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Interactions between particles are usually a resource for quantum computing, making quantum many-
body systems intractable by any known classical algorithm. In contrast, noise is typically considered as
being inimical to quantum many-body correlations, ultimately leading the system to a classically tractable
state. This work shows that noise represented by two-body processes, such as pair loss, plays the same
role as many-body interactions and makes otherwise classically simulable systems universal for quantum
computing. We analyze such processes in detail and establish a complexity transition between simulable
and nonsimulable systems as a function of a tuning parameter. We determine important classes of sim-
ulable and nonsimulable two-body dissipation. Finally, we show how using resonant dissipation in cold
atoms can enhance the performance of two-qubit gates.
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Understanding whether a particular quantum system is
easy or hard to simulate from the perspective of classi-
cal computation is a crucial task serving several goals. The
first goal, as a primary step of many numerical studies, is
to find efficient classical algorithms describing the desired
quantum phenomena. Another goal arises in quantum com-
puting, where finding many-body systems lacking an effec-
tive classical description may be worthwhile for construct-
ing quantum computation [1] and simulation [2,3] devices.
The versatility of the classical simulability problem can be
illustrated by considering the sampling problem for nonin-
teracting and interacting fermions [4–7]. There are efficient
classical algorithms to simulate fermions described by
a quadratic Hamiltonian: the amplitudes of time-evolved
many-body configurations are expressed by an efficiently
computable analytical formula [6,8]. The existence of an
efficient algorithm makes the free-fermion approximation
a numerically accessible and valuable method with appli-
cations to condensed-matter systems. At the same time,
simulating interacting fermions is believed to be classi-
cally intractable. Indeed, simulating general interacting
fermions is as hard as simulating the output of a universal
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quantum computer [9]. A similar practical differentiation
between easy and hard problems can be applied to other
systems [10–14].

In this work, we study the fate of classical simulabil-
ity of fermionic systems in the presence of dissipation,
both for computing local observables and for sampling
from the many-body output distribution (to be defined
shortly). To obtain a classification of the complexity of
simulating free fermions with dissipation, we consider a
general class of Markovian processes, i.e., dynamics that
depends only on the instantaneous system state and is
independent of the preceding evolution [15]. In previous
studies, it was shown that Markovian single-fermion loss
or gain terms keep the noninteracting system classically
tractable [16,17]. As a step forward, we consider a much
wider class of quadratic-linear Lindblad jump operators.
Using the method of stochastic trajectories [18,19], we
establish a wide subclass of problems that can be simu-
lated classically. At the same time, we demonstrate that,
in general, quadratic Lindblad jump operators are at least
as hard to simulate as most unitary interacting systems.
More precisely, we establish a connection between dis-
sipative interactions and fault-tolerant universal quantum
computation exploiting the quantum Zeno effect [20–24].
Therefore, evolution under quadratic Lindblad jump oper-
ators is equivalent in power to quantum computation. This
effect can be compared with parity measurements, which
can also make free-fermion dynamics universal [25]. The
tractability and intractability results together show that
simulation of quartic dissipative Liouvillian operators is
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a problem whose complexity can be changed from hard to
easy by varying one or more parameters in the system [13].

One motivation behind this work is the existence of a
variety of accessible fermionic physical systems involv-
ing nonunitary processes. Examples of dissipative pro-
cesses described by quadratic Lindblad jump operators
include two-body loss in trapped alkali atoms [26–28],
alkaline-earth atoms [29–34], and cold molecules [35,36].
As we show, Feshbach resonances [37,38] can be used to
significantly suppress coherent interactions between cold
atoms, simultaneously increasing the rate of atom-pair trap
losses. More general types of dissipation can be created
by adding a source of atoms [39–41] or inelastic photon
scattering [42–44]. In solid-state physics, examples of pro-
cesses described by quadratic jump operators in Markovian
approximation are Cooper-pair loss [45,46] and phonon-
induced dephasing [47]. Recent progress in the control
of dissipative electronic systems has brought them into
focus in condensed-matter physics. Some of the novel
effects in noninteracting and mean-field fermionic systems
include dissipation-induced magnetism [48–50], dissipa-
tive superfluids and superconductors [51,52], dissipative
Kondo effect [53,54], non-Hermitian topological phases
[55–62], and non-Hermitian localization [63–65].

We provide a classification of dissipative fermionic
processes into easy (efficiently simulable) and hard (not
efficiently simulable) classes according to their worst-case
computational complexity. The classical simulability prob-
lem may be phrased in two ways, either in terms of
evaluation of few-body observables or sampling from the
full probability distribution on many-body outcomes. In
the first task (few-body observables), a classical computer
is required to output the expectation value of an observ-
able supported on k sites, where k does not grow with
the system size. In the second task (sampling), a classi-
cal computer is tasked with producing samples from the
same distribution as the one obtained by measuring the
time-evolved state in some canonical basis (see Fig. 1).
Both tasks allow for the computer to make a small error
ε, measured appropriately in each case [66]. The task of
sampling is computationally harder; an algorithm produc-
ing samples in some product-state basis can also be used to
obtain expectation values of few-body observables in the
same basis. Therefore, in this work, we focus mainly on
the easiness of sampling in arbitrary product-state bases
as a criterion for overall easiness and on the hardness of
computing few-body observables as a criterion for overall
hardness. This choice gives the stronger of the two results
for both easiness and hardness.

We note that a limited version of classical simulabil-
ity for some models below was also studied in previous
works [67–69]. In particular, it was shown that two-point
correlation functions in such models can be evaluated via
solving a closed set of equations. This result establishes
classical simulability of local observables and can be used

H(t), Ak(t)

FIG. 1. Classical simulability. We look for the existence of an
efficient algorithm running on a classical computer and produc-
ing (sampling) the many-body configurations with the probabil-
ity distribution close to the physical system after measurement in
some basis. We show that, for fermionic systems with Hamilto-
nian H(t) and with dissipation described by quadratic Lindblad
jump operators Ak(t), such an algorithm exists for at least a
restricted number of problems, while the worst-case scenario
requires a quantum computer in order to be solved efficiently.
The three optical lattices illustrate the state of the system at
initial, intermediate, and final times.

in various problems such as dissipative transport or opti-
cal response. However, this result alone is not sufficient to
establish the simulability of sampling. In contrast to local
observables, simulated sampling requires the full knowl-
edge of the many-body output probabilities, therefore the
sampling complexity of systems with simulable low-order
correlations remains unclear. As we revisit below, Gaus-
sian systems are the exception that allow reducing these
output probabilities to two-point correlation functions via
Wick’s theorem; other systems we study below do not
have such simple reduction (see Appendix D). To over-
come this problem, we develop the easiness proof that does
not require applicability of Wick’s theorem. In conclu-
sion, sampling is a stronger notion of simulation compared
to two-point correlators in a sense that any local observ-
ables can be efficiently obtained using an oracle producing
sampling outcomes

Let us emphasize the importance of the provided com-
plexity analysis. While established easy dissipation classes
are limited to certain fine-tuned processes, such limited
simulable models have an important application for quan-
tum computing. For example, classical models can be used
in calibration of quantum computers, simulation of the
impact of noise on sampling, and analysis of fermionic
quantum error-correcting codes [70]. More fundamen-
tally, identifying easy classes is an important first step
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to analyze easy-hard transitions in open fermionic sys-
tems, as we analyze below. At the same time, the hardness
result we obtain in this work establishes utilizing dissi-
pative interactions as an alternative path toward building
a universal quantum computer. This conclusion is sur-
prising, since dissipative interactions generally produce
mixed states. However, dissipative interactions can be used
only in a manner utilizing a blockade mechanism induced
by the quantum Zeno effect, as we show below. In cold
atomic systems, controlling dissipative interactions dif-
fers from photonic systems studied before [22,23] and can
be achieved using an atomic Feshbach resonance. In this
paper, we analyze in detail a scheme for universal quan-
tum computation with 40K atoms and illustrate that, with
realistic experimental parameters, an entangling gate with
low error rate of roughly 10−4 is possible. Existence of
both easy and hard classes for two-body dissipation estab-
lishes it as a valuable model for physical analysis of noisy
intermediate-scale quantum devices.

Model.— We consider dynamics generated by the Lind-
blad master equation [15,71]

dρ
dt

= −i[H(t), ρ] +
kA∑

k=1

Ak(t)ρA†
k(t)− 1

2
{A†

k(t)Ak(t), ρ},

(1)

where {X , Y} ≡ XY + YX is the anticommutator, ρ(t) is
the density matrix of the system, H(t) is a noninteracting
Hamiltonian, and Ak(t) ∈ A(t) form a set of kA Lindblad
jump operators. We set � = 1 throughout the paper unless
specified otherwise. Both the Hamiltonian and the Lind-
blad jump operators may depend explicitly on the time
but not on the state itself. The corresponding map ρ(t2) =
V(t2, t1)ρ(t1) between arbitrary times t1 and t2 ≥ t1 satis-
fies V(t2, t1) = V(t2, τ)V(τ , t1) for any t2 ≥ τ ≥ t1. This
divisibility condition is commonly referred to as the most
general definition of Markovian dynamics [72]. The master
equation in Eq. (1) is invariant under certain transforma-
tions of the set of Lindblad jump operators A(t), such as
operator permutations, multiplying any Lindblad operator
by a phase factor, or splitting and merging of identical
operators as Ak � {√pAk,

√
1 − pAk}, 0 ≤ p ≤ 1.

As a physical system of interest, we consider a fermionic
many-body problem where N ≤ L spinless fermions ini-
tially occupy L available modes. Such systems are com-
monly described by the second quantization method,
which expresses any operator, including the Hamiltonian
and Lindblad jump operators, in terms of fermionic Fock
operators c†

n and cn, n ∈ {0, 1, . . . L − 1}. Fock operators
create and annihilate a single fermion in a particular mode
and satisfy the canonical commutation relations {cn, cm} =
0, {c†

n, cm} = δnm. Though the conventional fermion opera-
tors are suitable in most physical problems, in the absence
of fermion number conservation it is convenient to use the

2L Hermitian Majorana fermion operators γ2n = cn + c†
n

and γ2n+1 = −i(cn − c†
n), due to their simple anticom-

mutation relations {γi, γj } = 2δij , i, j ∈ {0, 1, . . . , 2L − 1}.
We consider the most general form of a noninteracting
Hamiltonian [73]

H(t) = i
2

2L−1∑

i,j =0

αij (t)γiγj +
2L−1∑

i=0

βi(t)γi, (2)

where α(t) is a real-valued antisymmetric 2L × 2L matrix
and β(t) is a real 2L vector. We assume that the magnitude
of all entries of α(t) and β(t) and their time derivatives
scale at most polynomially with system size.

