
PRX QUANTUM 2, 040203 (2021)
Tutorial

Grand Unification of Quantum Algorithms

John M. Martyn ,1,2,* Zane M. Rossi ,2 Andrew K. Tan,3 and Isaac L. Chuang3,4

1
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3
Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
4
Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

 (Received 7 May 2021; revised 20 August 2021; published 3 December 2021)

Quantum algorithms offer significant speed-ups over their classical counterparts for a variety of prob-
lems. The strongest arguments for this advantage are borne by algorithms for quantum search, quantum
phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of composite
quantum algorithms. A number of these quantum algorithms have recently been tied together by a novel
technique known as the quantum singular value transformation (QSVT), which enables one to perform
a polynomial transformation of the singular values of a linear operator embedded in a unitary matrix.
In the seminal GSLW’19 paper on the QSVT [Gilyén et al., ACM STOC 2019], many algorithms are
encompassed, including amplitude amplification, methods for the quantum linear systems problem, and
quantum simulation. Here, we provide a pedagogical tutorial through these developments, first illustrating
how quantum signal processing may be generalized to the quantum eigenvalue transform, from which the
QSVT naturally emerges. Paralleling GSLW’19, we then employ the QSVT to construct intuitive quantum
algorithms for search, phase estimation, and Hamiltonian simulation, and also showcase algorithms for the
eigenvalue threshold problem and matrix inversion. This overview illustrates how the QSVT is a single
framework comprising the three major quantum algorithms, suggesting a grand unification of quantum
algorithms.

DOI: 10.1103/PRXQuantum.2.040203

CONTENTS

I. INTRODUCTION 2
A. Road map 3

II. FROM QSP TO THE QSVT 3
A. Quantum signal processing 3
B. An application to amplitude amplification

and search 5
C. Quantum eigenvalue transforms 7
D. Quantum singular value transforms 9
E. Block encodings 10

III. SEARCH BY QSVT 11
IV. THE EIGENVALUE THRESHOLD

PROBLEM BY QSVT 13
V. PHASE ESTIMATION BY QSVT 16

*jmmartyn@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

A. Intuition 16
1. Sketch of the algorithm 16
2. Caveats 17

B. The complete algorithm 18
C. Applications to factoring and beyond 19

1. Factoring 19
2. Robust phase estimation 20

D. Emergent quantum Fourier transform 21
VI. FUNCTION-EVALUATION PROBLEMS

BY QSVT 22
A. Hamiltonian simulation by QSVT 22
B. Matrix inversion by QSVT 23

VII. DISCUSSION 25
ACKNOWLEDGMENTS 26
APPENDIX A: QSP CONVENTIONS 26
1. Wx convention for QSP 26
2. Reflection convention for QSP 27
3. Wz convention for QSP 27
APPENDIX B: PROOFS ABOUT PHASE
ESTIMATION BY QSVT 28
1. Theorems 6 and 7 28

a. n ≥ m 28

2691-3399/21/2(4)/040203(40) 040203-1 Published by the American Physical Society

https://orcid.org/0000-0002-4065-6974
https://orcid.org/0000-0002-7718-654X
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.040203&domain=pdf&date_stamp=2021-12-03
http://dx.doi.org/10.1103/PRXQuantum.2.040203
https://creativecommons.org/licenses/by/4.0/

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

b. n < m 29
2. Theorem 8 30
APPENDIX C: CONSTRUCTION OF THE
MATRIX-INVERSION POLYNOMIAL 32
APPENDIX D: QSP PHASE
ANGLE-SEQUENCE EXAMPLES 34
1. Oblivious amplitude amplification 34
2. Sign function 34
3. Matrix inversion using 1/a 34
4. Cosine and sine functions for Hamiltonian

simulation 35
5. Threshold function 35
6. Linear amplitude amplification 36
7. Phase estimation polynomial 36
8. Eigenstate filtering 37
9. Gibbs distribution 37
10. ReLU 38
REFERENCES 38

I. INTRODUCTION

Algorithms solve problems by presenting a process or
set of rules to be followed, utilizing a basic set of building
blocks provided. Computer science traditionally employs
Boolean circuit components as the basic blocks, from
which standard arithmetic operations may be composed, as
Boolean functions. Quantum computation employs a dif-
ferent set of basic blocks, typically unitary operations on
one or more two-state systems (qubits), to realize quantum
circuits. A fundamental challenge arises, however, when
seeking to unite the world of quantum circuits with that
of Boolean functions: in general, Boolean functions need
not be reversible, whereas quantum circuits are manifestly
unitary transforms and must thus be invertible.

Early in the history of quantum computation, this bar-
rier was transcended by seminal work [1] showing that
all Boolean functions can be made reversible, with only
a small overhead in space and time. Toffoli and Fred-
kin famously illustrated this idea by showing how the
ideal Newtonian dynamics of finite-radii spheres (billiard
balls) can be used to simulate reversible Boolean circuits,
via their collisions [2]. Following this concept, simula-
tion of arbitrary Boolean functions can also be accom-
plished using quantum circuits, by first embedding the
desired function into a reversible Boolean circuit and then
constructing a quantum circuit realizing this invertible
transform. Such an embedding is a core part of Shor’s
quantum factoring algorithm [3], for example, as used in
the modular exponentiation of an input number.

Intriguingly, however, the two other major “primordial”
quantum algorithms, Grover’s quantum search algorithm
[4] and the Hamiltonian simulation algorithm [5,6], do not
employ an embedding of a reversible Boolean function. In
fact, a key part of the quantum factoring algorithm is its
use of the quantum Fourier transform, which has no direct

classical analog, in the sense that it is not at all like a quan-
tum embedding of a reversible Boolean function for the
Fourier transform. And yet, all three of these algorithms
provide solutions to problems with clear classical coun-
terparts, and attain known speed-ups over the comparable
classical “Boolean function” approaches. So wherein lies
the ability of quantum algorithms to address and speed up
the solution to a classically specified problem?

As illustrated in this tutorial, a key idea in uniting quan-
tum and classical computation is not to first make classical
computation reversible. Instead, observe that the dynam-
ical behavior of a subsystem of a quantum system can
be nonunitary and thus can directly realize irreversible
nonlinear functions. An extreme case of this is projective
measurement: the billiard-ball model can realize nonin-
vertible gates simply by discarding balls but this would
be inefficient. More constructively, the recently developed
framework of quantum signal processing (QSP) [7,8] pro-
vides a systematic method to make a quantum subsystem
transform under nearly arbitrary polynomial functions of
degree d, using O(d) elementary unitary quantum opera-
tions. Crucially, the polynomial describes not the output of
the full quantum system but only a very specific and clearly
identified subsystem. And, remarkably, the essential ideas
behind QSP originate from the early days of practical con-
trol of two-level quantum systems, with nuclear magnetic
resonance [9–11].

With this framework, we present in this tutorial a ped-
agogical overview of the modern approach to quantum
search, factoring, and simulation, focusing on how all
three of these central quantum algorithms may be unified
as instances of the recently developed quantum singu-
lar value transform (QSVT) algorithm [12]. The QSVT
algorithm generalizes QSP and efficiently applies a poly-
nomial transformation to the singular values of a linear
operator (governing a particular subsystem) embedded in
a larger unitary operator. And more recently, such a singu-
lar value transformation has been generalized to apply to
an operator embedded in a block of a Hamiltonian [13].

Singular values naturally arise in this context from the
fact that the input and output spaces of the embedded linear
operator may be of different sizes. The polynomial trans-
formation of the singular values is achieved by applying
a specific sequence of SU(2) rotations to the embedded
subspace, where each rotation is parametrized by an angle
φk ∈ R. The QSVT algorithm is parametric in that the
polynomial transformation is completely characterized by
the choice of phase angles {φk}. Moreover, given the
desired polynomial transformation, the QSP phase angles
that generate it may be classically efficiently and stably
computed [7,12,14].

This seemingly simple parametrization endows the
QSVT with immense flexibility and power. Using the
QSVT as a subroutine, we present quantum algorithms
for the search problem and phase estimation and give

040203-2

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

simplified arguments for optimal Hamiltonian simulation
by the QSVT and matrix inversion by QSVT. We also
present a QSVT-based algorithm for the eigenvalue thresh-
old problem, wherein one wishes to know if a (normal)
matrix has an eigenvalue above some threshold, and use
this to simplify the presentation of the use of the QSVT
for phase estimation. Each algorithm is realized simply as
an instance of the QSVT with a natural oracle, adaptively
repeated and interspersed in a common pattern with simple
quantum gates and measurements.

This common pattern is particularly fascinating. At face
value, the algorithms for the search problem, factoring (aka
phase estimation), and Hamiltonian simulation appear to
share no similar structures, owing their quantum speed-ups
to different sources, and yet they can all be derived from a
single algorithmic primitive and interpolated between by
a simple change of parameters. In addition, these three
central algorithms form the foundation for most quantum
algorithms currently known. For instance, the Harrow-
Hassidim-Lloyd (HHL) algorithm for linear systems [15]
incorporates Hamiltonian simulation and phase estima-
tion in order to invert a Hermitian matrix and, similarly,
the quantum counting algorithm integrates quantum search
with phase estimation to count the number of marked ele-
ments in an unstructured set [16]. As shown in this tutorial,
by simply adjusting the parameters of the QSVT, one can
construct nearly all known quantum algorithms. It is in
this sense that the QSVT provides a grand unification of
quantum algorithms.

While some of these applications have been covered in
recent works on the QSVT [12,17], here we aim to present
these constructions as pedagogically as possible, providing
detailed procedures and intuition for each and including
explicit examples to support abstract ideas where appro-
priate. We also supply performance bounds and resource
requirements for each of the algorithms presented here,
which we anticipate will be helpful. It is our hope that this
presentation makes the QSVT and QSP more accessible,
catalyzing future developments in quantum algorithms.

Throughout this tutorial, we assume familiarity with
basic concepts in quantum computing, such as unitary
dynamics and measurement, as well as the conventional
quantum algorithms for search, phase estimation, and
Hamiltonian simulation. For a comprehensive review of
these subjects, see Refs. [18–20]. Further, we aim to
present this work in a manner accessible to readers without
prior knowledge of QSP and the QSVT, but if more infor-
mation on these topics is needed, Refs. [7,12,21,22] may
serve as helpful references.

A. Road map

We share the story of this grand unification of quan-
tum algorithms by first surveying the development of
the QSVT in Sec. II, beginning with quantum signal

processing and then demonstrating how this technology
leads to quantum eigenvalue transforms and, ultimately,
the quantum singular value transformation. Thereafter, we
detail a statement of grand unification for currently known
quantum algorithms, presenting QSVT-based algorithms
for the search problem and the eigenvalue threshold prob-
lem in Secs. III and IV, respectively. Further fulfilling
the unification promise, we introduce an algorithm for
phase estimation by QSVT in Sec.V and show how the
quantum Fourier transform emerges from cascading QSVT
sequences. We then highlight in Sec. VI how the QSVT can
yield intuitive algorithms for Hamiltonian simulation and
matrix inversion. Lastly, in Sec. VII, we explore the impli-
cations of these results and discuss areas of future research
in the utility of the QSVT.

II. FROM QSP TO THE QSVT

In this section, we develop the framework of the QSVT,
starting with quantum signal processing and then provid-
ing a concrete application of this technology to ampli-
tude amplification. Building off this example, we establish
quantum eigenvalue transforms and finally quantum sin-
gular value transforms. Overall, this section is meant to be
pedagogical and easily accessible to readers with a back-
ground in basic quantum circuits and linear algebra, as the
constructions of this section underlie the remainder of the
work. For more details on QSP and the QSVT, including
alternative introductions to the topics, rigorous proofs, and
applications not covered here, see Refs. [7,12,21,22].

A. Quantum signal processing

QSP generalizes the results of composite-pulse
sequences [7,8,23] and is built on the idea of interleaving
two kinds of single-qubit rotations: a signal rotation oper-
ator W and a signal processing rotation operator S. These
rotation operations are about different axes through the
Bloch sphere, e.g., commonly W is an x rotation, while S
is a z rotation. Moreover, the signal rotation always rotates
through the same angle θ , whereas the signal-processing
rotation rotates through a variable angle according to some
predetermined sequence.

For example, let the signal-rotation operator be

W(a) =
[

a i
√

1− a2

i
√

1− a2 a

]
, (1)

which is an x rotation by angle θ = −2 cos−1 a. And let the
signal-processing rotation operator be

S(φ) = eiφZ , (2)

which is a z rotation by angle −2φ. For a tuple of phases
�φ = (φ0,φ1, . . . φd) ∈ R

d+1 and using these conventions

040203-3

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Trivial
BB1

θ = −π θ = π

1

θ = 0

|〈0
|U

� φ
(θ

)|0
〉|2

FIG. 1. The transition probabilities for |0〉 → |0〉 after the
application of exp(iθX /2) (uniform dashed) and the QSP
sequence for the BB1 protocol (dotted dashed). The latter tran-
sition probability is seen to be near one for a wider range
of θ .

[24], the QSP operation sequence U �φ is defined as

U �φ = eiφ0Z
d∏

k=1

W(a)eiφkZ . (3)

What is interesting is how QSP can modify the incoming
signal. Suppose that �φ = (0, 0), i.e., there is no process-
ing, such that U �φ = W(a) is just the unchanged signal.
If we plot the probability of a |0〉 qubit input staying
unchanged under this operation, i.e., p = |〈0|U �φ|0〉|2, as
a function of θ , we find a nice cosinusoid (the lower
plot in Fig. 1), because for this case p = cos2 (θ/2).
Now, if we do some signal processing, by letting �φ =
(π/2,−η, 2η, 0,−2η, η), where η = 1

2 cos−1 (−1/4), then
for the new U �φ using these phases, we find the new prob-

ability p = |〈0|U �φ|0〉|2 = 1/8 cos2 (θ/2)
[
3 cos8 (θ/2) −

15 cos6 (θ/2)+ 35 cos4 (θ/2)− 45 cos2 (θ/2)+ 30
]

(the
upper dotted-dashed line in Fig. 1), which for small θ
is approximately 1− 5/8 (θ/2)6. This has the nice prop-
erty that the qubit remains unflipped for a wide range of
signal angles but then a sharp transition happens around
θ ≈ 2π/3. This increases sensitivity to specific values of
the signal.

Thus, sequences like this are widely employed in mag-
netic resonance imaging to increase image contrast. This
particular sequence is famous in the field of NMR and
is known as the “BB1” pulse sequence [11]. Many such
“composite-pulse” sequences are known [9,25,26], with
a wide range of variations, and in experimental quan-
tum computation they serve to suppress specific kinds of
errors and enhance sensitivity to specific kinds of signals,
across implementations ranging from quantum dots [27]
and nitrogen-vacancy centers in diamonds [28], to trapped
ions [29–31] and superconducting qubits [32].

That QSP sequences can have such signal transfor-
mation properties is well known, because in general the
matrix element P(a) = 〈0|U �φ|0〉 becomes a polynomial
in a, with the order of the polynomial being at most the
length of the sequence of QSP phases �φ. Specifically,
for example, for �φ = (0, 0), P(a) = a; for �φ = (0, 0, 0),
P(a) = 2a2 − 1; and for �φ = (0, 0, 0, 0), P(a) = 4a3 − 3a.
These are the Chebyshev polynomials of the first kind,
Td(a).

Perhaps the most remarkable property of the QSP
sequence of Eq. (3), however, is the reverse of this state-
ment: it turns out that for a given polynomial P(a) (subject
to some reasonable constraints), there exists a set of QSP
phase angles �φ such that P(a) = 〈0|U �φ|0〉. Specifically [7]:

Theorem 1 (Quantum Signal Processing): The QSP
sequence U �φ produces a matrix that may be expressed as
polynomial function of a:

eiφ0Z
d∏

k=1

W(a)eiφkZ

=
[

P(a) iQ(a)
√

1− a2

iQ∗(a)
√

1− a2 P∗(a)

]
, (4)

for a ∈ [−1, 1], and a �φ exists for any polynomials P, Q in
a such that:

(i) deg(P) ≤ d, deg(Q) ≤ d − 1
(ii) P has parity d mod 2 and Q has parity (d − 1)mod 2

(iii) |P|2 + (1− a2)|Q|2 = 1

The forward part of this theorem is easily proven by
induction, starting from the d = 0 case, for which P = eiφ0

and Q = 0. The reverse direction of this theorem is more
involved and can be proven in a number of ways, includ-
ing an elegant interpretation involving Laurent polynomial
algebras [33,34].

Often, however, we are interested not in the unitaries
that can be constructed with QSP but, rather, the achiev-
able polynomial transformations of the input, Poly(a), in a
subsystem. If, as above, we choose Poly(a) = 〈0|U �φ|0〉 =
P(a), we are limited to P for which there exists a polyno-
mial Q satisfying the conditions of Theorem 1. This can
be quite a limiting condition for some applications. For
example, for a = ±1, W(±1) is proportional to the iden-
tity matrix and the entire sequence QSP sequence collapses
to a single z rotation, limiting us to polynomials Poly(a)
such that |Poly(±1)| = 1. This limitation can be overcome
by instead defining Poly(a) = 〈+|U �φ|+〉 = Re[P(a)]+
iRe[Q(a)]

√
1− a2. In this case, it can be shown that we

can accurately approximate any real polynomial with par-
ity d mod 2 such that deg(Poly) ≤ d and |Poly(a)| ≤
1 ∀ a ∈ [−1, 1]. This can be achieved by selecting an

040203-4

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

appropriate P the real part of which approximates the
desired function and a Q with a small real component. With
this convention, the set of achievable polynomials is suf-
ficiently expressive for all of the applications described in
this tutorial. In general, the basis employed for the desired
polynomial may be called the signal basis and, unless oth-
erwise specified, below we take this basis to be |+〉, |−〉.
Appendix A elaborates on this and discusses the different
conventional statements of the QSP theorem 1.

While Theorem 1 guarantees the existence of such a
�φ, it does not provide a method for determining it. For-
tunately, Remez-type exchange algorithms can efficiently
compute a �φ that produces a good approximation to any
feasible polynomials P and Q [7]. Further, more efficient
and numerically stable algorithms have also been found
[33–35] and novel optimization techniques are currently
under development [36]. Appendix D gives explicit exam-
ples of �φ for a wide family of polynomials used in realizing
quantum algorithms and illustrates an open-source code
package accompanying this tutorial for generating QSP
phase angle coefficients.

B. An application to amplitude amplification and
search

Toward motivating the QSVT from QSP, we introduce
an illustrative example of how multiqubit problems may be
simplified by identifying qubitlike subsystems, to which
the ideas of QSP may be applied. The concept demon-
strated in this subsection is essentially that of qubitization
[8], which forms a core tenet of the QSVT.

Specifically, we discuss the problem of amplitude ampli-
fication; a similar construction is discussed in Sec. III
employing the major theorems of the QSVT but here we
begin from basic principles. It is hoped that the geometric
intuition behind the argument that follows and the expe-
diency of the fully developed construction in Sec. III will
complement each other.

The utility of Theorem 1 is nicely demonstrated in solv-
ing the following problem. Suppose that you are given a
unitary U (which may act on some Hilbert space of large
dimension; i.e., larger than just a qubit) and its inverse, U†,
as well as two operators Aφ and Bφ , each of which rotates
the phases of a specific privileged state, namely:

Aφ = eiφ|A0〉〈A0| (5)

Bφ = eiφ|B0〉〈B0|. (6)

The challenge is to construct a circuit Q using U, U†, Aφ ,
and Bφ such that

|〈A0|Q|B0〉| −→ 1 (7)

in the limit of a sufficiently large circuit and assuming that
the original matrix element 〈A0|U|B0〉 of U is nonzero.

This problem is known as amplitude amplification and,
remarkably, it can be solved without knowing the specific
initial value 〈A0|U|B0〉, by using the oblivious fixed-point
amplitude amplification quantum algorithm. We show that
such an algorithm arises only from Theorem 1, even in
the multiple-qubit setting, by recognizing that there are
two concentric Bloch spheres (qubitlike spaces) in this
problem.

Specifically, one can recognize that U|B0〉 is a quantum
state that has a nonzero component along |A0〉 and another
component perpendicular to |A0〉. So we define

|A⊥〉 = 1
N

(
I − |A0〉〈A0|

)
U|B0〉, (8)

where N is the normalization factor needed to make |A⊥〉
a unit vector. Then

U|B0〉 = a|A0〉 +
√

1− a2|A⊥〉 (9)

for a = 〈A0|U|B0〉 (we may assume that a is real because
a possible phase may be absorbed into |B0〉). Similarly, we
may define some |B⊥〉 such that

U|B⊥〉 = −a|A⊥〉 +
√

1− a2|A0〉. (10)

These ideas are illustrated in the diagram of Fig. 2, using
the familiar Bloch sphere.

|A0〉

|A⊥〉
|B0〉

|B⊥〉

U |B0〉

U |B⊥〉

θ
exp{iφ|B0〉〈B0|}

exp{iφ|A0〉〈A0|}

FIG. 2. An illustration of amplitude amplification, where one
desires to prepare the state |A0〉 (here, the north pole of some
Bloch sphere) obliviously to this state, given only |B0〉, an oper-
ator U the 〈A0|U|B0〉 = a component of which is nonzero, and
the ability to rotate about the states |B0〉 (blue) and |A0〉 (black)
through chosen angles. The standard Grover iterate can be recov-
ered in this model if one desires, by producing a simple rotation
by θ = 2 cos−1

(√
1− a2

)
= 2 sin−1 a (red) toward |A0〉.

040203-5

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Thus, on the two-dimensional Hilbert space spanned by
{|A0〉, |A⊥〉}, the action of U is that of a 2× 2 unitary:

U = a (|A0〉〈B0| − |A⊥〉〈B⊥|)
+

√
1− a2 (|A⊥〉〈B0| + |A0〉〈B⊥|) , (11)

which is convenient to represent in matrix form, as

U =
[|B0〉 |B⊥〉

|A0〉 a
√

1− a2

|A⊥〉
√

1− a2 −a

]
, (12)

where the labels on the matrix indicate that columns act on
|B0〉, |B⊥〉 (from left to right) and the rows act on |A0〉, |A⊥〉
(from top to bottom), such that U brings a state in the B
basis into a state in the A basis. These two bases are the
two Bloch spheres (or qubit bases) encoded in the prob-
lem. Moreover, U is a reflection operation, which we may
represent in this qubitlike abstraction as R(a) = XRy(θ),

with θ = 2 cos−1
(√

1− a2
)
= 2 sin−1 a.

