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Quantum error correction is an indispensable ingredient for scalable quantum computing. In this Per-
spective we discuss a particular class of quantum codes called “quantum low-density parity-check (LDPC)
codes.” The codes we discuss are alternatives to the surface code, which is currently the leading candi-
date to implement quantum fault tolerance. We introduce the zoo of quantum LDPC codes and discuss
their potential for making quantum computers robust with regard to noise. In particular, we explain recent
advances in the theory of quantum LDPC codes related to certain product constructions and discuss open

problems in the field.
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I. INTRODUCTION

Whenever quantum information is stored or manipu-
lated, errors are bound to occur. While there has been
tremendous progress toward the realization of quantum
processors [1-3], the implementation of error-corrected
quantum memories and the demonstration of scalable
fault-tolerant quantum computations remain formidable
challenges.

One reason why error correction has a prominent role
in the realization of quantum computation is that qubits
are inherently more fragile than classical bits. Another,
subtler reason is that quantum computers mix the ana-
log (amplitudes) with the discrete (measurements). Analog
computation, which is based on the manipulation of contin-
uous variables rather than bits, should serve as a cautionary
tale: while it is well known that, in theory, certain analog
computers are vastly more powerful than even quantum
computers [4], they remain fictional devices since there are
no known error correction schemes that apply to the rele-
vant analog computing architectures. It is thus unknown
how to scale them to a size relevant for solving practi-
cally relevant tasks. This was already pointed out by early
critics of quantum computers, who considered them to be
nothing but analog computers in disguise [5,6]. Shor [7]
countered this criticism by introducing the first quantum
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error correcting code in his foundational paper, show-
ing that it is possible to protect quantum information.
This established quantum error correction as a field and
started the pursuit to find optimal quantum error correcting
codes.

Shortly after Shor’s work, Kitaev’s toric code [8,9]
and the related planar surface code [10,11] were pro-
posed. Surface codes are currently the leading approach
for fault-tolerant quantum computation due to their high
error correction threshold and planar layout. They exist for
a variable number of physical qubits n, and encode a sin-
gle logical qubit k = 1. Their distance d, a measure for
the error-correcting capability, scales with /n. It is likely
that we will soon see the first realization of small instances
of surface codes (see Ref. [12] for recent results and a
historical overview of experimental progress).

However, the surface code family does not compare
favorably with the best known families of classical codes,
where k and d scale linearly with n. While there exist
quantum codes that match the properties of classical codes
[13,14], they have a significant technical drawback: the
parity checks, which have to be measured to infer the error,
involve a growing number of physical qubits per logical
qubit. This is an issue as arbitrarily large checks cannot be
reliably facilitated without additional fault tolerance con-
structions. Furthermore, the measurement of the checks
cannot be parallelized, leading to a buildup of errors due to
idling qubits. Finally, many decoding algorithms are based
on the assumption that the parity checks are sparse.

Similar issues arose in classical coding theory and were
solved by low-density parity-check (LDPC) codes, where
the number of bits involved in each check and the number
of checks acting on each bit are bound by a constant for all
members of the code family. LDPC codes have been very
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successful in the classical setting as they approach upper
bounds due to Shannon on the amount of information that
can be reliably transferred through a noisy channel [15,16].
Many modern technologies, such as WiFi, DVB-T, and 5G,
are error-corrected by LDPC codes [17].

It is therefore natural to consider quantum LDPC codes,
which are defined in the same way. While LDPC codes
have been the subject of intense study in classical cod-
ing theory in the last few decades, their quantum analogs
have only recently become the focus of attention. Much
of the interest in LPDC quantum codes was spurred by
Gottesman’s remarkable result in 2013 [18] showing that
quantum LDPC codes with a constant encoding rate can
reduce the overhead of fault-tolerant quantum computation
to be constant. This is in contrast to other quantum fault
tolerance schemes, where to perform a longer computation,
it is necessary to suppress errors further, which requires
larger codes and thus a growing number of physical qubits
[8,19,20]. Moreover, one might hope that quantum LDPC
codes can approach channel capacity similarly to (classi-
cal) LDPC codes. We do not touch upon the challenging
field of quantum channel capacities here; see Refs. [21-23]
for references.

Classical coding theory is spoiled with constructions of
LDPC codes with good properties. Taking random codes
gives LDPC codes with a constant encoding rate k/n and
linear distance d oc n with high probability [15,24]. In
comparison, it is much harder to construct quantum LDPC
codes, and it is still a major open problem whether quan-
tum LDPC codes exist that rival the parameters of their
classical counterparts [25]. For example, surface codes
and color codes, which are LDPC codes and are among
the most studied quantum codes, encode only a low con-
stant number of qubits and have d o \/n at best. There has
been a lot of recent progress toward better LDPC codes,
and several families of quantum LDPC codes have been
constructed that significantly outperform surface codes and
color codes in terms of their asymptotic parameters. This

is a strong indication for their potential, although they have
not received the same amount of attention as surface codes
as of now.

Driven by this recent success, this Perspective surveys
the exciting and emerging field of quantum LDPC codes.
We discuss the construction and analysis of these novel
codes, which involve ideas and challenges that go far
beyond the theory of surface and color codes. The field
still has many open questions of central importance that
we highlight throughout the text.

First, we introduce some background on stabilizer and
Calderbank-Shor-Steane (CSS) codes as well as their rela-
tion to homological algebra and geometry (Sec. II) for the
convenience of the reader.

Next, we discuss constructions of quantum LDPC codes
using the geometry of manifolds (Sec. III). We discuss
various product constructions of quantum LDPC codes
inspired by the topological notions of Cartesian products
and fiber bundles, which are at the heart of recent break-
through results (Sec. IV). An overview of the parameters
of these codes can be found in Table 1.

Somewhat paradoxically, we also review quantum codes
that are strictly speaking not LDPC codes but that also
yield high encoding rates and require some sort of non-
locality (Sec. V). We do not discuss surface and color
codes in much detail since they have already been covered
extensively in the literature; see Refs. [26-28].

Besides introducing the zoo of quantum LDPC codes,
we discuss challenges and opportunities regarding their use
for quantum error correction (Sec. VI). For example, we
address decoding algorithms and the challenges in hard-
ware implementation. We refrain from directly comparing
different codes in terms of their thresholds due to the wide
variety of error models and assumptions going into numer-
ical simulations, but we do refer the reader to the relevant
literature. We also discuss applications of quantum LDPC
codes beyond quantum error correction and quantum fault
tolerance (Sec. VII).

TABLE I. The best proven parameters of quantum LDPC codes discussed in this paper. Some entries refer to a whole method of
constructing codes. In these cases we cite the best known proven parameters of a family quantum LDPC codes constructed using this
method.

Name k d Section
Two-dimensional hyperbolic codes ® (n) O (logn) ITA
Four-dimensional hyperbolic codes ® (n) Q(Vn) A
Freedman-Meyer-Luo codes 2 Q ({‘/@\/ﬁ) 1B
Tensor products (good classical codes) O (n) O (v/n) IVA
Tensor products (Ramanujan complexes) ® (/n) Q (/npolylog n) IVA
Fibre bundle codes ® (n*/3/ polylog n) Q (n*3/ polylog n) IVB
Lifted product codes O (n® logn) Q(n'~*/logn) IVvC
Balanced product codes © (n*) Q (n*) IVD
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A. Notation and conventions

All vector spaces, unless otherwise mentioned, are over
the field with two elements IF,. The notation [n,k,d]
describes the parameters of a classical binary code: number
of bits n, number of encoded bits &k, and minimum distance
d. Similarly, we use the notation [[n, k, d]] for quantum
codes.

Often, the exact relation between the code param-
eters is not known. However, it is sometimes possi-
ble to make asymptotic statements for which we need
the following notation. For two positive functions f
and g, we write f € O(g) if limsup,_, . f (n)/g(n) <
00, f €o(g) if limyoof (n)/g(m) =0, f € Qg) if
liminf, o f (n)/g(n) > 0,and f € O(g) if f € O(g) and
f € Q(g). The above symbols can be interpreted as sets of
functions. However, whenever convenient, we abuse the
notation and write expressions such as f < O(g), with the
obvious interpretation.

II. BACKGROUND

One exciting aspect of the theory of quantum codes is
the fact that it draws from a diverse mathematical and
physical background. It combines research from classical
coding theory, systolic geometry, homology, and combina-
torics. This manifests itself in several different perspectives
that people from different areas have on quantum LDPC
codes. We briefly survey these perspectives here for the
convenience of the reader.

A. Quantum codes

For background on general quantum codes, we refer to
the review by Terhal [29] and Preskill’s lecture notes [30].
In this text, we focus on stabilizer codes, which are the
most studied class of quantum codes; see Ref. [31].

1. Stabilizer and CSS codes

An [[n, k,d]] stabilizer quantum code is defined by a
commutative group S that is a subgroup of the Pauli group
acting on the state space of n physical qubits (C*)®" not
containing —/. The group S has n — k independent gen-
erators, called “stabilizer checks.” The code subspace is
defined as the +1 eigenspace of S and can be interpreted
as the state space of k logical qubits. The nontrivial logical
operators on the code space correspond to the elements
of the Pauli group that commute with S but are not in
S themselves. The distance d is the smallest number of
physical qubits in the support of a nontrivial logical opera-
tor. A slight generalization of stabilizer codes is subsystem
codes, where only some logical degrees of freedom are
used, while the others are downgraded to become gauge
qubits and their corresponding logical operators are called
“gauge operators.”

