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This tutorial aims at giving an introductory treatment of the circuit analysis of superconducting qubits,
i.e., two-level systems in superconducting circuits. It also touches upon couplings between such qubits
and how microwave driving and these couplings can be used for single- and two-qubit gates, as well as
how to include noise when calculating the dynamics of the system. We also discuss higher-dimensional
superconducting qudits. The tutorial is intended for new researchers with limited or no experience with
the field but should be accessible to anyone with a bachelor’s degree in physics. The tutorial introduces
the basic methods used in quantum circuit analysis, starting from a circuit diagram and ending with a
quantized Hamiltonian, that may be truncated to the lowest levels. We provide examples of all the basic
techniques throughout the discussion, while in the last part of the tutorial we discuss several of the most
commonly used circuits for quantum-information applications. This includes both worked examples of
single qubits and examples of how to analyze the coupling methods that allow multiqubit operations.
In several detailed appendices, we provide the interested reader with an introduction to more advanced
techniques for handling larger circuit designs.
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I. INTRODUCTION

Since Richard Feynman first proposed using quantum
simulators to simulate physics [1,2], an increasing amount
of attention has been given to quantum processors and
quantum technology, something which is only expected to
increase further in the coming years [3–5]. This increase in
attention has led to swift progress within the field of quan-
tum mechanics, taking it from basic science research to
engineering of multiqubit quantum systems capable of per-
forming actual calculations [6–10]. During this evolution,
a new discipline has emerged, coined quantum engineer-
ing, bridging the basic science of quantum mechanics with
areas traditionally considered engineering fields [11]. It
is expected that the advent of quantum engineering will
lead to computational speedups, making it possible to solve
classically unsolvable problems [12–14].

A particularly prominent platform for scalable quantum
technology is superconducting circuits used for imple-
menting qubits or even higher-dimensional qudits. Com-
pared to other quantum technology schemes, such as

trapped ions [15–20], ultracold atoms [21–25], electron
spins in silicon [26–31] and quantum dots [32–36], nitro-
gen vacancies in diamonds [37,38], or polarized photons
[39–42], which all encode quantum information in micro-
scopic systems, such as ions, atoms, electrons, or pho-
tons, superconducting circuits are quite different. They
are macroscopic in size and printed lithographically on
wafers much similar to classical computer chips [43–47].
The fact that these systems exhibit microscopic behavior,
i.e., quantum-mechanical effects, while being macroscopic
in size has led to the notion of mesoscopic physics in
order to describe this intermediate scale [48–50]. A meso-
scopic advantage of superconducting circuits is the fact
that microscopic features such as energy spectra, cou-
pling strengths, and coherence rates depend on macro-
scopic circuit parameters. This means that one can design
circuits such that the properties of the resulting quantum-
mechanical system, sometimes called an artificial atom
[51–55], can be more or less tailormade to exhibit a
particular behavior.

In this tutorial, we aim to give an introduction to cir-
cuit analysis of superconducting qubits intended for new
researchers in the field. With this, we aim to give the
tools needed for tailoring macroscopic circuits to a desired
qubit behavior. We refer to a (superconducting) qubit as
the two lowest energy levels of a superconducting cir-
cuit or subcircuit, denoted by the Fock states |0〉 and |1〉.
There are, however, several examples of superconducting
qubits, which exploit higher-lying states for coupling [56]
or control [57,58].

The field of superconducting circuits is rapidly evolving,
and new theoretical frameworks are emerging, which make
use of the larger Hilbert space of both harmonic and anhar-
monic resonator modes, e.g., bosonic qubits [59–66] or
the Kerr-cat qubits [67–69], which employs the entire cir-
cuit including drives to yield an effective potential where
the two lowest levels are coherent cat states. Such con-
tinuous variable [70,71] qubits are outside the scope of
this tutorial, but an understanding of the fundamentals pre-
sented in this tutorial can act as a stepping stone towards
an increased understanding of emerging superconducting
circuit designs.

The present tutorial can be viewed as an introduction
to more advanced reviews of the field, such as Refs.
[11,50,51,54,72–80], and is by no means a review of cur-
rent state-of-the-art technology or practices, but rather a
detailed introduction to the theoretical methods needed to
analyze superconducting circuits in order to produce and
manipulate qubits. We do not discuss the actual experimen-
tal production of superconducting circuits, but limit the
tutorial to theoretical analysis of such circuits. The tuto-
rial assumes knowledge of undergraduate-level quantum
mechanics, electrodynamics, and analytical mechanics,
meaning that the tutorial should be accessible to readers
with a bachelor’s degree in physics.
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The tutorial is organized as follows: First, we present the
basic circuit variables and components used in the analysis
in Sec. II. Then we present the classical analysis used for
finding the Hamiltonian of a given superconducting cir-
cuit in Sec. III, where we use the method of nodes. In
Sec. IV we quantize the Hamiltonian and in Sec. V we
recast the Hamiltonian as interacting oscillators. In Sec. VI
we discuss time-averaged dynamics using the interaction
picture. The truncation of anharmonic oscillators is dis-
cussed in Sec. VII. The use of microwave driving for
control and single-qubit gates is presented in Sec. VIII,
and the simple coupling of modes is presented in Sec. IX,
where two-qubit gates are discussed as well. In Sec. X
we introduce a method for treating noise in open two-
level quantum systems, and finally in Sec. XI we present a
variety of examples ranging from single-qubit implemen-
tations to tunable couplers and multibody interactions. In
Sec. XII we present an overview of the methods and give
a perspective on where to go from here.

To students and researchers entirely new to the field of
superconducting qubits, who just want to start analyzing
their first circuit, the amount of information in this tuto-
rial might seem extensive at first. To distill this down to
the essential information needed to get started we therefore
recommend reading Secs. II to III, and VII, which should
be sufficient for analyzing your first superconducting cir-
cuit.

II. LUMPED-ELEMENT CIRCUIT DIAGRAMS

In this section we start by introducing the dynamical
variables used when analyzing superconducting circuits
and then present the basic components of the circuits.

Our analysis takes its starting point in the lumped-
element model. This model simplifies the description of
a spatially distributed system (in our case a superconduct-
ing electrical circuit) into a topology of discrete entities.
We assume that the attributes of the circuit (capacitance,
inductance, and resistance) are idealized into electrical
components (capacitors, inductors, and resistors) joined by
a network of perfectly conducting wires. An example of
a lumped circuit can be seen in Fig. 1. We discuss the
different components in Sec. II B.

We assume all the circuits discussed in this tutorial
to be superconducting, meaning that there is no electri-
cal resistance in the circuit and all magnetic fields are
expelled from the wires (the Meissner effect). We will
therefore ignore losses to the external environment in the
following analysis. In other words, we consider closed
quantum systems for most of this tutorial. However, a real-
istic description of any quantum system should include
some interactions with the environment, as these can never
be completely ignored in an experiment. Notwithstand-
ing, it is a good description to treat losses to the external

Capacitor

Josephson junction

Inductor
Node

Ground node

Branch

External flux 

FIG. 1. Example of a lumped-element circuit consisting of a
Josephson junction and a capacitor in parallel connected by an
inductor to another Josephson junction and capacitor pair. Such
a Josephson junction and capacitor pair is considered a transmon-
like qubit, see Sec. 2. An external flux is threading the inductive
loop of the circuit.

environment as a correction to the dynamics of the system,
something which we discuss in Sec. X.

A. Circuit variables

Circuit analysis aims at finding the equations of motion
of an electrical circuit. Typically this means determin-
ing the current and voltage through all components of
the circuit. For simplicity, we consider only circuit net-
works containing two-terminal components, i.e., compo-
nents connected to two wires. Each such component is said
to lie on a branch, b, and is characterized by two vari-
ables at any given time t: The voltage, Vb(t), across it and
the current, Ib(t), through it. We define the orientation of
the voltage to be opposite to the direction of the current,
see Fig. 2. Thus these two are defined by the underlying
electromagnetic field by

Vb(t) =
∫ end of b

start of b
E(t) · d�, (1a)

Ib(t) = 1
μ0

∮
b

B(t) · d�, (1b)

where μ0 is the vacuum permeability, and E and B are the
electric field inside the wire and the magnetic field outside
the wire, respectively. The closed loop in the second inte-
gral is done in vacuum encircling the given element. As
we describe the circuits in the lumped-element model, the
voltage and current are independent of the precise path the
fields are integrated along in the following sense. For the
line integral of the electric field in Eq. (1a) we take the
integration path to be well outside the wire of the induc-
tors, meaning that the magnetic field is zero along the
path. Similarly for the loop integral of the magnetic field in
Eq. (1b), we take the integration path to be well outside the
dielectric of the capacitors, meaning that the electric field
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Start EndElement
Ib(t)

Vb(t)

FIG. 2. Arbitrary two-terminal component on a branch, b,
between two nodes (dots). The voltage, Vb(t), over the compo-
nent is defined from the start of the branch to the end of the
branch. The current, Ib(t), through the branch is defined in the
opposite direction.

is zero along the path. For more details on the integration
of electromagnetic fields see, e.g., Ref. [81].

We define the branch flux and branch charge variables
as

�b(t) =
∫ t

−∞
Vb(t′)dt′, (2a)

Qb(t) =
∫ t

−∞
Ib(t′)dt′, (2b)

where it is assumed that the system is at rest at t′ = −∞
with zero voltages and currents. As there are less degrees of
freedom in the circuit than there are branches in the circuit,
these are, just as the currents and voltages, not completely
independent but related through Kirchhoff’s laws

∑
all b arriving

at n

Qb = qn, (3a)

∑
all b around l

�b = �̃l, (3b)

where qn is the charge accumulated at node n and �̃l is
the external magnetic flux through the loop l. A node can
be understood as a point where components, or branches,
converge, see Fig. 1, where we denote nodes with a dot.
We can define any circuit as a set of nodes and a set of
branches.

The notion of nodes and branches comes from graph
theory, which is the natural mathematical language for
analyzing circuits. The interested reader can find more
details of fundamental graph theory and its application to
electrical circuits in Appendix A.

B. Circuit components

We consider primarily three different components of a
superconducting circuit: linear capacitors, linear inductors,
and nonlinear Josephson junctions. The two linear com-
ponents should be well known to most readers, and we
therefore introduce them only briefly. The Josephson junc-
tion, on the other hand, is a nonlinear component that
is specific to superconducting circuits, and it is the main
component when working with superconducting qubits.

As we are considering superconducting circuits we do
not consider resistors or other losses. Such dissipative
components are not easily included in the Hamiltonian for-
malism presented in this tutorial due to their irreversible
nature. However, it can be done using, for instance, the
Caldeira-Leggett model [74,82].

1. Capacitors

The first component we consider is the capacitor. For
a general capacitor, the charge on the capacitor is deter-
mined as a function of the voltage, q(t) = f [V(t)]. In this
tutorial, we consider only linear capacitors where the volt-
age is proportional to the charge stored on the capacitor
plates

V(t) = q(t)
C

, (4)

where C is the capacitance of the capacitor. This linear
relationship is the defining property of the linear capaci-
tor. In reality, this is merely an approximation, as there are
small nonlinearities, which makes C a function of q and
V. These effects are usually small and therefore it is stan-
dard to neglect them. Equation (4) can be rewritten to the
flux-charge relation using Eq. (2a) as

�̇(t) = V(t) = q(t)
C

, (5)

where the dot indicates differentiation with respect to t.
The charge q(t) is equal to the branch charge, and using
Eq. (2b) we find the branch current

I(t) = C�̈(t). (6)

The energy stored in the capacitor is found by integrating
the power P = V(t)I(t) from t = −∞ to t

E = 1
2

C�̇2(t). (7)

For superconducting circuits, typical values of the capaci-
tances are of the order 10 fF. In lumped-circuit diagrams
we denote the capacitor as a pair of parallel lines, see
Fig. 1.

2. Inductors

The time-dependent current flowing through a general
inductor is a function of the flux through it, I(t) = f [�(t)].
For a linear inductor, the current is proportional to the
magnetic flux,

I(t) = q̇(t) = 1
L
�(t), (8)

where L is the inductance of the inductor. Integrating over
the power as before, the energy stored in the inductor is
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IC

V C L V L

IL

C

FIG. 3. Simple LC-oscillator circuit. A capacitor with capac-
itance C is connected in a closed circuit with an inductor of
inductance L. The voltages over the two components are VC and
VL, respectively, while the currents are IC and IL, respectively.
The resulting equation of motion is a harmonic oscillator.

then

E = 1
2L
�2(t). (9)

For superconducting qubits, typical values of linear induc-
tances are of the order 1 nH. In lumped-circuit diagrams,
we denote the linear inductor as a coil, see Fig. 1.

As a short clarifying example we consider the clas-
sical LC oscillator shown in Fig. 3. From Kirchhoff’s
current law in Eq. (3a) we know that IC = IL, where IC
and IL are the currents through the capacitor and inductor,
respectively. Kirchhoff’s voltage law gives us VC = −VL,
assuming no fluctuating external flux. Using Eqs. (2a),
(2b), (5), and (8) we can set up the equations of motion
for the system

�̈(t) = − 1
LC
�(t), (10)

where we introduce �(t) = �C(t) = −�L(t) to get rid of
the subscripts. The system behaves as a simple harmonic
oscillator in the flux. This is analogous to a spring, where
the flux is the position, and the mass and spring constants
are replaced by the capacitance and inverse inductance,
respectively.

3. Josephson junctions

So far we have only considered components with lin-
ear current-voltage relations. For reasons that will become
clear when we quantize the lumped circuit, constructing a
qubit from only linear components is by no means straight-
forward. We therefore need nonlinear components which
come in the form of the Josephson junction. The Josephson
junction plays a special role in superconducting circuits,
as it has no simple analog in a nonsuperconducting circuit
since it is related to charge quantization effects that occur
in superconductors. We start with a short introduction to
superconductivity (see Ref. [83] for more details).

When the temperature is decreased some materials
undergo a phase transition where the resistivity drops
to zero. Together with the Meissner effect, i.e., that the
material perfectly expels all magnetic fields, the perfect
conduction is the defining property of a superconductor.

The phase transition between the nonsuperconducting
phase and the superconducting phase of a material happens
because the conduction electrons condense into a so-called
BCS ground state, which is characterized by an amplitude
and a phase. A priori it might seem impossible for electrons
to condense into a single quantum state since the Pauli
exclusion principle forbids this. However, as Cooper sug-
gested, some attractive force between the electrons leads
to the formation of electron pairs [84], which have integer
spin and thus behave like bosons. This makes it possible
for these so-called Cooper pairs to condense into a single
quantum ground state and in this state the solid becomes
superconducting.

A Josephson junction consists of two superconducting
islands separated by a thin insulator, a nonsuperconduct-
ing metal, or a narrow superconducting wire. Cooper pairs
can then tunnel through the barrier from one island to
the other, a phenomenon known as the Josephson effect
[85,86], see Fig. 4. The tunneling rate (current) and the
voltage between the two islands depends on the supercon-
ducting phase difference, φ, between the islands through
[87]

I(t) = Ic sin[φ(t)], (11)

V(t) = �

2e
φ̇, (12)

where Ic is the critical current of the junction, which
depends on the junction geometry. Equation (12) allows
us to relate the junction phase difference to the general-
ized flux through� = �φ/2e. The charge and flux are thus
related through

q̇(t) = Ic sin
(

2π
�(t)
�0

)
, (13)

where we define the magnetic flux quantum �0 = h/2e.
The Josephson junction works as a flux-dependent inductor
with inductance given by [73]

L(�) =
(
∂I
∂�

)−1

= LJ

cos
(

2π
�

�0

) , (14)

where we define the Josephson inductance LJ = �0/2π Ic.
Since the inductance is associated with the inertia of the
Cooper pairs it is often referred to as kinetic inductance.
See Sec. 2 for details on the use of large kinetic inductance.
For superconducting qubits, typical values of Josephson
inductances are of the order 100 nH. The energy of a
Josephson junction is also nonlinear. We have

E = �2
0

(2π)2
1

LJ

[
1 − cos

(
2π

�

�0

)]
, (15)
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Superconducting Superconducting

Insulator    30 Å

e– e–Cooper pair Tunneling

~

FIG. 4. Sketch of a Josephson junction. Two superconducting
materials are separated by a thin insulator, with a thickness of the
order of 30 Å. If a nonsuperconducting metal is used as a separa-
tor, it can be several micrometers wide. Cooper pairs can tunnel
back and forth between the two superconducting materials.

where we often neglect the constant term when dealing
with the Lagrangian or Hamiltonian, as it is irrelevant
for the dynamics of the system. We define the factor in
front of the bracket to be the Josephson energy of the
Josephson junction, EJ = �2

0/(2π)
2LJ = �0Ic/2π . In this

tutorial we denote Josephson junctions as a boxed “x”
in lumped-circuit diagrams, see Fig. 1. In the literature
sometimes an “x” without a box is used.

It is conventional to simplify notation in a way such that
charges and fluxes become dimensionless. This is done by
using units where

� = 2e = 1 and thus
�0

2π
= 1. (16)

This means that we get rid of the cumbersome factor of
2π/�0 in the sinusoidal Josephson junction terms. Note
that in this convention the units of capacitance and induc-
tance become inverse energy. Moreover, with this choice
of units the junction phase differences are equal to the
generalized flux φ = �, and the energy of a Josephson
junction becomes equal to the critical current, EJ = Ic.

4. dc SQUID

It is often desirable to be able to tune the param-
eters of the circuit externally. Therefore many circuits
employ a direct current superconducting quantum interfer-
ence device, or dc SQUID, instead of a single Josephson
junction. A dc SQUID consists of two Josephson junctions
on a ring, with an external magnetic field, �̃, through the
ring [88], see Fig. 5(a). While this does not change the
form of the energy of the Josephson junction, it has the
advantage that it makes the front factor in Eq. (15) tun-
able. To see this consider the circuit diagram in Fig. 5(b).
The energy of this component must be the sum of two
Josephson junctions

U = −EJ cos

(
�L + �̃

2

)
− EJ cos

(
�R + �̃

2

)
, (17)

where �L/R is the branch flux of the left and right branch,
respectively, and we divide the external flux equally

E J E J
F
~

Superconductor

Josephson
junction

External magnetic field(a) (b)

FIG. 5. A dc superconducting quantum interference device (dc
SQUID). (a) Implementation of a dc SQUID. (b) Corresponding
circuit diagram.

between the two arms of the dc SQUID following Kirch-
hoff’s voltage law in Eq. (3b). Note that here we consider
symmetrical junctions, but it is a neat exercise to extend it
to asymmetrical junctions.

Since we are considering the arms of a loop, we can
write � = �L = −�R in Eq. (17). Using the trigonomet-
ric identity 2 cosα cosβ = cos(α − β)+ cos(α + β) with
α = �̃/2 and β = �, we can rewrite Eq. (17) into the form

U = −2EJ cos

(
�̃

2

)
cos�. (18)

The so-called fluxoid quantization condition states that the
algebraic sum of branch fluxes of all the inductive elements
along the loop plus the externally applied flux must equal
an integer number of superconducting flux quanta [11,89,
90], i.e.,

�+ �̃ = 2πk, (19)

where k is an integer. Together with Kirchhoff’s volt-
age law in Eq. (3b) this means that we can remove a
degree of freedom. This explains how one goes from two
branch fluxes, �L/R, to just one branch flux, �, since
the branch fluxes are the system degrees of freedom. In
other words, we obtain an effective Josephson energy
of E′

J (�̃) = 2EJ | cos(�̃/2)|, where the Josephson energy
can be dynamically tuned through the external flux, �̃.
This idea is often implemented in superconducting circuits
instead of a single Josephson junction so that the spacing
of the energy levels can be tuned dynamically by tuning �̃.
However, we usually just place a single Josephson junc-
tion in a circuit diagram. Due to the sensitivity of the dc
SQUID it has many uses especially in clinical applications
such as magnetoencephalography [91,92], magnetocardio-
graphy, and magnetic resonance imaging (MRI), where
they are used for detecting tiny magnetic fields in living
organisms [93,94].

5. Voltage and current sources

We can treat constant voltage and current sources by
representing them as capacitors or inductors. Consider a
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constant voltage source V. This can be represented by a
very large but finite capacitor, in which an initially large
charge Q is stored such that V = Q/C in the limit where
C → ∞. Similarly, a constant current source can be rep-
resented by a very large but finite inductor, in which an
initially large flux � is stored, such that I = �/L in the
limit where L → ∞.

III. EQUATIONS OF MOTION

In order to describe the dynamics of the lumped-circuit
diagrams we presented in the previous section, we now
determine the equations of motion for the systems. The
equations of motion depend on the circuit components and
can be written in terms of the circuit variables using either
the voltage and current in Eq. (1) or equivalently using the
flux and charge in Eq. (2). There are several ways of find-
ing the equations of motion, and we start from the simplest
approach; applying Kirchhoff’s laws directly to the circuit.
From this starting point, we then progress to the method of
nodes and then to the Lagrangian and Hamiltonian.

A. Applying Kirchhoff’s laws directly

The simplest way to find the equations of motion for a
given circuit is to apply Kirchhoff’s laws. We have already
done this for the simple LC-oscillator example in Fig. 3,
which yielded the harmonic oscillator equation of motion
in Eq. (10). To get a better feel for this procedure, let us
consider a few additional examples.

The next natural step is to exchange the linear induc-
tor in Fig. 3 with a nonlinear Josephson junction. This
yields the circuit in Fig. 6. From Kirchhoff’s current law
in Eq. (3a) we know that IC = IJ , where IC and IJ are
the currents through the capacitor and Josephson junction,
respectively. Kirchhoff’s voltage law implies VC = −VJ .
Using Eqs. (2a), (2b), (5), and (8) we can set up the
equations of motion for the system,

�̈(t) = − Ic

C
sin�(t), (20)

where we introduce �(t) = �C(t) = −�J (t). Equation
(20) is identical to the equation of motion for a simple

IC

V C V J

IJ

C EJ

FIG. 6. A Josephson junction and capacitor circuit. A capac-
itor with capacitance C is connected in a closed circuit with
a Josephson junction, EJ . The voltage over the two compo-
nents is VC and VJ , respectively, while the currents are IC and
IJ , respectively. The resulting equation of motion is a Duffing
oscillator.

V C1

V EJ 1

V L

IL

IEJ 1

IC1

V C2

V EJ 2

IC2

IEJ 2

FIG. 7. Example circuit of Fig. 1 with explicit directions
of the voltages and currents shown. All loops are propagated
counterclockwise.

pendulum, with the critical current, Ic, playing the role of
the gravitational constant and the capacitance, C, becom-
ing the mass of the pendulum, similar to the case of the LC
circuit, see Eq. (10), which is the lowest order approxima-
tion to Eq. (20). Contrary to Eq. (10) this is not linear in
�, which is an effect of the introduction of the nonlinear
Josephson junction.

We now continue to the more complicated example of
Fig. 1. This time Kirchhoff’s voltage law gives us three
equations, one for each loop of the circuit. We denote
the left capacitor and Josephson junction C1 and EJ ,1,
respectively. Similarly, we have to the right C2, EJ ,2. The
connecting inductor is denoted by L12. Defining the direc-
tion of the current and voltages as in Fig. 7, we find the
following equations from Eq. (3b):

−�EJ 1 −�C1 = 0, (21a)

�EJ 2 +�C2 = 0, (21b)

�EJ 1 −�EJ 2 +�L = �̃, (21c)

where �̃ is the external flux in the inductor loop. We prop-
agate all loops counterclockwise, which yields negative
signs on the terms in Eq. (21) when the voltage of the given
branch is in the opposite direction to the loop direction.
Note that we can also include external fluxes in the two
capacitive loops. However, as we see in Sec. C, as long
as we consider only time-independent fluxes, the external
fluxes will only be relevant in purely inductive loops. From
Eqs. (21a) and (21a) we define �1 = �EJ 1 = −�C1 and
�2 = �EJ 2 = −�C2. Using this we can also express the
flux through the inductor as �L = �2 −�1 + �̃, which
significantly reduces the number of variables.

From Kirchhoff’s current law we find the following
equations:

−ICn + IEJn = ∓IL, (22)

for n = 1, 2, where the minus is for n = 1 and the plus is
for n = 2. Inserting the current relations for the respective
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components, we find the following equations of motion:

Cn�̈n = ∓ 1
L12

(�2 −�1 + �̃)− EJ ,n sin�n, (23)

for n = 1, 2.
The end goal of our analysis is to quantize the circuit

to treat it quantum mechanically. When doing quantum
mechanics we are usually interested in the Hamiltonian
of the system, as it is closely related to the energy spec-
trum and time evolution of the system. It is possible to
infer the system Hamiltonian from the equations of motion.
This is usually done by finding a Lagrangian that yields
the equation of motion using Lagrange’s equations [see
Eq. (27)] and then performing a Legendre transformation.

While the approach of applying Kirchhoff’s law directly
always yields the correct equations of motion, it quickly
becomes cumbersome as the circuits increase in com-
plexity. We, therefore, seek a method for determining
the Lagrangian directly. This can be achieved using the
method of nodes.

