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Efficiently estimating properties of large and strongly coupled quantum systems is a central focus in
many-body physics and quantum information theory. While quantum computers promise speedups for
many of these tasks, near-term devices are prone to noise that will generally reduce the accuracy of
such estimates. Here, we propose a sample-efficient and noise-resilient protocol for learning properties of
quantum states building on the shadow estimation scheme [Huang et al., Nature Physics 16, 1050–1057
(2020)]. By introducing an experimentally friendly calibration procedure, our protocol can efficiently
characterize and mitigate noises in the shadow estimation scheme, given only minimal assumptions on
the experimental conditions. When the strength of noises can be bounded, our protocol approximately
retains the same order of sample efficiency as the standard shadow estimation scheme, while also pos-
sessing a provable noise resilience. We give rigorous bounds on the sample complexity of our protocol
and demonstrate its performance with several numerical experiments, including estimations of quantum
fidelity, correlation functions and energy expectations, etc., which highlight a wide spectrum of potential
applications of our protocol on near-term devices.
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I. INTRODUCTION

We are in the process of building large-scale and con-
trollable quantum systems. This not only provides new
insights and tool kits for fundamental research in quan-
tum many-body systems [1] and the quantum nature of
spacetime [2], but also yields fruitful applications in com-
puting [3–6], communication [7–9], and sensing [10,11].
Learning the properties, e.g., fidelity [12,13], entanglement
[14,15], and energy [16], of generated quantum states is
usually a major step in many quantum benchmarking pro-
tocols and quantum algorithms. Among various figures
of merit, robustness and efficiency are two key factors to
assess the practicality of any property learning protocol.

In the noisy intermediate-scale quantum (NISQ) era
[17], quantum circuits inevitably suffer from noise. The
robustness of a property learning protocol then refers to
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the ability to tolerate such noise. In a typical property esti-
mation process, we generate several identical copies of the
target quantum states, and then measure them using some
devices that might be noisy and uncharacterized. To verify
the property estimates, one has to introduce new bench-
marking devices, which (in the NISQ era) will also be
noisy. Consequently, we will be trapped into a loop of
benchmarking. To get rid of this, at least two approaches
have been proposed. One is to introduce extra assump-
tions on the noise model, in which case we might be able
to mitigate the error [18–21], but such assumptions may
not be verifiable. The other is to use device-independent
protocols [22–24] that do not have any assumptions on
the devices, but such protocols are mostly designed for
some specific property learning tasks (e.g., entanglement
detection), and their requirements on devices and compu-
tational and sample complexity can be too strict to produce
anything informative in practice.

Thus, while property learning and testing leads to large
efficiency gains in sample and computational complex-
ity, one must in general have a well-characterized device
for these methods to be applicable. Quantum tomography
[25,26] is a standard method to extract complete charac-
terization information, but it requires exponentially many
samples with respect to the number of qubits. Several
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efficient tomographic schemes have been proposed based
on some properties of the prepared states, such as the low
rank property [27,28], permutation symmetry [29,30], and
the locality of Schmidt decomposition [31,32]. Neverthe-
less, such assumptions are restrictive and not applicable in
many cases. Another line of research focuses on efficiently
extracting partial information of a quantum state without
any prior knowledge. An example is the quantum overlap-
ping tomography [33,34] that can simultaneously estimate
all k-qubit reduced density matrices of an arbitrary quan-
tum state in a sample-efficient manner for small k. The
simplest version of this idea is to uniformly measure ran-
dom Pauli strings [35], which leads to a sample complexity
of O(k3k log n) for estimating all k-body Pauli observables
to fixed precision. Machine-learning-based approaches are
also proposed [36] in this direction.

Recently, a new paradigm for efficient and universal
quantum property estimation has been proposed named
quantum shadow estimation. Shadow estimation was first
put forward in Ref. [37]. Roughly speaking, this scheme
can simultaneously estimate the expectation values with
respect to N observables of an unknown d-dimensional
quantum state with a sample size of order log d log N , that
is usually more efficient than either conducting full tomog-
raphy or measuring the N observables one by one. Later
on, a more experimentally friendly shadow estimation
scheme was proposed [38], which is able to estimate many
useful properties of a quantum system with a small num-
ber of samples (see also Ref. [39]). This protocol is also
proven to be worst-case sample optimal in the sense that
any other protocol that is able to accurately estimate any
collection of arbitrary observables must consume a num-
ber of samples at least comparable to this one. Although
promising for a broad spectrum of applications, the shadow
estimation scheme in Ref. [38] (as well as the random Pauli
scheme from Ref. [35]) assumes perfect implementation of
a group of unitary gates as well as an ideal projective mea-
surement on the computational basis. It remains unclear
how experimental noise can affect the performance of this
scheme.

In this work, we reexamine the shadow estimation
scheme and regard it as a twirling and retrieval proce-
dure of the measurement channel. In this way, we extend
shadow estimation to the case when the unitaries and mea-
surements are noisy. With similar techniques used in the
study of randomized benchmarking [40–44], we propose a
modified shadow estimation strategy that is noise resilient.
When the noise in the unitary operations and measure-
ments is small, the robust shadow tomography scheme is
able to faithfully estimate the required properties with a
small additional cost, subject only to the assumption that
one can prepare the initial ground state |0〉⊗n with high
fidelity. The proposed scheme is both robust and efficient,
and hence highly practical for property estimation of a
quantum system.

II. PRELIMINARIES

We first introduce the Pauli-transfer matrix (PTM) rep-
resentation (or Liouville representation) to simplify the
notation. Note that all the linear operators L(Hd) on the
underlying n-qubit Hilbert space Hd with d = 2n can be
vectorized using the n-qubit (normalized) Pauli operator
basis {σa := Pa/

√
d}a, where the Pa are the usual Pauli

matrices. For a linear operator A ∈ L(Hd), we define a col-
umn vector |A〉〉 ∈ Hd2 with the ath entry given by |A〉〉a =
Tr(PaA)/

√
d. The inner product on the vector space Hd2 is

defined by the Hilbert-Schmidt inner product as 〈〈A|B〉〉 :=
Tr(A†B). The normalized Pauli basis {σa}a is then an
orthonormal basis in Hd2 . Superoperators on Hd are linear
maps taking operators to operators L(Hd)→ L(Hd). In
the vector space Hd2 , a superoperator E can be represented
by a matrix in the Pauli basis, with the entries given by
Eab = 〈〈σa|E(σb)〉〉 = 〈〈σa|E |σb〉〉. The matrix form of the
superoperator with the Pauli basis is sometimes called the
Pauli transfer matrix. With a slight abuse of notation, we
sometimes denote a superoperator and its PTM using the
same notation. A detailed introduction to the PTM is given
in Appendix A 3.

In this work, we focus on the task of estimating the
expectation values {Tr(Oiρ)}i of a set of observables {Oi}i
on an underlying unknown quantum state ρ,

Tr(Oiρ) = 〈〈Oi|ρ〉〉, 1 ≤ i ≤ N . (1)

When the number of observables N is large, a direct
exhaustive measurement of the (generally incompatible)
observables {Oi} on ρ is expensive. Besides, in many cases
we may want to perform tomographic experiments on ρ
before deciding which observables {Oi} should be esti-
mated. To realize this, a natural idea is to insert an extra
prepare-and-measure superoperator between 〈〈Oi| and |ρ〉〉,

〈〈Oi|ρ〉〉 →
∑

x

〈〈Oi|Ax〉〉〈〈Ex|ρ〉〉. (2)

In an experiment, we first apply a positive operator-valued
measure (POVM) measurement {Ex}x at ρ. Then, con-
ditioned on the outcome x, we calculate 〈〈Oi|Ax〉〉 via
classical postprocessing. If we repeat this procedure then
the sample average over these experiments gives an esti-
mator for 〈〈Oi|ρ〉〉. As long as the inserted superoperator∑

x |Ax〉〉〈〈Ex| equals I , this estimator will be unbiased.
To construct a realization of such a superoperator,

we consider the dephasing channel in the computa-
tional basis (Z basis) MZ := ∑

z |z〉〉〈〈z|, where |z〉〉 is
the vectorization of the Z-basis eigenstate |z〉 〈z|, with
z ∈ {0, 1}⊗n. Expanding MZ in the Pauli operator basis
{|σ0〉〉, |σx〉〉, |σy〉〉, |σz〉〉}⊗n, we have

MZ = (|σ0〉〉〈〈σ0| + |σz〉〉〈〈σz|)⊗n

= [diag(1, 0, 0, 1)]⊗n, (3)
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where diag(a1, a2, . . .) is a diagonal matrix with the diag-
onal elements a1, a2, . . .. If MZ were invertible, we could
insert the superoperator M−1

Z MZ = ∑
z |M−1

Z (z)〉〉〈〈z| =
I . However, MZ is not invertible due to the lack of X , Y-
basis information in a Z-basis measurement. To make MZ
invertible, we can introduce an extra unitary twirling [38],

M = E
U∈G

U†MZU . (4)

Here, G is a subset of the unitaries {U} in U(d) to be
specified later, and U is the PTM representation of U.

When G forms a group, the PTMs {U} forms a repre-
sentation of G. A direct application of Schur’s lemma [45]
(see Appendix A 1) allows us to calculate the explicit form
of M,

M =
∑

λ∈RG

Tr[MZ�λ]
Tr[�λ]

�λ, (5)

where RG is the set of irreducible subrepresentations of the
group G, and �λ is the corresponding projector onto the
invariant subspace. Since the projectors are complete and
orthogonal to each other, M is invertible if and only if all
the coefficients are nonzero. Therefore, the twirling group
G needs to satisfy

Tr[MZ�λ] 	= 0 for all λ ∈ RG. (6)

Once Eq. (6) is satisfied, we can construct a shadow
estimation protocol based on the equation

〈〈Oi|ρ〉〉 = E
U∈G

∑

z∈{0,1}⊗n

〈〈Oi|M−1U†|z〉〉〈〈z|U |ρ〉〉. (7)

To implement shadow estimation, one can repeat the fol-
lowing experiment: generate a single copy of ρ, act via
a randomly sampled unitary U, and then perform a Z-
basis measurement to return an output bit string b. Then
〈〈Oi|M−1U†|b〉〉 is calculated on a classical computer.
Thanks to this decoupled processing of ρ with respect to
Oi, the estimation of different observables can be done
in parallel with a relatively small increase in sample
complexity.

The quantum shadow estimation procedure can be sum-
marized as in Algorithm 1.

We refer to ô(r)i as the single-round estimator. The
subroutine MedianOfMeans divides the R = NK single-
round estimators into K groups, calculates the mean value
of each group, and takes the median of these mean values

Algorithm 1. Shadow estimation (Shadow) [38].

as the final estimator. As a formula,

ō(k)i := 1
N

kN∑

r=(k−1)N+1

ô(r)i , k = 1, 2, . . . , K ,

ôi := median{ō(1)i , ō(2)i , . . . , ō(K)i }.
(8)

For the standard shadow estimation algorithm [38], the
input quantum channel M is decided by Eq. (4).

III. ROBUST SHADOW ESTIMATION

In practice, the unitary operations and measurements
used in the standard shadow estimation algorithm will be
noisy. We want to mitigate the effect of this noise on the
output estimate of the shadow. Our strategy to do this is
simple: we first learn the noise as a simple stochastic model
and then compensate for these errors using robust classical
postprocessing.

In general, noise in quantum devices is not stochastic,
and coherent errors must be addressed. However, thanks
to the unitary twirling in shadow estimation, the stochas-
tic nature of the noise is inherent to the protocol itself.
For example, any noise map that is twirled over a Clif-
ford group that contains the Pauli group as a subgroup
will reduce the noise to a purely stochastic Pauli channel
[46]. The complete characterization of such noise chan-
nels can be efficiently and accurately performed [47–49].
It is then straightforward to compensate for such errors by
modifying the classical postprocessing, although a lengthy
analysis is required to show the efficacy of this strategy.

In order to pursue a rigorous analysis of this strategy, we
make the following two assumptions on the noise in the
experimental device implementing the shadow estimation.

Assumptions 1 (Simplifying noise assumptions).
A1 The noise in the circuit is gate-independent, time-

stationary, Markovian noise.
A2 The experimental device can generate the computa-

tional basis state |0〉 ≡ |0〉⊗n with sufficiently high
fidelity.
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Our first assumption is used throughout to ensure that
there exists a completely positive trace-preserving (CPTP)
map such that the noisy gate Ũ can be decomposed into
�U , where U is the ideal gate while � is the noise chan-
nel. The noise map � is independent of the unitary U and
the time t. It also implies that the noise map occurring in
the measurement is fixed independent of time and hence
can be absorbed into �. We remark that assumption A1 is
widely used in the analysis of randomized benchmarking
protocols. The gate-independent part of the assumption is
especially appropriate when the experimental unitaries are
single-qubit gates, but it has been shown that the effect of
weak gate dependence (a form of non-Markovianity) gen-
erally leads to weak perturbations [50,51]. We also provide
numerical evidence in Sec. VIII showing that our scheme
is still quite robust against realistic gate-dependent noise
models in experiment.

For our second assumption, A2, from Sec. III to Sec. V
we initially make the stronger assumption that the experi-
mental device can prepare the |0〉 state exactly. In Sec. VI
we relax this to show that, when |0〉 is not precisely pre-
pared, but is prepared with sufficiently high fidelity, our
protocol still gives a good estimation. Fortunately, the
computational basis state |0〉 is relatively easy to generate
faithfully in many experimental platforms.

To see how unitary twirling helps to reduce the number
of noise parameters, we calculate the noisy version of the
random measurement channel M̃,

M̃ = E
U∈G

U†MZ�U

=
∑

λ∈RG

Tr[MZ��λ]
Tr[�λ]

�λ

=
∑

λ

fλ�λ, (9)

where the {fλ} are expansion coefficients of the twirled
channel. Note that channel � describes both the noise
in gate U and in the measurement MZ , which is always
possible under our assumption A1. The number of {fλ}
is related to the number of irreducible representations in
the PTM representation of the twirling group G. Later we
show that the coefficients {fλ} can be estimated in par-
allel, similar to the normal shadow estimation procedure
(referred to as the calibration procedure).