A CSS code is defined by a pair of classical linear binary
codes Cy, Cz C I} such that the orthogonality condition

Cy C Cy is satisfied; see Ref. [32]. We assume that the
codes Cx and Cy are given by their parity-check matrices
Hy and Hz. A CSS code defines a stabilizer code, where
the stabilizer group is generated by the stabilizer checks
X¢ =TT, X, where cis arow of Hy,and Z¢ = [, Z"
where d is a row of Hz. The commutativity of the stabilizer
group is ensured by the orthogonality condition Cy C Cz,
which is equivalent to

HzH® =0 mod 2. (1)

It is straightforward to express properties of the stabi-
lizer code in terms of the CSS code. We focus mostly on
CSS codes and note that this is a only a minor restriction
since any [[n, k, d]] stabilizer code can be mapped onto a
[[4n,2k,2d]] CSS code; see Ref. [33].

2. Quantum LDPC codes

Generally, we are not interested in individual quantum
codes but rather are interested in families of codes with a
growing number of physical qubits. By abuse of language
we will often simply speak of a code when we actually
mean a family.

A LDPC code is a family of stabilizer codes such that
the number of qubits participating in each check operator
and the number of stabilizer checks that each qubit partici-
pates in are both bounded by a constant. For CSS codes this
means that the Hamming weight of each row and column
of Hy and H7 is bounded by a constant.

More generally, one can define quantum LDPC codes
to include codes that are defined by a set of commutative
projectors in the obvious way; see Sec. VD. We con-
sider subsystem codes to be LDPC codes if their stabilizer
checks fulfill the LDPC condition.

A major open problem in quantum error correction is
whether good quantum LDPC codes exist. “Good” is ter-
minology from classical coding theory referring to the
property of a code as having k € ®(n) and d € ©(n). Tak-
ing a sparse parity-check matrix at random defines good
classical codes [24], but taking two random parity-check
matrices to define Hy and H; of a quantum code does
not work, as Eq. (1) will not be satisfied. Good quan-
tum codes that are not LDPC codes have been known
since the early days of quantum error correction [13,
14]. However, it was only in 2020 that quantum LDPC
codes were constructed that have distances scaling as d >
Q(y/npolylogn). Recently, there has been rapid progress
on increasing the distance of quantum LDPC codes (see
Sec. IV).

B. Perspectives on CSS codes

Besides their description in terms of parity-check matri-
ces, there are other useful representations of CSS codes,
which we briefly present in the following sections.
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1. Chain complexes

Soon after quantum codes were introduced by Shor, it
was discovered that they can be constructed using tools
from homological algebra [9—11,34]. We briefly show
how this homological description is related to our earlier
definition of CSS codes: we consider chain complexes C
of length n + 1 that are collections of linear maps 9; called
“boundary operators” and [F,-vector spaces C;

C=(C, 2y ... 2,0 2

Co)

fulfilling 9;0;,1; = 0. Moreover, we assume that all vector
spaces C; are equipped with a basis such that the boundary
operators 9; can be interpreted as matrices.

Chain complexes come from algebraic topology (see
Sec. II B 3), and are hence described in topological terms.
For example, the basis vectors of C; are called “i-cells”
and elements are called “i-chains.” An i-cycle is an i-
chain with a trivial boundary and so an element in ker(9;),
whereas an i-boundary is an i-chain in the image of the
boundary operator and so an element in im(9d;+1). The
ith homology H;(C) = ker 9;/im 9,1 of C is the vec-
tor space of i-cycles modulo i-boundaries. Dually, one
defines i-cocycles, i-coboundaries, and the ith cohomology
H'(X) = ker 9}, /im 3;".

In this homological language, a classical code corre-
sponds to a chain complex of length 2 via its parity-check
matrix, while a CSS code can be represented by a chain
complex of length 3:

C = (C, 2215 ¢, 2215 ).

With this correspondence, the logical Z-operators cor-
respond to the homology group H;(C) = ker 9;/im 0,
and the logical X -operators correspond to the cohomol-
ogy group H'(C) = ker 9¥/im d!". The number of log-
ical qubits k = dim H;(C) = dim H'(C). The Z distance
dz and the X distance dy are the minimum Hamming
weight of all nontrivial homology and cohomology classes,
respectively. The distance d is the minimum of dy and d.
Vice versa, a single chain complex can yield many CSS
codes by taking any two consecutive boundary operators.
This is a fruitful perspective that allows us to import lan-
guage and constructions from homological algebra into the
theory of quantum codes. See Sec. VIII A for more details.

2. Tanner graphs

A linear binary code C can be represented by a Tan-
ner graph. A Tanner graph is a bipartite graph where each
side of the partition corresponds to the bits and checks,
respectively. Bits are connected to the checks in which they
appear; see Fig. 1.

Analogously, a quantum CSS code can be described by
a Tanner graph with three layers, representing X -checks,

FIG. 1. The Tanner graph of the [7,4, 3] Hamming code. Phys-
ical bits are represented by circles and checks are represented by
squares.

physical qubits, and Z-checks: see Fig. 2. A check acts on
the qubits incident in the Tanner graph.

Accordingly, the incidence matrices between the layers
are given by the parity-check matrices Hy and H, respec-
tively. The commutativity constraint in Eq. (1) translates
to the condition that the intersection of the neighborhoods
of each X -check and Z-check contains an even number of
physical qubits.

3. Manifolds and cell complexes

The toric code is arguably the most well-known CSS
quantum code [8,9]. It is defined from a tessellation of a
torus with square tiles, where edges correspond to phys-
ical qubits and the stabilizer checks correspond to faces
(Z-checks) and vertices (X-checks). Each check acts on
all its incident qubits or edges and the logical operators
correspond to noncontractible loops.

Interesting quantum codes can be derived from tessel-
lations of surfaces or manifolds other than the torus. For
example, Shor’s [[9, 1, 3]] code can be constructed from a
tessellation of the real projective plane, the nonorientable
cousin of the torus; see Ref. [10]. In the same way as in
the toric code, X -checks, physical qubits, and Z-checks of
Shor’s [[9, 1, 3]] code are associated with vertices, edges,
and faces of the tessellation, and checks act on their inci-
dent edges. This is shown in Fig. 3, where a tessellation of
the projective plane with seven faces, nine edges, and three
vertices is depicted. Pairs of antipodal points on the circle
are identified. Four of the faces are adjacent to two edges
and hence give rise to Z-checks of weight 2. One face is
adjacent to six edges, giving rise to a Z-check of weight
6. Similarly, all X -checks, which are associated with the

FIG. 2. The Tanner graph of the Shor code. Physical qubits
are represented by circles, X -checks are represented the squares
at the bottom, and Z-checks are represented by the squares at
the top. We chose a linearly dependent set of stabilizer checks
to establish a connection to a geometric interpretation of Shor’s
code; see Fig. 3.
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FIG. 3. The Shor code [7] as a tessellation of the real pro-
jective plane; see Ref. [10]. Antipodal points on the circle are
identified. The code has three X -checks, nine physical qubits,
and seven Z-checks represented by vertices, edges, and faces,
respectively. The red line represents a logical Z-operator.

vertices, have weight 6. This should be compared with
Fig. 2, which represents the same code by a Tanner graph.
From both representations, one can immediately extract the
parity-check matrices Hy and H; as incidence matrices.
This construction generalizes to tessellations of other
surfaces and to higher-dimensional manifolds M. We call
the i-dimensional elements of the tessellation “i-cells,” so
vertices are O-cells, edges are 1-cells, faces are 2-cells,
etc. Given a tessellation of a D-dimensional manifold, we
identify i-cells of the tessellation (0 < i < D) with qubits,
X -checks with i — 1-cells, and Z checks with i 4+ 1-cells.
Nontrivial logical Z-operators correspond to subsets of
i-cells that have no boundary and do not arise as the bound-
ary of a subset of i 4 1-cells. The vector spaces spanned
by i-cells together with the boundary operator form the so-
called cellular chain complex; see Sec. 2.2 in Ref. [35].
This connects the homological perspective of Sec. IIB 1
with the geometrical perspective. Moreover, there is also
a relation to Tanner graphs by considering the Hasse dia-
gram of the tessellation; see Sec. 2.2 in Ref. [36]. The
logical X -operators are obtained in the same way by taking
the dual tessellation or by considering cohomology classes.
The distance is related to the i-systole sys;(M) of M,
which is the length, area, or volume of the smallest non-
contractible i-dimensional submanifolds of M. This yields
families of codes by taking finer and finer tessellations. For
reasonable tessellations, these families are LDPC codes.

III. GEOMETRICAL CONSTRUCTIONS

Arguably the most famous quantum codes are the toric
code and its planar variant the surface code. These two
examples are part of a much larger family of codes derived
from geometrical objects; see Sec. 11 B 3. Importantly, the
properties of these codes are determined by the geometry
of the underlying space, so tools from geometry become
amenable to quantum error correction.

A. Hyperbolic quantum codes

Quantum codes with a finite encoding rate k,/n — R > 0
for n — oo naturally arise from manifolds of negative cur-
vature, called “hyperbolic manifolds.” The reason for this
lies in the Gauf3-Bonnet-Chern theorem, which relates the
geometry of a manifold to its topology [37]. More con-
cretely, it shows that for hyperbolic manifolds of even
dimension D = 2i, the dimension of the homology group
H; grows linearly with the total volume of the manifold.
Hence, the associated quantum code has a linear encod-
ing rate. Therefore, any code derived from such a manifold
(see Sec. 11 B 3) will have a constant encoding rate.