B. Method of nodes

In this section, we present the method of nodes, which
solves most practical problems involving Josephson junc-
tions. The discussion follows the method proposed by
Devoret [50,95].

Our main obstacle when determining the Lagrangian of
a given circuit is to remove superfluous degrees of freedom
and determine how to include the external fluxes. As we
saw above, we can solve these problems by manipulating
Kirchhoff’s law. Here we present an alternative approach.

We have already defined a node as a point where one or
more components connect. We now further define a ground
node as a node connected to ground. These nodes are inac-
tive since the flux through them is zero and thus they do not
contribute to the dynamics of the system, and can thus be
ignored. For the remaining nodes, we distinguish between
active and passive nodes. An active node is defined as a
node where at least one capacitor and one inductor (either
linear and Josephson junction) meet. A passive node is
defined as a node where only one type of component meet,
either only capacitors or only inductors. It turns out that
passive nodes represent superfluous degrees of freedom
and therefore only yield constraints on the dynamics of
the system. This is similar to how one may determine an
effective capacitance for a serial or parallel collection of
individual capacitances.

Considering the example circuit in Fig. 1, we can repre-
sent the circuit as a set of branches, B, and a set of nodes,
N . The set of nodes consists of three nodes: two active
nodes and a ground node. The set of branches is equal to
the set of components in the circuit, i.e., the example circuit
has five branches; two capacitor branches, two Josephson
junction branches, and a single linear inductor branch.

We call such a representation consisting of a set of
nodes and a set of branches a network graph or simply a
graph. With this notation, we can divide the circuit into
subgraphs. For a given circuit there are many possible sub-
graphs, but we focus on the capacitive subgraph and the
inductive subgraph. The capacitive subgraph contains only
branches of capacitors and the nodes connected to such
branches. The inductive subgraph contains only branches
of inductors and nodes connected to such branches. In the
example circuit in Fig. 1 the two capacitor branches and
all three nodes are in the capacitive subgraph, while the
inductor branch and the two Josephson junction branches
are in the inductive subgraph together with the three nodes.
Notice how the nodes can be in both subgraphs at the same
time, see Fig. 8.

The capacitive subgraph consists only of linear capac-
itors, and thus we can express the energy of a capacitive
branch in terms of the voltages, i.e., the derivative of the
flux, using Eq. (7). By doing this we have now broken
the symmetry between the charge and flux, and the flux
can now be viewed as the “position.” With this treatment,
the capacitive energy becomes equivalent to the kinetic
energy, while the inductive energy becomes equivalent to
the potential energy.

This symmetry breaking also explains why passive
nodes do not contribute to the dynamics of the system. A
passive node in between two inductors does not have any
kinetic energy and can therefore be considered stationary.
On the other hand, a node in between two capacitors does
have kinetic energy, but no potential energy, and can there-
fore be considered a free particle, which does not interact
with the rest of the system.

However, any realistic inductor (both linear and non-
linear) will always introduce some capacitance since
a capacitance occurs whenever two conducting materi-
als are in close proximity to each other. Consider the

(a)

(b)

FIG. 8. Highlight of (a) the capacitive subgraph and (b) the
inductive subgraph of the example circuit in Fig. 1.
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Josephson junction in Fig. 4, it quite closely resembles a
linear plate capacitor, thus it is expected that some parasitic
capacitance will be present in parallel with the inductor.
Nonetheless, we can often make this parasitic capacitance
so small that it can be neglected in the lumped-element cir-
cuit. One should, however, be aware of these capacitances
when designing superconducting circuits.

1. Spanning tree

We are now ready to consider the most important sub-
graph of the circuits: the spanning tree. The spanning tree
is constructed by connecting every node in the circuit to
each of the other nodes by only one path. See Definition
3 in Appendix A for a more mathematical definition using
graph theory. Note that there are often several choices for
the spanning tree. This is not a problem for the analysis and
can be seen analogous to the choice of a particular gauge in
electromagnetic field theory or the choice of a coordinate
system in classical mechanics.

Choosing a spanning tree for a given circuit partitions
the branches into two sets: The set of branches on the span-
ning tree, T and its complementary set, T̄ = B \ T , i.e.,
the branches not on the spanning tree. We call the latter set
the set of closure branches because its branches close the
loop of the spanning tree.

We use the spanning tree to determine where to include
the external fluxes of the system. Following Kirchhoff’s
laws, the flux φn of node n can be written as the sum of
incoming and outgoing branch fluxes, with a suitable sign
depending on the direction of the flux. With this in mind,
we can write the branch fluxes in terms of the node fluxes

�b∈T = φn − φn′ , (24a)

�b∈T̄ = φn − φn′ + �̃, (24b)

where n and n′ are the nodes at the start and end of
the given branch, respectively, and �̃ is the external flux
through the loop closed by the branch. Note that the exter-
nal flux occurs only if the branch is a closure branch. The
fact that external fluxes do not appear in every branch is
due to Kirchhoff’s law in Eq. (3b), which eliminates the
external flux on some of the branches. One can therefore
choose onto which branches these external fluxes should
be included, as long as Eq. (3b) is satisfied, which is
exactly the choice we make by choosing the spanning tree.

Substituting the node fluxes into the expressions for the
energy of the different components, i.e., into Eqs. (7), (9),
and (15), we can express the energies as a function of the
node fluxes. The results can be seen in Table I.

Note that if the circuit contains only time-independent
external fluxes, it is often an advantage to choose a span-
ning tree containing as few capacitors as possible, such
that the capacitors lie on the closure branches. The rea-
son is that a time-independent external flux disappears

TABLE I. Energies of different components on either the span-
ning tree or a closure branch of the circuit. The magnetic flux
through the closure branch due to external fields is denoted �̃b.
The time derivative of the magnetic flux is included for lin-
ear capacitors on closure branches for completeness. For the
rest of this tutorial, we assume time-independent external fluxes,
i.e., ˙̃

�b = 0. We refer to Refs. [96,97] for a discussion of
time-dependent fluxes.

Element Spanning tree Closure branch

Linear
capacitor

C
2
(φ̇n − φ̇n′)2

C
2
(φ̇n − φ̇n′ + ˙̃

�b)
2

Linear
inductor

1
2L
(φn − φn′)2

1
2L
(φn − φn′ + �̃b)

2

Josephson
junction

−EJ cos (φn − φn′) −EJ cos(φn − φn′ + �̃b)

from capacitive terms since ˙̃
� = 0. When working with

time-independent external fluxes these are therefore only
relevant in purely inductive loops. Time-dependent exter-
nal fluxes are beyond the scope of this tutorial, see Refs.
[96,97] for a treatment of this case.

If we consider the example circuit in Fig. 1 we can
choose the spanning tree in many different ways. Since
we consider only time-independent external fluxes, a par-
ticularly nice choice of spanning would be over the two
Josephson junction (JJ) branches, which means that any
external flux will appear only in the linear inductor term.
For this reason, we do not need to worry about any external
fluxes through the two capacitive loops.

C. Lagrangian approach

Having chosen a spanning tree for our circuit, we are
now ready to determine its Lagrangian. The Lagrangian
is found by subtracting the potential (inductive) energies
from the kinetic (capacitive) energies

L = T − U = Tcap − Uind − UJJ, (25)

where T is the kinetic energy and U is the potential energy.
The subscripts indicate the type of element each term refers
to.

With the definition of the Lagrangian and the energies
of Table I, we can write the Lagrangian for the example
circuit in Fig. 1 as

L = C1

2
φ̇2

1 + C2

2
φ̇2

2 − 1
2L12

(φ2 − φ1 + �̃)2

+ EJ ,1 cosφ1 + EJ ,2 cosφ2, (26)

where Cn and EJ ,n is the capacitance and Josephson energy
of the capacitor and Josephson junction, respectively. The
index n = 1, 2 corresponds to the left and right side,
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respectively. The inductance of the inductor is denoted
L12. With the Lagrangian, one can obtain the equations of
motion from Lagrange’s equations

d
dt
∂L
∂φ̇n

= ∂L
∂φn

. (27)

Applying this to the example circuit, we find the equations
of motion

φ̈n = ∓ 1
L12Cn

(φ2 − φ1 + �̃)− EJ ,n

Cn
sinφn, (28)

where the minus is for n = 1 and the plus is for n = 2. This
is identical to Eq. (23) written up with node fluxes instead
of branch fluxes.

1. Using matrices

Writing the Lagrangian as in Eq. (26) can be rather
tedious for larger circuits since it includes a lot of sums.
We, therefore, seek a more elegant way to write the
Lagrangian. This is achieved using matrix notation. First
we list all the nodes 1 to N and define a flux column vector
φT = (φ1, . . . ,φN ), where T indicates the transpose of the
vector. Note that for a grounded circuit we do not include
the ground node since its flux equals zero and it does not
contribute to the true degrees of freedom in any case. We
can always choose a ground node in our circuits as one
mode will always decouple from the remaining modes for
ungrounded circuits, see Sec. III F.

We are now ready to set up the capacitive matrix C of
the system. The nondiagonal matrix elements are minus the
capacitance, Cjk, connecting nodes j and k. The diagonal
elements consist of the sum of the nondiagonal values in
the corresponding row or column, multiplied by −1, i.e.,
Cjj = ∑

k �=j Cjk. If a node is connected to ground via a
capacitor, this capacitance must also be added to the diag-
onal element. With this N × N matrix we can write the
kinetic energy term as

T = 1
2
φ̇

T
Cφ̇. (29)

In the case of the example circuit in Fig. 1, the flux column
vector is φT = (φ1,φ2), and the capacitive matrix becomes

C =
[

C1 0
0 C2

]
. (30)

We now consider the contribution from the linear induc-
tors. We set up the inductive matrix L−1 in the same way
as the capacitive matrix. The nondiagonal elements are
−1/Ljk if an inductance Ljk connects nodes j and k, and
zero otherwise, while the diagonal elements consist of the
sum of values in the corresponding row or column, mul-
tiplied by minus one, 1/Ljj = ∑

k �=j 1/Ljk. If a node is

connected to the ground via an inductor, this inductance
must also be added to the diagonal element. Of course, if
no inductor is connecting two nodes, the element should
be zero. We must also include the external magnetic flux in
this term. Thus the energy due to linear inductors becomes

Uind = 1
2
φTL−1φ +

∑
b∈T̄

1
Lb
(φn − φn′)�̃b, (31)

where we remove all irrelevant constant terms. The second
term sums over all the inductive closure branches of the
circuit, where n and n′ are the nodes connected by branch b.

If we consider the example circuit again, the inductive
matrix is

L−1 =
[

1/L12 −1/L12
−1/L12 1/L12

]
, (32)

where L12 is the inductance of the linear inductor. With this
the inductive energy of the example circuit becomes

Uind = 1
2
φTL−1φ + 1

L12
(φ1 − φ2)�̃, (33)

where �̃ is the external flux through the inductive loop.
When there are only a few linear inductors, as in the exam-
ple circuit, it might be more straightforward to write the
energy without the matrix notation. We do not attempt to
write the Josephson junction terms using matrix notation
as they are nonlinear functions of the node flux variables.

D. Hamiltonian approach

The Hamiltonian of the circuit can be found by a simple
transformation of the Lagrangian through what is com-
monly referred to as a Legendre transformation. First, we
define the conjugate momentum to each node flux by

qn = ∂L
∂φ̇n

, (34)

which in vector form becomes q = Cφ̇. If the capacitance
matrix is invertible we can express φ̇ as a function of q.
We denote the conjugate momenta as node charges since
they correspond to the algebraic sum of the charges on the
capacitances connected to node n.

The Hamiltonian can now be expressed in terms of the
node charges, qn, for the kinetic energy and node fluxes,
φn, for the potential energy through the Legendre transform

H = φ̇
T
q − L,

= 1
2

qTC−1q + U(φ), (35)

where the potential energy is a nonlinear function of the
node fluxes. Note that the functional form of the Hamil-
tonian may differ depending on the choice of spanning
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tree. This is because the choice of flux-node coordinates is
not unique, much like the electrodynamic potentials, which
have a “gauge freedom” in which certain functions can be
added to the potentials without any change to the physics,
or more concretely; without changes to the electric and
magnetic fields [81]. Here a different choice of flux vari-
ables would correspond to a change of gauge as well and
a physical quantity like the total energy should not change
under such a transformation.

With the Hamiltonian, it is possible to find the equations
of motion using Hamilton’s equations

φ̇n = ∂H
∂qn

, q̇n = − ∂H
∂φn

, (36)

which yields results for the equations of motion that are
equivalent to Lagrange’s equations Eq. (27).

E. Normal modes

Lagrange’s equations tell us that for all passive nodes
q̇n = 0, since for a passive note we have ∂H

∂φn
= 0. This

means that the circuit has at most the same number of true
degrees of freedom as the number of active nodes except
the ground node. The number of true degrees of freedom
turn out to be identical to the number of normal modes of
the system. If all inductors can be approximated as linear
inductors (and external fluxes are ignored), the Lagrangian
takes the form

L = 1
2
φ̇

T
Cφ̇ − 1

2
φTL−1φ. (37)

This simple form of the Lagrangian means that the equa-
tions of motion become

Cφ̈ = −L−1φ, (38)

which is essentially Hooke’s law in matrix form where
the capacitances play the role of the masses and induc-
tances play the role of the spring constants [98]. The
normal modes of the full systems can be found as the
eigenvectors of the matrix product �2 = C−1L−1 associ-
ated with nonzero eigenvalues. These nonzero eigenvalues
correspond to the squared normal mode frequencies of the
circuit. Note that C−1 and L−1 can always be diagonal-
ized simultaneously since they are both positive definite
matrices [98]. It can be advantageous to find these eigen-
modes and use them as a basis as it reduces the number of
couplings between modes.

F. Change of basis

Here we present a method for changing into the nor-
mal mode basis of a circuit. Given a circuit with N nodes
and a matrix product �2 = C−1L−1, let v1, v2, . . . , vn be
the orthonormal eigenvectors of �2, with eigenvalues

χ1,χ2, . . . ,χn. Let φ be the usual vector of the node fluxes
of the circuit. We can then introduce the normal modes ψ

via

φ = Vψ, (39)

where

V =
⎡
⎣ | | |

v1 v2 · · · vN
| | |

⎤
⎦ , (40)

is a matrix whose columns are the eigenvectors of �2. The
kinetic energy term in Eq. (29) can now be written

T = 1
2
ψ̇

T
Kψ̇, (41)

where we introduce the capacitance matrix in the trans-
formed coordinates K = VTCV .

While we assume the columns of Eq. (40) to be the
eigenvectors of �2, this is not a requirement, and one can
rotate to any frame using an orthonormal basis to construct
V . However, only if one uses the eigenvectors of �2 will
the transformed capacitance matrix, K, be diagonal with
entries λi. In terms of the canonical momenta p conjugate
to ψ, the kinetic energy takes the usual form

T = 1
2

pTK−1p, (42)

where the inverse of K is trivial to find if it is a diago-
nal matrix, yielding the entries 1/λi. In the above, we have
assumed that C is positive definite, which is usually the
case. This means that λi �= 0. We comment on the case
where C is not positive definite below.

We must also consider how contributions from the
higher-order terms of inductors behave under this coordi-
nate transformation. Even though we have approximated
all inductors as linear to find the normal modes, higher-
order terms from Josephson junctions still contribute as
corrections, often leading to couplings between the modes.
Such terms transform the following way:

φk − φl →
∑

i

[(vi)k − (vi)l]ψi, (43)

where (vi)k is the kth entry of vi. Considering for instance
fourth-order terms in φ, this can result in both two-body
interactions as well as interactions beyond two body. These
multibody interactions can complicate the equations of
motion beyond what the change of basis adds in terms
of simplification. Coordinate transformations are there-
fore often most useful in cases where the capacitors are
symmetrically distributed, which results in simple normal
modes.
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The center-of-mass (c.m.) mode plays a special role
in analytical mechanics, as it often decouples from the
dynamics of the system. The same is the case for electrical
circuits. The center-of-mass mode corresponds to vc.m. =
(1, 1, . . . , 1)T/

√
N , which yields ψc.m. = (φ1 + φ2 + · · · +

φN )/
√

N . This mode is always present and it corresponds
to charge flowing equally into every node of the cir-
cuit from ground and oscillating back and forth between
ground and the nodes. Furthermore, since all its entries
are identical it always disappears in the linear combina-
tion of Eq. (43) [(vc.m.)k − (vc.m.)l = 0]. Hence, this mode
is completely decoupled from the dynamics.

The decoupling of this mode is related to how we can
arbitrarily choose a node in our circuit as the ground node,
whose node flux does not enter into our equations, or rather
is identically set to zero. For an ungrounded circuit C is
no longer positive definite and we have λc.m. = 0, mak-
ing K singular. We therefore always assume the circuit is
grounded such that λc.m. �= 0.

For an example of multibody interactions see Sec. XI E.
For other examples of changes of basis see Secs. XI C2
and XI B3.

IV. QUANTIZATION AND EFFECTIVE ENERGIES

A. Operators and commutators

We now quantize the classical Hamiltonian to obtain
a quantum-mechanical description of the circuit. This is
done through canonical quantization, replacing all the
variables and the Hamiltonian with operators

φn → φ̂n,

qn → q̂n,

H → Ĥ,

(44)

where φ̂n is the node flux operator corresponding to posi-
tion coordinates, q̂n is the conjugate momentum, and Ĥ
is the Hamiltonian operator. If the flux operator and the
conjugate momentum operator are not constants of motion
they obey the canonical commutator relation

[φ̂n, q̂m] = φ̂nq̂m − q̂mφ̂n = i�δnm, (45)

where δnm is the Kronecker delta. The commutator rela-
tion in Eq. (45) does not hold if a given node, n, is not a
true degree of freedom. This can happen in case the vari-
able does not appear in Ĥ, and therefore the commutator
between the variable and the Hamiltonian will be zero.
This means that φ̂n or q̂n will be constant of motion accord-
ing to Heisenberg’s equation of motion. This is of course
also true for the classical variables as seen in Hamilton’s
equations in Eq. (36).

The commutator relation can be found using the value of
the classical Poisson bracket, which determines the value

of the corresponding commutator up to a factor of i�, as
Dirac argued [99]. Using this for the branch flux operators
and the charge operators, both defined in Eq. (2), we find
that the Poisson bracket is

{�b, Qb} =
∑

n

[
∂�b

∂φn

∂Qb

∂qn
− ∂Qb

∂φn

∂�b

∂qn

]
= ±1, (46)

where the sign is plus for a capacitive branch and minus
for an inductive branch. Following Dirac’s approach, we
arrive at the following commutator relation:

[�̂b, Q̂b] = ±i�, (47)

which is equivalent to the commutator in Eq. (45). Note
that in general, these branch operators are not conjugate
in the Hamiltonian. One must still find the true degrees of
freedom before quantization is applied.

B. Effective energies

Consider the generalized momentum q̂ = C ˙̂
φ. The time

derivative of the generalized momentum is exactly the
current through the capacitors, Î = C ¨̂

φ. Note that in the
limiting case of one node, this reduces to the current over
a single parallel-plate capacitor, as it should. For this rea-
son, it makes sense to think of the conjugate momentum as
the sum of all charges on the capacitors attached to a given
node. We therefore define

n̂n = − q̂n

2e
(48)

as the net number of Cooper pairs stored on the nth node.
If we consider the kinetic energy of a circuit, we can write

T̂ = 1
2

q̂TC−1q̂ = 4
e2

2
n̂TC−1n̂. (49)

Now for each diagonal element, we have a contribution of
4EC,nn̂2

n, where we define the effective capacitive energy of
the nth node as

EC,n = e2

2
(C−1)(n,n), (50)

which is equivalent to the energy required to store a
single charge on the capacitor. Note that in our dimension-
less notation from Eq. (16) we have n̂n = −q̂n, while the
effective energy becomes EC,n = (C−1)(n,n)/8.

Similarly, we introduce the effective energies of the lin-
ear inductances and Josephson junctions, EL,n and EJ ,n, of
each node. The effective inductive energy is the diagonal
elements of L−1, which is equivalent to the sum of the
inverse inductances of the inductors connected to the given
node. The effective Josephson energy is found as the sum
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of the Josephson energies of the junctions connected to the
given node.

Returning to our example circuit in Fig. 1, we can now
write it using operators and effective energies. It becomes

Ĥ = 4
(
EC,1n̂2

1 + EC,2n̂2
2

) + EL,12(φ̂1 − φ̂2 + �̃)2

− EJ ,1 cos φ̂1 − EJ ,2 cos φ̂2, (51)

where the coupling energy of the linear inductor is EL,12 =
1/2L12. The effective energies of the Josephson junctions is
the Josephson energies. Note that since our example does
not include any coupling capacitors, we do not obtain any
coupling term (C−1)(1,2)n̂1n̂2 since C is diagonal. In reality,
this is rarely the case.

V. RECASTING TO INTERACTING HARMONIC
OSCILLATORS

We want to consider the low-energy limit of the super-
conducting circuit since we want to create a qubit using the
two lowest-lying states of the nonlinear oscillator quantum
system. This can be done by suppressing the kinetic energy
of the system, such that the “position” coordinate will be
localized near the minimum of the potential. We consider
a single anharmonic oscillator (AHO) as in Fig. 6 but with
a possible linear inductor in parallel, which means that we
can omit subscripts in this section as there is only a single
mode. The Hamiltonian we thus consider is

ĤAHO = 4ECn̂2 + ELφ̂
2 − EJ cos φ̂. (52)

If the effective capacitive energy, EC, of the mode is much
smaller than the effective Josephson energy, EJ , the flux
will be well localized near the bottom of the potential.
This is equivalent to a heavy particle moving near its equi-
librium position. In this case, we can Taylor expand the
potential part of the Hamiltonian up to fourth order in φ
such that the Josephson-junction term takes the form

EJ cosφ = EJ − 1
2

EJφ
2 + 1

24
EJφ

4 + O(φ6). (53)

Throwing away the irrelevant constant term, we are left
with a Hamiltonian consisting of second- and fourth-order
terms. If we require the couplings between different parts
of the superconducting circuit to be small, we can treat
each mode individually as a harmonic oscillator perturbed
by a quartic anharmonicity and possibly some couplings to
other modes of the system. For each mode in our system,
we have a simple harmonic oscillator (SHO) of the form

ĤSHO = 4ECn̂2 +
(

EL + 1
2

EJ

)
φ̂2. (54)

The simple harmonic oscillator is well understood quan-
tum mechanically, and using the algebraic approach [100]

we define the annihilation and creation operators

b̂ = 1√
2

(
1√
ζ
φ̂ − i

√
ζ n̂

)
, (55a)

b̂† = 1√
2

(
1√
ζ
φ̂ + i

√
ζ n̂

)
, (55b)

where we define the impedance

ζ =
√

4EC

EL + EJ /2
. (56)

When restoring dimensions and going away from the
dimensionless notation defined in Eq. (16) the impedance
in Eq. (56) must be multiplied with a factor of RQ/2π ,
where RQ = h/(2e)2 
 6.45 k� is the resistance quantum,
which emerges in the quantum Hall effect. The annihilation
and creation operators fulfill the usual commutator relation

[b̂, b̂†] = 1. (57)

Expressing the flux and conjugate momentum operators in
terms of the annihilation and creation operators,

φ̂ =
√
ζ

2
(b̂ + b̂†), (58a)

n̂ = i√
2ζ
(b̂ − b̂†), (58b)

we can rewrite the oscillator part of the Hamiltonian as

ĤSHO = 4

√
EC

(
EL + 1

2
EJ

)(
N̂ + 1

2

)
, (59)

where we introduce the usual number operator N̂ = b̂†b̂.
Using the creation and annihilation operators, we can

rewrite all quadratic and quartic interaction terms. The
results are in Table II for the most commonly occurring
terms.

Returning to our example circuit in Fig. 1, we can write
the Hamiltonian in Eq. (51) using annihilation and creation
operators as

Ĥ = ω1b̂†
1b̂1 + ω2b̂†

2b̂2 + α1

12
(b̂†

1 + b̂1)
4

+ α2

12
(b̂†

2 + b̂2)
4 + g12(b̂

†
1 + b̂1)(b̂

†
2 + b̂2)

+ χ1(b̂1 + b̂†
1)− χ2(b̂2 + b̂†

2), (60)
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TABLE II. Overview of the different components and the oper-
ators they map to. Subscripts are included where appropriate and
refer to different nodes. All constant terms have been neglected.
The impedance factor can be found in Eq. (56).