In this work, we focus on the classical resources needed
to approximately sample from the fermion distribution at
time t,

P(r|r′) = 〈ψr|ρ(t)|ψr〉, ρ(0) = |ψr′ 〉〈ψr′ |, (3)

where the vectors r′ and r denote the positions of occupied
modes in the initial and final (measured) product-state con-
figurations, respectively, and |ψr〉 is a product state defined
as |ψr〉 = c†

r1 · · · c†
rN |0〉 = γ2r1 · · · γ2rN |0〉. Here |0〉 is the

vacuum state defined as the state satisfying cn|0〉 = 0 for
all n. Importantly, because the dynamics may not conserve
the total fermion number, the final number of fermions
Ñ can, in general, be different from the initial number:
N 
= Ñ .

We establish the sufficiency of polynomial resources
for classically simulating dynamics due to arbitrary non-
interacting Hamiltonians in Eq. (2) and a limited set of
Lindblad jump operators Ak(t) ∈ A(t) in the worst case.
In order to prove polynomial-time simulability (also called
easiness) for limited classes of dissipative dynamics, we
reduce the problem to that of simulating unitary non-
interacting fermionic evolution, an easy problem for a
classical computer. In order to prove hardness for more
general Lindblad jump operators, we exploit the ability of
dissipative dynamics to perform arbitrary quantum com-
putation (i.e., we prove that simulating universal quantum
computation reduces to simulating Lindbladian dynamics).

The results of this work are briefly illustrated in Table I.
First of all, we define three classically tractable classes
of Lindblad jump operators (defined as easy classes 1, 2,
and 3). All of these cases allow for polynomial-time sam-
pling of any Hamiltonian and Lindblad jump operators
from the given class on a classical computer, with error
scaling inverse-polynomially with L. Easy class 1 (EC1)
allows for simulation of self-adjoint sets of quadratic Lind-
blad jump operators: all Lindblad jump operators in the
set A(t) come with their Hermitian conjugate. This class
includes such widely used examples as dephasing, incoher-
ent particle shuffle, and classical fluctuations of the number
of fermions and of the number of fermion pairs. Easy class
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TABLE I. Comparison between different types of noninteract-
ing fermion dynamics with additional dissipation. For simplicity,
we provide examples for two modes out of L, denoted by num-
bers 1 and 2. The symbol & means that both operators are present
in the set A(t)with factors equal in absolute value. Abbreviations
EC1, EC2, EC3 stand for easy class 1, 2, and 3 described in the
text.

Type Examples of Ak Complexity

Dephasing c†
1c1 Easy (EC1)

Particle shuffle c†
1c2 & c†

2c1

Classical fluctuations c†
1 & c1

Classical pair
fluctuations

c†
1c†

2 & c1c2

Mixing unitaries 2c†
1c1 − 1 + i(c†

2 + c2) Easy (EC2)
Single-particle

loss or gain
c1 OR c†

1 Easy (EC3)

Incoherent hopping c†
1c2 Hard

Pair loss or gain c1c1 OR c†
1c†

1

Note: Different classes can be combined by summing the right-
hand sides of the corresponding master equations. However,
the jump operators cannot be combined without precaution: the
sum of two easy jump operators from different classes does not
necessarily produce a simulable jump operator.

2 (EC2) works with unitary quadratic Lindblad jump oper-
ators. Finally, easy class 3 (EC3) describes the loss or gain
of a single particle in the system and can be used in com-
bination with EC1 and/or EC2. At the same time, there
exists a class of Lindblad jump operators with a nonzero
measure that is hard to classically simulate. Examples from
this class include pair loss or gain and incoherent fermion
hopping. Below we explore each class separately.

We focus on quadratic-linear Lindblad jump operators
of the form

Ak(t) = i
2

2L−1∑

i,j =0

aij
k (t)γiγj +

2L−1∑

i=0

bi
k(t)γi + dk(t), (4)

where ak(t) are antisymmetric 2L × 2L matrices, bk(t)
are 2L vectors, and dk(t) are numbers; all the parameters
are complex-valued in general. Notably, the same mas-
ter equation allows representation with more than one set
of jump operators A = {Ak}. A set can be reduced to a
smaller one if its jump operators are linearly dependent
[15]. Therefore, the number kA of Lindblad jump operators
in the smallest set does not exceed the number of linearly
independent quadratic operators, i.e., L(L + 1). Also, as
with the Hamiltonian, we assume that the magnitude of the
entries of ak(t), bk(t), and dk(t) and their time derivatives
grow at most polynomially with the system size.

This work is organized as follows. In Sec. I, we provide
a brief introduction to free-fermion sampling, recalling
established results in the literature and connecting them

to the most general form of quadratic-linear Hamiltoni-
ans. In Sec. II, we derive three new algorithms allowing
us to solve distinct classes of fermionic problems involv-
ing quadratic Lindblad jump operators and prove that these
algorithms run in time that is polynomial in both L and
the inverse of the distance from the exact distribution. In
Sec. III, we establish a generic class of systems that belong
to the hard class and show their robustness to the pres-
ence of minor imperfections. In Sec. IV, we show how
our complexity result applies to realistic experimental set-
tings. We demonstrate that natural pair loss in cold atomic
systems can be controlled and utilized to implement uni-
versal quantum computing. The dissipation-assisted gates
provide an alternative to unitary gates with a potential
advantage in the speed of two-qubit operations.

I. FREE-FERMION SAMPLING

In this section, we discuss the noninteracting fermion
problem in the absence of dissipation. We recap the work
of Terhal and DiVincenzo [6], which shows that all output
probabilities P(r|r′) in Eq. (3) and the marginal probabili-
ties can be obtained using a classically tractable analytical
formula. Before referring to this result, we need to incor-
porate the linear terms present in Eq. (2) into effective
quadratic dynamics. In order to do so, we consider a
slightly larger system containing an extra ancilla (L + 1)th
mode [73], labeled as n = L. Next, we choose new effec-
tive dynamics such that the ancilla mode remains in the
state |+〉 ≡ (|0〉 + |1〉)/√2 during the entire evolution,
including the initial and final times, i.e.,

|ψr′ 〉 → |ψr′ 〉⊗|+〉, |ψr〉 → |ψr〉⊗|+〉. (5)

To construct such dynamics, we consider a new Hamil-
tonian by replacing γi → iγiγ2L, where γ2L and γ2L+1
are Majorana operators acting on the ancilla mode. It is
straightforward to check that such a transformation results
in a new purely quadratic Hamiltonian (without any linear
terms) that keeps the state of the ancilla stationary and does
not modify the dynamics of the original Hamiltonian. The
new coefficients in Eq. (2) are

αij → α̃ij = αij + δi2Lβj − δj 2Lβi, (6)

where we use by default β2L = β2L+1 = 0. Given that the
modified initial and final conditions for the system and
the ancilla are {r′} → {r′, s′}, {r} → {r, s}, s, s′ ∈ {0, 1},
the probability P(r|r′) of obtaining outcome r for the
original system can be computed from the probability
P({r, s}|{r′, s′}) for the system with the ancilla as follows:

P(r|r′) = 1
2

∑

s,s′∈{0,1}
P({r, s}|{r′, s′}). (7)

Summarizing, this method ensures that the dynamics of
a linear-quadratic Hamiltonian can always be reduced to
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the dynamics of a quadratic one by expanding the system
size by one mode. Therefore, we henceforth consider only
quadratic Hamiltonians.

Let us derive the formula for the sampling prob-
ability. We start from a (backwards) time-evolved
Majorana fermion operator γi(t) = UtγiU

†
t , where Ut =

T exp
(
−i
∫ t

0 H(t′)dt′
)

. Here T exp is the standard time-
ordered exponential. Given the quadratic structure of the
Hamiltonian, this evolution is a linear transformation
γi(t) = ∑

i Rij (t)γj , where R = T exp
(
−2

∫ t
0 α(t

′)dt′
)

is
a unitary 2L × 2L matrix. One can use this expression to
derive the time evolution of a fermion operator as

UtcnU†
t = 1

2
Ut(γ2n + iγ2n+1)U

†
t =

∑

j

Tnj γj , (8)

where Tnj ≡ R2n,j + iR2n+1,j are elements of a L × 2L
transformation matrix T. Labeling the initially empty sites
as l′i and recalling that the initial fermion positions are r′

i
and that the final positions are ri, the linearity allows one
to write the output probability in Eq. (3) at any time as

P(r|r′) = 〈ψr| Ut|ψr′ 〉〈ψr′ |U†
t |ψr〉

= 〈ψr|Utc
†
r′1

cr′1 · · · cl′L−N
c†

l′L−N
U†

t |ψr〉

=
∑

n1,...nL;m1,...mL−N

T∗
r′1n1

Tr′1m1 · · · Tl′L−N mLT∗
l′L−N nL

× 〈0|γ2rN
· · · γ2r1

γn1γm1 · · · γmLγnLγ2r1
· · · γ2rN

|0〉.
(9)

This expression can be computed efficiently using Wick’s
theorem and written in a compact form. Let I be a sub-
set of indices with increasing order and A[I] be the
matrix whose elements satisfy A[I]ij ≡ AIi,Ij . Consider
the set I = {r′

i, L + l′j , 2L + 2rk}, where i ∈ {1, 2, . . .N },
j ∈ {1, 2, . . . L − N }, and k ∈ {1, 2, . . . Ñ } take all possible
values. Then the result can be written as [6]

P(r|r′) = Pf M [I], (10)

where Pf is the Pfaffian, and M is a 4L × 4L matrix

M =
⎛

⎝
T
TT T
T† T

T∗
TT T∗
T† T∗


TT 
T† I

⎞

⎠ , (11)

where, in turn, the 2L × 2L matrix 
 is


 = IL×L ⊗
(

1 i
−i 1

)
. (12)

The expression in Eq. (10) can be efficiently evaluated
on a classical computer using existing polynomial-time

algorithms for computing Pfaffians [8]. Similarly, marginal
probabilities can be efficiently computed conditioning on
the output of a given fraction of sites, as in Ref. [6], which
is enough to efficiently sample from the output probability
distribution.