This two-Bloch sphere picture provides the intuitive
basis for the following theorem:

Theorem 2 (Amplitude Amplification): Given uni-
tary U, its inverse U†, and operators Aφ = eiφ|A0〉〈A0|,
Bφ = eiφ|B0〉〈B0|,

〈A0|
[d/2∏

k=1

UBφ2k−1U†Aφ2k

]
U|B0〉 = Poly(a), (13)

where Poly(a) is a polynomial in a = 〈A0|U|B0〉 of degree
at most d and obeys the conditions on P from Theorem 1.

Why does this work? Note first that U|B0〉 lives in the A-
qubit space, spanned by |A0〉 and |A⊥〉. This qubit then gets
rotated around its “z” axis by Aφ . The U† then rotates this
around the y axis (and also does a reflection around Z but
we can disregard that for this intuition). U† also maps the
state from the A-qubit space back into the B-qubit space,
spanned by |B0〉 and |B⊥〉. Next, Bφ rotates the state around
the z axis of the B-qubit space. Then the leftmost U does
another y rotation (and reflection) and maps the state back
into the A-qubit space. The sequence in the square brack-
ets maps the state back and forth between the two qubit
bases, sandwiching y-axis rotations with z-axis rotations.
This sandwich of rotations is thus just doing quantum sig-
nal processing as in Sec. II A; we understand this behavior
well.

The formal proof of this theorem begins by noting that
on the subspaces defined by the two Bloch spheres defined
above, U = U†. Moreover, note that R(a), the 2× 2 uni-
tary representation of U (in the qubit bases relevant to our

problem), is related to the W(a) of Eq. (1) by

R(a) = −iei π4 ZW(a)ei π4 Z . (14)

Substituting this into Eq. (13) and recognizing that Aφ and
Bφ simply become z-axis rotations, we obtain

〈A0|
(

eiφ′0Z

[
d∏

k=1

W(a)eiφ′kZ

])
U|B0〉 = Poly(a), (15)

where {φ′k} are linear combinations of the original phases
{φk}. By Theorem 1, the term in parentheses is a matrix of
related polynomials evaluated at a, completing the proof
of Theorem 2.

Theorem 2 takes on the meaning of performing “obliv-
ious amplitude amplification” when the phases {φk} are
chosen such that the polynomial constructed approximates
the sign function for small values of a. The technical
aspects of generating the proper polynomials are further
discussed in Sec. III and Appendix D 1.

Grover’s celebrated quantum search algorithm [4],
which is similar in character to the above, can easily be
derived from the construction of amplitude amplification.
In the search problem, some computational basis state |A0〉
is unknown but an oracle is given that implements

Aπ = eiπ |A0〉〈A0| (16)

and the goal is to create a quantum state close to |A0〉
using as few queries to the oracle as possible. The search
algorithm solves this problem by choosing U = H⊗n

(Hadamard gates on all the qubits in the search space) and
starting with |B0〉 = |0〉. Note that since |A0〉 is a compu-
tational basis state, 〈A0|U|B0〉 = 2−n/2 = 1/

√
N , because

U|B0〉 = |ψ0〉 is an equal superposition over all N basis
states in the search space. This means that the amplitude
amplification algorithm can be applied, with the specific
case of a = 1/

√
N being known, meaning we choose all

the φk = π for all k. This choice implies that

UBφU† = eiπH⊗n|0〉〈0|H⊗n = I − 2|ψ0〉〈ψ0|, (17)

which can be recognized as Grover’s “inversion about
mean” iterate. This choice also produces an oscillating
polynomial that monotonically increases the matrix ele-
ment up to d ≈ �π/(2 sin−1 a)� steps [37]. This may be
seen by noting that each application of the signal-rotation
operator rotates through an angle 2 sin−1 a and the target
state is at most an angle π away, similar to the argument
used to derive the query complexity of Grover’s algorithm
in Ref. [18]. The amplitude amplification algorithm thus
gives Grover’s quantum search algorithm in this limit and
the number of oracle calls required is d ≈ π/(2 sin−1 a) =
π/[2 sin−1(1/

√
N)] = O(

√
N), the known performance of

040203-6

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Grover’s algorithm. Once more, a similar result is dis-
cussed in Sec. III, where the flow from qubitization to
the QSVT to fixed-point amplitude amplification is applied
more generally.

C. Quantum eigenvalue transforms

Theorem 2 is known as amplitude amplification because
it accomplishes a polynomial transform of one specific
amplitude, namely the matrix element of U at |A0〉〈B0|.
However, this polynomial transform can actually be per-
formed over an entire vector space, not just a one-
dimensional matrix element. In particular, we now show
that this technology can be used to polynomially trans-
form all the eigenvalues of a Hamiltonian H that has been
embedded into a block of a unitary matrix U.

Specifically, suppose that we have the unitary

U =
[0 1

0 H ·
1 · ·

]
, (18)

where H is some N × N (possibly very large) Hamiltonian
operator, located in the upper-left block of U, labeled by
an index qubit being in the state |0〉 (and it is said that H
has thus been “qubitized”). We include the indices 0 and
1 adjacent to the matrix representation of U to schemati-
cally indicate how H is encoded in U. At the cost of some
generality, let us make some assumptions for simplicity of
exposition. In particular, assume that the operator norm
‖H‖ is sufficiently small that this block embedding can
be achieved, i.e., ‖H‖ ≤ 1 (if not, then one can instead
embed some rescaled version of the Hamiltonian, H/α,
but for now we neglect this case for the sake of expos-
itory clarity). In particular, suppose that the eigenvectors
and eigenvalues of H are given as

H =
∑
λ

λ|λ〉〈λ|. (19)

Then, specializing to a specific block encoding for clarity,
the missing blocks of U may be completed as

U =
[H √

I −H2√
I −H2 −H

]
, (20)

where
√

I −H2 =
∑
λ

√
1− λ2|λ〉〈λ|, (21)

and it can be seen by inspection that U†U = I as required
for the unitarity of U, as long as the eigenvalues λ are of
reasonable scale. While a general block encoding need not
take this specialized form, this choice of encoding is suffi-
cient for our illustrative purposes. Moreover, the treatment

of general block encodings is presented in Refs. [8,12],
wherein it is shown that a general block encoding takes
a form similar to Eq. (20) in a special basis related to the
eigenbasis of H.

Our specialized choice of block encoding means that U
may be expressed as a sum of two tensor products,

U = Z ⊗H+ X ⊗
√

I −H2, (22)

and therefore acts as

U|0〉|λ〉 = λ|0〉|λ〉 +
√

1− λ2|1〉|λ〉 (23)

U|1〉|λ〉 = −λ|1〉|λ〉 +
√

1− λ2|0〉|λ〉, (24)

which indicates that U contains a Bloch sphere (i.e., a qubit
basis) for each eigenspace [38] of H corresponding to a
certain eigenvalue. In particular, U may be expressed as a
direct sum over N separate Bloch spheres:

U =
⊕
λ

[
λ

√
1− λ2√

1− λ2 −λ
]
⊗ |λ〉〈λ|

=
⊕
λ

[√
1− λ2X + λZ

]
⊗ |λ〉〈λ|

=:
⊕
λ

R(λ)⊗ |λ〉〈λ|, (25)

where R(λ) is defined as the operator in square brackets
in the penultimate line above and may be interpreted as a
reflection and rotation about the y axis of the Bloch sphere,
exactly the same as we find for the R(a) operator that
appears in the amplitude amplification construction as per
Eq. (12). We thus have a form for U which parallels that
of the amplitude amplification scenario. However, unlike
amplitude amplification, we do not have one-dimensional
phase-rotation operators Aφ and Bφ , because we have N
Bloch spheres, and not just two.

Nevertheless, there are still distinct vector spaces in
which the input and output of H exist: these are, respec-
tively, the column space and row space of the matrix H,
within U. In the scenario of Eq. (18), these vector spaces
are defined by the projector 	 := |0〉〈0| acting on the
auxiliary qubit. Generalizing the way in which amplitude
amplification employs the phase shift Aφ of Eq. (5) act-
ing on a single element |A0〉〈A0|, we may now define a
projector-controlled phase-shift operation 	φ:

	φ := ei2φ	, (26)

which imparts a phase of ei2φ to the entire subspace deter-
mined by the projector 	. Note that if we want to be more
precise, we may instead define this operation as

	φ := eiφ(2	−I), (27)

which is a proper unitary transform and acts as a z rota-

040203-7

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Π Π

exp (−iφZ)

...
...

|0〉

|ψ0〉

FIG. 3. The circuit used to realize the projector-controlled
phase shift 	φ , also termed the “phased iterate,” in analogy to
the bare exp(iφZ) operation used in QSP, used as the signal-
processing rotation operator.

tion, like S(φ) from Eq. (2), but these two definitions differ
only by a global phase that may be neglected. From a quan-
tum circuit standpoint, 	φ may be realized by employing
two instances of projector-controlled-NOT gates (which we
refer to as 	-controlled-NOT, or C	NOT for short) around
a single-qubit z rotation by angle φ, as in Fig. 3:

The main relevant observation is that on the subspace of
each of the N Bloch spheres of Eq. (25),	φ acts as a z-axis
rotation,

	φ =
⊕
λ

eiφZ |λ〉〈λ|, (28)

with |λ〉 as an eigenvector.
This picture of N separate Bloch spheres evolving under

z and y rotations provides the intuitive basis for the
following theorem:

Theorem 3 (Eigenvalue Transformation): Given a block
encoding of Hamiltonian H =∑

λ λ|λ〉〈λ| in a unitary
matrix U,

U =
[

	 H ·
· ·

]
, (29)

with the location of H determined by projector 	 and
given the ability to perform 	-controlled-NOT operations
to realize projector-controlled phase-shift operations 	φ ,
then, for even d,

U �φ =
[d/2∏

k=1

	φ2k−1U†	φ2k U

]
=

[

	 Poly(H) ·
· ·

]
,

(30)

where

Poly(H) =
∑
λ

Poly(λ)|λ〉〈λ| (31)

is a polynomial transform of the eigenvalues of H. The
polynomial is of degree at most d and obeys the conditions
on P from Theorem 1.

Similarly, for odd d,

U �φ = 	φ1U

[
(d−1)/2∏

k=1

	φ2k U†	φ2k+1U

]

=
[

	 Poly(H) ·
· ·

]
, (32)

where Poly(H) has an analogous interpretation.

Why does this work? For the same reason that
Theorem 2 does. To see this, let us use the specific encod-
ing of Eq. (20) to rewrite Eq. (30) as an action on N
separate Bloch spheres [the odd-d case in Eq. (32) being
analogous]:

U �φ =
⊕
λ

[d/2∏
k=1

eiφ2k−1ZR(λ)eiφ2kZR(λ)

]
, (33)

recognizing that we are choosing conventions for R(λ) in
Eq. (25) such that R†(λ) = R(λ). This allows us to relabel
the sum and the phases to put Eq. (33) into a standard form
of quantum signal processing [similar to how we obtain
Eq. (15)]:

U �φ =
⊕
λ

[
eiφ′0Z

d∏
k=1

W(λ)eiφ′kZ

]
. (34)

By Theorem 1, the term in brackets is a matrix of poly-
nomials in λ, verifying Theorem 3. Finally, although we
are specializing to the specific block encoding of Eq. (20),
the proof for more general block encodings is contained in
Refs. [8,12].

One immediately apparent utility of this eigenvalue-
transformation theorem is its usefulness in filtering eigen-
values. For example, we see in Sec. II A that the BB1
sequence of phases can be used to increase sensitivity to
the signal. In this eigenvalue-transformation scenario, the
signal is the eigenvalue λ and a sequence of QSP phases
can be used to selectively filter a range of eigenvalues,
e.g., those below a threshold of λ ≈ 2π/3 in the case of
BB1 (for now, this is an imprecise statement but a sim-
ilar question is a major concern of Sec. IV). Measuring
the projector 	 will show that the QSP sequence flips the
index qubit with higher probability if the Hamiltonian has
an eigenvalue larger than this threshold, versus when all
the eigenvalues of H are below the threshold. This result
also assumes the ability to prepare a state that has some
overlap with the relevant eigenstates of H, as input into U,

040203-8

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

but the specific amplitudes of the overlap are not crucial,
because amplitude amplification can be employed to boost
the signal.

D. Quantum singular value transforms

Theorem 3 is known as the eigenvalue transformation
because it accomplishes a polynomial transform of the
eigenvalues of a matrix embedded within a larger unitary
matrix. However, in general the embedded matrix need
not have a well-defined set of eigenvalues; for example,
instead of being a square matrix, it could be rectangular.
Remarkably, the same idea of transforming the embed-
ded matrix using quantum signal processing can still apply.
Specifically, we now show that QSP sequences can be used
to polynomially transform all the singular values of a (pos-
sibly nonsquare) matrix A that has been encoded into a
block of a unitary matrix U.

Such a general matrix A can be decomposed as

A = W

V†

 , (35)

where W
 and V
 are unitary and
 is diagonal and
contains along its diagonal the set of non-negative real
numbers {σk}, known as the singular values of A, of which
there are r = rank(A) nonzero values. All matrices have
such a singular value decomposition (SVD).

As W
 and V
 are unitary, their columns form orthonor-
mal bases, which we denote by {|wk〉} and {|vk〉}, respec-
tively. {|wk〉} are the left singular vectors, which span the
left singular vector space, and {|vk〉} are the right singu-
lar vectors, which span the right singular vector space.
Using this notation, we may conveniently rewrite the sin-
gular value decomposition of A in a form analogous to the
eigenvalue decomposition:

A =
r∑

k=1

σk|wk〉〈vk|. (36)

Now, suppose that we are given a unitary matrix U such
that A is encoded in a block of U, i.e.,

U =
[

	̃ A ·
· ·

]
, (37)

where 	̃ :=∑
k |wk〉〈wk| and 	 :=∑

k |vk〉〈vk| are pro-
jectors that locate A within U, such that A = 	̃U	. We
again include	 and 	̃ indices adjacent to the matrix repre-
sentation of U to schematically indicate how A is encoded
in U: 	 selects the columns and 	̃ the rows in which A is
encoded. Moreover, the projectors 	 and 	̃ also identify
the left and right singular vector spaces, respectively.

For pedagogical simplicity, let us assume for now that A
is a square matrix (this assumption is dropped in the next

section). Again specializing to a specific block encoding,
we may complete the missing blocks of the unitary U by
writing

U =
[0 1

0 A
√

I − A2

1
√

I − A2 −A

]
, (38)

where the 0 and 1 are index qubit labels for the block matri-
ces within U and where

√
I − A2 is formally defined in

terms of the SVD of A, as

√
I − A2 :=

∑
k

√
1− σ 2

k |wk〉〈vk|. (39)

It can then be verified straightforwardly that U†U = I , as
long as the singular values {σk} are less than or equal to
1 (which may always be achieved by rescaling A to some
A/α). Again, while a general block encoding need not take
this specialized form, this choice is sufficient for our illus-
trative purposes. And, moreover, the treatment of general
block encodings is presented in Ref. [12], wherein it is
shown that a general block encoding takes a form simi-
lar to Eq. (38) in a special basis related to the left and right
singular vectors of A.

Just as with the analysis of the block-encoded Hamilto-
nian H, there are multiple Bloch spheres in U. Specifically,
note that

U|0〉|vk〉 = σk|0〉|wk〉 +
√

1− σ 2
k |1〉|wk〉 (40)

U|1〉|vk〉 = −σk|1〉|wk〉 +
√

1− σ 2
k |0〉|wk〉, (41)

so that U may be expressed as a direct sum over a number
of separate Bloch spheres equal to the rank of A:

U =
⊕

k

⎡
⎣ σk

√
1− σ 2

k√
1− σ 2

k −σk

⎤
⎦⊗ |wk〉〈vk|

=
⊕

k

[√
1− σ 2

k X + σkZ
]
⊗ |wk〉〈vk|

=:
⊕

k

R(σk)⊗ |wk〉〈vk|, (42)

where we define R(σk) analogous to R(λ) in Eq. (25). We
now have a form for U that directly parallels that of the
eigenvalue transform scenario and, for exactly the same
reasons, the following theorem holds:

Theorem 4 (Singular Value Transformation): Given a
block encoding of a matrix A =∑

k σk|wk〉〈vk| in a unitary

040203-9

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

matrix U,

U =
[

	̃ A ·
· ·

]
, (43)

with the location of A determined by projectors 	 and
	̃ and given the ability to perform 	- and 	̃-controlled-
NOT operations to realize projector-controlled phase-shift
operations 	φ and 	̃φ (defined as in Sec. II C), then, for
odd d,

U �φ = 	̃φ1U

[
(d−1)/2∏

k=1

	φ2k U†	̃φ2k+1U

]

=
[

	̃ Poly(SV)(A) ·
· ·

]
, (44)

where Poly(SV)(A) is defined for an odd polynomial as

Poly(SV)(A) :=
∑

k

Poly(σk)|wk〉〈vk|, (45)

which applies a polynomial transform to the singular val-
ues of A. The polynomial is of degree at most d and obeys
the conditions of P from Theorem 1.

Similarly, for d even,

U �φ =
[d/2∏

k=1

	φ2k−1U†	̃φ2k U

]

=
[

	 Poly(SV)(A) ·
· ·

]
, (46)

where Poly(SV)(A) is defined for an even polynomial as

Poly(SV)(A) :=
∑

k

Poly(σk)|vk〉〈vk|, (47)

which is also a polynomial transform of the singular values
of A but with the modification that the input and output
spaces are both the right singular vector space, spanned
by {|vk〉}. Analogously, the polynomial is of degree at most
d and obeys the conditions of P from Theorem 1.

The main difference between this theorem and the eigen-
value transform of Theorem 3 is that here, the Bloch sphere
transformations of U also switch between the {|vk〉} and the
{|wk〉} bases, similar to how the sequence in Theorem 2
[Eq. (13)] flips between bases. Thus, we should now care-
fully keep track of which vector space the system is in at
each stage of operation. In particular, in each of the terms

in square brackets in Eqs. (46) and (44), the U on the right
moves the system from the {|vk〉} basis into the {|wk〉} basis
and 	̃φ then rotates the system around the z axis of the
Bloch sphere of each left singular vector space. Similarly,
the U† on the left then moves the system back from the
{|wk〉} basis into the {|vk〉} basis and, finally, 	̃φ rotates the
system around the z axis of the Bloch sphere of each right
singular vector space. Therefore, the odd-d sequence starts
in the right singular vector space and ends in the left sin-
gular vector space, such that Poly(SV)(A) is accessed with
	 and 	̃, whereas the even-d sequence starts and ends
in the right singular vector space, such that Poly(SV)(A) is
accessed with just 	.

With this crucial modification, Theorem 4 may be ver-
ified by following the same logic as that of Theorem 3,
while the proof for general block encodings is presented in
Ref. [12]. Theorem 4 is the essence of the QSVT algorithm
and we elaborate in the next sections upon what can be
accomplished with it.

E. Block encodings

A key idea behind the generalization of QSP from
single-qubit dynamics to multiqubit transforms is the use
of a block-encoded operator, as we have just seen in the
last two subsections (and as is discussed in the follow-
ing sections). While the embedding of one matrix inside
a larger one is well known in mathematics as a dilation
[39], as used here, block-encoded operators are a quantum
concept and their construction comes with some caveats.
We elaborate on these constructions in this subsection.

The starting point for many applications of QSP and the
QSVT is the availability of the desired signal as a linear
operator, a matrix A, encoded as a block inside a larger
unitary matrix U, as described in Eq. (37). What is such
a block-encoded operator, physically? Some limited intu-
ition comes from the case when A is a unitary matrix, in
which case U is simply a controlled-A operator, as depicted
in Fig. 4.

When A is a large operator, it can be challenging to
envision how a controlled-A operation may be physically

A

=

[
A ·
· ·

]
...

...

FIG. 4. A simple block-encoding quantum circuit, showing
how such a block encoding of a unitary A is notated. Observe
that the empty circle on the control qubit (top line) indicates a
|0〉 control, whereas a filled-in circle would correspond to a |1〉
control.

040203-10

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

A

|ξ〉

|λ〉

|ψ〉

∼=

A

|ξ〉

|λ〉

|ψ〉

FIG. 5. The construction of |1〉-controlled-A (for A a single-
qubit operator) given access to |λ〉 a (+1) eigenvector of A, |ξ 〉
the control qubit, and |ψ〉 the target state. Note that A may in
general act on a large Hilbert space, in which case the controlled-
swap operator is suitably generalized. The swaps can be made |0〉
controlled to emulate Fig. 4. We note that this is a similar con-
struction to the circuits employed in Ref. [40] for matrix element
measurement.

realized. In particular, given A, how to construct a
controlled-A operation is generally not possible without
further information. For example, if a +1 eigenstate |λ〉 of
A is provided, then a controlled-A quantum circuit can be
constructed using |λ〉 together with two controlled-SWAP
gates (see Fig. 5). However, in general, much more work
has to be done in achieving a block encoding, generally in
ways specific to the relevant physical system [12,40].

Related to the issue of the block encoding is accessing
the desired polynomial transform of the encoded block.
As described in Sec. II A, after performing a QSP-QSVT
sequence, a measurement may be done in the signal basis
to determine if the desired polynomial transform is real-
ized. In particular, in many of the algorithms, we wish
to apply the transformed operator, Poly(SV)(A), to some
state |ψ〉, which may be done using the block encoding,
U �φ . However, this computation will only be success-
ful if we apply to |ψ〉 the correct block [the one that
encodes Poly(SV)(A)], so we must project the final state
into being in this block by performing a projective mea-
surement with the projectors 	 and 	̃, which are assumed
accessible. Consequently, the relevant projector for the
single-auxiliary-qubit QSVT is often |+〉〈+| ⊗	, which
both (1) isolates the real part of the transforming poly-
nomial P discussed in Sec. II A and (2) determines if
we have applied the desired block of the overall unitary.
Since this projective measurement is a one-time projec-
tion that is done at the end of the algorithm, its cost is not
large and, moreover, the probability of the projective mea-
surement yielding the desired state can be amplified using
amplitude amplification or classical repetition. Depend-
ing on the construction, this probability can also be either
the desired output or an algorithmically useful output. For
more about the signal basis and QSP conventions, see
Appendix A.

III. SEARCH BY QSVT

Now that we have an overall perspective on the basic
theorems of quantum signal processing and quantum sin-
gular value transformations, let us return to explicitly
constructing the three “primordial” quantum algorithms
using the QSVT. Specifically, for each algorithm, we indi-
cate (a) the signal-rotation operator and (b) the appropriate
QSP polynomial. This is not just a problem of reconstruc-
tion but, in certain cases, it leads to slight improvements
in algorithmic performance. We begin with the search
algorithm.