Component
Hamiltonian

term

Annihilation
and creation

operators

All terms Linear
capacitors

n̂2 + φ̂2 4
√

EC
(
EL + 1

2 EJ
)
b̂†b̂

n̂ i√
2ζ (b̂ − b̂†)

n̂2 − 1
2ζ (b̂ − b̂†)2

n̂in̂j − 1
2
√
ζiζj
(b̂i − b̂†

i )(b̂j − b̂†
j )

Linear inductors φ̂

√
ζ

2 (b̂
† + b̂)

φ̂2 ζ

2 (b̂
† + b̂)2

φ̂iφ̂j

√
ζiζj
2 (b̂†

i + b̂i)(b̂
†
j + b̂j )

Josephson junctions φ̂4 ζ 2

4 (b̂
† + b̂)4

φ̂3 ζ 3/2

23/2 (b̂† + b̂)3

φ̂3
i φ̂j

ζ
3/2
i ζ

1/2
j

4 (b̂†
i + b̂i)

3(b̂†
j + b̂j )

φ̂2
i φ̂

2
j

ζiζj
4 (b̂

†
i + b̂i)

2(b̂†
j + b̂j )

2

where we omit all constant terms. We further define

ωn = 4

√
EC,n

(
EL,12 + 1

2
EJ ,n

)
, (61a)

αn = −ζ
2
n

8
EJ ,n, (61b)

g12 = −
√
ζ1ζ2EL,12, (61c)

χn =
√

2ζnEL,12�̃, (61d)

ζn =
√

4EC,n

EL,12 + EJ ,n/2
, (61e)

where we refer to ωn as the frequency, αn as the anhar-
monicity, and g12 the oscillator coupling strength. Note that
if the effective inductive energy is zero, EL,n = 0, then the
anharmonicity in Eq. (61b) becomes αn = −EC,n, which is
often the case.

Note that in the presence of an external flux, one should
be careful in identifying the minimum of the potential
around which one can then perform the expansion, as in
Eq. (53).

VI. TIME-AVERAGED DYNAMICS

When analyzing the Hamiltonian of the circuit, it is
often advantageous to consider which terms dominate the
time evolution and which terms only give rise to minor

corrections. The latter can often be neglected without
changing the overall behavior of the system. It can often
be difficult to determine which terms dominate, as differ-
ent scales influence the dynamics of the system. This stems
from the fact that the frequencies, ωn, of the oscillators are
usually of the order GHz while the interactions between
the different oscillators are usually much smaller, on the
order of MHz. We therefore employ separation of scales to
remove the large energy differences of the modes from the
Hamiltonian. This makes it possible to see the details of the
interactions. In order to do this, we first introduce the con-
cept of the interaction picture, where the interacting part of
the Hamiltonian is in focus.

To summarize which terms we consider in the Hamilto-
nian, we divide the terms into three categories.

(a) Large trivial terms: Well understood energy differ-
ence terms, such as the qubit frequencies, which
we remove using separation of scales by transform-
ing into the interaction picture. Usually of the order
GHz.

(b) Smaller but interesting terms: The dominant part of
the interaction we are interested in. Usually of the
order MHz

(c) Small negligible terms: The suppressed part of the
interaction, which does not contribute significantly
to the time evolution. These can be removed using
the rotating-wave approximation (RWA).

Note, however, that the above categorization is only a
guide, and one should always consider each term in rela-
tion to the concrete system at hand.

A. Interaction picture

Consider the state |ψ , t〉S at time t. This state satisfies the
Schrödinger equation,

i
∂

∂t
|ψ , t〉S = Ĥ |ψ , t〉S , (62)

where Ĥ is the Hamiltonian. The subscript S refers to the
Schrödinger picture. In the Schrödinger picture operators
are time independent and states are time dependent. We
wish to change into the interaction picture by splitting the
Hamiltonian in a way such that the dynamics are sepa-
rated from the noninteracting part, Ĥ = Ĥ0 + ĤI ,S. There
are often several ways to make this splitting depending
on what interaction we want to highlight. This separa-
tion comes at the cost that both the operators and states
become time dependent. The advantage of using a specific
splitting of the full Hamiltonian is that we can highlight
some desired physics while ignoring other parts that are
well understood. This is analogous to choosing a reference
frame rotating with the Earth when doing classical physics
in a reference frame fixed on the surface of the Earth.
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States in the interaction picture are defined as

|ψ , t〉I = eiĤ0t|ψ , t〉S, (63)

where the subscript I refers to the interaction picture. The
operators in the interaction picture are defined as

ÔI = eiĤ0tÔSe−iĤ0t, (64)

where ÔS is an operator in the Schrödinger picture.
It is then possible to show that the state satisfies the

following Schrödinger equation:

i
∂

∂t
|ψ , t〉I = ĤI |ψ , t〉I , (65)

where ĤI = eiĤ0tĤI ,Se−iĤ0t is the interaction part of the
Hamiltonian in the interaction picture.

In general, one can transform a Hamiltonian to any so-
called rotating frame using the transformation rule

Ĥ → ĤR = Û(t)†Ĥ Û(t)+ i
dÛ(t)†

dt
Û(t), (66)

where Û(t) is a unitary transformation. This transforma-
tion rule holds for any unitary transformation and is quite
useful to keep in mind. Note that Eq. (66) is equivalent
to transforming the Hamiltonian into the interaction pic-
ture Ĥ → ĤI when Û(t) = exp(−iH0t), and Ĥ0 is the
noninteracting part of the Hamiltonian, as the second term
removes the noninteracting part of the Hamiltonian.

One can also show that the time evolution of the opera-
tors in the interaction picture is governed by a Heisenberg
equation of motion

d
dt
ÔI = i[Ĥ0, ÔI ], (67)

where we assume no explicit time dependence in ÔS. Note
that this implies that the voltage of the bth branch can be
calculated as V̂b = i[Ĥ, �̂b]. For more information about
the interaction picture see, e.g., Ref. [100].

B. Rotating-wave approximation

Consider now the weakly anharmonic oscillator as seen
in Fig. 9(c), which has the quantized Hamiltonian

Ĥ = ωb̂†b̂ + α

12
(b̂† + b̂)4, (68)

where we remove all constant terms. The frequency is
ω = √

8ECEJ and the anharmonicity is α = −EC where
EC and EJ are the effective capacitive energy and Joseph-
son energy, respectively. Now we choose the first term

(a) (c)

(b) (d)

C L EJC

FIG. 9. (a) Circuit of an LC oscillator with inductance L and
capacitance C. We denote the phase on the superconducting
island φ, while the ground node has phase zero. (b) Energy poten-
tial of a quantum harmonic oscillator, as can be obtained by an
LC circuit. Here the energy levels are equidistantly spaced �ω

apart, where ω = √
1/LC. (c) Josephson junction qubit circuit,

where the linear inductor is replaced by a nonlinear Joseph-
son junction of energy EJ . (d) The Josephson junction changes
the harmonic potential (blue dashed) into a sinusoidal potential
(orange solid), yielding nonequidistant energy levels.

as the noninteracting Hamiltonian, Ĥ0 = ωb̂†b̂. We want
to figure out how the annihilation and creation operators
behave in the interaction picture, i.e., we want to calcu-
late Eq. (64) for the annihilation and creation operators.
First, we notice that Ĥn

0b̂† = b̂†(Ĥ0 + ω)n. Using this and
expanding the exponential functions, we can prove that

eiĤ0tb̂†e−iĤ0t = b̂†eiωt. (69)

By taking the complex conjugate, we find a similar expres-
sion for b̂, but with a minus in the exponential factor on the
right-hand side.

We now wish to consider how different combinations
of the annihilation and creation operators transform in
the interaction picture. Starting with the number operator
N̂ = b̂†b̂, we see the exponential factor from b̂† cancels
the exponential factor from b̂, meaning that the number
operator is unaffected by the transformation. This is not
surprising as the noninteracting Hamiltonian is chosen
exactly as the number operator. However, if we consider
terms like J b̂†b̂† we find that in the interaction picture
they take the form J b̂†b̂†e2iωt. If ω is sufficiently large
compared to the factor, J , in front of the term (which is
often the case in superconducting circuit Hamiltonians,
where ω ∼ GHz, while other terms are usually of the order
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J ∼ MHz), these terms will oscillate very rapidly on the
timescale induced by J . The time average over such terms
on a timescale of τ ∼ 1/J is zero, and we can therefore
neglect them as they only give rise to minor corrections.
This is the rotating-wave approximation, which is widely
used in atomic physics [101,102]. The story is the same
for b̂b̂ terms. All terms that do not conserve the number of
excitations (or quanta) of the system, i.e., terms where the
number of annihilation operators is not equal to the number
of creation operators, will rotate rapidly and can there-
fore safely be neglected. Note that while these individual
terms are nonconserving, they always appear in conjugate
pairs in the Hamiltonian such that the full Hamiltonian
conserves the excitations, as it should.

It is important to point out that despite the naming,
the “conservation” is not related to a conservation law
resulting from a symmetry, i.e., like in Noether’s theorem.
Rather, the statement here means that the excitation con-
serving terms are much more important than the non-
conserving terms as long as the conditions for using the
rotating-wave approximation are satisfied.

Now consider the anharmonicity term of Eq. (68). When
only including excitation conserving terms and removing
irrelevant constants, the anharmonicity term takes the form

α

12
(b̂† + b̂)4 = α

(
1
2

b̂†b̂†b̂b̂ + b̂†b̂
)

+ nonconserving terms. (70)

The last term, b̂†b̂, is the number operator, and we can
therefore consider it a correction to the frequency, such that
the dressed frequency becomes ω̃ = ω + α = √

8ECEJ −
EC. The remaining (b̂†b̂†b̂b̂) term makes the oscillator
anharmonic. For this reason, we call α the anharmonic-
ity of the anharmonic oscillator. If we remove terms that
do not conserve the number of excitation, the Hamiltonian
takes the form (in the Schrödinger picture)

Ĥ = ω̃b̂†b̂ + α

2
b̂†b̂†b̂b̂. (71)

Next, consider an interaction term like the one in Eq. (60)

(b̂†
i + b̂i)(b̂

†
j + b̂j ) = b̂†

i b̂j + b̂ib̂
†
j + b̂†

i b̂†
j + b̂ib̂j . (72)

Changing into the interaction picture, we realize that the
two last terms obtain a phase of exp [±i(ωi + ωj )t], which
can be considered a fast oscillating term if the frequen-
cies ωi + ωj are much larger than the interaction strength,
which is usually the case. We can therefore safely neglect
these nonconserving terms. The two first terms on the other
hand obtain a phase of exp(±iδt), where δ = ωi − ωj is
called the detuning of the two oscillators. It is therefore
tempting to say that these terms contribute only if ωi ≈ ωj .

This is, however, not the whole story. More precisely, we
find that

b̂†
i b̂j eiδt + b̂ib̂

†
j e−iδt = (b̂†

i b̂j + b̂ib̂
†
j ) cos δt

+ i(b̂†
i b̂j − b̂ib̂

†
j ) sin δt, (73)

which can be useful in some situations, e.g., when driv-
ing qubits, see Sec. VIII. However, as a general rule of
thumb, one can neglect these terms unless ωi 
 ωj , i.e.,
δ = 0. For a more general discussion on the validity of the
time averaging dynamics see Ref. [103].

If we consider the example circuit in Fig. 1, under
the assumption that |αn|  ωn, we can time average its
Hamiltonian in Eq. (60). We choose the noninteracting
Hamiltonian as H0 = ω1b̂†

1b̂1 + ω2b̂†
2b̂2, which means that

the interacting part of the Hamiltonian in Eq. (60) becomes

ĤI = α1

2
(b̂†

1b̂†
1b̂1b̂1 + 2b̂†

1b̂1)+ α2

2
(b̂†

2b̂†
2b̂2b̂2 + 2b̂†

2b̂2)

+ g12

(
b̂†

1b̂2eiδt + b̂1b̂†
2e−iδt + b̂1b̂2e−i(ω1+ω2)t

+ b̂†
1b̂†

2ei(ω1+ω2)t
)

−
2∑

n=1

(−1)nχn(b̂ne−iωnt + b̂†
neiωnt), (74)

where we define the detuning δ = ω1 − ω2. Assuming
ω1 
 ω2, i.e., δ 
 0, and if we further assume that ωn �
g12, then the coupling terms b̂1b̂2 and b̂†

1b̂†
2 are fast oscillat-

ing and can thus be neglected.
We can also write the Hamiltonian in the Schrödinger

picture, removing terms that do not conserve excitations.
This yields

Ĥ = ω̃1b̂†
1b̂1 + ω̃2b̂†

2b̂2 + α1

2
b̂†

1b̂†
1b̂1b̂1

+ α2

2
b̂†

2b̂†
2b̂2b̂2 + g12(b̂

†
1b̂2 + b̂1b̂†

2), (75)

where we introduce the revised frequencies ω̃n = ωn + αn.
Writing the Hamiltonian in this frame without noncon-
serving terms reveals the effect of the anharmonicity. In
Eq. (75) we also assume that ωn � χn, meaning that all
terms related to the external flux have been neglected.
However, since χn depends on �̃, which can be controlled
externally, it is possible to tune χn such that the terms
involving χn are not suppressed. This can be used to drive
the modes, i.e., to add excitations to the two degrees of
freedom.

VII. TRUNCATION

A harmonic oscillator, as one gets from a regular LC
circuit, has a spectrum consisting of an infinite number
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of equally spaced energy eigenstates [see Fig. 9(b)]. This
is not desirable, as we wish to consider only the lowest
states of the system in order to realize a qubit. How-
ever, when we introduce a Josephson junction instead of
a linear inductor, we introduce an anharmonicity, com-
pare Figs. 9(a) and 9(c). The anharmonicity stems from
the (b̂†b̂†b̂b̂) terms [see Eq. (71)] and can be viewed as
perturbations to the harmonic oscillator Hamiltonian if
|α|  ω. This anharmonicity changes the spacing between
the energy levels of the harmonic oscillator, making it an
anharmonic oscillator [see Fig. 9(d)]. Formally, the anhar-
monicity is defined as the difference between the first and
second energy gap, while we define the relative anhar-
monicity as the anharmonicity divided by the first energy
gap

α = E12 − E01, αr = α

E01
. (76)

Note that this anharmonicity is the same anharmonicity
factor in front of the (b̂†b̂†b̂b̂) terms mentioned in previous
sections.

To operate only on the two lowest levels of the oscilla-
tor, the anharmonicity must be larger than the bandwidth
of operations on the qubit. That is, if we want to drive
excitation between the two lowest levels of the anhar-
monic oscillator, the anharmonicity must be larger than the
amplitude of the driving field (also known as the Rabi fre-
quency, see Sec. VIII). If the anharmonicity is smaller than
the amplitude of the driving field, we cannot distinguish
between the energy gaps of the oscillator, and we end up
driving multiple transitions in the spectrum instead of just
the lowest one.

Taking this into account we find that as a rule of thumb,
the relative anharmonicity should be at least a couple
of percent for the system to make an effective qubit. In
actual numbers, this converts to an anharmonicity around
100–300 MHz for a qubit frequency around 3–6 GHz
[11,104]. It does not matter whether the anharmonicity
is positive or negative. For transmon-type qubits, it will
be negative, while it can be either positive or negative
for flux-type qubits. The relative anharmonicity is propor-
tional to

√
EJ /EC, which means that this ratio must be of

a certain size for the anharmonicity to have an effect. This
is in contrast to what was discussed at the beginning of
Sec. V, where we argued that we required this ratio to be as
low as possible to allow for the expansion of cosines. Thus
we need to find a suitable regime for the ratio, EJ /EC. This
regime is usually called the transmon regime and is around
50–100.

In the following section we assume that we have a suf-
ficiently large anharmonicity to truncate the system into a
two-level system. However, nothing is stopping us from
keeping more levels, as we do in Sec. VII B.

As an alternative to the methods for truncation presented
in this tutorial, black-box quantization can be useful for
determining the effective low-energy spectrum of a weakly
anharmonic Hamiltonian [105–107]. This approach is
especially useful when dealing with impedances in the
circuit, but is beyond the scope of this tutorial.

A. Two-level model (qubit)

In a two-level system, which is equivalent to a qubit, we
can represent the state of the system with two-dimensional
vectors

|0〉 ∼
[

1
0

]
, |1〉 ∼

[
0
1

]
. (77)

In this reduced Hilbert space all operators can be expressed
by the Pauli matrices,

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i
i 0

]
, σ z =

[
1 0
0 −1

]
,

(78)

and the identity, since these four matrices span all 2 × 2
Hermitian matrices. If we view the unitary operations as
rotations in the Hilbert space, we can parameterize the
superposition of the two states using a complex phase, φ,
and a mixing angle, θ

|ψ〉 = α |0〉 + β |1〉 = cos
(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉,

(79)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π and |α|2 + |β|2 = 1.
With this, we can illustrate the qubit as a unit vector on
the Bloch sphere, see Fig. 10. It is conventional to let the
north pole represent the |0〉 state, while the south pole rep-
resents the |1〉 state. These lie on the z axis, which is called
the longitudinal axis as it represents the quantization axis
for the states in the qubit. The x and y axes are called the
transverse axes.

Solving the Schrödinger equation in Eq. (62) for the
state in Eq. (79) shows that it precesses around the z axis at
the qubit frequency. However, changing into a frame rotat-
ing with the frequency of the qubit, following the approach
in Sec. VI A, makes the Bloch vector stationary.

Unitary operations can be seen as rotations on the Bloch
sphere and the Pauli matrices are thus the generators of
rotations. Linear operators will then be represented by 2 ×
2 matrices as

M2[Ô] =
[
〈0|Ô|0〉 〈0|Ô|1〉
〈1|Ô|0〉 〈1|Ô|1〉

]
. (80)

In general we denote the n × n matrix representation of an
operator Ô with Mn[Ô].
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1

0
z

x

y

FIG. 10. The Bloch sphere. Each point on the Bloch sphere
corresponds to a quantum state. Rotations around the sphere
correspond to transformations of the state.

In order to apply this mapping to the Hamiltonian, we
must map each operator in each term. As an example, we
truncate the (b̂† + b̂)3 term from Table III:

(b̂† + b̂)3|0〉 = (b̂† + b̂)2|1〉
= (b̂† + b̂)

(√
2|2〉 + |0〉

)

=
√

6|3〉 + 3|1〉,
(b̂† + b̂)3|1〉 = (b̂† + b̂)2

(√
2|2〉 + |0〉

)

= (b̂† + b̂)
(√

6|3〉 + 3|1〉
)

=
√

24|4〉 + 6
√

2|2〉 + 3|0〉.
Using the orthonormality of the states we obtain the
representation of the operator

M2[(b̂† + b̂)3] =
[〈0|(b̂† + b̂)3|0〉 〈0|(b̂† + b̂)3|1〉
〈1|(b̂† + b̂)3|0〉 〈1|(b̂† + b̂)3|1〉

]

=
[

0 3
3 0

]
= 3σ x.

Truncation of the remaining terms is presented in Table III.
If we consider the example circuit in Fig. 1, after we

remove nonconserving terms as in Eq. (75) and assume an
anharmonicity large enough for truncation to a two-level
system, we obtain the following Hamiltonian:

Ĥ = − ω̃1

2
σ z

1 − ω̃2

2
σ z

2 + g12(σ
+
1 σ

−
2 + σ−

1 σ
+
2 ), (81)

where we define σ±
n = (σ x

n ∓ iσ y
n )/2. This Hamiltonian

represents two qubits that can interact by swapping exci-
tation between them, i.e., interacting via a swap coupling.

B. Three-level model (qutrit)

It can be desirable to truncate to the three lowest levels
of the anharmonic oscillator, i.e., the three lowest states of

TABLE III. Overview of the different combinations of the
annihilation and creation operators and their truncation to two-
dimensional Pauli operators. Subscripts are included for the
interaction terms and refer to different nodes. All constant terms
are ignored.

Annihilation and creation operators Pauli operators

b̂† − b̂ −iσ y

b̂† + b̂ σ x

(b̂† − b̂)2 −σ z

(b̂† + b̂)2 −σ z

(b̂† + b̂)3 3σ x

(b̂† + b̂)4 −6σ z

(b̂†
i − b̂i)(b̂

†
j − b̂j ) −σ y

i σ
y
j

(b̂†
i + b̂i)(b̂

†
j + b̂j ) σ x

i σ
x
j

(b̂†
i + b̂i)

3(b̂†
j + b̂j ) 3σ x

i σ
x
j

(b̂†
i + b̂i)

2(b̂†
j + b̂j )

2 σ z
i σ

z
j − 2σ z

i − 2σ z
j

Fig. 9(d). This can, e.g., be useful if one wants to study
qutrit systems [56,108,109], or the leakage from the qubit
states to higher states [110,111]. In this case, the operators
will be represented as 3 × 3 matrices. The matrix repre-
sentation of the annihilation and creation operators become

M3[b̂†] =
⎡
⎣0 0 0

1 0 0
0

√
2 0

⎤
⎦ , M3[b̂] =

⎡
⎣0 1 0

0 0
√

2
0 0 0

⎤
⎦ ,

(82a)

while the number operator is

M3[b̂†b̂] =
⎡
⎣0 0 0

0 1 0
0 0 2

⎤
⎦ , (82b)

and powers of b̂† + b̂ become

M3[(b̂† + b̂)2] =
⎡
⎣ 1 0

√
2

0 3 0√
2 0 5

⎤
⎦ , (82c)

M3[(b̂† + b̂)3] =
⎡
⎣0 3 0

3 0 6
√

2
0 6

√
2 0

⎤
⎦ , (82d)

M3[(b̂† + b̂)4] =
⎡
⎣ 3 0 6

√
2

0 15 0
6
√

2 0 39

⎤
⎦ . (82e)

From Eq. (82e) it is clear to see the varying size of the
anharmonicity, as the differences 15 − 3 = 12 and 39 −
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15 = 24 between the levels changes. This pattern contin-
ues for higher levels and means that we can distinguish
between all the levels in principle.

As we are dealing with 3 × 3 matrices we can no longer
use the Pauli spin-1/2 matrices as a basis for the operators.
In this case one can use the Gell-Mann matrices as a basis.
However, often it is more convenient to leave the annihila-
tion and creation operators as above. We are not limited by
three levels, and it is possible to truncate the system to an
arbitrary number of levels, thus creating a so-called qudit.

It is also possible to truncate the system before expand-
ing the cosine functions of the Josephson junctions. This
approach is discussed in Appendix C where we also
truncate an anharmonic oscillator to the four lowest levels.

VIII. MICROWAVE DRIVING

Single-qubit rotations in superconducting circuits can
be achieved by capacitive microwave driving. In this
section, we go through the steps of analyzing a microwave-
controlled transmon-like qubit and then generalize to a
d-level qudit. To this end, we consider the superconduct-
ing qubit seen in Fig. 11, which is capacitively coupled
to a microwave source. Using the approach presented in
Sec. III B the Lagrangian of this circuit becomes

L = C
2
φ̇2 + EJ cosφ + Cext

2
(
V(t)− φ̇

)2 , (83)

where φ is the node flux. Expanding the last term, we
obtain

L = L0 + Cext

2
(
V(t)2 + φ̇2 − 2V(t)φ̇

)
, (84)

where L0 is the static part of the Lagrangian, i.e., the two
first terms of Eq. (83). The first term in the parenthesis is
an irrelevant offset term, the second term is a change of the
capacitance of the node, while the last term is our driving
term. We throw away the offset term and rewrite

L = C + Cext

2
φ̇2 + EJ cosφ − CextV(t)φ̇. (85)

The conjugate momentum of the node flux, φ, is then

q = (C + Cext)φ̇ − CextV(t). (86)

Doing the usual Legendre transformation, our Hamiltonian
takes the form

H = 1
2

1
C + Cext

q2 − EJ cosφ
︸ ︷︷ ︸

HAHO

+ Cext

C + Cext
V(t)q

︸ ︷︷ ︸
Hext

, (87)

where we denote the anharmonic oscillator part of the
Hamiltonian HAHO and the external driving part Hext. We

C

Cext

EJ

V(t)

FIG. 11. Circuit diagram of a single transmonlike supercon-
ducting qubit capacitively coupled to a microwave drive line.

are now ready to perform the quantization and the driving
part becomes

Ĥext = i√
2ζ

Cext

C + Cext
V(t)(b̂† − b̂). (88)

Assuming a large enough anharmonicity, we can truncate
the Hamiltonian into the two lowest levels

Ĥ = −1
2
ωσ z +�V(t)σ y , (89)

where ω is the qubit frequency and � = Cext/[
√

2ζ (C +
Cext)] is the Rabi frequency of the transition between the
ground state and the excited state. Note that the size of the
Rabi frequency is limited by the size of the anharmonicity,
as discussed in Sec. VII. The name Rabi frequency may
cause a bit of confusion at first as it is not the frequency
of the driving microwave but rather the amplitude. How-
ever, the Rabi frequency is named so since it is equal to the
frequency of oscillation between the two states in a qubit
when the driving frequency, ωext, is equal to the qubit fre-
quency, ω, i.e., when we drive the qubit “on resonance”
[102].