Compare this with the L x L toric code, where the
logical operators of minimum weight correspond to one-
dimensional submanifolds (circles). The number of these
is two, regardless of L. The same is true for higher dimen-
sions; for example, one can define a four-dimensional (4D)
toric code [27] where the logical operators of minimum
weight correspond to six two-dimensional (2D) tori.

1. Hyperbolic surface codes

Hyperbolic surface codes are the closest relatives of the
toric code. They are defined in exactly the same way as the
toric code, except that the tessellations are derived from
hyperbolic geometry.

If we consider a closed surface with a hyperbolic met-
ric, then the GauB3-Bonnet-Chern theorem [37] mentioned
above can be used to derive an exact formula for the num-
ber of encoded logical qubits. In particular, for regular
tessellations based on regular polygons with r sides and s
polygons meeting at each edge, one can show that the num-
ber of logical qubits is givenby k = (1 — 2/r — 2/s)n + 2.
See Figure 4 for an example of a hyperbolic surface code
derived from a surface of genus 3. The stabilizer check
weight is  for Z-checks and s for X -checks, so there is a

FIG. 4. A hyperbolic surface of genus 3 tessellated by hep-
tagons. It gives rise to a code with parameters n = 84, k = 6,
dy =4, and d; = 8. The colors have no intrinsic meaning and
are included only as a guide for the eye. A weight-4 X -operator
goes through the following four faces on the right: magenta (top),
violet, green (middle), yellow (below), and back to the same
magenta face (periodic boundary). A weight-8 Z-operator runs
along the left-hand side of these faces.
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trade-off between check weight and encoding rate. Hyper-
bolic surface codes exist with check weights of 5 and 4
for X -checks and Z-checks, or vice versa [38,39]. Hyper-
bolic surface codes and their properties were discussed in
Refs. [40—42]. A general construction as well as a pla-
nar version were introduced in Ref. [38]. Delfosse and
Zémor [23] used hyperbolic surface codes to obtain results
in percolation theory.

The distance of hyperbolic surface codes is logarithmic,
which suffices to prove that a threshold under minimum-
weight decoding exists [43]. Many decoders that apply to
the surface code can be used directly for hyperbolic sur-
face codes, such as minimum-weight perfect matching [38]
and the union-find decoder [44]. However, this means that
error suppression on the logical qubits for physical error
rates below the threshold scales only polynomially with
the system size. Nevertheless, numerical simulations show
that hyperbolic surface codes offer a reduction of physical
qubits in the phenomenological noise model [38,39] and
gate-based noise model [45]. On the basis of the symmetry
of hyperbolic surface codes, it is possible to find optimal
measurement schedules of the check operators [45], and
they are currently the only finite-rate quantum codes for
which such schedules are known.

Higgott and Breuckmann [45] showed that hyperbolic
surface codes can be turned into subsystem codes with
weight-3 checks. There also exist hyperbolic versions of
color codes [42,46,47] that could simplify the implemen-
tation of logical gates.

2. Higher-dimensional hyperbolic codes

Lubotzky and Guth [48] showed that codes derived
from hyperbolic manifolds of dimension larger than 2
give quantum codes with distance scaling as d € ®(n*)
for some o > 0. They constructed families of 4D hyper-
bolic quantum codes such that « > 0.1. For arithmetic 4D
hyperbolic manifolds, they established an upper bound of
o < 0.3. However, it is an open problem whether these
bounds hold for quantum codes derived from general 4D
hyperbolic manifolds.

Hastings [49] proposed an efficient local decoding strat-
egy for 4D hyperbolic codes. However, despite having a
distance scaling like n*, Hasting’s decoder is shown to
correct errors only up to size log n.

The description of the codes by Lubotzky and Guth
[48] is implicit. Londe and Leverrier [5S0] considered a
tessellation of 4D hyperbolic space by hypercubes giving
rise to a family of codes with asymptotic encoding rate
R > 17/360. A construction based on a self-dual tessel-
lation by 120-cells was given by Breuckmann and Londe
[51], giving an asymptotic encoding rate R > 13/72. Fur-
thermore, they showed how topological coverings can be
used to reduce the size of these codes and performed
simulations of the codes using a belief-propagation (BP)

decoder that indicate that it has intrinsic robustness against
measurement errors; see Sec. VIC.

B. Freedman-Meyer-Luo codes

Hyperbolic geometry was used in earlier work by
Freedman et al. [52] to construct a family of quantum
codes with parameters [[n,2, Q2 ({/log n\/n)]] [53]. These
codes held the record for distance scaling for around 20
years, until the record was broken in 2020 by several stud-
ies discussed in Sec. IV. The arguments used in Ref. [52]
are quite involved and beyond the scope of this Perspec-
tive. However, we sketch the main ideas behind the con-
struction to give the intuition behind the distance scaling
for the interested reader.

We now sketch the construction of the underlying man-
ifolds to give intuition for the distance bound: First, take
a closed hyperbolic surface X, of genus g and take the
Cartesian product with the interval [0, 1] of unit length.
The length of the shortest noncontractible loop on X,
is called “l-systole” and is denoted by sys;(Xz). We
identify the two ends of X, x [0,1] with a twist of
length \/sys|(Z,), so the 1-systole of the resulting three-

dimensional manifold is ,/sys;(X,); see Fig. 5. All non-
contractible loops of length sys; (¥;) coming from X, are
removed by surgery, so we obtain a 3-manifold that we
denote by P,. Since the interval [0, 1] has unit length,
the three-dimensional volume of P, is proportional to the
area of X,. Furthermore, because of the GauB-Bonnet-
Chern theorem (see Sec. III A) we have area(X,) = ©(g).
The final step in the construction of the manifolds is to
take a loop S' of length g/,/logg and take the Carte-
sian product with P,. The resulting 4-manifold then has

four-dimensional volume vols (P x S = g?/,/logg.

FIG. 5. [Illustration of a crucial step in the construction of
Freedman-Meyer-Luo codes. The hyperbolic polygon is the fun-
damental domain of a hyperbolic surface X, with genus g (see
Fig. 4). The blue line corresponds to a geodesic on the surface of
length ® (log g). All points on the surface are translated by a dis-
tance ©(,/log g) along this geodesic. The thick black line traces
out the position of a single point in the product X, x [0, 1]. The
two ends of the product, corresponding to coordinates 0 and 1 in
the interval, are then identified so that we obtain X, x § ! with a
twist.
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By tessellating the manifolds uniformly, we obtain a
cell complex on which we can define a homological quan-
tum code by identifying the 2-cells (faces) with qubits,
1-cells (edges) with X -checks, and 3-cells (volumes) with
Z-checks, as described in Sec. I1 B 3. The physical qubits
derived from these manifolds have the number of qubits
n scaling with vols (P, x S). The logical operators corre-
spond to noncontractible surfaces inside the 4-manifold.
Their area is called the “2-systole” and they have size
sys, (P, x S') = ©(g), leading to the distance bound. See
Ref. [54] for a review of the construction that covers all the
details.

C. Haah’s code

Haah developed a general formalism that describes
translation-invariant stabilizer codes that are local in D-
dimensional Euclidean space [55]. Arguably the most
famous example of a quantum code constructed by Haah’s
method is Haah'’s cubic code, which is defined on a three-
dimensional cubic lattice of size L x L x L with periodic
boundary conditions and two qubits per site [56]. The num-
ber of encoded qubits in Haah’s cubic code grows with
L and hence with the number of physical qubits. How-
ever, the exact number depends in a nontrivial way on L.
For the distance of Haah’s cubic code, only the bounds
Q(In) <d < Om?/?) are known [56,57]. An interesting
feature of Haah’s cubic code is that its logical operators are
fractals. Although we classify Haah’s code as a geometric
code here, as it is defined on a cubic lattice, it can also
be understood as a special case of a product construction
discussed in Sec. IV.

Open problem. What is the asymptotic distance scaling
of Haah’s cubic code?

Haah’s code is a candidate for a self-correcting quan-
tum memory. By defining a local Hamiltonian that has the
parity checks as energy-penalty terms, we obtain a phys-
ical system with the quantum code as its ground state. A
self-correcting memory would be such a system that is
inherently robust with regard to thermal noise, without the
need for an active decoding procedure. As this is not the
focus of this text, we refer the reader to Ref. [58] for more
background.

D. Bounds on parameters

While geometry is a useful tool for the construction
of quantum LDPC codes, it also comes with restrictions.
Fetaya [59] showed that any code derived from the tessel-
lation of a surface, either closed or with a boundary, must
have its distance bounded as d?> < O(n). Delfosse [42]
extended Fetaya’s result to the bound kd*> < O( log2 (k)n).

For higher dimensions, Bravyi et al. [60] showed that
for any [[n,k,d]] stabilizer code on a D-dimensional

Euclidean lattice, kd* < O(n), where @« = 2/(D — 1). The
Bravyi-Poulin-Terhal bound does not extend to non-
Euclidean lattices, as for D =2 the bound is violated
by hyperbolic surface codes (see Sec. IIIA1). A class
of codes conjectured to satisfy the Bravyi-Poulin-Terhal
bound in three dimensions was introduced by Devakul and
Williamson [61].

Open problem. Can the above bounds be modified or
extended to non-Euclidean lattices in higher dimensions?