A ubiquitous problem that admits a quantum speed-up is
unstructured search, the goal of which is to determine a sin-
gle marked element m ∈ {0, 1, . . . , N − 1} =: [N] from an
unstructured database of size N . While the search problem
can be solved in O(N) time classically, Grover’s quan-
tum algorithm requires only O(√N) time, providing a
provably optimal quadratic speed-up. However, Grover’s
algorithm in its traditionally stated form suffers from var-
ious shortcomings, including divergence from the proper
solution if its underlying iterate is repeated too many
times. Fortunately, by the parallels between this problem
and amplitude amplification as discussed in Sec. II B,
it is straightforward to recover an improved version of
unstructured search using the QSVT.

In quantum search, one is given access to a unitary
operation U the application of which flags some marked
element by a phase flip, i.e.,

U|j 〉 = (−1)δjm |j 〉 =
{
|j 〉 |j 〉 �= |m〉
−|j 〉 |j 〉 = |m〉 , (48)

where m ∈ {0, 1, . . . , N − 1} is the (single) marked ele-
ment.

As is conventional in quantum search, we take our ini-
tial state to be the uniform superposition over all N states,
which may be expressed as

|ψ0〉 = 1√
N

N∑
j

|j 〉 =
√

N − 1
N
|m⊥〉 + 1√

N
|m〉 (49)

and is easily prepared by applying n Hadamards to |0〉⊗n.
With this choice of initialization, our goal is to map |ψ0〉
to the marked state |m〉.

In this context, how might we solve the search problem
with the QSVT? The standard method, which includes the
construction of the Grover iterate, is not necessary. Instead,
we rephrase the problem. In the most general setting, we
are given access to some initial state |ψ0〉 such that its pro-
jection onto the desired final state |m〉 is nonzero. Denoting
this projection by 	, we may express this condition as

	 V|ψ0〉 = a|m〉, (50)

040203-11

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

for some known unitary V and |a| > 0. In our case, as illus-
trated in Eq. (49), we can simply take V as the identity
and a = 1/

√
N by our choice of initial state. In general

for amplitude amplification problems, V need not be trivial
and is often viewed as a preparation oracle.

The search problem as framed above is precisely the
statement of amplitude amplification as in Sec. II B, as we
desire a circuit U′ (which will depend on U) such that

∥∥∥ |m〉〈m|U′|ψ0〉〈ψ0| − |m〉〈ψ0|
∥∥∥ < ε, (51)

for some small ε > 0. For notational convenience, we refer
to |ψ0〉〈ψ0| as 	′. Note that this induces a block encoding
of the scalar a, that is

	 V 	′ = 	 	′ = a|m〉〈ψ0|. (52)

We now have a problem goal stated in Eq. (51) and a block
encoding of a single singular value a = 1/

√
N stated in

Eq. (52). What remains to solve unstructured search with
the QSVT is a choice of QSVT polynomial and an analysis
of the minimum required QSVT sequence length.

Fortunately, given that there is only one relevant sin-
gular value, a, and one relevant left (and right) singular
vector, the entire problem is reduced to mapping a as
close to 1 in magnitude as possible, as under this con-
dition the circuit will induce, with high probability, the
desired block-encoded map |m〉〈ψ0|. Luckily, there already
exists a theorem that defines the conditions under which
such transformations are possible: the major theorem of
the QSVT.

The requirements to perform the QSVT as desired
include the application of V, V†, C	NOT, C	′NOT, and
e−iφZ gates. Note that here we are allowed to choose
V = I , as all Grover-oracle information is encoded in
the projector-controlled-NOTs. Moreover, these projector-
controlled operators are easy to construct, C	′NOT because
	′ depends on a fixed known state. Similarly, C	NOT may
be crafted by first creating a controlled-U, which is easily
achieved, and conjugating the control qubit by Hadamard
gates, the result of which is a C	NOT, where the control
qubit now becomes the target of the projector-controlled-
NOT.

Having now achieved a suitable block encoding and the
necessary conditions for the QSVT, we need only choose
an appropriate QSVT polynomial. As our goal is to map a
to a value close to 1, a sensible choice for such a poly-
nomial can be derived if we start with the simple sign
function �(x − c):

�(x − c) =

⎧⎪⎨
⎪⎩
−1, x < c,
0, x = c,
1, x > c.

(53)

As discussed in Refs. [12,21], one can estimate the sign
function with arbitrary precision by finding a polynomial
approximation to erf(k[x − c]) for large enough k.
In particular, one can efficiently compute a degree
O [(1/�) log(1/ε)] odd polynomial P�ε,�(x − c), where
ε ∈ (

0,
√

2/eπ
]
, such that:

(1) |P�ε,�(x − c)| ≤ 1 for x ∈ [−1, 1].
(2) |�(x − c)− P�ε,�(x − c)| ≤ ε

for x ∈ [− 1, 1
]\ (c−�/2, c+�/2).

That is, P�ε,�(x − c) is bounded in magnitude by 1 and
ε approximates the sign function outside of the region
(c−�/2, c+�/2). On the other hand, within the range
(c−�/2, c+�/2), where �(x − c) suffers a disconti-
nuity, P�ε,�(x − c) is not in general a good approxima-
tion to the sign function. In this region, P�ε,�(x − c) is
actually an ε approximation to erf

(
k[x − c]

)
where k =

(
√

2/�) log1/2 (
2/[πε2]

)
(for the explicit construction of

P�ε,�(x − c), see Ref. [21]). For visual intuition, we illus-
trate this polynomial approximation in Fig. 6.

Note that the polynomial P�ε,�(x) (i.e., with c = 0) has
odd parity and is bounded in magnitude by 1 and so it may
be implemented via the QSVT (i.e., it obeys the condi-
tions on Poly(a)= 〈m|U �φ|ψ0〉 discussed in Sec. II A and
Appendix A). We use this scheme to polynomially approx-
imate the sign function, e.g., �(SV)(V) ≈ (P�ε,�)

(SV)(V),
and subsequently apply it to the initial uniform superposi-
tion over N quantum states. Then, upon applying the pre-
determined QSVT sequence, this yields |m〉 in the register
with probability p = |P�ε,�(a)|2.

We can now ask which values of � and ε we should
choose for our intended behavior. Because we desire
that a = 1/

√
N be mapped to a value greater than 1−

ε, we require that 1/
√

N ≥ �/2 or, equivalently, � =
O(1/√N). Next, note that upon applying (P�ε,�)

(SV)(V)

ε

ε

Ideal function
Polynomial
approximation

−1

1Δ/2−Δ/2

1

−1

FIG. 6. An illustration of �(x) (solid) and its polynomial
approximation, P�ε,�(x) (dashed). Note how P�ε,�(x) stays within
ε of the sign function outside of the region (�/2, �/2), while
deviating from �(x) within this region. The shifted version of
this function is constructed in much the same way.

040203-12

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Input: Access to a controlled version of the
oracle U which bit-flips an auxiliary qubit
when given an unknown target state
|m〉 ∈ {|j〉, j ∈ [N]} and acts trivially
otherwise, an error tolerance δ, and a
Δ ≤ 2/

√
N .

Output: The flagged state |m〉.
Runtime : O

(√
N log (1/δ)

)
queries to

controlled-U , equivalently CΠNOT,
CΠ′NOT, and e−iφZ gates and a
single auxiliary qubit. Succeeds with
probability at least 1 − δ.

Procedure:
1 Use QSVT to construct the operator
(PΘ

δ/2,Δ)(SV)(V), where V = I block encodes
a = 1/

√
N in its |m〉〈ψ0| element.

2 Apply (PΘ
δ/2,Δ)(SV)(V) to the uniform

superposition. With high probability, |m〉 remains
in the register and can be determined by
measuring in the computational basis.

Algorithm 1. Unstructured Search by QSVT.

to the uniform superposition, the amplitude of the desired
state, |m〉, is at least 1− ε. Thus, upon measuring these
qubits in the computational basis, the probability of the
resultant state being |m〉 is at least (1− ε)2 ≥ 1− 2ε.
Therefore, if we want this procedure to succeed with
probability at least 1− δ, we set ε = δ/2.

Under these choices, the polynomial P�ε,�(x) is of degree
d = O [(1/�) log(1/ε)] = O[

√
N log(1/δ)], such that the

run time of this algorithm is O[
√

N log(1/δ)]. Note that
we again have O(√N) scaling and thus maintain the
quadratic speed-up for the search problem, while circum-
venting Grover search convergence issues. We summarize
this algorithm for search by the QSVT in Algorithm 1.

Finally, we remark that this algorithm employs a simple
block encoding (i.e., the identity) of a = 1/

√
N with non-

trivial singular vectors (i.e., |ψ0〉 and |m〉). In this setting,
our desired transformation would not have been possible
had we used the quantum eigenvalue transformation of
Sec. II C, as the eigenvalues of V are necessarily 1 and the
input and output spaces are identical. Hence, this instance
illustrates the advantage of the QSVT over the quantum
eigenvalue transformation, as the QSVT can achieve poly-
nomial transformations between different input and output
spaces.

IV. THE EIGENVALUE THRESHOLD PROBLEM
BY QSVT

Beyond the determination of a desired state, as is the
object in unstructured search covered in Algorithm 1 in

Sec. III, a separate major intent of many quantum algo-
rithms is to determine whether a certain property holds of
a given quantum system. Through the lens of the QSVT,
we show in this section that these two algorithmic goals
are similar: here, rather than wishing to prepare a special
state (e.g., the marked state for unstructured search), we
now wish to encode some underlying unknown informa-
tion about a quantum system simply into a state that we
can then measure.

This linkage between search and property testing is
made apparent by considering the eigenvalue threshold
problem. In the setup of this problem, we are given access
to a Hamiltonian H and would like to determine if H
has any eigenvalues λ that are less than some chosen
threshold λth. Realistically, this must be determined to
within some precision�λ, so we are guaranteed that either
the Hamiltonian has at least one eigenvalue λ ≤ λth −�λ

or that all of its eigenvalues obey λ ≥ λth +�λ. The
eigenvalue threshold problem seeks to distinguish these
cases.

To solve this problem, one is also provided a state |ψ〉
that has reasonable overlap with the low-energy subspace
(spanned by the eigenvectors with eigenvalues λ ≤ λth −
�λ) if it exists. Mathematically, we represent this condition
as

‖	≤λth−�λ |ψ〉 ‖ ≥ ζ = �(1), (54)

where 	≤λth−�λ is a projector onto the (possibly nonexis-
tent) low-eigenvalue subspace mentioned above.

To solve this problem with the QSVT, we need to con-
struct a block encoding of the Hamiltonian H. However,
such a block encoding can only be constructed if ‖H‖ ≤ 1,
so we instead must determine an α ≥ ‖H‖ and construct
a unitary block encoding of H/α. In general, doing so
may be nontrivial because the determination of such an α
requires prior knowledge about H. We discuss this draw-
back in Sec. VII. Fortunately, however, for a large class
of Hamiltonians, such as sparse Hamiltonians and linear
combinations of unitaries, one can determine a sufficient
α and construct a block encoding of H/α [8,12]. With this
rescaled block encoding, one can equivalently imagine that
our goal is to determine if H/α has any eigenvalues less
than λth/α to within a precision �λ/α.

Moreover, as the eigenvalue threshold problem deals
with eigenvalues, it is most straightforwardly approached
with a quantum eigenvalue transform. However, in accor-
dance with the theme of this tutorial, we may equivalently
solve this problem with the QSVT if the eigenvalues of
H are positive, such that the singular values are equal to
the eigenvalues. If this is not the case, we may instead
use the block encoding of H/α and the circuit in Fig. 7 to
construct a block encoding of the positive definite matrix
1
2 (H/α + I). Under this modification, the new goal would
be to determine if 1

2 (H/α + I) has eigenvalues less than

040203-13

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

H/α

H H

...
...

FIG. 7. A simple circuit for block encoding 1
2 (H/α + I), the

projectors for which are, following QSVT conventions, |0〉〈0| ⊗
	 and |0〉〈0| ⊗ 	̃.

1
2 (λth/α + 1) to within a precision �λ/α, which may be
achieved with the QSVT. In the remainder of this section,
we assume that this issue is alleviated and specialize to the
case of distinguishing the threshold λth/α.

With those concerns out of the way, how might this
problem be solved with the QSVT? A fruitful approach,
which we follow, is to apply the QSVT to the Hamiltonian
with a function that filters out large eigenvalues. While one
might suspect that we need a function that locates eigen-
values below the threshold λth/α, such as the eigenstate
filtering function of Ref. [41], we can actually employ a
much simpler construction. All we need is a function that
behaves markedly different on eigenvalues greater than and
less than λth/α and such a function may be constructed
using the technology from Sec. III.

A good choice for such a function is �(λth/α − x),
which maps eigenvalues less than λth/α to 1 and larger
eigenvalues to −1. One could imagine approximating this
function by P�ε,�(λth/α − x) but there is a catch: this poly-
nomial does not have definite parity and thus does not
satisfy the constraints of Theorem 1. Instead, we need
to consider a symmetrized version with even parity, the
eigenvalue threshold polynomial:

PET
ε,�,λth/α

(x) := 1
1+ ε

4

[
−1+ ε

4
+ P�ε

2 ,�

(
λth
α
− x

)

+ P�ε
2 ,�

(
λth
α
+ x

)]
. (55)

The factors of ε/4 ensure that PET
ε,�,λth/α

(x) has the fol-
lowing desired properties, which are easily seen via the
triangle inequality:

(1) |PET
ε,�,λth/α

(x)| ≤ 1 for x ∈ [0, 1].
(2) |�(λth/α − x)− PET

ε,�,λth/α
(x)| ≤ ε

for x ∈ [
0, 1

]\ (λth/α −�/2, λth/α +�/2).

So, PET
ε,�,λth/α

(x) behaves as P�ε,�(λth/α − x) for x ≥ 0
(the only relevant range for singular values). In addition,
PET
ε,�,λth/α

(x) has definite parity and magnitude bounded by
1, so it may be implemented through the QSVT [again,
it obeys the conditions on Poly(a)= 〈+|U �φ|+〉 discussed

in Sec. II A and Appendix A]. Thus, this polynomial
may be used to distinguish between eigenvalues less than
λth/α −�/2 and greater than λth/α +�/2, which natu-
rally indicates a precision �λ/α = �/2.

To see how we may employ this technology, note that
we may express |ψ〉 in the eigenbasis as

|ψ〉 =
∑
λ

cλ|λ〉 =
∑
λ≤λth

cλ|λ〉 +
∑
λ>λth

cλ|λ〉, (56)

where
∑

λ≤λth
|cλ|2 ≥ ζ 2 by the guarantee mentioned

above. Next, consider using the QSVT to develop
(PET
ε,�)

(SV)(H/α) and apply it to |ψ〉 controlled by an
ancilla qubit in the state |+〉, as in the circuit of Fig. 8.
After applying a Hadamard gate to this ancilla qubit, the
final (unnormalized) state of the system is

1
2

(
|0〉

∑
λ

cλ[1+ PET
ε,�(λ)]|λ〉

+ |1〉
∑
λ

cλ[1− PET
ε,�(λ)]|λ〉

)
. (57)

We can solve the eigenvalue threshold problem by mea-
suring the ancilla qubit in the computational basis. Observe
that the probability of measuring the ancilla qubit in |0〉 is

p(0) = 1
2

∑ |cλ|2[1+ PET
ε,�,λth/α

(λ)]2∑ |cλ|2{1+ [PET
ε,�,λth/α

(λ)]2} . (58)

If all eigenvalues obey λ > λth +�λ, then −1 ≤
PET
ε,�,λth/α

(λ) ≤ −1+ ε and so

p(0| λ > λth +�λ) ≤ ε2

2[1+ (−1+ ε)2]
≤ 1

2
ε2. (59)

This implies that it is unlikely to measure |0〉 if all
eigenvalues obey λ > λth +�λ. On the other hand, if
there exists an eigenvalue that obeys λ < λth −�λ, then
1− ε ≤ PET

ε,�,λth/α
(λ < λth −�λ) ≤ 1 and −1 ≤ PET

ε,�,λth/α

Θ
(

λth

α
− x

)
H H|0〉

|ψ〉 ...
...

FIG. 8. The circuit that, upon measuring the auxiliary qubit,
can be used to solve the eigenvalue threshold problem with high
probability as in Algorithm 2.

040203-14

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

(λ > λth +�λ) ≤ −1+ ε, which implies that

p(0| ∃λ < λth −�λ) ≥ ζ
2(2− ε)2
2(1+ 1)

≥ ζ 2(1− ε). (60)

This indicates that, for reasonably sized ζ , we are more
likely to measure |0〉 if there exists an eigenvalue λ <
λth −�λ.

With this construction, the eigenvalue threshold prob-
lem is reduced to distinguishing between two Bernoulli
distributions: one with mean ≤ 1

2ε
2 and one with mean

≥ ζ 2(1− ε). To ensure that these means are well sep-
arated, we desire ζ 2(1− ε) > 1

2ε
2. Since ε ≤ √2/eπ ≈

0.48 by the construction of P�ε,�(x) in Ref. [21], this may
be enforced by choosing an ε < ζ [i.e., ε = O(ζ)]; for
instance, ε = 1/4ζ is a sufficient choice, which we make
use of in the following. We may then distinguish between
these distributions with high probability by performing
repeated measurements. This is quantified by the following
lemma:

Lemma 5: Suppose that we have two Bernoulli distribu-
tions X0, X1 that return elements in {0, 1} and that we have
expected values 0 ≤ a < b ≤ 1, respectively. Given a dis-
tribution X that is either X0 or X1, we may determine the
identity of X with confidence greater than 1− δ for δ > 0
with O {

[b+ a/(b− a)2] log(1/δ)
}

samples of X .

Proof. To distinguish between these distributions, let us
take n samples Xi and guess that X is the distribution the
mean of which is closest to the empirical mean of the sam-
ples. Suppose that X = X0 and thus has mean a (the case
X = X1 may be treated analogously). We are interested in
computing the probability of mistaking this distribution for
X1, namely

P(error) = P

(
n∑

i=1

Xi ≥ n(a+ b)/2

)

= P

(
n∑

i=1

Xi ≥ n[a+ (b− a)/2]

)
. (61)

To bound this error probability, we may invoke the well-
known multiplicative Chernoff bound, with mean μ =
E(

∑n
i=1 Xi) = na and relative difference from the mean ε,

μ+ n(b− a)/2 = μ(1+ ε) =⇒ ε = b− a
2a

. (62)

Employing the multiplicative Chernoff bound, we may
ensure that the error probability is less than some chosen δ

as

P

(
n∑

i=1

Xi ≥ na(1+ ε)
)
≤ e−ε

2na/3 ≤ δ, (63)

which in turn requires n ≥ (3/aε2) log(1/δ) or, equiva-
lently, n ≥ [12a/(b− a)2] log(1/δ) = O{

[a/(b− a)2] log
(1/δ)

}
.

Performing a similar calculation for the hypothe-
sis X = X1 yields n = O{

[b/(b− a)2] log(1/δ)
}
. Sum-

ming these results over equal priors over X ∈ {X0, X1}
provides the scaling n ≥ [6(a+ b)/(b− a)2] log(1/δ) =
O{

[a+ b/(b− a)2] log(1/δ)
}
, as claimed in the lemma

statement. �
Applying this lemma to our scenario in the eigenvalue

threshold problem, we have 1/b− a ≤ 1/ζ 2(1− ε)− ε2/

2 = O(1/ζ 2). For instance, with our choice ε = ζ/4, we
have 1/b− a < 3/2ζ 2. We then have a+ b/(b− a)2 =
(b− a)+ 2a/(b− a)2 = O(1/ζ 2 + ζ 2/ζ 4) = O(1/ζ 2).
Therefore, if we repeat the aforementioned measure-
ment procedure O [

(1/ζ 2) log(1/δ)
]

times, we can cor-
rectly distinguish between the two distributions and
solve the eigenvalue threshold problem with probabil-
ity at least 1− δ. As each repetition performs the

Input: Access to a Hamiltonian, H, and an
α ≥ ‖H‖.

Output: Whether H has at least one eigenvalue
λ < λth − Δλ, or if all eigenvalues obey
λ > λth + Δλ.

Runtime : O
(

α
Δλζ2 log(1/ζ) log(1/δ)

)
uses of a

unitary block encoding of H/α and
its inverse, and CΠNOT, CΠ̃NOT
and single qubit phase gates.
Succeeds with probability at least
1 − δ.

Procedure:
1 Prepare a unitary block encoding of H/α.
2 for i = 1 to
 315

32ζ2 log(1/δ)� do

3 Use QSVT to apply
(

PET
ζ
4 ,

2Δλ
α ,

λth
α

)(SV)

(H/α) to

|ψ〉, controlled by an ancilla qubit in the state |+〉
(see Fig. 8).

4 Apply a Hadamard to the ancilla qubit and
measure it in the computational basis.

5 If the fraction of |0〉’s measured is closer to

ζ2(1 − ζ/4) than to ζ2

32 , then there exists an
eigenvalue λ ≤ λth − Δλ with high probability.
Otherwise, all eigenvalues obey λ ≥ λth + Δλ with
high probability.

Algorithm 2. The Eigenvalue Threshold Problem by the
QSVT.

040203-15

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

QSVT with a polynomial of degree O [(1/�) log(1/ε)] =
O [(α/�λ) log(1/ζ)], this overall algorithm queries the
Hamiltonian O [

(α/�λζ
2) log(1/ζ) log(1/δ)

]
times. For

consistency, we note that this 1/ζ 2 dependence is sub-
optimal and can be improved to 1/ζ using Lemma 7 of
Ref. [42]. We summarize the eigenvalue threshold problem
by the QSVT in Algorithm 2. Here, we note that the upper
limit on the index of the for loop comes from the condition
n ≥ [6(a+ b)/(b− a)2] log(1/δ) according to Lemma 5,
with the choice ε = ζ/4.

V. PHASE ESTIMATION BY QSVT

Another salient problem that admits a quantum advan-
tage is phase estimation, which is as follows: given access
to a unitary oracle U and an eigenvector |u〉 such that
U|u〉 = e2π iϕ|u〉, determine ϕ. Here, we approach this
problem by integrating a feedback procedure inspired by
Kitaev’s algorithm [20,43], with the technology developed
in solving the eigenvalue threshold problem in Sec. IV. We
first provide a sketch of the algorithm and then address
a few caveats in its construction. Finally, we present a
concrete formulation of QSVT-based phase estimation,
analyze its capabilities, and demonstrate how the quantum
Fourier transform naturally emerges from this construc-
tion.

A. Intuition

To motivate iterative phase estimation by QSVT, recall
that Kitaev’s algorithm for phase estimation [20,43]
may be reinterpreted as a semiclassical feedback process
[44,45]. One may view this feedback process as incorpo-
rating a classical parameter θ ∈ [0, 1], initialized at θ = 0,
such that through a series of controlled-Uj calls and a
single-qubit measurements, each of which updates θ , one
obtains a value θ ≈ ϕ at the end of the algorithm.