II. EASY CLASSES

Here we present three algorithms that allow simulating
specific fermionic problems involving quadratic Hamilto-
nians and quadratic-linear Lindblad jump operators. All
methods are based on stochastic unraveling, i.e., replacing
dissipative dynamics by a stochastic free-fermion Hamil-
tonian without changing the outcome distribution (see also
Ref. [19]). Since each stochastic realization can be sim-
ulated efficiently by a classical computer, as established
in the previous section, a classical computer can serve
as a black-box sampler that reproduces measured out-
comes. In this section, we demonstrate that the classes
of problems belonging to the aforementioned easy classes
1–3 are efficiently simulable. In particular, we show that
these problems require computation resources C (number
of operations) bounded as C ≤ poly

(
L, t2/ε

)
to sample

from a distribution that is ε-close to the target distribu-
tion. Therefore, we establish efficient classical algorithms
for approximate dissipative fermion sampling in the pres-
ence of certain classes of quadratic-linear Lindblad jump
operators.

A. Efficient classical algorithms

Let us define easy class 1 (EC1) as problems that involve
quadratic-linear self-adjoint Lindblad sets A(t) defined as
follows. We assume that at any time one can divide the
set as a union of two equal-size subsets, A = A1 ∪ A2,
where the Hermitian conjugate of every Lindblad operator
in A1 returns an operator in A2 (and vice versa). Under
this division, any Hermitian Lindblad operator must be
included in both subsets A1 and A2 with normalization
factor 1/

√
2. The latter splitting can be seen as a trans-

formation that keeps the Lindblad equation invariant, as
defined earlier below Eq. (1). Examples from EC1 include
several important physical models such as dephasing and
classical fluctuations (see examples of sets in lines 1–4 in
Table I).

In previous works, it was shown that such systems have
two-point correlation functions that are classically simu-
lable by solving a closed set of linear equations [67–69].
This is indeed a strong indication that the system can be
simulable in the broader context of sampling complexity.
However, as we noted previously, Wick’s theorem is not
applicable to non-Gaussian states (see Appendix D). This
means that the scheme we utilized to obtain Eq. (10) does
not work any more. We now show an alternative scheme
using stochastic unraveling that leads us to the easiness
result.
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To efficiently simulate dynamics from EC1, we consider
a stochastic Hamiltonian

H ′(t) = H(t)+
∑

Ak∈A1

θk(t)Ak(t)+ θ
†
k (t)A

†
k(t), (13)

where θk(t) is a complex random variable taking constant
values θk(t) = ξnk/

√
τ during short time intervals t ∈

[nτ , (n + 1)τ ]. Later we also consider θk(t) as oper-
ators. The discrete complex Gaussian variables ξnk sat-
isfy Eξnk = 0, Eξ ∗

nkξn′k′ = δnn′δkk′δab, where E denotes the
expectation value taken over the random variables. Then,
given a stochastic Hamiltonian of the form in Eq. (13), the
original dynamical map V(t2, t1) generated by the Lindblad
equation can be approximated as

V(t2, t1) = EVst(t2, t1)+ δV(t2, t1)τ + O(τ 2), (14)

where δV(t2, t1)τ is the lowest-order correction (to be
explicitly derived below) and Vst is a stochastic unitary
map

Vst(t2, t1)ρ = U(t2, t1)ρU†(t2, t1). (15)

In the above, U(t2, t1) = T exp
(
−i
∫ t2

t1
dt′H ′(t′)

)
encodes

the time evolution due to H ′(t) in Eq. (13). The average
E in Eq. (14) is taken over the stochastic fields θk(t). The
resulting output probabilities satisfy

P(r|r′) = E Pst(r|r′)+ O(τ), (16)

where Pst(r|r′) is the output probability for the unitary
dynamics in Eq. (15) obtained via the formula in Eq. (10).
Therefore, a computer programmed to sample from the
distribution for a randomly chosen set of unitary trajec-
tories will produce outcomes with the same probabilities
as the physical process following Lindbladian evolution,
up to O(τ) error. The cost of suppression of this error in
terms of computational resources will be discussed later
in this section. Here we just specify that the correction
to the dynamical map, which we treat as an error, can be
expressed as

δV(t2, t1) = E

∫ t2

t1
dt′Vst(t2, t′)D(t′)Vst(t′, t1), (17)

where D(t) is a time-local superoperator

D(t)ρ =
∑

α

D(1)
α (t)ρD(2)

α (t). (18)

Here, the operators D(i)
α (t) = poly4(H(t), Ak(t)) can be

expressed as polynomials of degree 4 in terms of the
Hamiltonian and Lindblad jump operators at time t. There-
fore, D(i)

α (t) can always be presented as a sum of terms,

each being a product of no more than eight Majorana
operators. The specific form of these operators and the
derivation of Eq. (14) can be found in Appendix A.

Although the proposed unraveling scheme represents
dynamics in terms of stochastic trajectories for Gaus-
sian pure states, the resulting averaged mixed state is
non-Gaussian, in contrast to previously studied problems
[16,17]. Therefore, the overall dynamics of EC1 represents
dissipative interactions of fermions, while the proposed
method can be seen as a good choice of time-dependent
density matrix decomposition.

Let us consider another class of problems, easy class
2 (EC2), that include unitary quadratic Lindblad jump
operators Ak = √

�k(t)Yk(t), where �k(t) ≥ 0 are time-
dependent rates and Yk(t) = exp[−iGk(t)] are unitary oper-
ators generated by quadratic-linear Hamiltonians Gk(t) of
the form in Eq. (2). To classically simulate dynamics under
EC2, we also consider discretized time evolution with
sufficiently small timestepsτ and set the unitary transfor-
mation U(t1, t2) = ∏n2

n=n1
Un, where the timestep unitaries

Un are generated randomly according to the rule

Un = U0
n ×

{
Yk(tn), pk = �k(tn)τ ,
I , p0 = 1 −∑

k �k(tn)τ .
(19)

Here pk are probabilities that are used to generate the
respective outcomes, U0

n = T exp
(
−i
∫ (n+1)τ

nτ H(t)dt
)

,
and tn ∈ [nτ , (n + 1)τ ] are random times generated
from the uniform distribution.

Notwithstanding the slightly different stochastic unrav-
eling, the procedure for approximating EC2 is the same as
for EC1. In particular, the system dynamics is described
by the expression in Eq. (14) leading to the distribu-
tion in Eq. (16), with the average taken over stochastic
unitary realizations. The correction term has the form in
Eq. (18), but the operators D(i)

α (t) here are degree-2 polyno-
mials in the Hamiltonian and Lindblad jump operators. The
detailed form of the operators along with the derivation can
be found in Appendix B.

Finally, let us consider easy class 3 described by
generic linear Lindblad jump operators Ak(t) = ∑

i bi
kγi +

dk, which can be obtained by setting ak = 0 in Eq. (4)
without assuming any additional restrictions on the set
A(t). Previous works had already shown that linear jump
operators can be simulated classically [16,17]. However,
this proof applies only to Gaussian states and cannot be
extended to, for example, Lindblad equations that also con-
tain easy quadratic jump operators. Below we propose a
different way of simulating linear jump operators similar
to the one we used for EC1. This technique would allow
us to combine EC1, EC2, and EC3 into a single easy class
of Lindblad equations, including both quadratic and linear
processes.
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Now let us show that simulation of linear jump opera-
tors is equivalent to simulating a unitary system extended
by a number of ancilla modes. In particular, we require
La = t/τ ancilla fermion modes equal to the number
of time steps after discretization. Let us enumerate the
ancilla modes described by Majorana fermion operators
γ2n and γ2n+1 using indices n = L, . . . , L + La − 1. We
also assume that the ancilla modes are initialized in the
vacuum state and traced out after performing the evolu-
tion. The dynamics of both the system and the ancillas can
be described as unitary evolution with the Hamiltonian in
Eq. (13), with one important difference. Now, the quan-
tities θk(t) in the time interval t ∈ [nτ , (n + 1)τ ] are
operators instead of numbers, and are given by

θk(t) = ξnkτ
−1/2(γ2(L+n) + iγ2(L+n)+1). (20)

The random variables ξnk are the same as in EC1. The idea
is that we pair a loss (gain) term on the system with a gain
(loss) term on the ancilla to make the overall Hamiltonian
quadratic. After discarding the ancilla modes, the evolution
becomes equivalent to the target dissipative dynamics, up
to a discretization error that originates from the approx-
imation in Eq. (14) and Eq. (18), with D(i)

α (t) expressed
as degree-4 polynomials in the Hamiltonian and Lindblad
jump operators, as shown in Appendix C.

We note that the stochastic simulation method takes
advantage of the system state being a convex mixture
of Gaussian density operators [74,75]. This is a particu-
lar case of the more general property that any state of a
fermionic system with well-defined parity has a representa-
tion as a convex distribution over generic (not necessarily
Hermitian) Gaussian operators [76].

B. Performance of the classical algorithms

Let us quantify the error of the method of quantum tra-
jectories used for easy classes 1–3, and then show that the
sampled distribution can be made arbitrarily close to the
exact one with an appropriate choice of the timestepτ . In
order to characterize the approximation error ε associated
with sampling from a distribution P̃(r|r′) different from
the ideal distribution P(r|r′), we utilize the total variation
distance

ε = 1
2

max
r′

∑

r

∣∣P̃(r|r′)− P(r|r′)
∣∣, (21)

where the maximization is over all possible initial product-
state configurations r′.

Using convexity of the absolute value and the expres-
sion for the correction in Eqs. (17)–(18), the error can be

bounded as (see Appendix E),

ε ≤ τ

2
max

r′

∑

α

∫ t

0
dt′Cαr′(t, t′)+ O(τ 2), (22)

where

Cαr′(t, t′) = E

∑

r

∣∣∣〈ψr|D(1)
α (t, t′)ρr′(t)D(2)

α (t, t′)|ψr〉
∣∣∣. (23)

Here D(i)
α (t, t′) = Vst(t, t′)D(i)

α (t
′) and ρr′(t) = Vst(t, 0)ρr′

are operators transformed according to unitary evolution
for a single stochastic trajectory, and the average E is taken
over all trajectories. We now use the following lemma to
further bound this expression.

Lemma: Consider two sparse operators O1 and O2 whose
matrix elements satisfy

〈ψr|Oα|ψr′ 〉=0 if dH (r, r′) ≥ kα , α ∈ {1, 2}, (24)

where dH (r, r′) is the Hamming distance between states
with the positions of fermions r and r′. Let ρ be a nor-
malized positive semidefinite operator, ρ ≥ 0, Trρ = 1,
then

∑

r

|〈ψr|O1ρO2|ψr〉| ≤ Lk1+k2

k1!k2!
‖O1‖max‖O2‖max, (25)

where ‖Oα‖max is the max-norm.