We now change into a frame rotating with the frequency
of the qubit, also known as the interaction frame as dis-
cussed in Sec. VI. In particular we use H0 = −ωσz/2 for
the transformation in Eq. (66). In this frame the Hamilto-
nian becomes

ĤR = �V(t) [cos(ωt)σ y − sin(ωt)σ x] , (90)

which is equivalent to the external driving part of the
Hamiltonian in the interaction picture, i.e., HR = HI

ext. We
assume that the driving voltage is sinusoidal

V(t) = V0η(t) sin(ωextt + ϕ)

= V0η(t) [cos(ϕ) sin(ωextt)+ sin(ϕ) cos(ωextt)] ,
(91)

where V0 is the amplitude of the voltage, η(t) is a dimen-
sionless envelope function, ωext is the external driving
frequency, and ϕ is the phase of the driving. One usually
defines the in-phase component I = cos(ϕ) and the out-of-
phase component Q = sin(ϕ) [11]. Inserting the voltage in
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Eq. (91) into the Hamiltonian in Eq. (90) and rewriting we
obtain

ĤR = 1
2
�V0η(t)

{ − [Q sin(δt)+ I cos(δt)] σ x

+ [Q cos(δt)− I sin(δt)] σ y}, (92)

where δ = ω − ωext is the difference between the qubit
frequency and the driving frequency and we neglect fast
oscillating terms, i.e., terms with ω + ωext, following the
rotating-wave approximation. This Hamiltonian can be
written very simple in matrix form

ĤR = −1
2
�V0η(t)

[
0 e−i(δt−ϕ)

ei(δt−ϕ) 0

]
. (93)

From this, we conclude that if we apply a pulse at the qubit
frequency, i.e., ωext = ω, we can rotate the state of the
qubit around the Bloch sphere in Fig. 10. By setting ϕ = 0,
i.e., using only the I component we rotate about the x axis.
By setting ϕ = π/2, i.e., using only the Q component, we
rotate about the y axis.

A. Single-qubit gates

One of the objectives of using superconducting circuits
is to be able to perform high-quality gate operations on
qubit degrees of freedom [12]. Microwave driving of the
qubits can be used to perform single-qubit rotation gates.
To see how this works we consider the unitary time-
evolution operator of the driving Hamiltonian. At qubit
frequency, i.e., δ = 0, it takes the form

Û(t) = exp
[
−i

∫ t

0
ĤR(t′)dt′

]

= exp
[

i
2
�(t)(Iσ x − Qσ y)

]
, (94)

where we take the Pauli operators outside the integral as
there is no time dependence other than on the envelope
η(t). Note that this holds only for δ = 0, as here the Hamil-
tonian commutes with itself at different times. For nonzero
δ, one needs to solve the full Dyson’s series in principle
[100]. Equation (94) is known as Rabi driving and can be
used for engineering efficient single-qubit gate operations.
The angle of rotation is defined as

�(t) = �V0

∫ t

0
η(t′)dt′, (95)

which depends on the macroscopic design parameters of
the circuit, via the coupling �, the envelope of the pulse,
η(t), and the amplitude of the pulse, V0. The latter two can
be controlled using arbitrary wave generators (AWGs). In
case one wishes to implement a π pulse one must adjust

these parameters such that�(τ) = π , where τ is the length
of the driving pulse.

Consider a π pulse. For the in-phase case, i.e., ϕ = 0,
the time-evolution operator takes the form

ÛX(τ ) = exp
[

i
2
πσ x

]
=

[
0 1
1 0

]
, (96)

which is a Pauli-X gate, also known as a NOT-gate, which
maps |0〉 to |1〉 and vice versa [112–115]. This corresponds
to a rotation by π radians around the x axis of the Bloch
sphere. By changing the value of �(τ) it is possible to
change the angle of the rotation. Had we instead consid-
ered the out-of-phase case, i.e., ϕ = π/2 then we would
have obtained a Pauli-Y gate, which maps |0〉 to i |1〉 and
|1〉 to −i |0〉, corresponding to a rotation around the y axis
of the Bloch sphere.

A Pauli-Z gate can be implemented in one of three
ways.

(a) By detuning the qubit frequency with respect to the
driving field for some finite amount of time. This
introduces an amplified phase error, which can be
modeled as effective qubit rotations around the z-
axis [116].

(b) Driving with an off-resonance microwave pulse.
This introduces a temporary Stark shift, which
causes a phase change, corresponding to a rotation
around the z axis.

(c) Virtual Z gates where a composition of X and Y
gates rotates the qubit state around the x and y axes,
which is equivalent to a rotation around the z axis
[117]. This can be achieved very effectively simply
by adjusting the phases of subsequent microwave
gates [118].

Finally, we note that the Hadamard gate can be performed
as a combination of two rotations: a π rotation around the
z axis and a π/2 rotation around the y axis.

B. Generalization to qudit driving

Now let us generalize the discussion to a d-dimensional
qudit. Quantizing and truncating the anharmonic oscillator
part of the Hamiltonian in Eq. (87) to d levels, the qudit
Hamiltonian becomes

Ĥosc =
d−1∑
n=0

ωn|n〉〈n|, (97)

where ωn is the energy of qudit state |n〉. This is a rewrit-
ing of the ωb̂†b̂ term and the anharmonicity term, where
the anharmonicity has been absorbed into the set of ωn.
Starting from Eq. (88) and for simplicity setting the phase
in Eq. (91) to π/2 such that V(t) = V0 cos(ωextt), we can
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move to the rotating frame as was also done above for the
qubit using Eq. (66). We choose the frame rotating with the
external driving frequency

H0 =
d−1∑
n=0

nωext|n〉〈n|, (98)

which is contrary to what we did for the qubit, where we
rotated into a frame equal to the qubit frequency. We see
that for a qubit (d = 2) we get H0 = −ωextσz/2 up to a
global constant, which we could have also chosen to use
above, instead of the qubit frame.

Applying Eq. (66) to the qudit Hamiltonian in Eq. (97),
we get

Ĥosc,R =
d−1∑
n=0

(ωn − nωext) |n〉〈n|. (99)

The same transformation is performed on Hext by using the
standard expansion of the bosonic operators. By expanding
the cosine in the voltage drive using Euler’s formula, the
total Hamiltonian in the rotating frame can be found. It
becomes

ĤR =
d−1∑
n=0

δn|n〉〈n| + i�n (|n + 1〉〈n| − |n〉〈n + 1|) ,

(100)

where δn = ωn − nωext is the detuning of the nth state
relative to the ground state driven by the external field and

�n = √
n + 1� = √

n + 1
Cext

C + Cext

V0√
2ζ

(101)

is the Rabi frequency of the nth transition. Thus, by using
a single drive, we achieve great control over this specific
qudit transition. Transitions between other neighboring
qudit states can be performed simultaneously by using a
multimode driving field. Note that the i in the second term
of Eq. (100) comes from the choice of ϕ = π/2, which can
of course be changed if desired.

The external field enables transitions between two states
in the qudit if the effective detuning, �n,n+1, is small com-
pared to the size of the Rabi frequency, �n. The effective
detuning between the nth and (n + 1)th states is given as
the difference between the detuning of the two states:

�n,n+1 = δn+1 − δn = ωn+1 − ωn − ωext, (102)

from which we see that the frequency of the external field,
ωext, has to match the energy difference between the two
states, ωn+1 − ωn, for the driving to be efficient.

As mentioned in Sec. VII, leakage to other states when
driving between two states depends on the size of the

EJ ,1C1

Cg

EJ ,2C2

(a)

LCrEJCq

Cg

(b)

FIG. 12. (a) Two transmonlike qubits coupled by a single
capacitor with capacitance Cg , resulting in a static coupling
between the modes. (b) A transmonlike qubit coupled to a linear
resonator via a capacitor of capacitance Cg .

anharmonicity. This can be understood from Eq. (102). For
a small anharmonicity, �n,n+1 is approximately the same
for all n since ωn will be approximately the same for all
n, thus it becomes difficult to single out the desired tran-
sition we want to drive since the driving frequency, ωext,
will overlap with multiple transition frequencies. Luckily,
tailored control pulse methods such as derivative removal
by adiabatic gate (DRAG) and its improvements [114,119]
can reduce this leakage significantly, which allows for
relative anharmonicities of just a couple of percent. The
topic of tailored control pulses is beyond the scope of this
discussion, and we refer to the cited works.

IX. COUPLING OF MODES

In our central example of Fig. 1, we considered direct
inductive coupling. While this coupling is rather straight-
forward theoretically it is rather difficult to implement
experimentally. We therefore now consider simpler ways
to couple qubits. By coupling qubits we also open up
the possibility of implementing two-qubit gates. Examples
of more sophisticated approaches to coupling qubits are
discussed in Sec. C.

A. Capacitive coupling

The simplest form of coupling both experimentally and
theoretically is arguably capacitive coupling. Consider two
transmonlike qubits coupled by a single capacitor with
capacitance Cg , as seen in Fig. 12(a). Note the similari-
ties between this coupling and the circuit in Fig. 1. As we
see, the resulting Hamiltonian of Fig. 12(a) is close to the
Hamiltonian in Eq. (75). However, capacitive coupling are
much simpler to achieve experimentally.
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The Hamiltonian is easily found following the approach
in Sec. III B

H = 1
2

qTC−1q − EJ ,1 cosφ1 − EJ ,2 cosφ2, (103)

where q = (q1, q2)
T is the vector of conjugate momentum

and the capacitance matrix is

C =
[

C1 + Cg −Cg
−Cg C2 + Cg

]
, (104)

which is invertible

C−1 = 1
C�

[
C2 + Cg Cg

Cg C1 + Cg

]



⎡
⎣ 1

C1

Cg
C1C2

Cg
C1C2

1
C2

⎤
⎦ ,

(105)

where C� = det(C) = C1C2 + C1Cg + C2Cg . In the approx-
imation of the second step above, we have assumed that the
shunting capacitances are larger than the coupling capac-
itance, Cn � Cg , as is usually the case. After rewriting to
interacting harmonic oscillators the diagonal elements of
C−1 contribute to the respective modes with the frequen-
cies

ωn = √
EC,nEJ ,n + αn, (106)

where the effective capacitive energy is EC,n = (Cn +
Cg)/C� and the anharmonicity is αn = −EC,n. The off-
diagonal elements on the other hand contribute to the
interaction. The interaction term of the Hamiltonian is

Hint = Cg

C�
q1q2. (107)

Quantizing the Hamiltonian and changing into annihilation
and creation operators the interaction part takes the form

Hint = g12

(
b̂†

1b̂2 + b̂2b̂†
1

)
, (108)

where we remove terms that do not conserve the total num-
ber of excitations by using the RWA. The coupling strength
is

g12 = Cg

2C�
√
ζ1ζ2

, (109)

where ζn is the impedance in Eq. (56). Note the similar-
ity with Eq. (61c) if one defines EC,12 = Cg/2C� . Such
a coupling is called a transverse coupling since the inter-
action Hamiltonian only has nonzero matrix elements in
off-diagonal entries. This is contrary to the longitudinal
coupling discussed in Sec. D.

B. Two-qubit gates

As with the single-qubit gates in Sec. VIII A, we can
calculate the time-evolution operator, as in Eq. (94) of
the interacting Hamiltonian in order to determine the gate
operation. However, contrary to microwave driving we
cannot turn the interaction on and off directly. Luckily
there are several approaches to this problem, the simplest
being tuning the two qubits in and out of resonance such
that the interaction terms time average to zero due to the
RWA discussed in Sec. VI. Examples of more complex and
tunable coupling schemes are discussed Sec. C.

Consider the interaction part of the Hamiltonian in
Eq. (108), we calculate the time-evolution operator of the
two-level truncation of this

Û(t) = exp
[

i
∫ t

0
η(t′)Ĥintdt′

]

= exp
[
i�(t)(σ+

1 σ
−
2 + σ−

1 σ
+
2 )

]

=

⎡
⎢⎣

1 0 0 0
0 cos�(t) −i sin�(t) 0
0 −i sin�(t) cos�(t) 0
0 0 0 1

⎤
⎥⎦ , (110)

where η(t) is the envelope constructed so that it corre-
spond to tuning the two qubits in and out of resonance,
and we assume that this is the only part of the integral
with time dependence. We also assume that the Hamilto-
nian commutes with itself at different times. The angle of
the coupling is given as

�(t) = g
∫ t

0
η(t′)dt′, (111)

which depends on the coupling strength, g, and the enve-
lope η(t). By setting �(τ) = π/2 we obtain the iSWAP
gate from Eq. (110) and taking �(τ) = π/4 we find the√

iSWAP gate.
Note that a similar procedure to the iSWAP gate can be

used to create a CZ gate [120].

C. Linear resonators: control and measurement

So far we have considered how to engineer anharmonic
oscillators and truncate them into qubits as well as how to
drive the qubits. However, for a qubit to be useful we must
also be able to control it and perform measurements on
it [3]. These two things can be accomplished by coupling
the qubit to a linear resonator, which is a simple harmonic
oscillator [121].

Consider therefore the circuit presented in Fig. 12(b)
consisting of a transmonlike qubit capacitively coupled to
an LC oscillator, also known as a linear resonator. This cir-
cuit is similar to the example circuit presented in Fig. 12(a)
and the analysis up until truncation is identical with 1 → q,
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2 → r, and only one anharmonicity meaning that we must
change −EJ ,2 cosφ2 to φ2

r /2L in Eq. (103). Thus, we can
truncate only the mode with the anharmonicity, which
results in the following Hamiltonian:

ĤJC = ωrb̂†b̂ + 1
2
ωqσ

z + g
(
σ+b̂ + σ−b̂†

)
, (112)

where b̂† and b̂ are the creation and annihilation opera-
tors for the linear resonator, σ z is the z Pauli operator of
the qubit, and σ± represents the process of exciting and
de-exciting the qubit. The qubit frequency is given as in
Eq. (106), the resonator frequency is given by

ωr = √
EC,r/L, (113)

and the coupling strength is given as in Eq. (109).
The Hamiltonian in Eq. (112) is known as the Jaynes-

Cummings (JC) Hamiltonian, which was initially used in
quantum optics to describe a two-level atom in a cavity
[122–124]. Since then, the model has found application
in many areas of physics, including superconducting elec-
tronic circuits, where a qubit is typically coupled to a trans-
mission line resonator [125–133]. Because the Jaynes-
Cummings Hamiltonian comes from quantum optics and
cavity quantum electrodynamics (cavity QED), coupling
between superconducting circuits and linear resonators is
often denoted circuit QED.

Consider the limit where the qubit frequency is far
detuned from the resonator frequency compared to the cou-
pling rate and resonator linewidth κ = ωr/Q, where Q is
the quality factor of the resonator, i.e., � = |ωr − ωq| �
g, κ . This is known as the dispersive limit since there is
no direct exchange of energy between the two systems,
i.e., only dispersive interactions between the resonator and
the qubit occur. Using second-order perturbation theory we
see that the qubit and the resonator change each other’s
frequencies [134–136].

In the dispersive regime the Jaynes-Cummings Hamil-
tonian can be approximately diagonalized using the uni-
tary transformation eŜ where Ŝ = λ(σ+b̂ − σ−b̂†) and λ =
g/� is a small parameter. This transformation is called
a Schrieffer-Wolff transformation [137]. Using the Baker-
Campbell-Hausdorff formula [100] to second order in λwe
find the Hamiltonian in the dispersive regime becomes

Ĥdisp = eŜĤJCe−Ŝ = (ωr + χσ z)b̂†b̂ + 1
2
ω̃qσ

z, (114)

where we define χ = g2/� as the qubit-dependent fre-
quency shift or dispersive shift. The qubit frequency is
Lamb shifted to ω̃q = ωq + χ , induced by the vacuum
fluctuations in the resonator. Note that Eq. (114) is derived
for a two-level atom/qubit. Taking the second excited state

into account modifies the expression for the shift into

χ = −g2
01

�

(
1

1 +�/α

)
, (115)

where g01 is the coupling rate between the 0 and 1 state of
the qubit and α is the anharmonicity of the qubit, Eq. (76).

One can interpret the dispersive qubit-resonator interac-
tion in two ways. Either as a shift of the qubit frequency
by a quantity proportional to the photon population of
the resonator 2χ〈b̂†b̂〉 or as a qubit-dependent pull of the
resonator frequency, ωr → ωr ± χ .

In the first interpretation the bare qubit frequency is
modified by a Lamb shift and by an additional amount
proportional to the number of photons populating the res-
onator. This is known as the ac Stark shift. It has the
consequence that fluctuations in the photon number of the
resonator induce small shifts in the qubit frequency, which
brings it slightly out of its rotating frame and cause dephas-
ing [138–144]. In an experiment, it is therefore important
to reduce photon-number fluctuations of the resonator, e.g.,
by keeping the process properly thermalized.

In the second interpretation, the resonator frequency is
dependent on the state of the qubit. This means that it is
possible to make a quantum nondemolition (QND) mea-
surement of the qubit by shinning microwaves into the
resonator at a frequency close to ωr and then measuring
the transmitted signal using standard homodyne techniques
[145]. However, the approximation in Eq. (114) is only
valid in the small-photon limit, i.e., when when the res-
onator photon number, N̂ = b̂†b̂ is less than the critical
photon number Nc = �2/4g2. This sets an upper limit to
the power of the resonator as a probe while maintaining
the conditions for a QND measurement. However, this
is not the whole story; Ref. [132] has shown that level
crossings with other states of the qubit-resonator system
induce state transitions, which can be explained by the
Jaynes-Cummings model. This is beyond the scope of
our discussion, and we refer to the cited work for more
information.

In the other limit, when the detuning between the qubit
and the resonator frequency is small compared to the cou-
pling rate, i.e., �  g we obtain a hybridization of the
energy levels of the two systems. This opens up for a
Rabi mode splitting, where each transition between the
qubit and the resonator splits into two states with dis-
tance

√
Ng/π , where N denotes the resonator mode, i.e.,

the photon number. Thus excitation is coherently swapped
between the two systems. While this cannot be used to per-
form measurements on the qubit it can be used to mediate
couplings between two qubits by coupling another qubit
to the resonator [146,147]. We do not dive deeper into the
details of measurements and couplings to linear resonators.
For an experimental-minded review see, e.g., Ref. [11].

040204-23



S. E. RASMUSSEN et al. PRX QUANTUM 2, 040204 (2021)

EJ ,1

C1

L1

F1
~

EJ ,2

C2

L2

F2
~

I1 I2

M

FIG. 13. Mutual inductive coupling between two modes.

D. Inductive coupling

So far we have considered only direct inductance as a
way of coupling two qubits. In this section we consider the
mutual inductance of two modes as a means of coupling
the modes. Consider therefore the two circuits in Fig. 13,
consisting of a Josephson junction, a capacitor, and a lin-
ear inductor. Such circuits are known as rf SQUIDs [148].
Each of the circuits have the following Hamiltonian:

Ĥj = 4EC, j n̂2
j + 1

2Lj
φ̂2

j − EJ , j cos(φ̂j + �̃j ). (116)

If two such circuits are brought into proximity of each
other they will share a mutual inductance, yielding an
interaction Hamiltonian

Ĥint = M12Î1Î2

= M12Ic1 sin(φ̂1 + �̃j )I2c sin(φ̂2 + �̃j ), (117)

where Îj is the current operator of the Josephson junction,
see Eq. (11). The mutual inductance M12 between the two
circuits depends on the relative geometrical placement of
the circuits. This can be increased, e.g., by overlapping the
circuits [149] or by letting them share the same wire or
Josephson-junction inductor [150–153].

Consider now the case of no external flux, i.e., �̃ = 0.
If we expand the potential to fourth order the interaction
Hamiltonian takes the form

Ĥ = M12

[
φ̂1φ̂2 − 1

36
(φ̂1φ̂

3
2 + φ̂3

1 φ̂2)

]
. (118)

Truncating into a two-level model using Tables II and III
we find that the coupling becomes transverse

Ĥint = gxσ
x
1σ

x
2 , (119)

where the coupling constant is

gx = 1
2

M12
√
ζ1ζ2

[
1 − 1

24
(ζ1 + ζ2)

]
, (120)

with impedances given by Eq. (56).

Consider now an external flux of �̃ = π/2. In this case,
the sine terms obtain a phase effectively changing the terms
into cosines. Expanding these to second-order yields

Ĥint = M12

4

[
−(φ̂2

1 + φ̂2
2)+ 1

144
(φ̂4

1 + φ̂4
2)+ φ̂2

1 φ̂
2
2

]
,

(121)

where we recognize the two first terms as corrections to the
qubit frequencies, the next two terms as corrections to the
anharmonicities, and finally the last term is the interaction
term. Considering only the last term and truncating into a
two-level model we find (see Tables II andIII)

Ĥ′
int = gz(σ

z
1σ

z
2 − 2σ z

1 − 2σ z
2 ). (122)

The first term is a longitudinal coupling between the two
qubits with coupling constant

gz = 1
16

M12ζ1ζ2. (123)

It is called longitudinal because all off-diagonal matrix ele-
ments are zero, contrary to transverse coupling. Longitudi-
nal coupling can be used to create entanglement without
exchanging energy between the modes by enabling a so-
called phase gate [11,146,154]. From the last two terms in
Eq. (122), we see that we obtain further corrections to the
qubit frequencies.

X. NOISE AND DECOHERENCE

So far we have only considered closed quantum systems,
i.e., systems without interaction with the environment.
This is usually a good approximation as we are dealing
with cryogenic and thus isolated superconducting circuits.
However, even in the best experimental setups, random
and uncontrollable processes in the environment surround-
ing the system do occur. These are sources of noise and
lead to decoherence of the quantum system. It is, therefore,
necessary to develop a formalism to treat this theoretically
as well. We assume that the Hamiltonian of the system and
the environment is separable and has the form

Ĥ = Ĥsys + Ĥenv + νŜ · λ̂, (124)

where Ĥsys is the Hamiltonian of the system, Ĥenv is
the Hamiltonian of the environment, and the interaction
strength between the system and the environment is given
by ν, while Ŝ is an operator within the system Hamilto-
nian Ĥsys and λ̂ represents the noisy environment, which
produces fluctuations δλ.

The treatment of open quantum systems is a whole sub-
ject on its own and a complete treatment is beyond the
scope of this tutorial. We therefore present only a method
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for modeling noise in qubit systems. For a more exten-
sive treatment of open quantum systems see, e.g., Ref.
[155], and for an introduction on how to treat noise in an
experiment see, e.g., Ref. [11].

A. Bloch-Redfield model

Consider an arbitrary state on the Bloch sphere as in
Eq. (79). The density matrix for such a pure state is [12]

ρ = |ψ〉〈ψ | = 1
2
(I + a · σ) =

[|α|2 αβ∗

α∗β |β|2
]

, (125)

where I is the identity matrix, a is the Bloch vec-
tor, and σ = (σ x, σ y , σ z) is the vector of Pauli spin
matrices. If ρ represents a pure state, ψ , then tr ρ2 =
1 and the Block vector becomes a unit vector, a =
(sin θ cosφ, sin θ sinφ, cos θ), where θ and φ are the
angles of the Bloch vector. If, on the other hand, |a| < 1 the
density matrix ρ represents a mixed state with tr ρ2 < 1.
In this case the Bloch vector terminates at points inside the
unit sphere.

In the Bloch-Redfield formulation of two-level systems,
sources of noise are weakly coupled to the system with
short correlation times compared to the system dynamics
[155–158]. The noise in this formulation is determined
by two rates: The longitudinal relaxation rate and the
transverse relaxation rate.

1. Longitudinal relaxation

The longitudinal relaxation rate, �1 = 1/T1, describes
depolarization along the qubit quantization axis, often
referred to as “energy decay” or “energy relaxation”,
which is why it is often referred to as the relaxation time.
Longitudinal relaxation is caused by transverse noise, via
the x or y axis on the Bloch sphere, see Fig. 14(a). Depo-
larization of the superconducting circuit occurs due to
exchange of energy with the environment, leading both to
excitation and relaxation of the qubits, meaning that one
can write

�1 = �++�−. (126)

Due to Boltzmann statistics and the fact that superconduct-
ing qubits are operated at low temperatures (T � 20 mK)
and with a qubit frequency in the GHz regime, the qubits
generally lose energy to the environment, meaning that the
excitation rate �+ is suppressed exponentially as

�+
�−

= e−βω, (127)

where β = 1/kBT is the inverse of the Boltzmann con-
stant multiplied with the temperature. Note, however, that
empirically we often see stray population of the excited
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FIG. 14. Bloch-sphere representation of noise. (a) Longitudi-
nal relaxation is the result of energy exchange between the qubit
and the environment. Transverse noise couples to the qubit and
drives a rotation (transition) around an axis in the x-y plane.
Longitudinal relaxation is driven both by emission of energy to
the environment, �− and absorption of energy from the environ-
ment, �+. For a typical superconducting qubit, the temperature
is much lower than the frequency of the qubit, kBT  �ω, which
suppresses the absorption rate, such that �1 
 �−. (b) Pure
dephasing is the result of longitudinal noise that drives a rota-
tion around the z axis. Due to stochastic frequency fluctuations,
a Bloch vector will diffuse both clockwise and counterclockwise
around the z axis parallel to the equator.

state much higher than we would expect from this theory.
From Maxwell-Boltzmann statistics, we would expect a
thermal population of the excited state of P|1〉 ∼ 10−5%,
but the measured excited-state population is often orders
of magnitudes higher at around 1% [159].