Based on the observations above, we propose our robust
quantum shadow estimation (RShadow) protocol to faith-
fully estimate {Tr(Oiρ)}i even with noise. The algorithm is
depicted in Fig. 1 and it works as follows. We first estimate
the noise channel M̃ of Eq. (9) with the calibration proce-
dure, and then use the estimator M̃ as the input parameter
M of Algorithm 1 to predict any properties of interest
(referred to as the estimation procedure). The procedure

(a)

(c)

(d)

(e)

(b)

FIG. 1. Diagram of the shadow estimation protocol. (a) We
want to estimate the expectation value Tr(Oρ) = 〈〈O|ρ〉〉 for a set
of observables {Oi} and an unknown state ρ. (b) To do this, we
insert a channel M and its corresponding inverse map M−1 in
the middle, which will not change the expectation value. (c) The
channel M can be realized as a random unitary twirling EU U† ·
U acting on the Z-basis dephasing map MZ = ∑

z |z〉〉〈〈z|. (d) In
practice, the implemented unitary U and the measurement 〈〈z|
are noisy, causing an extra uncharacterized noise channel �. (d)
In practice, the unitary U and the measurement 〈〈z| suffer from
a noise channel �, causing an uncharacterized channel M̃ that
needs to be inverted. (e) The calibration procedure of RShadow.
By experimenting on some well-characterized state ρ0, we can
estimate the channel M̃ and its inverse, and hence mitigate
the noise in the shadow estimation procedure. Here fG is the
NoiseEstG subroutine described in Algorithm 2.

is shown in Algorithm 2, where the subroutine NoiseEst is
decided by G and is given later.

Algorithm 2. Robust shadow estimation (RShadow).
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In the following discussion, we focus on two specific
groups G: the n-qubit Clifford group Cl(2n) and the n-
fold tensor product of the single-qubit Clifford group Cl⊗n

2 .
We give a specific construction of the NoiseEst subroutine
and show the correctness and efficiency of our RShadow
algorithm with these two groups.

IV. ROBUST SHADOW ESTIMATION USING THE
GLOBAL CLIFFORD GROUP

We first present a robust shadow estimation protocol
using the n-qubit global Clifford group, Cl(2n). The n-qubit
Clifford group has many useful properties, such as being
a unitary 3-design [52–54], which is widely used in many
tasks of quantum information and quantum computation. It
is a standard result that the n-qubit Clifford group has two
irreducible representations in the Liouville representation
whose projectors are given by |σ0〉〉〈〈σ0| and I − |σ0〉〉〈〈σ0|.
Assuming that the M̃ channel defined in Eq. (9) is trace
preserving, it can be written as

M̃ = E
U∼Cl(2n)

U†MZ�U = |σ0〉〉〈〈σ0| + f (I − |σ0〉〉〈〈σ0|)
(10)

for some f ∈ R, i.e., as a depolarizing channel. It is
easy to obtain f = 1/(2n + 1) for the noiseless case using
Eq. (9). The noise characterization subroutine with Cl(2n)

is defined as

NoiseEstCl(2n)(U, b) := 2n〈〈b|U |0〉〉 − 1
2n − 1

, (11)

where |b〉〉 is the Liouville representation of the computa-
tional basis state |b〉 〈b| and similarly for |0〉〉.

Next, define the Z-basis average fidelity of a noise
channel � as FZ(�) = (1/2n)

∑
b∈{0,1}n〈〈b|�|b〉〉. The fol-

lowing theorem demonstrates the correctness and sample
efficiency of our protocol. We remark that the validity of
this theorem relies on Assumptions 1.

Theorem 1 (Informal). For RShadow with G = Cl(2n),
if the number of samples for the calibration procedure
satisfies

R = Õ(ε−2F−2
Z ), (12)

where FZ ≡ FZ(�) and we assume that FZ � 2−n, then
the subsequent estimation procedure with high probability
satisfies

|E(ô(r))− Tr(Oρ)| ≤ ε‖O‖∞ (13)

for any observable O and quantum state ρ, where ô(r) is
the single-round estimator defined as in Algorithm 1.

Here and throughout the paper, we use Õ to represent the
big-O notation with polylogarithmic factors suppressed.
The more rigorous version of Theorem 1 is Theorem 7 in
Appendix B. We see that our protocol indeed eliminates the
systematic error of shadow estimation in a sample-efficient
manner, since without the calibration step the empirical
expectation value would converge to a value that conflated
the noise map � into the estimate, whereas � does not
appear in Eq. (13). More specifically, if the Z-basis aver-
age fidelity of the noise channel � is lower bounded by
some constant (e.g., constant-strength depolarizing noise),
then the sample complexity of our calibration stage is
approximately independent of the system size n.

A more realistic noise model to consider is that of local
noise with fixed strength, where � := ⊗n

i=1�i and each
single-qubit noise channel �i satisfies FZ(�i) ≥ 1 − ξ . In
that case, we have FZ(�)

−2 ≈ exp(2nξ) for small ξ , so we
can efficiently deal with a system size n that is comparable
to ξ−1.

Next, we consider the sample complexity of the esti-
mation procedure. Following a similar methodology of
bounding the sample complexity in the noise-free stan-
dard shadow estimation scheme [38], we bound the sam-
ple complexity of our RShadow estimation procedure as
follows.

Theorem 2 (Informal). For RShadow with Cl(2n), if the
number of calibration samples RC and the number of
estimation samples RE satisfy

RC = Õ(ε−2
1 F−2

Z ),

RE = Õ(ε−2
2 F−2

Z log M ),
(14)

respectively, then the protocol can estimate M arbi-
trary linear functions Tr(O1ρ), . . . , Tr(OMρ) such that
maxi Tr(O2

i ) ≤ 1, up to accuracy ε1 + ε2 with high success
probability.

The rigorous version of Theorem 2 is Theorem 8 in
Appendix B. Compared with results in Ref. [38], one can
see that the RShadow scheme has nearly the same sam-
ple complexity order as the noise-free standard shadow
estimation methods in a low-noise regime.

Finally, we comment on the computational complex-
ity of RShadow. The computational complexity of our
calibration procedure is favorable since the single-round
fidelity estimator can be calculated efficiently with the
Gottesman-Knill theorem [55,56]. However, a efficient
computation using the Gottesman-Knill theorem for the
estimation procedure would require the observable O to
have additional structure, such as being a stabilizer state
or being a Pauli operator. The standard shadow estimation
scheme of Ref. [38] or the fast Pauli expectation estimation
method of Ref. [35] also have such a requirement.
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V. ROBUST SHADOW ESTIMATION USING THE
LOCAL CLIFFORD GROUP

Despite the useful properties that the global Clifford
group possesses, it is often challenging to implement the
full n-qubit Clifford group under current experimental
conditions. The local Clifford group Cl⊗n

2 , which is the
n-fold tensor product of the single-qubit Clifford group, is
an experimentally friendly alternative. We now present a
robust shadow estimation protocol based on the local Clif-
ford group that can efficiently calibrate and mitigate the
error in estimating any local property.

It is known that the n-qubit local Clifford group has 2n

irreducible representations [57]. Being twirled by the local
Clifford group, the channel M̃ becomes a Pauli channel
that is symmetric among the x, y, z indices, and the Pauli-
Liouville representation is

M̃ = E
U∼Cl⊗n

2

U†MZ�U =
∑

z∈{0,1}n
fz�z, (15)

where �z =
⊗n

i=1�zi ,

�zi =
{
|σ0〉〉〈〈σ0|, zi = 0,
I − |σ0〉〉〈〈σ0|, zi = 1,

for fz ∈ R, which is called the Pauli fidelity. Here, for any
string m ∈ {0, 1}n, we define |m〉〉 to be the Liouville rep-
resentation of the computational basis state |m〉 〈m|, and
define Pm := ⊗n

i=1 Pmi
Z and the σm to be the corresponding

normalized Pauli operators. In the noiseless case, one can
obtain fz = 3−|z| using Eq. (9), where |z| is the number of
1s in z.

The noise characterization subroutine with Cl⊗n
2 is

defined as

NoiseEstCl⊗n
2
(z, U, b) := 〈〈b|U |Pz〉〉 for all z ∈ {0, 1}n.

(16)

In the standard shadow estimation using Cl⊗n
2 [38] (and

in the earlier work [35]), one can only efficiently esti-
mate observables with small Pauli weight. An n-qubit
observable O is called k local if it can be written as O =
ÕS ⊗ I[n]\S for some k-element index set S ⊂ [n] and a k-
qubit observable Õ. Similarly, our RShadow protocol with
Cl⊗n

2 is also designed for predicting k-local observables.
The correctness and efficiency is given by the following
theorem.

Theorem 3 (Informal). For RShadow with Cl⊗n
2 , if the

number of samples for the calibration procedure satisfies

R = Õ(3kε−2F−2
Z ) (17)

then the subsequent estimation procedure with high prob-
ability satisfies

|E(ô(r))− Tr(Oρ)| ≤ ε2k‖O‖∞ (18)

for any k-local observable O and quantum state ρ, where
ô(r) is the single-round estimator defined as in Algorithm 1.

The rigorous version of Theorem 3 is Theorem 9 in
Appendix C. Indeed, this protocol can calibrate the shadow
estimation process for all k-local observables using a small
number of samples that depends only on k (but basically
not on the system size n). Note that Theorem 3 holds for
any gate-independent noise model, even for global unitary
noise.

Now we investigate the sample complexity of the esti-
mation procedure. We are currently unable to bound the
sample complexity against the most general noise channel,
but we do have a bound for a local noise model, as shown
in the following theorem.

Theorem 4 (Informal). For RShadow with Cl⊗n
2 , suppose

that the noise is local, i.e., � := ⊗n
i=1�i, and satisfies

FZ(�i) ≥ 1 − ξ for all i and some ξ � 1
2 . If the number

of calibration samples RC and the number of estimation
samples RE satisfy

RC = Õ(12ke4kξ ε−2
1 ),

RE = Õ(4ke4kξ ε−2
2 log M ),

(19)

respectively, then the protocol can estimate M arbitrary
linear functions Tr(O1ρ), . . . , Tr(OMρ) such that every Oi
is k local and ‖Oi‖∞ ≤ 1, up to accuracy ε1 + ε2 with high
success probability.

The rigorous version of Theorem 4 is Theorem 10 in
Appendix C. Again, we see that RShadow using Cl⊗n

2
has a sample complexity similar to the noiseless standard
shadow estimation protocol when the noise is local and not
too strong. We also remark that, although we do not have
a sample complexity bound against a more general noise
model, our numerical results show that RShadow can still
perform well in that case (see Appendix E). Furthermore,
in realistic experiments, one can monitor the standard devi-
ation of estimators in real time, which means that they can
still suppress statistical fluctuations to an acceptable level
even without a theoretical sample complexity bound.

Regarding the computational complexity, it is obviously
impractical to calibrate all 2n parameters fz. However, since
we only care about k-local observables, only f̂ (r)z such
that |z| ≤ k needs to be computed, the number of which
is no greater than nk. Furthermore, note that f̂ (r)z can be
decomposed as

∏n
i=1〈〈bi|Ui|Pzi

Z 〉〉, so all these f̂ (r)z can be
computed within O(nk) time using dynamic programming.
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If there is extra structure of the observables to be predicted
(e.g., spatially local), the number of necessary f̂ (r)z can be
further reduced. In practice, one may store the raw data of
the calibration procedure and see what observables are to
be predicted, before deciding which set of fz needs to be
calculated. An example is given below in our numerical
experiments. The computational complexity for the esti-
mation procedure is therefore low when the observables
are k local for reasonably small k.

VI. ROBUSTNESS AGAINST STATE
PREPARATION NOISE

In the last two sections, we proved the performance of
the RShadow protocol based on the assumption of perfect
|0〉 preparation. Although |0〉 is relatively easy to pre-
pare on most current quantum computing platforms, state
preparation (SP) noise is still inevitable. In this section,
we show that the RShadow protocol is also robust against
small SP noise in the following sense: when |0〉 can be
prepared with high fidelity during the calibration proce-
dure, the estimators for the estimation procedure will not
be too biased, and the sample complexity will not increase
drastically.

Formally, in a realistic calibration procedure, one pre-
pares some ρ0 instead of |0〉 〈0| for each round. We assume
that ρ0 is time independent, which is reasonable if the
experimental conditions do not change much during this
process. We have the following theorems.

Theorem 5. For RShadow using Cl(2n), if the state
preparation fidelity satisfies

F(|0〉 〈0| , ρ0) ≥ 1 − εSP (20)

then, with the same number of calibration samples as in
Theorem 1, the subsequent estimation procedure with high
probability satisfies

|E(ô(r))− Tr(Oρ)| ≤ (ε + 2εSP)‖O‖∞ (21)

up to first orders in ε and εSP.

Theorem 6. For RShadow using Cl⊗n
2 , if the state is

prepared as a product state ρ0 =
⊗n

i=1 ρ0,i and the single-
qubit state preparation fidelity satisfies

F(|0〉 〈0| , ρ0,i) ≥ 1 − ξSP for all i ∈ [n] (22)

then, with the same number of calibration samples as in
Theorem 3, the subsequent estimation procedure with high
probability satisfies

|E(ô(r))− Tr(Oρ)| ≤ (ε + 2kξSP)2k‖O‖∞ (23)

up to first orders in ε and kξSP. Here k is the locality of
observable O.

The proof is given in Appendix D. The above two the-
orems show that the effect of SP noise can indeed be
bounded for RShadow. They also enable an experimental-
ist to decide a practical sample number according to how
well his device can prepare |0〉〈0|.

VII. NUMERICAL RESULTS

Here, we design several numerical experiments to
demonstrate the practicality of the robust shadow estima-
tion (RShadow) protocol. We first benchmark the robust-
ness of the RShadow protocol under various types of
noise model in the task of estimating the fidelity of the
Greenberger-Horne-Zeilinger (GHZ) state. After that, we
show the application of RShadow in estimating the two-
point correlation as well as the energy of the ground
state of the antiferromagnetic transverse-field Ising model
(TFIM). These tasks frequently appear in the field of quan-
tum computational chemistry [58]. In all the numerical
experiments, we assume that the states to be tested are
perfectly prepared while the shadow estimation circuits
are noisy. We compare the performance of the RShadow
protocol with the standard quantum shadow estimation
scheme (standard Shadow) [38] in all the tasks. Our
numerical simulation makes use of Qiskit [59], an open-
source python-based quantum information toolkit.

For the plots in this section, the error bars represent
the standard deviation of the estimation procedure (which
means that we ran the calibration procedure of RShadow
only once for each data point), and are calculated via the
empirical bootstrapping method [60], where we randomly
sample the same size of data points with replacement from
the original data and calculate the estimator as a boot-
strap sample. Repeat this B = 200 times, and take the
standard deviation among these bootstrap samples as an
approximation to the standard deviation of our RShadow
estimator.

In the first experiment, we numerically prepare a ten-
qubit GHZ state, and use the shadow estimation protocol to
estimate its fidelity with the ideal GHZ state. Each protocol
uses R = 105 (N = 104, K = 10) samples for the estima-
tion stage, while our RShadow uses an extra R = 105

(N = 104, K = 10) samples for its calibration stage. We
simulate the three noise models depolarizing, amplitude
damping, and measurement bit flip, each with several dif-
ferent levels of strength. The random circuits are set to be
global Clifford gates. Figure 2 shows the results. One can
see that, for these three noise models, when the noise level
increases, the standard shadow estimation deviates from
the true value, while the robust shadow estimation remains
faithful.

