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Over the past few years, machine learning has emerged as a powerful computational tool to tackle
complex problems in a broad range of scientific disciplines. In particular, artificial neural networks have
been successfully used to mitigate the exponential complexity often encountered in quantum many-body
physics, the study of properties of quantum systems built from a large number of interacting particles.
In this article, we review some applications of neural networks in condensed matter physics and quan-
tum information, with particular emphasis on hands-on tutorials serving as a quick start for a newcomer
to the field. The prerequisites of this tutorial are basic probability theory and calculus, linear algebra,
basic notions of neural networks, statistical physics, and quantum mechanics. The reader is introduced
to supervised machine learning with convolutional neural networks to learn a phase transition, unsuper-
vised learning with restricted Boltzmann machines to perform quantum tomography, and the variational
Monte Carlo method with recurrent neural networks for approximating the ground state of a many-body
Hamiltonian. For each algorithm, we briefly review the key ingredients and their corresponding neural-
network implementation, and show numerical experiments for a system of interacting Rydberg atoms in
two dimensions.
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I. INTRODUCTION

“Quantum many-body physics” refers to the mathemat-
ical framework to study the collective behavior of large
numbers of interacting particles. The emerging cooperative
phenomena that result from seemingly simple interactions
can produce an astounding variety of phases of matter,
such as conventional metals and magnetically ordered
states, as well as unanticipated states, including high-
temperature superconductivity, strange metals, and spin
liquids [1]. In addition to naturally occurring quantum
systems, many-body physics studies synthetic quantum
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matter (e.g., ultracold atoms, superconducting qubits, and
trapped ions), which simultaneously reveals new phenom-
ena in highly controlled laboratory settings and advances
the development of quantum computers and other quantum
information processing devices.

In spite of the simplicity of the physical laws that gov-
ern such multiparticle quantum objects, the theoretical and
experimental analysis of these systems confront us with
complexities that are ultimately rooted in the dimension-
ality explosion associated with the exponential scaling of
the size of the space where quantum many-body states
live. Traditionally, the study of many-body systems is per-
formed with the help of tools designed to circumvent this
complexity and to produce a succinct, low-dimensional
description that captures the essential aspects of a quantum
system. Such descriptions arise from the analysis of data
generated in a wide range of theoretical, computational,
and experimental devices. These include numerical simu-
lations of model Hamiltonians based on quantum Monte
Carlo methods [2–4] or variational algorithms [5–7], but
also experimental arrays of complex electronic struc-
ture images obtained from spectroscopic imaging scan-
ning tunneling microscopy, or measurements of quantum
states prepared on a physical quantum computing platform
[8–11].

Machine learning, already explored as a tool in several
research areas in physics [12], offers a set of alternative
approaches to the study of quantum many-body systems in
experiments and numerical simulations [13,14]. The resur-
gence of activity at the intersection between physics and
machine learning is in part due to a series of scientific
breakthroughs in computer vision and natural language
processing. Such progress has led to a burst of research
where neural networks have been repurposed to tackle fun-
damental questions in condensed matter physics, quantum
computing, statistical physics, and atomic, molecular, and
optical physics. Machine learning, and in particular deep
neural networks, has been used to identify phases of mat-
ter in numerical simulations and experiments [15–36], to
increase the performance of Monte Carlo simulations [37–
46], to accurately describe the state of classical [47] and
quantum [48–63] systems, to develop novel quantum con-
trol strategies [64–70], to perform quantum tomography
[71–90], to accelerate density functional theory calcula-
tions [91–97], to develop and elucidate renormalization
group analyses [98–103], and to devise quantum error cor-
rection protocols [104–118], in addition to many other
examples [119–130].

Such an explosion of activity indicates that machine
learning techniques may soon become commonplace in
quantum many-body physics research, both in experi-
ments and in numerical simulations. These clear trends call
for the development of resources to stimulate researchers
to familiarize themselves with the wealth of concepts,
intuition, algorithms, hardware, software, and research

culture entailed by the adoption of machine learning and
neural networks in physics research. Here we take a step
forward in this direction and develop a set of hands-on
tutorials focused on a set of recent prototypical exam-
ples of applications of neural-network technology to prob-
lems in statistical physics, condensed matter physics, and
quantum computing.

A. Outline

This article is organized as follows. Starting with a
preliminary discussion, we introduce in Sec. A some fun-
damental concepts in machine learning and neural net-
works. In Sec. B we present a concise description of the
physical system studied in our numerical experiments, a
two-dimensional (2D) array of interacting Rydberg atoms.
In Sec. III we discuss our first application, the classifica-
tion of phases of matter with supervised machine learning
of projective measurement data using a convolutional neu-
ral network (CNN), and demonstrate it on the quantum
phase transition in the Rydberg atoms. In Sec. IV we intro-
duce quantum state tomography (QST), and show how this
problem can be phrased as an unsupervised machine learn-
ing task. Using the restricted Boltzmann machine (RBM),
we show quantum tomography of the Rydberg ground
states, as well as of the ground state of a small molecule
from qubit measurement data. In Sec. V we present the
simulation of the ground state of a many-body Hamiltonian
using the variational Monte Carlo (VMC) method with a
recurrent-neural-network (RNN) wave function. For each
of these applications, we also show the key components of
the underlying software, with full code tutorials available
in an external repository [131].

II. PRELIMINARIES

A. Machine learning with neural networks

Artificial intelligence is the scientific discipline that
deals with the theory and development of computer pro-
grams with the ability to perform complex tasks that
are usually performed by humans, such as visual percep-
tion, game playing, speech recognition, decision-making,
and translation between languages. Before its current
widespread adoption, artificial intelligence first saw early
success solving problems that are relatively straightfor-
ward to formalize in an abstract way. The solutions to this
breed of problems are typically described by a list of very
precise formal rules that computers can process efficiently.
As a remarkable example, computers have been beating
humans at playing chess since 1997, in part because chess
involves a large set of formal rules.

Modern machine learning, instead, deals with the chal-
lenge of automatizing the solution of real-world tasks that
may be easy for humans to process but that are hard to
formally describe by simple rules. These techniques have
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spurred a recent revolution where algorithms trained using
data have started to match the ability of humans to recog-
nize objects in an image, decipher speech, or translate text
into multiple languages, which are tasks that are difficult to
formalize and articulate through simple rules.

A key element behind these recent developments can
be largely traced back to a series of breakthroughs in the
development of powerful neural-network models, where
data are processed through the sequential combination of
multiple nonlinear layers [132]. Such models solve a fun-
damental problem in learning real-world tasks—namely,
the problem of automatically extracting knowledge from
raw noisy data rather than relying on hard-coded knowl-
edge directly inscribed in the algorithms by a human.
Neural networks automatize the construction of sets of
increasingly complex representations of the data, which
can be understood as the computational disentangling of
complex concepts (e.g., an object in a cluttered image)
from simpler concepts (e.g., pixel values and basic shapes
such as edges). These representations, in turn, lead to
solutions to learning tasks with unprecedented success.

For practical purposes, machine learning algorithms can
be divided into the categories of supervised, unsupervised,
and reinforcement learning, all of which have found appli-
cations to quantum many-body systems [13]. While there
is no formal difference between some of the algorithms in
these categories when expressed in the language of proba-
bility [132,133], such a division is often used as a way to
specify the details of the algorithms, the training setup, and
the structure of the datasets involved.

Supervised learning tasks aim at predicting a target out-
put vector y associated with input vector x, both of which
can be discrete or continuous. The training data are thus a
list of pairs of input-output tuples {xi, y i}Mi=1, where target
output conveys that such a vector corresponds to the ideal
output given the input vector [133]. Starting with a train-
ing dataset with M entries, the learning algorithm outputs
a function ŷ = f (x) that estimates the output values for
unseen input vectors x. Examples of supervised learning
include classification, where the objective is to assign each
input vector to one of a set of discrete categories, and the
task of regression, where the output is a vector with con-
tinuous entries. Examples of classification and regression
include, respectively, the problem of recognizing images
of handwritten digits and the problem of determining the
orbits of bodies around the Sun from astronomical data.