The longitudinal relaxation rate can be determined using
Fermi’s golden rule

�1 = 1
�2 |〈0|Ŝ|1〉|2Sλ(ωq), (128)

where Ŝ is the transverse coupling of the qubit to the envi-
ronment, i.e., a coupling of the type σ x or σ y . The qubit
frequency is denoted ωq. The noise power spectral density

Sλ(ω) =
∫ ∞

−∞
dt〈λ̂(t)λ̂(0)〉e−iωt, (129)

characterizes the frequency distribution of the noise power
for a stationary noise process λ̂. Note that the Wiener-
Khintchine theorem states that Sλ(ω) is the Fourier trans-
form of the autocorrelation function cλ(t) = 〈λ̂(t)λ̂(0)〉 of
the noise source λ [160,161].

The longitudinal relaxation rate can be measured by
preparing the qubit in state |1〉 (e.g., using a π pulse as in
Sec. VIII) and then making multiple measurements of the
qubit excited-state population at a set of subsequent times
[11].
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2. Transverse relaxation

The transverse relaxation time

�2 = 1
T2

= �1

2
+ �φ (130)

describes the loss of coherence of a superposition. As seen
in Eq. (130) it is caused both by transverse noise, which
leads to energy (longitudinal) relaxation of the excited-
state component of the superposition state, and by longitu-
dinal noise, which cause fluctuations of the qubit frequency
and leads to pure dephasing, see Sec. 3 below. Note that the
sum in Eq. (130) is only valid for weak noise that also is
only correlated at short times [162].

We introduce transverse relaxation as it is a measur-
able quantity, contrary to pure dephasing, which can only
be inferred using Eq. (130). Transverse relaxation can be
measured using Ramsey interferometry [11,163]. In Ram-
sey interferometry, a π/2 pulse rotates the Bloch vector
from |0〉 to the equator of the Bloch sphere. If we know
the qubit frequency perfectly, it should remain station-
ary at the equator, and if we apply another π/2 pulse at
some time later, we should measure |1〉. However, if our
knowledge of the qubit frequency and our assumed frame
does not match the qubit’s actual rotation frame, then the
state will not remain stationary at the equator of the Bloch
sphere after the first π/2 pulse is applied. Instead, it will
precess around the equator at a frequency equal to the dif-
ference between the assumed frame and the actual qubit
frequency. This means that if we perform two π/2 pulses
with variable delay in between, we should observe oscil-
lations in the measured state of the qubit. In reality, one
often chooses a frame that is intentionally detuned from
the qubit frequency so that these oscillations are observed
even for the perfectly calibrated qubit. This means that an
error in qubit frequency will result in a difference from the
expected oscillation frequency [164]. For simple Marko-
vian noise, these oscillations are exponentially damped
with characteristic time T2 [11].

3. Pure dephasing

The pure dephasing rate �φ describes depolarization in
the x-y plane of the Bloch sphere. It is referred to as “pure
dephasing,” to distinguish it from other phase-breaking
processes such as energy excitation or relaxation. Pure
dephasing is caused by longitudinal noise that couples to
the qubit via the z axis. This longitudinal noise causes the
qubit frequency, ω, to fluctuate such that it is no longer
equal to the interaction frame frequency, causing the Bloch
vector to precess forward or backward in the interacting
frame as seen in Fig. 14(b).

To lowest order, the pure dephasing rate is orthogonal to
the difference between the two diagonal matrix elements

[74,155]

�φ = 1
�2

(
|〈0|Ŝ|0〉 − 〈1|Ŝ|1〉|2

)
Sλ(0), (131)

where Ŝ is the longitudinal coupling of the qubit to the
environment, i.e., a coupling of the type σ z. This means
that pure dephasing disappears if 〈0|Ĥenv|0〉 = 〈1|Ĥenv|1〉.
For superconducting circuits, this can often be realized by
tuning the system to the so-called “sweet spot” using exter-
nal flux biasing. This means that the transverse relaxation
becomes approximately half the longitudinal relaxation
rate as in Eq. (130). Thus decreasing the longitudinal relax-
ation rate becomes the main focus when developing qubits
with the goal of increasing the lifetime. Note, however, in
reality, pure dephasing will never disappear entirely due
to effects beyond the linear theory, such as higher-order
corrections, other noise sources, or non-Markovian effects.
Nevertheless these effects are small at the “sweet spot,”
and therefore relaxation noise will often be the dominant
source of noise.

Note that pure dephasing is in principle reversible as
there is no energy exchange with the environment, which
means that it can be undone without destroying any quan-
tum information [165]. It is also worth noting that qubit
dephasing is subject to broadband noise since noise at
any frequency can modify the qubit frequency and cause
dephasing.

The impact of noise alters the density matrix of
Eq. (125) giving us the Bloch-Redfield density matrix
[166]

ρBR =
[

1 + (|α|2 − 1)e−�1t αβ∗e−iδte−�2t

α∗βe−iδte−�2t |β|2e−�1t

]
. (132)

Note that the longitudinal relaxation rate influences the
diagonal, while the transverse influences only the off diag-
onal. We also include the phase difference δ = ωq − ωext
between the qubit frequency, ωq, and the rotating frame
frequency, ωext, which is needed in order to perform
Ramsey interferometry.

B. Master equation

As we are interested in the effect of noise on the dynam-
ics of the system we consider a so-called master equation
for the system. A master equation describes the time evo-
lution of a system (in our case an electrical circuit) where
we model the system as an ensemble of states described
by a density matrix ρ, and where we can determine the
transition between the states by a transition matrix [155].

From the time-dependent Schrödinger equation in
Eq. (62), we can derive a master equation for the closed
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system called the Liouville-von Neumann equation

ρ̇(t) = −i[Ĥ, ρ(t)], (133)

where Ĥ is the Hamiltonian of the system and ρ is the
density matrix in Eq. (125). Note how it resembles Heisen-
berg’s equations of motion in Eq. (67), but with a different
sign since the density matrix is a dynamical variable, i.e.,
it is an operator in contrast to a quantum state or wave
function.

As we are interested in the effect of noise we must add
other terms to the Liouville-von Neumann equation. For
a system that is weakly coupled to the environment, the
evolution is described by the Lindblad master equation [74,
155,167]

ρ̇(t) = −i[Ĥ, ρ(t)] +
∑

i

�i

(
L̂iρL̂†

i − 1
2
{L̂iL̂

†
i , ρ}

)
,

(134)

where {·, ·} is the anticommutator, and L̂i are the so-called
jump operators representing the interaction between the
system and the environment.

For the case of a two-level model with both longi-
tudinal and transverse relaxation weakly coupled to the
environment, the Lindblad master equation takes the form

ρ̇(t) = −i[Ĥ, ρ(t)]

+ �−

(
σ−ρσ+−1

2
{σ̂−σ̂+, ρ}

)

+ �+

(
σ+ρσ−−1

2
{σ̂+σ̂−, ρ}

)

+ �φ (σzρσz − ρ) , (135)

where the decoherence rates, �i, can be found in Eqs. (126)
and (130). Equation (134) can be used to simulate a system
including noise and is usually solved numerically using,
e.g., QuTiP [168].

XI. EXAMPLES

In this section, we present some examples of more or
less well-known superconducting qubits. We start from
some simple early single-qubit designs, then move to the
transmon and flux qubit, and finally, we discuss couplings
between qubits. In Fig. 15 we present an overview of the
qubits discussed in the examples.

There are four fundamental types of qubits: Phase
qubits, charge qubits, flux qubits, and quasicharge qubits.
These qubits can be ordered in pairs according to the
behavior of quantum fluctuation in the Cooper-pair con-
densate. Charge qubits with their single-charge tunnel-
ing are dual to flux qubits with single-flux tunneling,
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EL/EC

10−1

100

101

102

103

104

105

E
J
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Cooper-pair box

Transmon
0-π (θ mode)

Fluxonium

(C-shunted)
Flux qubit

0-π (ϕ mode)

Quasicharge qubit

Phase qubit

FIG. 15. Parameter space of the “qubit zoo.” The qubits are
plotted according to their effective Josephson energy, EJ , and
inductive energy, EL, both normalized by their effective capac-
itive energy, EC. The marker indicates the type of qubits, with
a yellow square indicating the phase qubit, red dots indicating
charge qubits, green triangles indicating flux qubits, and a blue
star for the quasicharge qubit. Note that the placement of the
qubits is only approximate as the effective energies are not defini-
tive. Also, note that the 0-π qubit is plotted twice, once for each
of its modes, where the ϕ-mode works similar to a fluxonium
qubit, while the θ mode works similarly to the transmon qubit.

while phase qubits with phase oscillation are dual to the
quasicharge qubits with quasicharge oscillations. These
fundamental qubits can be seen in Fig. 15.

The simplest realization of a superconducting qubit is
a phase qubit. It is a current-biased Josephson junction,
which essentially is just a Josephson junction with a cur-
rent applied across it. It operates in the so-called phase
regime where EC  EJ . In this regime the Josephson
tunneling dominates over the charging of the capacitor,
making the anharmonicity quite small. This can be inter-
preted as a low kinetic (capacitive) energy compared to the
potential (inductive) energy of the system. The bias cur-
rent introduces the anharmonicity and adjusting the bias
current closer to the critical current of the Josephson junc-
tion increases the anharmonicity. The fact that one can tune
the anharmonicity dynamically is a strength of this qubit.
However, the phase qubit has a rather large decoherence
noise and we do not go into further details with the phase
qubit as it is rarely used in modern circuit designs. For
more details see Refs. [95,169].

A. Charge qubits

A central type of qubit is the so-called charge qubit.
These have their name from the fact that the basis states of
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CJ

EJ

Vg

Cg

FIG. 16. Circuit diagram of the single Cooper-pair box, con-
sisting of a Josephson junction, with energy EJ and parasitic
capacitance CJ , in series with a gate capacitor with capacitance
Cg . The gate voltage is denoted Vg , and the system is connected
to the ground in the right corner. There is only one active node
denoted by a dot.

the qubit are charge eigenstates, meaning that they are only
dependent on the number of excess Cooper pairs in a dis-
connected superconducting island, and mostly independent
of the node fluxes. We start from the single Cooper-pair
box and move on to the transmon qubit, which is based on
the Cooper-pair box.

1. Single Cooper-pair box

In 1997 the first charge qubit, known as the single
Cooper-pair box (SCPB), was invented [170–172]. As with
the phase qubit, it is not used in modern qubit implemen-
tations due to bad coherence times. However, we go into
detail with this qubit as it forms the basis for the renowned
transmon qubit as well as being a nice simple example of
how to analyze a circuit.

The SCPB consists of a Josephson junction with energy
EJ and a capacitor with capacitance Cg in series, with
a superconducting island in between them. A parasitic
capacitance CJ is included in the Josephson junction. This
is a lumped-circuit element representation of the natural
capacitance that the junction will have by way of con-
struction. The circuit is biased with a gate voltage Vg over
the capacitor, which makes it possible to transfer elec-
trons from the reservoir to the superconducting island via
the gate capacitance Cg . The circuit is connected to the
ground and thus there is only one active node with flux φ
through it. The corresponding circuit diagram can be seen
in Fig. 16.

We follow the method presented in Sec. III B. In order to
write the Lagrangian, we must consider the fixed gate volt-
age. We model this as an external node with a well-defined
flux φV = Vgt, meaning φ̇V = Vg . Setting φT = (φ,φV) we
write the Lagrangian

L = 1
2
φ̇

T
Cφ̇ + EJ cosφ, (136)

where the capacitance matrix is

C =
[

CJ + Cg −Cg
−Cg Cg

]
. (137)

Since we know that φ̇V = Vg is a classical externally con-
trolled variable, it should not be quantized. Therefore, we
calculate only one conjugate momentum

q = (Cg + Cj )φ̇ − CgVg . (138)

Solving for φ̇ we perform a Legendre transformation and
find the Hamiltonian

H = 1
2(Cg + CJ )

(q + CgVg)
2 − CgV2

g

2
− EJ cosφ.

(139)

We now change into conventional notation and define the
effective capacitive energy

EC = e2

2(Cg + CJ )
, (140)

which means that we can write the Hamiltonian as

Ĥ = 4EC(n̂ − ng)
2 − EJ cos φ̂, (141)

where we quantize the dynamic variables and remove
constant terms. We further define the offset charge ng =
CgVg/2e.

We can now discuss the operational regime of the
Cooper-pair box. When the Josephson energy is much
smaller than the capacitive energy (EJ /EC  1), the
energy spectrum of the system becomes a set of parabo-
las when plotted against ng , one for each eigenvalue of
n̂. The parabolas cross at ng = n + 1/2, where n ∈ Z, see
Fig. 17(a). If we consider the eigenstates of n̂ we find that
the states |n〉 and |n + 1〉 are degenerate at ng = n + 1/2.
These states are essentially charge states of the capacitor.
In this picture, the Hamiltonian of the capacitor becomes

ĤC = 4EC

∞∑
n=−∞

(n − ng)
2|n〉〈n|, (142)

which in matrix representation is just a diagonal matrix
with (n − ng)

2 on the diagonal.
Introducing the Josephson junction lifts the degeneracy

and introduces an avoided crossing at ng = n + 1/2. The
matrix representation now becomes a tridiagonal matrix
with EJ /2 on the diagonals below and above the main
diagonal, which consists of the entries from the capacitor
discussed above.

To show this we must relate the phase states of the
Josephson junction |φ〉 to the charge states |n〉. This can be
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FIG. 17. The energies of the lowest-lying states of the sin-
gle Cooper-pair box and transmon qubit as a function of the
bias charge ng . The difference between the two lowest bands is
approximately equal to EJ at the avoided crossing.

done through a Fourier transform (this treatment is analo-
gous to the treatment of a one-dimensional solid, see, e.g.,
Ref. [100])

|φ〉 = 1√
2π

∞∑
n=−∞

e−inφ |n〉 . (143)

Note that, since n is a discrete variable, the phase must
be 2π periodic. This is in agreement with the fact that we
consider φ as the phase of the Josephson junction. The
commutator between the two corresponding operators is

[φ̂, n̂] ∼ i, (144)

where the “∼” indicates that this is only true up to the
association φ ∼ φ + 2π . Since the phase is continuous, the
inverse transformation of Eq. (143) is

|n〉 = 1√
2π

∫ 2π

0
dφeiφn |φ〉 . (145)

Now writing the last term of Eq. (141) as the sum of
exponentials and inserting the identity relation we find

ĤJ = −EJ cos φ̂

= −EJ

2

∫ 2π

0
dφ|φ〉〈φ| (eiφ + e−iφ)

= − EJ

4π

∫∫ 2π

0
dφdφ′

∞∑
n=−∞

|φ〉〈φ′|
(

e−inφei(n+1)φ′

+ einφ′
e−i(n+1)φ

)

= −EJ

2

∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|) ,

where we apply both Eqs. (143) and (145) in the second to
last step and use the definition of the delta function as an
integral in the last step.

Solving the full system, Ĥ = ĤC + ĤJ , using either
Mathieu functions [173] or numerically, yields the avoided
crossings seen in Fig. 17(b). The distance between these
avoided crossings is approximately equal to the Josephson-
junction energy EJ for the lowest states in the spectrum.
To realize a qubit we set ng equal to some half-integer,
which yields two states close to each other but with a
large gap to higher states [174]. That way we obtain a sig-
nificant anharmonicity, see Fig. 17(b) where the distance
between the green and the yellow lines is significantly dif-
ferent from the distance between the blue and yellow line
at, e.g., ng = 1/2.

The SCPB is, however, quite sensitive to small fluctu-
ations of the gate voltage Vg , since this changes ng and
the energy dispersion is steep around the working point
ng = n + 1/2, as seen in Fig. 17(b) for EJ /EC = 1.0. This
means that the qubit works only in this sweet spot as it
is otherwise very sensitive to charge noise. This reduces
the decoherence time of the system. The transmon qubit
attempts to fix this problem.

2. Transmon qubit

The transmission-line shunted plasma oscillation qubit,
or transmon qubit for short, was proposed in 2007 as an
attempt to increase the coherence time in charge qubits
[104,175]. It exploits the fact that the charge dispersion
reduces exponentially in EJ /EC, while the anharmonicity
decreases only algebraically in EJ /EC following a power
law. The setup resembles that of the single Cooper-pair
box, the difference being a large shunting capacitance, CB,
between the two superconducting islands, followed by a
similar increase in the gate capacitance Cg . The circuit
diagram is seen in Fig. 18.

Capacitors in parallel add to one effective capacitor,
hence the effective capacitance can be seen as the sum
of the capacitance of the three capacitors C� = CJ +
CB + Cg . With this elementary knowledge, the Hamilto-
nian of the transmon becomes identical to that of the single
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CJ

EJ

Vg

Cg CB

FIG. 18. Circuit diagram of the transmon qubit consisting of
a Josephson junction with energy EJ and parasitic capacitance
CJ in series with a capacitor with capacitance Cg . The system is
shunted by a large capacitance, CB. The gate voltage is denoted
Vg and the system is connected to ground in the right corner.
There is only one active node. The diagram should be compared
to Fig. 16.

Copper-pair box from Eq. (141) with the exception that

EC = e2

2(CJ + CB + Cg)
, (146)

where we change the effective capacitance in Eq. (140).
This gives much more freedom in choosing the ratio
EJ /EC, and we can thus solve the Hamiltonian for the
energy dispersion for larger EJ /EC. The result is seen in
Figs. 17(c) and 17(d).

From these results, we observe that the energy disper-
sion becomes flatter for larger ratios of EJ /EC, which
means that the qubit becomes increasingly insensitive to
charge noise. A completely flat dispersion would lead to
no charge noise sensitivity at all. However, we also notice
that the anharmonicity decreases for larger ratios. This
is a result of the before-mentioned fact that the charge
dispersion decreases exponentially in EJ /EC while the
anharmonicity has a slower rate of change given by a
power law. Therefore, we cannot just increase the shunt-
ing capacitance until all charge noise disappears as we still
need a working qubit. We are thus left with some effective
values for the transmon, which are usually somewhere in
the range EJ /EC ∈ [50, 100].

Even though the transmon has a ratio EJ /EC close to
that of the phase regime (EC  EJ ), it is still classified as
a charge qubit due to the structural similarity to the single
Cooper-pair box qubit and the fact that the eigenstates still
have reasonably well-defined charge [104]. Due to that and
the fact that capacitors in parallel add, we often just put a
Josephson junction and a parasitic capacitance in place of
the transmon in larger circuits for simplicity. We further
notice that if the ratio EJ /EC is very large, the bias voltage
becomes irrelevant and can be omitted as well.

When implementing the transmon qubit on an actual
chip various architectures are used, including the Xmon,

which is developed for nearest-neighbor capacitive cou-
pling of qubits [44,176–179], the three-dimensional (3D)
transmon where the Josephson junction is coupled to a
three-dimensional cavity [180], or the gatemon, which is
based on a semiconductor nanowire and controlled by an
electrostatic gate [181,182]. In general, there are many
shapes of the transmon and these can often be tailormade to
the specific experiment, see, e.g., Ref. [183]. Common for
these different architectures is that they can be treated theo-
retically equivalently to the basic transmon setup discussed
above, and they are therefore often referred to as trans-
monlike qubits when the architecture is irrelevant from a
theoretical point of view.

Recently a dual to the transmon qubit called a qua-
sicharge qubit, or blochnium, has been proposed, where the
shunting capacitance is replaced by a large shunting induc-
tance. This large inductance makes the qubit very robust
against flux noise, which could open up for exploring
high-impedance circuits [184].

B. Flux qubits

In general, flux qubits are implemented in a looped
superconducting circuit interrupted by one or more Joseph-
son junctions. A current is induced in these circuits using
the fact that fluxoid quantization means that only an inte-
ger number of magnetic flux quanta is allowed to penetrate
the loop. As a response to the external flux, currents flow in
superconducting materials to enhance or diminish the total
flux such that an integer number of flux quanta is achieved
in total.

A superposition of clockwise and counterclockwise cur-
rents is obtained by setting the external magnetic field at
half a magnetic flux quantum. Changing to node flux space,
this superposition of currents can be seen as a superpo-
sition of the ground states in a double-well potential. In
the double-well potential, small tunneling occurs between
the two sides of the well, which couples the two wave
functions, making an avoided crossing, and thus a closely
spaced two-level system, but with a very large gap to
the remaining states. We now elaborate on some concrete
realizations of these general ideas.

1. C-shunted flux qubit

The idea behind the C-shunted flux qubit (CSFQ) is the
same as for the transmon. However, here the capacitive
shunting is over a flux qubit, sometimes called a persistent-
current qubit (PCQ) [185,186]. As with the transmon qubit,
the capacitive shunting improves the coherence of the
qubit [43,187]. We therefore consider the flux qubit with-
out going into details of the shunting, see Sec. 2. The
coherence of the flux qubit can further be improved by
placing it in a 3D [188] or coplanar [189] resonator.

The flux qubit consists of two Josephson junctions in
series, with energy γEJ , which are then placed in parallel
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(a) (b)

FIG. 19. Circuit diagrams of different flux qubits. (a) C-
shunted flux qubit. Two Josephson junctions in series are placed
in parallel with a third Josephson junction. Both the parasitic and
shunting capacitances are included in the capacitance. (b) Flux-
onium qubit. An array of N Josephson junctions are placed in
parallel with another Josephson junction, effectively creating an
inductor in parallel with the Josephson junction.

with a third Josephson junction, with Josephson energy EJ .
Here γ is the ratio of the geometrical size of the Josephson
junctions. To a good approximation, all capacitances (both
parasitic and shunting) can be collected into one, as seen
in Fig. 19(a), when assuming γ > 1. When this is the case,
the node in between the two Josephson junctions becomes
a passive node.

Using the same trigonometric tricks as for the dc SQUID
(see Sec. 4), we can write the potential energy of the three
Josephson junctions as

U = −EJ

[
2γ cos

(
ψ+
2

− ψ2

)
cos

ψ−
2

+ cos(ψ−+�̃)
]

.

(147)

Here we introduce the change of coordinates ψ± = φ1 ±
φ3 and ψ2 = φ2 where n = 2 is the middle coordinate
in between the two Josephson junctions. This coordinate
transformation turns out to diagonalize the capacitance
matrix as well as leaving only ψ− with a nonzero eigen-
value. Thus, the two remaining node fluxes are superfluous
and from the constraints obtained from the Euler-Lagrange
equations, we find that ψ2 = ψ+/2, which yields the
potential energy

U = −EJ

[
2γ cos

ψ−
2

+ cos(ψ−+�̃)
]

. (148)

This no longer has the usual sinusoidal form, and its final
form depends on the external flux �̃ and the junction
ratio γ . The most common configuration for an external
flux is �̃ = (1 + 2l)�0/2, where l ∈ Z. These points are
often called the flux degeneracy points and correspond to
one half of the superconducting flux quantum threading
the qubit loop. In this configuration, the qubit frequency
is most robust against flux noise, leaving the qubit with
optimal coherence times.

As mentioned above, we have assumed γ > 1, which
led us to eliminate a degree of freedom. This can be

seen as an approximation in which a particle that starts
in two dimensions, but is rather forced to move along
just one dimensions, and is sometimes called the quasi-
one-dimensional (1D) approximation. This approximation
fails if γ < 1. If 1 < γ < 2, the potential takes the form
of a double well, which has been investigated as the PCQ
[185,186]. If, on the other hand, γ > 2, the potential takes
the form of a single well, very similar to the transmon
qubit, which is why the CSFQ has been investigated in this
regime [43,187]. In both cases, if the anharmonicity is suf-
ficiently large, the quantized potential can be truncated to
the lower levels.

2. Fluxonium

The fluxonium qubit is the natural extension of the
flux qubit. Instead of two Josephson junctions in parallel
with another Josephson junction, the fluxonium features
an array of up to N = 100 Josephson junctions [190–192],
sometimes referred to as a superinductance [193,194]. The
circuit diagram can be seen in Fig. 19(b). Using the same
quasi-1D approximation as in Sec. 1 repeatedly, we arrive
at a potential

U = −EJ

[
Nγ cos

ψ

N
+ cos(ψ + �̃)

]
, (149)

where ψ is the sum of all node fluxes in between the array
of Josephson junctions on the left side of Fig. 19(b). When
the number of Josephson junctions N becomes large the
argument in the first cosine, ψ/N , becomes small such
that the cosine can be approximated by a second-order
approximation, which yields

U = 1
2

ELψ
2 − EJ cos(ψ + �̃), (150)

where EL = EJγ /N is the resulting superinductance of the
array of Josephson junctions. This has the same effective
form an rf SQUID [148]. However, the superinductance
of the fluxonium qubit is much larger than the geomet-
ric inductance of the rf SQUID. This is because the
superinductance is produced by the kinetic inductance of
the array of Josephson junctions. It is therefore not lim-
ited, contrary to the geometrical inductance where the
loop impedance cannot exceed αRQ. Here α is the fine-
structure constant and RQ is the resistance quantum [193].
Recent implementations of superinductors are based on
nanowires of disordered granular aluminum or Nb alloys
[195–198].