The proof of the lemma can be found in Appendix E.
The result of the lemma allows us to simplify Eq. (23) as

Cαr′(t, t′) ≤ Lk1α+k2α

k1α!k2α!
E‖D(1)

α (t, t′)‖max‖D(2)
α (t, t′)‖max, (26)

where kiα is the locality of the operator D(i)
α (t, t′), i.e., the

maximum number of Majorana operators in its decom-
position. Because Vst is a map describing free-fermion
evolution, the locality kiα of the operator D(i)

α (t, t′) is equal
to the locality of D(i)

α (t
′). At the same time, as analyzed in

the previous section, the localities of operators D(i)
α (t

′) sat-
isfy kμα ≤ km, where km = 8 for EC1 and EC3, and km = 4
for EC2. We can also bound the max-norm by the (spectral)
operator norm

‖D(i)
α (t, t′)‖max ≤ ‖D(i)

α (t, t′)‖ = ‖D(i)
α (t

′)‖. (27)

As a result, the error bound is given by

ε ≤ τ

2
L2km

(km!)2
E

∑

α

∫ t

0
dt′‖D(1)

α (t
′)‖‖D(2)

α (t
′)‖. (28)

Since the matrices D(i)
α = poly(H , Ak) are generated by a

quadratic-linear Hamiltonian H and set of Lindbladians
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Ak, we can always find a polynomially large bound for
the norm ‖D(i)

α (t
′)‖ ≤ poly(L). Thus, there always exists

a discretization step

τ ≤ ε

t poly(L)
(29)

that keeps the error in Eq. (28) arbitrarily small, suppressed
at least polynomially with the number of modes L.

Let us now estimate the amount of computational
resources required to perform the above sampling proce-
dure. For each sample, the algorithm randomly chooses
a unitary trajectory according to the given prescription
for each class EC1–EC3 and, according to the Terhal-
DiVincenzo algorithm, produces outputs from the free-
fermion distribution in Eq. (10). In particular, it samples
the output at site i conditioned upon the outcomes sampled
at sites j < i, for which the marginal probabilities should
also be computed. Consider cases of EC1 and EC2 that
do not require ancillas. Once the matrix T is obtained in
Eq. (8), the number of steps to compute the distribution is
equal to C′ = L × O(L3) = O(L4), where the factor O(L3)

is the upper bound on the time it takes to compute a Pfaffian
of an O(L)× O(L) matrix. Further, the runtime for obtain-
ing the matrix T is proportional to t/τ × M (2L), where
M (n) � O(n3) is the time for n × n matrix multiplication.
In sum, the total bound on the runtime for each trajec-
tory is bounded as C ∼ O(L4)+ O

(
L3t/τ

)
. Choosing

τ = ε/[t × poly(L)], the runtime is

C ≤ poly
(

L,
t2

ε

)
. (30)

For EC3, the derivation is the same up to adjusting the
system size to include the ancilla modes, L → L + t/τ .
This case also has a similar polynomial upper bound on
the classical runtime in the form of Eq. (30) as long as the
evolution time t is polynomial.

Finally, let us analyze the case when the conditions
of classes 1–3 are violated. Strictly speaking, then the
stochastic method fails as it generally maps the problem to
a nonquadratic fermionic evolution, which is not believed
to be simulable for arbitrarily long time. However, we can
still efficiently simulate the system after this mapping if
the product of evolution time t and the correction rate δ�
(of processes violating easiness conditions) remains small.
In particular, if the product is bounded as δ�t < c/L2 for
some constant c, the dynamics remains classically easy.
To obtain this result, we consider a more general form of
stochastic unraveling in Eq. (15) with nonunitary unravel-
ing. This formula can be Taylor expanded as Vst → V ′

st =
Vst + δ�τK1 + (δ�τ)2K2 + . . ., where Kn are local cor-
rection superoperators and τ is the evolution time. There-
fore, we can update the bound for the operator norms in
Eq. (27) as ‖D(i)

α (t, t′)‖ ≤ ‖D(i)
α (t

′)‖ + δ�τ‖K1D(i)
α (t

′)‖ +

(δ�τ)2‖K2D(i)
α (t

′)‖ + . . .. Since the operator D(i)
α involves

at most km fermion Fock operators and the action of
Kn involves at most four fermion operators, we see that
‖KnD(i)

α (t)‖ ≤ O(Lkm+2n). Therefore, the norm ‖D(i)
α (t, t′)‖

is always bounded by a poly(L) value if δ� < c/(L2τ),
where τ = t − t′ ≤ t. This result leads to Eq. (30). As a
result, if the dissipation is close enough to the symmetric
point, the evolution remains classically easy. This result
may be helpful for analyzing the precision needed for
implementing this dynamics in intermediate-scale quan-
tum devices.

III. HARD CLASS

We have so far demonstrated cases when the probability
distribution generated by the Lindblad equation is effi-
ciently simulable on a classical computer. Can we extend
these proofs to the most general case of quadratic Ak’s?
Since quadratic operators Ak correspond to single-fermion
jumps in many cases, one may expect that the problem
can be solved in the single-particle sector, similar to uni-
tary free-fermion dynamics. However, such an intuition is
incomplete. A simple explanation can be obtained using
the Fermi exclusion principle that requires the transition
between two modes to depend on the occupation of the tar-
get mode; thus a quadratic Lindbladian jump operator can
induce many-body correlations in the system that quickly
become classically intractable.

A. Reduction to a generic quantum circuit

We now provide a rigorous argument for worst-case
hardness based on the equivalence of dynamics under
classes H(t) and Ak(t) in Eq. (1) on the one hand and
universal quantum computing on the other. Let us start
with the simplest map utilizing quadratic Hamiltonians.
We distribute all modes into L/2 pairs, each pair cor-
responding to a logical qubit in the state |0〉L = |01〉 or
|1〉L = |10〉. Then, utilizing only quadratic Hamiltonians
and Lindblad jump operators, we can implement any quan-
tum circuit with arbitrary precision using only polynomial
overhead in the number of fermion modes and compu-
tational time. Thus, by showing the equivalence of the
dynamics to universal quantum computation, we obtain
hardness results for both estimating time-evolved local
observables 〈O(t)〉 and sampling from the time-evolved
state in any local basis. The obtained hardness result is
therefore on par with the best complexity-theoretic evi-
dence that simulating quantum circuits (in both senses) is
hard.

First, using single-fermion hopping between the two
sites of a qubit, we can reproduce arbitrary single-qubit
operations [77]. Second, to approximately generate a
desired two-qubit gate, we can use hopping combined with
a quadratic Lindblad operator. In particular, assigning the
two-qubit logical states |00〉L = |0101〉, |01〉L = |0110〉,
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|10〉L = |1001〉, and |11〉L = |1010〉, the control-Z gate can
be implemented by simultaneously applying the hopping
Hamiltonian H = J (c†

2c3 + c†
3c2) and pair-loss operator

A = �c3c4 for time t = π/J , in the limit � � J . This
type of dynamics can be analyzed as follows. The logical
states |01〉L and |10〉L remain invariant in the course of the
evolution. At the same time, in the limit γ ≡ �/J → ∞,
due to the quantum Zeno effect, the Lindblad operator’s
action disallows any coherent transition involving states
where qubits 3 and 4 are both occupied (i.e., | · ·11〉). As a
result, the logical state |00〉L is unaffected by the evolution.
Therefore, the only evolving logical state is |11〉L, which
acquires a phase factor exp(iπ) = −1 after time t = π/J .
As a result, the effective transformation on the two logical
qubits is the control-Z gate

|ψ〉 → Uπ |ψ〉, Uπ =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎠ . (31)

Together with arbitrary single-qubit operations, the
control-Z gate is enough to obtain dynamics universal for
quantum computing and hence hard to approximately sam-
ple from, assuming standard conjectures in complexity
theory [78,79].

Importantly, the performance of the dissipative gate
relies on the Zeno-effect blockade effective for γ → ∞.
In the limit of large but finite γ , the two-qubit system
has the probability ε = 2π/γ + O(γ−2) of ending up in
states |0011〉 or |0000〉, which could result in an error in
the gate (see Appendix F). To avoid computational error,
we can choose the ratio γ to be arbitrarily large by taking
vanishing J → poly−1(L) for any given � > 0. Therefore,
we can keep the error below any given threshold at the
cost of increased overall computation time, which remains
polynomial in system size.

The proposed architecture is not unique and allows for
modified and generalized realizations of logical qubits and
gates. For example, if the pair decay is always present on
any two neighboring modes, one may introduce an empty
ancilla mode between two logical qubits in order to ensure
that logical states do not decay. As another example, if the
control Hamiltonian is linear in terms of Majorana oper-
ators, a logical qubit can be encoded using just a single
mode. Moreover, for a reader focused on applications, we
discuss below a practical modification of qubit encoding
implementable in cold atoms.

Now let us show that pair loss is not the unique
dissipation present in the hard class. In fact, this class
also includes any quadratic dissipation connected to pair
loss by a time-dependent linear Bogoliubov transforma-
tion, A′(t) = �Y(t)c1c2Y†(t), where Y(t) = exp[−iG(t)] is
a free-fermion unitary transformation and G(t) is a Her-
mitian operator from the quadratic-linear class in Eq. (2).

To demonstrate this equivalence, we consider the pair-loss
scheme described above but simultaneously replace all pair
losses A with A′(t), the Hamiltonian H(t) with H ′(t) =
Y†(t)H(t)Y(t), and instead of the initial and final states,
choose states transformed by Y(0)† and Y(t), respectively.
The resulting process has the same probability distribution;
thus its complexity would be the same. As a result, Lind-
bladians such as incoherent transitions A = �c†

1c2 or pair
gains A = �c†

1c†
2 are also classically hard in combination

with free-fermion dynamics (see Table I).

B. Robustness of the hardness result

The error associated with imperfect Zeno blockade can-
not be arbitrarily suppressed by slowing down the com-
putation if there are small generic corrections to the dis-
sipative dynamics. These corrections can be viewed as
the presence of additional Lindblad jump operators with
total rate �′. Such terms generate additional transitions
with the probability ε′ ∼ π�′/J , where �′ is the com-
bined rate of added operators A′ and/or other errors. In
contrast to the imperfect-Zeno-blockade error, this type of
error diverges for small J . Therefore, there is an optimal
value J ∼ √

�′/� that minimizes the overall gate error
to ε + ε′ ∼ O(1), including, besides standard errors, leak-
age into states outside of the logical Hilbert space. For
fixed �, there always exists a choice of �′ ∼ O(1) that
keeps the error below any provided threshold, ε + ε′ < p0,
where p0 > 0. According to the leakage threshold theorem
in Ref. [80], which is a generalization of earlier standard
threshold results [81–83], a universal set of such gates can
be used to implement fault-tolerant quantum computing.
Therefore, there are instances of Lindblad evolutions that
remain hard to simulate for arbitrarily long times.

