when each output has been decrypted by the
client—the one-time padding rO is removed—the majority
vote will output F(x) + 1 because more than half of the
outputs are equal to F(x) + 1.

Combining these two projectors allows to write the
probability of failure:

Pr[fail] =
∑

ν

∑

b,k,σ ,σ ′
Pr[ν]Tr

{

(P⊥⊗Q⊥)

× (

αkσα∗
kσ ′ |b + cr〉〈b|σP|�ν,b〉〈�ν,b|P†σ ′|b〉〈b + cr|

)}

,

where F is decomposed into Kraus operators indexed by
k, that are in turn decomposed onto the Pauli basis through
the coefficients αkσ and αkσ ′ . Consequently, σ and σ ′ are
Pauli matrices.

Using the explicit expressions for P⊥ and Q⊥, the above
formula can be simplified:

Pr[fail] =
∑

ν

∑

v∈V,w∈W

∑

b′,k,σ ,σ ′
Pr[ν]

{

〈F(x)O + rO| ⊗ 〈rT| ⊗ 〈

b′∣∣ (X v
O ⊗ X w

T )

× (

αkσα∗
kσ ′P|�ν,b〉〈�ν,b|P†σ ′)

(X v
O ⊗ X w

T ) |F(x)O + rO〉 ⊗ |rT〉 ⊗ ∣
∣b′〉

}

,

where b′ is the binary vector obtained from b by
restricting it to nonoutput and nontrap qubits. This
is obtained using the circularity of the trace and the
fact that

∑

b 〈F(x)O + rO| ⊗ 〈rT| (X v
O ⊗ X w

T )|b + cr〉〈b| =
∑

b′ 〈F(x)O + rO| ⊗ 〈rT| ⊗ |b′ + cr〉〈b′|(X v
O ⊗ X w

T ), since
there is no decoding for output and trap qubits—i.e., cr is 0.

3. Using blindness of the scheme

At this point, standard proofs of verifiability sum over
the secret parameters defining the encryption to twirl the
deviation of the server and trace out nontrap qubits. Here,
because it is necessary to assess the probability of having
more than half of the output qubits yielding the wrong mea-
surement output F(x) + 1, the trace is taken on nontrap and
nonoutput qubits only.

The design of the protocol yielding the combined com-
putation ensures blindness. This implies that the resulting
state of any set of qubits after applying P and taking the
average over their possible random preparation parame-
ters is a completely mixed state. This can be applied in the
above equation for the set of nonoutput and nontrap qubits.
For output and trap qubits, the inner products must be com-
puted before taking the sum over their random preparation
parameters νO and νT, respectively.
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This gives

Pr[fail] =
∑

νO,νT,u

∑

v∈V,w∈W

∑

b′,k,σ ,σ ′
Pr[νO, νT]αkσα∗

kσ ′

×
{

〈F(x)O + rO| ⊗ 〈rT| ⊗ 〈

b′∣∣ (X v
O ⊗ X w

T )

× σ

(

|sO + rO〉〈sO + rO| ⊗ |rT〉〈rT| ⊗ I

TrI

)

σ ′

× (X v
O ⊗ X w

T ) |F(x)O + rO〉 ⊗ |rT〉 ⊗ ∣
∣b′〉

}

,

where |so〉 is the state of the output qubit o ∈ O when no
deviation is applied by the server.

In the above equation, the contribution of each qubit
factorizes. For l /∈ O ∪ T, because the Pauli matrices are
traceless save for the identity, the only nonvanishing terms
are obtained for σl = σ ′

l , where subscript l is used to
select the action of σ and σ ′ on qubit l. In such a case,
the corresponding multiplicative factor equals 1. A direct
calculation shows that, for an output qubit o ∈ O,