When the external flux bias is �̃ = 0 the potential
has minimum at ψ = 0. For small fluctuations of ψ , the
potential is approximately harmonic and the lowest-lying
states are close to simple harmonic oscillator states. At
higher energies, the anharmonic cosine term of the poten-
tial comes into play as seen in Fig. 20(a). This ensures
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the anharmonicity necessary for using the two lowest-
lying states as the qubit subspace. However, the fluxo-
nium qubit is most often operated at �̃ = π , similarly
to the flux qubit. In this regime, the potential exhibits
a double-well structure, and it is possible to achieve a
much larger anharmonicity than in the �̃ = 0 case, see
Fig. 20(b).

In experiments, fluxonium qubits have reached impres-
sive lifetimes of 100–400 μs [191,192], while recent
experiments yields lifetimes in the 1-ms regime [199]. This
is done while maintaining a large anharmonicity suitable
for fast gate operations. It puts fluxonium among the top
qubit candidates for near future quantum-computing appli-
cations. In addition, the success of the fluxonium qubit
proves that long coherence times can be achieved even
in a more complicated system with a large number of
spurious modes [200]. This should encourage quantum
engineers to further explore circuit design utilizing large
superinductance.

A circuit element related to the fluxonium and the flux
qubit is the superconducting nonlinear asymmetric induc-
tive element (SNAIL), which has the same architecture
as the fluxonium qubit in Fig. 19(b) but fewer Josephson
junctions in the array than the fluxonium, i.e., N ≥ 2 but
less than for the fluxonium. For some particular choices of
γ and �̃ it is possible to cancel any fourth-order term, φ4

while keeping a substantial cubic term, φ3 [201]. This can
be used for amplifying three-wave-mixing [202,203].

E
ne

rg
y

(a) (b)

FIG. 20. Spectrum of the fluxonium qubit at the two different
flux-biasing points. For this plot the parameters are set to EC/h =
1 GHz, EJ /h = 3.43 GHz, and EL/h = 0.58 GHz.

3. 0-π qubit

A new type of qubit is the 0-π qubit. It has been pro-
posed more recently than the above qubits, but it shows
promising tendencies in topological protection from noise
[204–210].

The 0-π qubit consists of four nodes that are all con-
nected by two large superinductors, two Josephson junc-
tions, and two large shunting capacitors, as shown in
Fig. 21. We denote the shunting capacitors as C, the
superinductors as L, and the Josephson junctions as EJ
and assume they have parasitic capacitances of CJ . The
superinductors are usually made as an array of Josephson
junctions (see Sec. 2). However, here we draw them as
regular inductors as this is their effective form. An exter-
nal flux, �̃, goes through the qubit. It is advantageous
to choose the spanning tree such that only the Josephson
junctions lie in the set of closure branches.

The node fluxes of the circuit are denoted (φ1,φ2,φ3,φ4),
and the normal modes of the circuit can be written using
the transformation

⎡
⎢⎣
ϕ

θ

ζ

�

⎤
⎥⎦ = 1

2

⎡
⎢⎣

−1 1 −1 1
−1 1 1 −1
1 1 −1 −1
1 1 1 1

⎤
⎥⎦

⎡
⎢⎣
φ1
φ2
φ3
φ4

⎤
⎥⎦ . (151)

Here � is the c.m. coordinate, which has no influence on
the dynamics of the system and can be discarded. This
basis transformation diagonalizes the capacitance matrix
C = 2 diag(CJ , CJ + C, C). The Hamiltonian then takes
the form

H = 4ECϕn2
ϕ + 4ECθn2

θ + 4ECζn2
ζ + EL

2
(ϕ2 + ζ 2)

− EJ

[
cos(θ + ϕ)+ cos(θ − ϕ − �̃)

]
, (152)

L

L

EJ, CJ

C

C

EJ, CJ
F
~

1

2

3

4

FIG. 21. Circuit diagram of the 0-π qubit. Four nodes are con-
nected to each other by two large superinductors (drawn here as
regular inductors) L, two Josephson junctions EJ with parasitic
capacitance CJ , and two shunting capacitors C.
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(a)

(b)

FIG. 22. Wave functions of (a) the ground state and (b) first
excited state for the 0-π qubit. The contour lines indicate the
qubit potential. For this plot the parameters are set to EC,θ = 0.1,
EC,ϕ = 10, EJ = 10, and EL = 1. In the figure �̃ = 0. Changing
the external flux would translate the potential along the θ axis.

where nϕ , nζ , nθ are the canonical momenta, E−1
Cϕ = 16CJ ,

E−1
Cθ = 16(C + CJ ) and E−1

Cζ = 16C are the charging ener-
gies of each mode, while EL = 2/L is the effective induc-
tive energy. Note that the ζ mode completely decouples
from the rest of the system and can thus be ignored. By
transforming the θ variable θ → θ + �̃

2 we can rewrite the
Hamiltonian into the simpler form

H = 4ECϕn2
ϕ + 4ECθn2

θ

− 2EJ cos θ cos

(
ϕ + �̃

2

)
+ EL

2
ϕ2. (153)

The circuit is engineered such that C � CJ , and we can
thus think of the system as a heavy particle moving along
the θ axis and a lighter particle moving along the ϕ axis.
In the basis of the computational states |0〉 and |1〉, which
are chosen as the ground and first excited state, respec-
tively, the θ variable is well localized around either 0 or π ,
as shown in Fig. 22. This is the reason for the naming of
the qubit. Setting θ = 0 or π in Eq. (153) we see that the
potential along the ϕ-axis is similar to that of fluxonium
biased by a flux of either 0 or π . As a result the two states
have vanishing matrix elements 〈0| θn |1〉 , 〈0|ϕn |1〉 
 0.
This makes the qubit highly resistant to noise-induced
relaxation.

In recent experiments [209] with the 0-π qubit, relax-
ation times above 1 ms have been achieved, making it an
exciting candidate for future research. As with fluxonium,
the 0-π qubit proves that it is not only the most simple

qubits, such as the charge and flux qubit families, that can
achieve long coherence times. Researchers should make
note of this when developing new circuit designs to tap into
the potential that more complicated components, such as
the superinductances used in fluxonium and the 0-π qubit,
bring to the table.

C. Tunable couplers

In Sec. IX we have presented some simple static cou-
plings of qubits. Here we present some tunable couplers
from the literature. By tunable, we mean couplers where
the interaction strength can be changed in situ, without
changing the circuit layout. We consider both capacitive
and inductive coupling and finally XXZ coupling. The list
of couplers presented here is of course not exhaustive as
there are other types of couplers in the literature, see, e.g.,
Refs. [211–213].

1. Tunable capacitive coupler

Here we present a tunable capacitive coupling between
two modes [214–217]. Consider the circuit in Fig. 23
where two transmonlike qubits, subscript 1 and 2, are
connected capacitively to each other and a mediating trans-
monlike qubit, subscript g. If we require the Josephson
junctions of the qubits to be dc SQUIDs we can tune
the frequency of the qubits. Writing down the Hamilto-
nian of this circuit following the approach in Sec. III B
is straightforward

H = 1
2

qTC−1q −
∑

j

EJ , j cosφj , (154)

where the sum is over all three modes, i.e., 1, 2, g. The
capacitance matrix is

C=
⎡
⎣C1 + C1g + C12 −C1g −C12

−C1g Cg + C1g + C2g −C2g
−C12 −C2g C2 + C2g + C12

⎤
⎦,

(155)

which is invertible. We leave this inversion to the reader
and note that assuming the qubit-coupler capacitances are
smaller than the mode capacitances but larger than the
qubit-qubit capacitance, i.e., Cn � Cng � C12, it can be
simplified significantly, see, e.g., Ref. [215]. The diag-
onal terms of C−1 contribute to the frequencies of the
modes, while the three off-diagonal terms contribute to the
coupling. Quantizing the Hamiltonian, the interacting part
takes the form

Ĥint =
∑
i>j

(C−1)(i, j )n̂in̂j , (156)

where n̂i is the Cooper-pair number operator of the ith
mode, and i, j ∈ {1, 2, g}. Mapping to annihilation and
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EJ, 1C1

21

EJ,gCg
EJ, 2C2

C1g

C12

C2gg

FIG. 23. Circuit diagram implementing a tunable capacitive
coupler. Two transmonlike qubits are connected via another
tunable transmonlike qubit, and directly to each other.

creation operators connected to the harmonic degrees of
freedom yields

Ĥint =
∑
i>j

gij

(
b̂†

i b̂j + b̂ib̂
†
j − b̂†

i b̂†
j − b̂ib̂j

)
, (157)

where the coupling strength is given as

gij = (C−1)(i, j )
1

2
√
ζiζj

, (158)

and the impedances are given in Eq. (56). Note that we
have to keep the nonconserving terms in Eq. (157) as these
can be significant in the dispersive regime, i.e., when the
coupler frequency is larger than the difference in qubit
frequencies; |�j | = |ωj − ωg| � g.

To see this we perform a Schrieffer-Wolff transformation
similar to the one performed in Sec. C. However, this time
as we have three modes and include the nonconserving
terms. We thus take

Ŝ =
∑
j =1,2

[
gjg

�j
(b̂†

gb̂j − b̂gb̂†
j )− gjg

�j
(b̂†

gb̂†
j − b̂gb̂j )

]
,

(159)

where �j = ωj + ωg . Assuming a small anharmonicity
αj  �j , we can expand the transformation to second
order (note that g12 is considered a second-order small
quantity on its own). We find the full Hamiltonian to be

Ĥdisp = eŜĤe−Ŝ

=
∑
j =1,2

[
ω̃j b̂†

j b̂j + αj

2
b̂†

j b̂†
j b̂j b̂j

]
+ g̃12(b̂

†
1b̂2 + b̂1b̂†

2),

(160)

where

ω̃j = ωj + g2
jg

(
1
�j

− 1
�j

)
, (161)

g̃12 = g12 + g1gg2g

2

(
1
�1

+ 1
�2

− 1
�1

− 1
�2

)
. (162)

In the dispersive regime |�j | 
 |�j | the nonconserving
terms contribute to the coupling. The total effective cou-
pling g̃12 depends on gjg as well as�j and �j , all of which
depend on the coupler frequency ωg , which can be tuned.
Thus g̃12 is tunable as it is implicitly a function of ωg .

Note that instead of the tunable transmon coupler, one
could also have employed a tunable harmonic oscillator,
or cavity, for coupling the two qubits as used in Sec. C.
The analysis is largely the same.

2. Delft coupler

The Delft coupler [218] introduces tunable nonlinear
couplings between two qubits in a center-of-mass basis.
As with the above coupler, it is based on capacitors. The
following example is a simplification of the Supplemental
Material of Ref. [218].

Consider the circuit diagram in Fig. 24. Following the
approach in Sec. III B we find the following capacitance
matrix:

C =

⎡
⎢⎣

C + Cg −C 0 0
−C C + Cg + Cc −Cc 0
0 −Cc C + Cg + Cc −C
0 0 −C C + Cg

⎤
⎥⎦,

(163)

where we define the flux vector as φ = (φ1,φ2,φ3,φ4)
T.

This yields the following circuit Lagrangian:

L = 1
2
φ̇

T
Cφ̇ + E(1)J cos(φ1 − φ2)

+ Ec
J cos(φ2 − φ3)+ E(2)J cos(φ3 − φ4). (164)

We now change into a c.m. basis (see Sec. III E) of the
capacitive subsystem using the following transformations:

ψc.m. = 1
2
(φ1 + φ2 + φ3 + φ4), (165a)

ψ1 = 1√
2
(φ1 − φ2), (165b)

ψ2 = 1√
2
(φ4 − φ3), (165c)

ψS = 1
2
(φ1 + φ2 − φ3 − φ4). (165d)

This decouples the center-of-mass coordinate, ψc.m., from
the remaining coordinates (note that this is due to the
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identical grounding capacitances Cg) as the transformed
capacitance matrix takes the form

K = 1
2

×

⎡
⎢⎢⎢⎣

2Cg 0 0 0

0 4C + 2Cg + Cc −Cc −√
2Cc

0 −Cc 4C + 2Cg + Cc
√

2Cc

0 −√
2Cc

√
2Cc 2Cg + 2Cc

⎤
⎥⎥⎥⎦,

(166)

where we choose the basis such that ψ = (ψc.m.,ψ1,ψ2,
ψS)

T. Doing a Legendre transformation and quantizing, we
find the Hamiltonian

Ĥ = 1
2

p̂TK−1p̂ − E(1)J cos(
√

2ψ̂1)− E(2)J cos(
√

2ψ̂2)

− Ec
J cos

(
ψ̂1 − ψ̂2√

2
− ψ̂S

)
, (167)

where p̂ is the vector of conjugate momentum of the ψ̂ vec-
tor. Expanding the cosines and changing into annihilation
and creation operators [Eq. (58)], the noninteracting part
of the Hamiltonian takes the form

Ĥ0 =
∑

i={S,1,2}

[
ωb̂†

i b̂i + α

2
b̂†

i b̂†
i b̂ib̂i

]
, (168)

where we define ω = 4
√

ECEJ + α and α = −ζ 2(EJ +
3E(1)J )/8, with the effective capacitive energies being the
usual E(i)C = (K−1)(i,i)/8, which turn out to be the same for
the 1 and 2 mode. Thus, we denote it EC = E(1)C = E(2)C .
We also define the effective Josephson energy EJ = E(1)J +
Ec

J /4 and assume that the 1 and 2 modes are resonant, i.e.,
E(1)J = E(2)J . Lastly, we define the impedance as given in
Eq. (56). We do not include the center-of-mass coordinate
as it does not influence the dynamics of the system. Note
how the 1 and 2 modes are affected by both their “own”
Josephson junction and the coupling Josephson junction.

Assuming that the so-called sloshing mode, ψS, is
detuned from the remaining two modes, we can remove
couplings to it, using the rotating-wave approximation
from Sec. VI. After this approximation, the interaction part
of the Hamiltonian takes the form

ĤI = J b̂1b̂†
2 + V

2
b̂†

1b̂1b̂†
2b̂2 + V

4
b̂†

1b̂†
1b̂2b̂2

+ V
2
(b̂1n̂1b̂†

2 + b̂2n̂2b̂†
1)+ H.c., (169)

EJ
(1) EJ

c EJ
(2)

Cc CCCg

Cg

Cg

Cg

4321

FIG. 24. Circuit diagram of the Delft coupler. Two transmon-
like qubits (1 and 2) are coupled via another transmonlike coupler
(c).

where we use the assumption that the 1 and 2 modes are
resonant. The swapping coupling strength is given by

J = 1
2ζ
(K−1)(1,2) − ζEc

J

4
− V

2
, (170)

where the nonlinear coupling factor is given as

V = −Ec
J ζ

2

16
. (171)

The first nonlinear term in Eq. (169) is sometimes called
the cross-Kerr coupling term with coupling strength V/2,
while the second nonlinear term tunnels a pair of excita-
tions from one mode to the other with coupling strength
V/4. Therefore, this term does not contribute to the Hamil-
tonian if truncated to a two-level model, but it may result
in corrections to the model. Thus truncating to a two-level
model the Hamiltonian becomes

Ĥ = Ĥ0 + J (σ+
1 σ

−
2 + σ−

1 σ
+
2 )+ V

4
σ z

1σ
z
2 , (172)

where we have both transverse (σ+σ− + σ−σ+) and lon-
gitudinal coupling (σzσz) between the 1 and 2 modes. Both
J and V depend on the Josephson energy of the coupler,
which can be tuned using the external flux, thus making
the coupling tunable.

3. Gmon coupler

The gmon coupler introduces tunable swapping cou-
plings between two transmonlike qubits by exploiting
mutual inductance [214,219–221].

Consider the circuit diagram in Fig. 25 of the gmon. A
Josephson junction in parallel with a capacitor and in series
with a linear inductor is coupled to a similar setup via
another Josephson junction. An external flux through the
coupling loop makes it possible to tune the inductance of
the coupling Josephson junction, such that Leff = Lg/ cos δ
[see Eq. (15)]. Here we define the dc phase difference
across the Josephson junction, δ = �̃+ ξ̄2 − ξ̄1, where the
bar indicates the equilibrium position of the coordinates.
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C1 C2
Lg

L2L1

LJ2LJ1

1 2

x2x1

F
~

FIG. 25. Circuit diagram of the gmon coupler. Two Josephson
junctions, LJi, in parallel with a capacitor, Ci, and in series with
a linear inductor, Li, are coupled via a Josephson junction, Lg .
The inductors lead to mutual inductance between the two loops.
An external flux through the middle loop allows for tuning of the
coupling.

The ξ coordinates are passive nodes as they are only
coupled to inductors and not any capacitors. We can there-
fore remove the ξ coordinates from the Hamiltonian. To
do this we must first determine the voltage of the φ coor-
dinates. This can be done using Kirchhoff’s voltage law,
Eq. (3b), which yields

Vi = (LJi + Li)İi ± M (İ2 − İ1), (173)

where M is the mutual inductance between the right and
left loop and we have plus for i = 1 and minus for i = 2.
In order to simplify this expression we define Lqi = LJi +
Li − M , which is the inductance in the ith loop.

To determine the mutual inductance M we consider a
current I1 in the left qubit. A small fraction of this cur-
rent flows through the coupler Josephson junction. This
fraction is

Ig = L1

L1 + L2 + Leff
I1, (174)

where we use the effective inductance in place of Lg . This
current generates a flux in the right qubit φ2 = L2Ig . This
means that we can express the mutual inductance as

M = φ2

I1
= L1L2

L1 + L2 + Leff
. (175)

With the mutual inductance determined we are ready to
find the Hamiltonian of the circuit in Fig. 25. It is as
follows:

H =
∑
i=1,2

[
q2

i

2Ci
+ ξ 2

i

2Li
− 1

LJi
cos(φi − ξi)

− 1
Lg

cos(ξ1 − ξ2 + �̃)

]
, (176)

where qi is the conjugate momentum of the ith flux. Since
the ξ coordinates are passive nodes we want to remove

them from the Hamiltonian. We do this by minimizing ξi
for a fixed φi. This is equivalent to solving Lagrange’s
equations, Eq. (27), for ξi. This is straightforward but cum-
bersome work as we end up with transcendental equations
for ξi. We, therefore, skip straight to the resulting Hamil-
tonian, details can be found in Ref. [220]. The Hamilto-
nian in the harmonic and weak coupling limit, Lq � M ,
becomes

H =
∑
i=1,2

[
q2

i

2Ci
+ φ2

i

2Lqi

]
+ �φ1φ2, (177)

where we do not include the anharmonic corrections, see
Ref. [220]. The coupling is given as

� = − M
Lq1Lq2

= − L1L2

(L1 + Lj 1)(L2 + LJ 2)(Leff + L1 + L2)
, (178)

and changing into annihilation and creation operators
yields a coupling strength of

g = 1
2
�
√
ζ1ζ2, (179)

where the impedances are found in Eq. (56). This coupling
strength is tunable via the parameter Leff.

D. XXZ coupling and qutrits

In this example, we present a system with two modes
coupled via an effective Heisenberg XXZ coupling. At the
end of the example, we truncate the modes to the three
lowest levels also known as qutrits. The circuit diagram
is shown in Fig. 26. The idea is to mix the nodes φa, φb,
and φc such that we obtain two low-dimensional degrees
of freedom (after truncation) with the desired coupling and
a decoupled third degree of freedom, which can be seen as
a center-of-mass coordinate.

We include driving lines to each of the three nodes,
which enables us to control the mode energies dynami-
cally by the ac Stark shift arising from detuned driving
as explained in Sec. VIII. We note that the inductances in
Fig. 26 may be physically arranged in a manner that may
allow for a mutual inductance as an additional manner of
coupling. This can be analyzed as above in the gmon case,
however, here we ignore mutual inductance for simplicity.

We start from the circuit in Fig. 26, which yields
the following Hamiltonian using the method of nodes as
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FIG. 26. Circuit diagram of two coupled modes. The three
circuit nodes, φa,φb,φc, are indicated by dots.

presented in Sec. III B

H =1
2

qTCq + 1
2L
(φa − φc)

2 + 1
2L′ (φb − φc)

2

− Eq [cos(φa − φb)+ cosφc]

− EJ

[
cos(φa − φc + �̃1)+ cos(φb − φc + �̃2)

]
,

(180)

where the capacitance matrix is

C =
⎡
⎣C + CJ −CJ −C

−CJ C + CJ −C
−C −C 2C + CJ ,

⎤
⎦ (181)

and we define the vector of conjugate momenta qT =
(qa, qb, qc). We now follow Sec. III E and transform
into a c.m. system of the capacitive subsystem using the
following transformation:

ψ1 = 1√
2
(φa − φb),

ψ2 = 1√
6
(φa + φb − 2φc),

ψc.m. = 1√
3
(φa + φb + φc).

(182)

From this the transformation matrix V can be constructed
such that Eq. (39) is satisfied. With this transformation, the
capacitance matrix takes the form

K =

⎡
⎢⎣

2CJ + C 0 0
0 2

3 CJ + 3C −
√

2
3 CJ

0 −
√

2
3 CJ

1
3 CJ

⎤
⎥⎦ , (183)

when the basis is chosen such that pT = (p1, p2, pc.m.).
Note that the c.m. mode is not decoupled from the second
mode, as we do not transform into the normal modes of the
system. Assuming that K is invertible its inverse becomes

K−1 =

⎡
⎢⎣

1
2CJ +C 0 0

0 1
3C

√
2

3C

0
√

2
3C

3
CJ

+ 2
3C

⎤
⎥⎦ . (184)

We notice that the diagonal terms for ψ1 and ψ2 are
unequal, which becomes important when we later intro-
duce the annihilation and creation operators related to the
harmonic part of the full Hamiltonian.

Returning to the potential part of the Hamiltonian in
Eq. (180) we rewrite it in the c.m. basis in Eq. (182) and
apply the standard procedure of rewriting using trigono-
metric identities as in Sec. 4, and requiring �̃1 = −�̃2 =
�̃. Finally, we expand the cosine terms to fourth order,
assuming that we are in the transmon regime. The potential
part of the Lagrangian takes the form

U(ψ) 
E1ψ
2
1 − 1

24

(
4Eq + EJ

2
cos �̃

)
ψ4

1

+ E2ψ
2
2 − 1

24

(
4
9

Eq + 9
2

EJ cos �̃
)
ψ4

2

− gψ1ψ2 − 3EJ

8
cos �̃ψ2

1ψ
2
2 , (185)

where we neglect all energy and coupling terms involv-
ing ψc.m. as the ψc.m. degree of freedom will typically have
an energy spectrum far from the rest. We also remove all
non-energy-conserving terms, see Sec. VI. The effective
energies and coupling strength are defined by

E1 = EL + EL′ + EJ

2
cos �̃+ Eq, (186a)

E2 = 3
(

EL + EL′ + EJ

2
cos �̃+ 1

9
Eq

)
, (186b)

g = 2
√

3(EL − EL′), (186c)

where EL = 1/4L and EL′ = 1/4L′ are the effective induc-
tive energies. Note the asymmetry between the 1 and 2
modes. Ignoring the c.m. mode we quantize the Hamil-
tonian and change into annihilation and creation opera-
tors using Eq. (58), with the impedances ζi = √

4EC,i/Ei,
where EC,i is the usual effective capacitive energy. The
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Hamiltonian takes the form

Ĥ =
2∑

i=1

[
4
√

EC,iEib̂
†
i b̂i + αi

12
(b̂†

i + b̂i)
4
]

+ 1
2

g
√
ζ1ζ2(b̂

†
1 + b̂1)(b̂

†
2 + b̂2)

− 3EJ

32
cos �̃ζ1ζ2(b̂

†
1 + b̂1)

2(b̂†
2 + b̂2)

2, (187)

where we define the anharmonicities

α1 = −ζ
2
1

8

(
4Eq + EJ

2
cos �̃

)
, (188a)

α2 = −ζ
2
2

8

(
4
9

Eq + 9
2

EJ cos �̃
)

. (188b)

We now wish to truncate the two modes to qutrits, fol-
lowing the procedure presented in Sec. VII B. Note that
we can choose any other amount of levels to truncate to
as well. We choose the zero-point energy to be at the |0〉i
state for both qutrits. This is contrary to the qubit where we
usually choose the zero-point energy to lie in between the
two states. The diagonal part of the Hamiltonian becomes

Ĥ0 =
2∑

i=1

(
ωi,1|1〉〈1i| + (ωi,1 + ωi,2)|2〉〈2i|

)
, (189)

where |1〉〈1i| and |2〉〈2i| are the projection operators of
the ith qutrit on to the first and second excited state,
respectively. The energies are given as

ωi,1 = 4
√

EC,iEi + αi, (190a)

ωi,2 = ωi,1 + αi, (190b)

from which we see the effect of the anharmonicity. An
energy diagram of the two qutrits is shown in Fig. 27.
The transverse interaction part, which swaps excitation
between the two qutrits, is

HX = JX (|01〉〈10| + 2|12〉〈21|)
+ 2JZ |02〉〈20| + H.c., (191)

where we define the shorthand notation |nl〉 = |n〉1 |l〉2
used in the projection operators. The coupling constants
are given as

JX = 1
2

g
√
ζ1ζ2, (192a)

JZ = −3EJ

32
cos �̃ζ1ζ2. (192b)

Note that there is also a |11〉〈20| term, however, this is sup-
pressed due to the anharmonicity and thus we can remove

FIG. 27. Energy diagram of the system of two qutrits
described by the Hamiltonian in Eq. (189) resulting from the cir-
cuit in Fig. 26. The qutrits are connected with a Heisenberg XXZ
coupling seen in Eqs. (191) and (193).

it using the RWA from Sec. VI. Finally, the longitudinal
interaction part of the Hamiltonian is

ĤZ = JZSz
1Sz

2, (193)

where Sz = |0〉〈0| + 3|1〉〈1| + 5|2〉〈2|, which is a general-
ization of the qubit σ z

1σ
z
2 longitudinal coupling.