Unsupervised learning deals with the learning tasks
where the training data are composed of a set of input
vectors without a corresponding target output [133]. These
algorithms are typically used to discover hidden structure
in the datasets. Examples of tasks in unsupervised learn-
ing problems include clustering, where the objective is
to discover groups of similar examples within the data,
density estimation, where the objective is to estimate the
underlying probability distribution associated with the

data, and low-dimensional visualization of high-dimensional
data algorithms, which depict complex data in two or three
dimensions while trying to retain key spatial characteristics
in the original data.

Finally, reinforcement learning develops algorithms
dealing with the problem of discovering actions that max-
imize a numerical reward signal [134]. The learning algo-
rithms are not necessarily directly exposed to examples
of optimal actions. Instead, they must discover them by a
process similar to a guided trial and error. Reinforcement
learning augmented by deep neural networks has success-
fully learned policies from high-dimensional sensory input
for game playing, achieving human-level performance in
several challenging games, including Atari 2600 [135] as
well as the board game Go [136]. Likewise, reinforcement
learning has been applied to the control of quantum sys-
tems [67,137] as well as to the optimization of quantum
error correction codes [110,114,115], one key ingredient
in the development of fault-tolerant quantum computers.
Because of the specific choice of many-body problems we
entertain in this article, we do not discuss reinforcement
learning techniques.

To follow this tutorial, a basic knowledge of machine
learning is recommended. This includes fundamental prop-
erties of neural networks, basic Monte Carlo techniques,
gradient-based optimization methods, and an elementary
understanding of model overfitting and generalization. For
a pedagogical and comprehensive introduction to these
concepts, we suggest the reviews in Refs. [138–140],
specifically phrased in the context of quantum physics.

B. Rydberg atoms in two dimensions

In the following sections, we detail how to repurpose
machine learning algorithms based on neural networks to
tackle some problems encountered in quantum many-body
physics. We focus on a many-body system composed of
interacting Rydberg atoms [141,142], which we showcase
in the various numerical experiments and hands-on code
tutorials. Because of the high control and manipulation that
can be achieved in experiments [143], these platforms have
revealed themselves to be extremely useful to investigate
a broad range of applications, including Ising-like quan-
tum magnetism [9,144–146], quantum dynamics [147–
149], spin liquid physics [10], and quantum computing
[150,151].

Our choice of physical systems is motivated by sev-
eral reasons. First, quantum hardware based on neutral
atoms provides a highly programmable platform for ana-
log quantum simulations, and it is being increasingly
explored for quantum information processing. Second,
these systems are engineered in a way that each atom
can be found only either in the atomic ground state or
in a highly excited (Rydberg) state. Because the system
is effectively described by a qubit wave function, the
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techniques involved are relatively simplified. Third, the
Rydberg atom platform provides access to large volumes
of data in the form of accurate projective measurements
that open the door to studying the physical properties of
the system through machine learning algorithms. Finally,
as explained below, the Rydberg Hamiltonian has the very
special property that its ground-state wave function is real
and positive in the atomic occupation number basis. Under
this assumption, the definition of a neural-network wave
function is also simplified. We will, however, describe the
more generic case of a wave function with a sign structure
in Sec. C.

We consider a square array with linear dimension L
containing N = L2 atoms. Each atom is described by a
local Hilbert space spanned by the states {|g〉, |e〉}, refer-
ring respectively to the atomic ground state and the highly
excited Rydberg state. The atoms are subjected to a uni-
form laser drive with Rabi frequency � and detuning
δ, and they interact with one another via the van der
Waals potential V(x) ≈ r−6 at short distances. The result-
ing many-body Hamiltonian is

Ĥ = −�
∑

r

Ŝx(r)− δ
N∑

r

�̂(r)

+ 1
2

′∑

r,r

V(r− r′)�̂(r)�̂(r′), (1)

where �̂(r) = |e〉〈e|r is the projector onto the Rydberg
state at position r, Ŝx(r) = 1

2 σ̂
x(r) are spin- 1

2 operators,
and V(r− r′) = V0/‖r− r′‖6 is the van der Waals poten-
tial between atoms at positions r and r′. In the following,
we assume � = 1 MHz.

The phase diagram for the ground state of the Ryd-
berg Hamiltonian is dictated by the mechanism of Rydberg
blockade, a constraint that prevents two atoms at suffi-
ciently short distances from being simultaneously excited
to the Rydberg states. We can characterize the phase dia-
gram in terms of the detuning δ and the interaction strength
V0. On the square lattice, several different orders have
been detected by numerical simulations [152]. Here we
specifically focus on the Z2 transition between a disordered
phase at large and negative detuning, where all atoms are
found in the ground state, and an ordered phase at large
and positive detuning, where the system is found in one
of the two symmetry-broken Néel states characterized by
a checkerboard pattern in the atomic occupation number
[Fig. 1(a)].

We perform numerical simulations of the ground state of
Hamiltonian (1) using the density matrix renormalization
group (DMRG) [5,6,153] implemented using the software
package ITensor [154]. We adopt a matrix product state
(MPS) variational wave function |�〉 with a snakelike
geometry as shown in Fig. 1(b). We fix the interaction

strength to V0 = 3 MHz, and retain up to the third-nearest-
neighbor interactions. For several values of the detuning
δ ∈ {−5, 5}MHz, we run DMRG to find an approximation
of the ground state, using a singular value decomposi-
tion cutoff of 10−10 and a target energy accuracy of 10−5.
To certify convergence to the ground state, each run is
repeated for different initializations of the starting MPS.

We show the results of the simulations for an 8× 8
array with open boundary conditions in Figs. 1(c)–1(f).
We plot as a function of the detuning the ground-state
energy per site E0/N = 〈�0|Ĥ |�0〉/N and the staggered
magnetization 〈N 〉 = N−1∑

r(−1)x+y〈Ŝz(r)〉, which can
be used to detect Néel order. Whenever all atoms are in
the ground state, 〈N 〉 ≈ 0, while for an ordered state with
a checkerboard pattern, one has 〈N 〉 ≈ 0.5. We also show
the average occupation number in momentum space,

n(k) = 1√
N

∑

r

eik·r〈n̂(r)〉, (2)

where n̂(r) = 1
2 (1− 2Ŝz(r)). We observe a peak at k =

(π ,π) for large detuning δ = 4 MHz [Fig. 1(e)], and a
featureless state at negative detuning (not shown).

The two phases of the Rydberg atoms are separated by
a second-order quantum phase transition at a critical point
δc. We can extract an approximation of δc by measuring
the energy gap � = |E0 − E1| between the ground state
and the first excited state |�1〉. We compute E1 by running
DMRG on the Hamiltonian Ĥ ′ = Ĥ + ω|�〉〈�|, where
ω is an energy penalty. From the energy gap curve, we
estimate the detuning where � ≈ 0 to be δc ≈ 1.3 MHz.
This approximate value is sufficient for the purpose of
this article, although a more systematic scaling study with
appropriate boundary conditions (to minimize finite-size
effects) should be performed to accurately determine the
critical point and critical exponents of the transition.

Once we have solved for the ground states of the Ryd-
berg Hamiltonian, the corresponding MPSs can be used
to generate data to train the neural networks for the dif-
ferent applications. In this case, the data consist of pro-
jective measurements in the atomic occupation number
basis |σ 〉 = |σ1, . . . , σN 〉, where σj = 0 and σj = 1 refer,
respectively, to the j th atom being in the ground state and
the j th atom being in the Rydberg state. Given a wave
function |�〉, the probability to observe an atomic pat-
tern σ following a measurement is given simply by the
Born rule P(σ ) = |〈σ |�〉|2. Because of the intrinsic one-
dimensional geometry of a MPS, it is possible to efficiently
sample the probability distribution P(σ ) by using the chain
rule of probabilities. Moreover, the sampling is exact in the
sense that the samples are completely independent of one
another [155].
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(a) (c) (e)

(f)(d)
(b)

FIG. 1. Rydberg atoms in a two-dimensional square array. (a) The phase diagram at a fixed value of the interaction V = 3 MHz
and � = 1 MHz. At large and negative detuning, the system is in a disordered phase with all atoms in the ground state. At large and
positive detuning, the atoms are found in a checkerboard pattern with Néel order. (b) Snakelike geometry of the MPS path along the
square lattice, used for the DMRG simulations. Ground-state energy (c) and the staggered magnetization (Néel order) (d) as a function
of the detuning δ for an 8× 8 array (V = 3 MHz). (e) Absolute value of the average occupation number in momentum space |n(k)|
deep into the Z2 ordered phase (δ = 4 MHz), showing a peak at k = (π ,π), a signature of antiferromagnetic order. (f) Energy gap �
between the ground state and the first excited state, detecting a quantum phase transition at detuning δ ≈ 1.3. PM, paramagnetic.