Our approach to phase estimation by QSVT is heavily
inspired by this feedback procedure. Just as in Kitaev’s
algorithm, we introduce a parameter θ ∈ [0, 1], initialized
at 0, that is updated throughout the algorithm and, by the
end of the procedure, the final value of θ will approximate
ϕ. We sketch our algorithm in the following section.

Before proceeding, we note that a very similar QSVT-
based phase estimation algorithm has independently been
discovered in Ref. [17]. A primary goal of that work is to
maintain coherence and, accordingly, the tutorial presents
a thorough performance analysis of the authors’ algorithm,
including the derivation of constant factors as well as pre-
cise use of the diamond norm. Reference [17] also extends
their QSVT-based phase estimation algorithm to coherent
energy and amplitude estimation.

1. Sketch of the algorithm

To understand our algorithm, let us use the binary-
fraction representation of ϕ and assume that ϕ is an m-bit

number: ϕ = 0.ϕ1ϕ2 · · ·ϕm for some finite m (in this repre-
sentation, ϕ =∑

j 2−jϕj). We show how to deal with the
m = ∞ case later.

In the QSVT phase estimation algorithm, ϕ is deter-
mined bit by bit through a series of m iterations, beginning
with the least significant bit, ϕm, and proceeding down to
the most significant bit, ϕ1. In each iteration, we construct a
matrix the singular values of which encode the least signif-
icant bits of ϕ as well as the current value of θ . By applying
the QSVT to this matrix, conditioned on an ancilla qubit,
and subsequently measuring the ancilla qubit, we deter-
mine a single bit of ϕ and update θ accordingly. If each
iteration succeeds, then θ = ϕ at the end of the algorithm.

To see how this may be achieved, consider the matrix
Aj (θ) := 1

2 (I + e−2π iθU2j
), which has a singular value

σ j := ∣∣ cos
[
π(2j ϕ − θ)]∣∣, (64)

with corresponding right singular vector |vj 〉 = |u〉 and
left singular vector |wj 〉 = eiπ(2j ϕ−θ)|u〉. Because exp
(π i2jϕ) = exp(2π i2j−10.ϕ1 · · · ϕm) = exp(π i0.ϕj+1 · · ·
ϕm), σ j may be reexpressed as

σ j = ∣∣ cos
[
π(0.ϕj+1ϕj+2 · · ·ϕm − θ)

]∣∣. (65)

This singular value is used to extract the bits of ϕ as
follows. Consider the first iteration of the QSVT phase
estimation algorithm, where we begin with j = m− 1 (and
decrement j down to j = 0). Because θ is initialized at 0,
the singular value of interest is

σm−1 = ∣∣ cos
[
π(0.ϕm)

]∣∣ =
{

1 ϕm = 0
0 ϕm = 1,

(66)

from which ϕm may be evaluated as ϕm = 1
2

[
1+�

(
1
/

√
2− σm−1

)]
. This expression provides a pathway to

extract ϕm, akin to the procedure used in the eigenvalue
threshold problem: apply the QSVT to Am−1(θ) with the
target function �

(
1/
√

2− x
)

[46] and employ the circuit
in Fig. 8, the measurement result of which is ϕm. After
measurement, we update θ by setting the first bit of θ
to θ1 = ϕm (again using the binary-fraction representation
θ = 0.θ1θ2 · · ·), such that θ = 0.ϕm, which completes the
j = m− 1 iteration.

We then move to the next iteration, wherein we decre-
ment j = m− 1← m− 2, map θ ← θ/2 = 0.0ϕm, and
construct Aj (θ) = Am−2(0.0ϕm), which has singular value

σm−2 = ∣∣ cos
[
π(0.ϕm−1ϕm − 0.0ϕm)

]∣∣
= ∣∣ cos

[
π(0.ϕm−1)

]∣∣. (67)

Note that the updated value of θ allows for a convenient

040203-16

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Θ
(

1√
2

− Aj(θ)
)

|0〉

|u〉 ...
...

H H ϕj+1

FIG. 9. The quantum circuit used to evaluate ϕj+1 at each
iteration of the phase estimation-by-QSVT procedure.

cancellation of ϕm. As this relation is identical to Eq. (66),
ϕm−1 may be determined by employing the QSVT pro-
cedure mentioned above and again executing the circuit
in Fig 9. Upon obtaining the measurement result of this
circuit, we set θ1 = ϕm−1.

It is clear that this procedure may be repeated to deter-
mine each bit of ϕ, such that at the end of the j = 0 itera-
tion, one obtains θ = ϕ, which solves the phase estimation
problem. Ultimately, this procedure succeeds because θ
encodes the least significant bits of ϕ, from which the next
bit of ϕ may be extracted by cleverly transforming the sin-
gular values of Aj (θ). Accordingly, this algorithm may be
seen as a binary search through the bits of ϕ, a key idea to
which we return in Sec. V D.

At this stage, however, one may object to this algorithm
sketch, as it requires m iterations, and it could be the case
that m is unknown or prohibitively large. This is not an
issue, as we prove in Appendix B 1 that if we start at j =
n− 1 for some positive integer n, then we have (with a
minor procedural modification needed for n < m):

Theorem 6: If n ≥ m, and one can exactly implement the
sign function through the QSVT, then at the end of this
procedure, θ = ϕ.

and

Theorem 7: If n < m (including the case m = ∞) and one
can exactly implement the sign function through the QSVT,
then at the end of this procedure, |θ − ϕ| ≤ 2−n−1.

As evidenced by these theorems, which are easily
proven by induction, this procedure necessarily outputs
an n-bit approximation to ϕ and is the essence of the
algorithm for phase estimation by QSVT. However, in
spite of the simple appearance of this algorithm, a few
issues must be addressed before presenting its concrete
formulation.

2. Caveats

Here, we address a few caveats in the above algorithm
sketch. First, as described thus far, this procedure applies
the QSVT to the matrix Aj (θ), which requires a unitary
block encoding of Aj (θ). Fortunately, this encoding can

e−2πiθ U2j

H H

...
...

FIG. 10. A quantum circuit that achieves a unitary block
encoding of Aj (θ), which we denote by Wj (θ) and incorporate
into Algorithm 3.

be easily constructed as the circuit in Fig. 10, which we
denote by Wj (θ). A simple calculation of Fig. 10 indicates
that Wj (θ) has the desired form:

Wj (θ) := 1
2

(
I + e−2π iθU2j

I − e−2π iθU2j

I − e−2π iθU2j
I + e−2π iθU2j

)

=
(

Aj (θ) ·
· ·

)
, (68)

with corresponding projection operators 	 = 	̃ = |0〉〈0|
⊗ I .

Another concern with the aforementioned procedure is
that the sign function, �

(
1/
√

2− x
)

, may seem over-
complicated and unnecessary, as the same results could
be attained with a simpler function, such as 1− x. How-
ever, the sign function is crucial when one desires merely
an n-bit approximation to ϕ, which is necessary when m
is unknown or prohibitively large, as is often the case in
practice. In this situation, the use of the sign function (the
exact sign function, rather than an approximation) will
ultimately set θ equal to the n-bit number closest to ϕ.
For example, if 0.ϕmϕm+1 · · · = 0.011 · · · at the first iter-
ation, then despite the fact that ϕm = 0, the use of the
sign function will set θ1 = 1 because 0.1 is the best 1-bit
approximation to 0.011 · · · .

Lastly, the most significant problem with this procedure
as it currently stands is that the sign function is not a poly-
nomial and therefore cannot be implemented exactly in the
QSVT. Instead, �

(
1/
√

2− x
)

must be approximated by a
polynomial, a good choice for which is P�ε,�

(
1/
√

2− x
)

from Sec. III. However, as in Sec. IV, in order to ensure
that the target polynomial has definite parity, we must use
a symmetrized polynomial, the phase estimation polyno-
mial:

PPE
ε,�(x) := 1

1+ ε
4

[
−1+ ε

4
+ P�ε

2 ,�

(
1√
2
− x

)

+ P�ε
2 ,�

(
1√
2
+ x

)]
. (69)

Like the eigenvalue threshold polynomial, PPE
ε,�(x) is

even, is bounded in magnitude by 1, and behaves as

040203-17

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

P�ε,�

(
1/
√

2− x
)

for x ≥ 0, which is the only relevant
range for singular values.

This approximation comes with the potential for error,
as an iteration of this procedure may now fail with a
nonzero probability, where failure is defined as measuring
an incorrect bit of an approximation to ϕ (an approxi-
mation that suffers error ≤ 2−n−1), which results in an
inaccurate θ such that |θ − ϕ| ≥ 2−n−1. Therefore, we
reformulate our goal probabilistically as follows: obtain an
n-bit approximation to ϕ with probability at least 1− δ.

The probability of failure is dictated by the values of
� and ε. In particular, for a nonzero �, note that if
σ j ∈

[
1/
√

2−�/2, 1/
√

2+�/2
]
, where PPE

ε,�(x) is not
a good approximation to the sign function, then an error
may occur. Fortunately, if� is made sufficiently small, this
error mode does not induce significant errors:

Theorem 8: If we choose � such that

� < 2
[

cos
(

3π
16

)
− 1√

2

]
≈ 0.25, (70)

then σ j ∈
[
1/
√

2−�/2, 1/
√

2+�/2
]

is only possible
at the (j = n− 1)th iteration, such that an error due to
� can only occur at the j th iteration. If an error is made
at this iteration, then at the end of the algorithm, then
|θ − ϕ| < 1/2n, assuming no errors are made at later
iterations.

This Theorem, proven in Appendix B 2, indicates that
the error caused by � is at most 2−n when we obey this
bound, which we assume is obeyed in the following.

Next, a nonzero ε can also induce errors. Because
PPE
ε,�(x) ε approximates �

(
1/
√

2− x
)

outside of
[
1/
√

2

− �/2, 1/
√

2+�/2
]
, the failure probability of the mea-

surement in Fig. 9 goes as O(ε2) and this type of
error may occur at any iteration. To study this quan-
titatively, consider iteration j < n− 1, such that σ j /∈[
1/
√

2−�/2, 1/
√

2+�/2
]
, and focus on the scenario

σ j < 1/
√

2−�/2, in which case PPE
ε,�(σ

j) ∈ [−1,−1+
ε] and θ1 = 0 is the ideal measurement (the case in which
σ j > 1/

√
2+�/2 is analogous). By evaluating the circuit

in Fig. 9, with PPE
ε,�(σ

j) in place of the sign function, we
find that the final (unnormalized) state of the ancilla qubit
is

1
2

{ [
1− PPE

ε,�(σ
j)
] |0〉 + [

1+ PPE
ε,�(σ

j)
] |1〉}, (71)

such that the probability of failure (measuring |1〉) at this
iteration is

Input: An oracle that performs a controlled-U j

operation, an eigenstate |u〉 of U with
eigenvalue e2πiϕ, and n + 1 ancilla qubits
(or 1 ancilla qubit that is reused (n + 1)
times). Also, an ε ≤ √

2δ/(n + 1) and a

Δ < 2
(
cos 3π

16

) − 1√
2

)
≈ 0.25.

Output: A θ such that |θ − ϕ| ≤ 1
2n .

Runtime : O n log n
δ

))
queries to the

controlled-U j oracle. Succeeds with
with probability ≥ 1 − δ.

Procedure:
1 Initialize θ = 0.
2 Apply a Hadamard gate to each auxiliary qubit.
3 for j = n − 1 down to 0 do
4 θ ← θ/2 (equivalently, θ = 0.θ1θ2... ← 0.0θ1θ2...)
5 Construct a block encoding of

Aj(θ) := 1
2 (I + e−2πiθU2j

) as per Figure 10.
6 Use QSVT to apply the operator

(PPE
ε,Δ)(SV)(Aj(θ)) to |u〉, controlled on an ancilla

qubit, where PPE
ε,Δ(x) is defined in Eq. (69).

7 Apply a Hadamard gate to the ancilla qubit, and
measure it in the computational basis.

8 Set the first bit of θ (i.e. θ1) equal to the result of
this measurement.

9 With j = 0, repeat lines 5-8 of the above loop.
10 Set the first bit of θ (i.e. θ0) equal to the result of

the measurement.

Algorithm 3. Phase Estimation by QSVT.

pfail =
[
1+ PPE

ε,�(σ
j)
]2

2
{

1+ [
PPE
ε,�(σ

j)
]2
} ≤ ε2

2
[
1+ (−1+ ε)2] ≤

1
2
ε2

(72)

for ε ≤ 1.
What ε is sufficient for our purposes? As our proce-

dure consists of n iterations, we desire that each iteration
fails with probability no greater than δ/n, such that the
overall algorithm succeeds with probability at least 1− δ
by the union bound. From the above inequality, this can
be enforced by the choice ε ≤ √2δ/n. Therefore, with
these conditions on � and ε, this algorithm sketch suc-
ceeds with probability≥ 1− δ at determining a θ such that
|θ − ϕ| < 1/2n, as desired.

B. The complete algorithm

After supplying intuition and addressing potential
issues, we now present the complete algorithm for phase
estimation by QSVT in Algorithm 3. We depict the cir-
cuit for this algorithm in Fig. 11, which illustrates its
resemblance to the inverse quantum Fourier transform, a
connection on which we elaborate in Sec. V D. We fur-
ther unpack the details of the phase estimation-by-QSVT

040203-18

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

circuit in Fig. 12; here, the operator R� is defined as

R� :=
[

1 0
0 e2π i/2�

]
, (73)

which is a z rotation, up to a global phase.
Note that we include the additional lines 9 and 10 in

the algorithm to account for the bit in the ones place of
θ (i.e., θ0), which is needed when n < m such that θ is
an approximation to ϕ. Typically, θ0 = 0, but θ0 = 1 is
possible in the scenario that 1.0 is a good approximation
to ϕ (for example, rounding 0.11111 to two binary deci-
mals yields 1.00). As a result of this additional iteration,
we must now require ε ≤ √2δ/(n+ 1) to ensure that the
algorithm succeeds with probability at least 1− δ.

Also observe that Algorithm 3 consists of O(n) iter-
ations, each of which performs an instance of the
QSVT with a polynomial of degree O [

(1/�) log(1
ε
)
] =

O [
log(n

δ
)
]

degree polynomial, so phase estimation by
QSVT queries the controlled-Uj oracle O[

n log
(
n/δ

)]
times. In addition, the multiplicative factor 1/� is not par-
ticularly prohibitive because � = O(1) need only satisfy
� < 2

(
cos(3π/16)− 1/

√
2
)
≈ 0.25.

While this O(n log n) query complexity may appear to
provide a speed-up over conventional phase estimation,
the gate count of which scales as O(n2), we note that
phase estimation by QSVT requires O(n log n) queries
to the controlled-Uj oracle, whereas conventional phase
estimation requires only O(n) queries [18]. Nonethe-
less, we believe that this logarithmic factor could be
removed by integrating phase estimation by QSVT with
a more sophisticated phase estimation protocol, such
as the inference procedures of Refs. [47,48], which
already attain speed-ups over conventional phase estima-
tion. Indeed, the QSVT-based phase estimation algorithm
of Ref. [17] requires only O(n) queries to the oracle,
which is achieved by using a procedure very similar to

Algorithm 3 but varying the degree of the QSVT polyno-
mial at each iteration (schematically, by increasing � at
each iteration).

Likewise, phase estimation by QSVT may be mod-
ified to be more applicable to specialized scenarios,
such as if one is restricted in the polynomials that
may be implemented through the QSVT or if one has
prior knowledge about ϕ. For example, suppose that one
cannot implement ε ≤ √2δ/(n+ 1) with certainty and so,
instead, must choose ε = O(1). To alleviate this difficulty,
one could repeat the measurement in line 7 O[log(n/δ)]
times and set θ1 equal to the majority vote of the mea-
surement results, which yields an accurate value of θ with
probability ≥ 1− δ. Similarly, suppose that the constraint
on � cannot be implemented. Then, again using repeated
measurements, if σ n−1 is very close to 1/

√
2, the major-

ity of the measurement results may not reflect the correct
choice of θ1. But with high probability, the measurement
results will be ambiguous, signaling that σ n−1 is near
1/
√

2. In this event, one could move to an even higher iter-
ation—say, some j > n− 1—where it is likely that σ j is
not near 1/

√
2 and ϕj+1 is easily determined (and if σ j is

again near 1/
√

2, one could again move to a higher iter-
ation j ′ > j). With this bit correctly determined, one may
proceed through the rest of the iterations and attain a good
estimate of ϕ.

C. Applications to factoring and beyond

Here, we discuss how phase estimation by QSVT may
be applied to the factoring problem and used for robust
phase estimation.

1. Factoring

Phase estimation by QSVT may be straightforwardly
applied to the factoring problem. Recall that in the factor-
ing problem, the oracle U behaves as U|u〉 = |xu(mod N)〉
for some x < N and has eigenvalues e2π is/r, where r is the
order of U [i.e., xr = 1(modN)] and s ∈ {0, 1, . . . , r− 1}

n
+

1
qu

bi
ts |0〉

...
...

|0〉

|0〉

|u〉 ...
...

...

· · ·

· · ·

H

H

· · ·H H

Θ
(

1√
2

− An(θ)
)

Θ
(

1√
2

− An−1(θ)
)

...

H

Θ
(

1√
2

− A1(θ)
)

H ϕ0

ϕn−1

ϕn

FIG. 11. An abstract overview of the circuit performing phase estimation through the QSVT (Algorithm 3). The double lines indicate
that measurement results are fed forward (via the parameter θ) to all future controlled QSVT operations, where this adaptive process is
unpacked in Fig. 12. In essence, the circuit systematically computes the least significant bit of an unknown quantum phase, adaptively
bit shifts this phase, and repeats. Note the similarity of this operation to the inverse quantum Fourier transform, a connection on which
we elaborate in Sec. V D.

040203-19

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Wn−1 Π Π W †
n−1 Π Π

φ2k−1 φ2k

for k ∈ {1, 2, · · · , d}

Wn−2 Π Π W †
n−2 Π Π

φ2k−1 φ2k

for k ∈ {1, 2, · · · , d}

Wn−3 Π Π W †
n−3 Π Π

φ2k−1 φ2k

for k ∈ {1, 2, · · · , d}

H H

HH

H

H

H · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
...

...
...

...

...
...

...
...

n
+

1
qu

bi
ts

|0〉

|0〉

|0〉

|0〉

|0〉

|u〉

E
xp

an
de

d
vi

ew
of

co
nt

ro
lle

d
W

j
.

Wj

=

...
...

...
...

U2j

R†
n−j R†

3 R†
2 HH

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
...

...

...
...

...

FIG. 12. A quantum circuit for performing phase estimation using the QSVT, following Algorithm 3. The dotted controlled opera-
tors, denoted by Wj at step j , represent a composite gadget (unwrapped in the inset block) that depends on the states of (n− j − 2)
controlling qubits above it. Here, controlled-φj gates represent controlled-Z rotations by angle φj . Additionally, this figure depicts only
the even-d case of Theorem 4. This circuit terminates by measuring all auxiliary qubits in the computational basis. Also depicted is an
expanded view of a subroutine in the circuit depicted for phase estimation. Note that the Wj operator is the unitary that block encodes
Aj , as depicted in Fig. 10. Note also that each R� operator is defined as in Eq. (73). The controlled R� operations serve to adaptively
zero out the currently estimated phase to the (n− j − 2)th bit.

[18]. The goal is to determine some eigenphase s/r, from
which r may be determined by the continued fractions
algorithm and a factor of N may be extracted. In addition,
in the factoring problem, one does not have direct access to
an eigenstate |us〉 but, instead, one can prepare a uniform
superposition of eigenstates 1/

√
r
∑

s |us〉.
First, consider employing the phase estimation-by-

QSVT algorithm but replacing |u〉 with the superposition
1/
√

r
∑

s |us〉. With this modification, the phase estimation
algorithm begins with the superposition state 1/

√
r
∑

s |us〉
and converges to a single eigenstate at the end of the
algorithm. To see this, note that each measurement of an
ancilla qubit will restrict the state to be a superposition
over eigenstates the eigenvalues of which are consistent
with the measurement results thus far (i.e., the eigenphases
the least significant bits of which agree with the measure-
ment results). Because the eigenvalues are not degenerate,
the state at the end of the algorithm will be an eigen-
state—say, |us〉—the eigenphase of which is θ ≈ s/r, to
which the continued fractions algorithm may be applied to
determine r.

How accurate must the approximation θ ≈ s/r be? Note
that if our estimate θ obeys

∣∣∣s
r
− θ

∣∣∣ ≤ 1
2r2 , (74)

then we can determine the fraction s/r by applying the
continued fractions algorithm to θ [18]. We can ensure
that this condition is met by selecting n = 2 log2(N)+ 1,
such that |s/r− θ | ≤ 2−n = 1/2N 2 ≤ 1/2r2, as desired.
Thus, subject to these conditions, phase estimation by
QSVT may be used to factor N in time O[

n log
(
n/δ

)]
= O [log N log (log N/δ)].

2. Robust phase estimation

Phase estimation by QSVT comes in handy when U can-
not be implemented reliably. For instance, suppose that
U2j

can only be implemented approximately, such that the
error in U2j

may be interpreted as an additive error in the
quantity 0.ϕj+1ϕj+2 · · ·ϕm of Eq. (65) (i.e., the erroneous
singular value is σ̃ j = | cos[π(0.ϕj+1ϕj+2 · · · + ε − θ)]|,
where ε is the additive error). If � is made sufficiently
small, then these errors are not large enough to induce an
incorrect measurement result with high probability and so
these errors can be tolerated.

This robustness to error can be quantified via the anal-
ysis in Appendix B 2. Formally, if we choose a small
enough � such that 1/4− 1/π arccos(1/

√
2+�/2) < γ

for some γ > 0, then we can tolerate additive errors in
0.ϕj+1ϕj+2 · · · of magnitude < 1/8− 3γ /2. In this sense,
phase estimation by QSVT provides protection against

040203-20

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

noise of this form, which is a nice improvement over
conventional phase estimation.

D. Emergent quantum Fourier transform

An integral component of Algorithm 3 is the cascading
of multiple QSVT sequences, using the results from one
instance to control subsequent instances. In its simplest
case, this cascading structure reduces to the celebrated
quantum Fourier transform (QFT) and generalizes the QFT
in more sophisticated constructions. We elaborate on this
key connection in this subsection.