One particular example of a dissipative correction to
ideal dynamics is the presence of pair gain A′

ij = �′c†
i c†

j
that acts on exactly the same sites as pair loss Aij . In
this case, the minimum error is ε + ε′ =

√
8π2�′/� and

the problem remains hard for a classical computer if �′ ≤
p2

0/8π
2�. Since the entangling gate is also implementable

using pair gain instead of loss, this inequality also works
after replacing � by �′. Thus, the problem of simulating
the evolution in the regions �′/� ≤ p2

0/8π
2 and �′/� ≥

8π2/p2
0 is classically hard. The complexity for the rest

of parameter space remains an open problem. Notably,
there exists at least one point in this range, � = �′, that
is easily simulable by a classical computer since it is
in EC1. Therefore, by changing the ratio �′/�, we can
potentially induce a complexity phase transition. Figure 2
illustrates the connection between gate error and sampling
complexity.

Summarizing, we established quantum computational
universality of quadratic dissipation combined with free-
fermion dynamics, where dissipation replaces the unitary

030350-9



SHTANKO, DESHPANDE, JULIENNE, and GORSHKOV PRX QUANTUM 2, 030350 (2021)

FIG. 2. Complexity phase diagram for a fermionic system
with simultaneous pair losses and gain. The plot illustrates the
connection between complexity of simulation and the hypothet-
ical dissipative control-Z gate error ε + ε′ (both axes use log
scale). When the error is smaller than the best-known two-qubit
error-correction threshold p0, the worst-case system dynamics
is equivalent to that of a fault-tolerant quantum computer (blue
shaded regions) and, according to existing complexity conjec-
tures, is classically computationally hard to simulate. In contrast,
when the rates of gain and loss are exactly equal, the problem
belongs to EC1 (vertical red line) with the effective classical
algorithm provided in the text. The result for the unshaded region
remains inconclusive. The dashed line represents qualitative
extrapolation.

interactions between fermions. This result opens a possi-
bility of using simple dissipation processes as a resource
for quantum computing. In the following section, we
illustrate the feasibility of this proposal by considering a
system of cold atoms.

IV. APPLICATION TO COLD ATOMS

In this section, we discuss an experimentally relevant
system where naturally occurring dissipation can be a
source of computational hardness. In particular, we study
trapped cold fermionic atoms and consider inelastic pair
collisions as a viable dissipation mechanism. Collision
dynamics can be controlled by a magnetic Feshbach res-
onance; tuning into the resonance can suppress unitary
interactions and amplify the loss rate, thus physically
implementing the Zeno regime we studied in the previ-
ous section. Therefore, we show that cold atoms harbor
a natural way of implementing quantum computing using
dissipation-assisted operations. While one may combine
dissipation with elastic interactions to increase the fidelity
of the gates, our complexity analysis shows that dissipa-
tion alone is sufficient. Below we provide details on how
to implement collision control and to construct the gates.
We also estimate the resulting gate error for a particular
system.

A. Feshbach resonance

The Feshbach resonance provides a perfect tool to
manipulate interactions between trapped atoms. Several

mechanisms are available for practical use including mag-
netic, optical, and orbital Feshbach resonance [34,37,38].
For concreteness, we study only magnetic resonance here.
The other two mechanisms have a qualitatively similar
effect on atomic interactions. We study magnetic Feshbach
resonance since it does not involve laser transitions and
potentially has smaller scope for error.

We also require a fermionic atom that can be cooled,
trapped, and prepared in specific spin states with the requi-
site interaction properties. A promising example we illus-
trate here is the 40K atom in its 2S atomic ground state,
which has an electron spin S = 1/2 and nuclear spin I = 4,
giving rise to total spin f = 9/2 or 7/2. The Zeeman sub-
structure of the ground-state hyperfine manifold, shown
in Fig. 3(a), gives rise to magnetically tunable Feshbach
resonances in the interaction of two atoms for control-
ling elastic and dissipative collisions [37,38]. This example
serves as a proper illustration of how dissipation and inter-
action rates can be tuned, and alternative schemes for both
alkali and alkaline-earth(like) atoms can be proposed using
other types of Feshbach resonance.

It is straightforward to set up and numerically solve for
the scattering and bound states of two 40K atoms, including
the atomic electrons and nuclear spins, their mutual inter-
actions, and the mass-scaled adiabatic Born-Oppenheimer
molecular potentials for the 1�+

g and 3�+
u states [85]. We

use the standard coupled channels method [37,86] to set up
the full spin Hamiltonian and solve the matrix Schrödinger
equation for the scattering states. Such models, when cal-
ibrated against bound state and scattering data, provide
highly accurate predictions of the properties associated
with magnetically tunable Feshbach resonance states used
to tune the scattering properties of two ultracold K atoms
[85,87–93].

The collision of two 40K atoms is characterized by the
quantum numbers of the two separated atoms with resul-
tant total spin projection mF = mf 1 + mf 2 and relative
angular momentum, or “partial wave,” � and m�. States
with the same total angular momentum projection Mtot =
mF + m� are coupled in the molecular Hamiltonian for two
atoms. Two like fermions collide with odd partial waves,
e.g., the p wave with � = 1, whereas two unlike fermions
can collide via even or odd partial waves, including the
s wave with � = 0. A collision “channel” is defined by
the partial wave and the spin quantum numbers of the two
atoms. Strong pair loss via spin-exchange interactions is
only possible if there is a product channel available with
the same Mtot and � as the entrance channel; otherwise
weak spin-dipolar spin relaxation is possible where mF and
m� change by two units, conserving Mtot. Strong s-wave
spin-exchange relaxation is possible for the spin channels
1 + 4 or 1 + 5, but not for 1 + 2 or 1 + 3 channels; fur-
thermore, only weak s-wave spin-dipolar spin relaxation
is possible in the 1 + 3 channel. We also do not consider
the much weaker p-wave spin relaxation in these channels
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FIG. 3. Magnetic Feshbach resonance for 40K atoms. (a) The hyperfine-Zeeman energy levels E/h (GHz) of the f = 9/2 and 7/2
manifolds versus magnetic field B (Gauss) [note also that we use G (Gauss) as the magnetic field unit in this paper because of its
near-universal usage among groups working in this field, 1 G = 10−4 T], labeled 1, 2, . . . in order of increasing energy. The levels
labeled 1, 2, . . . have spin projections mf = −9/2, −7/2, . . ., respectively. The spin and Zeeman coupling parameters are taken from
Ref. [84]. (b) Scattering lengths of two 40K atoms. The solid and dashed lines represent − Im(ã0) ∝ K2 and Re(ã0), respectively; blue
and red represent the 1 + 4 and 1 + 5 channels, respectively. (c) Magnetic Feshbach resonance for the 1 + 4 channel. The shaded
regions depict magnetic fields where the elastic interaction between two atoms is smaller than the pair-loss rate, marking the regime
of dissipative fermionic dynamics. All lengths are provided in Bohr-radius units rB = 5.29 × 10−9 cm, and the collision energy is
E/kB = 1μK, where kB is the Boltzmann constant.

at ultracold temperatures (see below). Consequently, we
now concentrate on the 1 + 4 and 1 + 5 s-wave collisions
for engineering dissipative collisions with weak on-site
unitary interaction.

Very-low-energy s-wave elastic and dissipative colli-
sions in the threshold regime are adequately described by a
complex scattering length ã0 [94,95], defined as the k → 0
limit of the energy-dependent complex scattering length
[96–99],

ãk = 1
ik

1 − S(k)
1 + S(k)

. (32)

Here �k is the relative collisional momentum for a col-
lision of two atoms with reduced mass μ at energy
E = �2k2/(2μ), and S(k) is the diagonal element of the
unitary S-matrix for the collision channel in question. In
this subsection, we keep track of � for added clarity. The
coupling constant for the low-energy zero-range regular-
ized pseudopotential approximation for atomic interactions
is g = 2π�2Re(ã0)/μ [37,38,100]. The dissipative loss
rate ṅ1 = ṅ2 = −K2n1n2 from colliding atoms in a gas
with densities n1 and n2 is given by the rate constant
K2 = −4π� Im(ã0)/μ [96,97] [since Im(ã0) is zero or
negative, K2 is positive definite; g can be positive or
negative].

Using counterpropagating laser beams, it is possible to
construct an array of trapping cells in an optical lattice
structure [101]. Each cell is approximately harmonic and,
in its ground state, may hold exactly zero, one, or two
atoms. The scattering length formulation can readily be
adapted to two atoms in an optical lattice cell to calcu-
late the interaction energy or dissipative loss rate. For a

harmonic trap with frequency ν = ω/(2π), the analytic
interaction energy for the lattice ground state from the
zero-range pseudopotential is

[
3/2 + (2/

√
π
)

Re(ã0)/d]
�ω, where the harmonic length d = √

�/(μω) [102]. If the
lattice zero-point energy 3�ω/2 is large enough, Re(ãk)

may need to be evaluated at the lattice eigenenergy instead
of taking Re(ã0) in the k → 0 limit [103,104]. The decay
rate � of an atom from the cell is given by K2n̄, where n̄ =∫

dr|�0(r)|4 = 1/(π3/2d3) can be interpreted as a mean
local density in the ground state of the lattice cell with
wave function �0(r) [105].

The figure of merit for our dissipative quantum gate,
the opposite requirement from that of Ref. [105], is that
|Im(ã0)/Re(ã0)| � 1. This is possible to achieve using
two 40K atoms in states 1 and 4 or states 1 and 5, as we
now show from our coupled channel calculations. Using
the mass scaled potentials of Ref. [85] and including s and
d waves (� = 0 and 2) in the coupled channel expansion
for unlike spin species gives the scattering lengths shown
in Fig. 3(b).

There are two regimes where the interaction energy
proportional to Re(ã0) is small and the dissipation rate pro-
portional to Im(ã0) is large. These are in the “core” of the
resonance, rounded into a dispersive shape by the decay,
and near the zero crossing where Re(ã0) = 0.

In order to get a sense of time scales, we can assume a
harmonic length on the order of 100 nm, for which n̄ ≈ 2 ×
1014 cm−3. If we take the van der Waals length RvdW of two
40K atoms, 3.4 nm [37], as a “typical” size for Im(ã0), then
K2 ≈ 1.3 × 10−10 cm3/s, giving a decay time of �−1 =
40 μs. The next subsection discusses how such magni-
tudes could enable the realization of dissipation-assisted
quantum computing.
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We note that there are other spin channels for 40K and in
other species where Feshbach tuning of a favorable ratio
Im(ãk/d)/Re(ãk/d) � 1 could be feasible. This may be
possible for like fermions, where only p-wave channels
are available. However, p-wave interactions, treated by
Eq. (32) with a p-wave S-matrix element, are typically
suppressed by a factor on the order of k2R2

vdW relative to
the range of s-wave processes, due to the threshold law for
p waves [97,106–108]. This suppression factor is on the
order of 0.001 for 40K atoms with an energy on the order
of 1 μK, so it would be harder to find ranges suitable for
experimental control.