III. LEARNING A QUANTUM PHASE
TRANSITION

An important task in condensed matter physics and sta-
tistical physics is to characterize different phases of matter
and the associated phase transitions between them. Typ-
ically, phases of matter are described in terms of simple
real-space patterns and their associated order parame-
ters, which are theoretically understood using the Lan-
dau symmetry-breaking paradigm [1]. While a wide array
of theoretical and experimental tools to study interact-
ing quantum systems have been constructed in relation to
these patterns, there is an increasing set of states of matter
whose theoretical and experimental understanding eludes
the Landau symmetry-breaking paradigm. The character-
ization of these phases may rely on, for example, out-of-
equilibrium properties of the system as in the many-body
localized phase [156,157] or on topological invariants in
topological phases and spin liquids [1,158,159].

Machine learning provides an alternative route to the
characterization of phases of matter and their associ-
ated phase transitions in a semiautomated fashion without
the direct use of manually specified real-space patterns
and/or other signatures, provided that a sufficiently large
training set is available. In its simplest form [15], given
the existence of a classical or quantum phase transition
between two phases in a physical system, one can use
supervised learning to attempt to classify experimental
or numerical snapshots of the phases of matter separated
by the transition. This task can be achieved using most
classification algorithms, for example, those based on a

neural network or a support vector machine [133], trained
on snapshots of two phases of matter labeled accord-
ing to the corresponding phase from which the snapshot
originated.

The architectural choice of the classifier is flexible, but a
natural strategy is to take into account the structural prop-
erties of the problem such as the symmetries of the physical
system and its spatial dimensionality. These choices are
important since they impact the computational complexity
of the learning algorithms, where encoding the knowl-
edge of the physical problem typically increases the overall
complexity of the algorithm. For instance, we might be
interested in classifying numerically generated snapshots
of a large two-dimensional array of spins governed by an
Ising model in two different phases, for which a natural
choice is a 2D CNN [132], which accounts for the 2D
structure and locality of the datasets.

Although here we explore only the simplest supervised
learning strategy [15], we stress that machine learning
approaches to studying phases and phase transitions have
been significantly expanded and they do not require precise
knowledge of the location of the critical point [16,160], can
be fully automatized, and can discover ordered phases [15,
18,161], topological phases [16,162,163], and phases such
as the many-body localized phase, which is characterized
by its dynamical properties [24,164,165].

The nature of the snapshots used to train the learn-
ing algorithms is vastly flexible, and hence these strate-
gies are of wide applicability, and can include numeri-
cally generated configurations visited during a classical or
quantum Monte Carlo simulation of the physical system
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[15,16,18–20,26,166], entanglement spectra [16,24], cor-
relation matrices [167,168], tensors in a MPS [168],
numerically generated projective measurements [169],
high-resolution real-space snapshots of complex many-
body systems obtained with quantum gas microscopes
for ultracold atoms [29,170], single-shot experimental
momentum-space density images of ultracold quantum
gases [30], and spectroscopic imaging scanning tunneling
microscopy data [28].

A. Convolutional neural networks and their training

Below we explore learning a quantum phase transition
in a 2D array of interacting Rydberg atoms using pro-
jective measurements. Because of the 2D arrangement of
the atoms, each measurement—obtained from a numeri-
cal simulation—can be interpreted as an “image” whose
pixels depict the state of each atom after the measure-
ment. Known to be extremely effective image classifiers
[132], we use a convolutional classifier, which readily
takes advantage of the structure of the classification task
since it exploits the 2D spatial arrangement of the Ryd-
berg atoms and their locality, as well as the approximate
translation invariance of the system.

CNNs use a mathematical operation called “convolu-
tion” to process information for data that have a natural
gridlike topology [132]. A 2D convolutional layer imple-
ments the operation

h(q)i,j ,k = F

⎛

⎝
∑

l,my ,mx

h(q−1)
l,j+my ,k+mx

K(q)i,l,my ,mx

⎞

⎠

:= F
(
K(q) ∗ h(q−1)) ,

where the trainable kernel K(q)i,l,my ,mx
at layer q specifies the

connection strength between a unit in channel i of the out-
put and a unit in channel l of the input, with a spatial
offsets of my rows (labeled y direction) and mx columns
(labeled x direction) between the output and the input vari-
ables. The dimensions of the array K(q)i,l,m,n are Iout, Linput,
My , and Mx, which correspond to the number of output
channels, the number of input channels, the dimension of
the filter in the vertical direction, and the dimension of the
filter in the horizontal direction, respectively. The activa-
tion at layer q consists of elements h(q)l,j ,k, where j and k
label vertical and horizontal directions, respectively, and l
specifies the channel. The activation units are labeled by
q, where q = 0 corresponds to the raw projective measure-
ment data. Finally, the nonlinear function F(x), which in
our examples is typically a rectified linear unit (ReLU)
F(x) = max(0, x), is applied element-wise to each of the
components of its input. A convolutional neural network
equipped with two convolutional layers is schematically
shown in Fig. 2.

3 × 3 maps
(32 filters)

3 × 3 maps
(32 filters)

Fully connected
layer (64)

Softmax
layer

FIG. 2. A convolutional neural network. The elements of the
input h(0)l,j ,k correspond to the outcome of a projective mea-
surement on the Rydberg system. The first operation is a con-
volutional layer with My ×Mx = 3× 3 kernels with Iout = 32
output channels and Linput = 1. This kernel is convolved with an
input configuration with N = 8× 8 Rydberg atoms. Likewise,
the second operation corresponds to a convolutional layer with
My ×Mx = 3× 3 kernels with Iout = 32 output channels and
Linput = 32. The output of the second convolutional layer is flat-
tened and fed to a FC layer with a ReLU activation, followed by
another FC layer with a softmax activation, which produces the
prediction outcome.

Followed by the convolutional layers, a CNN typically
processes information using sets of fully connected (FC)
layers that implement a matrix-vector operation followed
by a nonlinearity F as

h(q)i = F

(
∑

l

h(q−1)
l K(q)i,l + b(q)i

)
, (3)

where the trainable parameters of the FC layer are the ker-
nel K(q)i,l and the bias vector b(q)i . To feed the output of
a convolutional layer h(q−1)

l,j ,k to a FC layer, the array is

reshaped or “flattened” to h′(q−1)
l so that all the original

components are packed into a one-dimensional array with
dimension LFC. The last two layers of the CNN in Fig. 2
correspond to two fully connected layers with a ReLU and
a softmax nonlinearity, respectively. The softmax function
S is given by

S(v) = exp v∑
i exp vi

. (4)

where vi are the components of a vector v and the exponen-
tial function acts element-wise on the components of the
vector. The input to the CNN and its trainable parameters
are real, so the outcome of the softmax layer can be inter-
preted as a probability distribution since 0 ≤ S(vi) ≤ 1 and∑

i S(vi) = 1.
Finally, we we interpret our CNN as a model for the

conditional probability of assigning a phase of matter y =
0, 1 to a projective measurement outcome σ = h(0), i.e.,
Pθ (y|σ ), where θ encompasses all the trainable parameters
of the CNN. The conditional probability is given by
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Pθ (y|σ ) = S

[
b(4)y +

∑

m

K(4)y,mF

(
b(3)m +

∑

l

K(3)m,l flatten
(
F
[
K(2) ∗ F

(
K(1) ∗ σ

)])
l

)]
, (5)

where the function flatten()l is the lth component of a vec-
tor that arises from reshaping the incoming argument of the
function to a one-dimensional array.