To spot this connection, observe that circuit of Fig. 11
resembles that of the (inverse) quantum Fourier transform,
which becomes especially apparent in the limit of a length-
1 QSVT sequence. From a high level, this arises because
Algorithm 3 may be viewed as a binary search through
each bit of ϕ, where a bit of ϕ is determined at each iter-
ation. Similarly, the (inverse) quantum Fourier transform
may be viewed as a binary search through the bits defin-
ing an input state, where each qubit stores a bit of the input
state at the end of the computation. Denoting the input state
by |x〉 = |x1x2 · · · xn〉, where x = 0.x1x2 · · · xn, recall that
the action of the inverse quantum Fourier transform is to
map

1
2n/2

2n−1∑
k=0

e2π ixk|k〉 = 1
2n/2

(|0〉 + e2π i0.xn |1〉)

⊗ (|0〉 + e2π i0.xn−1xn |1〉)⊗ · · · (|0〉 + e2π i0.x1x2···xn |1〉)
�→ |x1x2 · · · xn〉 = |x〉. (75)

Similar to Algorithm 3, this mapping is achieved by apply-
ing Hadamards and controlled rotations to extract a bit of x
from each qubit, leading to the correspondence seen here.

Let us explicitly show how the QFT naturally emerges
from this construction. For the sake of pedagogical clarity,
we switch to performing the QSVT by projecting into the
|0〉〈0| block of the QSVT sequence, as in the (Wx, Sz, 〈0| ·
|0〉)-QSP convention of Appendix A, which makes the
connection to the QFT more apparent. This change is per-
missible because the threshold function, an even extension
of �

(
1/
√

2− x
)

, can be well approximated by a poly-
nomial in the more restricted class of polynomials of this
convention, as presented in Appendix D 7.

Under these conditions, let us make use of the block
encoding of Eq. (68) (Fig. 10), where 	 = 	̃ = |0〉〈0| ⊗
I . Then, a single instance of the signal-rotation operator
(the block encoding) followed by the signal-processing
rotation operator (the controlled phase shift), which is iter-
ated in the QSVT, may be fully realized as in the circuit
on the left side of Fig. 13. In this depiction, the top qubit
is used to implement the projector-controlled phase shift
as per Fig. 3 and the middle qubit is the block-encoding
qubit used to access the encoding of Aj (θ) as per Fig. 10.

Evaluation of this circuit allows simplification to the right
side of the figure, where we are now able to ignore the top
qubit in favor of just the block-encoding qubit, an identity
that follows from the simple choice of projector. A block-
encoding qubit can also double as one of the ancilla qubits
used to read out a bit of ϕ, as shown below. Let us refer to
this type of qubit as a phase-readout qubit.

To make this identification explicit and draw a parallel
with the QFT, let us also assume that ϕ is an (m = 3)-
bit number. Then, employing a length-d QSVT sequence,
the resulting phase estimation circuit may be schematically
expressed as in Fig. 14. Here, each phase-readout qubit
doubles as a block-encoding qubit [49], which is crucial to
the emergence of the QFT, and is indeed a valid restructur-
ing. In particular, instead of measuring each phase-readout
qubit, updating θ , and then applying a controlled θ rotation
at the next iteration, as in Algorithm 3, here we directly
apply rotations controlled by the phase-readout qubit, mak-
ing intermediate QSP-measurement steps unnecessary.

We implement this with the rotation operations R�
defined in Eq. (73). Similar to Fig. 12, our construc-
tion employs controlled R�’s to implement the following
behavior: if a phase-readout qubit is |0〉, then it does not
contribute to θ and no phase shift is applied; alternatively,
if the phase-readout qubit is |1〉, then it contributes to θ
and the corresponding phase shift is applied. Moreover,
we arrange the R�’s in a pattern that implicitly performs
the θ ← θ/2 operation after each iteration; specifically,
if ancilla qubit k controls an R� at one iteration, then at
the next iteration ancilla qubit k controls an R�+1. It may
be easily verified that this procedure correctly encodes
Aj (θ) = 1

2 (I + e−2π iθU2j
) at each iteration and is entirely

equivalent to the formalism of Algorithm 3, thus justifying
the recycling of phase-readout qubits as block-encoding
qubits.

Further, let the QSVT sequence length be simply d =
1, giving the quantum circuit depicted in Fig. 15. This
allows us to further simplify the circuit, without changing
any circuit elements, by observing that the controlled-U2j

operations commute with the R� operations, which are z
rotations. Slide the first three Hadamard gates over to the
far left and gather all the remaining gates on the con-
trol qubits on the far right, dropping the signal-rotation

H H

e−2πiθU2j

e−iφZ

|u〉

|0〉

|0〉

...
...

H H

e−2πiθU2j

eiφZ

|u〉

|0〉

...
...

=

FIG. 13. The simplification of QSP phase control for the case
when the block-encoded operator has an accessible control qubit.

040203-21

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

H H φ

H R†
2 H φ

H R†
2 R†

3 H φ

U4 U2 U1...
...

|0〉

|0〉

|0〉

|u〉

×d ×d ×d

FIG. 14. An illustration of three-qubit quantum phase estima-
tion using QSP.

operations φ, which are inconsequential at this level of
simplification.

This systematic simplification results in the quantum
circuit shown in Fig. 16, where the inverse QFT cir-
cuit emerges naturally as the set of gates following the
controlled-U2j

gates. This is the standard quantum phase
estimation circuit.

As this pattern persists to higher orders, we see that
quantum phase estimation emerges from the cascaded
QSVT (or QSP) employed to iteratively determine bits of
the phase of an eigenphase. The QSVT construction of this
transform allows for a richer variety of transformations;
however, including a trade-off between the accuracy of
each iterative step (by increasing d), the number of expo-
nentiated powers U to employ, the number of qubits to use
in the transform, and more.

VI. FUNCTION-EVALUATION PROBLEMS BY
QSVT

Another useful application of the QSVT is to evaluate
a function of a matrix, which we term function-evaluation
problems. Schematically, if f (x) is the function of interest,
such that we wish to evaluate f (A), then we could imagine
solving this problem by employing the QSVT with a poly-
nomial P(x) that approximates f (x). While these problems
are generally more approachable with a quantum eigen-
value transform, they are still straightforward to solve with
the QSVT.

Here, we summarize prominent function-evaluation
problems, most notably Hamiltonian simulation and
matrix inversion. Our discussion summarizes results from
Ref. [12], wherein the full details of these procedures can
be found.

H H φ

H R†
2 H φ

H R†
2 R†

3 H φ

U4 U2 U1...
...

|0〉

|0〉

|0〉

|u〉

FIG. 15. An illustration of three-qubit quantum phase estima-
tion using QSP, in the simplified case when d = 1.

H

H

H

U4 U2 U1...
...

|0〉

|0〉

|0〉

|u〉

H

R†
2 H

R†
2 R†

3 H

FIG. 16. An illustration of three-qubit quantum phase estima-
tion using QSP, in the simplified case when d = 1, with gates
slid along wires to highlight the three-qubit inverse QFT circuit
which emerges (gates in dotted rectangular box).

A. Hamiltonian simulation by QSVT

A motivating goal of quantum computation is to simu-
late the time evolution of a state under a Hamiltonian, a
problem known as Hamiltonian simulation. That is, for a
Hamiltonian H and some time t, we would like to approx-
imate the time evolution operator e−iHt, which is evidently
a function-evaluation problem with the function f (x) =
e−ixt.

In the setup of this problem, we assume access to H,
of which we desire a unitary block encoding such that we
may solve this problem with the QSVT. However, as we
discuss in Sec. IV, such a unitary block encoding is only
realizable if ‖H‖ ≤ 1. In general, then, we instead deter-
mine an α ≥ ‖H‖ and construct a unitary block encoding
of H/α. Again, this requires some prior knowledge about
H, a drawback on which we elaborate in Sec. VII, but for-
tunately such a block encoding can be achieved for a large
class of Hamiltonians [8,12].

With this rescaled block encoding, one can equivalently
imagine that our goal is to simulate the time evolution of a
system under the rescaled Hamiltonian H/α for a time tα.
This equivalence holds because the corresponding time-
evolution operators are identical: e−i(H/α)(αt) = e−iHt.

How might this problem be solved with the QSVT?
Naively, one may try to employ QSVT with a polynomial
approximation to e−ixt (here, we view t as a parameter, not a
variable). However, because the exponential function does
not have definite parity, this function does not satisfy the
constraints on Poly(a)= 〈+|U �φ|+〉 discussed in Sec. II A
and Appendix A). To circumvent this issue, one can instead
apply the QSVT twice—once with an even polynomial
approximation to cos(xt) and once with an odd polynomial
approximation to sin(xt), both of which have definite par-
ities. Then, using the circuit illustrated in Fig. 17, one can
sum together the results of these two QSVT executions to
obtain cos(SV)(Ht)− i sin(SV)(Ht) = e−iHt, as desired.

However, note that the above relation only holds if
the eigenvalues of H are positive, such that the singu-
lar values are equal to the eigenvalues. As we discuss in
Sec. IV, if this is not the case, we may instead use the

040203-22

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

block encoding of H/α and a circuit analogous to Fig. 10
to construct a block encoding of the positive definite matrix
1
2

(H
α
+ I

)
. Applying the aforementioned QSVT procedure

to this matrix for a time 2αt produces a block encoding of
e−iHt up to a global phase. In the remainder of this section,
we assume that this issue is alleviated.

Returning to the QSVT scheme, we note that in
Ref. [12], Gilyén et al. approximate the functions cos(xt)
and sin(xt) by polynomials using the Jacobi-Anger expan-
sion:

cos(xt) = J0(t)+ 2
∞∑

k=1

(−1)kJ2k(t)T2k(x) (76)

sin(xt) = 2
∞∑

k=0

(−1)kJ2k+1(t)T2k+1(x) (77)

where Ji(x) is a Bessel function of order i and Ti(x) is
a Chebyshev polynomial of order i. One can attain ε

approximations to cos(xt) and sin(xt) by truncating these
expressions at a sufficiently large index k′. The necessary
truncation index k′ may be determined by a function r(t, ε),
which is defined implicitly as

ε =
(|t|

r(t, ε)

)r(t,ε)

such that r(t, ε) ∈ (t,∞) (78)

and scales asymptotically as

r(t, ε) = �
(
|t| + log(1/ε)

log
(

e+ log(1/ε)
|t|

)
)

. (79)

In particular, truncating Eqs. (76) and (77) at k′ =⌊ 1
2 r (e/2|t|, 5/4ε)

⌋
yields ε approximations to cos(xt) and

sin(xt), respectively, where 0 < ε < 1/e. Because Ti(x)
is a polynomial of degree i with definite parity, these

cos (Ht) −i sin (Ht)

|0〉

|ψ0〉

H H

...
...

FIG. 17. One quantum circuit that can be used to construct the
time evolution operator cos(Ht)− i sin(Ht) = e−iHt and apply
it to |ψ0〉, for use in Hamiltonian simulation as described in
Algorithm 4. Note that the correct evolution of the input state
|ψ0〉 is achieved only upon postselection of the auxiliary qubit
in the |0〉 state. One can achieve this with either repetition or
fixed-point amplitude amplification, similar to projecting into the
desired block of the QSVT sequence operator as discussed at the
end of Sec. II D.

approximations are polynomials of degree 2k′ and 2k′ + 1,
respectively, with the correct even or odd parity. Let us
denote these polynomials by Pcos

ε (x; t) and Psin
ε (x; t).

Lastly, because cosine and sine are bounded in
magnitude by 1, these ε approximations only obey
|Pcos
ε (x; t)|, |Psin

ε (x; t)| ≤ 1+ ε. However, we need the tar-
get polynomials to necessarily be bounded in magnitude
by 1 in order to be implemented through the QSVT. As
in Ref. [23], we can fix this by rescaling the polynomi-
als by a factor of 1/1+ ε, at the expense of increasing the
error of these approximations to 2ε. This can be seen with
the triangle inequality as

∣∣(1/1+ ε)Pcos
ε (x; t)− cos(xt)

∣∣
≤ 1/1 + ε

[∣∣Pcos
ε (x; t)− cos(xt)

∣∣+ |ε cos(xt)|] ≤ 1/1+ ε
(ε + ε) ≤ 2ε and similarly for Psin

ε (x; t).
To determine the complexity of this Hamiltonian sim-

ulation algorithm, first recall that our effective goal is to
simulate the rescaled Hamiltonian H/α for time αt. In
addition, note that the truncations of the Jacobi-Anger
expansion used in this procedure should be ε/4 approxi-
mate such that, when rescaled by 1/1+ ε/4, they are ε/2
approximations to cos(xt) and sin(xt). With this choice,
the sum of these approximations, which is the approxima-
tion to e−ixt, is ε approximate by the triangle inequality.
Incorporating these conditions, we see that this QSVT-
based Hamiltonian simulation algorithm prepares an ε-
approximate block encoding of e−iHt and queries U a total
number of times:

2k′ + 2k′ + 1 = 4 ·
⌊

1
2

r
(

e
2
α|t|, 5

4
ε

4

)⌋
+ 1

= �
(
α|t| + log(1/ε)

log
(

e+ log(1/ε)
α|t|

)
)

. (80)

In comparing this query complexity with results quoted in
the literature, α may be replaced with ‖H‖.

This complexity has state-of-the-art scaling in t and ε
for Hamiltonian simulation: it is linear in t, logarithmic in
ε, and additive in these two terms. As such, it provides a
significant improvement over other algorithms [8,12,23].
We summarize Hamiltonian simulation by the QSVT in
Algorithm 4.

B. Matrix inversion by QSVT

Another straightforward, yet widely applicable, function-
evaluation problem is that of matrix inversion. That is,
given access to a square matrix A, one wishes to construct
an approximation to A−1. Harrow et al. have presented a
quantum algorithm for this problem in the case that A is
Hermitian [15]. In their eponymous algorithm, they pre-
pare the state A−1|b〉, which provides a quantum solution
to the linear system A|x〉 = |b〉.

Let us now look at this problem through the lens of the
QSVT. Suppose that we have an N × N matrix A with

040203-23

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Input: Access to a Hamiltonian H, a desired time
t, an error tolerance ε, and an α ≥ ‖H‖.

Output: A block encoded ε-approximation of
e−iHt.

Runtime : Θ
(

α|t| + log(1/ε)
log(e+ log(1/ε)

α|t|)

)
queries to

(the encoding of) H/α.
Procedure:

1 Prepare a unitary block encoding of H/α.
2 Apply QSVT to this encoding twice, using the
polynomials 1

1+ε/4P cos
ε/4 (x; t) and 1

1+ε/4P sin
ε/4(x; t),

where P cos
ε/4 (x; t) and P sin

ε/4(x; t) are obtained by
truncating the series in Eqs. (76) and (77),
respectively, at index k′ =

⌊ 1
2r(e

2α|t|, 5
4

ε
4)

⌋
.

3 With the results of the above QSVT executions,
which approximate cos(SV)(Ht) and sin(SV)(Ht),
respectively, run the circuit in Figure 17.

Algorithm 4. Hamiltonian Simulation by QSVT.

singular value decomposition A = W

V†

 , where
 con-

tains the singular values along its diagonal. As per the
setup of the HHL algorithm, we also assume that the singu-
lar values of A obey σi ∈ [1/κ , 1] for some finite condition
number κ ≥ 1 (if not, A may be rescaled to obey this con-
dition). As the singular values are nonzero, the inverse of
A exists and may be obtained as A−1 = V

−1W†

 , where

−1 contains the reciprocals of the singular values along
its diagonal. Because A† = V

W†

 , this can be reex-
pressed as A−1 = f (SV)(A†), where f (x) = 1/x, indicating
that matrix inversion is a function-evaluation problem with
f (x) = 1/x.

Upon this realization, it is clear how to apply the QSVT
to matrix inversion: find an odd polynomial P(x) that
approximates f (x) = 1/x over the range of singular val-
ues of A and employ the QSVT to construct P(SV)(A†),
which approximates A−1. Finding a good polynomial
P(x) is tricky because of the discontinuity in 1/x, but it
can indeed be done. In addition, this procedure requires
that one can construct a unitary block encoding of A,
which is feasible because ‖A‖ ≤ 1 as per the assump-
tion that σi ≤ 1. Such a block encoding can indeed be
achieved for a variety of matrices relevant to physics
[8,12] (but again, we discuss some caveats of doing so
in Sec. VII).

Moreover, because we require that the polynomial P(x)
be bounded in magnitude by 1 such that it can be imple-
mented through the QSVT, we cannot necessarily use
P(x) ≈ 1/x as our target function, since 1/σi ≥ 1 in gen-
eral. To overcome this challenge, let us instead seek
a polynomial approximation to a function that behaves
as 1/2κ1/x over the range [−1, 1] \ [−1/κ , 1/κ], which

will invert each singular value and is bounded in mag-
nitude by 1

2 over this range (we use the multiplica-
tive factor 1/2κ instead of 1/κ to avoid the need to
rescale by 1/1+ ε when we ε approximate this func-
tion, which is done in Sec. VI A). This procedure will
output an approximation of (1/2κ)A−1 and, because κ
is a priori known, this multiplicative factor is not pro-
hibitive to calculations. However, due to this multiplicative
factor, we now desire a ε/2κ approximation to (1/2κ)A−1,
from which we effectively attain an ε approximation
to A−1.

The appropriate polynomial for matrix inversion is thus
an ε/2κ approximation to 1/2κ1/x. In Appendix C, we
demonstrate how to construct such a polynomial. While
the construction is a bit involved, in essence it is a prod-
uct of a polynomial approximation to 1/x over a restricted
range (constructed as a sum of Chebyshev polynomials)
and a polynomial approximation to a rectangular function
[constructed as a sum of the sign function approximations,
P�ε,�(x)].

We term this polynomial the matrix-inversion polyno-
mial, denoted by PMI

ε,κ(x), and defer its rigorous definition to
Appendix C. In addition to being an ε/2κ approximation to
(1/2κ)1/x, PMI

ε,κ(x) has odd parity and is bounded in mag-
nitude by 1 for x ∈ [−1, 1]. Hence, the matrix-inversion
polynomial may be implemented through the QSVT.

Moreover, we also show in Appendix C that PMI
ε,κ(x) has

degree

d = O[κ log(κ/ε)]. (81)

As the QSVT requires O(d) calls to the block encod-
ing, we see that matrix inversion by QSVT has com-
plexity O[κ log(κ/ε)]. This is an improvement over
the conventional HHL algorithm, which has run time
O[κ2 log(N)/ε]. It is quite impressive that the QSVT
algorithm provides an large improvement in the scaling
with κ/ε, although similar results have been achieved with
non-QSVT methods [50]. In addition, the HHL algorithm
uses a sparse Hamiltonian simulation subroutine with tar-
get Hamiltonian A, resulting in the log(N) term in its
complexity, whereas the QSVT algorithm does not use
such a subroutine and thus N dependence is absent from
its complexity (however, constructing the necessary block
encoding of A may scale with N). We summarize matrix
inversion by QSVT in Algorithm 5.

Moreover, like the HHL algorithm, matrix inversion by
QSVT may be used to solve the linear system of equations
A|x〉 = |b〉, by applying the block encoding of (1/2κ)A−1

to |b〉, which yields an ε approximation to A−1|b〉 upon
rescaling by 2κ . As discussed at the end of Sec. II D, this
procedure requires that we project into the desired block
of the QSVT sequence operator, which may be performed
with little overhead.

040203-24

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Lastly, we note that this result can be further extended.
With some minor adjustments, this QSVT-based algorithm
can be adapted to prepare the pseudoinverse of a rectan-
gular matrix, which is useful in various machine learning
contexts [12].

VII. DISCUSSION

In this tutorial, we present how the quantum
singular value transformation encapsulates the three major
quantum algorithms. Paralleling Ref. [12], we construct
QSVT-based algorithms for search, Hamiltonian simula-
tion, and the quantum linear systems problem. Toward
this end, we also derive QSVT-based algorithms for the
eigenvalue threshold problem and phase estimation. More-
over, the utility of the QSVT is not entirely enumerated
here—further applications of the QSVT to the quantum
OR lemma, quantum machine learning, quantum walks,
fractional query implementation, and Gibbs state prepara-
tion appear in the literature [12].

It is insightful that the QSVT encompasses such a broad
spectrum of problems. Effectively, the QSVT provides a
series of dials (i.e., a well-defined parametrization) that can
be turned to transform from one algorithm to another. In
addition, when there is sufficient structure inherent to the
problem of interest, the resulting algorithm often becomes
more efficient. Consequently, the QSVT provides one lens
through which to analyze the source of quantum advantage
and make concrete the somewhat vague trade-off conjec-
tured between problem structure and quantum algorithmic
efficiency (while maintaining a significant gap between
optimal classical and quantum performance). In aggregate,
these constructions suggest that it is wise to continue to
search for new quantum algorithms in the setting of the
QSVT.

There is ample room for future research in this area.
Notably, various quantum algorithms have not yet been
constructed from QSVT-based subroutines, such as varia-
tional algorithms like the variational quantum eigensolver

Input: Access to A, an error tolerance ε, and a
condition number κ ≥ 1/(mini σi)

Output: A block encoded ε
2κ -approximation of

κ
2 A−1, which is effectively equivalent to
an ε-approximation to A−1.

Runtime : O κ log κ
ε

))
queries to (a block

encoding of) A†.
Procedure:

1 Prepare a unitary block encoding of A†.
2 Apply QSVT to this block encoding to compute
(PMI

ε,κ)(SV)(A†), where the polynomial PMI
ε,κ (x) is

defined in Eq. (C6) of Appendix C.

Algorithm 5. Matrix Inversion by QSVT.

[51] or the quantum approximate optimization algorithm
[52]. It would be fascinating to see if the QSVT can
encompass, or perhaps even enhance, these hybrid quan-
tum algorithms as well. This work also begets the question
of how else one might tweak the parameters of the QSVT
to create novel algorithms or extend previously known
algorithms to novel noise settings. As the QSVT is intu-
itive and flexible, there is likely a large class of problems
that are amenable to analysis by QSVT and that admit a
significant quantum advantage.

Moreover, note that there is a significant caveat in the
use of the QSVT, arising from the requirement of block
encodings. In a typical implementation of the QSVT on
a quantum computer, we may imagine that the matrix to
which we would like to apply a transform—say, A—is pro-
vided in a quantum random access memory (QRAM), from
which we may straightforwardly construct a block encod-
ing of A/‖A‖F [12]. One could then apply the QSVT to
this encoding with a run time linear in ‖A‖F , similar to
how the run times of the eigenvalue threshold algorithm
and the Hamiltonian simulation algorithm of this tutorial
are linear in α. However, assuming that one has a classical
computer with sampling and query access to A, as a clas-
sical analog of having A loaded into QRAM, then one
can acquire access to a singular value transformation of
A by executing a classical (not quantum) algorithm [53];
impressively, this classical algorithm has a run-time poly-
nomial in ‖A‖F . This polynomial run time suggests that
QRAM-based QSVT cannot always achieve an exponen-
tial speed-up over classical algorithms but can still attain a
significant polynomial speed-up. Although this challenge
could be an Achilles’ heel for application of the QSVT to
general and unstructured problems, clearly the QSVT is
still of interest for speeding up solution of problems with
structure, as illustrated by quantum factoring. Also, while
every QRAM essentially provides a block-encoded matrix,
there are ways to block encode matrices that do not require
a QRAM; this is good, given the fact that QRAM imple-
mentations generally face a number of practical challenges
in their realization, e.g., requiring a number of ancillary
qubits that grows linearly with the number of items stored
(see, e.g., Ref. [54] and references therein).