This problem seems challenging as it relates to deep
questions in a subfield of mathematics called “systolic
geometry,” which analyzes the volume scaling of noncon-
tractible submanifolds [62].

IV. PRODUCT CONSTRUCTIONS

Classical coding theory is a long-established field, and it
would be desirable to transfer results into quantum cod-
ing theory. In this section we describe various product
constructions that allow us to build quantum codes from
classical codes and/or quantum codes. These constructions
are at the heart of recent breakthrough results in the theory
of quantum LDPC codes.

The first class of examples are incarnations of the zen-
sor product of chain complexes from homological algebra.
There are the hypergraph product codes by Tillich and
Zémor [63] and the homological product codes of Hastings
and Bravyi [64], constructing a quantum code from two
classical codes. The distance balancing of Hastings [65]
and Evra et al. [66] is achieved by taking tensor products
of quantum codes with classical codes, while the codes of
Kaufman and Tessler [67] use iterated tensor products of
quantum codes.

There are multiple improvements and generalizations of
these product constructions. Hastings et al. [68] defined
fiber bundle codes that introduce a twist in the tensor prod-
uct so as to increase the distance. Another approach is
found in the generalized hypergraph product and lifted
product of Panteleev and Kalachev [57,69] as well as
the balanced product of Breuckmann and Eberhardt [70].
All these are very closely related to each other; see Sec.
VIIA. In 2020, the distance record of Freedman et al.
from 2002 (see Sec. 111 B) was broken multiple times by
use of these product constructions. These are breakthrough
results, as they surpass the /n polylogn distance barrier
which was by some believed to be unsurpassable. While
many of the constructions do not have a constant encoding
rate and hence do not satisfy the assumptions of Gottes-
man’s constant overhead theorem [18], they constitute
an important step in the pursuit of good quantum LDPC
codes. Independently of asymptotic results, these construc-
tions provide tools to construct concrete examples of codes
worth studying, as done in Ref. [69].
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A. Tensor (hypergraph) products

The tensor product of vector spaces extends to the notion
of the tensor product of chain complexes. This is a classi-
cal construction in homological algebra closely related to
the Cartesian product of topological spaces; see Sec. 2.7 in
Ref. [71].

In particular, new quantum codes can be constructed by
tensor products of classical codes and/or quantum codes
using tensor products.

The first product construction in this spirit is the hyper-
graph product introduced by Tillich and Zémor [63]
in 2009. The hypergraph product constructs a [[nn; +
717y, kiky, min{dy, d»}]] quantum code from two classi-
cal [n;, ki, d;] codes with r; linearly independent checks
for i = 1,2. Its stabilizer checks are a combination of
the physical bits and parity checks of the classical
codes; see Fig. 6. By taking the hypergraph product
of suitable classical LDPC codes, Tillich and Zémor
achieved quantum LDPC codes with a constant encod-
ing rate and distance d € ©(y/n). Hypergraph products
were used to define quantum expander codes (see Refs.
[72,73]) using Sipser-Spielman expander codes [74]. Fur-
thermore, there are constant factor improvements [75]
and higher-dimensional generalizations [76] of hypergraph
products.

While Tillich and Zémor’s definition is of combinato-
rial nature and uses Tanner graphs (see Sec. [IB?2), it is
equivalent to taking the tensor product of two chain com-
plexes induced by the classical codes; see Sec. I[I B 1. This
perspective was, for example, taken by Hasting and Bravyi
[64] in 2011 with their homological product codes and by
Audoux and Couvreur [77] in their work on tensor prod-
ucts of CSS codes. The tensor product has the advantage

Tensor (hypergraph) product code

..- X -checks

Bits ...
Physical
" qubits

Checks ...
. Z-checks

Classical
codes —0—0—0—
FIG. 6. The tensor (hypergraph) product of two repetition

codes yields a surface code. The physical qubits of the quan-
tum code are represented by edges and correspond to pairs of
bits (vertical) or pairs of checks (horizontal) in the two repeti-
tion codes. In the hypergraph product construction, one of the
classical codes is transposed, which is not depicted here.

over hypergraph products of being defined for arbitrary
chain complexes and not just classical codes, which gives
immediate higher-dimensional generalizations. For more
details, see Sec. VIII A c.

In April 2020, generalizing a construction of Hastings
[65], Evra et al. [66] introduced a distance-balancing
procedure for quantum codes using tensor products. They
showed that the tensor product of a [[n, k, dy,dz]] quan-
tum code with ry X -checks and a classical [m, [, d] code
with 7 checks yields a [[nm + ryr, ki, dy,dzd]] quantum
code. Armed with this new tool, Evra ef al. broke the dis-
tance record of Freedman et al. (see Sec. 111 B). Evra et al.
considered Ramanujan complexes, a higher-dimensional
generalization of Ramanujan graphs; see Ref. [78]. Using
Ramanujan complexes directly would yield quantum codes
with distances dy € ®(logn) and d; € ®(n). By applying
distance balancing to these, Evra et al. constructed codes
with distance d € O(y/nlogn).

Just 4 months later, in August 2020, Kaufman and
Tessler [67] set a new record with d € O(y/nlog” (n))
for arbitrary positive integers m by using iterated tensor
products of Ramanujan complexes.

B. Fiber bundles

One month after Kaufman and Tessler’s results [67],
in September 2020, the /7 polylog n distance barrier was
broken by the fiber bundle codes of Hastings et al. [68], a
generalization of the tensor product.

Much like tensor products, fiber bundle codes are con-
structed from two classical codes, referred to as the “base
code” and the “fiber code.” While the number of physical
qubits, logical qubits, and checks is the same as in the ten-
sor product, certain twists are introduced in the checks of
the fiber, permuting the position of the qubits in the direc-
tion of the fiber. The twists are determined by a collection
of automorphisms of the fiber code that are specified for
every pair of bit and incident check of the base code. This
can result in an increased distance of the resulting code.
A trivial example is the twisted toric code, where the lat-
tice is displaced along the vertical direction. Because of the
twist, the nontrivial horizontal loop representing a logical
Z-operator has to take a “detour” to close up on itself.

The concept is derived from the topological notion of
fiber bundles [37], and fiber bundle codes can be visualized
as the fiber code varying nontrivially over the base code
(see Fig. 7), much like the Mdbius strip, where the unit
interval (fiber) varies nontrivially along the circle (base),
or in the Klein bottle, where a circle (fiber) varies over
another circle (base). For more details, see Sec. VIII A d.

Hastings et al. applied the fiber bundle construction
to a random classical code as the base, a cyclic repeti-
tion code as the fiber, and a random choice of twists.
By homological and probabilistic arguments, they showed
that this yields families of quantum LDPC codes with
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Fiber bundle code

.. X-checks
Bits..... :
_______ Physical
""" qubits
Checks ...
.. Z-checks
Fiber .
- Twist
Base... @—@—@
FIG. 7. A fiber bundle code obtained from two repetition

codes. Here we assume periodic boundary conditions in the
vertical direction.

k € ®(*/3/ polylogn) logical qubits and distance d €
Q 13/ / polylog n), a big step in the endeavor toward good
quantum LDPC codes.

C. Lifted products

Panteleev and Kalachev [57] broke the record of Hast-
ings et al. just 2 months later, in December 2020, using
a different improvement of tensor product codes. In 2019
[69] they had introduced generalized hypergraph product
codes, which they later renamed as lifted product codes.
The lifted product construction allows one to decrease
the number of physical qubits in the tensor product by a
reduction of symmetry.

Specifically, the construction takes as input two classical
codes given by their parity-check matrices. It assumes that
the matrices admit a block decomposition into pairwise
commuting submatrices of size £ x £ for some £. First,
the hypergraph/tensor of the classical codes is taken. Then
the parity-check matrices of the resulting quantum code
inherit a natural block decomposition into submatrices of
size £2 x 2. Next, the lifted product is obtained by collaps-
ing each of these submatrices of size ¢> x £? to matrices
of size ¢ x £ via summation over all of their £ x £-sized
blocks. The pairwise commutativity assumption ensures
that the result defines a CSS code.

The lifted product reduces the number of physical qubits
by a factor of £ in comparison with the hypergraph/tensor
product. See Appendix A e for more details.

Panteleev and Kalachev [57] studied a special case of
lifted product codes constructed from coverings of Sipser-
Spielman expander codes; see Ref. [74]. Their quantum
codes are constructed from an s-regular expander graph
(the base), a cyclic covering of this graph of degree £ (the
lift), and a classical local code on s bits. By the grouping
together of vertices and edges in the lift graph that map to
the same vertex or edge in the base graph, the incidence

matrix of the lift graph has a natural block decomposition
into submatrices of size £ x £. The submatrices all com-
mute since they correspond to a cyclic permutation. Next,
the lift graph is combined with the local code, using the
construction of Sipser and Spielman. The resulting parity-
check matrix inherits a block decomposition. In the last
step, the lifted product of this matrix with the adjacency
matrix of the cycle graph of size £ (the parity-check matrix
of cyclic repetition code) is formed.

Most remarkably, they establish tight distance bounds
for these lifted product codes assuming (co)expansion
properties of the associated classical expander code. By
a random choice of graph, cover, and local code, they
construct quantum LDPC codes with logical bits in
©(n*logn) and distance in Q(n!~%/?logn) for any 0 <
o < 1. Thereby they achieve quantum LDPC codes with
almost linear distance.