To estimate the parameters of the CNN we use the
maximum likelihood principle, where the parameters of a
statistical model are selected by assigning high probabil-
ity to the observed data. For a dataset with observations
{σ n, yn}Mn=1, where yn = 0, 1 label the phase of matter from
which a projective measurement σ n was taken from, the
likelihood assigned by the model to the dataset can be
written as

p(y |θ) =
M∏

n=1

Pθ (yn|σ n)
yn[1− Pθ (yn|σ n)]1−yn , (6)

where y = (y1, . . . , yM ). Instead of attempting to maximize
the likelihood, it is convenient to define a loss function
by taking the negative logarithm of the likelihood, which
gives the cross-entropy

E(θ) = − ln (p(y |θ)) =
M∑

n=1

{yn ln (Pθ (yn|σ n))

+ (1− yn) ln[1− Pθ (yn|σ n)]}. (7)

To train the model, we minimize E(θ) using gradient
descent techniques [133]. While it is possible to evaluate
the gradients of E(θ)with respect to the parameters θ in the
CNN analytically using the chain rule, a more convenient
and less error-prone approach is to use automatic differen-
tiation (AD), which is a set of techniques to numerically
evaluate the derivative of a function specified by a com-
puter program. A complete survey detailing AD can be
found in Ref. [171].

In addition, instead of using the entire dataset in the cal-
culation of E(θ) and its gradients, we use smaller batches
of data of size Mbatch < M , which means that the gra-
dients used during optimization become stochastic since
they fluctuate from batch to batch. In the examples below
we use Nbatch = 32. The gradient update rule used in
our examples is a modified version of the usual gradient
descent method called “Adam” [172].

1. Code walk-through

We demonstrate supervised learning with a CNN to
learn the quantum phase transition in the Rydberg array
using the machine learning software library TensorFlow
[173]. We first generate training data by sampling the MPS

wave functions obtained from DMRG at different detun-
ings δ. These data are then divided into a training set
(used to update the neural-network parameters) and a test
set (used to validate the performance of the model). Each
dataset consists of a list of atomic occupation patterns σ

and their “phase label” y.
We begin by importing the required functionalities and

loading the data. Since we are using a CNN with a two-
dimensional geometry, the atomic configurations in the
training and test datasets need to be appropriately reshaped
from the one-dimensional MPS structure.

Next we define the neural-network architecture by com-
bining layers predefined in TensorFlow. After initializa-
tion, we proceed to implement the model of Eq. (5).
First, the raw input data are processed by two stacked
convolutional layers, each one with 3× 3 filters and
32 channels using rectified linear units. The output of
the second CNN layer is fed to two stacked fully con-
nected layers with 64 hidden units and two output units.
These last units correspond to model output for the dis-
ordered and ordered phase. This set of hyperparameters
is set using a scaling experiment until convergence (see
Sec. VI).
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Once the architecture is defined, the model can be com-
piled by adding the cost function [i.e., the cross-entropy
in Eq. (7)] and the optimizer to update the model param-
eters, the Adam optimizer [172]. Internally, TensorFlow
builds a computational graph containing each operation
being executed from the input state to the final output of the
architecture. The gradients of the cost function with respect
to each network parameter are then evaluated using AD. At
compilation time, we can also add a metric to be monitored
during training, in this case the classification accuracy (i.e.,
the fraction of the test set samples that are being classified
correctly).

The model is now ready to be trained using the Rydberg
data for a set number of epochs, which is the number of
passes of the entire training dataset the machine learning
algorithm has completed. After training is complete, we
can evaluate the model on the held-out test data to quantify
its accuracy.

We show the results of the training in Fig. 3 evalu-
ated on various test sets at different detuning values δ. We
plot the average output signal for the two output neurons,
i.e., an estimate of f (y, δ) =∑σ |�(σ )|2Pθ (y|σ ), on the
topmost dense layer. When the detuning is large and neg-
ative, the disordered neuron saturates to 1, and the ordered

FIG. 3. Learning the quantum phase transition in the Rydberg-
atom array. Top: Output signal for the two units in the topmost
dense layer of the neural-network architecture as a function of
the detuning, corresponding to Eq. (5). Bottom: Accuracy on the
test dataset, showing a dip near the critical point. This estimator
is calculated by comparing the prediction of the CNN with the
correct labels assigned to the samples in the test set.

neuron is nearly 0, while the signals reverse at large and
positive detuning. We can use the crossing point between
the two curves to detect the critical point. We also show
the accuracy in the test set, which shows a dip near the
critical point. This is when the neural network is most
uncertain about assigning a phase label to any given atomic
configuration.

IV. QUANTUM STATE TOMOGRAPHY

Quantum characterization, verification, and validation is
a framework for algorithms and routines used to assess
the quality and the performance of experimental quan-
tum hardware and characterize its components [174]. The
workflow underlying these algorithms is inherently data
driven: appropriate measurement data are first collected
from the quantum device under examination, and are then
processed by an algorithm running on a classical computer.
Depending on the degree of complexity of the algorithm,
different amounts of information can be gained. This could
be a single figure of merit, such as the average error rate for
a set of quantum gates [175–177], or the fidelity (or a proxy
thereof) between a quantum state prepared by the hard-
ware and a desired reference state [178–180]. One may be
also interested in retrieving the full quantum state gener-
ated by a device. This procedure—the reconstruction of an
unknown quantum state from measurement data—is called
“quantum state tomography” [181–188].
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There are two assumptions in QST: the ability to prepare
many identical copies of the quantum state � of interest
and the ability to repeatedly perform measurements on
it. The set of measurements is, in general, described by
positive-operator-valued measures (POVMs) M = {�k}
[189]. The set M is said to be informationally complete
(IC) if it spans the full Hilbert space. Von Neumann mea-
surements in the Pauli bases are an example of informa-
tionally (over)complete measurements, where for a single
qubit M contains the six rank-1 projectors into the eigen-
states of the Pauli matrices. For an IC set, any quantum
state can be uniquely identified by the probabilities of
the measurements in M, as specified by the Born rule
p(k) = Tr ��k.

The simplest method to perform QST is linear inversion,
which reconstructs the quantum state by simply inverting
the Born rule:

� = (A†A)−1A†p̂ , (8)

where each row in the matrix A is a vectorized POVM ele-
ment |�k〉〉, and p̂ is the empirical measurement probabil-
ity. One issue with linear inversion is that the reconstructed
density operator ρ is not necessarily positive, although
negative eigenvalues can be appropriately removed to pro-
duce a positive state that is closest to the output of linear
inversion [187]. A more powerful approach, but also more
computationally intensive, is maximum likelihood estima-
tion [182–184], where the state ρ is found by minimizing
the likelihood function for the observed data under the
constraint ρ ≥ 0.

Traditional QST algorithms based on linear inversion or
maximum likelihood suffer a complexity that scales expo-
nentially with the number of qubits or particles involved.
This exponential scaling stems from two reasons. First, the
representation of the quantum state ρ, which is inevitably
exponential in the system size. Second, the sample com-
plexity; that is, the number of measurements that need to
be collected in an experiment to achieve a faithful recon-
struction of the quantum state. Typically, statistics from an
IC set are required to get a good fit, and the size thereof
scales exponentially with the number of qubits, with prov-
able upper and lower bounds [190,191]. For these reasons,
traditional QST has remained limited to quantum systems
containing only a small number of particles [192].

Several algorithms to overcome this severe complexity
have been proposed over the last decade. Notable examples
include compressed sensing tomography [193–196], per-
mutationally invariant tomography [197,198], and tensor-
network tomography [199–202], which rely, respectively,
on the sparsity, translational invariance, and low entan-
glement of the target quantum state. More recently, a
new framework built on neural networks and unsupervised
learning was proposed [71], and is based on the assumption
that most physical states of interest typically contain some

degree of structure (i.e., correlations, symmetries, etc.), in
the sense that they can be described using a reduced num-
ber of parameters (much smaller than the dimension of the
Hilbert space). The general idea is to leverage the capa-
bility of unsupervised machine learning to autonomously
identify such structure in raw data, and compress it using a
neural-network representation of the quantum state.

In what follows, we focus on pure quantum states,
and discuss the extension to mixed states at the end of
this section. We consider a system of N qubits (or any
other two-level system) described by a wave function |
〉
with amplitudes 
(σ ) = 〈σ |
〉 in an appropriate refer-
ence basis |σ 〉 = |σ1, . . . , σN 〉 (σj ∈ {0, 1}). To circumvent
the scalability issue of standard QST, we adopt a com-
pact representation of a wave function expressed in terms
of a neural network [50]. The resulting neural-network
wave function is simply a highly nonlinear parametric
function of the basis states ψθ (σ ), where θ is a set of
parameters (e.g., weights and biases). Several types of
neural networks have been successfully implemented to
perform QST, including feed-forward neural networks [76,
78], variational autoencoders [72], generative adversar-
ial networks [82], recurrent neural networks [75,89], and
transformers [84]. Here we examine the restricted Boltz-
mann machine because of its simplicity, high expressive
power, and natural interpretation in describing correlated
multivariate probability distributions.