It is also interesting to note that while physics has
developed significant insight into the role of eigenvalues,
appreciation of singular values has lagged. For example,
eigenvalues are the bread and butter of quantum systems,
as energies for eigenstates of the Hamiltonian and as sta-
bility points for stochastic systems. In contrast, singular
values apparently play few starring roles in physics. One
of the few examples arises in the study of entanglement,
where the singular value decomposition is the underlying
construct behind the Schmidt decomposition of a bipartite
quantum state.

Why are there so few prominent roles for singular values
in physics? Maybe it is because physics is drawn to closed

040203-25

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Hamiltonian systems (think: square matrices), whereas
singular value decompositions arise mostly in studies of
subsystems (think: nonsquare matrices), where the input
and output dimensions may be different. As discussed in
Sec. I, such disparate dimensions also arise naturally in
computation. And, indeed, singular value decompositions
play a prominent role in modern computation, especially
in machine learning, where they are the basis for principal
component analysis, model reduction, collaborative filter-
ing, and more. As quantum information and computer sci-
ence continue to grow into a unified field, perhaps it is not
surprising that singular value decompositions—and sin-
gular value transformations—are emerging as a unifying
bridge.

ACKNOWLEDGMENTS

The numerical phase computation and algorithms work
by A.K.T. was supported by the U.S. Department of
Energy, Office of Science, National Quantum Information
Science Research Centers, Co-Design Center for Quantum
Advantage under contract DE-SC0012704 and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) [PGSD3-545841-2020]. The algorithm analysis
work by Z.M.R. was supported in part by the National Sci-
ence Foundation (NSF) Enabling Practical-Scale Quantum
Computing program. I.L.C. was supported in part by the
NSF Center for Ultracold Atoms. Z.M.R. and I.L.C. were
also supported in part by Army Research Office (ARO)
contract W911NF-17-1-0433.

APPENDIX A: QSP CONVENTIONS

A quantum signal-processing construction may be
entirely determined by four constituents:

(1) The signal operator W (sometimes also called the
signal unitary)

(2) The phase angles �φ = (φ0,φ1, . . . ,φd)

(3) The signal processing operator S(φ), constructing
using φ ∈ �φ

(4) The signal basis M , in which the desired polynomial
is obtained

In its most basic form, QSP is performed by interleav-
ing W with S(φ) operations followed by a projective
measurement in the basis M .

The signal operator W is signal dependent and constant
throughout the sequence; the signal-processing operator S
is parametrized by a sequence of phases �φ ∈ R

d+1, which
are chosen based on the desired output function. The exact
form of W and S, along with the choice of measure-
ment basis M , determine the family of achievable output
functions. More specifically, M may be not a basis for a
complete vector space but just the basis for a subspace
identifying a specific desired polynomial output function.

For example, we may specify M = 〈+| · |+〉, when the
measurement is to select the |+〉 outcome, with the QSP
sequence starting off with the control qubit in the |+〉 state.
Thus, we may refer to any particular QSP construction as
being a (W, S, M)-QSP convention.

In this appendix, we discuss common (W, S, M)-QSP
conventions in the literature for W, S, and M , and present
relationships between the QSP phase angles �φ. Specif-
ically, we elaborate on the “Wx,” reflection, and “Wz”
conventions.

1. Wx convention for QSP

One common convention is to choose the signal operator
W to be an x rotation in the Bloch sphere,

Wx(θ) := ei θ2 X =
[

a i
√

1− a2

i
√

1− a2 a

]
, (A1)

where, compared with Eq. 1, we introduce the additional
x subscript for clarity. Under this convention, one also
chooses the signal-processing rotation to be a z rotation,
Sz(φ) = eiφZ . Theorem 1 describes the family of unitaries
that are achievable in this convention.

Typically, we are not concerned with the achievable uni-
taries but, rather, with the achievable functions that can be
computed in a subsystem. If we choose to project out the
〈0| · |0〉 element, the output is Poly(a) = 〈0|U �φ|0〉 = P(a).
Here, the choice of Poly is restricted not only by the condi-
tions on P of Theorem 1 but also the additional constraints
below, which ensure that a polynomial Q exists satisfying
the conditions of Theorem 1.

Theorem 9: ((Wx, Sz, 〈0| · |0〉)-QSP). A QSP phase
sequence �φ ∈ R

d+1 exists,

Poly(a) = 〈0|eiφ0Z
d∏

k=1

Wx(a)eiφkZ |0〉 , (A2)

for a ∈ [−1, 1], and for any polynomial Poly ∈ C[a] if and
only if the following conditions hold:

(i) deg(Poly) ≤ d
(ii) Poly has parity d mod 2

(iii) ∀a ∈ [−1, 1], |Poly(a)| ≤ 1
(iv) ∀a ∈ (−∞,−1] ∪ [1,∞), |Poly(a)| ≥ 1
(v) if d is even, then ∀a ∈ R, Poly(ia)Poly∗(ia) ≥ 1

The family of achievable polynomials in this case is
significantly limited, since the projective measurement is
performed in the same basis M = {|0〉, |1〉} as the signal-
processing operations. For example, this immediately
limits us to polynomial functions such that |Poly(±1)|
= 1.

040203-26

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Properties (iv) and (v) are quite restrictive, especially
when approximating real functions. In fact, none of poly-
nomial approximations described in this tutorial satisfy
these last two constraints. Allowing a small but nonzero
imaginary part, it is possible to find QSP phases in the
(Wx, Sz, 〈0| · |0〉) convention approximating real functions
that satisfy |f (±1)| = 1; an example of this is the phase
estimation function plotted in Sec. D 7.

Since we are often interested in constructing real poly-
nomials, choosing a different signal basis ends up being
much more useful. In particular, when M = {|+〉, |−〉},
then we may employ this theorem for real polynomials:

Theorem 10: [(Wx, Sz, 〈+| · |+〉)-QSP]. A QSP phase
sequence �φ ∈ R

d+1 exists such that

Poly(a) = 〈+|eiφ0Z
d∏

k=1

Wx(a)eiφkZ |+〉 (A3)

for a ∈ [−1, 1], and for any real polynomial Poly ∈ R[a]
if and only if the following conditions hold:

(i) deg(Poly) ≤ d
(ii) Poly has parity d mod 2

(iii) ∀a ∈ [−1, 1], |Poly(a)| ≤ 1

This QSP convention is expressive enough for all of
the polynomials considered in this tutorial and is used in
Refs. [7,12]. The proofs of Theorems 9 and 10 are given in
Ref. [12].

2. Reflection convention for QSP

Another common convention is to choose the signal
operator W to be a reflection [as in Eq. (12)]:

R(a) :=
[

a
√

1− a2√
1− a2 −a

]
. (A4)

The reflection operator is preferred in some cases, as it has
the added benefit of being Hermitian, which can simplify
proof constructions and, in particular, equations such as
Eq. (34). Given a phase sequence �φ ∈ R

d+1, we can find
a �φ′ ∈ R

d+1 such that

eiφ0Z
d∏

k=1

R(a)eiφk = eiφ′0Z
d∏

k=1

Wx(a)eiφ′k . (A5)

Using the relationship of Eq. (14), this can be accom-
plished by choosing φ0 = φ′0 + (2d − 1)π/4, φd = φ′d −
π/4, and φk = φ′k − π/2 for k ∈ 1, . . . , d − 1. Therefore,
these two conventions are equivalent regardless of the final
measurement basis.

3. Wz convention for QSP

Theorem 10 can also be understood through its relation-
ship to the convention used in Ref. [34]. Here, the authors
define QSP with the signal operator W being a z rotation,

Wz(θ) = ei θ2 Z =
[

w 0
0 w−1

]
, (A6)

where w := eiθ/2, and the signal-processing operator is an x
rotation, Sx(φ) = eiφX . Furthermore, in this convention, it
is typical to choose the signal basis as being M = {|0〉, |1〉}.

In our notation, this convention is written as (Wz, Sx,
〈0| · |0〉)-QSP. This convention is equivalent to (Wx, Sz,
〈+| · |+〉)-QSP and is equally expressive, which can easily
be seen since

〈+|eiφ0Z
d∏

k=1

Wx(θ)eiφkZ |+〉 = 〈0|eiφ0X
d∏

k=1

Wz(θ)eiφkX |0〉 .

(A7)

The Laurent polynomial formulation of (Wz, Sx, 〈0| · |0〉)-
QSP of Ref. [34] can be related to our formulation as
follows:

eiφ0X
d∏

k=1

Wz(θ)eiφkX (A8)

=:
[

F(w) iG(w)
iG(w−1) F(w−1)

]
(A9)

= Heiφ0Z
d∏

k=1

Wx(θ)eiφkZH (A10)

= H
[

P(a) iQ(a)
√

1− a2

iQ∗(a)
√

1− a2 P∗(a)

]
H , (A11)

for complex polynomials P, Q ∈ C[a] and real Laurent
polynomials F , G ∈ R[w, w−1] with parity d mod 2.

Explicitly,

f0 = Re[p0], g0 = Im[p0] (A12)

and, for k > 0,

fk = 1
2

Re[pk + qk], f−k = 1
2

Re[pk − qk], (A13)

gk = 1
2

Im[pk − qk], g−k = 1
2

Im[pk + qk], (A14)

040203-27

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

where the coefficients for P and Q are given in the
Chebyshev bases

P(a) ≡
d∑

k=0

pkTk(a), (A15)

Q(a) ≡
d∑

k=0

qkUk−1(a) (A16)

and the coefficients for the F and G are given in the
standard basis

F(w) ≡
d∑

k=−d

fkwk, G(w) ≡
d∑

k=−d

gkwk. (A17)

The requirement for unitarity in Eq. (A9) is equivalent to

F(w)F(w−1)+ G(w)G(w−1) = 1. (A18)

A numerically stable method for computing phases for a
given F(w) in the (Wz, Sx, 〈0| · |0〉) convention is discussed
further in Ref. [34] and can also be seen as a constructive
proof of Theorem 10.

APPENDIX B: PROOFS ABOUT PHASE
ESTIMATION BY QSVT

In this appendix, we prove the theorems used in the
development of phase estimation by QSVT in Sec. V.

1. Theorems 6 and 7

Here, we prove Theorems 6 and 7 from Sec. V A 1:

Theorem 6: If n ≥ m, and one has the ability to implement
the sign function exactly through the QSVT, then at the end
of the algorithm sketch of Sec. 1, θ = ϕ.

and

Theorem 7: If n < m (including the case m = ∞), and
one has the ability to implement the sign function exactly
through the QSVT, then at the end of the algorithm sketch
of Sec. V A 1 (with a minor modification discussed below),
|θ − ϕ| ≤ 2−n−1.

The minor modification needed for n < m is an
additional j = 0 iteration used in the complete phase
estimation-by-QSVT algorithm.

In the setup of these proofs, we suppose that ϕ is an m-
bit number and use the notation 0.ϕ[j :] := 0.ϕjϕj+1 · · · ϕm
to denote a contiguous string of binary digits (this string
being infinite in the case m = ∞). We also assume that
we can implement the sign function exactly in the QSVT
(which is unrealistic, but is addressed in Sec. V A 2).
Hence, the procedure that we discuss in these proofs is
effectively Algorithm 3 modulo the error analysis.

a. n ≥ m

If n ≥ m, then append ϕ with m− n 0’s after its mth
binary decimal, such that ϕ = 0.ϕ1ϕ2 · · · ϕm00 · · · 0. This
effectively makes ϕ an n-bit number without changing its
numerical value. We now invoke the following lemma,
which is proven by induction:

Lemma 11: If ϕ = 0.ϕ1ϕ2 · · · ϕn is an n-bit number, then
at the end of the iteration j ≥ 0, θ = 0.ϕj+1ϕj+2 · · ·ϕn =
0.ϕ[j+1:].

Proof. The proof proceeds by induction.
Base Case: The base case is the j = n− 1 iteration, at

which θ = 0. Using Eq. (65), we see that Aj (θ) = An−1(0)
has singular value

σ n−1 = ∣∣ cos
[
π(0.ϕn − 0)

]∣∣ =
{

1, if ϕn = 0,
0, if ϕn = 1,

(B1)

and so �
(

1/
√

2− σ n−1
)
= 1− 2ϕn. Therefore, after we

apply �(SV)
[
1/
√

2− An−1(0)
]

to |u〉, controlled on the

ancilla qubit, the state of the ancilla qubit is 1/
√

2
[
|0〉 +

(1− 2ϕn)|1〉
]
. The final Hadamard gate brings the ancilla

qubit to the state

(1− ϕn)|0〉 + ϕn|1〉 =
{
|0〉, if ϕn = 0,
|1〉, if ϕn = 1,

(B2)

and therefore the measurement of the ancilla qubit will
yield ϕn. The final step of the iteration sets θ1 = ϕn, such
that θ = 0.ϕn, as claimed.

General Case: Proceeding with induction, assume that
this claim is true at the end of iteration j + 1. That
is, θ = 0.ϕj+2ϕj+3 · · ·ϕn = 0.ϕ[j+2:] at the end of itera-
tion j + 1. Then, at the start of iteration j , θ ← θ/2 =
0.0ϕj+2ϕj+3 · · · ϕn. Again using Eq. (65), we see that Aj (θ)

has singular value

σ j = ∣∣ cos
[
π(0.ϕj+1ϕj+2 · · ·ϕn − 0.0ϕj+2ϕj+3 · · ·ϕn)

]∣∣
=

∣∣∣ cos
(π

2
ϕj+1

)∣∣∣ =
{

1, if ϕj+1 = 0,
0, if ϕj+1 = 1,

(B3)

and so �
(

1/
√

2− σ j
)
= 1− 2ϕj+1. This is identical to

the base case and we ultimately find that the measure-
ment of the auxiliary qubit yields ϕj+1, such that we set
θ1 = ϕj+1. So at the end of this iteration, we have θ =
0.ϕj+1ϕj+2 · · ·ϕn = ϕ[j+1:], as desired. �

Considering the j = 0 iteration, we see that the final
output of the algorithm is θ = 0.ϕ1ϕ2 · · ·ϕn = ϕ, which
completes the proof of Theorem 6.

040203-28

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

b. n < m

If n < m, this algorithm produces an n-bit approxima-
tion to ϕ that suffers error at most 1/2n+1. To show this,
we first prove the following lemma.

Lemma 12: If ϕ is an m > n bit number (including
the case m = ∞), then at the end of iteration j ≥ 0,
θ = 0.ϕ̃j+1ϕ̃j+2 · · · ϕ̃n = 0.ϕ̃[j+1:], such that |r̃j .ϕ̃[j+1:] −
0.ϕ[j+1:]| ≤ 2j−n−1, where r̃j .ϕ̃[j+1:] is attained by round-
ing 0.ϕ[j+1:] to n− j binary decimals and r̃j is an addi-
tional bit carried over by this rounding.

Proof. As before, the proof proceeds by induction, albeit
longer than the n ≥ m proof but no more complicated. One
minor difference is that we still write expressions such as
ϕ = 0.ϕ1ϕ2 · · ·ϕm to indicate the binary expansion of ϕ,
where it is to be understood that this will really be an
infinite sequence in the case m = ∞.

Base Case: The base case is the j = n− 1 iteration, at
which, θ = 0. Using Eq. (65), we see that Aj (θ) = An−1(0)
has singular value

σ n−1 = ∣∣ cos
[
π(0.ϕnϕn+1 · · ·ϕm − 0)

]∣∣
=

∣∣∣ cos
[π

2
(
ϕn + 1

2
ϕn+1 +

m−n∑
i=2

1
2iϕn+i

)]∣∣∣. (B4)

We are not concerned with this exact value, but instead
with the quantity �

(
1/
√

2− σ n−1
)
, which is dictated by

the values of ϕn and ϕn+1. In particular, the sum in Eq. (B4)
is bounded above by 1

2 , so it cannot affect �
(
1/
√

2−
σ n−1

)
by itself. Let us look at each possible value of ϕn

and ϕn+1.
First, if ϕn+1 = 0 (regardless of the value of ϕn),

then this scenario is similar to the proof of Theorem
6 and we ultimately set θ1 = ϕn. In addition, rounding
0.ϕnϕn+1 · · ·ϕm = 0.ϕn0ϕn+2 · · ·ϕm to n− j = 1 decimal
places yields r̃n−1.ϕ̃n = 0.ϕn, so indeed θ = 0.ϕn = 0.ϕ̃n.
We then have that

|r̃j−1.ϕ̃j − 0.ϕ[j+1:]| =
m−n∑
i=2

1
2i+1ϕn+i

≤ 1
4
= 2j−n−1, (B5)

as desired.
On the other hand, if ϕn+1 = 1 and ϕn = 0, then

�
(
1/
√

2− σ n−1
) = −1, which results in setting θ1 = 1.

Likewise, rounding 0.ϕnϕn+1 · · ·ϕm = 0.01ϕn+2 · · ·ϕm to
n− j = 1 decimal places yields r̃n−1.ϕ̃n = 0.1, so indeed

θ = 0.1 = 0.ϕ̃n. We then have that

|r̃j .ϕ̃j+1 − 0.ϕ[j+1:]| =
∣∣∣1
2
− 1

4
−

m−n∑
i=2

1
2i+1ϕn+i

∣∣∣

=
∣∣∣1
4
−

m−n∑
i=2

1
2i+1ϕn+i

∣∣∣ ≤ 1
4
= 2j−n−1, (B6)

as desired.
Lastly, if ϕn+1 = 1 and ϕn = 1, then �

(
1/
√

2−
σ n−1

) = 1, which results in setting θ1 = 0. In addition,
rounding 0.ϕnϕn+1 · · · ϕm = 0.11ϕn+2 · · ·ϕm to n− j = 1
decimals yields r̃n−1.ϕ̃n = 1.0, so indeed θ = 0.0 = 0.ϕ̃n.
We then have that

|r̃j .ϕ̃j+1 − 0.ϕ[j+1:]| =
∣∣∣1− 1

2
− 1

4
−

m−n∑
i=2

1
2i+1ϕn+i

∣∣∣
∣∣∣1
4
−

m−n∑
i=2

1
2i+1ϕn+i

∣∣∣ ≤ 1
4
= 2j−n−1, (B7)

as desired.
General Case: Proceeding now to the general case,

assume that this claim is true at the end of iteration j + 1
and all prior iterations. That is, θ = 0.ϕ̃j+2ϕ̃j+3 · · · ϕ̃n at
the end of iteration j + 1. Then, at the start of iteration j ,
θ ← θ/2 = 0.0ϕ̃j+2ϕ̃j+3 · · · ϕ̃n. Again using Eq. (65), we
see that Aj (θ) has singular value

σ j = ∣∣ cos
[
π(0.ϕj+1ϕj+2 · · · ϕm − θ)

]∣∣
=

∣∣∣∣ cos
[
π

2

(
ϕj+1 + 1

2
(ϕj+2 − ϕ̃j+2)

+
n−j∑
i=3

1
2i−1 (ϕj+i − ϕ̃j+i)+

m−j∑
i=n−j+1

1
2i−1ϕn+i

)]∣∣∣∣.
(B8)

As before, we are interested in �
(
1/
√

2− σ j
)
, which, as

we see below, is dictated by the values of ϕj+1, ϕj+2, and
ϕ̃j+2. Let us now look at the possible cases of these values.

First, if ϕ̃j+2 = ϕj+2, then �
(
1/
√

2− σ j
)

is dictated
entirely by ϕj+1 and so we ultimately set θ1 = ϕj+1.
In addition, the condition ϕ̃j+2 = ϕj+2 implies that no
rounding occurs in the j + 1 iteration, so r̃j+1 = 0 and
r̃j .ϕ̃[j+1:] = 0.ϕj+1ϕj+2ϕ̃j+3 · · · ϕ̃n is the rounded value of
0.ϕ[j+1:]. Therefore, we indeed have θ = 0.ϕ̃j+1ϕ̃j+2 · · · ϕ̃n,
and also

|r̃j .ϕ̃j+1 − 0.ϕj+1| = 1
2
|r̃j+1.ϕ̃j+2 − 0.ϕj+2|

≤ 1
2

2(j+1)−n−1 = 2j−n−1, (B9)

where we use the inductive hypothesis.

040203-29

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

On the other hand, consider ϕ̃j+2 = 1 and ϕj+2 =
0. This condition implies that, at the j + 1 iteration,
0.ϕ[j+2:] = 0.0ϕj+3 · · ·ϕm is rounded to r̃j+1.ϕ̃[j+2:] =
0.1ϕ̃j+3 · · · ϕ̃n, which requires that ϕj+3 = 1 = ϕj+4 =
· · ·ϕn+1 and ϕ̃j+3 = 0 = ϕ̃j+4 = · · · = ϕ̃n. Using these
values, we see that r̃j .ϕ̃[j+1:] = 0.ϕj+1ϕ̃j+2 · · · ϕ̃n = 0.ϕj+1
100 · · · 0 is the rounded value of ϕj . In addition, inputting
all of these values into �

(
1/
√

2− σ j
)
, we find that we

will ultimately set θ1 = ϕj+1. Therefore, we indeed have
θ = 0.ϕ̃j+1ϕ̃j+2 · · · ϕ̃n, and again

|r̃j .ϕ̃j+1 − 0.ϕj+1| = 1
2
|r̃j+1.ϕ̃j+2 − 0.ϕj+2|

≤ 1
2

2(j+1)−n−1 = 2j−n−1, (B10)

where we again use the inductive hypothesis.
Finally, consider ϕ̃j+2 = 0 and ϕj+2 = 1. This con-

dition implies that, at the j + 1 iteration, 0.ϕ[j+2:] =
0.1ϕj+3 · · ·ϕm is rounded to r̃j+1.ϕ̃[j+2:] = 1.0ϕ̃j+3 · · · ϕ̃n,
which requires that ϕj+3 = 1 = ϕj+4 = · · ·ϕn+1 and
ϕ̃j+3 = 0 = ϕ̃j+4 = · · · ϕ̃n. Thus, if ϕj+1 = 0, then
r̃j .ϕ̃[j+1:] = 0.100 · · · .0 is the rounded value of 0.ϕ[j+1:] =
0.011 · · · 1ϕn+2 · · ·ϕm. Inputting these values into �(
1/
√

2− σ j
)
, we find that we will ultimately set θ1 =

1 = ϕ̃j+1 = 1− ϕj+1. Therefore, we indeed have θ =
0.ϕ̃j+1ϕ̃j+2 · · · ϕ̃n, and also
∣∣r̃j .ϕ̃j+1 − 0.ϕj+1

∣∣ = ∣∣0.100 · · · 0− 0.011 · · · 1ϕn+2 · · · ϕm
∣∣

=
∣∣∣1
2
−

n−j+1∑
i=2

1
2i −

m−j∑
i=n−j+2

1
2iϕj+i

∣∣∣

=
∣∣∣ 1
2n−j+1 −

m−j∑
i=n−j+2

1
2iϕj+i

∣∣∣ ≤ 2j−n−1.