1. External driving of the modes

We wish to control the two qutrit modes using external
microwave driving following the procedure presented in
Sec. VII B. We drive the three original modes φa, φb, and
φc of the system. This gives the following three additional
terms for the Lagrangian:

Lext = Ca

2
(
φ̇a − Va(t)

)2 + Ca

2
(
φ̇b − Vb(t)

)2

+ Cc

2
(
φ̇c − Vc(t)

)2 , (194)

where Vi(t) is the external microwave driving.
We want to effectively couple the ψ1 and ψ2 modes

to (independent) external fields. Because these are spe-
cific linear combinations of φa, φb, and φc via Eq. (182),
the coupling fields must also be linear combinations. We,
therefore, change the basis and expand the parenthesis in
Eq. (194). Considering only the terms that contribute to
the external driving of the modes, we find

Lext = − Ca√
2

[Va(t)− Vb(t)]ψ̇1

− Ca√
6

[
Va(t)+ Vb(t)− 2Cc

Ca
Vc(t)

]
ψ̇2

− Ca√
3

[
Va(t)+ Vb(t)+ Cc

Ca
Vc(t)

]
ψ̇c.m.. (195)

The remaining terms are either irrelevant offset terms or
simple corrections to the energies of the modes. We want
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the external drivings in the first and second term to be equal
to a simple sinusoidal driving, while we want the driving
in the last term, regarding the c.m. mode, to be zero. This
yields the following equations:

Va(t)− Vb(t) =
√

2A1 cos(ωext
1 t), (196a)

Va(t)+ Vb(t)− 2Cc

Ca
Vc(t) =

√
6A2 cos(ωext

2 t), (196b)

Va(t)+ Vb(t)+ Cc

Ca
Vc(t) = 0, (196c)

where ωext
i and Ai is the external driving frequency and

amplitude of the ith qubit. Note that we do not include a
phase in the driving for simplicity. The

√
2 and

√
6 factors

are chosen to simplify the result. If we choose Ca = 2Cc,
we are left with three equations with three unknowns.
These equations can be solved by

Va(t) = 1√
2

A1 cos(ωext
1 t)+ 1√

6
A2 cos(ωext

2 t), (197a)

Vb(t) = − 1√
2

A1 cos(ωext
1 t)+ 1√

6
A2 cos(ωext

2 t), (197b)

Vc(t) = − 4√
6

A2 cos(ωext
2 t). (197c)

Expanding and collecting the terms leads to a total kinetic
energy

T = 1
2
ψ̇

T
K̃ψ̇ − Ca

2

2∑
i=1

Ai cos(ωext
i t)ψ̇i, (198)

where K̃ = K + Kext is the adjusted capacitance matrix
in the c.m. frame and Kext = VTCextV is the contribu-
tion from the coupling to the external nodes with Cext =
diag(Ca, Ca, 2Ca). Performing a Legendre transformation
and changing into annihilation and creation operators, the
driving term takes the form

Ĥext = i
2∑

i=1

Ca

2
√

2ζi
Ai cos(ωext

i t)
3∑

j =1

(K̃−1)(j ,i)(b̂
†
j − b̂j ).

(199)

We may now define the Rabi frequency of the driving as

�i = Ca

3∑
j =1

(K̃−1)(j ,i)/2
√

2ζi. (200)

Truncating to the lowest three states the driving term takes
the form

Ĥext = i
2∑

i=1

�i cos(ωext
i t)

(
|0〉〈1|i +

√
2|1〉〈2|i

)
+ H.c.

(201)

Depending on which transition we want to drive we must
match the driving frequencies with the transition energy,
e.g., ωext

1 = ω1,2 if we want to drive the |1〉 ↔ |2〉 transi-
tion of the first qutrit, see Fig. 27.

Such a system can, besides arbitrary one-qutrit gates and
generalized controlled-NOT gates, implement both single-
qubit and two-qubit nonadiabatic holonomic gates [222,
223].

E. Multibody interactions

The smallest example of multibody interaction must
consist of four nodes, as we can always decouple the
c.m. mode leaving three true degrees of freedom. Consider
therefore the circuit in Fig. 28 inspired by Ref. [224]. If we
approximate the Josephson junctions as linear inductors,
we quickly realize that the capacitive and inductive matri-
ces can be diagonalized easily. We therefore first consider
the capacitive subgraph, which, following the method in
Sec. III B yields a capacitance matrix

C =

⎡
⎢⎣

2C + Cd −C −Cd −C
−C 2C −C 0
−Cd −C 2C + Cd −C
−C 0 −C 2C

⎤
⎥⎦ . (202)

To begin with we set the diagonal capacitance Cd = C,
which yields the eigenmodes

vc.m. = 1
2

⎡
⎢⎣

1
1
1
1

⎤
⎥⎦ , v1 = 1√

2

⎡
⎢⎣

1
0

−1
0

⎤
⎥⎦ ,

v2 = 1√
2

⎡
⎢⎣

0
1
0

−1

⎤
⎥⎦ , v3 = 1

2

⎡
⎢⎣

1
−1
1

−1

⎤
⎥⎦ ,

(203)

with eigenvalues λc.m. = 0 (as we do not ground any node),
λ1 = λ3 = 4C, and λ2 = 2C. Note how the choice of iden-
tical capacitances ensures that the vi are independent of the
capacitances.

These modes correspond to charge oscillating across the
diagonal between nodes 1 and 3 (v1), oscillation across
the sides of the square between nodes 2 and 4 (v2), and
finally an oscillation involving the entire circuit between
the nodes 1 and 3, and the nodes 2 and 4 (v3). We can
see that changing the capacitance of the diagonal branch
does not disturb the eigenmodes. The fact that this is the
only branch where the capacitance can be changed is an
intuitive result when we consider the modes in terms of
oscillating charge. We can think of the mode v1 as the only
one involving the diagonal branch.
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FIG. 28. An example of a simple circuit with four nodes. The
nodes are connected in a square with Josephson junctions and
a capacitor, and two of the nodes are connected to the opposite
corner.

Changing the diagonal capacitance to Cd �= C, we
change only the first mode, and the diagonalized capaci-
tance matrix takes the form

K =

⎡
⎢⎣

0 0 0 0
0 2(C + Cd) 0 0
0 0 2C 0
0 0 0 4C

⎤
⎥⎦ . (204)

From this point on we remove the center-of-mass coordi-
nate. Consider now the inductive subgraph of the circuit in
Fig. 28. It yields the potential energy

U = −EJ

[
cos

(
ψ1 − ψ2√

2
+ ψ3

)

+ cos
(
ψ1 + ψ2√

2
− ψ3

)

+ cos
(
ψ1 − ψ2√

2
− ψ3

)

+ cos
(
ψ1 + ψ2√

2
+ ψ3

)]

− Ed cos(
√

2ψ1), (205)

where we change to the diagonal basis. With some trigono-
metric identities, this can be reduced to

U = −Ed cos(
√

2ψ1)

− 4EJ cos
(
ψ1√

2

)
cos

(
ψ2√

2

)
cos(ψ3). (206)

From this, we see that the diagonal Josephson junction,
with Ed, does not contribute to the coupling between the
three modes. We also see that the remaining four Josephson
junctions with EJ lead to three-body interaction between
the ψ1, ψ2, and ψ3 modes. Such a three-body interaction
is a sixth-order effect, ψ2

1ψ
2
2ψ

2
3 , and one would therefore

need to keep all terms to sixth order when expanding the
cosine. This expansion to sixth order also leads to correc-
tions to the frequencies and two-body couplings between
the three modes. Note that the diagonal branch can be
removed from the system without changing the dynamics
of the system.

By introducing external fluxes, we can tune the triple-
cosine term to involve odd terms as well. The cosine terms
themselves result only in products of even powers of the
ψi’s, but with flux threading the circuit a cosine term can
be turned into a sine term, making the contributions from
the corresponding mode completely odd. This opens up
the possibility for further multibody couplings achieved
through the normal modes, including couplings that do not
require an expansion to sixth order. Multibody couplings
are useful, e.g., in gauge theories [225–228] or quantum
annealing [229–236].

1. External coupling to eigenmodes

If we wish to couple an eigenmode circuit into a larger
configuration, we need to couple the eigenmodes to the
external degrees of freedom. Such external degrees of free-
dom can be used to control or measure the system. While
a nontransformed node flux can be controlled by cou-
pling a single control line to the corresponding node (see
Sec. VIII), we must employ several control lines to couple
the eigenmodes as these are generally linear combinations
of the flux node variables as we have seen several times
in the previous sections. For concreteness, we consider the
circuit in Fig. 28 transformed to its eigenmodes. We now
want to capacitively couple the ψ1 degree of freedom to an
external control line without coupling to the two remaining
degrees of freedom.

We therefore couple each node in the (nontransformed)
circuit via identical capacitors of capacitance Cext to an
external driving voltage Vi(t). This results in the following
additional terms in the Lagrangian

Lext = Cext

2

4∑
i=1

(
φ̇i − Vi

)2 , (207)

similarly to the previous example. Writing the Lagrangian
in terms of the eigenmodes, expanding the parenthesis, and
throwing away constant terms, we have
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Lext = Cext

2

[
ψ̇2

c.m. + ψ̇2
1 + ψ̇2

2 + ψ̇2
3

− ψ̇c.m. (V1 + V2 + V3 + V4)

+
√

2ψ̇1 (−V1 + V3)

+
√

2ψ̇2 (−V2 + V4)

+ ψ̇3 (−V1 + V2 − V3 + V4)
]
. (208)

If we now want to only couple to ψ1, we choose V1 = −V3
and V2 = V4 = 0. This yields

Lext = Cext

2

[
ψ̇2

c.m. + ψ̇2
1 + ψ̇2

2 + ψ̇2
3 − 2

√
2ψ̇1V1

]
.

(209)

The four first terms contribute to the diagonal of K and
can be viewed as corrections to the energy of the modes,
and the last term is exactly an interaction term between
ψ1 and the external V1(t). Note that we could have just
coupled to the 1 and 3 nodes to get the same result, which
we could have guessed from the form of v1 in Eq. (203).
Also, note that the center-of-mass mode obtains a nonzero
eigenvalue, because all nodes are coupled to the ground.

XII. SUMMARY AND OUTLOOK

In this tutorial, we have presented various methods used
when analyzing superconducting electrical circuits. We
have summarized the methods in Fig. 29.

An analysis usually starts by determining over which
components possible external flux should be added, either
using Kirchhoff’s law directly, as in Sec. III A or via con-
structing a spanning tree as described in Sec. III B. The
Lagrangian can then be constructed by determining the
capacitor (kinetic) energy and subtracting the inductive
(potential) energy as in Sec. III C. The Hamiltonian is
found using a Legendre transformation in Sec. III D. One
can then optionally change basis, e.g., into normal modes
as in Secs. III E and III F. The Hamiltonian can then be
quantized using the canonical quantization in Sec. IV A.
Asserting that the system is only weakly anharmonic it
can be rewritten into interacting harmonic oscillators per-
turbed by the anharmonicity following the approach in
Sec. V. After changing to annihilation and creation oper-
ators, the rotating-wave approximation can be applied if
needed as in Sec. VI. If the anharmonicity is large, the sys-
tem can be truncated into qubits or qudits using either the
methods in Sec. VII or the more advanced techniques in
Sec. C. Note that this final truncation of the Hilbert space
is not strictly necessary to perform computations using the
superconducting circuit as other approaches work with the
full Hilbert space of the oscillators. These approaches are
beyond the scope of this tutorial and more information can
be found in Refs. [59–71].

Draw circuit
and

label components

Label all nodes
and

determine ground

Add the energy
of each element 

to find Lagrangian 

Find Hamiltonian
by Legendre 

transforma�on

Quan�ze 
Hamiltonian

Recast to 
interac�ng
harmonic 
oscillators

Assert system is 
in desired regime,

e.g., transmon

Change into
annihila�on and

crea�on operators
Perform RWA

to eliminate fast
oscilla�ng terms

Truncate to
two levels
(qubits)

Truncate to
mul�levels

(qudits)

Assert
anharmonicity is
sufficiently large

If external fluxes: 
Choose spanning

tree

Change node
flux basis

Employ full Hilbert
space for 

computa�on

FIG. 29. Overview of the methods presented in this tutorial.
Blue blocks indicate the essential methods, while yellow blocks
indicate optional steps. Green boxes are beyond the scope of this
tutorial. Round blocks are assertions that must be satisfied before
advancing in the flowchart.

Besides the essential steps mentioned above, we have
also discussed control of the modes via microwave driv-
ing in Sec. VIII and used to perform single-qubit gates.
Simple coupling of modes is discussed in Sec. IX and this
enables the implementation of two-qubit gates. In the same
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section, we also discussed coupling to linear resonators
and inductive coupling via mutual inductance. Finally, we
have discussed how to include noise when calculating the
dynamics of the system using the Bloch-Redfield model
and master equation in Sec. X. We have illustrated the
methods with concrete examples throughout the tutorial to
aid the reader, and finally in Sec. XI we discussed a num-
ber of key examples of contemporary qubit designs and a
number of couplers that allow the qubits to interact.

The methods presented here are by no means exhaustive
in regards to circuit analysis. Classical electrical circuit
analysis has been performed for decades by both physi-
cists and engineers, and much more information on this
subject can be found in the existing literature. The meth-
ods presented here should therefore not be seen as a limit
to what can be done with superconducting circuits, but
merely as a starting point for researchers new to the field
of superconducting electrical circuit analysis.

So where to go from here? If you want to explore
controlling and measuring superconducting circuits we
recommend Ref. [77], which discusses the coupling to
microwave resonators in greater detail. For more informa-
tion on the method in Sec. III B and the more advanced
methods in Appendix B, see Refs. [50] and [74], respec-
tively. Both of these references also discuss dissipation in
more detail. For each of the examples, we reference the
original research, which should be consulted, and finally
for an overview of the field, see Ref. [11], which reviews
recent state-of-the-art concepts.
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APPENDIX A: FUNDAMENTAL GRAPH THEORY
OF ELECTRICAL NETWORKS

In this Appendix, we present some fundamental defini-
tions from graph theory. The reason for this is that graph
theory is the natural language of electromagnetic circuits
where each circuit element can be represented as an edge
on a graph. We introduce these definitions as a supplement
to the discussion in the main text. The first three definitions
are directly related to the main text, while the remaining
definitions provide an alternative way of stating Kirch-
hoff’s laws. We describe the quantities important to circuit
analysis using the example circuit shown on Fig. 30(a).

The example circuit consists of a transmon qubit capac-
itively coupled to a resonator, which is a very common
setup [104,218]. For more material on graph theory see,
e.g., Refs. [237,238].

Definition 1 (Graph). A graph G = (N ,B) is a set of
nodes N = {n1, . . . , nN } where N is the number of nodes,
and a set of branches (sometimes called edges) B =
{b1, . . . , bB} where each branch connects a pair of nodes
and B is the number of branches. The number of nodes
is called the order of the graph and is denoted |G| = N.
We allow multiple branches to connect the same pair of
nodes. Sometimes this is called a multigraph in order to
distinguish it from simple graphs where only one branch
can connect the same pair of nodes.

Using this definition, we can consider each circuit as a
graph where each component corresponds to a branch. The
first step of any circuit analysis is to label every branch of
the graph. These can be labeled in different ways, usually
via the element or the flux through the current. These are
equivalent, and often both are used as they complement
each other.

Using the components as the labels, the set of branches
in Fig. 30(a) becomes B = {Lr, Cs, Cr, Cc, LJ }. The order
of the graph is |G| = 3 and the nodes can be labeled arbi-
trarily, here we label them 1,2, and 3. The number of
branches is B = 5, and we can thus write the flux over all
branches as a vector with five elements

� = [
�1 �2 �3 �4 �5

]T , (A1)

where the order of the fluxes corresponds to the number of
the branches in B. Note that we have indicated the direc-
tion of every branch in Fig. 30(a) using arrows. We define
positive branch currents Ib > 0 as the case where current
flows through a branch in the direction of the arrow. Using
the passive sign convention the voltage over a branch is
then given by Vb = Vstart

b − Vend
b , which ensures that the

power Pb = IbVb is positive if energy is being stored or dis-
sipated in the branch element. Strictly speaking, this makes
our graph a directed graph, but since all electrical network
graphs are directed graphs, we are simply going to call
them graphs. We are also going to assume that our graph is
connected, meaning that there exists a path between every
pair of nodes.

Definition 2 (Subgraph). A graph H = (NH,BH) is
called a subgraph of G = (NG ,BG), written H ⊆ G, if
NH ⊆ NG and BH ⊆ BG . If H is a subgraph of G but
H �= G it is called a proper subgraph.

In the electrical circuit setting, the notion of subgraphs
is often used to describe the capacitive and inductive
subgraphs of the circuit. In the case of the example in
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(a) (b)

(c)

FIG. 30. (a) Example transmon-resonator circuit. The chosen spanning tree (red) consists of the resonator Lr inductance and the
shunting capacitance Cs. (b) Fundamental cutsets of the circuit (in solid) with respect to the chosen spanning tree. (c) Fundamental
loops of the circuit (in solid) with respect to the chosen spanning tree.

Fig. 30(a) the capacitive subgraph is defined to be the set of
branches BC = {Cs, Cr, Cc}, while the inductive subgraph
is defined by BL = {Lr, LJ }. Note that the set of nodes are
identical for the capacitive and inductive subgraph as well
as the full (super)graph, i.e., NC = NL = N . Also, even
though we assume our graph to be connected, its subgraphs
are not necessarily connected.

The next step in the analysis is to specify a subgraph
called a spanning tree for our graph.

Definition 3 (Spanning tree). A spanning tree of a graph
G is a connected subgraph T that contains the same nodes
as G (i.e., NT = NG) and contains no loops.

The branches of the spanning tree are called twigs and
branches of the complement of the spanning tree are called
links (or chords). Note that there are BG − (NG − 1) links.

The spanning tree connects every pair of nodes through
exactly one path. For our example, we choose branches
1 and 2 as our spanning tree as shown in red on Fig. 30.
The linear inductor, together with the Cs shunting capac-
itor, constitutes the twigs of the tree, while the remaining
capacitors (Cr, Cc) and Josephson junction (LJ ) are links.
Note that we are free to choose our spanning tree differ-
ently as long as it obeys the definition. We could, e.g.,
have chosen the inductive subgraph, as mentioned above,
however, we can not choose the capacitive subgraph as it
includes a loop. This freedom in choosing the spanning tree
corresponds to a gauge freedom in the equations of motion.

Choosing a spanning tree also allows us to define fun-
damental cutsets and fundamental loops, which are useful
when deriving the equations of motion for a circuit. The
following definitions used in the main text but can be used
for an alternative statement of Kirchhoff’s laws. We start
with the fundamental cutsets.

Definition 4 (Cut). Given a graph G = (N ,B) a cut is a
partitioning of nodes N into two disjoint sets NA and NB.
With every cut, we can associate a cutset, which is the set
of branches that have endpoints in both NA and NB.

Note that removing a single twig cuts the spanning tree,
T , into two disjoint subgraphs with nodes NA and NB.
Such a cut is called a fundamental cut, and the branches
that must be removed to complete the same cut on the full
graph is called a fundamental cutset. More formally, the
following.

Definition 5 (Fundamental cut). Given a graph G and a
spanning tree T we define a fundamental cut or f cut as a
cut whose cutset contains only one twig.

In practice, the fundamental cutsets can be found by
removing one twig from the spanning tree. This creates
two disjoint subgraphs of the spanning tree with nodes NA
and NB. Now remove the links of the full graph with end-
points in both partitions. The cutset is then the set of all the
removed links and the single twig. We thus end up with a
unique cutset with one twig and any number of links. This
can be done for every twig, and the number of fundamental
cutsets is thus equal to the number of twigs |T | = N − 1.
The fundamental cutsets of our example graph can be seen
in Fig. 30(b).

We now turn our attention to the loops. By taking the
spanning tree and adding a single link from the full graph
we form a unique loop. Such a loop contains exactly one
link and one or more twigs. We call these loops the fun-
damental loops of the G with respect to the spanning
tree T .

Definition 6 (Fundamental loop). Given a graph G and a
spanning tree T , we define a fundamental loop or f loop
as a loop consisting of exactly one link and one or more
twigs.

The number of fundamental loops that can be formed is
equal to the number of links. The fundamental loops of our
example graph can be seen in Fig. 30(c).

As we see in the following section the fundamental
loops and cuts allow us to write Kirchhoff’s laws in a
compact and useful way.
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1. Circuit matrices

Using the notion of f loops and f cuts, we define two
characteristic matrices for the network graphs, which can
be used to write Kirchhoff’s laws more compactly.

For every loop, we can define the orientation, i.e., clock-
wise or anticlockwise. For an f loop, we let the orientation
be determined by the orientation of its link. We can then
define the fundamental loop matrix.

Definition 7 (Fundamental-loop matrix). Given a graph
G = (N ,B), with spanning tree T , we define the
fundamental-loop matrix, or f-loop matrix, F(L) as

F(L)ij =

⎧⎪⎨
⎪⎩

+1 if bj ∈ fi and li, bj same orientation
−1 if bj ∈ fi and li, bj opposite orientation
0 if bj /∈ fi

,

(A2)

where li is the link in the ith f loop, fi, with 1 ≤ i ≤
|G\T | = B − (N − 1) and bj is the j th branch in B with
1 ≤ j ≤ B.

In other words, we iterate through the branches and the
set of f loops. If the given branch is in the given f loop,
the matrix entry becomes ±1, with a plus if the branch has
the same orientation as the f loop (which is determined by
the link of the f loop). If the branch is not in the given f
loop, the matrix entry is 0.

Consider our example circuit and its fundamental loops
from Fig. 30(c). The first fundamental loop consists of
the link �3 and the twig �1. The orientation of the loop
(determined by �3) is clockwise, which means that the
F(L)11 = −1, since the twig �1 points in the anticlockwise
direction. The only other nonzero entry in the first row
is F(L)13 = 1, corresponding to the link �3 oriented in the
clockwise direction. Following the same method for the
other two f loops, we find

F(L) =
⎡
⎣−1 0 1 0 0

1 −1 0 1 0
0 −1 0 0 1

⎤
⎦ , (A3)

where the columns correspond to the branches in their
respective order and the rows correspond to the loops in
the same order as in Fig. 30(c).

As with the loops, we can also choose an orientation for
the cutsets. If a cut is oriented from NA to NB, we say that
a branch in the cutset has positive orientation if it begins
in NA and ends in NB. We choose to orient every f cutset
such that its twig in an f cutset has positive orientation.
We can then define the fundamental-cutset matrix.

Definition 8 (Fundamental-cut matrix). Given a connected
graph G = (N ,B), with spanning tree T , we define the

fundamental-cut matrix, or f-cut matrix, F(C) as

F(C)ij =

⎧⎪⎨
⎪⎩

+1 if bj ∈ ci and ti, bj same orientation,
−1 if bj ∈ ci and ti, bj opposite orientation,
0 if bj /∈ ci,

(A4)

where ti is the twig of the ith cutset, ci, with 1 ≤ i ≤ |T | =
N − 1 and bj is the j th branch in B with 1 ≤ j ≤ B.

In other words, we iterate through the branches and the
set of cutsets. If the given branch is in the given cutset, the
matrix entry becomes ±1, with a plus if the branch has the
same orientation as the cutset (which is determined by the
orientation of the twig of the cutset). If the branch is not in
the given f cutset, the matrix entry is 0.