Note that there exist some numerical results from our
robust procedure exceeding the ground truth in the above
figure. That is due to the nature of the shadow protocol
to eliminate the effect of noisy fidelity parameters {f̂λ}.
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FIG. 2. Comparison of the GHZ-state fidelity estimation using
standard Shadow and RShadow with respect to different noise
models and noise levels. The black dashed line represents the true
value. The red crosses and the blue stars represent the estimated
values of standard Shadow and RShadow, respectively.

To eliminate these fidelity parameters and extract the esti-
mation of a desired observable, the protocol will use a
ratio estimator, which tends to have results with system-
atically biased errors. Moreover, the statistical fluctuation
will affect the estimation of our procedure. Fortunately,
Theorems 2 and 4 allow us to bound the size of fluctuation
errors along with the systematic biases. For practical con-
siderations, the estimation results of the observables {ô(r)}
are allowed to be truncated given some physical ranges
from prior knowledge, and this can help to improve the
accuracy and circumvent some nonphysical estimation.

On the same task of estimating the GHZ-state fidelity,
we further test the performance of our RShadow method
when the size of the system increases from 4 to 12 qubits.
During the measurement procedure, we set a noise model
where all the qubits undergo a local X rotation UX (θ) =
e−iθX . We remark that such coherent noise cannot be
modeled as a classical error that occurs in the measure-
ment results. We fix the number of trials to be R = 105

(N = 2500, K = 40) for both the calibration and estima-
tion stages. Meanwhile, we choose the rotation angles to
be θ = π/25, 2π/25, and 3π/25. In Fig. 3, we com-
pare the fidelity estimation results of standard Shadow
and RShadow. When local noises occur, the performance
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FIG. 3. Comparison of the GHZ fidelity estimation using stan-
dard Shadow and RShadow with respect to different qubit
numbers n. Here, we assume that all the qubits will experi-
ence a local X -rotation error UX (θ) = e−iθX with θ = π/25,
2π/25, and 3π/25. In the experiment, we set the number of trials
R = 105 (N = 2500, K = 40) for both calibration and estimation
stages.

of standard Shadow decreases when the system size
increases. In contrast, the estimation of RShadow is still
accurate. This highlights the necessity of noise suppression
especially when the system size gets larger.

The next experiment is designed for shadow estima-
tion with the local Clifford group. We estimate the two-
point ZZ-correlation functions and energy expectation of
the ground state of an antiferromagnetic TFIM in one
dimension with open boundary, whose Hamiltonian is
H = J

∑
i ZiZi+1 + h

∑
i Xi, and we focus on the case

J = h = 1. The ground state is approximated using the
density matrix renormalization group (DMRG) method,
represented by a matrix-product state (MPS). Codes from
Ref. [36] are modified here to sample random Pauli mea-
surements on the MPS. We compare the performance
of RShadow and the standard shadow estimation [38]
scheme in the presence of measurement bit-flip noise,
which means that each qubit measurement outcome has
an independent probability p to be flipped. Our RShadow
uses R = 500 000 (N = 20 000, K = 25) calibration sam-
ples and R = 500 000 (N = 10 000, K = 50) estimation
samples, while standard shadow estimation uses R =
500 000 (N = 10 000, K = 50) samples.

We first generate a 50-spin TFIM ground state, and esti-
mate the ZZ-correlation functions between the leftmost
spin and all other spins 〈Z0Zi〉, where the bit-flip prob-
ability is set to be 5%. Figure 4 shows the estimation
values and absolute errors of both RShadow and standard
Shadow. It can been seen that RShadow in general gives
a much more precise estimation than standard Shadow.
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FIG. 4. Two-point correlation function estimation on a 50-spin
one-dimensional (1D) TFIM ground state.

We then estimate the energy expectation. In Fig. 5
we plot the energy estimation results on a 50-spin TFIM
ground state under three different noise models (similarly
to the above numerical experiments of the GHZ fidelity
estimation). One can see that the estimation error of stan-
dard Shadow increases when the noise level increases,
while RShadow remains giving precise results. Then we
fix the noise model to be a 5% measurement bit-flip error
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FIG. 5. Energy expectation estimation on a 50-spin 1D TFIM
ground state.
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FIG. 6. Energy expectation estimation on a 1D TFIM ground
state for different numbers of spins and different bit-flip
probabilities.

and conduct estimation on different system sizes. In Fig. 6
we plot the absolute estimation error. This error increases
when the system size grows for standard Shadow, but it
remains close to zero for the RShadow scheme. This pro-
vides a strong reason why the RShadow scheme should
be applied as the size of the quantum system becomes
increasingly large.

As a remark regarding the computational complexity,
we do not calibrate all fz such that |z| ≤ 2, the number
of which scales as O(n2). Instead, we only calibrate the
nearest-neighbor terms of fz for the energy expectation
estimation, and the fz terms that act on the first qubit and
any other qubit for the correlation function estimation. In
both cases, there are only O(n) parameters to be calibrated.
Therefore, when the system size gets large, the RShadow
protocol remains efficient.

To demonstrate the noise-resilience of the RShadow
scheme against two-qubit correlated noise, we present
more numerical results in Appendix E in the task of esti-
mating the two-point correlation function of the n-qubit
GHZ state. These numerical experiments justify that the
RShadow scheme can indeed mitigate the experimen-
tal errors and reproduce faithful estimation with a small
number of benchmarking trials.

VIII. GATE-DEPENDENT NOISE

Perhaps the strongest assumption we made is the gate
independence of the noise channel � with respect to the
unitary gate U being sampled. In this section, we present
numerical evidence showing that even with an experimen-
tally realistic gate-dependent noise model, RShadow can
still greatly reduce noise bias. Throughout this section, we
focus on RShadow with the local Clifford group, which
is experimentally implementable on most near-term plat-
forms. The task we consider here is the electronic structure
problem: decide the ground-state energy of a molecule
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with an unknown electronic structure. This is a impor-
tant problem in quantum chemistry, and is viewed as one
of the most promising applications of near-term quan-
tum algorithms; see, e.g., Ref. [58]. Several recent works
have already applied shadow estimation related methods to
study this problem [61,62].

Specifically, we choose a benchmark molecule and use
a certain encoding scheme to map the molecular Hamil-
tonian into a qubit Hamiltonian. Then, given the ground
state of this Hamiltonian, we numerically run the (stan-
dard and robust) shadow estimation protocols to estimate
its energy, and compare the estimation with the classically
computed true value, in the presence of noise. In our set-
ting, we choose H2 and apply the Bravyi-Kitaev encoding
[63] to map it to a four-qubit Hamiltonian.

To come up with a realistic gate-dependent noise model,
we first need to decide how the local Clifford group is
implemented on real experimental platforms. One com-
mon approach is to decompose all unitary gates into a
small set of generators. Here, we consider the generating
set consisting of the three single-qubit generators

{
RP

(
π

2

)
= exp

(
−i
π

4
P
)

, P = X , Y, Z
}

, (24)

which can be understood as π/2 rotations along the X , Y, Z
axes, respectively. Every single-qubit Clifford gate can be
decomposed into two subsequent rotations along two out
of these three axes. For example, the Hadamard gate can
be implemented by first applying a (π/2)-rotation pulse
along the Y axis, and then a π -rotation pulse along the X
axis, which is in turn implemented by concatenating two
π/2 X pulses. (See Appendix E 2 for more details.) This
generating set is wildly used in real experiments.

Our numerical simulations will deal with the following
two kinds of errors that naturally appear in experiments.

1. Pulse miscalibration. The π/2 pulses have some
fixed error due to, e.g., an uncharacterized constant
magnetic field. These noisy generators would look
like

R̃P = exp
[
−i

1
2

(
π

2
P +�0

)]

for P = X , Y, Z and some traceless Hermitian oper-
ator �0 representing the uncalibrated Hamiltonian.
Although �0 is the same for all three generators,
the commutator [P,�0] is in general different for
different P. Thus, one can verify that this is a gate-
dependent noise model by expanding R̃P using the
Baker-Campbell-Hausdorff formula.

2. Random over-rotation. Because of imperfect pulse
control, the actual rotation angle for each generator
could be modeled as π/2 + δ for some zero-mean
Gaussian random variable δ. The noisy generators

look like

R̃P = exp
[
−i

1
2

(
π

2
+ δ

)
P
]

.

We assume that the value of δ is resampled every
time a generator is applied. One can verify that
this noise model is equivalent to a dephasing noise
on the eigenbasis of Pauli P following the noise-
less generator RP; thus, it is a gate-dependent noise
model. (See Appendix E 2.)

Our numerical results are presented in Fig. 7, where
we plot the energy estimation outcome of both standard
Shadow and RShadow in the presence of different levels
of noise strength. The noise model is pulse miscalibra-
tion for the upper figure and random over-rotation for
the lower one. For both noise models, we use R = 30 000
(N = 3000, K = 10) calibration samples and R = 10 000
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FIG. 7. Upper: ground-state energy estimation of H2 with
pulse miscalibration noise. We choose the uncalibrated
Hamiltonian �0 := ‖�0‖ ∗ (aX + bY + cZ), where [a, b, c] =
[−0.5500, 0.2878, 0.7840] is a fixed randomly generated unit
vector. See Appendix E 2 for evidence that this choice of vector
is not special. Lower: ground-state energy estimation of H2 with
random over-rotation noise. Here σ is the standard deviation of
the random over-rotation angle δ.
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(N = 1000, K = 10) estimation samples for RShadow,
and R = 10 000 (N = 1000, K = 10) samples for stan-
dard Shadow [64]. The data points and the error bars are
the average values and the standard deviations over 30
independent runs [65].

These numerical results provide evidence for the advan-
tage of RShadow over standard shadow estimation even
with realistic gate-dependent noise. Specifically, for pulse
miscalibration noise, it seems that RShadow cannot elim-
inate all biases when the noise strength becomes very
large. (Note that noise intensity ‖�0‖ = 0.1π is already
fairly high in practice.) Yet, even in this regime RShadow
still significantly outperforms standard shadow estimation
and greatly suppresses the bias in the estimated ground-
state energy. For random over-rotation noise, RShadow
completely eliminates all bias even at large noise strengths.

So why does RShadow work for these gate-dependent
noise models? One possible explanation is as follows. The
key subroutine of RShadow is to learn a Pauli channel.
Even though the noise has strong gate dependence, if the
M̃ channel defined in Eq. (15) is approximately a Pauli
channel, and the random unitary gates are “good enough”
to twirl the input probe state |0〉〉 into an approximate com-
plex projective 2-design, then we expect RShadow to still
perform well. On the other hand, we note that there are
contrived noise models that RShadow is not able to detect
and mitigate. As an example pointed out by one of the
Referees, if the only error in the circuit is a Z-basis dephas-
ing error right before a single perfect unitary gate, then
our calibration procedure is not able to see any noise.
However, this is arguably not a practically relevant noise
model for real-world experimental platforms. A more rig-
orous and comprehensive analysis of RShadow’s noise
resilience against general gate-dependent noise is left for
future work.

IX. CONCLUDING REMARKS

We have analyzed the shadow estimation protocol
proposed in Ref. [38] by considering the gate and mea-
surement errors that occur during the process, and have
proposed a modified protocol that is robust against such
noise. We have proven that, in both the global and
the local random Clifford group versions of the robust
shadow protocol, we can efficiently benchmark and sup-
press the effects caused by the noise. On account of
the broad application prospects of the shadow estima-
tion protocol in predicting various important properties of
quantum states, e.g., entanglement witness, fidelity esti-
mation, correlation functions, etc., we expect that our
robust protocol is practical and feasible for current experi-
ments.

While we only focus on estimating linear properties
in this work, RShadow can also be used to calibrate

the estimation of higher-order properties such as the sub-
system Rényi-2 entropy with similar methods shown in
Ref. [38]. An exploration into the corresponding sample
complexity bound is left for future studies. It is also inter-
esting to explore how RShadow can be incorporated with
other variants of shadow estimation, such as the locally
biased classical shadow [61] and derandomized classical
shadow [62]. These two methods can greatly improve the
sample efficiency of shadow estimation when one has prior
knowledge about which properties are to be predicted, like
in the electronic structure problem. We believe that these
techniques can also be applied to RShadow and have been
actively developing these methods.

The idea of using additional calibration processes and
classical postprocessing to eliminate noise effects also
appears in the field of error mitigation [18–21]. Among
them, it is particularly interesting to compare our work
with Refs. [20,21], which mitigate the measurement read-
out error on multiqubit devices using a measurement cal-
ibration (or detector tomography) process. The spirit of
these works is quite similar to ours, but their assumptions
on the noise model are much stronger, and their calibration
algorithm is more like a heuristic one without an explicit
bound on the sample complexity. One reason why we are
able to obtain a useful sample complexity bound against
a more general noise model is that the random twirling in
RShadow greatly simplifies our analysis of the noise esti-
mation. For future research, it is interesting to explore the
relationship between RShadow and other error mitigation
schemes, and see if any general results for error mitigation
[66] can be applied to our scenario. Very recently, error
mitigation has been shown to be helpful even for fault-
tolerant quantum computing [67]. We expect RShadow
to be a useful protocol in the fault-tolerant regime as
well.

For our performance guarantee of the robust shadow
estimation protocol, the noise in the random gates is
allowed to be coherent and highly correlated, but can-
not depend on the unitary gate to be implemented. This
assumption is reasonable in many cases, especially in
the protocol with local Clifford gates, where the noise is
mainly caused by amplitude damping and decoherence
of the system to the environment [68]. Nevertheless, it
is important to analyze how gate dependency and non-
Markovianity of the noise can affect the performance of
RShadow. We have provided some numerical evidence
for RShadow’s resilience against gate-dependent noise
in Sec. VIII, and left more rigorous analysis for future
research.

In the PTM representation, the picture of quantum state
shadow estimation can be easily extended to the shadow
estimation of quantum measurements and quantum chan-
nels. For example, in order to estimate 〈〈Oi|E |ρj 〉〉 for
some unknown n-qubit quantum channel E and a set of
given observables {Oi} and states {ρj }, one may insert two
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random measurement channels into the expression,

〈〈Oi|E |ρj 〉〉 = 〈〈Oi|M−1MEMM−1|ρj 〉〉
= E

U,V∈G

∑

x,y

〈〈Oi|M−1U†|x〉〉〈〈x|UEV|y〉〉

× 〈〈y|V†M−1|ρj 〉〉. (25)

In the experiment, one can randomly prepare a computa-
tional basis state |y〉, apply a random unitary V, and send
to the channel E , then apply another random unitary U and
measure in the computational basis, getting outcome |x〉.
Then 2−n〈〈Oi|M−1U†|x〉〉〈〈y|V†M−1|ρj 〉〉 is an unbiased
estimator of 〈〈Oi|E |ρj 〉〉. This is only the most straightfor-
ward way to extend robust shadow estimation to quantum
channels; there may exist other schemes that have even
better performance. We believe a complete analysis of the
channel version of shadow estimation will be an interesting
direction for further study.