∑

ro

〈F(x)o + ro| X vo
o σo |so + ro〉

〈so + ro| σ ′
oX vo

o |F(x)o + ro〉 = 0

for σo �= σ ′
o. Similarly, for a trap qubit t ∈ T,

∑

rt
〈rt| X wt

t σt|rt〉〈rt|σ ′
tX wt

t |rt〉 vanishes for σt �= σ ′
t. Com-

bining these yields

Pr[fail] =
∑

νO,νT

∑

v∈V,w∈W

∑

k,σ

Pr[νO, νT]|αkσ |2

×
∏

o∈O
| 〈F(x)o + ro| X vo

o σo |so + ro〉 |2

×
∏

t∈T
| 〈rt| X wt

t σt |rt〉 |2

=
∑

k

∑

σ

|αkσ |2f (σ ),

with

f (σ ) =
∑

νO,νT

∑

v∈V,w∈W
Pr[νO, νT]

×
∏

o∈O
| 〈F(x)o + ro| X vo

o σo |so + ro〉 |2

×
∏

t∈T
| 〈rt| X wt

t σt |rt〉 |2. (E2)

In short, this proves that the overall deviation F has the
same effect as a convex combination of Pauli deviations σ ,
each occurring with probability

∑

k |αk,σ |2.

4. Implicit upper bound

Because
∑

k,σ |αkσ |2 = 1, the worst-case scenario for
the bound in Eq. (E2) is when αkσ = 1 for σ such that f (σ )

is maximum. Hence, the probability of failure is upper
bounded as follows:

Pr[fail] ≤ max
σ

f (σ ).

Protocol 1 defines the trap and output qubit configura-
tion νO, νT by: (i) the set T of trap qubits, itself entirely
determined by the positions and kinds of test runs within
the sequence of runs; and (ii) the preparation parameters
θl and rl of each trap and output qubit. Each parameter
of (i) and (ii) being chosen independently, the probabil-
ity of a given configuration νO, νT can be decomposed
into the probability Pr[T] for a given configuration of trap
locations multiplied by the probability of a given configu-
ration for the prepared state of the trap and output qubits,
∏

l∈O∪T
∑

θl,rl
Pr[θl, rl]. Using this, one can rewrite f (σ ):

f (σ ) =
∑

T

∑

v∈V,w∈W
Pr[T]

×
∏

o∈O

∑

θo,ro

Pr[θo, ro]| 〈F(x)o+ro| X vo
o σo |so+ro〉 |2

×
∏

t∈T

∑

θt,rt

Pr[θt, rt]| 〈rt| X wt
t .σt |rt〉 |2. (E3)

For σ a Pauli deviation, denote by σ|X the binary vector
indexed by qubit positions of the combined computation,
where ones mark qubit positions for which σ acts as X
or Y. Abusing notation, in the following, O denotes the
binary vector over qubit positions i of the combined com-
putation where ones are positioned for qubits in O—that
is, the vector (1i∈O)i for i a qubit location. Similarly, T will
also denote (1i∈T)i.

Using the fact that | 〈rt| X wt
t σt |rt〉 |2 is 1 for X wt

t σt ∈
{I , Z} and 0 otherwise, the product over the trap qubits can
be written as

∏

t∈T

∑

θt,rt

Pr[θt, rt]| 〈rt| X wt
t σt |rt〉 |2

=
{

1, for T.σ|X = w,
0, otherwise,

where, for a and b binary vectors, a.b is the bit-wise binary
product vector.

For output qubits, before attempting the same computa-
tion, it is important to point out an important dependency
of the deviation for the output qubits. Failing to take it
into account would yield an overly optimistic bound. This
dependency is due to the fact that, contrarily to trap qubits,
where the perfect protocol performs the identity, the out-
put qubits are the result of more complex computation.
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More precisely, the guarantee given by the protocol at this
stage is only blindness. Following the definition of the
blind-computing ideal resource given in Appendix B—
Eq. (B2)—the server is able to choose a deviation E and
have it applied to the unprotected input of the protocol
x, while itself not getting either x or E(x). While E has
been reduced here to a convex sum of Pauli deviations
applied after the perfect protocol, nothing prevents these
Pauli deviations from incorporating a dependency on the
input x or on the unencrypted output of the perfect proto-
col. In short, this means that the server can craft a deviation
in such a way that only outputs equal to F(x) are flipped,
leaving those yielding F(x) + 1 unaffected.