A. The restricted Boltzmann machine

The restricted Boltzmann machine is an energy-based
model introduced in the early 1980s for generative mod-
eling [203,204], and is built on a connection between
cognitive science and statistical mechanics [205–207]. The
RBM features two layers of stochastic binary units: a
visible layer σ = (σ1, σ2, . . . ) and a hidden layer h =
(h1, h2, . . . ), containing, respectively, N and nh neurons
(or units). The two layers in the RBM are fully connected
by a symmetric weight matrix W, with no intralayer con-
nections (hence its restricted nature). The visible units are
used to represent the variables relevant to the specific prob-
lem at hand, such as the pixel values in an image (or
the computational basis states for qubits). The size of the
hidden layer is a natural control parameter for the repre-
sentational power of the model. Since RBMs are universal
function approximators [208], they can capture any dis-
crete distribution provided the number of hidden units is
sufficiently large (possibly exponential in the number of
visible units).

The RBM associates with each configuration of the
visible and hidden layers (σ , h) the energy

Eθ (σ , h) = −
∑

j

∑

i

Wij hiσj −
∑

j

bj σj −
∑

i

cihi, (9)
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where θ = (W, b, c) is the set of parameters, and we also
introduced biases b and c for the visible and hidden units,
respectively. Given this energy functional, the (stochas-
tic) RBM units are distributed according to the Boltzmann
distribution at temperature β = 1:

pθ (σ , h) = Z−1
θ e−Eθ (σ ,h), (10)

where the partition function is

Zθ =
∑

σ ,h

e−Eθ (σ ,h). (11)

Importantly, because the network architecture is restricted,
we can trace out the hidden layer explicitly, obtaining the
marginal probability distribution over the visible space:

pθ (σ ) =
∑

h

pθ (σ , h) = Z−1
θ eEθ (σ ), (12)

where we defined an “effective energy”

Eθ (σ ) =
∑

j

bj σj +
∑

i

(
1+ e

∑
j Wij σj+ci

)
. (13)

The main purpose of the RBM is generative model-
ing, which is the task of learning a representation of an
unknown probability distribution from data, allowing the
neural network to produce new data points. In other words,
the RBM training attempts to discover low-dimensional
features in the data to allow generalization beyond the
finite-size dataset.

Let us consider a dataset D = {σ k} with underlying
(unknown) probability distribution q(σ ). The RBM can
be trained using unsupervised learning to minimize the
distance between the two distributions. Such distance mea-
sure is typically expressed in terms of the Kullback-Leibler
divergence [209]:

DKL(q|pθ ) =
∑

σ

q(σ ) log
q(σ )
pθ (σ )

, (14)

with DKL(q|pθ ) > 0 for all q, pθ and DKL(q|pθ ) = 0 if and
only if pθ = q.

The exponentially large sum over the full configuration
space is approximated using the available data, leading to
the cost function

C(θ) = − 1
|D|

∑

σ∈D
log pθ (σ )− HD, (15)

where |D| is the size of the dataset. Up to a constant dataset
entropy term HD, the Kullback-Leibler divergence reduces
simply to the negative logarithm of the likelihood function
L(D|pθ ).

The RBM can be trained using one of the many flavors
of gradient descent. It is possible to show that the gradients
of the cost function are given by

∇θC(θ) = 〈∇θEθ (σ )〉pθ
− 〈∇θEθ (σ )〉D, (16)

where the gradients ∇θEθ (σ ) can be computed exactly for
any sample σ . We see that the gradients ∇θC(θ) have two
components. There is the average over the data points
〈∇θEθ (σ )〉D, which is fast to compute. In contrast, the
average over the model distribution

〈∇θEθ (σ )〉pθ
= 1

Zθ

∑

σ

eEθ (σ )∇θEθ (σ ) (17)

requires the partition function, whose calculation is, in
general, intractable. However, this expectation value can
be approximated using the Monte Carlo method by draw-
ing NS samples from the model distribution {σ i} ∼ pθ (σ ):

〈∇θEθ (σ )〉D ≈ 1
NS

NS∑

i=1

∇θEθ (σ i). (18)

This is the most computationally intensive step of the
training, and depending on the specific distribution to
be learned, advanced Monte Carlo algorithms may be
required to collect sufficiently uncorrelated samples.

B. Reconstruction of Rydberg atoms

Now that we have introduced the main features of the
RBM and its training, we are ready to explore its use for
QST. As a first application, we examine the reconstruction
of Rydberg-atom wave functions. An important property of
the ground-state wave function |
〉 of the Rydberg Hamil-
tonian (1) is that it is positive in the occupation number
basis 
(σ ) ≥ 0 (where σj = 0 and σj = 1 refer to the
ground and excited states). This property follows directly
from the representation of the Hamiltonian in this basis, in
which all of its off-diagonal elements can be gauged to be
negative (i.e., the Hamiltonian is stoquastic in this basis
[210]).

The positivity of the target state implies that we may
parametrize the neural-network wave function simply as
ψθ (σ ) =

√
pθ (σ ) for any normalized probability distribu-

tion pθ (σ ). Here we choose the RBM probability distri-
bution [Eq. (12)], where the visible units correspond to
the atomic occupations. Moreover, because the wave func-
tion is positive, measurement data from a single basis
are sufficient to characterize the state. This means that
the QST problem, under these assumptions, is equiva-
lent to unsupervised learning of projective measurement
data in the atomic occupation number basis. The tomo-
graphic reconstruction of the quantum state is done by
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iteratively changing the RBM parameters to minimize the
cost function

C(θ) = − 1
|D|

∑

σ∈D
log pθ (σ ). (19)

When convergence in the training is reached, the taught
RBM can be used to estimate various properties of interest.
For a generic observable Ô, the expectation value on the
RBM wave function reduces to an average over the RBM
distribution:

〈Ô〉 = 〈ψθ |Ô|ψθ 〉
〈ψθ |ψθ 〉 =

∑
σ ψθ (σ )〈σ |Ô|ψθ 〉∑

σ pθ (σ )
(20)

= 1
Zθ

∑

σ

pθ (σ )Oloc(σ ), (21)

where we introduced the so-called local observable

Oloc(σ ) = 〈σ |Ô|ψθ 〉
〈σ |ψθ 〉 . (22)

The expectation value in Eq. (21) can then be approxi-
mated with a Markov chain using Monte Carlo sampling,
similarly to the evaluation of the gradients. The evaluation
of the local observable Oloc(σ ) remains efficient as long
as the matrix representation of O in the reference basis
is sufficiently sparse. This measurement procedure is also
useful for monitoring different observables during train-
ing, such as average densities and correlation functions.
These metrics can be used to assess convergence, since in
general the calculation of the Kullback-Leibler divergence
is intractable as it also requires estimation of the partition
function Zθ .

1. Code walk-through

We perform QST on the Rydberg-atom data using the
PYTHON package NetKet [211]. First, we import the library
and define the relevant parameters for the numerical exper-
iments. For instance, we consider the reconstruction of a
square array with linear size L = 8 (containing N = 64
spins), with Hamiltonian parameters V = 3.0 MHz, � =
1.0 MHz, and δ = 2.0 MHz.

We then define the lattice structure and the Hilbert space
for the neural-network wave function, and load the training
data from a file:

Since we are doing training in a single measurement
basis, the arrays bases and rotations are “trivial.”
Otherwise, these variables would contain, respectively, an
integer encoding of each distinct basis and its associated
(local) unitary rotations.

Next we define the main components of the QST
algorithm: the neural-network wave function, the sampler
used to approximate the gradients, and the optimizer for
the parameter updates.