Finally, one can also consider applying (standard or
robust) shadow estimation to qudit systems, boson or
fermion systems, and other continuous-variable systems
using the techniques developed in this work.
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APPENDIX A: PRELIMINARIES

In this work, we focus on the n-qubit quantum systems
with Hilbert space dimension d = 2n. Define Hd to be a
finite-dimensional Hilbert space with dimension d. Define

L(Hd) : Hd → Hd to be the space of linear operators on
Hd. Define Herm(Hd) to be the space of Hermitian opera-
tors on Hd, define P(Hd) to be the set of positive operators
on Hd, and define D(Hd) ⊂ P(Hd) to be the set of quan-
tum states on L(Hd) that are the positive operators with
trace equal to 1. Sometimes we also write D(Hd) as D(d)
for notational simplicity.

1. Groups and representations

The group representation theory plays an important role
in the shadow estimation protocol. Denote a generic group
as G = {gi}i, where gi is one of the group elements. Denote
a unitary representation of G to be a map

φ : G → L(Hd) : G �→ φ(G) (A1)

with the homomorphism

φ(g)φ(h) = φ(gh) for all g, h ∈ G. (A2)

Moreover, we denote all the irreducible representations
(irreps) of the group G as RG = {φλ(G)}λ. The Maschke
lemma ensures that every representation of a group can be
written as a direct sum of irreps,

φ(g) �
⊕

λ∈RG

φλ(g)⊗mλ for all g ∈ G, (A3)

where mλ is an integer implying the multiplicity of the
irrep φλ.

In the discussion below, we frequently come across the
twirling of an linear operator O on Hilbert space H with
respect to a group representation φ(G),

Tφ(O) := 1
|G|

∑

g∈G

φ(g)Oφ(g)†. (A4)

As a result of the group structure G, the twirling result
Tφ(O) owns a simple structure, which is related to the
irreps in φ(G). The following lemma is a corollary of
Schur’s lemma.

Lemma 1 (Lemma 1.7 and Proposition 1.8 of Ref. [45],
rephrased by Helsen et al. [44]). For a finite group G and
a representation φ of G on a complex vector space H with
decomposition

φ(g) �
⊕

λ∈RG

φλ(g)⊗mλ for all g ∈ G, (A5)

where {φλ} are the irreps of φ(G) and mλ is the multiplicity
of φλ. Then, for any linear map O ∈ GL(H), the twirling
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of O with respect to φ can be written as

Tφ(O)= 1
|G|

∑

g∈G

φ(g)Oφ(g)† =
∑

λ∈RG

mλ∑

jλ,j ′λ=1

Tr(O�
j ′λ
jλ)

Tr(�
j ′λ
jλ)

�
j ′λ
jλ ,

(A6)

where�
j ′λ
jλ is a linear map from the support of the j ′λth copy

of φλ to the support of the jλth copy of φλ.

In this work, we focus on the group representation φ
with no multiplicities,

φ(g) �
⊕

λ∈RG

φλ(g) for all g ∈ G. (A7)

In this case, Eq. (A6) can be simplified as

Tφ(O) = 1
|G|

∑

g∈G

φ(g)Oφ(g)† =
∑

λ∈RG

Tr(O�λ)

Tr(�λ)
�λ,

(A8)

where �λ is the projector onto the support of φλ.
Here, we introduce some common groups that will be

frequently used. Note that all the linear operators in L(Hd)

form a Lie group GL(d, C). The unitaries in L(Hd) also
form a Lie group U(d).

Let Z2 = {0, 1} be the two-element cyclic group. Then
Z

n
2 := (Z2)

⊗n is the n-copy tensor of the Z2 group. Let
A = 〈{ai}〉 with {ai} the generators of the group. In the dis-
cussion below, we also slightly abuse the Z

n
2 notation by

allowing it to also denote the set of n-bit binary strings.
For an n-qubit quantum system, the Pauli group is

P
n = {〈i〉 ⊗ {I , X , Y, Z}}⊗n (A9)

with I , X , Y, Z the qubit Pauli matrices. Denote the quo-
tient of P

n by Pn = P
n/〈i〉, which is an Abelian group and

isomorphic to Z
2n
2 . Therefore, we use a 2n-bit string to

denote the elements in Pn and choose the elements to be

Pa = P(ax ,az) = iax ·az X ⊗ax Z⊗az . (A10)

The multiplication and commutation of elements in Pn are
given by

PaPb = (−i)〈a,b〉Pa+b,

PaPb = (−1)〈a,b〉PbPa,
(A11)

with

〈a, b〉 := ax · bz − az · bx mod 4, (A12)

a binary symplectic product. This symplectic product has
the properties

〈a, b〉 = − 〈b, a〉 , (A13a)

(−i)〈a,b〉 = i−〈a,b〉, (A13b)

(−1)〈a,b〉 = (−1)〈b,a〉. (A13c)

The n-qubit Clifford group Cl(2n) is defined to be

Cl(2n) = {g|gPag−1 ∈ P
n for all Pa ∈ Pn}/U(1), (A14)

where the U(1) represents the global phase. Obviously, Pn

is a subgroup of C
n. The single-qubit Clifford group is

then Cl2 := Cl(2). Later we also come across the tensored
n-fold single-qubit Clifford group Cl⊗n

2 .

2. Random unitaries and t designs

The shadow estimation is a direct application of twirling
in random unitaries. The ideal “uniformly distributed”
randomized unitaries over the Lie group GL(d, C) is char-
acterized by the Haar measure μ(Hd) [71]. The Haar
measure is defined to be the unique countably additive,
nontrivial measure of the group U such that

∫

μ(Hd)
dU = 1,

∫

μ(Hd)
dUf (U) =

∫

μ(Hd)
dUf (UV) =

∫

μ(Hd)
dUf (VU),

(A15)

where f (U) is any matrix function of U.
In practice, to sample unitaries with respect to the

Haar measure is challenging due to its continuity. Alter-
natively, one may choose to sample from a finite subset
K = {Uk}|K|

k=1 over the unitaries in GL(d, C).

Definition 1. A finite subset K = {Uk}|K|
k=1 ⊂ U(d) is a

unitary t design if

1
|K|

|K|∑

k=1

f(t,t)(Uk) =
∫

μ(Hd)
dUf(t,t)(U) (A16)

for all the polynomial f(t,t)(U) of degree at most t in the
matrix elements of U and at most t in the matrix elements
of U∗.

It has been proven that, the Clifford gate set Cl(d) ⊂
U(H) is a unitary 3-design [52,53], while fails to be a
unitary four design [72].

030348-13



SENRUI CHEN et al. PRX QUANTUM 2, 030348 (2021)

3. Quantum channel and the representations

Quantum channels are the linear maps E : L(Hd)→
L(Hd) that are CPTP.

Definition 2. Let E : L(Hd)→ L(Hd) be a linear map.
We say that

1. E is positive if E(ρ) ∈ D(Hd) for any ρ ∈ D(Hd);
2. E is completely positive (CP) if Id′ ⊗ E is positive

for all dimensions d′;
3. E is trace preserving (TP) if Tr[E(ρ)] = 1 for any

Tr[ρ] = 1;
4. E is a quantum channel if it is both CP and TP.

In this work, we will come across two representations
of the quantum channels: Kraus representation and Liou-
ville representation. For a quantum channel E : L(Hd)→
L(Hd), its action on a linear operator O ∈ L(Hd) can be
expressed as

E(O) =
k∑

t=1

KtOK†
t , (A17)

where {Kt}k
t=1 are the Kraus operators satisfying

∑k
t=1 K†

t
Kt = I .

To represent the effect of quantum channels in a conve-
nient way, we first introduce the Pauli basis Pn on L(Hd)

to vectorize the linear operators in L(Hd). Define the inner
product between two operators to be the Hilbert-Schmidt
product

〈Q, W〉 := Tr(QW†) for all Q, W ∈ GL(Hd). (A18)

In this case, the operators in Pn form an orthogonal basis.
We introduce the operators

σa = Pa/
√

d (A19)

as the orthonormal basis. To vectorize the linear space
spanned by {σa}, we introduce the notation {|σa〉〉}. For the
single-qubit case, we also use the notation

σI = σ0 = σ(0,0), σX = σ(1,0),

σZ = σ1 = σ(0,1), σY = σ(1,1).
(A20)

Then the operators on L(Hd) can be vectorized as

|Q〉〉 =
∑

a∈Z2n
2

〈〈Q|σa〉〉|σa〉〉. (A21)

The quantum channel E can then be represented as

E =
∑

a,b∈Z2n
2

〈〈σa|E |σb〉〉|σa〉〉〈〈σb| (A22)

with

〈〈σa|E |σb〉〉 := 〈σa, E(σb)〉 . (A23)

The matrix E is the PTM or Pauli-Liouville representation.
In this work, we slightly abuse the notation of a superop-
erator E to represent its PTM. For a unitary matrix U, we
use the calligraphic U to represent its PTM.

For a quantum channel E with state ρ input, and POVM
measurement M = {Mb} with

∑
b Mb = I , the probability

of getting the measurement result b is

pb = 〈〈Mb|E |ρ〉〉. (A24)

Under the PTM representation, the composition and tensor
product of channels E1 and E2 can be naturally expressed
as

|E1 ◦ E2(ρ)〉〉 = E1E2|ρ〉〉,
|E1 ⊗ E2(ρ

⊗2)〉〉 = E1 ⊗ E2|ρ⊗2〉〉.
(A25)

The PTM of the unitaries in U(d) forms a natural group
representation of U(d). Denote the PTM of a given unitary
U as φP(U) := U . Then we have

φP(U)φP(V) = φP(UV). (A26)

The PTM representation φP[U(d)] can be decomposed into
two irreps:

φP(U) � φP
I (U)⊕ φP

σ (U) for all U ∈ U(d). (A27)

Here,

φP
I (U) = �I φ

P(U)�I ,

φP
I (U) = �σ φ

P(U)�σ ,
(A28)

with the projectors �I and �σ given by

�I = |σ⊗n
0 〉〉〈〈σ⊗n

0 |,
�σ = I −�I =

∑

a∈Z
2n
2 , a	=(0,0)⊗n

|σa〉〉〈〈σa|. (A29)

The n-qubit Clifford group Cl(2n), as the subset of the n-
qubit unitary group, can also be represented by PTM matri-
ces. The PTM representation φP[Cl(2n)] can be decom-
posed similarly as

φP(U) � φP
I (U)⊕ φP

σ (U) for all U ∈ Cl(2n), (A30)

where φP
I and φP

σ are two irreps on the support�I and�σ ,
respectively.
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4. Weingarten function

In this part, we introduce the Weingarten function as
a tool to calculate general Haar integrals [73–75]. The
following presentation owes a lot to Section 2 of Ref. [76].

For an operator A acting on H⊗k
d , define the k-fold Haar

twirling of A as

�
(k)
Haar(A) :=

∫

μ(Hd)
dU(U⊗k)†AU⊗k. (A31)

Using Schur-Weyl duality, one can show that

�
(k)
Haar(A) =

∑

π ,σ∈Sk

cπ ,σWπ Tr(WσA). (A32)

Here, Sk is the k-element permutation group, Wπ is the
permutation operator defined as

Wπ |a1, . . . , ak〉 = |aπ(1), . . . , aπ(k)〉
for all |a1, . . . , ak〉 ∈ H⊗k

d , π ∈ Sk,
(A33)

and the coefficients cπ ,σ form the Weingarten matrix [74]

that can be calculated as

cπ ,σ = (Q+)π ,σ , Qπ ,σ := d#cycles(πσ), (A34)

where Q is called the Gram matrix. Here Q+ stands for the
Moore-Penrose pseudoinverse of Q, which is Q−1 when Q
is invertible. (Note that, when Q is not invertible, c is not
uniquely determined. It is only a conventional choice to
take c = Q+ [75,77].)

In following sections, we are interested in the case k =
3. We sort the elements of S3 in the order

�W := [W(), W(1,2), W(1,3), W(2,3), W(1,2,3), W(1,3,2)]. (A35)

In this basis, the Gram matrix becomes

Q =

⎡

⎢⎢⎢⎢⎢⎢⎣

d3 d2 d2 d2 d d
d2 d3 d d d2 d2

d2 d d3 d d2 d2

d2 d d d3 d2 d2

d d2 d2 d2 d d3

d d2 d2 d2 d3 d

⎤

⎥⎥⎥⎥⎥⎥⎦
. (A36)

For d ≥ 3, one can show that the Weingarten matrix
becomes

c = 1
d(d2 − 1)(d2 − 4)

⎡

⎢⎢⎢⎢⎢⎢⎣

d2 − 2 −d −d −d 2 2
−d d2 − 2 2 2 −d −d
−d 2 d2 − 2 2 −d −d
−d 2 2 d2 − 2 −d −d
2 −d −d −d 2 d2 − 2
2 −d −d −d d2 − 2 2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (A37)

while, for d = 2, Q is singular, so we take its pseudoin-
verse as

c = 1
144

⎡

⎢⎢⎢⎢⎢⎣

17 1 1 1 −7 −7
1 17 −7 −7 1 1
1 −7 17 −7 1 1
1 −7 −7 17 1 1
−7 1 1 1 −7 17
−7 1 1 1 17 −7

⎤

⎥⎥⎥⎥⎥⎦
. (A38)

APPENDIX B: SAMPLE COMPLEXITY OF
RSHADOW WITH THE GLOBAL CLIFFORD

GROUP

In this section, we study our robust shadow estimation
protocol with G chosen to be the n-qubit Clifford group
Cl(2n).

1. Calibration procedure: global

Recall that channel M̃ can be written in the Pauli basis
as

M̃ = E
U∼Cl(2n)

U†Mz�U =

⎡

⎢⎢⎣

1 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎤

⎥⎥⎦ (B1)

for some f ∈ R depending on�. Note that f = (d + 1)−1

when the noise channel is trivial, i.e., � = id. We rewrite
the RShadow protocol from the main text as follows.

Protocol 1 (RShadow with Cl(2n)).
1. Prepare |0〉 ≡ |0〉⊗n. Sample U uniformly form

Cl(2n) and apply it to |0〉.
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2. Measure the above state in the computational basis.
Denote the outcome state vector as |b〉.