Going forward with the computation of factors for out-
put qubits in Eq. (E3), it is thus necessary to distinguish
output qubits that belong to computation rounds where
no nontrivial deviation takes place and those that do not.
Define u to be the random binary vector of length #O such
that so = F(x) + uo. For an output qubit that is part of a
computation round without a nontrivial deviation,

∑

θo,ro

Pr[θo, ro]| 〈F(x)o + ro| X vo
o σo |so + ro〉 |2

=
∑

θo,ro

Pr[θo, ro,uo]

× | 〈F(x)o + ro| X vo
o σoX uo

o |F(x) + ro〉 |2

=
{

Pr[uo], for σ|X ,o + uo = vo
0, otherwise.

When the output qubit is part of a computation round with
a nontrivial deviation, the dependency argument given
above yields

∑

θo,ro

Pr[θo, ro]

× | 〈F(x)o + ro| X vo
o σoX uo

o |F(x) + ro〉 |2 ≤ Pr[uo].

Hence, for a fixed σ , a necessary condition on u and T for
having a nonzero contribution to f (σ ) is thus

wt(T.σ|X ) ≤ w and wt(u.¬S) ≥ d/2 − #S,

where wt(.) is the Hamming weight of a binary vector, S
is a length-#O binary vector where the ones are located on
output qubits where at least one nontrivial deviation is per-
formed in the corresponding computation round, and ¬S is
the bitwise negation of S.

Combining the corresponding bounds and summarizing
the necessary condition with (T,u) ∈ ϒσ , we obtain

f (σ ) ≤
∑

(T,u)∈ϒσ

Pr[T,u].

In other words, to record a failure of the protocol, the num-
ber of incorrect trap rounds needs to be below the threshold
w, while the number of nontrivially attacked computation
rounds needs to be greater than d/2 reduced by the amount
of incorrect outcomes on nonattacked rounds due to the
inherent randomness of the algorithm.

5. Explicit upper bound

Now, assume that the maximum of the bound above is
attained for some σ that happens to nontrivially affect one
of the rounds, say k, on more than one qubit. Consider σ ′
with the sole difference compared to σ that σ ′ restricted to
one of these two qubits is equal to the identity. Then, σ ′
still affects the round k nontrivially, which implies that all
configurations (T,u) in ϒσ are also in ϒσ ′ . Therefore,

Pr[fail] ≤ max
m

max
σ∈Em

∑

(T,u)∈ϒσ

Pr[T,u],

where Em denotes the set of Pauli operators with m single-
qubit nontrivial deviations all in distinct rounds.

Because the bound above depends on u only through
wt(u.¬S) and because for any such subset the random
variable wt(u.¬S) is less than B[wt(¬S), p] in the usual
stochastic order, we obtain

Pr[fail] ≤ max
m

max
σ∈Em

∑

(T,u)∈ϒσ

Pr[T] × Pr[ũ = u],

in which ũ is a random binary vector where each coordi-
nate follows a Bernouilli law with probability p and where
B(n, p) is the binomial distribution for n draws and proba-
bility p . Using the fact that the random choice of test runs is
completely uniform, the right-hand side is invariant under
permutations of the test and computation runs. It is thus
possible to restrict the range of the maximum to the spe-
cific Pauli operators σm with a deviation on a single qubit
in each of the first m runs:

Pr[fail] ≤ max
m

∑

T∈ϒσm

Pr[T]. (E4)

6. A closed from for the upper bound

To find a closed-form upper bound for the soundness
error, we now distinguish between two regimes for m,
controlled by the parameter ϕ > 0:

1. For m ≤ [(1/k)(2p − 1)/(2p − 2) − ϕ] n, we find a
small upper bound on the probability that the client
obtains a wrong result.

2. On the other hand, for m ≥ [(1/k)(2p − 1)/(2p −
2) − ϕ]n, we find a small upper bound on the prob-
ability that the client accepts the outcome of the
protocol, i.e., that the verification passes.
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In the following, we define the constant ratios of test, com-
putation, and tolerated failed test runs as δ := d/n, τ :=
t/n and ω := w/t. Let Z be a random variable counting the
number of affected computation runs (by the server’s devi-
ation or by inherent failure of the algorithm) and let Y be

a random variable counting the number of failed test runs,
i.e., the number of affected test runs where the deviation
hits a trap. We have that

Pr [fail] ≤ max
m

∑

T∈ϒσm

Pr[T] = max
m

Pr
[

Z ≥ d
2

∧ Y ≤ w
]

≤ max

⎧

⎨

⎩
max

m≤
(

2p−1
2p−2 −ϕ

)

n
Pr
[

Z ≥ d
2

]

, max
m≥

(
2p−1
2p−2 −ϕ

)

n
Pr [Y ≤ w]

⎫

⎬

⎭
.