B. Dissipation-assisted quantum computing

We now modify the idea from Sec. III to make it fea-
sible for cold atomic systems. We limit our attention to
two distinct states of trapped atoms, denoted here as μ1
and μ2. A single trap is described using the following
four basis states: the empty state |0〉i, single-occupied
states |μα〉i = c†

iμα |0〉i, α = 1, 2, and the double-occupied
state |μ1μ2〉i = −|μ2μ1〉i = c†

iμ1
c†

iμ2
|0〉i. We consider the

lattice Hamiltonian H = Hμ1 + Hμ2 + V, where Hμ =∑
〈ij 〉 Jμij (t)(c

†
iμcjμ + h.c.)+∑

i
μ
i (t)c

†
iμciμ. The quanti-

ties Jμij (t) are real tunneling amplitudes, and 
μ
i (t) are

on-site potentials, both of which can depend on the atomic
state μ. Two distinct atoms located in the same trap are
subject to elastic interactions V = E

∑
i niμ1niμ2 , where

E is the interaction energy and niμ = c†
iμciμ is the μ-

occupation number of the ith trap. As shown in Sec. A,
the interaction E may be made to vanish for a specific
pair of states μ1 and μ2 by, for example, manipulating the
magnetic field as shown in Fig. 3(c). Also, atoms in the
same trap undergo pair loss with rate �, described by Lind-
blad jump operators Ai = �ciμ1ciμ2 . For E = 0, the entire
dynamics is described by the master equation Eq. (1).

The computational scheme utilizes pairs of sites to
encode individual logical qubits. The logical qubit states
are |0〉L = |0〉|μj 〉 and |1〉L = |μj 〉|0〉, irrespective of the
atom’s type μj . Single-qubit gates can be performed using
the local potentials and coherent hopping between logical
qubit sites.

Previously, we discussed how to use Feschbach res-
onance to induce and control the dissipation of alkali
atoms using the example of 40K. We now step aside to
describe how a generic entangling gate works for a larger
group of atoms, assuming that the same level of control
can be applied to them as well. We consider two dis-
tinct ways of constructing entangling gates, depending on
the atomic electronic structure. The first method we con-
sider is designed for alkaline-earth(like) atoms such as 87Sr
[33] and 173Yb [31,32]. We can use nuclear-spin polar-
ized metastable states 1S0 and 3P0 as the two species μ1
and μ2 [24] in order to apply a species-dependent hopping

term Jμij . The scattering length between μ1 and μ2 can then
be potentially tuned by optical or orbital Feshbach res-
onances to be purely imaginary. Alternatively, one could
use 3P2 instead of 3P0, in which case a magnetic Feshbach
resonance is also an option. However, this method has lim-
ited applicability to alkali atoms, for example 87Rb [26]
or 40K (described above), where the states μi are encoded
into different angular momentum projections mf . This is
because a state-dependent lattice in alkali atoms [27] can
exhibit significant single-atom dissipation rates. For alkali
atoms, therefore, we propose an additional scheme that
does not rely on an internal-state-dependent lattice and
uses the same lattice potential for both states. In order to
implement entangling gates, we make use of single-qubit
rotations with single-site resolution. This can be achieved
using two-photon Raman transitions induced by focused
laser beams or other similar techniques [28,109,110]. Both
schemes can be used interchangeably.

We now give details of the two schemes. Consider
the four two-qubit logical states |00〉L = |0,μ1, 0,μ2〉,
|01〉L = |0,μ1,μ2, 0〉, |10〉L = |μ1, 0, 0,μ2〉, and |11〉L =
|μ1, 0,μ2, 0〉 [see Fig. 4(a)], where the comma separates
states of individual traps. For the first scheme, an entan-
gling control-Z gate is performed in a single step by
applying the hopping H = J (c†

2μ2
c3μ2

+ h.c.) for state μ2
between traps 2 and 3 for time t = π/J . As a result, the
states |00〉L and |01〉L remain invariant under the evolution,
while any transitions involving the state |01〉L are blocked
by the quantum Zeno effect. In the limit �/J → ∞, the
overall unitary operation in the logical Hilbert space is
described by the control-Z gate in Eq. (31). For the second
scheme, the control-Z gate can be applied in three steps: (1)
apply the state-independent hopping H = J

∑
i(c

†
2μi

c3μi
+

(a) (b)
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FIG. 4. Dissipative gate utilizing cold atoms. (a) Two-qubit
logical states encoded using a pair of atoms in distinct states
occupying four neighboring sites. (b) The upper bound for the
total dissipative gate error as a function of magnetic field for 40K,
given the background error rate �′ = 10−2 s−1. The shaded areas
describe the weak interactions regime shown in Fig. 3(c).
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h.c.) between traps 2 and 3 for time t = π/(2J ); (2) apply a
single-qubit phase gate |μ1〉3 → eiπ |μ1〉3, |μ2〉3 → |μ2〉3
on site 3; (3) repeat the first step. As a result, states |01〉L
and |10〉L remain stationary, state |00〉L acquires a total
phase 2π (from the phase gate and hopping), and state
|11〉L acquires phase π . Thus, the second scheme also
implements a control-Z gate.

The performance of the gate can be disrupted by errors,
including imperfect Zeno-effect error, the single-qubit
phase gate error (for the second scheme), and background
dissipation error. The background dissipation error can be
bounded above by �′t, where �′ is the background dis-
sipation rate, and t = π/J is the gate performance time
(neglecting the time taken for the single-qubit phase gate).
The single-qubit phase gate error ε0 is fundamentally lim-
ited by light scattering loss during the Raman transition,
which depends on the characteristic linewidth γ of the
excited levels and the detuning limited by fine struc-
ture splitting . This error is estimated to be ε0 ∼ γ /.
Deviations from perfect single-site addressability during
the single-qubit phase gate can also give rise to errors,
which can nevertheless be greatly reduced by subwave-
length addressability techniques [27,28,110–114]. Finally,
the error caused by an imperfect Zeno effect can be approx-
imated by the first term in the Taylor expansion of the
infidelity in (�t)−1 (see Appendix F), leading to the total
error

ε = ε0 + �′t + 8π2

�t
1

1 + 4ζ 2 + O
( 1
�2t2

)
, (33)

where ζ = E/� is the loss-to-interaction ratio. The
error can be minimized by making the choice t =
2π/

√
��′(1 + 4ζ 2), leading to the expression

ε = ε0 + 4π

√
�′

�(1 + 4ζ 2)
. (34)

The dependence of the second term on the magnetic field
is illustrated in Fig. 4(b) under the same choice of param-
eters as in Fig. 3. For a suitable choice of magnetic field
strength, the theoretical upper bound for the error can be
as low as ε ∼ 5 × 10−4 for the background dissipation
rate �′ = 10−2 s−1. For 40K atoms, the optical transition
error ε0 can be estimated using the values γ � 2π × 6.0
MHz and  � 2π × 1.7 THz [115], leading to the upper
bound ε0 ∼ 10−6, which is an insignificant contribution to
the overall error. As a result, the theoretical bound for the
gate error approaches the characteristic thresholds given by
many error-correcting schemes.

From the comparison of elastic and inelastic rates in
Fig. 3(c), one can see the advantage of dissipative schemes
over unitary ones. While the gate time for both elastic
and inelastic schemes is proportional to the corresponding

inverse collision rate, the resonant dissipation rate can be
significantly larger than the accessible elastic rates. There-
fore, dissipation-assisted gates can be faster and can thus
experience a smaller level of errors due to the background
noise.

Summarizing, we have established that naturally occur-
ring pair-loss processes in cold atoms can be enhanced and
used as a resource for quantum computing. This conclusion
opens a possibility to improve quantum computing with
cold atoms [24] or, in absence of sufficient control, use
them as a platform for quantum supremacy experiments.

V. DISCUSSION

In this work, we have demonstrated how simple forms of
dissipation affect the complexity of simulation of noninter-
acting fermions. In particular, focusing on linear-quadratic
Lindblad jump operators, we have shown the existence of
two complementary complexity classes of Lindblad jump
operators, easy and hard for simulation on a classical com-
puter. Using the error-correction formalism, we showed
that the hard class has a finite volume in the parameter
space and tolerates the presence of small arbitrary cor-
rections. At the same time, the easy classes may have
small measure and could become hard even as a result of
arbitrarily small corrections to the master equation.

We have expanded the region of classical simulabil-
ity of free-fermions in the presence of Markovian errors
from single-qubit loss or gain to more general quadratic-
linear Lindblad jump operators. The algorithms we devise
for EC1–EC3 based on the stochastic unraveling approach
provably work in polynomial time. This shows that a large
class of dissipation processes such as dephasing or single-
fermion decay can be treated with the help of efficient
classical algorithms.

At the same time, more complex processes are BQP-
complete, where BQP stands for the class Bounded-error
Quantum Polynomial time. We show this fact by explicitly
constructing an entangling gate and showing the equiva-
lence of the problem with universal quantum computation.
We thus place limitations on the extent to which the simu-
lability result may be extended, since we believe quantum
computation is strictly more powerful than classical com-
putation. Our detailed analysis shows that it is within the
range of experimental feasibility to implement with cold
atoms a quantum computer with purely dissipative atom-
atom interactions, an exciting possibility for experiments
in quantum computing. For example, dissipative quan-
tum systems such as alkaline-earth atoms may serve in
the next generation of quantum supremacy experiments.
Also, our result suggests that simulating fermion dynamics
may be hard for quantum particles experiencing dissipa-
tion, for example, quasiparticles in solid-state systems.
Future work can explore the hardness of simulation of

030350-13



SHTANKO, DESHPANDE, JULIENNE, and GORSHKOV PRX QUANTUM 2, 030350 (2021)

electronic systems with quasiparticle dynamics approxi-
mated with quadratic-linear Lindblad jump operators that
include the effects of electron-electron, electron-phonon,
and electron-impurity scattering processes. Alternatively,
physical systems following such dynamics with high
accuracy may be a future platform for quantum-computing
experiments.