3. Calculate the single-round estimator of f as f̂ (r) :=
(dF̂ (r) − 1)/(d − 1), where F̂ (r) := | 〈b|U |0〉 |2.

4. Repeat steps 1–3 R = NK rounds. Then the final
estimation of f is given by a median of mean estima-
tor f̂ constructed from the single-round estimators
{f̂ (r)}R

r=1 with parameters N , K [see Eq. (B21)].
5. After the above steps, apply the standard classical

shadow protocol of Ref. [38] on ρ with the inverse
channel M−1 replaced by

M̂−1 :=

⎡

⎢⎢⎢⎣

1 0 · · · 0
0 f̂ −1 · · · 0
...

...
. . .

...
0 0 · · · f̂ −1

⎤

⎥⎥⎥⎦

in the Liouville representation.

In Protocol 1, the unitary operations and the measure-
ment are assumed to contain gate-independent noise, and
the preparation of |0〉 is assumed to be perfect. The next
theorem shows that f̂ (r) is an unbiased estimator of f and
its variance can be bounded.

Proposition 1. The single-round fidelity estimator F̂ (r)

given in Protocol 1 satisfies

E(F̂ (r)) = Favg(M̃) = FZ(�)+ 1
d + 1

, Var(F̂ (r)) ≤ 2
d2 ,

(B2)

where Favg(M̃) = ∫
ψ∈Haar dψ〈〈ψ |M̃|ψ〉〉 is the average

fidelity of M̃, and FZ(�) = (1/2n)
∑

b∈{0,1}n〈〈b|�|b〉〉 is
the Z-basis average fidelity of �.

Moreover, the single-round estimator f̂ satisfies

E(f̂ (r)) = f = dFZ(�)− 1
d2 − 1

, Var(f̂ (r)) ≤ 2
(d − 1)2

.

(B3)

Before we provide the proof of Proposition 1, we first
introduce two lemmas.

Lemma 2 (See, e.g., Proposition 4 of Ref. [72]). If a group
G ⊆ U(d) forms a unitary t design then

E
U∼G

(U|0〉〈0|U†)⊗t = Psymt

/(
d + t − 1

t

)
, (B4)

where Psymt is the projector onto the t-fold symmetric
space, or, equivalently, Psymt = (1/|St|)

∑
π∈St

Wπ , where
Wπ is the permutation operator defined in Eq. (A33).

Lemma 3. For two operators A, B acting on H(d),

Tr(Psym2A ⊗ B) = 1
2 [Tr A Tr B + Tr(AB)], (B5)

Tr(Psym3A ⊗ B ⊗ B) = 1
6 [Tr A(Tr B)2 + Tr A Tr(B2)

+ 2 Tr(AB)Tr B + 2 Tr(AB2)].
(B6)

Proof. For the first equation,

Tr(Psym2A ⊗ B) = 1
2 {Tr[I(A ⊗ B)] + Tr[S(A ⊗ B)]}

= 1
2 [Tr A Tr B + Tr(AB)], (B7)

where S is the swap operator.
For the second equation, using the language of tensor

network (see, e.g., Section 3.1 of Ref. [78]), we can derive

Tr[ �W(A ⊗ B ⊗ B)] = [Tr A(Tr B)2, Tr(AB)Tr B,

Tr(AB)Tr B, Tr A Tr(B2), Tr(AB2), Tr(AB2)], (B8)

where �W is a vectorization of S3 defined in Eq. (A35).
Averaging this up gives the second equation. �

Proof of Proposition 1. First, from Eq. (B1) we immedi-
ately have

f = Tr(M̃)− 1
d2 − 1

. (B9)

We also have the following relation between the aver-
age fidelity of a channel M̃ and the trace of its Pauli
transformer matrix (see, e.g., Ref. [44]):

Favg(M̃) = d−1 Tr(M̃)+ 1
d + 1

. (B10)

Combining the above two equations, we get

f = dFavg(M̃)− 1
d − 1

; (B11)

hence, Eq. (B3) follows directly from Eq. (B2). We only
need to calculate the expectation and variance of F̂ (r).

Denote the Kraus operators of the noise channel � as
{Kt}. The average fidelity of M̃ can be explicitly written
as
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Favg(M̃) =
∫

dψ
E

U∼Cl
〈ψ |U† ◦ Mz ◦� ◦ U(|ψ〉〈ψ |) |ψ〉

=
∫

dψ
E

U∼Cl

∑

b,t

〈ψ |U†|b〉〈b|KtU|ψ〉〈ψ |U†K†
t |b〉

〈b|U |ψ〉

=
∫

dψ
E

U∼Cl

∑

b,t

| 〈b|KtU |ψ〉 |2| 〈b|U |ψ〉 |2.

(B12)

On the other hand, the expectation of F̂ (r) can be expressed
as

E(F̂ (r)) = E
U∼Cl

∑

b,t

| 〈b|KtU |0〉 |2| 〈b|U |0〉 |2

= E
V∼Cl

E
W∼Cl

∑

b,t

| 〈b|KtVW |0〉 |2| 〈b|VW |0〉 |2

=
∫

dψ
E

V∼Cl

∑

b,t

| 〈b|KtV |ψ〉 |2| 〈b|V |ψ〉 |2,

(B13)

where the first equality follows from the definition of the
expectation, the second equality follows from the fact that
sampling an element U from a group is equivalent to inde-
pendently sampling two elements V, W from the group and
taking U = V ◦ W, and the last equality uses the fact that
Cl(2n) is a unitary 2-design. As a result, we have shown
that

E(F̂ (r)) = Favg(M̃). (B14)

Next, in order to get Var(F̂ (r)), we calculate the values of
E(F̂ (r)) and E(F̂ (r)2) explicitly. Based on Lemmas 2 and
3, and recalling the fact that Cl(2n) is a unitary 3-design
[52–54], we are able to carry out the calculations

E(F̂ (r)) = E
U∼Cl

∑

b,t

| 〈b|KtU |0〉 |2| 〈b|U |0〉 |2

=
∑

b,t

Tr
[

E
U∼Cl

(U|0〉〈0|U†)⊗2 (K†
t |b〉〈b|Kt

⊗ |b〉〈b|)
]

= 2
(d + 1)d

∑

b,t

Tr[Psym2(K†
t |b〉〈b|Kt ⊗ |b〉〈b|)]

= 2
(d + 1)d

∑

b,t

1
2
(〈b|KtK

†
t |b〉 + | 〈b|Kt |b〉 |2)

= 1
(d + 1)d

(
d +

∑

b,t

| 〈b|Kt |b〉 |2
)

= 1 + FZ

d + 1
, (B15)

E(F̂ (r)2) = E
U∼Cl

∑

b,t

| 〈b|KtU |0〉 |2| 〈b|U |0〉 |4

=
∑

b,t

Tr
[

E
U∼Cl

(U|0〉〈0|U†)⊗3(K†
t |b〉〈b|Kt

⊗ |b〉〈b| ⊗ |b〉〈b|)
]

= 6
(d + 2)(d + 1)d

∑

b,t

Tr[Psym3(K†
t |b〉〈b|Kt

⊗ |b〉〈b| ⊗ |b〉〈b|)]

= 6
(d + 2)(d + 1)d

∑

b,t

1
3

(〈b|KtK
†
t |b〉 + 2| 〈b|Kt |b〉 |2)

= 2(1 + 2FZ)

(d + 2)(d + 1)
, (B16)

where we write FZ ≡ FZ(�) as the Z-basis average fidelity
of �.

Now we can bound the variance of F̂ as

Var(F̂ (r)) = E(F̂ (r)2)− [E(F̂ (r))]2

= −(d + 2)F2
Z + 2dFZ + d

(d + 2)(d + 1)2

≤ 2
d2 , (B17)

where we have used the fact that FZ ≤ 1. This completes
the proof. �

Now we analyse the sample complexity of Protocol 1 in
order to guarantee that the protocol succeeds within a given
level of precision. Specifically, we consider using the pro-
tocol to estimate a linear function of ρ, i.e., 〈〈O|ρ〉〉. Given
that one makes sufficiently many samples in the estimation
procedure, the estimation of this function will be close to
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〈〈O|M̂−1M̃|ρ〉〉. Hence, we are concerned about the error

|〈〈O|M̂−1M̃|ρ〉〉 − 〈〈O|ρ〉〉|

=

∣∣∣∣∣∣∣∣∣

〈〈O|

⎡

⎢⎢⎢⎣

0 0 · · · 0
0 f̂ −1f − 1 · · · 0
...

...
. . .

...
0 0 · · · f̂ −1f − 1

⎤

⎥⎥⎥⎦ |ρ〉〉

∣∣∣∣∣∣∣∣∣

= |〈〈O0|ρ〉〉| · |f̂ −1f − 1|
≤ ‖O0‖∞ · |f̂ −1f − 1|, (B18)

where O0 = O − [Tr(O)/d]I is the traceless part of O.
Now we want to upper bound |f̂ −1f − 1| by some ε > 0.
Suppose that, with high probability, the estimator in Pro-
tocol 1 satisfies |f̂ − f | ≤ γ for some 0 ≤ γ ≤ |f |. Then
we have

|f̂ −1f − 1| = |f̂ −1| · |f̂ − f | ≤ γ

|f̂ |
≤ γ

|f | − γ , (B19)

where the last inequality follows by the triangular inequal-
ity. Now if we have

γ

|f | − γ ≤ ε ⇐⇒ γ ≤ ε|f |
1 + ε (B20)

then we obtain the bound |f̂ −1f − 1| ≤ ε with high suc-
cess probability. Now is the time to calculate the number
of rounds R in order to bound |f̂ − f | into a small inter-
val with high probability. As noted before, we use the
median of means estimator [79,80] in order to get a prefer-
able scaling with respect to the failing probability. Similar
techniques are also applied in Ref. [38]. Specifically, we
conduct R = KN rounds of the procedure in Protocol 1,
calculate K estimators, each of which is the average of N
single-round estimators f̂ , and take the median of these K
estimators as our final estimator f̂ . That is,

f̄ (k) := 1
N

kN∑

r=(k−1)N+1

f̂ (r), k = 1, 2, . . . , K .

f̂ := median{f̄ (1), f̄ (2), . . . , f̄ (K)}.
(B21)

The performance of this estimator is given in the following
lemma.

Lemma 4 (Refs. [79,80], rephrased by Huang et al. [38]).
For the estimator described by Eq. (B21), where f̂ (r)

is an identical and independent sample of f , if N =

34Var(f̂ )/γ 2 for any given γ > 0 then

Pr(|f̂ − Ef̂ | ≥ γ ) ≤ 2 exp(−K/2). (B22)

Furthermore, by taking K = 2 ln(2δ−1) for any δ > 0, we
have

Pr(|f̂ − Ef̂ | ≥ γ ) ≤ δ. (B23)

Thanks to this lemma and the above discussion, we
reach the following theorem that summarizes the trade-off
between precision and the sample complexity of our main
protocol. This theorem is the rigorous version of Theorem
1 in the main text.

Theorem 7. Given ε, δ > 0,

R = 136 ln(2δ−1)
(1 + ε2)(1 + 1/d)2

ε2(FZ − 1/d)2
(B24)

rounds of calibration in Protocol 1 are enough for the
asymptotic error of the subsequent estimation procedure
to satisfy

|〈〈O|M̂−1M̃|ρ〉〉 − 〈〈O|ρ〉〉| ≤ ε‖O0‖∞
for all O ∈ Herm(2n) and all ρ ∈ D(2n) (B25)

with a success probability of at least 1 − δ, where FZ ≡
FZ(�) is the Z-basis average fidelity of noise channel �.

Proof. Construct the median of means estimator f̂
with K = 2 ln(2δ−1) and N = 34Var(f̂ )/γ 2, where γ =
ε|f |/(1 + ε) as Eq. (B19) suggests. Use Proposition 1 to
get

Var(f̂ ) ≤ 2
(d − 1)2

, |f | = dFZ − 1
d2 − 1

. (B26)

Then Lemma 4 guarantees that

R = KN = 136 ln(2δ−1)
(1 + ε2)(d + 1)2

ε2(dFZ − 1)2
. (B27)

This completes the proof. �
Theorem 7 provides an upper bound on the necessary

number of rounds that scales as

R = O
(

1
ε2(FZ − 1/d)2

)
. (B28)
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2. Estimation procedure: global

Till now, we have proved the efficiency of the calibration
procedure, but have not addressed the efficiency of the esti-
mation procedure. In the noiseless case, the performance of
the standard quantum shadow estimation protocol has been
characterized in Ref. [38]. Here, we extend their meth-
ods to show the performance of the RShadow estimation
procedure.

For any set of observables {Oi}M
i=1 and an unknown state

ρ, the single-round estimation and the final estimation
of oi := Tr(Oiρ) are denoted by ô(r)i and ôi, respectively,
given by Algorithm 2. The deviation of E(ô(r)i ) from oi
has been bounded by Theorem 7. Now we want to bound
Var(ô(r)i ). We first introduce the following lemma.

Lemma 5. For any O ∈ Herm(2n) and an unknown state
ρ ∈ D(2n), the single-round estimator ô(r) given by the
RShadow protocol using either Cl(2n) or Cl⊗n

2 satisfies

Var(ô(r)) ≤ ‖O0‖2
shadow,�, (B29)

where O0 ≡ O − [Tr(O)/2n]I . The function ‖ · ‖shadow,�
depends on the noise channel and the unitary group being
used:

‖O‖shadow,� := max
σ∈D(2n)

(
EU∼G

∑

b∈{0,1}n
〈b|�(UσU†) |b〉

× 〈b|UM̃−1(O)U† |b〉2
)1/2

. (B30)

When � = id, the function ‖ · ‖shadow,� degrades to the
norm ‖ · ‖shadow defined in Ref. [38].

Proof. First observe that the variance of ô(r) from
Algorithm 2 depends only on the traceless part of O, i.e.,

ô(r) − E(ô(r)) = 〈〈O|M̂−1U†|b〉〉 − 〈〈O|M̂−1M̃|ρ〉〉
= 〈〈O0|M̂−1U†|b〉〉 − 〈〈O0|M̂−1M̃|ρ〉〉
= ô(r)0 − E(ô(r)0 ), (B31)

because M̂ is diagonal in the Pauli-transfer matrix repre-
sentation, and M̃ is a trace-preserving map. Therefore,

Var(ô(r)) = E{[ô(r) − E(ô(r))]2}
= E[(〈〈O0|M̂−1U†|b〉〉 − 〈〈O0|M̂−1M̃|ρ〉〉)2]

≤ E〈〈O0|M̂−1U†|b〉〉2

= EU∼G

∑

b∈{0,1}n
〈〈b|�U |ρ〉〉〈〈b|UM̂−1|O0〉〉2

≤ max
σ∈D(2n)

EU∼G

∑

b∈{0,1}n
〈〈b|�U |σ 〉〉〈〈b|UM̂−1|O0〉〉2

= ‖O0‖2
shadow,�. (B32)

This completes the proof. �
In the special case that G := Cl(2n), we can obtain the

following bound on the shadow norm ‖ · ‖shadow,�.