In the definition of the RBM (with real-valued net-
work parameters), the parameter α = nh/N represents the
density of hidden units. We use the AdaDelta optimizer
[212] and a Metropolis sampler using simple single-spin
flips. The tomography parameters n_samples_data
and n_samples refer, respectively, to the number of
training samples and the number of samples drawn from
the model distribution to compute the gradients for a sin-
gle parameter update (i.e., for batch gradient descent). We
refer the reader to the NetKet documentation for additional
details. Finally, we generate the Rydberg Hamiltonian to be
measured during the learning, and run the QST for a fixed
number of training iterations (epochs).
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(a)

(b)

(c)

FIG. 4. Quantum state tomography of an 8× 8 array of Ryd-
berg atoms with unsupervised learning of single-shot atomic
occupation data. We compare various observables measured
using the MPSs obtained from DMRG (black line) and the
neural-network wave functions learned from data generated at
different values of the detuning δ. We plot the average energy
per spin (a) and the average magnetization along the z axis (b)
and x axis (c). The inset in (a) shows the relative error in the
energy εrel = |ERBM − EDMRG|/|EDMRG. Error bars estimated via
standard deviations are too small to be visible.

We perform QST on datasets of projective measure-
ments generated using the MPS obtained from DMRG at
different detunings. Each dataset contains 105 measure-
ments. We train each RBM separately using the hyperpa-
rameters reported above, and measure at each training iter-
ation various observables of interest. We show the results
in Fig. 4, where we plot the average energy per spin 〈Ĥ 〉/N
and the average magnetizations 〈Ŝz/x〉 =∑j 〈Ŝz/x

j 〉/N after
the training has converged. Each data point is obtained by
our averaging the expectation values of the observables
over the last 100 iterations of the training. The reconstruc-
tion shows overall good agreement with the exact values
computed with the MPS wave functions.

C. Reconstruction of a molecular wave function

We now move to the more general case of a wave
function that is nonpositive or complex valued. To accom-
modate this different setup, we first need to modify the
variational ansatz to allow for complex-valued amplitudes
ψθ (σ ). One way to achieve this is to use the RBM to
parametrize the probability distribution in the reference
basis (as before) and couple it with an additional RBM
that parametrizes the phases, ψθ μ(σ ) =

√
pθ (σ )ei log pμ(σ )

[71]. A different strategy, which we adopt here, is to cause
the weights and biases to have complex values [50]. For
the latter representation, we cannot interpret the RBM as a
probabilistic graphical model anymore.

The presence of phases in the target wave function leads
to an additional overhead in the measurement require-
ments. Projective measurements in the computational basis
do not carry enough information to uniquely identify the
state. To obtain information about the phases, measure-
ments in additional bases are required. To account for this,
we can write the training data set as D = {xk}, where each
single-shot measurement is given by x = (τ , σ ), with τ

and σ referring, respectively, to the measurement basis
and the binary measurement outcome. For example, for
the case of Pauli measurements, the data point x = (σ x

1 =
0, σ z

2 = 1) refers to a measurement of qubit 1 (qubit 2) in
the eigenbasis of the Pauli X (Pauli Z) operator.

The learning algorithm proceeds in a similar fashion
to the case of a positive wave function, reducing to the
optimization of the negative log-likelihood cost function:

C(θ) = − 1
|D|

|D|∑

k=1

log pθ (xk). (23)

The important difference is that to evaluate measurement
probabilities in bases other than the reference one, we need
to appropriately rotate the neural-network wave function.
We can write this measurement probability as

pθ (xk) = |〈σ k|U(τ k)|ψθ 〉|2
〈ψθ |ψθ 〉 , (24)

where U(τ ) refers to the unitary transformation that rotates
the reference basis into the measurement basis τ . We
also assume local measurements, leading to the factor-
ization U(τ ) =⊗N

j=1 U(τj ) into single-qubit unitary rota-
tions U(τj ). For the example described above, with x =
(σ x

1 = 0, σ z
2 = 1), the neural-network probability is (up

to a normalization factor) pθ (x) ∝ |〈01|H1 ⊗�2|ψθ 〉|2,
where H is the Hadamard gate (i.e., the rotation into the σ x

basis). For a full derivation of a reconstruction with generic
measurement bases, we refer the reader to Ref. [80].

We show neural-network QST of a nonpositive wave
function for the case of the electronic ground state of a
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small molecule. The Hamiltonian in second quantization
is given by

Ĥ =
∑

α,β

tαβ ĉ†
α ĉβ + 1

2

∑

α,β,γ ,δ

uαβγ δ ĉ†
α ĉ†
β ĉγ ĉδ , (25)

where ĉ† and ĉ are fermionic creation and annihilation
operators, and tαβ and uαβγ δ are electronic integrals. This
Hamiltonian can be mapped into a qubit Hamiltonian using
one of several mappings (i.e., Jordan-Wigner, Bravyi-
Kitaev, etc.):

Ĥ =
∑

k

ckP̂k, (26)

where ck are interaction coefficients and P̂k are operators
that belong to the N -qubit Pauli group.

We specifically look at the beryllium hydride molecule
(BeH2) in the STO-3G basis, mapped to N = 6 qubits
[213]. To generate the training data, we first obtain the full
ground-state wave function |
〉 with exact diagonalization
of the qubit Hamiltonian. Given the ground state, we can
generate measurement data by sampling the full proba-
bility distribution obtained from the Born rule. A single
measurement is obtained by our first selecting a measure-
ment basis τ , then rotating the wave function accordingly
|
τ 〉 = U(τ )|
〉, and finally sampling the measurement
outcome σ ∼ Pτ (σ ) = |〈σ |�τ 〉|2. We choose the measure-
ment bases according to the Pauli operators P̂k appearing in
the Hamiltonian, each one being selected randomly among
this set.

We show the results of the QST experiment in Fig. 5,
where we plot the fidelity between the neural-network
wave function and the target wave function during the
training. The ability to faithfully learn this class of wave
functions from limited measurement data has important
implications for simulations of quantum chemistry with
near-term hardware (e.g., using a variational quantum
eigensolver approach [214]). This is due to the variational
property of parametric quantum states (more details are
given in Sec. V). Measuring the energy from a chemistry
quantum simulation requires the independent measurement
of a (typically) large number of noncommuting Pauli oper-
ators, which inevitably leads to a large variance in the
energy estimators [213]. In contrast, by using the mea-
surement data to train a RBM wave function instead,
energy estimators with extremely low variance can be pro-
duced (provided the training is sufficiently accurate). This,
however, introduces a systematic bias due to the train-
ing imperfection on limited-size datasets and the RBM
approximation. The trade-off between variance and bias
was studied in Ref. [80], which demonstrated a substan-
tial decrease in measurement overhead for sufficiently pure
quantum states.

FIG. 5. Quantum state tomography of the beryllium hydride
molecule. We show the fidelity F = |〈
|ψθ 〉|2 between the
neural-network wave function ψθ and the exact molecular wave
function 
 at each iteration during training.

D. Discussion

We have shown that for wave functions whose ampli-
tudes can be gauged to be real and positive, QST is equiv-
alent to unsupervised learning of projective measurement
data in a single basis. For more general wave functions
with a sign structure or complex-valued amplitudes, mea-
surements in multiple bases are required to reconstruct
the phases. These are processed by the neural network by
appropriately rotating the parametrized wave function with
a unitary U(τ ) =⊗N

j=1 U(τj ) composed of single-qubit
basis rotations U(τj ). In practice, this operation entails
an exponential cost in the number of nontrivial rotations
U(τj ) �= �j , which means that only a small fraction of
any IC set of bases can be use to train the neural net-
work. Nevertheless, this reduced amount of information
may be enough to reconstruct sufficiently structured quan-
tum states. For example, a ground state of a local gapped
Hamiltonian can be identified by the statistics of projec-
tive measurements in a set of bases corresponding to the
decomposition of the Hamiltonian in the Pauli group.

An important assumption that was made is the purity
of the quantum state under reconstruction, which is vio-
lated in any practical setting. There are cases where an
approximate pure state reconstruction of an experimental
quantum state may be justified, and could still provide
valuable insights [77]. However, for benchmarking and
noise characterization tasks, one needs to reconstruct the
full density matrix. This can be achieved by introduc-
ing a neural-network parametrization of a density operator
ρθ (σ , σ ′), which is trained in an analogous way. The pos-
itivity of ρθ can be enforced using a purification scheme,
where ρθ is purified by additional latent units in the neural
network [73]. An iterative procedure to discover the domi-
nant eigenstates of density operators using RBMs has also
been proposed [81].