D. Balanced products

Almost simultaneously to Panteleev and Kalachev’s
work, Breuckmann and Eberhardt [70] introduced bal-
anced product codes. Similarly to lifted products, the
balanced product construction is based on a reduction of
symmetry in the hypergraph/tensor product. The balanced
product is defined for two classical codes with a common
symmetry group and arises by modding out the action of
the group on their hypergraph/tensor product. The concept
is derived from the balanced product of topological spaces,
a classical construction in topology that is commonly used
to construct fiber bundles from principal bundles [37].

We now explain the construction in more detail. To
begin, assume we are given a classical code with a group H
acting on the bits and checks via permutation such that the
incidence relation between bits and checks is preserved.
One can form the quotient code by identifying bits and
checks that lie in the same orbit of the action, thereby
reducing the length of the code. Now, given two classi-
cal codes C and D on which a group H acts, one can form
the balanced product C ®y D as follows. First, the tensor
(hypergraph) product code C ® D is formed. There is an
induced action of H on the physical qubits and checks
of this quantum code. The balanced product C ®y D is
obtained by identifying physical qubits and checks in the
same orbit, much like in the classical quotient code. The
balanced product construction also has greater generality.
For example, one can form the balanced product of two
quantum codes or chain complexes. See Sec. VIII A f for
more details.

In Fig. 8 the balanced product of two repetition codes
(cycle) graphs of sizes 3 and 6 is visualized. Here Zj3, the
cyclic group of order 3, acts on both codes via rotation by
120°. Their hypergraph/tensor product isa 3 x 6 toric code
on which the group Zs acts via rotating the torus in both
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O O
O

ng =
O O

FIG. 8. The balanced product of the length-3 and length-6
cyclic graphs over Zj. This gives a 3 x 2 twisted toric code,
which is a [[12,2,3]] quantum code. Gray edges and vertices
are included only to visualize the periodic boundaries. This code
has an equivalent interpretation as a fiber bundle with a length-2
cycle graph as the base and a length-3 cycle graph as the fiber.
It is also a lifted product of the boundary operators 9, of the two
cycle graphs.

directions by 120° simultaneously. Now all X -checks (ver-
tices), physical qubits (edges) and Z-checks (faces) that lie
in the same orbit of the action are identified. The resulting
balanced product code is a 3 x 2 twisted toric code with
parameters [[12, 2, 3]].

Breuckmann and Eberhardt applied the balanced prod-
uct to Sipser-Spielman codes and repetition codes with
cyclic symmetry. The Sipser-Spielman codes are derived
from Lubotzky-Phillips-Sarnak expander graphs, which
are Cayley graphs of projective linear groups over a finite
field PSL(2,¢q); see Ref. [79]. The resulting codes are
nonrandom and achieve a number of logical qubits k €
®(n*) and distance d € Q (1/).

E. The possibility of good quantum LDPC codes

The fiber bundles, lifted products and balanced products
open to the door to many new code families. They give
hope that it possible to construct good quantum LDPC
codes, and so codes with a constant rate and linear dis-
tance. However, we believe that it is not sufficient to
consider only cyclic (or more generally Abelian) twists
or symmetries, such as those used in the previous three
sections. This is supported by arguments of Panteleev and
Kalachev [57], (Sec. IV C), who showed that their bounds
ke ®m*logn)andd € Q(n'~*/*logn) for0 < a < 1 are
in some sense optimal in these cases.

One promising idea to circumvent these bounds is to
take non-Abelian twists. This is possible in the balanced
product construction by taking a non-Abelian group H.
For example, one could take the balanced product of two
copies of a Sipser-Spielman code derived from a Cayley
graph of a non-Abelian group such as PSL(2,q). While
one can show that this yields codes with a linear rate, it
is not yet clear how to determine their distance.

Open problem. Can the balanced product of two
expander codes derived from Cayley graphs be used to
construct good LDPC codes [70], (Sec. VI)?

Balanced product codes have the advantage of being
symmetric in their two input factors. The construction
can easily be used to construct codes that are isomor-
phic to their dual, hence rendering any distance balancing
unnecessary.

F. XYZ products

Leverrier et al. [80] considered XYZ product codes, a
product construction of stabilizer codes that are not CSS
codes. The idea was suggested in Ref. [81] and gener-
alizes a three-dimensional non-CSS code due to Chamon
[82,83]. An XYZ product code is defined by a tensor prod-
uct of three classical codes. Each check contains Pauli X,
Y, and Z operators. Leverrier et al. argue that the distance
of XYZ product codes could be as high as ® (n*/3) as logi-
cal operators have natural representations as “2D objects”
in the product. However, there are no known general lower
bounds on the distance. Bravyi ef al. [83] showed that for
the Chamon code, which is the XYZ product of three repe-
tition codes with block lengths 7y, n,, and n3, the number
of encoded qubits is given by 4 gcd(ny, n,, n3). Recently,
a 2D version of the Chamon code was found to perform
remarkably well in numerical simulations when the noise
is biased [84].

Open problem. What is the minimum distance and per-

Jformance of quantum XYZ product codes?

V. OTHER CONSTRUCTIONS RELATED TO
LDPC CODES

In this section we describe other families of quan-
tum codes that are not LDPC codes under our strict
definition; see Sec. Il A 2. However, they are sometimes
called “LDPC codes” in the literature and are based on very
interesting ideas, which is why we include them here.

A. Bravyi-Hastings codes

Bravyi and Hastings [64] applied the tensor product
construction (see Sec. IV A) to two random, non-LDPC
CSS codes with check weights ®(n). They showed that
with high probability the resulting codes have parameters
[[n, ®(n), ®(n)]] (i.e., they are good codes). However, the
codes are not LDPC codes as the check weights are in
©(+4/n). This improves on the earlier result obtained by
Calderbank and Shor [13], who constructed good quan-
tum codes with check weight ® (n). The square root of the
check weight comes from the fact that Bravyi and Hast-
ings take the product of two codes with a linear check
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weight and that the check weights are additive in the prod-
uct. This immediately suggests that the weight could be
further suppressed by taking iterated products.

A related construction due to Hastings [85], under the
assumption of a conjecture in geometry, achieves dis-
tance d € Q (n'~¢) for arbitrary € > 0 and with logarithmic
stabilizer weight.

Open problem. Does the iterated product of random
codes provide a code family of good codes with stabilizer
check weight scaling that is arbitrarily low?

B. Bravyi-Bacon-Shor codes

Bravyi-Bacon-Shor codes are generalizations of Bacon-
Shor subsystem codes defined in Ref. [86] and studied
by Yoder [87,88]. They are defined from a binary matrix
A € F7'™ by placing physical qubits on an m; x m,
square grid with a physical qubit placed at position ()
if and only if 4;; = 1. The gauge operators are generated
by XX interactions between any two consecutive qubits
sharing a column and ZZ interactions between any two
consecutive qubits sharing a row. The number of physi-
cal qubits n of the resulting code is the number of nonzero
entries in 4. Bravyi [86] furthermore showed that the num-
ber of logical qubits is k =1tk A and that the minimum
distance is the minimum Hamming weight of the row
span and column span of 4; that is, d = min.cy |c|, where
V= (imA4 UimdA47")\ {0}.

Yoder [87] considered taking two classical codes with
parameters [n, k, d] and [n,, k, d,] with generating matri-
ces G; and G, to define a Bravyi-Bacon-Shor code
based on the matrix 4 = G 0G,, where Q € IFIZ‘XI‘ is any
full-rank matrix. The resulting code then has between
min{n;d,, din,} and nn, physical qubits, k logical qubits,
and distance min{d,, d>}. In particular, when the classical
input codes have a constant rate and a linear distance, then
the resulting Bravyi-Bacon-Shor codes have optimal scal-
ing for 2D subsystem codes. Furthermore, the resulting
code inherits a decoder from the classical codes used for
the construction.

Open problem. Can the Bravyi-Bacon-Shor codes be
extended to the novel product constructions discussed in
Ref. IV?

C. Subsystem codes from quantum circuits

Bacon et al. [89] showed that it is possible to obtain
quantum codes such that each physical check has weight
O(1) with distance ® (n' ~¢), where € € O(1/,/logn). Fur-
thermore, restricting the code to be spatially local in D-
dimensional Euclidean space, they showed that a distance
of ®(n'~~1/P) can be obtained. The physical checks cor-
respond to gauge operators and not to the actual stabilizer
checks. The stabilizer checks can be written as products of

the gauge operators, so the outcome of stabilizer measure-
ments can in principle be inferred from the measurements
of the gauge operators. The number of gauge factors of a
stabilizer is not bounded; in other words, the actual stabi-
lizer checks have unbounded weight, so this code family is
not a family of LDPC codes.

We briefly sketch the main idea behind the construction.
The authors show that a quantum circuit can be mapped
onto a quantum code by associating the gates with gauge
operators that act on physical qubits positioned between
the gates. It can then be shown that if the mapping is
applied to a suitable error-detection circuit of a stabilizer
code, then the resulting subsystem code has the same log-
ical operators up to multiplication with gauge operators.
The actual parameters stated earlier can be obtained by tak-
ing a quantum code with parameters [[ng, 1, ® (n10)]], which
is guaranteed to exist by Ref. [90], and concatenate it with
itself a suitable number of times.

In this construction the distribution of the stabilizer
check weights is nonuniform but is logarithmically dis-
tributed. Although it is unlikely that these codes can have
a threshold, it might still be worthwhile to find an effi-
cient decoder to test whether the error suppression is
competitive for relevant system sizes.

Open problem. Can the codes of Bacon et al. [89] be
efficiently decoded?