Since Pr [Z ≥ d/2] and Pr [Y ≤ w] are, respectively,
increasing and decreasing with the number of attacked
runs, both inner maximums are attained for m =
[(1/k)(2p − 1)/(2p − 2) − ϕ] n and we therefore focus on
this case.

Analogously to the verification proof of the original pro-
tocol, the second term can be bounded from above by first
determining the minimum number of affected test runs
before calculating the probability that the server’s attack
triggers a sufficient number of traps.

Hence, with X denoting the number of test runs affected
by the server’s deviation, tail bounds for the hypergeomet-
ric distribution imply, for all ε1 > 0, that

Pr
[

X ≤
(m

n
− ε1

)

t
]

≤ exp

(

− 2τ 2ε2
1

2p−1
2p−2 − ϕ

n

)

.

Further, it follows by Hoeffding’s bound for the binomial
distribution that

Pr
[

Y ≤
(

1
k

− ε2

)(m
n

− ε1

)

t
∣
∣
∣
∣

X =
(m

n
− ε1

)

t
]

≤ exp
[

−2
(

2p − 1
2p − 2

− ϕ − ε1

)

τε2
2n
]

.

All in all, we therefore obtain

Pr [Y ≤ w] ≤ exp

(

− 2τ 2ε2
1

2p−1
2p−2 − ϕ

n

)

+ exp
[

−2
(

2p − 1
2p − 2

− ϕ − ε1

)

τε2
2n
]

,

where the threshold of tolerated failed test runs is set to
w = (1/k − ε2) [(1/k)(2p − 1)/(2p − 2) − ϕ − ε1] t.

Let us now focus on the first term and introduce the
hypergeometrically distributed random variable Z̄ count-
ing the number of computation runs that are affected by

the server’s deviation. Then, for ε3 > 0, tail bounds on the
hypergeometric distribution imply

Pr
[

Z̄ ≥
(m

n
+ ε3

)

d
]

≤ exp

(

− 2δ2ε2
3

2p−1
2p−2 − ϕ

n

)

.

Next, let Z ′ be the random variable counting the num-
ber of computation runs that have not been affected by
the server’s deviation but that give a result distinct from
x̄ because of inherent failures of the algorithm. Note that
Z ′ conditioned on Z̄ fixed to a specific value is binomially
distributed. It hence follows that

Pr
[

Z ′ ≥ (p + ε4)
(

1 − m
n

− ε3

)

d
∣
∣
∣ Z̄ =

(m
n

+ ε3

)

d
]

≤ exp
[

−2
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)

δε2
4n
]

.

Note that it holds that Z = Z̄ + Z ′. Therefore, it follows
that

Pr
[

Z ≥ d
2

]

≤ Pr
[

Z ≥ d
2

∣
∣
∣
∣

Z̄ ≤
(m

n
+ ε3

)

d
]

+ Pr
[

Z̄ ≥
(m

n
+ ε3

)

d
]

≤ Pr
[

Z ′ ≥ d
2

−
(m

n
+ ε3

)

d
∣
∣
∣
∣

Z̄

=
(m

n
+ ε3

)

d
]

+ Pr
[

Z̄ ≥
(m

n
+ ε3

)

d
]

.
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Using the inequalities from above, we arrive at

Pr
[

Z ≥ d
2

]

≤ exp
[

−2
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)

δε2
4n
]

+ exp

(

− 2δ2ε2
3

2p−1
2p−2 − ϕ

n

)

,

where we set

d
2

−
(m

n
+ ε3

)

d = (p + ε4)
(

1 − m
n

− ε3

)

d.

This condition can be rewritten as

1
2

− 2p − 1
2p − 2

+ ϕ − ε3 = (p + ε4)

×
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)

or, equivalently,

ε4 =
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)−1

×
(

1
2

− 2p − 1
2p − 2

+ ϕ − ε3

)

− p .