(B11)

Similarly, if ϕj+1 = 1, then r̃j .ϕ̃[j+1:] = 1.00 · · · 0 is
the rounded value of 0.ϕ[j+1:] = 0.11 · · · 1ϕn+2 · · ·ϕm.
Inputting these values into �

(
1/
√

2− σ j
)
, we will

ultimately set θ1 = 0 = ϕ̃j+1 = 1− ϕj+1. Therefore, we
indeed have θ = 0.ϕ̃j+1ϕ̃j+2 · · · ϕ̃n, and also
∣∣r̃j .ϕ̃j+1 − 0.ϕj+1

∣∣ = ∣∣1.00 · · · 0− 0.11 · · · 1ϕn+2 · · ·ϕm
∣∣

=
∣∣∣1−

n−j+1∑
i=1

1
2i −

m−j∑
i=n−j+2

1
2iϕj+i

∣∣∣

=
∣∣∣ 1
2n−j+1 −

m−j∑
i=n−j+2

1
2iϕj+i

∣∣∣ ≤ 2j−n−1.

(B12)

This proves the general case and the entire proof is com-
plete. �

Furthermore, we must discuss the additional j = 0 iter-
ation, which is just like that of the phase estimation-by-
QSVT algorithm. The analysis of this iteration is identical
to the case above, just with the modification that ϕ0 =
0 because ϕ < 1. Ultimately, we find that this step will
usually output θ0 = 0, such that θ = 0.ϕ̃[1:]. However, if
ϕ1 = 1 = ϕ2 = · · · = ϕn+1 and ϕ̃1 = 0 = ϕ̃2 = · · · = ϕ̃n,
then this step will output θ0 = 1, such that θ = 1.00 · · · 0.
This accounts for the possibility that 1.0 is the best approx-
imation to ϕ. For instance, the best two-decimal approxi-
mation to ϕ = 0.1110101 is θ = 1.00. In either case, θ still
satisfies |θ − ϕ| ≤ 2−n−1, as Lemma 12 dictates at j = 0.

Finally, we mention one last caveat. It is possible that
σ j = 1/

√
2, in which case the sign function is 0 and we

are equally likely to measure 0 or 1. However, this is
not a problem, as the condition σ j = 1/

√
2 implies that

|0.ϕ[j+1:] − 0.0ϕ̃[j+2:]| = 0.1 = 1
2 , such that both ϕj+1 = 0

and ϕj+1 = 1 are equally accurate approximations, and so
the inequality in Theorem 7 is still obeyed. This is analo-
gous to conventional rounding, wherein one could round
0.5 to either 0 or 1 without changing the accuracy of
the rounding. With these concerns alleviated, the proof of
Theorem 7 is complete.

2. Theorem 8

Here, we prove Theorem 8 from Sec. V A 2:

Theorem 8: If we choose � such that

� < 2
[

cos
(

3π
16

)
− 1√

2

]
≈ 0.25, (B13)

then an error due to� can only occur at the j = n− 1 iter-
ation. If an error is made at this iteration, then at the end
of the algorithm, |θ − ϕ| < 1/2n, assuming that no errors
are made at later iterations.

As discussed in Sec. V A2, we assume that we perform
the QSVT with a function that behaves as P�ε,�

(
1/
√

2−
x
)

(for x ≥ 0), which approximates the sign function.
Recall that this approximation fails in the region [1/

√
2−

�/2, 1/
√

2+�/2], which we dub “the � region.” We
show that the adverse effects of a finite-sized � region can
be mitigated by choosing a sufficiently small �.

Throughout this section, we again use the notation
0.ϕ[j :] := 0.ϕjϕj+1 · · · to denote a string of contiguous
binary digits. We also use the definition of r̃j from
Sec. B1 b.

To demonstrate our claim, recall that σ j = | cos
[π(0.ϕ[j+1:] − θ)]| as per Eq. (73). Whether or not σ j

is inside of the � region is dictated by the value of
|0.ϕ[j+1:] − θ |. In particular, in order for σ j to be inside

040203-30

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

π/2

0π

Θ = 1

Θ = −1Θ = −1

cos−1
(

1√
2

+ Δ
2

)cos−1
(

1√
2

− Δ
2

)

FIG. 18. A depiction of a finite-sized � region and the result-
ing values of �. The shaded regions indicate where the appli-
cation of the QSVT sequence returns an indeterminate mea-
surement result (equivalently, where the sign function is poorly
approximated).

of the � region, we require | cos[π(0.ϕ[j+1:] − θ)]| ∈[
1/
√

2−�/2, 1/
√

2+�/2
]

or, equivalently,

π |0.ϕ[j+1:] − θ |

∈
[

arccos
(

1√
2
+ �

2

)
, arccos

(
1√
2
− �

2

)]

∪
[

arccos
(
− 1√

2
+ �

2

)
, arccos

(
− 1√

2
− �

2

)]
.

(B14)

We depict this condition graphically in Fig. 18, which is
a useful illustration for understanding the proof of this
theorem.

As we show below, if we choose� such that σ j is within
the � region only if |0.ϕ[j+1:] − θ | ∈ (1/4− 1/16, 1/4+
1/16) ∪ (3/4− 1/16, 3/4+ 1/16), then it is only possi-
ble for σ j to be within the � region at iteration j = n− 1.
In order to enforce this constraint on the � region, we
require that

∣∣∣ 1
π

arccos
(

1√
2
± �

2

)
− 1

4

∣∣∣ < 1
16

. (B15)

As it turns out, the + condition is actually more stringent,
so we have the following lemma:

Lemma 13: If we choose � such that
[

1
4
− 1
π

arccos
(

1√
2
+ �

2

)]
<

1
16

, (B16)

then σ j can only be inside of the � region at iteration j =
n− 1.

Proof. To prove this, we begin by analyzing the possi-
ble values of σ j . We assume that, if σ j is outside of
the � region, then we can correctly determine θ1 with

high probability using an appropriate value of ε as in
Sec. 2. In addition, note that our restriction on � implies
that, in order for σ j to be inside of the � region, we
must have |0.ϕ[j+1:] − θ | ∈ (1/4− 1/16, 1/4+ 1/16) ∪
(3/4− 1/16, 3/4+ 1/16).

First, let j = n− 1 and suppose that we can correctly
determine θ1 (either σ j is outside of the � region, or σ j

is inside of the � region and we get lucky). Next, proceed
to iteration j = n− 2. If r̃n−1 = 0 at the previous iteration,
then Lemma 12 implies that

|0.ϕ[n−1:] − θ | = |0.ϕ[n−1:] − 0.r̃n−1ϕ̃n:|

∈
[

0.ϕn−1 − 1
2

2n−1−n−1, 0.ϕn−1

+ 1
2

2n−1−n−1
]

=
[

0.ϕn−1 − 1
8

, 0.ϕn−1 + 1
8

]
. (B17)

For either possible value of ϕn−1, the restriction on �

implies that the corresponding value of σ n−2 is not within
the � region and so we can correctly determine θ1 with
high probability at this iteration.

On the other hand, if r̃n−1 = 1, then 0.ϕ[n:] > 0.11 and
θ = 0. At iteration j = n− 2, we have

|0.ϕ[n−1:] − θ | = 0.ϕ[n−1:] > 0.ϕn−111. (B18)

Again, because 0.011 = 1/4+ 1/8 > 1/4+ 1/16, the
corresponding value of σ n−2 is not within the � region
for either possible value of ϕn−1 and so we can correctly
determine θ1 with high probability at this iteration.

By inductively following this logic to further iterations,
we see that if we can correctly determine θ1 at iteration
j = n− 1, then the subsequent values of σ j will not be in
the � region and the corresponding values of θ1 can be
correctly determined with high probability.

Next, again let j = n− 1 and now suppose that σ j is
inside of the � region, such that we choose an incor-
rect value for θ1. First, consider the case in which 1/4 <
0.ϕ[n:] < 1/4+ 1/16 and we make an error by setting θ1 =
0. Then at iteration j = n− 2,

|0.ϕ[n−1:] − θ | = 0.ϕn−1ϕ[n:]. (B19)

This is bounded below by 0.ϕn−1 + 1/8 and above by
0.ϕn−1 + 1/8+ 1/32, so σ n−2 does not fall within the �
region. Hence, despite our initial error, the correct value
for θ1 may be determined with high probability at the next
iteration. As per the result of the previous paragraphs, this
indicates that, with high probability, σ j will not be inside
the � region at later iterations.

040203-31

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Next, consider the case in which 1/4− 1/16 < 0.ϕ[n:] <

1/4 and we make an error by setting θ1 = 1. Then at
iteration j = n− 2,

0.ϕ[n−1:] − 0.01 = 0.ϕn−1ϕ[n:] − 0.01. (B20)

This is bounded below by 0.ϕn−1 − 1/8− 1/32 and above
by 0.ϕn−1 − 1/8, so again σ n−2 does not fall within the �
region.

Finally, we note that the cases in which 3/4 < 0.ϕ[n:] <

3/4+ 1/16 and 3/4− 1/16 < 0.ϕ[n:] < 3/4 are analogous
to the two cases illustrated above and we ultimately find
that σ n−2 is not within the � region. �

This theorem tells us that if� is made sufficiently small,
then we are only plagued by the � region at iteration j =
n− 1. At all other iterations, σ j will not be within the �
region and we can correctly determine θ1 with high proba-
bility. Thus, if at iteration j = n− 1, σ n−1 is within the �
region and we do make an error, then our approximation of
0.ϕ[n:] is incorrect by some amount < 1/4+ 1/16 < 1/2,
so the overall error in our estimate of ϕ will be < 1/2n

(with high probability).
Lastly, if we rearrange the inequality in Lemma 13, then

we see that the necessary restriction on � must be

� < 2
[

cos
(

3π
16

)
− 1√

2

]
≈ 0.25. (B21)

So if we satisfy this constraint, then we can we can guar-
antee that the algorithm will succeed with high probability
and suffer error < 1/2n. This proves Theorem 8.

As a corollary, suppose more generally that we choose
� such that

[
1/4− 1/π arccos(1/

√
2+�/2)

]
< γ for

some γ > 0. In order for σ j to be inside of the �

region under this constraint, we must have |0.ϕ[j+1:] − θ | ∈
(1/4− γ , 1/4+ γ) ∪ (3/4− γ , 3/4+ γ). Then, sup-
pose that σ n−1 is inside the � region such that 1/4 <
0.ϕ[n:] < 1/4+ γ and we make an error by setting θ1 = 0.
Then, at iteration j = n− 2,

|0.ϕ[n−1:] − θ | = 0.ϕn−1ϕ[n:], (B22)

which is bounded below by 0.ϕn−1 + 1/8 and above by
0.ϕ[n−1:] + 1/8+ γ /2. Hence this quantity is necessarily a
distance 1/4− γ − (1/8+ γ /2) = 1/8− 3γ /2 from the
� region and this distance increases at later iterations.
Identical bounds hold for the other cases in which σ n−1 is
in the� region. In this sense, the quantity 0.ϕ[j+1:] can suf-
fer an additive error of magnitude < 1/8− 3γ /2 and the
phase estimation algorithm will still output a θ such that
|ϕ − θ | < 1/2n with high probability, as claimed in Sec. V
C 2.

APPENDIX C: CONSTRUCTION OF THE
MATRIX-INVERSION POLYNOMIAL

As we describe in Sec. VI B, in order to invert a
matrix with the QSVT, we desire an ε/2κ approximation to
(1/2κ)1/x, where κ is the condition number of the matrix
to be inverted. Gilyén et al. design such a polynomial by
first noting that the function

gε,κ(x) = 1− (1− x2)b

x
(C1)

provides a good approximation to 1/x over the range
x ∈ [−1, 1] \ [−1/κ , 1/κ] for large b. In particular, for
0 < ε < 1

2 , gε,κ(x) ε approximates 1/x over the range x ∈
[−1, 1] \ [−1/κ , 1/κ] for b(ε, κ) = �κ2 log(κ/ε)� [12,50].

Next, although gε,κ(x) is not a polynomial, it can be ε
approximated over the range x ∈ [−1, 1] by the polyno-
mial

P1/x
2ε,κ(x) = 4

D∑
j=0

(−1)j

⎡
⎣2−2b

b∑
i=j+1

(
2b

b+ i

)⎤
⎦ T2j+1(x),

(C2)

where Ti(x) is the Chebyshev polynomial of order i and
D(ε, κ) =

⌈√
b(ε, κ) log[4b(ε, κ)/ε]

⌉
= O[κ log(κ/ε)] is

the degree of this polynomial [12]. In addition, by the
triangle inequality, P1/x

2ε,κ(x) is a 2ε approximation to 1/x
for x ∈ [−1, 1] \ [−1/κ , 1/κ]; hence the subscript 2ε. To
provide intuition, we illustrate this polynomial in Fig. 19.

At this stage, we may suspect that our candidate polyno-
mial is 1/2κP1/x

ε/2,2κ(x), which ε approximates (1/2κ)1/x
for x ∈ [−1, 1] \ [−1/2κ , 1/2κ]. In addition, for ε <

1/2, this polynomial is necessarily bounded in magni-
tude by 1 for x ∈ [−1, 1] \ [−1/κ , 1/κ], which is easily
seen via the triangle inequality. Unfortunately, however,
this candidate polynomial is not necessarily bounded for
x ∈ [−1/2κ , 1/2κ]. In particular, the approximation of
Eq. (C2) obeys [12,50]

max
x∈[−1,1]

|P1/x
ε,κ (x)| ≤ 4D(ε, κ) = O[κ log(κ/ε)], (C3)

so our candidate polynomial is only bounded in magni-
tude by (1/2κ)4D(ε/2, 2κ) = O[log(κ/ε)], which is not
necessarily 1.

Therefore, to enforce that the magnitude of the candidate
polynomial be bounded, we may multiply it by an even
function that is close to 1 for x ∈ [−1, 1] \ [−1/κ , 1/κ],
and close to 0 for x ∈ [−1/2κ , 1/2κ], letting the range
x ∈ [−1/κ ,−1/2κ] ∪ [1/2κ , 1/κ] be a transition region
between these two values. Such a rectangular function may
be polynomially approximated by a linear combination of

040203-32

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

(a)

(b)

(c)

FIG. 19. A sketch of (a) P1/x
1
2 ε,2κ

(x), (b) Prect
ε′,κ (x), and (c) PMI

ε,κ(x)

for κ = 2.5. The resulting polynomial, PMI
ε,κ(x), is a degree-77

approximation to the inverse function.

the step function approximations of Sec. III:

Prect
ε,κ (x) := 1

1+ ε
2

{
1+ 1

2

[
P�
ε, 1

4κ

(
x − 3

4κ

)

+ P�
ε, 1

4κ

(
−x − 3

4κ

)]}
, (C4)

which is easily seen to obey

Prect
ε,κ (x) ∈ [1− ε, 1] ∀x ∈ [−1, 1] \

[−1
κ

,
1
κ

]

Prect
ε,κ (x) ∈ [0, ε] ∀x ∈

[−1
2κ

,
1

2κ

]
(C5)

and has even degree O[κ log(1/ε)]. In the in-between
region x ∈ [−1/κ ,−1/2κ] ∪ [1/2κ , 1/κ], Prect

ε,κ (x) transi-
tions between values close to 0 and close to 1, remaining
bounded in magnitude by 1 throughout. We illustrate the
behavior of this polynomial in Fig. 19.

Therefore, our target polynomial is the matrix-inversion
polynomial:

PMI
ε,κ(x) := 1

2κ
P1/x

1
2 ε,2κ

(x)Prect
ε′,κ(x), (C6)

where ε′ = min [2ε/5κ , κ/2D(ε/4, 2κ)] = O (ε/κ). We
illustrate this polynomial in Fig. 19. In defining ε′, the term
2ε/5κ ensures that this polynomial is an ε/2κ approxi-
mation to (1/2κ)1/x over the range of possible singular
values and the term κ/2D(ε/4, 2κ) ensures that PMI

ε,κ(x) is
bounded in magnitude by 1 for x ∈ [−1/κ , 1/κ]. Indeed,
over the range x ∈ [−1, 1] \ [−1/κ , 1/κ], PMI

ε,κ(x) is an
ε/2κ approximation to 1/2κ1/x:

∣∣∣∣PMI
ε,κ(x)−

1
2κ

1
x

∣∣∣∣ ≤ 1
2κ

∣∣∣∣P1/x
1
2 ε,2κ

(x)(1− ε′)− 1
x

∣∣∣∣
≤ 1

2κ

(∣∣∣∣P1/x
1
2 ε,2κ

(x)− 1
x

∣∣∣∣+ ε′
∣∣∣∣P1/x

1
2 ε,2κ

(x)
∣∣∣∣
)

≤ 1
2κ

[
ε

2
+ 2ε

5κ

(
κ + ε

2

)]

≤ 1
2κ

(
ε

2
+ 2ε

5
+ ε

10

)
= ε

2κ
, (C7)

where we use the (loose) bound ε/κ < 1
2 . Likewise,

PMI
ε,κ(x) is bounded above by 1 for x ∈ [−1/2κ , 1/2κ]:

∣∣PMI
ε,κ(x)

∣∣ ≤ 1
2κ

4D (ε/4, 2κ) ε′ ≤ 1. (C8)

Similarly, for the in-between region x ∈ [−1/κ ,−1/2κ] ∪
[1/2κ , 1/κ], both components of PMI

ε,κ(x) are bounded in
magnitude by 1, so |PMI

ε,κ(x)| ≤ 1.
Finally, it is easy to compute the degree of PMI

ε,κ(x),
which is the sum of the degrees of P1/x

1
2 ε,2κ

(x) and Prect
ε′,κ(x):

d = O[
κ log(κ/ε)+ κ log(1/ε′)

] = O [κ log(κ/ε)] .
(C9)

040203-33

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

APPENDIX D: QSP PHASE ANGLE-SEQUENCE
EXAMPLES

Presented in this appendix are some explicit polyno-
mials and corresponding QSP phase angles, for functions
that are useful in quantum signal-processing applications.
These are not necessarily the optimal polynomials, nor the
best QSP phase angles, but they are pedagogically clear
starting points. Unless otherwise specified, all QSP phases
are given in the (Wx, Sz, 〈+| · |+〉)-QSP convention. All
the code for generating these phase angles is available in
the PYQSP open-source repository on GitHub [55].

1. Oblivious amplitude amplification

For fixed-point search or oblivious amplitude amplifi-
cation, it is desired to make a polynomial that maps a as
close as possible to 1, for a wide range of small values of
a, starting as close to a = 0 as possible.

One sequence of phases that accomplishes this opti-
mally, with error 1− δ2, is given for k = 0, 1, . . . , d − 1
by

φ2k = αd−k−1, (D1)

φ2k+1 = αk+1, (D2)

where

αk = − cot−1
(√

1− γ 2 tan
2π(k + 1)

L

)
(D3)

and L = 2d + 1 and γ−1 = T1/L(1/δ) = cosh−1(1/δ)/
cosh(1/L) [37].

For example, for d = 10 and δ = 0.5, the QSP phase
angles are as follows:
pyqsp --plot-positive-only --plot-probability
--plot-tight-y --plot-npts=400
--seqargs=10,0.5 --plot fpsearch

[-1.58023603 -1.55147987 -1.6009483 -1.52812171
-1.62884337 -1.49242141 -1.67885248 -1.41255145
-1.8386054 -0.87463828 -0.87463828 -1.8386054
-1.41255145 -1.67885248 -1.49242141 -1.62884337
-1.52812171 -1.6009483 -1.55147987 -1.58023603]

The corresponding response function is shown in Fig. 20.

2. Sign function

The sign function �(a) has a number of applications
for quantum signal processing. As discussed in Sec. III,
a robust polynomial approximation of it can be obtained
using the error function

�(a) ≈ erf(ka), (D4)

where k is a (large) scaling factor.

R
es

po
ns

e

FIG. 20. The transition probability using the polynomial for
oblivious amplification for d = 10 and δ = 0.5.

For example, the QSP phase angles obtained using a
degree-(d = 19) approximation with k = 10 are as fol-
lows:
pyqsp --plot-real-only --plot-npts=400
--seqargs=19,10 --plot poly_sign

[0.01558127 -0.01805798 0.05705643 -0.01661832
0.16163773 0.09379074 -2.62342885 0.49168481
0.92403822 -0.09696846 -0.09696846 0.92403822
0.49168481 -2.62342885 0.09379074 0.16163773

-0.01661832 0.05705643 -0.01805798 1.5863776]

The corresponding response function is shown in
Fig. 21. For a > 0, this sign function approximation may
be employed as a step function, e.g., for oblivious ampli-
tude amplification.

3. Matrix inversion using 1/a

The 1/a function is useful for computing Moore-
Penrose pseudoinverses of matrices using the quantum
singular value transform. As discussed in Sec. VI B,
Chebyshev polynomials may be employed to approximate
this function [50].

R
es

po
ns

e

Sign function

Target function

FIG. 21. The response function for the polynomial approxima-
tion to the sign function with d = 19 and k = 10.

040203-34

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

R
es

po
ns

e

Target function

FIG. 22. The response function for the polynomial approxima-
tion to the inverse function with κ = 3 and ε = 0.3.

For example, with κ = 3 and ε = 0.3, a set of QSP
phase angles for this polynomial is as follows:
pyqsp --plot-real-only --plot-npts=400
--seqargs=3,0.3 --plot invert

[-0.27237279 -1.8808697 2.19755533 -0.860515
0.84659086 0.62794236 -0.69688032 -0.62874403
0.7406656 0.44483992 -0.60489363 -0.60489363
0.44483992 0.7406656 -0.62874403 -0.69688032
0.62794236 0.84659086 -0.860515 -0.94403733
1.26072295 1.29842354]

The corresponding response function is shown in Fig. 22.