D. Approximate codes from space-time circuit
Hamiltonians

An interesting approach was taken by Bohdanow-
icz et al. [91]. Similarly to the codes of Bacon et
al. discussed in Sec. VC, they derived quantum codes
from quantum circuits. The parameters of their code are
[[n, 2(n/ polylog n), 2(n/ polylog n)]]. They define their
code as the ground space of a local Hamiltonian, where
each term operates on nine qubits and each qubit partici-
pates in polylog n many terms. The codes are nonstabilizer
codes (i.e., the terms of the Hamiltonian are not given by
Pauli operators), so many fault tolerance techniques devel-
oped for stabilizer codes do not apply. For example, it is
not clear how to measure the energy of each term of the
Hamiltonian or how to process the information for a recov-
ery. Furthermore, the codes are approximate codes, which
means that the fidelity of the encoded state after a recovery
isonly 1 — €, where € € o(1).

Their construction uses encoding circuits of good quan-
tum codes of polylogarithmic depth, which are guaranteed
by Ref. [92]. This encoding circuit is mapped onto a local
Hamiltonian that contains the valid computations of the
circuit in its ground space [93] and has a spectral gap that
scales as 2(1/n*) for some o > 0. They show that for
arbitrary errors a recovery operation exists that restores the
initial state with high fidelity.
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A different approach to nonstabilizer codes was taken
by Movassagh and Ouyang [94], who demonstrated how
to map classical codes into the ground space of quantum
spin chain Hamiltonians.

Open problem. Can nonstabilizer codes and approximate
codes give rise to practical and competitive fault tolerance
schemes?

VI. CHALLENGES AND OPPORTUNITIES

A. Reduction in overhead

A major achievement of fault-tolerant quantum comput-
ing is the threshold theorem [8,19,20], which shows that
fault-tolerant quantum computation is possible with poly-
logarithmic overhead of physical qubits in the length of the
computation. A theorem due to Gottesman [ 18] shows that
it is even possible to perform quantum computation with
only constant overhead in resources.

More precisely, Gottesman shows the following: assum-
ing we have a family of LDPC codes with param-
eters [[n;, k;,d;]] such that (a) it has a constant rate
liminf;, o n;/k; = R > 0, (b) its elements are polynomi-
ally spaced (i.e., 0 < n; —n;_; <n; for some constant
B > 0), and (c) there exists an efficient decoding algorithm
which for suitably low noise parameters suppresses errors
as 1/g(n;) for i — oo, where g is some nondecreasing
function, then any suitably large quantum circuit on &
qubits can be approximated with arbitrary precision if
the noise of the components is below a certain threshold
parameter using at most nk/R physical qubits, where n > 1
controls the threshold. In particular, this result gives an
exact upper bound compared with the earlier threshold the-
orems, which can have very large constants hidden in the
asymptotic analysis [95].

Fawzi et al. [96] showed that the assumptions of Gottes-
man’s theorem can be satisfied using a hypergraph product
code built from expander codes [97] decoded by a sim-
ple decoder that they call the “small-set-flip decoder.” It
is very likely that other codes discussed in Secs. III and
IV could fulfill the requirements of Gottesman’s theorem
as well. The key to this is finding decoders that are suffi-
ciently simple so as to be able to prove the required error
suppression.

Open problem. Which quantum LDPC codes can be used
for Gottesman’s constant overhead theorem?

B. Logical operations

Gottesman’s theorem guarantees a constant overhead
by performing operations sequentially with logical gates
implemented using ancilla states. However, it does require
a minimum number of logical qubits to become effec-
tive, and this number has yet to be determined. Hence,
there may be schemes that could potentially turn out to be

more practical. For an overview of the leading proposals of
implementing operations on codes not discussed here, see
Ref. [98].

Bravyi and Koénig [99] showed that there is a trade-
off between the implementability of constant-depth logical
gates and the spacial locality in Euclidean space; see
also Ref. [100]. A corollary of their result is that any
code that is spatially local in two dimensions can only
have constant-depth logical gates belonging to the Clif-
ford group. Therefore, to implement logical gates in codes
such as the surface code or two-dimensional color codes,
we need to execute circuits of depth scaling with the code
size.

One could therefore expect that LDPC codes that are
not bound by locality might offer an advantage. Not much
is known regarding logical gates for general LDPC codes.

Code deformations were considered for hyperbolic sur-
face codes to perform controlled NOT gates [39]. Krishna
and Poulin [101] considered generalizations of code defor-
mation techniques of the surface code to hypergraph prod-
uct codes (see Sec. [V A) to implement Clifford gates. On
the other hand, Burton and Browne [102] showed that
it is not possible to obtain logical gates with circuits of
depth 1 (transversal gates) outside the Clifford group using
hypergraph product codes.

A different approach was taken by Jochym and
O’Connor [103], who showed that by taking the tensor
product of two suitable quantum codes with complemen-
tary sets of gates it is possible to perform the logical
operations of either and thus obtain a fault-tolerant and
universal set of gates. Such a scheme may be an alternative
to Gottesman’s protocol [18], which achieves universality
using ancillary states to obtain constant overhead.

C. Decoding

For a general stabilizer code, it was shown by Iyer
and Poulin [104] that optimal decoding (i.e., maximiz-
ing the success probability of reversing the error) is No.
P-complete. However, it is often sufficient to consider a
suboptimal decoding algorithm, such as minimum-weight
perfect matching for the surface code [27].

Current decoding algorithms for the surface code or
2D topological codes suffer from a large time complexity,
although progress has been made in reducing the time com-
plexity of decoding the surface code [44,105]. Here, LDPC
codes could offer an advantage. First, the time complex-
ity of decoding algorithms often depends on the number
of physical bits. LDPC codes can achieve higher encod-
ing rates, offering the same level of protection, and con-
sequently admit faster decoding. For example, applying
minimum-weight perfect matching to hyperbolic surface
codes can yield significant performance improvements
in comparison with 2D surface codes. Second, LDPC
codes offer simplified decoding algorithms, significantly
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decreasing the classical processing load and complexity
compared with currently favored schemes. They can be
implemented by simple logical gates and do not need
complex processors, and this would imply less heat dissi-
pation into the system and could allow the classical control
hardware to be closer to the qubits.

A widely used decoding algorithm for classical codes
is based on iterative message passing on the Tanner graph
and is called “belief propagation” (BP). The BP decoder
is very appealing due to its simplicity, which could bene-
fit hardware implementations, as well as its versatility, as
it can in principle be applied to arbitrary quantum LDPC
codes. Generally, BP does not work well when applied to
Tanner graphs that contain small loops, a feature quantum
codes necessarily have due to the commutativity constraint
that introduces loops of length 4 (see Fig. 2). Furthermore,
when applied to quantum codes, BP tends to fail to con-
verge as there are many equivalent solutions up to the
application of stabilizers. These problems were addressed
in Refs. [106—111]. In particular, Duclos et al. [112] com-
bined BP with a renormalization decoder and Panteleev
and Kalachev [69] combined BP with ordered statistics
decoding, which showed good performance on a vari-
ety of quantum LDPC code. BP decoders were analyzed
in numerical simulations for tensor products of classi-
cal codes [113—115] and for 4D hyperbolic codes [51].
As BP is widely used for classical codes, one can draw
from a wealth of literature. For example, there has been
rapid progress on efficient hardware implementations of
BP[116,117].

For classical codes it has been observed that expan-
sion properties of the Tanner graph can lead to simple
greedy decoding algorithms [74]. Such greedy algorithms
do not directly transfer to quantum codes. However, Lev-
errier et al. [97] found a suitable generalization, called the
“small-set-flip decoder,” that applies to tensor products of
classical expander codes. Hastings [49] showed that the
expansion properties of 4D hyperbolic codes can be used
for decoding using a local greedy procedure as well.

Delfosse et al. [118] considered the union-find decoder,
which was initially developed as an efficient decoder for
the surface code, for decoding general quantum LDPC
codes. Delfosse and Hastings [119] combined the union-
find decoder of the surface code [44] with a look-up
decoder of a small code of fixed size, applying it to the
tensor product of both codes. This raises the following
question.

Open problem. Is there a systematic approach to general-
ize decoders of classical codes to work for quantum codes
on the basis of their product?

Bounds on the optimal decoding performance for ten-
sor products of random classical codes were given in
Ref. [120].

A further potential advantage of LDPC codes over the
surface code is single-shot decoding [121]. As stabilizer
check measurements are subject to noise, they have to
be repeated to build confidence [27]. Single-shot decod-
ing refers to the property of some LDPC codes to exhibit
robustness against such measurement errors, so it is not
necessary to repeat the stabilizer check measurements.
Numerical simulations of single-shot decoding were per-
formed (under various assumptions and error models)
for tensor product codes [122,123] and 4D hyperbolic
codes [51].

D. Hardware implementation

A major concern often raised regarding the codes dis-
cussed in this paper is how they could be implemented
in hardware. In the following section we discuss the
main concerns and argue why we are optimistic about the
potential of LDPC codes.

An important aspect of hardware implementation is that
the maximum number of qubits involved in a stabilizer
check should be low to keep the number of errors intro-
duced low. Although this number is constant for LDPC
codes by definition, it can still be too high for practical pur-
poses, although it is possible to reduce the stabilizer check
weight using graph-based arguments [65,124]. Higgott and
Breuckmann [45] suggest an alternative construction by
systematically breaking the stabilizer checks into smaller,
so-called gauge checks, which do not commute, but from
which the stabilizer check measurement can be inferred.