It may be interesting to explore the connection of our
results with the theory of matchgate (free-fermion) compu-
tations and the role played by non-Gaussianity. Quadratic
fermionic Hamiltonians and single-fermion loss give rise
to Gaussian operations and are hence easily simulable [17].
It is known [116] that any non-Gaussian fermionic state is
a resource for fermionic computation, boosting the com-
putational power of free fermions from being classically
simulable to being universal for quantum computation.
Our results suggest that quadratic-linear Lindblad jump
operators are non-Gaussian in general. Therefore, it would
be interesting to quantify the amount of non-Gaussianity
(or “magic”) for the Lindblad operations we study here.

Along the same lines, one can quantify a different
resource for nonclassicality, such as a suitable measure of
entanglement for open fermionic systems. Efficient sam-
pling from the full output distribution in arbitrary bases
can allow for efficient computation of certain measures
of entanglement such as Rényi entropies [117]. Relatedly,
Ref. [118] has studied the logarithmic negativity for free
fermions with gain and loss Lindblad terms.

Further, one may also consider how the complex-
ity of simulating dynamics under quadratic Lindbladi-
ans changes with time. Since the system starts off in
a Fock state that is easy to sample from, and dynam-
ics under quadratic Hamiltonians with quadratic Lind-
blad jump operators can generate states that are hard to
sample from, one can see a dynamical transition in sam-
pling complexity [13,119]. It is worthwhile to investigate
whether these transitions are sharp or coarse (as defined
in Ref. [119]) since this can identify what “universal-
ity class” free fermions with noise belong to. Techniques
such as Lieb-Robinson-like bounds for the evolution of
free particles with dissipation [120,121] would be relevant
here.

Another exciting direction is the study of worst-to-
average-case equivalence in complexity, which seeks to
understand the complexity of typical instances as opposed
to worst-case instances [79,122,123]. It would be interest-
ing to see if the Cayley path technique of Ref. [122] can be
adapted to argue for average-case hardness of dissipative
fermionic dynamics.

Lastly, let us address the case of bosonic particles.
First, in the limit of strong dissipation, our result on
computational universality applies readily to bosons. This
conclusion combines with the fact that the proposed Fes-
hbach realization scheme is generally similar for bosons
and fermions. The major difference arises for identical

atoms, since identical bosons also feature strong and broad
resonances in s-wave scattering, whereas only p-wave
resonances exist for fermions due to the Pauli principle
(see, for example, Ref. [124]). Thus, the strong dissipation
regime is easier to achieve for identical bosons in general.
However, in the case of distinct fermions, e.g., in differ-
ent spin states, there is essentially no difference between
bosons and fermions as a class [125].

Next, in contrast to hardness results, classical easiness
results for bosons are rather distinct from fermions. For
Fock-basis measurements, free bosons are already believed
to be hard to simulate in the sense of sampling from the
output distribution [78]. This hardness equally holds for
some problem variations such as using Gaussian initial
states with Fock measurements [126,127] or homodyne
measurements for non-Gaussian initial states [128]. How-
ever, since free boson evolution is not believed to be
computationally universal, our results imply that quadratic
dissipation boosts the computational power of free bosons
in these settings to that of computational universality.
Thus, it leads to another type of complexity transition
between two classically hard classes. This transition is an
interesting object for future studies.

Notably, there exist settings where the free-boson evo-
lution is classically easy to simulate; an example is the
situation when the system is accessed by homodyne mea-
surements in combination with Gaussian initial states.
Moreover, in this example, adding either single-boson or
even many-body decay processes preserve classical easi-
ness of free-boson evolution, unlike the fermionic cases
considered in our work. However, it is also an open ques-
tion whether or not generic dissipative processes involv-
ing boson creation can induce a complexity transition.
The analysis of these processes can be done using pre-
vious works addressing the complexity of non-Gaussian
bosonic states. For example, Ref. [129] suggests specific
non-Gaussian states that can be useful as computational
resources when making homodyne measurements, while
Ref. [130] analyzes photon loss from the point of view
of computational complexity (with Fock-basis measure-
ments). We keep studying this problem as well as ana-
lyzing the robustness of the resulting phases for future
research.
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APPENDIX A: EASY CLASS 1

In this Appendix, we analyze the convergence of the
average unitary stochastic evolution to the exact Lindblad
dynamics in the case of easy class 1 (EC1). First, we set
the initial time to be zero and consider the final time t
being an integer multiple of timestepτ . This assumption
holds without loss of generality since τ may be adjusted
appropriately to capture any particular final time. Then the
overall evolution of unitary can be written as a product

U(t) =
t/τ∏

n=0

Un, (A1)

where the timestep unitary Un is expressed in terms of a
time-ordered exponential

Un = T exp
(

−i
∫ (n+1)τ

nτ
dtH ′(t)

)
(A2)

generated by the stochastic Hamiltonian H ′(t) in Eq. (13),

H ′(t) = H(t)+ R(t)√
τ

. (A3)

Here H(t) is the original time-dependent Hamiltonian, and
R(t) = ∑

k ξnkAk(t)+ ξ ∗
nkA†

k(t) is the normalized stochas-
tic part, where ξnk are independent complex Gaussian
variables defined for times nτ ≤ t ≤ (n + 1)τ .

Let us consider the ordered exponential expansion of the
timestep unitary in Eq. (A2):

Un = I − iτ 1/2Rn −τ
(

iHn + 1
2

R2
n

)

−τ 3/2
(
PHnRn − i

6
R3

n

)

− 1
2
τ 2

(
H 2

n − i
3
PHnRnRn − 1

12
R4

n

)

+ O(τ 5/2), (A4)

where we denote the discretized value of an operator On
and permutation sum, respectively, as

On = 1
τ

∫

n
dtO(t) ≡ 1

τ

∫ (n+1)τ

nτ
dtO(t),

PO1 · · · Om =
∑

σ∈Sm

Oσ(1) · · · Oσ(m). (A5)

The average over the stochastic field can be taken for
each timestep independently. Therefore, the effect of the

timestep unitary in Eq. (A4) is

EUnρU†
n =

(
I + Lnτ + 1

2
L2

nτ
2
)
ρ

+ Dnρτ
2 + O(τ 3). (A6)

In the equation above, Ln is the generator of the original
Lindblad equation, limτ→0 Ln = L(nτ), expressed as

Lnρ = −i[Hn, ρ] +
∑

k

(
AknρA†

kn − 1
2
{A†

knAkn, ρ}
)

+
∑

k

(
A†

knρAkn − 1
2
{AknA†

kn, ρ}
)

, (A7)

and Dn represents the lowest-order correction occurring
due to the timestep being nonzero:

Dnρ = 1
4

∑

kk′

(
A†

k′nA†
knρ[Ak′n, Ak] + A†

k′nAknρ[Ak′n, A†
kn]

+ Ak′nA†
knρ[A†

k′n, Ak] + Ak′nAknρ[A†
k′n, A†

kn]
)

+
∑

k

(
AknρVkn + VknρAkn + V†

knρA†
kn + A†

knρV†
kn

)

+ Wnρ + ρW†
n. (A8)

Here we use the notation

Vkn =
∑

k′

1
4

{
A†

kn, {A†
k′nAk′n}

}
− 1

6
PA†

knA†
k′nAk′n,

Wn = − i
6

∑

k

([
[Hn, Akn], A†

kn

]
+{Hn, A†

knAkn}
)

− 1
8

(∑

k

{A†
kn, Akn}

)2
+ 1

48

∑

kk′
PA†

knAknA†
k′nAk′n.

(A9)

The overall expression in Eq. (A8) can be written in a
compact form,

Dnρ =
∑

α

D(1)
αnρD(2)

αn , (A10)

where D(i)
αn = poly(Hn, Akn) are polynomials of degree less

than 4.
The averaged stochastic map in Eq. (A6) can be rewrit-

ten as a continuous evolution and then decomposed using
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Dyson series for the small parameter τ ,

EVst(t2, t1)

= T exp
(∫ t2

t1
dt′[L(t′)+ D(t′)τ ]

)
+ O(τ 2)

= V(t2, t1)+
∫ t2

t1
dt′V(t2, t′)D(t′)V(t′, t1)τ

+ O(τ 2), (A11)

where the generators L(t) and D(t) are continuous ver-
sions of the operators in Eqs. (A7) and (A8), in which
the τ -averaged operators Akn and Hn are replaced by the
corresponding instantaneous values at time t, i.e., A(t) and
H(t), respectively. To obtain the expression in Eq. (17), we
recursively replace V(t2, t′) and V(t′, t1) on the right-hand
side by their stochastic average and collect all O(τ 2)

terms.

APPENDIX B: EASY CLASS 2

In this Appendix, we analyze the convergence of
the average stochastic unitary evolution to the Lindblad
dynamics in the case of easy class 2 (EC2). The single
timestep evolution averaged over stochastic unitaries in
Eq. (19) is equivalent to the map

EUnρU†
n

= U0
n

(
ρ +

∫

n
dt
∑

k

�k(t)
(

Yk(t)ρY†
k(t)− ρ

))
U0†

n

=
(

I + Ln + 1
2
L2

n

)
ρ + Dnρτ

2 + O(τ 3), (B1)

where the target Liouville operator is

Lnρ = −i[Hn, ρ] +
∑

k

AknρA†
kn − �knρ. (B2)

The correction now takes the form

Dnρ =
∑

k

(
AknρCkn + C†

knρA†
kn

)

− 1
2

∑

kk′
AknAk′nρA†

k′nA†
kn − 1

2
�2

nρ, (B3)

denoting Ckn = �nA†
kn + i

2 [A†
kn, Hn] and �n = τ−1

∫
n dt∑

k �k(t). This expression has the form of Eq. (A10) with
operators D(i)

αn being a sum of products of at most four
Majorana fermion operators.

APPENDIX C: EASY CLASS 3

In this Appendix, we analyze easy class 3 (EC3) and
show the convergence of the system-ancilla stochastic
evolution under the Hamiltonian in Eq. (13) using the
stochastic operators in Eq. (20) to the dissipative dynam-
ics with linear Lindblad jump operators. Let us start from a
many-body pure state of the fermions occupying L modes
of the system and La ancilla modes at time t = nτ , denot-
ing it as |�n〉. At the nth timestep, the evolution acts on
the system and the nth ancilla mode only. Thus, the state
at time t = nτ is a product state of subsystem states:
(1) correlated state of L system modes together with the
first n ancilla modes and (2) the product states of the
remaining La − n ancilla modes, i.e.,

|�n〉=|φn〉L+n ⊗ |0〉La−n. (C1)

The evolution is governed by the Hamiltonian

H ′(t) = H(t)⊗ IA + 1√
τ

(
K(t)+ K†(t)

)
, (C2)

where the stochastic terms are

K(t) =
∑

k

fnkAk(t)(γ2(L+n) + iγ2(L+n)+1) (C3)

at times nτ ≤ t ≤ (n + 1)τ , and fnk are independent
real Gaussian variables. Then, at the (n + 1)th step, the
system-ancilla state |�n〉 = Un|�n〉 is

|�n+1〉 = |�n〉−iτ 1/2Kn|φn〉|1〉|0〉La−n−1

−τ
(

iHn + 1
2

K†
n Kn

)
|φn〉|0〉La−n

−τ 3/2
(1

2
{Hn, Kn} − i

6
KnK†

n Kn

)

× |φn〉|1〉|0〉La−n−1

− 1
2
τ 2

(
H 2

n − i
3
{Hn, K†

n Kn}

− i
3

R†
nHnKn − 1

12
(K†

n Kn)
2
)
|φn〉|0〉La−n

+ O(τ 5/2), (C4)

where we used the discrete-time operator values Hn and Kn
obtained as in Eq. (A4).