Lemma 6. For RShadow using Cl(2n), if the calibra-
tion procedure guarantees f̂ ≥ δf for some δ > 0, and we
assume that FZ(�) ≥ 1/d, then we have

‖O0‖2
shadow,� ≤ δ−2

(
FZ − 1

d

)−2

3 Tr(O2
0) (B33)

for any observable O.

Proof. From the definition of the noisy shadow norm and
using the Weingarten functions from Eq. (A32), we have

‖O0‖2
shadow,� = max

σ∈D(2n)
EU∼Cl(2n)

∑

b∈{0,1}n
f̂ −2 Tr{(UσU†

⊗ UO0U† ⊗ UO0U†)[�†(|b〉 〈b|)⊗ |b〉 〈b|
⊗ |b〉 〈b|]}

= max
σ∈D(2n)

∑

b∈{0,1}n
f̂ −2 Tr{�(3)

Haar(σ ⊗ O0 ⊗ O0)

× [�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]}
= max

σ∈D(2n)

∑

b∈{0,1}n
f̂ −2

∑

π ,ξ∈S3

cπ ,ξ

Tr[Wπ(σ ⊗ O0 ⊗ O0)]

× Tr{Wξ [�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]},
(B34)

where in the last line we have used the Weingarten function
to expand the Haar integral [see Eq. (A32)]. Now using
Eq. (B8) to compute the traces appearing above, we have

Tr[ �W(σ ⊗ O0 ⊗ O0)]

= [0, 0, 0, Tr(O2
0), Tr(σO2

0), Tr(σO2
0)]. (B35)

Recall that FZ(�) is the Z-basis average fidelity of � as
defined in Proposition 1, and we denote it simply as FZ in
the following. Then we also have

∑

b∈{0,1}n
Tr

( �W(�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|))

=
∑

b∈{0,1}n

[
Tr(�†(|b〉 〈b|)), 〈b|�†(|b〉 〈b|) |b〉 ,

〈b|�†(|b〉 〈b|) |b〉 , Tr(�†(|b〉 〈b|)),
〈b|�†(|b〉 〈b|) |b〉 , 〈b|�†(|b〉 〈b|) |b〉 ]

= d ∗ [1, FZ(�), FZ(�), 1, FZ(�), FZ(�)]. (B36)
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Again, �W is a vectorization of S3 defined in Eq. (A35),
just for the notational simplicity. Inserting the above two
equations and the value of the Weingarten matrix from
Eq. (A37) into Eq. (B34),

‖O0‖2
shadow,�

= max
σ∈D(2n)

f̂ −2

× Tr(O2
0)(d − 2FZ + 1)+ 2 Tr(σO2

0)(dFZ − 1)
(d + 2)(d2 − 1)

≤ f̂ −2 2dFZ + d − 2FZ − 1
(d + 2)(d2 − 1)

Tr(O2
0)

= f 2

f̂ 2

(
d2 − 1

dFZ − 1

)2 2dFZ + d − 2FZ − 1
(d + 2)(d2 − 1)

Tr(O2
0)

≤ f 2

f̂ 2

(
FZ − 1

d

)−2

3 Tr(O2
0), (B37)

where the first inequality follows from the fact that
Tr(σO2

0) ≤ ‖O2
0‖∞ ≤ Tr(O2

0) and the assumption FZ ≥
1/d, and in the second equality we have used the expres-
sion for f from Proposition 1. �

Compared to Proposition 1 of [38] that states that
‖O0‖2

shadow ≤ 3 Tr(O2
0), we conclude the following. As

long as noise channel � has a Z-basis fidelity that is
not too low and the noise calibration procedure is con-
ducted with sufficiently many rounds, then the estimation
procedure of our RShadow protocol using Cl(2n) is as
efficient as the noiseless standard quantum shadow esti-
mation protocol [38] up to a small multiplicative factor.
That is, the expectation value of any observable O that has
small Hilbert-Schmidt norm can be efficiently estimated by
RShadow.

To complete the discussion, we give the following
theorem as a rigorous version of Theorem 2 in the main
text.

Theorem 8. For RShadow with Cl(2n), given that the
noise channel satisfies FZ(�) ≥ 1/d, if the number of cal-
ibration samples RC and the number of estimation samples
RE satisfy

RC = 136 ln(2δ−1
1 )

(1 + ε1
2)(1 + 1/d)2

ε1
2(FZ − 1/d)2

,

RE = 204
ε2

2
ln

(
2M
δ2

)
(1 + ε1)

2
(

FZ − 1
d

)−2

,

(B38)

respectively, then the protocol can estimate M arbi-
trary linear functions Tr(O1ρ), . . . , Tr(OMρ) such that
Tr(O2

i ) ≤ 1, up to accuracy ε1 + ε2 with success proba-
bility at least 1 − δ1 − δ2.

Proof. First, according to Theorem 7, for the given number
of samples RC, we have

|E(ô(r)i )− Tr(Oiρ)| ≤ ε1. (B39)

Meanwhile, from the proof of Theorem 7 [see Eq. (B19)],
we also have

|f̂ −1f − 1| ≤ ε1 =⇒ f̂ ≥ (1 + ε1)
−1f . (B40)

Both of the above equations hold simultaneously with
probability at least 1 − δ1.

Now, by Lemmas 5 and 6, the single-round estimators
in the estimation procedure satisfy

Var(ô(r)i ) ≤ 3(1 + ε1)
2
(

FZ − 1
d

)−2

. (B41)

So we set the median of mean estimators ôi of the estima-
tion procedure with the parameters

N = 34
ε2

2
× 3(1 + ε1)

2
(

FZ − 1
d

)−2

, K = 2 ln
(

2M
δ2

)
.

(B42)

Then it follows from Lemma 4 combined with the union
bound that the following statement holds for all i with
probability at least 1 − δ2:

|ôi − E(ô(r)i )| ≤ ε2. (B43)

Combining Eqs. (B39) and (B43) using the triangular
inequality gives

|ôi − Tr(Oiρ)| ≤ ε1 + ε2, (B44)

which holds with probability at least 1 − δ1 − δ2. This
completes the proof. �

APPENDIX C: SAMPLE COMPLEXITY OF
RSHADOW WITH THE LOCAL CLIFFORD

GROUP

The result in Appendix B is based on the n-qubit Clifford
group, which is challenging to implement in the experi-
ment. In this section, we analyze the protocol using the
n-qubit local Clifford group, denoted as Cl⊗n

2 , which is the
n-fold direct product of the single-qubit Clifford group.
Such unitaries are all single-qubit operations, and thus
much easier to implement in the experiment.
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1. Calibration procedure: local

Being twirled by the local Clifford group, channel
M̃ becomes a Pauli channel that is symmetric among
the X , Y, Z indices, whose Pauli-Liouville representation
is [57]

M̃ = E
U∼Cl⊗n

2

U†Mz�U =
∑

z∈{0,1}n
fz�z, (C1)

where �z =
⊗n

i=1�zi ,

�zi =
{
|σ0〉〉〈〈σ0|, zi = 0,
I − |σ0〉〉〈〈σ0|, zi = 1,

(C2)

and fz is the Pauli fidelity. In the noiseless case, one can
obtain fz = 3−|z|, where |z| is the number of 1s in z.

Notation. For any string m ∈ {0, 1}n, we define |m〉〉 to
be the Liouville representation of the computational basis
state |m〉, while |σm〉〉 stands for the normalized Pauli oper-
ator corresponding to Pm := ⊗n

i=1 Pmi
Z . On the other hand,

the notation of z in this section consistently stands for an
n-bit string and should not be confused with the Pauli-Z
index.

The RShadow protocol using local Clifford group can
be written as follows.

Protocol 2 (RShadow with Cl⊗n
2 ).

1. Prepare |0〉 ≡ |0〉⊗n. Sample U uniformly form Cl⊗n
2

and apply it to |0〉.
2. Measure the above state in the computational basis.

Denote the outcome state vector as |b〉.
3. Calculate the single-round Pauli fidelity estimator

f̂ (r)z = 〈〈b|U |Pz〉〉 for all z ∈ {0, 1}n.
4. Repeat steps 1–3 for R = NK rounds. Then the final

estimation of fz is given by a median of means esti-
mator f̂z constructed from the single-round estima-
tors {f̂ (r)z }R

r=1 with parameters N , K [see Eq. (B21)].
5. After the above steps, apply the standard shadow

estimation protocol of Ref. [38] on ρ, with the
inverse channel M̃−1 replaced by

M̂−1 =
∑

z∈{0,1}n
f̂ −1
z �z. (C3)

Of course, it is unaffordable in classical computational
resources to compute all f̂ (r)z in a single round. In practice,
we only need to compute those fz of interest. For example,
if we only want to predict k-local properties then only f̂ (r)z
such that |z| ≤ k need to be computed. If we are only inter-
ested in nearby qubits then the number of necessary f̂ (r)z
can be further reduced.

Now we show that the single-round estimators {f̂ (r)z } are
unbiased and their variance is bounded.

Proposition 2. The single-round Pauli fidelity estimator
f̂ (r)z satisfies

E(f̂ (r)z ) = fz = 3−|z| ��(z), Var(f̂ (r)z ) ≤ 3−|z|, (C4)

where ��(z) := (1/2n)
∑

x,b∈{0,1}n(−1)z·(x⊕b)〈〈b|�|x〉〉.

Proof. To begin with, we show that f̂ (r)z is an unbiased esti-
mator of fz. From the definition of f̂ (r)z in Protocol 2, the
expectation value over the experiments is given by

E(f̂ (r)z ) = EU∼Cl⊗n
2

∑

b

〈〈Pz|U†|b〉〉〈〈b|�U |0〉〉

= 〈〈Pz|M̃ |0〉〉
= fz〈〈Pz|0〉〉
= fz. (C5)

To derive the expression for f̂z that depends on the noise
channel �, we can alternatively expand the expectation as

E(f̂ (r)z ) = EU∼Cl⊗n
2

∑

b

〈b|�(U|0〉〈0|U†) |b〉

× Tr[U† |b〉 〈b|UPz]

=
∑

b

Tr{EU∼Cl⊗n
2
(U |0〉 〈0|U† ⊗ UPzU†)

×�†(|b〉 〈b|)⊗ |b〉 〈b|]}. (C6)

To evaluate this expression, we first consider the single-
qubit case. By direct calculation we obtain

EU∼Cl2(U |0〉 〈0|U† ⊗ UPI U†) = 1
2 I ,

EU∼Cl2(U |0〉 〈0|U† ⊗ UPZU†) = 2
3 Psym2 − 1

2 I .
(C7)

Hence, for any X ∈ Herm(2) and b ∈ {0, 1}, by Lemma 3,

Tr[EU∼Cl2(U |0〉 〈0|U† ⊗ UPI U†)(X ⊗ |b〉 〈b|)]
= 1

2 (〈b|X |b〉 + 〈b ⊕ 1|X |b ⊕ 1〉),
Tr[EU∼Cl2(U |0〉 〈0|U† ⊗ UPZU†)(X ⊗ |b〉 〈b|)]

= 1
6 (〈b|X |b〉 − 〈b ⊕ 1|X |b ⊕ 1〉). (C8)

Applying this to the n-qubit case, one can then verify that

E(f̂ (r)z ) = 1
3|z|

1
2n

∑

x,b

(−1)z·(x⊕b) 〈x|�†(|b〉〈b|) |x〉

= 1
3|z|
��(z). (C9)

030348-21



SENRUI CHEN et al. PRX QUANTUM 2, 030348 (2021)

To compute the variance, we compute

E(f̂ (r)
2

z ) = EU∼Cl⊗n
2

∑

b

〈b|�(U|0〉〈0|U†) |b〉

× Tr[U† |b〉 〈b|UPz]2

=
∑

b

Tr{EU∼Cl⊗n
2
(U |0〉 〈0|U† ⊗ UPzU†

⊗ UPzU†)[�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]}.
(C10)

Again, first consider the single-qubit case. One can verify
that

EU∼Cl2(U |0〉 〈0|U† ⊗ UPI U† ⊗ UPI U†) = 1
2 I ,

EU∼Cl2(U |0〉 〈0|U† ⊗ UPZU† ⊗ UPZU†)

= 1
2 Psym3 + 1

3 (P
(2,3)
sym2 − P(1,2)

sym2 − P(1,3)
sym2). (C11)

Hence, for any X ∈ Herm(2) and b ∈ {0, 1}, by Lemma 3,

Tr[EU∼Cl2(U |0〉 〈0|U† ⊗ UPI U† ⊗ UPI U†)(X ⊗ |b〉〈b|
⊗ |b〉〈b|)] = 1

2 Tr(X ),

Tr[EU∼Cl2(U |0〉 〈0|U† ⊗ UPZU†

⊗ UPZU†)(X ⊗ |b〉〈b| ⊗ |b〉〈b|)] = 1
6 Tr(X ). (C12)

One can also verify these equations using the Weingarten
matrix. Applying to the n-qubit case, one can verify that

E(f̂ (r)
2

z ) = 1
2n

1
3|z|

∑

b

Tr[�†(|b〉〈b|)]

= 1
2n

1
3|z|

∑

x,b

〈b|�(|x〉〈x|) |b〉

= 1
3|z|

. (C13)

Since E(f̂ (r)
2

z ) serves as an upper bound for Var(f̂ (r)z ), this
completes the proof of Proposition 2. �

Based on Proposition 2, we can now bound the sample
complexity of Protocol 2. First, we set the median of mean
estimator f̂z according to Lemma 4 as

f̄ (t)z := 1
N

tN∑

r=(t−1)N+1

f̂ (r)z , t = 1, 2, . . . , K , (C14)

f̂z := median{f̄ (1)z , f̄ (2)z , . . . , f̄ (K)z }, (C15)

with N and K to be specified. The following theorem gives
the performance of Protocol 2.

Theorem 9. Given ε, δ > 0, the number of qubits n ≥ 2,
and an integer k ≤ n,

R = O
(

3k(k ln n + ln δ−1)

ε2 min|z|≤k �
2
�(z)

)
(C16)

samples for the calibration procedure are enough for the
subsequent shadow estimation procedure to estimate any
k-local observable for any state to the precision

|〈〈O|M̂−1M̃|ρ〉〉 − 〈〈O|ρ〉〉| ≤ ε2k‖O‖∞
for all k − localO ∈ Herm(2n) and all ρ ∈ D(2n)

(C17)

with a success probability of at least 1 − δ.

Here, An operator O is called k local if it only nontriv-
ially acts on a k-qubit subspace, i.e., O = ÕS ⊗ I[n]\S for
some index set S ⊂ [n] and |S| = k.