However, the most obvious drawback of LDPC codes
comes with the question of how to lay out the physical
qubits and their couplings in space. As a proxy, we dis-
cuss the layout of the Tanner graphs of codes. Almost
none of the Tanner graphs of the quantum LDPC codes
discussed here are planar, with the exception of a planar
variation of hyperbolic surface codes [38]. More severely,
several codes discussed here do not have “nice” embed-
dings in Euclidean space, as their Tanner graphs have
a nontrivial expansion (although expanding graphs have
been implemented in experiments [125]).

A related concern is that some qubit hardware imple-
mentations and their couplings are possible only in a planar
layout. While planar embeddings of the discussed quantum
LDPC codes are generally not possible, it is possible to
break up graphs into planar pieces that are then connected
along a one-dimensional line without intersections. This
can be done using book embeddings [126], where the ver-
tices of the graph are arranged along a line (spine) and each
edge is assigned a half-plane with the line as its boundary
(page), such that no two edges on the same page intersect.
Clearly, the vertices do not have to be placed on the spine
but can be pulled into the pages. The number of pages
should ideally not grow, and it was shown in Ref. [127]
that there are indeed families of expander graphs such that
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only three pages are sufficient for a book embedding. How-
ever, the minimum number of pages for the Tanner graphs
of codes discussed here are not known to us.

The viability of implementing quantum codes requiring
nonlocal couplings depends on the hardware. Currently, it
is not settled which qubit architecture will succeed (see
Ref. [128] for an overview). Hence, it is also not clear
at this time how future quantum computing architectures
will scale. Although some proposals suggest that a large
number of physical qubits may be placed in a single fridge
[129], it seems doubtful that arbitrary scaling inside a sin-
gle fridge will be possible. Other proposals pursue a modu-
lar architecture of interconnected modules linked by a pho-
tonic interface [130—133]. A modular approach would free
us from spacial constraints, making LDPC codes competi-
tive candidates for implementing quantum fault tolerance.
Other approaches to quantum computation, such as qubits
coupled to a common cavity mode [134,135], even allow
direct, nonplanar interactions between qubits.

To measure the stabilizer checks it is necessary to find
a scheduling, an ordering of the gates that couple the data
qubits to an ancilla used for the measurement. This order-
ing should not spread errors so as be fault-tolerant and
it should also be efficient to minimize the time of qubit
idling. Finding such circuits is a nontrivial task and, as
far as we are aware, hyperbolic surface codes are the only
finite-rate codes that have a known measurement schedule
[45,136]. Finding such schedules will be challenging for
random constructions.

Open problem. Are there good measurement schedules
for the LDPC codes discussed here?

VII. APPLICATIONS BEYOND QUANTUM
ERROR CORRECTION

We have seen that quantum LDPC codes draw from
many areas of mathematics, physics, and computer sci-
ence. One could hope that quantum LDPC codes could
in turn find use beyond quantum error correction and
quantum fault tolerance. Here we briefly highlight two
examples where this is the case.

A. Quantum complexity theory

An important class in quantum complexity theory is
QMA, an analog of the classical complexity class NP; see
Ref. [137,138]. A prototypical QMA-complete problem is
the k-local Hamiltonian problem); see Ref. [137]. It asks
whether the ground-state energy of a k-local Hamiltonian
is either below a or above b, where b — a > 1/ polyn,
and can be seen as the quantum analog of 3-SAT. One
of the main achievements of classical complexity the-
ory, the PCP theorem, also a admits a conjectural quan-
tum version. The quantum PCP (QPCP) conjecture states
that the local Hamiltonian problem is equally hard when

stated with a constant accuracy b — a > const instead of
an inverse-polynomial accuracy; see Refs. [139,140].

Hastings introduced the no low-energy trivial state
(NLTS) conjecture, a weakening of the QPCP conjecture
[141,142]. It states that there is family of local Hamiltoni-
ans acting on an increasing number of qubits such that the
energy of any trivial state is below a universal constant.
The NLTS conjecture could be solved by construction of
quantum LDPC codes with a linear distance for which
there exist local Hamiltonians for which the energy of
a quantum state is proportional to its distance from the
ground space of the Hamiltonian (quantum locally testable
codes). Toward solving the NLTS conjecture, Anshu and
Nirkhe [143] showed that quantum LDPC codes with a
linear rate and polynomial distance have no trivial states
of energy less than o(n). See Ref. [144] for a zoo of the
various complexity classes and their relation to quantum
LDPC codes and Ref. [145] for a comprehensive review of
the QPCP and NLTS conjectures.

B. Geometry

In Sec. III we saw that quantum LDPC codes can be
constructed using tools from geometry. More precisely,
quantum codes can be defined from tessellations of man-
ifolds such that the code properties are determined by
the geometric properties. Recently, Freedman and Hast-
ings [146] showed that the inverse is also possible. Given
a quantum LDPC code, they constructed manifolds of
dimension D = 11 such that geometric properties of the
manifold are determined by the properties of the code.
Their work suggests that questions of systolic geometry
can be answered using quantum LDPC code constructions.

VIII. CONCLUSION AND OUTLOOK

In this Perspective, we gave an overview of the emerg-
ing field of quantum LDPC codes, providing promising
new approaches to quantum error correction. Quantum
LDPC codes use a plethora of techniques from mathe-
matics, physics, and computer science. In particular, we
showed how ideas from geometry and homological alge-
bra shape the theory of quantum LDPC codes. The results
discussed here use hyperbolic geometry, expander codes,
and algebraic topology, to name a few methods. The fast
pace of new distance records in the last year suggests that
one of the main goals of the field, the quest for quantum
LDPC codes with constant encoding rate k/n > const > 0
and linear distance d o n, may soon be in reach and that the
next few years may offer many exciting new developments.

Moreover, we discussed challenges and opportunities. In
particular, the viability of quantum LDPC codes depends
on future developments in hardware, and many problems
in the implementation of scalable fault-tolerant quantum
computation remain to be solved. Low-latency classical
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control and fast decoding algorithms as well as inter-
connectivity and wiring are challenging problems for the
architecture of scalable quantum devices. Quantum LDPC
codes could play a decisive role in their realization.
Although the development of the surface code is ahead
in many respects, quantum LDPC codes may well turn
out to be better suited for the implementation of quantum
computers in the mid term to long term.

On a theoretical level, quantum LDPC codes may yield
exciting applications in geometry, quantum complexity
theory, and potentially beyond, indicating that the flow of
ideas can be reversed.
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APPENDIX A: CONSTRUCTIONS FOR CHAIN
COMPLEXES

For the convenience of the reader, we describe various
homological constructions, such as the different product
codes from Sec. IV A, in greater detail.

1. Chain complexes

A chain complex C = (C, 9€) of vector spaces over [,
of length n + 1 is a collection of vector spaces C; and linear
maps 9, called “boundary operators,”

e as ¢

C=(Cy, C Co)

fulfilling 3,3 = 0. Often, the indices of boundary oper-
ators are suppressed in the notation. For example, one
simply writes 9% = 0.

With a chain complex C one can associate the vector
spaces

Z;(C) =kerd; C C;
Bi(C) =imd;y; C G
H;(C) = Z;(O)/Bi(O),

of i-cycles, i-boundaries, and the ith homology, respec-
tively, whereas elements in C; are called “i-chains.”

We assume that the spaces C; are equipped with bases of
so-called i-cells. This defines scalar products on each C;.
We denote the linear dual of C; by C'. Elements in C' are

called “cochains.” The canonical basis allows us to identify
C; = (', and one defines the vector spaces

Z'(C) =kerdf}, C C,
B'(C) =imdf Cc C,
H'(C) = Z'(C)/B(O),

of i-cocycles, i-coboundaries, and the ith cohomology
of the complex C. The scalar product on C; and C'
induces a well-defined and nondegenerate pairing of
H;(C) and H'(C) since B'(C) = Z;(C)*. This implies that
dim H;(C) = dim H'(C).

For each i, a quantum code can be extracted from the
cell complex C with parity-check matrices Hy and Hz cor-
responding to the operators 9; and 9. The X-checks,
physical qubits, and Z-checks then correspond to the i 4 1-
cells, i-cells, and i — 1-cells of C. The nontrivial logical
X -operators and Z-operators correspond to the elements in
H'(C) and H;(C), respectively. See also Sec. II B 1 for the
relation of chain complexes and (quantum) codes.

2. Total complex of double complexes

An interesting way of constructing chain complexes is
by the total complex construction of a double complex.
A double complex £ = (E,,, 9", ") is an array of vector
spaces E, , equipped with vertical and horizontal maps,

v .
gt Epg = Epg-
and

O Epg— Ep_igs
such that 3 and 8" are commuting boundary operators
() =(@">=0 and 89" = 3"p". (A1)

It is convenient to visualize the double complex laid out
on a two-dimensional grid where each square is required

L,

P;q
Ezuq Ep—l,q >

8z,ql la;;—l,q

—— Ey g1 5— Ep1 g1 — ...

L

FIG. 9. A part of a double complex.
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to commute and composing two maps in the same direc-
tion yields zero; see Fig. 9. With each double complex E,
one can associate a chain complex Tot(E), called the “total
complex,” where the nth degree is given by the direct sum
over the nth diagonal in £, so

Tot(E)y = @ Epg

p+q=n

and the boundary operators of Tot(£) are the sum of all
boundary operators passing from one diagonal to the next.
The requirement that the boundary operators of Tot(E)
square to zero directly follows from Eq. (A1).