A different approach for reconstructing generic mixed
quantum states consists in directly parametrizing the
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probability distribution p(α) = Tr ��α of an IC POVM
set {�α} [75]. In contrast the purification scheme, this
approach does not require unitary rotations, and thus
removes the exponential complexity associated with pro-
cessing data from arbitrary local bases. This, however,
comes at the cost of possibly violating the positivity of the
learned density matrix, since this cannot be enforced at the
level of the POVM distribution parametrization.

Finally, in the examples shown above, we always know
the exact target quantum state. This clearly facilitates the
validation of the reconstruction. In a more general setting,
where the state under reconstruction it not known, conver-
gence in the reconstruction needs to be assessed heuris-
tically using finite-size scaling experiments [79]. Once a
given representative metric is chosen (e.g., the energy or
correlation functions), its estimator should be evaluated by
asymptotically increasing the number of parameters in the
neural network, as well as the number of training samples.

V. VARIATIONAL GROUND-STATE
OPTIMIZATION

The variational principle in quantum mechanics states
that the expectation value of the Hamiltonian of a physical
system of interest over any valid wave function is always
greater than or equal to the ground-state energy of the sys-
tem. This principle indicates that a strategy for finding an
approximation to the ground-state energy of a system is
to start from a parametrized wave function and vary its
parameters until it yields the minimum possible energy.
Here we specifically consider the VMC method [7], where
the expectation value of the energy (used for optimizing
the trial state) is evaluated by Monte Carlo sampling.

Historically, the choice of the wave function, which is
critical to the success of the algorithm, has been motivated
in close connection to a physical understanding of the
problem, e.g., from approximate mean-field solutions sup-
plemented with some form of additional correlations (such
as a Jastrow factor [7]). More recently, motivated by their
representation power, efficiency, and generality, neural net-
works have been explored as trial wave functions [50]. In
particular, and as we explore below, RNNs are naturally
well suited to the study of systems exhibiting strong corre-
lations, such as those arising in the study of classical and
quantum systems, which are prevalent in condensed matter
physics and statistical physics [47,61,62,75]. Furthermore,
the ability to draw unbiased samples from a RNN proba-
bility distribution greatly empowers VMC approaches, as
it removes the need for sophisticated sampling algorithms
to obtain sufficiently small autocorrelation times.

A. Recurrent neural networks

A RNN models a probability distribution p(σ ) =
p(σ1, . . . , σN ) using a sequential structure according to the

chain rule of probabilities:

p(σ ) = p(σ1)p(σ2 | σ1)

N∏

j=3

p(σj |σ−j ), (27)

where σ−j = (σ1, , . . . , σj−2, σj−1). While specifying every
conditional p(σj |σ−j ) gives a full characterization of any
possible distribution p(σ ), the computational resources to
store and manipulate such a representation grow expo-
nentially with system size N . To alleviate this problem,
a recurrent neural network parametrizes the conditional
probability distributions p(σj | σ−j ) at any time step j . The
elementary building block of a RNN is a recurrent cell
ϑ [Fig. 6(a)]. In its simplest form, a “vanilla” recurrent
cell is a nonlinear function that maps the direct sum (or
concatenation) of an incoming hidden vector hj−1 ∈ R

nh

[Fig. 6(a)] and an input xj = σj−1 to an output hidden
vector hj such that

hj = f
(
W[hj−1; σj−1]+ b

)
, (28)

where f is a nonlinear activation function acting element-
wise on the components of its argument and [hj−1; σj−1]
is the concatenation operation. The variational parame-
ters of this simple RNN are given by the weight matrix
W ∈ R

nh×(nh+2), the bias vector b ∈ R
nh , and the vectors

h0 and σ0 that initialize the recursion. The vector σj−1 is a
one-hot encoding of the input configuration such that, for
example, σj−1 = (1, 0), (0, 1) for a configuration where the
input is either 0 or 1, respectively. The goal of the internal
state vector hj is to encode the dependency of the condi-
tional p(σj | σ−j ) on all the previous variables σ−j . Thus,
in our setting, the internal state vector provides the mech-
anism through which the RNN ansatz encodes correlations
and entanglement in the quantum state, since, for exam-
ple, setting hj = 0 results in a product state. As implied
below, the dimension nh of hj determines the number of
parameters in the RNN and its expressive power.

Instead of the vanilla RNN in Eq. (28), we specifically
consider gated recurrent units (GRUs) [215]. The GRU
was introduced to solve the vanishing and exploding gra-
dient issues of RNNs encountered during the learning pro-
cess, where the neural network’s weights receive updates
proportional to the partial derivative of the error func-
tion with respect to the current weight. In a vanilla RNN,
the gradients can become vanishingly small or extremely
large, effectively preventing the weight from changing or
experiencing numerical overflow, respectively [216]. A
schematic of a GRU is shown in [Fig. 6(b)]. Given a vis-
ible input state σj−1 and a vector hj−1, the GRU at time
step j processes them according to the sequence of opera-
tions and outputs an updated latent vector hj . The first two
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(b)

hj
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1−

σ σ tanh

hjhj−1

zj

rj
h̃j

x1 x2 x3

xj

xj

FIG. 6. Recurrent neural network. (a). A generic RNN cell
(left) and its unrolling in time to process sequenced data (right).
(b) The gated recurrent unit, and the set of operations used to pro-
cess the input latent state hj−1 and visible state xj to generate a
new latent state hj . Lines joining together means concatenation,
while the circles are element-wise operations.

operations are the so-called update gate and reset gate:

zj = sig
(

Wz[hj−1; σj−1]+ bz

)
, (29)

rj = sig
(

Wr[hj−1; σj−1]+ br

)
, (30)

where sig(x) = (1+ e−x)−1 is the sigmoid function, and
Wz, Wr ∈ R

nh×(nh+2), and bz, br ∈ R
nh are variational

parameters. These gates are used to control how much
information about previous time steps is kept encoded in
the latent vector. Intuitively, if the reset gate is close to 0,
the hidden state is forced to omit the information encoded
in the previous hidden state and utilize the current input
only. This effectively encourages a more compact and effi-
cient utilization of the capacity of the RNN since the
hidden state can drop irrelevant information as needed. On
the other hand, the update gate controls how much infor-
mation from the previous hidden state will carry over to
the current hidden state.

Next, given the input visible state σj at the current time
step, an internal latent state is created according to

h̃j = tanh
(

W̃[rj � hj−1, σj ]+ b̃
)

, (31)

where a� b is the element-wise multiplication, and W̃ ∈
R

nh×(nh+2) and b̃ ∈ R
nh are new sets of parameters. The

new latent vector (output of the GRU) is generated as

hj = (1− zj )� hj−1 + zj � h̃j (32)

and is sent to the GRU at time step (j + 1). Finally, the
conditionals are computed using a softmax layer:

p(σj | σ−j ) = S
(
Uhj + c

)
, (33)

where U ∈ R
2×nh and c ∈ R

2 are the variational parame-
ters of the softmax layer.

Given the above parametrization of a probability dis-
tribution p(σ ), we can now promote RNNs to quantum
mechanical wave functions ψ(σ ). As noted in the QST
examples, we stress that stoquastic many-body Hamilto-
nians have ground states |�〉 with strictly real and positive
amplitudes in the standard computational basis [210]. This
class of states can be represented in terms of probability
distributions,

|�〉 =
∑

σ

ψ(σ ) |σ 〉 =
∑

σ

√
p(σ ) |σ 〉 . (34)

For such family of quantum states, which includes the
ground states of the Rydberg system considered in this
work, it is natural to try to approximate p(σ ) with a RNN.

B. Variational Monte Carlo simulation of Rydberg
atoms

The goal of the VMC method is to iteratively optimize
an ansatz wave function to approximate ground states of
local Hamiltonians [7]. The VMC method uses a trial wave
function |�θ 〉 endowed with parameters θ . Here we con-
sider a GRU-RNN wave function. Crucially, we exploit the
fact that the RNN wave function allows efficient sampling
from the square of the amplitudes of |�θ 〉.