The interpolated continuous-time evolution for the den-
sity matrix of the system can be presented in the form

d
dt
ρ = 1

τ
E TrA

(
|�n+1〉〈�n+1| − |�n〉〈�n|

)∣∣∣
n=�t/τ�

=
(

I + Ln + 1
2
L2

n

)
ρ + Dnρτ

2 + O(τ 3), (C5)

030350-16



COMPLEXITY OF FERMIONIC DISSIPATIVE INTERACTIONS... PRX QUANTUM 2, 030350 (2021)

where �x� is the floor function. The target Liouville opera-
tor is

Lnρ = −i[Hn, ρ] +
∑

k

AknρA†
kn − 1

2
{A†

knAkn, ρ} (C6)

and the correction is

Dnρ =
∑

kk′

(1
4

A†
kAk′ρA†

k′Ak − 1
2

AkAk′ρA†
k′A

†
k

)

+
∑

k

(
AkρQk + Q†

kρA†
k

)
+Mρ + ρM †, (C7)

where

Qk = 1
12

{A†
k , A†

k′Ak′ }

M = i
6

∑

k

(
A†

kHAk − 1
2
{H , A†

kAk}
)

− 1
12

∑

kk′

(
A†

k′Ak′A†
kAk − 1

2
A†

k′AkA†
kAk′

)
. (C8)

As is the case for EC1 and EC2, the correction is described
by Eq. (A10) with operators D(i)

αn being a sum of products
of at most eight Majorana fermion operators.

APPENDIX D: NON-GAUSSIANITY OF EC1 AND
EC2

In this Appendix, we show a basic example where
jump operators from easy classes (ECs) 1 and 2 may be
non-Gaussian processes violating Wick’s theorem. First,
consider a 1D nearest-neighbor hopping Hamiltonian to be
the same for all examples below,

H = J
L−1∑

n=1

cn+1cn + h.c., (D1)

where L is the system size and J is a real hopping
coefficient. For simplicity, we set an equilibrium ther-
mal state ρ(0) = Z−1 exp(−βH) as the (Gaussian) initial
state, where Z is the partition function and β is an inverse
temperature.

As a model of quadratic jump dissipation from EC1, we
consider 2L − 2 independent incoherent jump processes
between adjacent sites,

Fq
2n = √

�qc†
n+1cn Fq

2n+1 = √
�qc†

ncn+1, (D2)

where �q is the jump rate. As required by EC1, we make
these rates equal for the processes going in opposite direc-
tions (hopping to the left and to the right). As an example
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FIG. 5. Performance of Wick’s theorem. The plot shows the
dependence of error in Eq. (D5) as a function of time for three
processes, involving quadratic jump operators from EC1 (blue,
circles), unitary jump operators from EC2 (orange, squares), and
linear jump operators from EC3 (green, triangles) as discussed
in the text of Appendix D. The systems size is L = 4. The
parameters are chosen as βJ = β�q = β�s = βJu = β�u = 1,
β�′

s = 2. The plot demonstrates that jump operators from EC1
and EC2 violate Wick’s theorem, in contrast to the linear jump
operators.

from EC2, we consider L − 1 unitary jump operators

Fn =
√
�u exp

[−iJu(c†
ncn+1 + h.c.)

]
, (D3)

where Ju is a real hopping coefficient and �u is the cor-
responding dissipation rate. Finally, as an example from
EC3, we use the 2L linear dissipation operators with

Fs
2n =

√
�scn, Fs

2n+1 = √
�′

sc
†
n, (D4)

where �s 
= �′
s are fermion decay and gain rates.

For all three cases, we analyze the deviation of the four-
point correlation function from the prediction given by
Wick’s theorem,

ε(t) = ∣∣〈γ1γ2γ3γ4〉t − 〈γ1γ2〉t〈γ3γ4〉t

+ 〈γ1γ3〉t〈γ2γ4〉t − 〈γ1γ4〉t〈γ2γ3〉t
∣∣, (D5)

where we define 〈·〉t := Tr(·ρ(t)). The result is shown
in Fig. 5. As we can see, Wick’s theorem is violated
for EC1 and EC2 at times t > 0. The process from EC3
alone remains Gaussian, as discussed previously [16,17].
The inapplicability of Wick’s theorem for EC1 and EC2
implies that the simulability results of Refs. [67–69] do not
lead to classical easiness of sampling from the full output
distribution when measuring the time-evolved state in the
fermion-number basis.
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APPENDIX E: ERROR ANALYSIS

In this Appendix, we first derive Eq. (22) and then
provide the proof of the lemma in the main text.

The error can be formally expressed in terms of evolu-
tion superoperators as

ε = 1
2

max
r′

∑

r

|〈ψr|EVst(t, 0)ρr′(0)− V(t, 0)ρ�r′(0)|ψr〉
∣∣,

(E1)

where V(t2, t1) is the Markovian map generated by Eq. (1)
in the main text, Vst(ξ , t2, t1) is a unitary trajectory map
depending on either a realization of the discrete stochastic
field ξkn (EC1 and EC3) or a random choice of unitaries
(EC2). We use the Dyson-like expansion in Eq. (17) and
the convexity of the absolute value to upper bound the
error as

ε ≤ τ

2
E max

r′

∫ t

0
dt′
∑

r

∣∣∣〈ψr|Vst(t, t′)D(t′)Vst(t′, 0)ρr′ |ψr〉
∣∣∣

+ O(τ 2). (E2)

Using the fact that Vst is a unitary map, we can rewrite

Vst(t′, 0) = V−1
st (t

′, t)Vst(t, 0), (E3)

where the inverse of a unitary map is well defined through
the inverse unitary transformations. This expression leads
directly to Eq. (22), taking into account that

V−1
st (t

′, t)D(t)ρV−1
st (t

′, t) =
∑

α

D(1)
α (t, t′)ρD(2)

α (t, t′),

(E4)

where D(i)
α (t, t′) = Vst(t, t′)D(i)

α (t
′).

1. Proof of the lemma

Let us rewrite the left-hand side of Eq. (25) using the
spectral decomposition ρ = ∑

μ pμ|φμ〉〈φμ| and triangle
inequality as
∑

r

|〈ψr|O1ρO2|ψr〉|

=
∑

r

∣∣∣
∑

μ,r1r2

pμφμr1
φμ∗

r2
〈ψr|O|ψr1〉〈ψr2 |O|ψr〉

∣∣∣

≤
∑

μ

pμ
∑

r

∑

r1r2

|φμr1
||φμr2

||〈ψr|O|ψr1〉||〈ψr2 |O|ψr〉|

≤ ‖O1‖max‖O2‖max

∑

μ,r

∑

r1∈D(k1,r)

∑

r2∈D(k2,r)

pμ|φμr1
||φμr2

|,

(E5)

where we denote ‖O‖max = maxij |Oij | to be the max-norm
of the matrix O, and Dk(r) is a sphere with radius k with

respect to Hamming distance. Using the inequality

|φμr1
||φμr2

| ≤ 1
2

(
|φμr1

|2 + |φμr2
|2
)

(E6)

and the property that the sphere D(k, r) contains
(

L
k

)
≤

Lk/k! states, we obtain

∑

r

|〈ψ�r|O1ρO2|φ�r〉| ≤ 1
k1!k2!

‖O1‖max‖O2‖maxLk1+k2 ,

(E7)

where we use the fact that the density matrix is properly
normalized, Trρ = 1.

APPENDIX F: DISSIPATIVE GATES ERRORS

In this Appendix, we derive the error of dissipative gates
analyzed in Secs. III and IV.

In the case of imperfect Zeno blockade, the major source
of error is associated with leakage to the out-of-logic
states. In the scheme proposed in Sec. III, there are two
relevant out-of-logic states into which leakage occurs from
the state |00〉L = |0101〉, namely |0011〉 and |0000〉. The
first of these states (|0011〉) is accessed via a unitary chan-
nel, while the second of these states (|0000〉) is accessed
via a dissipative channel. The simplest way to describe
leakage is to consider unitary evolution of basis states
{|0101〉, |0011〉} and including the second-channel leakage
using a non-Hermitian term. The resulting non-Hermitian
Hamiltonian is

HS =
(

0 J

J − i
2
�

)
. (F1)

The leakage error can be computed as

|〈00|LS|00〉L|2 ≡ 1 − 2ε = 1 − 4π
γ

+ O
( 1
γ 2

)
, (F2)

where S = exp(−iπHS/J ) and γ = �/J .
For the scheme involving cold atoms in Sec. IV, the

relevant out-of-logic states are

|P1〉 = |0,μ2μ1, 0, 0〉,
|P2〉 = |0, 0,μ1μ2, 0〉,
|EX 〉 = |0,μ2,μ1, 0〉,
|VC〉 = |0, 0, 0, 0〉.

(F3)
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The restriction of the effective Hamiltonian to the subspace
spanned by the basis {|01〉, |P1〉, |P2〉, |EX 〉} is

H ′
S =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 J J 0

J E − i
2
� 0 J

J 0 E − i
2
� J

0 J J 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (F4)

where E is the interaction energy of a fermion pair on the
same site. The non-Hermitian nature of the Hamiltonian
reflects additional leakage to the fully empty state |VC〉
due to pair loss. In the strong dissipation limit J � �, the
leakage error ε for the gate can be defined as

1 − 2ε ≡ |〈01|LS′|01〉L|2

= 1 − 8π2

�t
1

1 + 4ζ 2 + O
( 1
�2t2

)
, (F5)

where S′ = exp
(−iH ′

St
)
, t = π/J is the characteristic time

of hopping between lattice sites, and ζ = E/� is the ratio
between the interaction energy and the pair loss rate.
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