These concepts immediately generalize to higher dimen-
sions. See Fig. 11 for an example of a triple complex.

3. Tensor product of chain complexes and hypergraph
products

Let C and D be complexes of length n and m, respec-
tively. The tensor product C ® D is a chain complex of
length n +m — 1 and can be seen as a generalization of
the tensor product of vector spaces to complexes.

There is an elegant and quick definition of tensor prod-
uct C® D in terms of double complexes. Namely, the
tensor product double complex C X D is defined by

(CRD),,=C,®C,,

with boundary operators 3" = 3¢ ® idp and 8" = id¢c ®9°.
After a basis has been chosen, the tensor product of two
maps is given by the Kronecker product of the corre-
sponding matrices. Then C ® D = Tot(C X D) is the total
complex of this double complex.

For example, if C and D are chain complexes of length
2, then the tensor product C ® D of C and D is a chain
complex of length 3with boundary operators

<alc ® idp,

i ®a?> and (i, ®9°, 9 @idny),

respectively. The relation between this direct definition and
the definition via total complexes is visualized in Fig. 10.
The tensor product of chain complexes can be used
to define the hypergraph product of two classical codes.
Assume that the codes have n; bits and 7; checks for i =
1,2 and parity-check matrices H and H'. With the codes
one associates two chain complexes C and D of length
2 with boundary operators /. and 9}, represented by the
matrices H and (H’)". Then the hypergraph product arises
as the tensor product C ® D. In particular, the parity-check
matrices Hy and Hy of the hypergraph product code are

D, C1 ® Dy

Dy ——Co® Do

Cy Co

FIG. 10. A double complex arising as the tensor product of
two complexes of length 2. The different colors symbolize the
different degrees in the total complex, which is a chain complex
of length 3. The diagram should be compared with the diagram
in Fig. 6.

given by

HQ®I e
(lm ®(XEH%)”) and (I, ® (H)", H®I,).
The homology of a tensor product is the subject of the
Kiinneth formula

H(C®D)= P H,(C) ® Hy(D).
p+g=n

This allows us to easily compute the number of logical
qubits of a tensor product or hypergraph product quantum
code.

Moreover, one can also take iterated tensor products of
chain complexes, which correspond to higher-dimensional
complexes. See Fig. 11 for an example of a tensor product
of three complexes.

4. Fiber bundle codes

In topology, a fiber bundle is generalization of a product
of two spaces, which allows nontrivial twists. It consists
of a projection map « : E — B from its total space to its
base, such that the fibers F = 7~ (x) are isomorphic and E
is a product of the base and the fiber locally. A prototypical
example of a fiber bundle is the Klein bottle, which admits
a map to a circle whose fiber is also a circle. The Klein

B, ®Cy ® Dy

]
%7

By ® C1 ® Dy By ® Cy ® Dy

FIG. 11. A triple complex arising as the tensor product of three
complexes of length 3. The different colors symbolize the differ-
ent degrees in the total complex, which is a chain complex of
length 4.
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bottle is a twisted version of a product of two circles, the
torus.

Fiber bundle codes mimic this topological concept and
were introduced by Hastings et al. [68] to build quantum
LDPC codes breaking the /npolylogn distance barrier.
The idea behind fiber bundle codes is to introduce a twist
in the boundary operators of tensor product codes so as to
increase the distance of the resulting code.

Let B and F be two complexes of length 2 equipped
with bases; we will refer to these as base and fiber com-
plex, respectively. Furthermore, let ¢ be a function (called
“twist”) that associates with any pair of incident basis
vectors of By and B an automorphism of the fiber.

Then the fiber bundle code B ®,, F' is a chain complex
with the same underlying vector spaces as B ® F but with
twisted boundary operators

) )
(idBl ‘éaf) and (9, 9f ®idg),
where

%' ®f)= > R@e®" ")),

bedBp!

for basis vectors b; € B; and f € Fy or f € F. In par-
ticular, if ¢ =1 then the fiber bundle B®, F =B ® F
specializes to the tensor product. The fiber bundle code
B ®, F' can be interpreted as the total complex of the fiber
bundle double complex B ®,, F with the obvious boundary
operators.

Requiring that 37 is surjective and some additional
technical conditions [68], one can show that

H'(B®,F)=H'B).

Hence the number of logical qubits in B ®, I coincides
with the number of encoded bits in the code associated the
complex B. In Ref. [68] the construction was applied to a
random code B as the base, a repetition code with cyclic
symmetry F' as the fiber, and random twist .

5. Lifted product codes

Lifted product codes, introduced by Panteleev and
Kalachev [57,69] are based on the observation that the
tensor product of vector spaces or the Kronecker product
of matrices extends to modules over algebras. This more
general definition can be used to construct quantum codes.

Let R C nge be a commutative subalgebra of the ring
of £ x £ matrices over 5. Let A € R and B € R* be
matrices with entries in the algebra R. Equivalently, 4 and
B can be interpreted as matrices 4 € F5™" and B € F5*¥!
whose blocks of size £ x £ are elements in the algebra R.

Then the lifted product quantum code is defined in terms
of the check matrices Hy and H; given by

(I*®@rB A@rI) and (4Q@gIF If®gB),
where ®p denotes the Kronecker product of matrices over
R, I(f denotes the g x ¢ identity matrix over R, and the
resulting matrices are interpreted as matrices over [F,.

Equivalently, the parity-check matrices and Hy and Hy
can be obtained by first considering the matrices

([€m®é ;1®IU) and (;1 Q Ly 1y ®B)
using the usual Kronecker product. The resulting matrices
can be subdivided into submatrices of size £> x £2. Then
one collapses each of these these submatrices to matrices
of size £ x £ by adding all of their £ x £ submatrices of
size £ x £ together.

The number of X -checks, Z-checks, and logical qubits
in the lifted product is smaller by a factor of £ than in the
corresponding tensor (hypergraph) product.

The lifted product can also be written as a tensor prod-
uct of chain complexes. Here one has to interpret the two
classical codes as chain complexes of length 2 over the
algebra R and use the tensor product over R. This is closely
related to the definition of balanced product codes; see Sec.
VIIAT.

In Refs. [57,69] the lifted product construction is applied
mostly in the case where R is the algebra of circulant matri-
ces; that is, the algebra generated by the cyclic shift matrix
x of the £-cycle. Matrices with entries in R can be con-
structed, for example, from the incidence matrix of a graph
with an £-fold cyclic covering (see Ref. [147]) and associ-
ated expander codes. Indeed, quantum LDPC codes with
an almost linear distance were obtained in Ref. [57] by
taking the lifted product of a Sipser-Spielman code on a
random cyclic covering of a random expander graph with
the matrix 1 + x of the repetition code.

6. Balanced product codes

The balanced product is a topological construction that
associates with two spaces X, Y with right and left actions
of a groups G, respectively, a space X xg Y. The space
X X Yis defined as the quotient (X x Y)/G of the Carte-
sian product, where G acts on X x Y via g- (x,y) =
(xg~!,gy). The balanced product is often used to con-
struct fiber bundles from principal bundles in physics and
topology; see Ref. [37]. Namely, the natural projection
m:X xgY— X/G is a fiber bundle with base X /G and
fiber ¥, under some technical assumption.

Balanced product codes mimic this concept and were
introduced by Breuckmann and Eberhardt [70] to build
quantum LDPC codes.

If G is a group acting on a vector space } and a vector
space W from the left and right, respectively, one can form
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the tensor product over G via
VW=V W/ {(v-g@w—-1vQg- w).

Similarly to the tensor product for vector spaces, this
definition extends to chain complexes. Let C and D be
chain complexes with a right and left action of G, respec-
tively. In other words, G acts on the individual spaces C;
and D; and commutes with all boundary operators. Then
one can form the complex C ®¢ D, which is the total
complex of the double complex C X D.

Under the assumption that G is a finite group of odd
order, there is a Kiinneth formula

H,(C® D) = @) H,(C) ®c Hy(D).
p+q=n

In the case that G is a commutative group with a free
action on each vector space C; and D;, the balanced product
specializes to a lifted product.

The balanced product construction was applied by
Breuckmann and Eberhardt to construct quantum LDPC
codes from highly symmetrical Sipser-Spielman codes
and a repetition code with cyclic symmetry. To con-
struct Sipser-Spielman codes, Breuckmann and Eberhardt
used Cayley graphs of PGL(2, ¢), whose automorphism is
exactly this group.

7. Relation of fiber bundle and balanced product codes

As mentioned above, fiber bundles and balanced prod-
ucts are closely related concepts in topology. Similarly,
balanced product, lifted product, and fiber bundle codes are
closely related; see Fig. 8. The code families breaking the
J/npolylogn distance barrier described in Sec. IV A can
be interpreted in all three setups.

We illustrate the relationship with a topological exam-
ple. Denote by X = S! the circle and let G = Z, act on X
via a rotation by 7. The quotient space X /G = S' is also
acircle and 7 : X — X /H is a twofold covering. Let G
act on another circle ¥ = S' by reflection along the x axis.
Then the associated balanced product S' x 7z, S' is a Klein
bottle, which is a fiber bundle over the circle

mg o S X7, st — st

with fiber S'. By choosing G-equivariant tessellations of X
and Y, one obtains quantum codes that can be interpreted
as balanced product, lifted product, and fiber bundle codes.
Similarly, it is often possible to relate similar such code
constructions to each other.
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