It can readily be seen that this equation has solutions
ε3, ε4 > 0 when ϕ is fixed.

We finally conclude that

Pr [fail] ≤ max
{

exp
[

−2
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)

δε2
4n
]

+ exp

(

− 2δ2ε2
3

2p−1
2p−2 − ϕ

n

)

,

exp

(

− 2τ 2ε2
1

2p−1
2p−2 − ϕ

n

)

+ exp
[

−2
(

2p − 1
2p − 2

− ϕ − ε1

)

τε2
2n
]}

(E5)

for

w = (1/k − ε2)

(
2p − 1
2p − 2

− ϕ − ε1

)

t,

0 < ϕ <
2p − 1
2p − 2

,

0 < ε1 <
1
2

− ϕ,

0 < ε2 <
1
k

,

0 < ε3 < ϕ,

ε4 =
(

1 − 2p − 1
2p − 2

+ ϕ − ε3

)−1

×
(

1
2

− 2p − 1
2p − 2

+ ϕ − ε3

)

− p .

To obtain an optimal bound, this expression must be
minimized over ε1, ε2, ε3, and ϕ.

Irrespective of the exact form of the optimal bound,
choosing ϕ, ε1, ε2, and ε3 sufficiently small implies the
existence of protocols with verification exponential in
n, for any fixed 0 < w/t < (1/k)(2p − 1)/(2p − 2) and
fixed (d/n), (t/n) ∈ (0, 1).

7. Optimality of the bound

To obtain the improved bound above, Z2 is introduced
as the count of nonaffected computation runs yielding the
correct result—i.e., accept on yes instances and reject on
no instances. Making sure that Z2 would be greater than
d/2 ensures that no matter what happens on computation
runs that would yield an incorrect result, there is no possi-
bility of being mistaken and rejecting in place of accepting
and vice versa. Yet, one might wonder if the situation is not
more favorable: if the deviation by the server induces a flip
of the accept or reject, then could it be possible that some
of the runs yielding an incorrect result would be corrected
by the deviation? At first sight, this could be motivated by
the fact that the computation being blind, the server could
not possibly craft an attack that would selectively affect the
runs yielding the correct results. Unfortunately, this intu-
ition is wrong: blindness does not rule out attacks that have
different effects depending on the result of the computation
itself.

To see this, consider the following situation. Consider an
algorithm solving a decision problem deterministically, so
that in case of a yes instance, the algorithm outputs |+〉 and
in the case of a no instance, the output is |−〉. This deter-
ministic algorithm yields a trivial randomized algorithm
where a second qubit is generated in state α |0〉 + β |1〉,
with |α|2 > 2/3. The new algorithm would take the out-
put of the first one and apply a CZ gate between both
qubits so that when the second qubit is traced out, the
first one yields the correct answer with probability |α|2.
Yet, nothing could rule out an alternate implementation
where after the control-Z gate, the state of the first qubit
undergoes two H gates controlled by the second qubit
being |0〉. Clearly, this operation applies the identity to
the first qubit as H 2 = I . However, if the server applies
a X gate on the first qubit between these two control-H
gates, it will amount to a deviation consisting of a Z gate
applied only when the second qubit is |0〉. As a result, its
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attack only affects runs with the correct result. Note that the
attack affects correct outcomes only, because in between
the two control-H gates, the computational branch for cor-
rect outcomes yields a state in the computational basis,
while for incorrect ones it is the |±〉 basis. This property
is true independent of the quantum one-time-pad encryp-
tion of the states and can hence be applied on an encrypted
computation.

This example might seem excessively artificial, but such
situations cannot be ruled out a priori, i.e., without an
extensive understanding of the algorithm being imple-
mented and of the proposed implementation. In fact, a
similar situation [21] has already been encountered in
the context of multiparty quantum computation, where
attacks could be crafted to evade detection when using less
obvious inappropriate implementations.