Proof of Theorem 9. We first note that

|〈〈O|M̂−1M̃|ρ〉〉 − 〈〈O|ρ〉〉|

=
∣∣∣∣
∑

a∈Z
2n
2

(f̂ −1
z(a) fz(a) − 1)〈〈O|σa〉〉〈〈σa|ρ〉〉

∣∣∣∣

≤ max
|z|≤k

|f̂ −1
z fz − 1| ·

∑

a∈Z
2n
2

|〈〈O|σa〉〉| · |〈〈σa|ρ〉〉|

≤ max
|z|≤k

|f̂ −1
z fz − 1| ·

∑

a∈Z
2n
2

1
2n |〈〈O|Pa〉〉|, (C18)

where the first equality follows by expanding the Pauli
transfer basis and defining the mapping z as

z : Z
2n
2 → {0, 1}n, z(p)i =

{
0, (Pp)i = I ,
1, (Pp)i 	= I ,

(C19)

and the first inequality uses the fact that O is k local. Now
we bound the second factor of the above equation. With-
out loss of generality, suppose that O acts nontrivially on
the first k qubits, i.e., O = Õ ⊗ I2n−k , and that Õ can be
decomposed as

Õ =
∑

ã∈Z
2k
2

αãPã. (C20)

Then we naturally have

O = Õ ⊗ I2n−k =
∑

ã∈Z
2k
2

αãPã ⊗ P⊗(n−k)
I . (C21)
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So,

∑

a∈Z
2n
2

1
2n |〈〈O|Pa〉〉| =

∑

ã∈Z
2k
2

|αã| ≤
√

4k

√√√√
∑

ã∈Z
2k
2

α2
ã

= 2k

√
Tr(Õ2)

2k ≤ 2k‖Õ‖∞ = 2k‖O‖∞, (C22)

where the first inequality follows by the Cauchy-Schwarz
inequality. Combining the above results, we have

|〈〈O|M̂−1M̃|ρ〉〉 − 〈〈O|ρ〉〉| ≤ max
|z|≤k

|f̂ −1
z fz − 1| · 2k‖O‖∞.

(C23)

For any z ∈ {0, 1}n, suppose that |f̃z − fz| ≤ γz. Then we
have

|1 − f̂ −1
z fz| ≤ |f̂z − fz|

|f̂z|
≤ γz

|fz| − γz
. (C24)

By setting γz = ε|fz|/(1 + ε), the above equation is upper
bounded by ε. Therefore, if we set

N = 34Var(f̂z)/γ 2
z , K = 2 ln(2δ−1)

for the median of mean estimator in Eqs. (C14) and (C15),
by Lemma 4 we have |1 − f̂ −1

z fz| ≤ ε with a success prob-
ability of at least 1 − δ. Now we want all z ∈ {0, 1}n such
that |z| ≤ k to satisfy this inequality. The number of such
strings is no larger than nk, so we set

N = max
|z|≤k

34Var(f̂z)/γ 2
z ≤ 34 × 3k (1 + ε)2

ε2 max
|z|≤k

�−2
� (z),

(C25)

K = 2 ln[2(δ/nk)−1], (C26)

and apply the union bound. Now we have |1 − f̂ −1
z fz| ≤

ε for all |z| ≤ k with probability at least 1 − δ. Our final
upper bound of the sample complexity is

R = NK ≤ 68 × 3k (1 + ε)2
ε2 (k ln n + ln 2δ−1)max

|z|≤k
�−2
� (z),

(C27)

which completes the proof. �
The quantity ��(z) can be lower bounded when � is

close to an identity channel, as shown by the following
lemma.

Lemma 7. if the Z-basis average fidelity of � satisfies
FZ(�) ≥ 1 − c for some 0 ≤ c ≤ 1 then ��(z) ≥ 1 − 2c
for all z ∈ {0, 1}n.

Proof. We have

��(z) = 1
2n

∑

x,δ∈{0,1}n
(−1)z·δ〈〈x ⊕ δ|�|x〉〉

≥ 1
2n

∑

x∈{0,1}n

(
〈〈x|�|x〉〉 −

∑

δ∈{0,1}n,|δ|	=0

〈〈x ⊕ δ|�|x〉〉
)

= 1
2n

∑

x∈{0,1}n
(2〈〈x|�|x〉〉 − 1)

= 2FZ(�)− 1

≥ 1 − 2c, (C28)

where the second equality follows from the fact that � is
trace preserving, and hence

∑
b∈{0,1}n〈〈b|�|x〉〉 = 1. �

Specifically, if we substitute the bound for ��(z) from
Lemma 7 into the above theorem, we get Theorem 3 in the
main text. We conclude that our Protocol 2 can mitigate the
noise in the computation of the expectation of any k-local
observable efficiently, given that k is small and the noise is
weak.

2. Estimation procedure: local

Now we consider the RShadow estimation procedure
using Cl⊗n

2 . Thanks to Lemma 5, we only need to charac-
terize ‖ · ‖2

shadow,�. Because of technical difficulties, we are
currently not able to bound ‖ · ‖2

shadow,� for the most gen-
eral noise channel�, but we do have results for local noise
channel � (hence also for any separable � by linearity).
Suppose that� ≡ ⊗n

i=1�i, and denote the Z-basis fidelity
of the qubit channels �i as FZ,i. Furthermore, assume that
O is k local, which means that it is nontrivially supported
on only k qubits. We have

‖O‖2
shadow,�

= max
σ∈D(2n)

EU∼Cl⊗n
2

∑

b∈{0,1}n

× Tr{[σ ⊗ M̂−1(O)⊗ M̂−1(O)]U†⊗3

× [�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]U⊗3}. (C29)
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Consider the single-qubit case. We have

�i := EU∼Cl2

∑

b=0,1

U†⊗3[�†
i (|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]U⊗3

=
∑

b=0,1

�
(3)
Haar[�

†
i (|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]

=
∑

b=0,1

∑

π ,ξ∈S3

cπ ,ξWπ Tr{Wξ [�
†
i (|b〉 〈b|)

⊗ |b〉 〈b| ⊗ |b〉 〈b|]}
= 1

12 [(3 − 2FZ,i)(W() + W(2,3))+ (2FZ,i − 1)(W(1,2)

+ W(1,3) + W(1,2,3) + W(1,3,2))], (C30)

where we have used the Weingarten function to expand
the Haar integral [see Eq. (A32)], and the value of the
Weingarten matrix is from Eq. (A38).

For any X ∈ Herm(2n) and single-qubit Pauli operators
Pp , Pq, we want to calculate the quantity Tr[(X ⊗ Pp ⊗
Pq)�i]. By direct calculation using Eq. (C30), one can
verify that there are four different cases:

Tr[(X ⊗ Pp ⊗ Pq)�i] = Tr(XPpPq)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, Pp = Pq = I ,
1
3

, Pp = Pq 	= I ,

2FZ,i − 1
3

, (Pp = I , Pq 	= I) or (Pp 	= I , Pq = I),

0, otherwise.
(C31)

This indicates that the value Tr[(X ⊗ Pp ⊗ Pq)�i] is
nonzero if and only if the two single-qubit Pauli operators
Pp and Pq commute.

Now we return to the evaluation of Eq. (C29). Our
strategy is similar to that of Ref. [38]. We first decom-
pose O into the Pauli operator basis (note that we use
unnormalized Pauli operators here)

O ≡
∑

p∈Z
2n
2

αpPp for αp ∈ R. (C32)

Since O is k local, we have αp = 0 for all |p| > k, where,
for any p ∈ Z

2n
2 , we denote the Pauli weight of Pp by |p|.

Also, recall from Eq. (C3) that

M̂ =
∑

p∈Z
2n
2

f̂z(p)|σp〉〉〈〈σp |, (C33)

where we define z as the mapping

z : Z
2n
2 → {0, 1}n, z(p)i = 0 if and only if (Pp)i = I

× for all i ∈ [n]. (C34)

The intuition is that after twirling over the local Clifford
group the Pauli X , Y, Z indexes are symmetrized.

Now we can calculate Eq. (C29) as

‖O‖2
shadow,� = max

σ∈D(2n)

∑

p ,q∈Z
2n
2

f̂ −1
z(p) f̂

−1
z(q) αpαq Tr

[
(σ ⊗ Pp ⊗ Pq)

( n⊗

i=1

�i

)]

= max
σ∈D(2n)

∑

p ,q∈Z
2n
2

f̂ −1
z(p) f̂

−1
z(q) αpαqδ(p , q)Tr(σPpPq)

∏
i∈[n]:(Pp ,i=I ,Pq,i 	=I)∨(Pp ,i 	=I ,Pq,i=I)(2FZ,i − 1)

3|p∨q|

=
∥∥∥∥

∑

p ,q∈Z
2n
2

f̂ −1
z(p) f̂

−1
z(q) αpαqδ(p , q)PpPq

∏
i∈[n]:(Pp ,i=I ,Pq,i 	=I)∨(Pp ,i 	=I ,Pq,i=I)(2FZ,i − 1)

3|p∨q|

∥∥∥∥
∞

≤
∑

p ,q∈Z
2n
2

∣∣∣∣f̂
−1

z(p) f̂
−1

z(q) αpαqδ(p , q)

∏
i∈[n]:(Pp ,i=I ,Pq,i 	=I)∨(Pp ,i 	=I ,Pq,i=I)(2FZ,i − 1)

3|p∨q|

∣∣∣∣

≤
∑

p ,q∈Z
2n
2

δ(p , q)3|p∧q||αp ||αq|
|f̂ −1

z(p) f̂
−1

z(q) |
3|p|3|q|

≤
( ∑

p ,q∈Z
2n
2

δ(p , q)3|p∧q||αp ||αq|
)
·
(

max
z∈{0,1}n:|z|≤k

f̂ −2
z

32|z|

)
. (C35)
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Here, for the second equality, we apply the single-qubit
result from Eq. (C31). The functional δ(p , q) equals 1 if Ppi
commutes with Pqi for all i ∈ [n] and equals 0 otherwise,
and we have the definitions

|p ∨ q| := No. {i ∈ [n] : Pp ,i 	= I or Pq,i 	= I},
|p ∧ q| := No. {i ∈ [n] : Pp ,i 	= I and Pq,i 	= I}. (C36)

The third equality follows from the dual characterization
of the operator norm. The first inequality follows from the
fact that the operator norm of a Pauli operator is 1. The
second inequality follows by relaxing FZ,i to 1 and noting
that |p ∧ q| = |p ∨ q| − |p| − |q|. The last inequality uses
the k-local property of O.

The first factor of Eq. (C35) can be bounded using the
same method as in Ref. [38]. We reproduce their proof here
for the convenience of the reader. Without loss of general-
ity, suppose that O is supported on the first k qubits, and
hence can be written as O = Õ ⊗ I2n−k . The decomposition
of Õ is denoted as

Õ =
∑

p∈Z
2k
2

α̃pPp . (C37)

For any two q, s ∈ Z
2n
2 , we write q  s if one can obtain Pq

from Ps by replacing some single-qubit Pauli operators of
Ps with I . Then

∑

p ,q∈Z
2n
2

δ(p , q)3|p∧q||αp ||αq|

=
∑

p ,q∈Z
2k
2

δ(p , q)3|p∧q||α̃p ||α̃q|

= 1
3k

∑

Ps∈{PX ,PY ,PZ }⊗k

( ∑

q:q s

3|q||α̃q|
)2

≤ 1
3k

∑

Ps∈{PX ,PY ,PZ }⊗k

( ∑

q:q s

3|q|
)( ∑

q:q s

3|q||α̃q|2
)

= 4k
∑

Ps∈{PX ,PY ,PZ }⊗k

∑

q:q s

3|q|−k|α̃q|2

= 4k
∑

q∈Z
2k
2

|α̃q|2

= 2k Tr(Õ2)

≤ 4k‖Õ‖2
∞

= 4k‖O‖2
∞, (C38)

where in the first equality we restricted attention to the first
k qubits, the second equality can be verified by check-
ing the coefficients of every |α̃p ||α̃q|, the first inequal-
ity follows from the Cauchy-Schwarz inequality, and the

third and fourth equalities follow from simple combina-
toric arguments. The penultimate equality follows from
the definition of Õ, the last inequality follows from the
relationship between the Hilbert-Schmidt norm and the
operator norm, and the last equality follows from the fact
that the largest eigenvalue of O equals that of Õ.

On the other hand, suppose that the preceding calibra-
tion procedure guarantees that f̂z ≥ δfz for all |z| ≤ k for
some positive number δ close to 1. Then the second term
of Eq. (C35) can be bounded by Proposition 2 as

max
|z|≤k

f̂ −2
z

32|z| ≤ δ−2 max
|z|≤k

f −2
z

32|z| = δ−2 max
|z|≤k

��(z)−2. (C39)

Since � is assumed to be local noise, we have the follow-
ing bound for ��(z), which could be better than Lemma 7.

Lemma 8. Suppose that � := ⊗n
i=1�i and satisfies

FZ(�i) ≥ 1 − ξ for all i ∈ [n] and some 0 ≤ ξ < 1/2.
Then

��(z) ≥ (1 − 2ξ)|z| for all z ∈ {0, 1}n. (C40)

Proof. We have

��(z) = 1
2n

∑

x,δ∈{0,1}n
(−1)z·δ〈〈x ⊕ δ|�|x〉〉

= 1
2n

n∏

i=1

∑

x,δ∈{0,1}
(−1)zi·δ〈〈x ⊕ δ|�i|x〉〉

= 1
2|z|

∏

i:zi=1

∑

x,δ∈{0,1}
(−1)δ〈〈x ⊕ δ|�i|x〉〉

=
∏

i:zi=1

( ∑

x∈{0,1}
〈〈x|�|x〉〉 − 1

)

= [2FZ(�i)− 1]|z|

≥ (1 − 2ξ)|z|, (C41)

where the third equality follows from fact that �i is trace
preserving, and hence

∑
x,δ∈{0,1}〈〈x ⊕ δ|�|x〉〉 = 2, so we

can eliminate those indexes i such that zi = 0. �
Combining Lemma 8 with Eq. (C39) yields the follow-

ing lemma. (Note that we substitute O with its traceless
part O0 in order to use Lemma 5 later.)

Lemma 9. For RShadow using Cl⊗n
2 , suppose that the

noise is local, i.e., � := ⊗n
i=1�i, and satisfies FZ(�i) ≥

1 − ξ for all i ∈ [n] and some 0 ≤ ξ < 1/2. Then, if
the calibration procedure guarantees that f̂z ≥ δfz for all
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|z| ≤ k and some δ > 0, we have

‖O0‖2
shadow,� ≤ δ−2(1 − 2ξ)−2k 4k‖O‖2

∞ (C42)

for any k-local observable O.