As an example take the first cutset from Fig. 30(b). The
twig �1 and link �3 both points towards the same node
and thus have positive orientation. The final link�4 points
away from the node and has negative orientation. Thus the
first row of the cutset matrix becomes [1, 0, 1, −1, 0]. By
analyzing the other cutset, in the same manner, we find the
fundamental cutset matrix

F(C) =
[

1 0 1 −1 0
0 1 0 1 1

]
, (A5)

where the columns correspond to the branches in their
respective order, and the rows correspond to the cutsets in
the same order as in Fig. 30(b).

All branches of the graph are either twigs or links. Every
f cutset contains only one twig, and every f loop contains
only one link. Additionally, for every partition of nodes
defined by an f cut, every f loop must begin and end in the
same partition. Thus every f cutset and f loop share either
0 or exactly two branches. Now consider the elements

(
F(L)(F(C))T

)
ij =

∑
k

F(L)ik F(C)jk . (A6)

Evidently, the (i, j )th element depends only on the ith f
loop and the j th f cut. If the f cutset and f loop share no
branches, all the terms are zero, and in the case where they
share exactly two branches, we get two nonzero terms with
opposite signs. We thus have

F(L)(F(C))T = 0. (A7)

Multiplying Eqs. (A5) and (A3) we see that this is exactly
the case for the example graph, as it should be.

APPENDIX B: METHOD OF ELECTRICAL
NETWORK GRAPH THEORY

In this section, we present a more mathematical strin-
gent method for obtaining the Hamiltonian of an electrical
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superconducting circuit. This method is based upon Ref.
[74] and uses electrical network graph theory [237]. This
method is a more advanced alternative to the method pre-
sented in Sec. III, however, the resulting equations of
motion are the same.

The first step is to label and order all the circuit com-
ponents (branches) of the network graph and choose a
spanning tree for the graph. Without loss of generality, we
order the components such that the first |T | branches are
the twigs, and we then write the fluxes and currents through
all components as vectors

� =
[
�t
�l

]
, I =

[
It
Il

]
, (B1)

where Φt (It) are the fluxes (currents) of all the twigs and
Φl (Il) are the fluxes (currents) of all the links. For the
example circuit in Fig. 30 we have �t = (�1,�2)

T and
�l = (�3,�4,�5)

T and likewise for the current vector.
After all components have been labeled and a tree has

been selected, we construct the fundamental matrices of
the graph F(L) and F(C) following Definitions 7 and 8,
respectively. In the following, we show how these matrices
may be used to set up the equations of motion and reduce
the number of free coordinates.

1. Kirchhoff’s laws

Using Eq. (B1) and the f matrices, we reformulate
Kirchhoff’s laws as stated in Eq. (3).

a. Kirchhoff’s current law

Kirchhoff’s current law states that no charge may accu-
mulate at a node. Mathematically we may write this as

∑
b incident on n

sn,bIb = 0, for every node n, (B2)

where we have sn,b = +1 if the branch b ends at node n
and sn,b = −1 if b begins at n. This is equivalent to the
definition in Eq. (3a), but with currents instead of charges,
i.e., Eq. (B2) is the time derivative of Eq. (3a). Recall that
a cutset is the set of branches between two partitions of
nodes. Thus if no charge has accumulated at a single node,
the total current from one partition of nodes to another
must be zero. We can write this using the f cut matrix as

F(C)I = 0. (B3)

If we calculate this matrix product for the example circuit
using Eq. (A5) we find

F(C)I =
[

1 0 1 −1 0
0 1 0 1 1

]
⎡
⎢⎢⎢⎣

I1
I2
I3
I4
I5

⎤
⎥⎥⎥⎦

=
[

I1 + I3 − I4
I2 + I4 + I5

]
=

[
0
0

]
,

which is equivalent to applying Kirchhoff’s current law
directly to nodes 1 and 2 in Fig. 30.

b. Kirchhoff’s voltage law

Kirchhoff’s voltage law states that if we choose some
oriented loop of branches l, the algebraic sum of voltages
around the loop must equal the electromotive force induced
by external magnetic flux, �̃l, through the face enclosed by
the loop, i.e.,

∑
b∈l

sl,bVb = ˙̃
�l, for all loops l, (B4)

where sl,b = +1 if b is oriented along l, and sl,b = −1 if b
is oriented against l. The external flux through the loop l
denotes �̃l. This is equivalent to the definition in Eq. (3b),
but with voltages instead of fluxes, i.e., Eq. (B4) is the
time derivative of Eq. (3b). Thus, the f loops of the graph
define a set of equations and using Eq. (2a) we may write
Kirchhoff’s voltage law as

F(L)� = �̃, (B5)

where �̃ = (�̃1, . . . , �̃B−N+1)
T is the vector external

fluxes through the fundamental loops.
For the example circuit, we calculate the matrix product

using Eq. (A3) and find

F(L)� =
⎡
⎣−1 0 1 0 0

1 −1 0 1 0
0 −1 0 0 1

⎤
⎦

⎡
⎢⎢⎢⎣

�1
�2
�3
�4
�5

⎤
⎥⎥⎥⎦

=
⎡
⎣ −�1 +�3
�1 −�2 +�4

−�2 +�5

⎤
⎦ =

⎡
⎣�̃1

�̃2

�̃3

⎤
⎦ ,

where each row is equivalent to applying Kirchhoff’s volt-
age law directly to the corresponding loop. We assume
external fluxes of �̃ = (�̃1, �̃2, �̃3)

T through the loops.

040204-45



S. E. RASMUSSEN et al. PRX QUANTUM 2, 040204 (2021)

c. Reducing the number of coordinates

Using Kirchhoff’s voltage law, we can reduce the num-
ber of free coordinates. We need only to specify the fluxes
of the spanning tree to calculate the remaining fluxes. In
order to do so, we will write our f -cut matrix as

F(C) = [
1 F

]
, (B6)

where F is a |T | × |G\T | = (N − 1)× (B − N + 1)
matrix and the identity is a (N − 1)× (N − 1) matrix.
Note that our specific ordering of the circuit components
(twigs first, then links) allows for the simple block struc-
ture of Eq. (B6). This structure is clearly seen in the
example in Eq. (A5), from which it is evident that

F =
[

1 −1 0
0 1 1

]
, (B7)

for the example circuit in Fig. 30.
Reordering the components shuffles the rows and

columns of the fundamental-cut matrix, and the following
derivations can easily be generalized. From Eq. (A7) and
Definition 7 we find that we can write the f -loop matrix in
a similar manner

F(L) = [−FT 1
]

, (B8)

where F is the same matrix as in Eq. (B6), meaning that the
identity is now (B − N + 1)× (B − N + 1). This structure
is again seen in the example in Eq. (A3) where the trans-
pose of Eq. (B7) occurs. We can then rewrite Kirchhoff’s
voltage law in Eq. (B5) and isolate the fluxes of the links

�l = �̃ + FT�t, (B9)

and use this to write our flux vector in Eq. (B1) in terms of
the twig and external fluxes

� =
[

�t

FT�t + �̃

]
= (F(C))T�t +

[
0
�̃

]
, (B10)

meaning that we eliminate the fluxes of the links.
Using Eq. (B10) on the example circuit in Fig. 30 we

can write the fluxes as

� =

⎡
⎢⎢⎢⎢⎣

�1
�2

�1 + �̃1

�1 −�2 + �̃2

�2 + �̃3

⎤
⎥⎥⎥⎥⎦ , (B11)

which means that we eliminate the three fluxes on the links.

2. Equations of motion

In this section, we use Kirchhoff’s current law, to set up
the equations of motion for the system. For this purpose,
it is convenient to introduce the species-specific vectors IS
and �S

(IS)i =
{

Ii if the ith element is of species S,
0 otherwise,

(B12a)

(�S)i =
{

�i if the ith element is of species S,
0 otherwise,

(B12b)

where the species subscript, S, indicates the element
species, i.e., capacitor, inductor, etc. This can be under-
stood as the current and flux vectors with everything but
S species removed. We use C for capacitors, L for linear
inductors, and J for Josephson junctions. For the example
circuit this yields

IC = (0, I2, I3, I4, 0)T, (B13a)

IL = (I1, 0, 0, 0, 0)T, (B13b)

IJ = (0, 0, 0, 0, I5)
T, (B13c)

and likewise for the fluxes.
The first step of the analysis is to express the current of

every branch in terms of the tree fluxes �t. The current
flowing through a capacitor with capacitance C is given by
Eq. (6), and we can thus write the current flowing through
all capacitors as

IC = DC�̈, (B14)

where DC is a diagonal matrix with the circuit capac-
itances on the diagonal. In this context, all other cir-
cuit components are counted as having zero capaci-
tance. For the example circuit the capacitance matrix
becomes DC = diag(0, Cs, Cr, Cc, 0), which multiplied to
�̈ = (�̈1, �̈2, �̈3, �̈4, �̈5)

T yields Eq. (B13a).
The flux stored in the linear inductors is related to the

currents through

LI = �L, (B15)

where L is a symmetric matrix with diagonal elements
Lii = Li where Li is the inductance of the ith element. For
all other components than linear inductors, we set Li =
0. The off-diagonal elements are the mutual inductances
Lij = Mij = kij

√
LiLj between the ith and j th inductor,

with −1 < kij < 1 being the coupling coefficient. If a pos-
itive current in one inductor results in a positive magnetic
flux contribution through another, we have kij > 0. If the
contribution is negative, we instead have kij < 0. The
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numerical value of kij depends on the placement of the
inductors relative to each other.

In the example circuit, there is only one inductor
and thus no mutual inductance, which means that L =
(Lr, 0, 0, 0, 0)T, which multiplied to � gives Eq. (B13b).

Note that all the rows and columns belonging to compo-
nents not on the inductor subgraph are zero. By removing
these zero rows and columns, we get a NL × NL matrix L′,
where NL is the number of inductors. We can then rewrite
Eq. (B15) as

L′I′
L = �′

L, (B16)

where I′
L and �′

L are the corresponding vectors found by
removing all the noninductor entries of the full-size vectors
I and �. In our example this becomes a single equation
Lr�1 = I1

The magnetic field energy stored in the inductors is

0 ≤ EL = 1
2

I′T
L L′I′

L, (B17)

which means that L′ must be positive semidefinite. We
further assume L′ is positive definite, meaning that 0 <
I′T

L L′I′
L for I′

L �= 0. This assumption is also physically sen-
sible since any current through the inductors must store
at least some magnetic field energy in a realistic config-
uration. It also ensures that the symmetric L′ matrix is
invertible, and we can write

I′
L = L′−1�′

L. (B18)

We can expand the matrix L′−1 to work on the full flux
vector by inserting zeros on the noninductor columns
and rows. Similarly, we also build the corresponding full
inductor current vector IL. The resulting equation can be
written

IL = L+�, (B19)

where L+ is the matrix found by expanding L′−1 with the
zero columns and rows of the noninductor components.
Formally, L+ is the Moore-Penrose pseudoinverse [239]
of the original full inductance matrix L.

For our example we can easily invert L′ = [
Lr

]
in

order to find the psuedoinverse L+ = diag(1/Lr, 0, 0, 0, 0),
which fulfill Eq. (B19).

Now we need only to include the current through the
Josephson junctions, which follows from the Josephson
relation

IJ = DJ sin�, (B20)

where DJ is a diagonal matrix with the Josephson critical
currents on the diagonal, see Eq. (11) for the case of a sin-
gle Josephson junction. As with L and C, all other compo-
nents than Josephson junction are counted as having zero

critical currents. The vector sin� = (sin�1, . . . , sin�B)
T

is understood as the vector of sines of the branch fluxes.
We have only one Josephson junction in the exam-

ple circuit in Fig. 30, which means that sinΦ =
(0, 0, 0, 0, sin�5)

T and DJ = diag(0, 0, 0, 0, Ic), where
Ic = 1/LJ in our notation, see Sec. 3. Multiplying these
two gives Eq. (B13c).

Thus, the current through each branch can be written as
a function of the branch flux and its derivatives as seen
in Eqs. (B14), (B19), and (B20), and Kirchhoff’s current
law thus gives a set of coupled second-order differential
equations

0 = F(C)I = F(C) [IC + IL + IJ ]

= M�̈t + Q̇0 + K�t + I0

+ F(C)DJ sin
(
(F(C))T�t +

[
0
�̃

])
, (B21)

where we define the “mass” and “spring constant” matrices
(analogous to in Sec. III E)

M = F(C)DC(F(C))T, (B22a)

K = F(C)L+(F(C))T, (B22b)

and the offset charges and flux induced currents

Q0 = F(C)DC

[
0
˙̃
�

]
, (B23a)

I0 = F(C)L+
[

0
�̃

]
. (B23b)

Note that these matrices are different from the capacitive
and inductive matrices presented in Sec. C.

Consider again the example circuit in Fig. 30. The
“mass” and “spring constant” matrices are in this case

M =
[

Cc + Cr −Cc
−Cc Cc + Cs

]
, (B24a)

K =
[

1/Lr 0
0 0

]
. (B24b)

Note how these are identical to how we constructed the
capacitance matrix and the inductor matrix in Sec. 1,
respectively. Thus we derive how to formulate the capaci-
tance and inductive matrices from the main text.

The offset charges and flux induces currents are

Q0 =
[

Cr
˙̃
�1 − Cc

˙̃
�2

Cc
˙̃
�2

]
, (B25a)

I0 =
[

0
0

]
. (B25b)
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The offset charges Q0 disappear if we assume the exter-
nal fluxes to be time independent. The offset flux-induced
currents are zero since no linear inductors are links, mean-
ing that we have chosen no external fluxes over the linear
inductors.

The final term of Eq. (B21) reduces to

F(C)DJ sin� =
[

0
Ic sin(�2 + �̃3)

]
, (B26)

where we can move the external flux into the offset charges
by choosing a spanning tree over the Josephson junction
instead.

3. Voltage and current sources

Until now, we have assumed that external fluxes are our
only control parameters, but we can also add current and
voltage sources. Voltage sources can be added in series
with existing components without introducing new con-
straints on the branch fluxes. This effectively transforms
the external flux vector

�̃(t) → �̃(t)−
∫ t

−∞
VV(t′)dt′, (B27)

where (VV)i is the voltage generated by the source on the
ith branch, or 0 if the ith branch is not a voltage source,
i.e., defined analogously to Eq. (B12).

Similarly, we can add a current source in parallel with an
existing element without introducing additional constraints
on the free currents. This modifies I0 according to

I0 → I0 + F(C)IB, (B28)

where IB is the bias current vector with zeros on all
entries except those belonging to a branch with a current
source, where instead it has the applied current, i.e., as in
Eq. (B12a).

4. Lagrangian and Hamiltonian

One can show, using Eq. (27), that a Lagrangian fulfill-
ing the equations of motion in Eq. (B21) is

L = 1
2
�̇

T
t M�̇t + Q0 · �̇t

− 1
2
�T

t K�t − I0 · �t

+ JC · cos
(
(F(C))T�t +

[
0
�̃

])
, (B29)

where we define the critical current vector

(JC)i = (DJ )ii. (B30)

The conjugate momenta of the twig branches are then
given by

Qt = ∂L
∂�̇t

= M�̇t + Q0, (B31)

and the Hamiltonian can be found performing a Legendre
transformation

H = Qt · �̇t − L

= 1
2
(Qt − Q0)

T M−1 (Qt − Q0)

+ 1
2
�T

t K�t + I0 · �t

− JC · cos
(
(F(C))T�t +

[
0
�̃

])
. (B32)

This Hamiltonian can easily be quantized using the
approach presented in Sec. IV A, where this time the
canonical variables are the branch fluxes �b and Qb of the
twigs, with the commutator relation in Eq. (47).

APPENDIX C: EXACT TRUNCATION

In the main text, the truncated cosine contribution from
Josephson junctions is expanded to fourth order. This
expansion introduces some errors and limits the qubits
to operate in a given regime. However, the behavior of
the exact Hamiltonian should, in the same regime, be
nearly the same with only negligible differences. In this
Appendix, we introduce a method for truncating cosine
terms without expanding. This can be done numerically
by writing the node fluxes in terms of creation and anni-
hilation operators, which would be represented by finite
matrices in numerical calculations, and calculating the
matrix cosine function of these. However, that requires
much more difficult computations than if we were able
to write the truncated cosine in matrix form directly. We,
therefore, present a method for doing so here. The method
presented here employs the displacement operator, which
is often used in quantum optics studies of optical phase
space [124].

Consider the standard cosine term of a Josephson junc-
tion bridging two nodes with node fluxes φ1 and φ2.
Written in terms of the creation and annihilation operators,
this becomes

cos(φ̂1 − φ̂2) = cos

(√
ζ1

2
(b̂†

1 + b̂1)−
√
ζ2

2
(b̂†

2 + b̂2)

)
,

(C1)

where ζi is the impedance [Eq. (56)] of the two nodes. We
want to find the matrix elements of the cosine operator
in Eq. (C1) for the lowest levels of the two anharmonic
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oscillator modes. The trick is to rewrite the cosine in terms
of exponentials that only contain one mode. We write the
cosine in terms of two complex exponentials as usual and
note that each exponential can be written as a product
because the operators of different modes commute

cos

(√
ζ1

2
(b̂†

1 + b̂1)−
√
ζ2

2
(b̂†

2 + b̂2)

)

= 1
2

[
ei

√
ζ1
2 (b̂

†
1+b̂1)e−i

√
ζ2
2 (b̂

†
2+b̂2)

+ e−i
√
ζ1
2 (b̂

†
1+b̂1)ei

√
ζ2
2 (b̂

†
2+b̂2)

]
. (C2)

From this expression it is clear that we need to find the
matrix representation of the general operator exp[ik(b̂† +
b̂)] for some real number k = √

ζ/2. To find the desired
matrix representation we consider the displacement opera-
tor

D̂(ξ) = eξ b̂†−ξ∗b̂, (C3)

where ξ is complex number. This operator is unitary
and satisfies D̂(ξ)† = D̂(−ξ), as well as the following
commutation relation:

[D̂(ξ), b̂†] = −ξ ∗D̂(ξ). (C4)

The operator creates coherent states by “displacing” the
vacuum state

D̂(ξ) |0〉 = |ξ〉 , (C5)

where |ξ〉 is the coherent state defined by b̂ |ξ〉 = ξ |ξ〉. A
coherent state can be written in terms of Fock states as

|ξ〉 = e− |ξ |2
2

∞∑
n=0

ξ n

√
n!

|n〉 . (C6)

We have

eik(b̂†+b̂) = D̂(ik). (C7)

Using the above commutation relation, we can derive the
effect of the displacement operator on any other Fock state.
With that, we can calculate its matrix elements as desired.
For ease let us write the commutation relation and coherent
state for ξ = ik

D̂(ik)b̂† = (b̂† + ik)D̂(ik), (C8a)

|ik〉 = e− k2
2

∞∑
n=0

(ik)n√
n!

|n〉 . (C8b)

For truncation to the two lowest levels we need only
calculate three matrix elements

〈0|D̂(ik)|0〉 = e− k2
2

∞∑
n=0

(ik)n√
n!

〈0|n〉 = e− k2
2 , (C9a)

〈1|D̂(ik)|0〉 = e− k2
2

∞∑
n=0

(ik)n√
n!

〈1|n〉 = ike− k2
2 , (C9b)

〈1|D̂(ik)|1〉 = 〈1|D̂(ik)b̂†|0〉
= 〈1|(b̂† + ik)D̂(ik)|0〉

= e− k2
2

∞∑
n=0

(ik)n√
n!
(〈0|n〉 + ik 〈1|n〉) (C9c)

= (1 − k2)e− k2
2 .

In general we would find that arbitrary matrix elements
can be expressed in terms of Laguerre polynomials. From
D̂(ξ)† = D̂(−ξ) we have 〈0|D̂(ik)|1〉 = (〈1|D̂(ik)†|0〉)† =
ike−(k2/2). With this we conclude that the matrix represen-
tation of eik(b̂†+b̂) is

M2

[
eik(b̂†+b̂)

]
=

[
e− k2

2 ike− k2
2

ike− k2
2 (1 − k2)e− k2

2

]

=
(

1 − k2

2
+ k2

2
σ z + ikσ x

)
e− k2

2 , (C10)

which is exactly what we need to truncate cosine operators.
Consider again the standard Josephson junction term

from Eq. (C2). We can now perform exact truncation of
it to its lowest two levels using the above identity. We find

M2

[
cos(φ̂1 − φ̂2)

]

= 1
2

M2

[
ei

√
ζ1
2 (b̂

†
1+b̂1)e−i

√
ζ2
2 (b̂

†
2+b̂2)

+ e−i
√
ζ1
2 (b̂

†
1+b̂1)ei

√
ζ2
2 (b̂

†
2+b̂2)

]

=
[(

ζ1

4
− ζ1ζ2

16

)
σ z

1 +
(
ζ2

4
− ζ1ζ2

16

)
σ z

2

+ ζ1ζ2

16
σ z

1σ
z
2 +

√
ζ1ζ2

2
σ x

1σ
x
2

]
e−(ζ1+ζ2)/4, (C11)

where we ignore constant terms. Hence, the cosine term
has resulted in the usual contribution to the qubit energies,
and transverse and longitudinal couplings. The difference,
however, is that the coefficients of these terms are more
accurate as the calculation did not involve any Taylor
expansions. In particular, each coefficient has a factor of
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exp [−(ζ1 + ζ2)/4], which contains contributions corre-
sponding to the infinitely many possible virtual processes
of exciting the modes to any higher-lying level and de-
exciting again, which affect the dynamics of the two-level
subspace.

1. Exact four-level model

Using the method of exact truncation, the cosine terms
can also be truncated exactly to more than the two low-
est levels. This can be useful for numerical studies of
the higher levels’ effect on the two-level dynamics. It can
be advantageous to perform the truncation analytically to
avoid having to do it numerically. Here we show an exact
truncation to the four lowest levels. First, we define some
new matrices

Z =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −3 0
0 0 0 −5

⎤
⎥⎦ , (C12a)

A =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 3

⎤
⎥⎦ , (C12b)

B =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ , (C12c)

and finally Xij and Yij for i, j = 0, 1, 2, 3 with i < j ,
whose (a, b)th entries are

(Xij )ab =
{

0, for ab �= ij , ji
1, for ab = ij , ji

, (C13a)

(Yij )ab =

⎧⎪⎨
⎪⎩

0, for ab �= ij , ji
−i, for ab = ij
i, for ab = ji

. (C13b)

Together with the identity, Z, A, and B describe contribu-
tions to the energy levels. In particular, Z can be seen as the
4 × 4 expansion of σ z, while A describes the anharmonic-
ity, and B describes a similar anharmonic energy shift
beyond the regular anharmonicity only relevant for the
third excited state and higher. In terms of the usual bosonic
number operator n̂ = b̂†b̂ = diag(0, 1, 2, 3), we may say
that Z corresponds to n̂, A corresponds to n̂2 and B to
n̂3. Alternatively, we may say that A is proportional to
b̂†b̂†b̂b̂ and B to b̂†b̂†b̂†b̂b̂b̂, which shows how A does not
affect levels below the second excited one, while B does
not matter for levels below the third excited. The Xij and
Yij describe rotation or flipping between the ith and j th

energy level, and are thus the generalizations of σ x and
σ y . In terms of these matrices, we can write

M4[b̂† − b̂] = Y01 +
√

2Y12 +
√

3Y23, (C14a)

M4[(b̂† − b̂)2] = −2 + Z +
√

2X02 +
√

6X13,
(C14b)

M4[b̂† + b̂] = X01 +
√

2X12 +
√

3X23, (C14c)

M4[(b̂† + b̂)2] = 2 − Z +
√

2X02 +
√

6X13, (C14d)

M4
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ei

√
ζ/2(b̂†+b̂)

]
=
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1 − ζ

4
+ ζ

4
Z + ζ 2

8
A − ζ 3

48
B

+ i

√
ζ

2
X01 − ζ√

8
X02 − i

ζ 3/2
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48

X03

+ i
(
ζ − ζ 2

4
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X12 −

√
6

4

×
(
ζ − ζ 2

6
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X13

+ i

√
3
2

(
ζ − ζ 2

2
+ ζ 3

24

)
X23

]
e−ζ/4.

(C14e)

With the above method of truncating to four levels, we
can find the exact anharmonicities as the coefficients of the
standalone A operators. Just as there are longitudinal cou-
plings among spins, which change energy levels depending
on the state of the system, there will be couplings involv-
ing Z that change the anharmonicities. But just as we look
only at standalone Z operators when determining basic
energy levels, we would not include the interaction con-
tributions to the anharmonicity when calculating it. These
contributions will, in general, also be smaller, as they orig-
inate from terms involving more node fluxes and therefore
more ζ ’s. If one wishes to find the anharmonicity without
finding and reducing the complete four-level Hamiltonian,
one can replace the exponentials ei

√
ζ/2(b̂†+b̂) with only[

1 − (ζ/4)+ (ζ 2/8)A
]

e−ζ/4, and then find the standalone
A matrices. We do not need to include the other terms from
Eq. (C14e) as they will contribute only to interactions that
are not interesting in this case.
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