APPENDIX F: PROOF OF NOISE ROBUSTNESS

Recall that the constant ratios of test, computation, and
tolerated failed test rounds are given by δ = d/n, τ = t/n
and ω = w/t. We define the acceptance of the protocol to
be the probability that the client does not abort at the end
of an execution. We then bound this probability in two
regimes: (i) if the maximal noise pmax is smaller than the
(ratio) threshold of failed test runs, the protocol accepts
with high probability; (ii) if the noise of the device is
too large, i.e., pmin is already too large compared to the
threshold, the protocol will most certainly abort.

Lemma 4 (Acceptance on Noisy Devices). Assume a
Markovian round-dependent model for the noise on the
client and server devices and let pmin ≤ pmax < 1/2 be,
respectively, a lower and an upper bound on the proba-
bility that at least one of the trap-measurement outcomes
in a single test round is incorrect.

If ω > pmax, then the probability that the client does not
accept at the end of Protocol 1 is bounded by exponentially
small εrej where

εrej = exp
[−2(ω − pmax)

2τn
]

. (F1)

On the other hand, if ω < pmin, then the client’s accep-
tance in Protocol 1 is exponentially small and bounded by
exp

[−2(pmin − ω)2τn
]

.

Proof. We define the random variable Y that corresponds
to the number of failed test rounds during one execution of
the protocol. We call Ok the event that the client accepts at
the end of the protocol—if not too many test rounds fail,
meaning that Y < w.

1. For ω > pmax
Equivalently, we have that w > tpmax. We are look-
ing to lower bound the probability that an honest

round does not abort:

Pr [Ok] = Pr [Y < w] .

Note that Y describes exactly the number of test
rounds in which at least one trap-measurement out-
come is incorrect (by definition of a failed test
round). The probability that a given test round fails
is therefore upper bounded by pmax. Let Ŷ1 be a
random variable following a (t, pmax)-binomial dis-
tribution. Since we suppose that the noise is not
correlated across rounds, Y is upper bounded by Ŷ1
in the usual stochastic order:

Pr [Y < w] ≥ Pr
[

Ŷ1 < w
]

= 1 − Pr
[

Ŷ1 ≥ w
]

Further, since E

[

Ŷ1

]

= tpmax < w, application of
Lemma 3 yields

Pr
[

Ŷ1 ≥ w
]

≤ exp
(

−2
(tpmax − w)2

t

)

= exp
[−2(ω − pmax)

2τn
] = εrej.

2. For ω < pmin
In that case, we have that w < tpmin. We show that
the probability of accepting is upper bounded by
a negligible function. Let Ŷ2 be a random variable
following a (t, pmin)-binomial distribution; Y then is
lower bounded by Ŷ2 in the usual stochastic order:

Pr [Y < w] ≤ Pr
[

Ŷ2 < w
]

.

Since w < tpmin, using Lemma 3 directly and with
the same simplifications as above, we obtain

Pr
[

Ŷ2 < w
]

≤ exp
[−2(pmin − ω)2τn

]

,

concluding the proof. �

Theorem 4 (Local Correctness of VDQC Protocol on
Noisy Devices). Assume a Markovian round-dependent
model for the noise on the client and server devices and let
pmax be an upper bound on the probability that at least one
of the trap-measurement outcomes in a single test round is
incorrect.

If pmax < ω < (1/k)(2p − 1)/(2p − 2), then the proto-
col is εcor locally correct with exponentially small εcor =
εrej + εver, with εrej from Lemma 4 and εver from Theorem 3.

Proof. We call Ok the event that the client accepts at the
end of the protocol—if not too many test rounds fail—and
Correct the event corresponding to a correct output—if
only a few of the computation rounds have their output
bits flipped.
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We are looking to lower bound the probability of an hon-
est round producing the correct outcome and not aborting:

Pr [Correct ∧ Ok] = Pr [Ok] − Pr [¬Correct ∧ Ok] .

As pmax < (1/k)(2p − 1)/(2p − 2) < 1/2, from Lemma 4
we have

Pr [Ok] ≥ 1 − εrej.

Since ω < (1/k)(2p − 1)/(2p − 2), the parameters of
Protocol 1 comply with Theorem 3, from which we obtain
that

Pr [¬Correct ∧ Ok] ≤ εver.

It follows that

Pr [Correct ∧ Ok] ≥ 1 − εrej − εver,

which concludes the proof. �
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