The VMC method iteratively optimizes the expectation
value of the energy

E ≡ 〈�θ |Ĥ |�θ 〉
〈�θ |�θ 〉 . (35)

The minimization is done using the gradient descent
method or any variant of it. Since the RNN wave func-
tion is normalized such that 〈�θ |�θ 〉 = 1, the expectation
value in Eq. (35) can be written as

E = 〈�θ |Ĥ |�θ 〉 =
∑

σ

|ψθ (σ )|2
∑

σ ′
Hσσ ′

ψθ (σ
′)

ψθ (σ )

≡
∑

σ

|ψθ (σ )|2Eloc(σ )

≈ 1
NS

∑

σ∼|ψθ (σ )|2
Eloc(σ ), (36)
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which represents a sample average of the local energy
Eloc(σ ). The gradients ∂θE can be similarly written as

∂θE =
∑

σ

|ψθ (σ )|2 ∂θψ
∗
θ (σ )

ψ∗θ (σ )
Eloc(σ )+ c.c. (37)

An optimization step involves drawing NS samples
{σ (1), σ (2), . . . , σ (NS)} from |ψθ (σ )|2, followed by an esti-
mation of the energy gradients

∂θE ≈ 2
NS

Re

( NS∑

i=1

∂θψ
∗
θ (σ

(i))

ψ∗θ (σ
(i))

Eloc(σ
(i))

)
(38)

using automatic differentiation [171] and updating the
parameters according to

θ ← θ − α∂θE (39)

with a small learning rate α. Instead of this simple gradient
descent rule, we can also use the Adam optimizer [172] to
implement the parameter updates.

The stochastic evaluation of the gradients in Eq. (38)
implies that these may exhibit high variance, which can
potentially slow down the convergence of the algorithm.
This problem can be alleviated through the introduction of
a term in Eq. (38) that helps reduce the variance of the
gradients [61]:

∂θE ≈ 2
NS

Re

( NS∑

i=1

∂θψ
∗
θ (σ

(i))

ψ∗θ (σ
(i))

(
Eloc(σ

(i))− E
)
)

= 2
NS

Re

( NS∑

i=1

∂θ logψ∗θ (σ
(i))
(
Eloc(σ

(i))− E
)
)

.

(40)

This estimator has improved variance, stabilizes the con-
vergence of the algorithm, and is unbiased [61]. In the
limit where Eloc(σ

(i)) ≈ E near convergence, the variance
of the gradients ∂θE goes to zero as opposed to the nonzero
variance of the gradients in Eq. (38).

1. Code walk-through

We provide an implementation of the VMC method
using a RNN wave function based on the TensorFlow
library. We first define all the relevant parameters of the
Rydberg Hamiltonian and the RNN training.

The RNN parameters are the learning rate for the opti-
mizer, the number of hidden units in the GRU cell, the
number of samples used to approximate the energy (and its
gradients) at each training iteration, and the total number of
epochs. The VMC module is then initialized accordingly.

We can now perform the VMC simulation by training
the RNN parameters. For a given number of epochs, we
first sample the RNN distribution to generate ns samples.
These can be used to evaluate the cost function of the opti-
mization and its gradients, computed here using the AD
functionalities from TensorFlow. The parameters are then
updated according to the gradients.

We show in Fig. 7 the results of VMC simulations for
an 8× 8 array of Rydberg atoms. In Fig. 7(a), we plot
the average total energy at each training iteration for a
RNN wave function with a GRU containing nh = 25 and
nh = 100 hidden units. As expected, increasing the number
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δ

Ĥ

DMRG
RNN

nh = 25
nh = 100

Steps

δ = 1.3

DMRG

Ĥ

(a)

(b)

FIG. 7. Variational Monte Carlo simulation of the Rydberg
Hamiltonian. (a) Average energy as a function of the training step
near the phase transition at δ = 1.3. We show RNN wave func-
tions with nh = 25 and nh = 100 hidden units, compared with
the result obtained from DMRG. The first few VMC iterations
are not plotted to increase readability of the convergence tran-
sient. (b) Average energy over the full phase diagram for a RNN
wave function with nh = 100, in comparison with DMRG.

of hidden units in the RNN leads to increased accuracy in
the training. In Fig. 7(b), we plot the average energy after
convergence as a function of the detuning using nh = 100,
and compare it with the values obtained from DMRG.

VI. FREQUENTLY ASKED QUESTIONS

In this section, we expand on a brief set of questions
typically encountered during the training and evaluation
of machine learning models in the context of quantum
physics.

A. What neural-network architecture should I use?

The architecture and characteristics of the neural net-
work depend directly on the features of the problem at
hand, such as whether the degrees of freedom represented
are subject to geometric constraints or are constrained by a
set of symmetries. For instance, a CNN is naturally well
suited in capturing two-dimensional systems with trans-
lational invariance [15]. Several other symmetries have
also been implemented in neural-network representations
of wave functions, including U(1) charge conservation
[89], SU(2) spin symmetry [217], and gauge symmetries

[218,219]. Similarly, one may choose to adopt an autore-
gressive neural network (such as the RNN) for problems
where sampling may be a bottleneck in the algorithm,
as it often is in VMC simulation of strongly interacting
quantum matter and spin glasses [47,61,220].

B. How do I certify convergence in the training?

There is no general answer to this question, but there are
some guidelines that one should follow when implement-
ing data-driven algorithms for quantum problems. There
are usually two complexity scales involved in training a
neural-network model: the representational power of the
model (i.e., the number of network parameters) and the
sample complexity [i.e., how much data one needs to learn
the underlying features of a state with small error (for
VMC simulations, one can interpret the number of Monte
Carlo samples per gradient step as data)]. The assess-
ment of convergence is problem specific, and depends on
whether there are tractable estimators to probe the conver-
gence. For VMC simulation, for example, the value of the
energy is a natural estimator of convergence, and energy
variance can be use to estimate how close the paramet-
ric wave function is to an energy eigenstate, where zero
variance indicates that the algorithm has found an exact
eigenstate.

In contrast, in QST tasks the optimization objective
(e.g., the Kullback-Leibler divergence) is not accessi-
ble when using models with intractable densities (i.e.,
the RBM). In this scenario, one should instead moni-
tor other observables that are relevant to the problem at
hand, such as local densities or magnetizations, or var-
ious types of correlation functions. A direct comparison
between the model prediction and the measurement data
can be obtained using observables that are diagonal in the
measurement basis. For both of the above, convergence
can be assessed by performing a scaling analysis of a rel-
evant observables of choice against both the number of
measurements and the number of network parameters [79].

VII. CONCLUSIONS

In this article, we presented applications of machine
learning algorithms based on neural networks to quantum
many-body physics. We focused on numerical demonstra-
tions and provided hands-on code tutorials based on open-
source software [154,173,211] with the goal of facilitating
learning for researchers new to the field and accelerating
the adoption of machine learning in quantum physics.

We showcased distinct machine learning paradigms,
implemented with different neural-network architectures.
As a test bed for the numerical experiments, we chose a
system of interacting Rydberg atoms arranged in a two-
dimensional square array. First, we demonstrated super-
vised learning of atomic occupation data, which were
generated from ground states of the Rydberg Hamiltonian
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obtained using the density matrix renormalization group.
Using a convolutional neural network trained on labeled
data, we showed how to learn the quantum phase transition
between a disordered phase and the antiferromagnetically
ordered phase.

We presented unsupervised learning of unlabeled data
using the restricted Boltzmann machine. We showed that
for pure quantum states with real and positive ampli-
tude (e.g., the Rydberg ground states), this procedure is
equivalent to quantum state tomography based on a neural-
network representation of a quantum state. Using atomic
occupation data, we trained Boltzmann machines to learn
the ground states of the Rydberg Hamiltonian. We also
described a simple extension of this approach to learn
quantum states with a sign structure, and showed a demon-
stration in the context of simulation of chemistry with
quantum computers, where we learned the ground state of
a molecule using qubit measurements.

The final application we explored is the Monte Carlo
optimization of a variational wave function to esti-
mate the ground state of a many-body Hamiltonian. We
parametrized a wave function using a recurrent neural
network and trained its parameters to lower both the expec-
tation value and the variance of the Rydberg Hamiltonian.

It is becoming increasingly evident that machine learn-
ing is full of thrilling opportunities and conceptual
advances with great potential to energize computational
and experimental physics. As these notions continue to
spread through the research landscape of strongly corre-
lated quantum matter and quantum information science,
we hope this tutorial will provide a useful first step into the
expanding domain of artificial intelligence for the study of
quantum many-body systems.
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