4. Cosine and sine functions for Hamiltonian
simulation

For Hamiltonian simulation, we seek an approximation
to e−iat. As discussed in Sec. VI A, this can be accom-
plished using the Jacobi-Anger approximations of cos(at)
and sin(at) of Eqs. (76) and (77). The approximation is
chosen to sufficient degree so as to bound the error to ε > 0
in the region a ∈ [−1, 1].

For example, with t = 5 and ε = 0.1, a set of QSP phase
angles for the approximation to cos(at) is as follows:
pyqsp --plot-real-only --plot-npts=400
--seqargs=10,0.1 --plot hamsim

[-1.70932079 -0.05312746 2.12066859 -0.83307065
-0.50074601 0.40728859 0.32838472 0.9142489
-2.81320793 0.40728859 -0.50074601 2.30852201
-1.02092406 -0.05312746 3.00306819]

The corresponding response function is shown in
Fig. 23. Similarly, the QSP phases for the approximation
to sin(at) are as follows:
[-1.63276817 0.20550406 -0.84198335 0.39732059
-0.26820613 2.41324245 0.04662674 -2.02847501
1.11311765 0.04662674 -0.72835021 -0.26820613
0.39732059 -0.84198335 0.20550406 -0.06197184]

R
es

po
ns

e

Target function

Hamiltonian simulation (cosine)

FIG. 23. The response function for the polynomial approxima-
tion to the cosine function with t = 5 and ε = 0.1.

The corresponding response function is shown in
Fig. 24.

5. Threshold function

Distinguishing eigenvalues and singular values may be
performed using a step function, which we take to be
step(a− 1/2) for illustrative purposes. This may be poly-
nomially approximated using a Taylor series expansion
of

step(a− 1/2)

≈ 1
2

{
erf

[
k(a+ 1/2)

]− erf
[
k(a− 1/2)

]}
, (D5)

which becomes a good approximation for large k.
For example, with k = 10 and using a degree d = 18

Taylor series, a set of QSP phase angles for this polynomial
is as follows:

R
es

po
ns

e

Hamiltonian simulation (sine)

Target function

FIG. 24. The response function for the polynomial approxima-
tion to the sine function with t = 5 and ε = 0.1.

040203-35

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

R
es

po
ns

e

Threshold function

Target function

FIG. 25. The response function for the polynomial approxima-
tion to the threshold function with k = 10 and d = 18.

pyqsp --plot-real-only --plot-npts=400
--seqargs=18,10 --plot poly_thresh

[0.73930816 -0.69010006 -0.63972139 -0.47754554
0.81797049 0.09205065 -0.87660105 0.13460844
0.23892207 1.32216648 -2.90267058 0.13460844
2.2649916 0.09205065 -2.32362216 2.66404712
-0.63972139 -0.69010006 2.31010449]

The corresponding response function is shown in Fig. 25.
Note that this is an even function of a but it may be used

just in the region a ≥ 0, e.g., to distinguish singular values
that are above or below 1/2. It can be made as sharp as
desired by increasing k and the degree of the polynomial.

6. Linear amplitude amplification

Linear amplitude amplification is a subroutine that is
useful for a number of quantum algorithms including sim-
ulation. The goal is to multiply inputs by a constant 1/2�
for � ∈ (0, 1/2]. As is usual for QSP, the absolute value
of the output must bounded by 1 and therefore we seek a
polynomial approximation that performs the linear ampli-
fication only for small inputs. We can obtain a suitable
approximation by truncating the Taylor expansion of

linear_amplification(a,�)

≈ a
2�
× 1

2

{
erf

[
k(a+ 2�)

]− erf
[
k(a− 2�)

]}
, (D6)

where k is chosen to obtain the desired accuracy within the
region [−�,�]. This approximation is described in further
detail in Ref. [21].

For example, with � = 0.25 and using a degree d = 19
Taylor series, a set of QSP phase angles for this polynomial
is as follows:

R
es

po
ns

e

Linear-amplification polynomial

Target function

FIG. 26. The response function for the linear amplification
polynomial with � = 0.25 and d = 19.

pyqsp --plot-real-only --plot-npts=400
--seqargs=19,0.25 --plot poly_linear_amp

[0.07658557 -0.01961714 -0.10257913 0.08269406
0.16291683 0.43552219 -2.62323892 2.61402960
0.02001814 -2.21710253 0.92449012 0.02001814
-0.52756304 0.51835372 0.43552219 0.16291683
0.08269406 -0.10257913 -0.0196171 -1.49421074]

The corresponding response function is shown in Fig. 26.

7. Phase estimation polynomial

Similar to the threshold function is the phase estimation
polynomial of Eq. (69), used in Sec. V.

For example, with � = 10 and using a degree d = 18
Taylor series, a set of QSP phase angles for this polynomial
in the (Wx, Sz, 〈+| · |+〉)-QSP convention is as follows:
pyqsp --plot-real-only --plot-npts=400
--seqargs=18,10 --plot poly_phase

[-2.69295576 0.92644177 -2.47601161 -2.95790072
-3.07710363 2.40352005 2.38432687 -3.0712802
-2.54668308 -0.87407521 0.59490957 -3.0712802
-0.75726578 2.40352005 -3.07710363 -2.95790072
-2.47601161 0.92644177 2.01943322]

The corresponding response function is shown in Fig. 27.
A set of QSP phases for this polynomial can also be

given in the (Wx, Sz, 〈0| · |0〉)-QSP convention; use of this
convention clarifies the reduction to the quantum Fourier
transform presented in Sec. V D:
pyqsp --polydeg 16 --measurement="z"
--func="-1+np.sign(1/np.sqrt(2)-x)+
np.sign(1/np.sqrt(2)+x)" --plot polyfunc

[0.6744825 2.4248297 2.7351234 2.7316442
0.0127715 3.915519 2.3178308 -0.00533221
2.3088486 2.36385 2.3181891 1.585311
2.411246 0.4094785 -0.40136954 0.7154387
1.8687413]

040203-36

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

The corresponding response function is shown in Fig. 28.
Note that we are no longer using the real polynomial
approximation of Eq. (69), since it does not satisfy the
conditions of Theorem 9; because of this, there is a
small nonzero imaginary response. The QSP phase angles
for this example are generated using an optimization
algorithm.

8. Eigenstate filtering

As in the eigenvalue threshold problem of Sec. IV, sup-
pose that H is a Hermitian matrix with an eigenvalue λ that
is known to be separated from other eigenvalues by a gap
�λ > 0 and the problem is to create, using QSP, a projec-
tion operator onto the eigenspace corresponding to λ. Lin
and Tong [41] show that the degree-(d = 2k) polynomial

fk(x,�λ) =
Tk

(
−1+ 2 x2−�2

λ

1−�2
λ

)

Tk

(
−1+ 2 −�

2
λ

1−�2
λ

) , (D7)

known as the “eigenstate filtering function,” is an optimal
polynomial for filtering out the unwanted information from
all other eigenstates.

For example, with δ = 0.3 and using a degree-(d = 30)
Taylor series, a set of QSP phase angles for this polynomial
is as follows:
pyqsp --plot-positive-only --plot-real-only
--plot-tight-y --seqargs 30,0.3 --plot efilter

[-2.22655153 2.26982696 -0.76378956 0.07418111
0.25458387 0.5916072 0.30309002 0.10101557
-0.12943648 -1.00141425 0.60368299 -2.2897962
-0.04337353 0.28364185 2.28161478 -0.61804648
-0.85997787 0.28364185 -0.04337353 0.85179646
0.60368299 -1.00141425 -0.12943648 0.10101557
0.30309002 0.5916072 0.25458387 0.07418111
-0.76378956 -0.87176569 2.48583745]

R
es

po
ns

e

Phase estimation polynomial

Target function

FIG. 27. The response function for the real phase estimation
polynomial with � = 10 and d = 18 in the (Wx, Sz , 〈+| · |+〉)-
QSP convention.

R
es

po
ns

e

Phase estimation polynomial

Target function

FIG. 28. The response function for a degree-18 polyno-
mial approximation to the phase estimation function in the
(Wx, Sz , 〈0| · |0〉) convention.

which produces this response function for a > 0. The cor-
responding response function is shown in Fig. 29. This is
a better threshold function than the one presented in Sec. 5
and the threshold can be located where desired by changing
�λ.

9. Gibbs distribution

Given H =∑
λ λ|λ〉〈λ|, its corresponding Gibbs distri-

bution state ρ(β) = (1/Z)e−βH is the density matrix

ρ(β) = 1
Z

∑
λ

e−βλ|λ〉〈λ|. (D8)

An approximation to e−βa is useful for obtaining ρ using
QSP. To ensure that the function has definite parity, we
choose a polynomial approximation to e−β|a|.

For example, with β = 3.5 and using a degree d = 20
Taylor series, a set of QSP phase angles for this polynomial
is as follows:

R
es

po
ns

e

Eigenstate filtering

Target function

FIG. 29. The response function for the polynomial approxi-
mation to the eigenstate filtering function with δ = 0.3 and d =
30.

040203-37

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

Gibbs distribution

R
es

po
ns

e
Target function

FIG. 30. The response function for the polynomial approxi-
mation to the Gibbs distribution for a > 0 with β = 3.5 using a
degree-(d = 20) polynomial. The response is scaled to maximize
Poly(a). Note that the approximation deviates from the target
near a = 0, as the symmetrized version of the Gibbs distribution
is nonanalytic about that point.

pyqsp --plot-positive-only --plot-real-only
--plot-tight-y --seqargs=20,3.5 --plot gibbs

[-0.0311925 0.15173154 -0.42846816 0.59591
-0.41539264 -0.16200557 0.12112529 -0.09068282
-0.92154011 -0.88213549 1.0199175 -0.88213549
2.22005254 -0.09068282 0.12112529 -0.16200557

-0.41539264 0.59591 -0.42846816 -2.98986111
1.53960383]

The corresponding response function is shown in Fig. 30.

10. ReLU

The “rectified linear unit” activation function, ReLU(x) :=
max(0, x), is popular in machine learning and QSP is a
natural framework to employ for realizing such nonlin-
ear activation functions for quantum machine learning. A

ReLU function

R
es

po
ns

e

Target function

FIG. 31. The response function for the polynomial approxima-
tion to the ReLU function with δ = 0.6 and � = 15.

common differentiable approximation of the ReLU func-
tion is the SOFTPLUS function, which is made into an even
function in this version:

f (a) =
ln

(
1+ e�(|a|−δ)

)
�

, (D9)

where � parametrizes the steepness and δ the offset of the
threshold from 0.

For example, with δ = 0.6 and � = 15 and using a
degree-20 Taylor series, a set of QSP phase angles for this
polynomial is as follows:

pyqsp --plot-real-only --plot-tight-y
--seqargs=20,0.6,15 --plot relu

[0.5830891 -0.50867554 0.45797704 -1.83149903
0.20084092 -0.11936587 0.97960177 0.53415547

-0.9957325 -0.9362886 1.24987957 -0.9362886
-0.9957325 0.53415547 0.97960177 -0.11936587
0.20084092 1.31009363 -2.68361561 2.63291712

-0.98770723]

The corresponding response function is shown in Fig. 31.

[1] C. H. Bennett, Time/space trade-offs for reversible compu-
tation, SIAM J. Computing 18, 766 (1989).

[2] E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor.
Phys. 21, 219 (1982).

[3] P. W. Shor, in Proceedings 35th annual symposium on
foundations of computer science (IEEE, 1994), p. 124.

[4] L. K. Grover, in Proceedings of the twenty-eighth annual
ACM Symposium on Theory of Computing (1996), p. 212,
ArXiv:quant-ph/9605043.

[5] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys 21, 467 (1982).

[6] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[7] G. H. Low, T. J. Yoder, and I. L. Chuang, Methodology
of Resonant Equiangular Composite Quantum Gates, Phys.
Rev. X 6, 041067 (2016). ArXiv:1603.03996

[8] G. H. Low and I. L. Chuang, Hamiltonian simulation by
qubitization, Quantum 3, 163 (2019). ArXiv:1610.06546

[9] R. Freeman and M. J. Minch, Spin Choreography: Basic
Steps in High Resolution NMR (Oxford University Press,
Oxford, 1998).

[10] M. H. Levitt, Composite pulses, Prog. Nucl. Magn. Reson.
Spectrosc. 18, 61 (1986).

[11] S. Wimperis, Broadband, narrowband, and passband com-
posite pulses for use in advanced NMR experiments, J.
Magn. Reson., Ser. A 109, 221 (1994).

[12] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quan-
tum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics, Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing (2019), ArXiv:1806.01838.

[13] S. Lloyd, B. T. Kiani, D. R. Arvidsson-Shukur, S. Bosch, G.
De Palma, W. M. Kaminsky, Z.-W. Liu, and M. Marvian,

040203-38

https://doi.org/10.1137/0218053
https://doi.org/10.1007/BF01857727
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://arxiv.org/abs/1603.03996
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1006/jmra.1994.1159
https://arxiv.org/abs/1806.01838

GRAND UNIFICATION OF QUANTUM ALGORITHMS PRX QUANTUM 2, 040203 (2021)

Hamiltonian singular value transformation and inverse
block encoding (2021), ArXiv:2104.01410.

[14] Y. Dong, X. Meng, K. B. Whaley, and L. Lin, Effi-
cient phase factor evaluation in quantum signal processing
(2020), ArXiv:2002.11649.

[15] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum
Algorithm for Linear Systems of Equations, Phys. Rev.
Lett. 103, 150502 (2009). ArXiv:0811.3171

[16] G. Brassard, P. Høyer, and A. Tapp, Quantum count-
ing, Lecture Notes in Computer Science, 820 (1998),
ArXiv:quant-ph/9805082.

[17] P. Rall, Faster coherent quantum algorithms for phase,
energy, and amplitude estimation (2021), ArXiv:2103.
09717.

[18] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, UK, 2010).

[19] J. Preskill, Lecture notes for physics 229: Quantum infor-
mation and computation (1998).

[20] A. Y. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi,
Classical and quantum computation, number 47 (American
Mathematical Soc., 2002).

[21] G. H. Low, Quantum signal processing by single-qubit
dynamics, Ph.D. thesis, Department of Physics, Mas-
sachusetts Institute of Technology (2017).

[22] A. Gilyén, Quantum singular value transformation &
its algorithmic applications, Ph.D. thesis, Institute for
Logic, Language and Computation, University of Ams-
terdam: Institute for Logic, Language and Computation
(2019).

[23] G. H. Low and I. L. Chuang, Optimal Hamiltonian Simu-
lation by Quantum Signal Processing, Phys. Rev. Lett. 118,
010501 (2017). ArXiv:1606.02685

[24] The convention presented in Eq. (3) may be called the Wx
convention. For other conventions, see Appendix A.

[25] L. M. K. Vandersypen and I. L. Chuang, NMR techniques
for quantum control and computation, Rev. Mod. Phys. 76,
1037 (2005). arXiv:quant-ph/0404064

[26] G. Wolfowicz and J. J. Morton, Pulse techniques
for quantum information processing, eMagRes 5, 1515
(2016).

[27] X. Wang, L. S. Bishop, J. Kestner, E. Barnes, K. Sun,
and S. D. Sarma, Composite pulses for robust univer-
sal control of singlet-triplet qubits, Nat. Commun. 3, 1
(2012).

[28] C. D. Aiello, M. Hirose, and P. Cappellaro, Composite-
pulse magnetometry with a solid-state quantum sensor, Nat.
Commun. 4, 1 (2013).

[29] E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek,
G. Vrijsen, S. T. Flammia, K. R. Brown, P. Maunz, and J.
Kim, Error compensation of single-qubit gates in a surface-
electrode ion trap using composite pulses, Phys. Rev. A 92,
060301(R) (2015). arXiv:1504.01440

[30] Y. Tomita, J. T. Merrill, and K. R. Brown, Multi-qubit
compensation sequences, New J. Phys. 12, 015002 (2010).
arXiv:0908.2593

[31] S. S. Ivanov and N. V. Vitanov, High-fidelity local address-
ing of trapped ions and atoms by composite sequences
of laser pulses, Opt. Lett. 36, 1275 (2011). ArXiv:1106.
0272

[32] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C.
Rigetti, and M. Steffen, Microwave-activated conditional-
phase gate for superconducting qubits, New J. Phys. 15,
115012 (2013). ArXiv:1307.2594

[33] J. Haah, Product decomposition of periodic functions
in quantum signal processing Quantum 3, 190 (2019).
ArXiv:1806.10236

[34] R. Chao, D. Ding, A. Gilyén, C. Huang, and M. Szegedy,
Finding angles for quantum signal processing with machine
precision (2020), ArXiv:2003.02831.

[35] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, and D.
A. Buell et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[36] L. Lin, Optimization based approach for quantum sig-
nal processing and its energy landscape (2021), Simons
Institute for the Theory of Computing: Quantum Wave in
Computing Reunion.

[37] T. J. Yoder, G. H. Low, and I. L. Chuang, Fixed-Point Quan-
tum Search with an Optimal Number of Queries, Phys. Rev.
Lett. 113, 210501 (2014). ArXiv:1409.3305

[38] Note that even for degenerate eigenspaces, the linearity of
the QSP sequence ensures qubitization.

[39] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis
(Cambridge University Press, Cambridge, UK, 1991).

[40] W. J. Huggins, J. Lee, U. Baek, B. O’Gorman, and K.
B. Whaley, A non-orthogonal variational quantum eigen-
solver, New J. Phys. 22, 073009 (2020). ArXiv:1909.09114

[41] L. Lin and Y. Tong, Optimal polynomial based quantum
eigenstate filtering with application to solving quantum
linear systems, Quantum 4, 361 (2020). ArXiv:1910.14596

[42] L. Lin and Y. Tong, Near-Optimal ground state preparation,
Quantum 4, 372 (2020). ArXiv:2002.12508

[43] A. Y. Kitaev, Quantum measurements and the Abelian
stabilizer problem (1995), ArXiv:quant-ph/9511026.

[44] S. Parker and M. B. Plenio, Efficient Factorization with a
Single Pure Qubit and log n Mixed Qubits, Phys. Rev. Lett.
85, 3049 (2000). ArXiv:quant-ph/0001066

[45] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P.
Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt,
Realization of a scalable Shor algorithm, Science 351, 1068
(2016). ArXiv:1507.08852

[46] The sign function is discontinuous and cannot be imple-
mented exactly through the QSVT. We deal with this caveat
shortly, but for now we assume it can be implemented
exactly.

[47] K. M. Svore, M. B. Hastings, and M. Freedman, Faster
phase estimation (2013), ArXiv:1304.0741.

[48] N. Wiebe and C. Granade, Efficient Bayesian Phase Esti-
mation, Phys. Rev. Lett. 117, 010503 (2016). ArXiv:1508.
00869

[49] Note that we do not include an additional (m+ 1)th phase-
readout qubit for the bit in the ones place of ϕ, because no
approximation is needed if we know that m = 3.

[50] A. M. Childs, R. Kothari, and R. D. Somma, Quantum
algorithm for systems of linear equations with exponen-
tially improved dependence on precision, SIAM J. Com-
puting 46, 1920 (2017). ArXiv:1511.02306

[51] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,

040203-39

https://arxiv.org/abs/2104.01410
https://arxiv.org/abs/2002.11649
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/quant-ph/9805082
https://arxiv.org/abs/2103.09717
https://arxiv.org/abs/1606.02685
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1038/ncomms2003
https://doi.org/10.1038/ncomms2375
https://doi.org/10.1103/PhysRevA.92.060301
https://doi.org/10.1088/1367-2630/12/1/015002
https://doi.org/10.1364/OL.36.001275
https://doi.org/10.1088/1367-2630/15/11/115012
https://doi.org/10.22331/q-2019-10-07-190
https://arxiv.org/abs/2003.02831
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.1088/1367-2630/ab867b
https://doi.org/10.22331/q-2020-11-11-361
https://arxiv.org/abs/2002.12508
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1103/PhysRevLett.85.3049
https://doi.org/10.1126/science.aad9480
https://arxiv.org/abs/1304.0741
https://doi.org/10.1103/PhysRevLett.117.010503
https://doi.org/10.1137/16M1087072

MARTYN, ROSSI, TAN, and CHUANG PRX QUANTUM 2, 040203 (2021)

A variational eigenvalue solver on a photonic quantum
processor, Nat. Commun. 5, 1 (2014).

[52] E. Farhi, J. Goldstone, and S. Gutmann, A quantum
approximate optimization algorithm (2014), ArXiv:1411.
4028.

[53] N.-H. Chia, A. Gilyén, T. Li, H.-H. Lin, E. Tang, and
C. Wang, Sampling-based sublinear low-rank matrix arith-
metic framework for dequantizing quantum machine learn-

ing, Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing (2020), ArXiv:1910.
06151.

[54] C. T. Hann, G. Lee, S. Girvin, and L. Jiang, Resilience of
quantum random access memory to generic
noise, PRX Quantum 2, 020311 (2021). ArXiv:2012.
05340

[55] https://github.com/ichuang/pyqsp.

040203-40

https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1910.06151
https://doi.org/10.1103/PRXQuantum.2.020311
https://github.com/ichuang/pyqsp

	I.. INTRODUCTION
	A.. Road map

	II.. FROM QSP TO THE QSVT
	A.. Quantum signal processing
	B.. An application to amplitude amplification and search
	C.. Quantum eigenvalue transforms
	D.. Quantum singular value transforms
	E.. Block encodings

	III.. SEARCH BY QSVT
	IV.. THE EIGENVALUE THRESHOLD PROBLEM BY QSVT
	V.. PHASE ESTIMATION BY QSVT
	A.. Intuition
	1.. Sketch of the algorithm
	2.. Caveats

	B.. The complete algorithm
	C.. Applications to factoring and beyond
	1.. Factoring
	2.. Robust phase estimation

	D.. Emergent quantum Fourier transform

	VI.. FUNCTION-EVALUATION PROBLEMS BY QSVT
	A.. Hamiltonian simulation by QSVT
	B.. Matrix inversion by QSVT

	VII.. DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: QSP CONVENTIONS
	1.. Wx convention for QSP
	2.. Reflection convention for QSP
	3.. Wz convention for QSP

	. APPENDIX B: PROOFS ABOUT PHASE ESTIMATION BY QSVT
	1.. Theorems 6 and 7
	a.. n m
	b.. n<m

	2.. Theorem 8

	. APPENDIX C: CONSTRUCTION OF THE MATRIX-INVERSION POLYNOMIAL
	. APPENDIX D: QSP PHASE ANGLE-SEQUENCE EXAMPLES
	1.. Oblivious amplitude amplification
	2.. Sign function
	3.. Matrix inversion using 1/a
	4.. Cosine and sine functions for Hamiltonian simulation
	5.. Threshold function
	6.. Linear amplitude amplification
	7.. Phase estimation polynomial
	8.. Eigenstate filtering
	9.. Gibbs distribution
	10.. ReLU

	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