Compared to Proposition 2 of Ref. [38] that states that
‖O0‖2

shadow ≤ 4k‖O‖2
∞, we conclude that, when the sepa-

rable noise channel � has not too low Z-basis fidelity per
qubit and the noise calibration procedure is conducted with
sufficiently many rounds, the estimation procedure of our
RShadow protocol using Cl⊗n

2 is as efficient as the noise-
less standard quantum shadow estimation protocol [38] up
to a small multiplicative factor. That is, the expectation
value of any observable O located on a k-qubit subsystem
can be efficiently estimated.

To complete the discussion, we give the following
theorem as a rigorous version of Theorem 4 in the main
text.

Theorem 10. For RShadow with Cl⊗n
2 , suppose that the

noise is local, i.e., � := ⊗n
i=1�i, and satisfies FZ(�i) ≥

1 − ξ for all i ∈ [n] and some 0 ≤ ξ < 1/2. Then, if the
number of calibration samples RC and the number of
estimation samples RE satisfy

RC = 68 × 3k
(

1 + 2k

ε1

)2

(k ln n + ln 2δ−1)(1 − 2ξ)−2k,

RE = 34
ε2

2
× 4k ln

(
2M
δ2

)
(1 + ε1)

2(1 − 2ξ)−2k,

(C43)

respectively, then the protocol can estimate M arbi-
trary linear functions Tr(O1ρ), . . . , Tr(OMρ) such that
‖Oi‖∞ ≤ 1 and that Oi is k local, up to accuracy ε1 + ε2
with success probability at least 1 − δ1 − δ2.

Proof. First, according to Theorem 9, for the given number
of samples RC, we have

|E(ô(r)i )− Tr(Oiρ)| ≤ ε1. (C44)

Note that we apply the bound for ��(z) from Lemma 8.
Meanwhile, from the proof of Theorem 9 [see

Eq. (B19)], we also have

|f̂ −1
z fz − 1| ≤ ε1

=⇒ f̂z ≥ (1 + ε1)
−1fz for all |z| ≤ k. (C45)

Both equations hold simultaneously with probability at
least 1 − δ1.

Now, by Lemmas 5 and 9, the single-round estimators
in the estimation procedure satisfy

Var(ô(r)i ) ≤ 4k(1 + ε1)
2(1 − 2ξ)−2k. (C46)

So we set the median of mean estimators ôi of the estima-
tion procedure with the parameters

N = 34
ε2

2
× 4k(1 + ε1)

2(1 − 2ξ)−2k, K = 2 ln
(

2M
δ2

)
.

(C47)

Then it follows from Lemma 4 combined with the union
bound that the following statement holds for all i with
probability at least 1 − δ2:

|ôi − E(ô(r)i )| ≤ ε2. (C48)

Combining Eqs. (C44) and (C48) using the triangular
inequality gives

|ôi − Tr(Oiρ)| ≤ ε1 + ε2, (C49)

which holds with probability at least 1 − δ1 − δ2. This
completes the proof. �

Specifically, if ξ � 1/2 then (1 − 2ξ)−2k = [(1 −
2ξ)−1/2ξ ]4kξ ≈ e4kξ . That is how we get the bound in
Theorem 4.

APPENDIX D: THE EFFECT OF STATE
PREPARATION NOISE

In this section, we prove Theorems 5 and 6 in the main
text establishing the robustness of RShadow against state
preparation noise in the calibration procedure. Let us first
fix the notation. We assume that |0〉 is experimentally
prepared as some other state ρ0 that is fixed over time,
and we use a subscript “SP” to denote the state prepara-
tion noisy version of our estimators. For example, M̂SP =∑

λ∈RG
f̂λ,SP�λ is our estimation for the physical channel

M̃ := ∑
λ∈RG

fλ�λ when the calibration process suffers
from state preparation error.

1. Robustness of RShadow with the global Clifford
group

Lemma 10. For RShadow using Cl(2n), if the state prepa-
ration fidelity satisfies

F(|0〉〈0|, ρ0) ≥ 1 − εSP (D1)

then the SP-noisy single-round estimator f̂ (r)SP satisfies

f ≥ E(f̂ (r)SP ) ≥ (1 − 2εSP)f ,

Var(f̂ (r)SP ) ≤
6d

(d − 1)3
.

(D2)
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Proof. According to the calibration procedure described in
Algorithm 2 or Protocol 1 of Appendix B, we have

E(F̂ (r)
SP ) = EU∼Cl(2n)

∑

b

〈〈0|U†|b〉〉〈〈b|�U |ρ0〉〉

= 〈〈0|[|σ0〉〉〈〈σ0| + f (I − |σ0〉〉〈〈σ0|)]|ρ0〉〉

= 1
d
+ f

(
〈0| ρ0 |0〉 − 1

d

)
, (D3)

E(f̂ (r)SP ) =
dE(F̂ (r)

SP )− 1
d − 1

= d 〈0| ρ0 |0〉 − 1
d − 1

f

≥
(

1 − εSP
d

d − 1

)
f . (D4)

One can immediately conclude that f ≥ E(f̂ (r)SP ) ≥ (1 −
2εSP)f .

The second moment of F̂ (r)
SP can be written as [see

Eq. (B16)]

E(F̂ (r)2
SP ) =

∑

b∈{0,1}n
Tr{EU∼Cl(2n)(Uρ0U† ⊗ U |0〉 〈0|U†

⊗ U |0〉 〈0|U†)[�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]}
=

∑

b∈{0,1}n
Tr{�(3)

Haar(ρ0 ⊗ |0〉〈0| ⊗ |0〉〈0|)

[�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]}
=

∑

b∈{0,1}n

∑

π ,σ∈S3

cπ ,σ Tr[Wπ(ρ0 ⊗ |0〉〈0| ⊗ |0〉〈0|)]

× Tr{Wσ [�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]}

= 2(d − 2FZ − 2F0 + 2dFZF0)

(d2 − 1)(d + 2)

≤ 6d
(d2 − 1)(d + 2)

, (D5)

where we have defined F0 := 〈0| ρ0 |0〉 and FZ := FZ(�).
Therefore,

Var(f̂ (r)SP ) =
d2

(d − 1)2
Var(F̂ (r)

SP ) ≤
d2

(d − 1)2
E(F̂ (r)2

SP )

≤ 6d
(d − 1)3

. (D6)

This completes the proof. �
The following theorem is a more detailed formalization

of Theorem 5 in the main text.

Theorem 11. For RShadow using Cl(2n), if the state
preparation fidelity satisfies

F(|0〉 〈0| , ρ0) ≥ 1 − εSP (D7)

then, with R = Õ(ε−2F−2
Z ) calibration samples, the subse-

quent estimation procedure with high probability satisfies

|E(ô(r))− Tr(Oρ)| ≤ (ε + 2εSP)‖O‖∞ (D8)

up to first orders in ε and εSP for any observable O. We
have assumed that FZ := FZ(�)� 1/d.

Proof. First note that the target function can be upper
bounded as

|E(ô(r))− Tr(Oρ)| = |〈〈O|M̂−1
SPM̃− 1|ρ〉〉|

= |〈〈O0|M̂−1
SPM̃− 1|ρ〉〉|

≤ |〈〈O0|ρ〉〉| · |f̂ −1
SP f − 1|

≤ ‖O‖∞ · |f̂ −1
SP f − 1|. (D9)

According to Lemma 4, by taking the parameters of the
median of mean estimators as

N = 34Var(f̂ (r)SP )ε
−2f −2,

K = 2 ln(2δ−1),
(D10)

the following holds with probability at least 1 − δ:
|f̂SP − E(f̂ (r)SP )| ≤ εf . (D11)

We also have, from Lemma 10,

|E(f̂ (r)SP )− f | ≤ 2εSPf . (D12)

Therefore, our final bound is, as claimed,

|E(ô(r))− Tr(Oρ)| ≤ ‖O‖∞ × |f − f̂SP|
|f̂SP|

≤ ‖O‖∞ × ε + 2εSP

1 − ε − 2εSP

= ‖O‖∞ · [ε + 2εSP + o(ε + 2εSP)].
(D13)

The sample complexity is

R = NK ≤ 2 ln(2δ−1) · 204ε−2
(

FZ − 1
d

)−2

(d + 1)2

d(d − 1)
= Õ(ε−2F−2

Z ) (D14)

for FZ := FZ(�)� 1/d. Here we have used Lemma 10
and Proposition 1 to bound Var(f̂ (r)SP ) and f , respectively.

�
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2. Robustness of RShadow with the local Clifford
group

Note that we consider a local state preparation noise
model for the results in this section, i.e., no crosstalk
between qubits.

Lemma 11. For RShadow using Cl⊗n
2 , if the prepared

state is in a product form, i.e., ρ0 =
⊗n

i=1 ρ0,i, and the
single-qubit state preparation fidelity satisfies

F(|0〉〈0|, ρ0,i) ≥ 1 − ξSP for all i ∈ [n] (D15)

for some ξSP < 1/2, then the SP-noisy single-round esti-
mator f̂ (r)z,SP satisfies

fz ≥ E(f̂ (r)z,SP) ≥ (1 − 2ξSP|z|)fz,
Var(f̂ (r)z,SP) ≤ 3−|z| for all z ∈ {0, 1}n.

(D16)

Proof. According to the calibration procedure described in
Algorithm 2 or Protocol 2 of Appendix C, we have

E(f̂ (r)z,SP) = EU∼Cl⊗n
2

∑

b

〈〈Pz|U†|b〉〉〈〈b|�U |ρ0〉〉

= 〈〈Pz|
∑

m∈{0,1}n
fm�m|ρ0〉〉

= fz〈〈Pz|ρ0〉〉
= fz

∏

i:zi=1

(2 〈0| ρ0,i |0〉 − 1)

≥ (1 − 2|z| ξSP)fz. (D17)

One can immediately conclude that fz ≥ E(f̂ (r)z,SP) ≥ (1 −
2|z| ξSP)fz.

To calculate the second moment,

E(f̂ (r)
2

z,SP ) =
∑

b

Tr{EU∼Cl⊗n
2
(Uρ0U† ⊗ UPzU†

⊗ UPzU†)[�†(|b〉 〈b|)⊗ |b〉 〈b| ⊗ |b〉 〈b|]},
(D18)

we can first investigate the single-qubit case:

EU∼Cl2(Uρ0,iU† ⊗ UPI U† ⊗ UPI U†) = 1
2 I⊗3

2 ,

EU∼Cl2(Uρ0,iU† ⊗ UPZU† ⊗ UPZU†)

= �
(3)
Haar(ρ0,i ⊗ PZ ⊗ PZ). (D19)

To further simplify the second expressions, one can verify
that

Tr[ �W(ρ0,i ⊗ PZ ⊗ PZ)] = [0, 0, 0, 2, 1, 1], (D20)

where �W is defined in Eq. (A35). Calculating the Haar inte-
gral using Eq. (A32), one immediately notes that the form

of ρ0,i has nothing to do with the result. So we can safely
replace all ρ0,i with |0〉 〈0| and retrieve the result with no
state preparation error: E(f̂ (r)

2

z,SP ) = E(f̂ (r)
2

z ) = 3−|z|; hence,
Var(f̂ (r)z,SP) ≤ 3−|z|. �

The following theorem is a more detailed formalization
of Theorem 6 in the main text.

Theorem 12. For RShadow using Cl⊗n
2 , if the state is

prepared as some product state ρ0 =
⊗n

i=1 ρ0,i and the
single-qubit state preparation fidelity satisfies

F(|0〉 〈0| , ρ0,i) ≥ 1 − ξSP for all i ∈ [n] (D21)

then, with R = Õ(3kε−2F−2
Z ) calibration samples, the sub-

sequent estimation procedure with high probability satis-
fies

|E(ô(r))− Tr(Oρ)| ≤ (ε + 2kξSP)2k‖O‖∞ (D22)

up to first orders in ε and kξSP for any k-local observ-
able O.

Proof. Suppose that O is a k-local observable for some k.
Following exactly the same procedure as in the proof
of Theorem 9 [see Eq. (C23)], we can bound our target
function as

|E(ô(r))− Tr(Oρ)| ≤ 2k‖O‖∞ × max
|z|≤k

|f̂ −1
z,SPfz − 1|.

(D23)

According to Lemma 4, by taking the parameters of the
median of mean estimators as

N = max
|z|≤k

34Var(f̂ (r)z,SP)ε
−2f −2

z ,

K = 2 ln[2(δ/nk)−1],
(D24)

the following holds with probability at least 1 − δ/nk for
any z whose weight is no larger than k, and hence simulta-
neously holds for all such z with probability at least 1 − δ
by the union bound:

|f̂z,SP − E(f̂ (r)z,SP)| ≤ εfz for all z ∈ {0, 1}n : |z| ≤ k.
(D25)

We also have, from Lemma 11,

|E(f̂ (r)z,SP)− fz| ≤ 2ξSP|z|fz for all z ∈ {0, 1}n. (D26)
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Therefore, our final bound is, as claimed,

|E(ô(r))− Tr(Oρ)|

≤ 2k‖O‖∞ × max
|z|≤k

|fz − f̂z,SP|
|f̂z,SP|

≤ 2k‖O‖∞ × ε + 2kξSP

1 − ε − 2kξSP

= 2k‖O‖∞ · [ε + 2kξSP + o(ε + 2kξSP)]. (D27)

The sample complexity is

R = NK ≤ 2 ln(2δ−1nk) · 34 · 3kε−2�z(�)
−2

≤ 2 ln(2δ−1nk) · 34 · 3kε−2FZ(�)
−2

= Õ(3kε−2F−2
Z ), (D28)

where we have used Lemma 11 and Proposition 2 to bound
Var(f̂ (r)z,SP) and fz, respectively. The second inequality fol-
lows from Lemma 7. We remark that one can alternatively
use a stronger bound given in Lemma 8 when the noise
model is assumed to be local. �

APPENDIX E: MORE NUMERICAL RESULTS

1. Coherent and correlated noise with the local
Clifford group

Here, we present more numerical results to show the
performance of RShadow in the task of estimating the
(average) two-point ZZ correlation function of the GHZ
state using the local Clifford group. More precisely, the
quantity we want to estimate can be expressed as

1
n − 1

n−1∑

i=1

〈GHZn|ZiZi+1 |GHZn〉 , (E1)

the true value of which is obviously 1. The aim of this
appendix is to close one gap between the theory we
derived in the main text and practical needs: whether
RShadow using the local Clifford group is still sample
efficient against qubitwise-correlated noises. Our numer-
ical results in Fig. 8 give an affirmative answer. Here, we
work with a five-qubit GHZ state. We perform the esti-
mation task under two different noise models: single-qubit
X -axis rotation and two-qubit XX crosstalk noises. When
the single-qubit X -axis rotation error happens, each qubit
will experience a coherent rotation after the implemen-
tation of the random unitary gate RX (θ) = e−iθX , where
θ = kπ/40, k = 0, 1, 2, 3, 4, 5. When the two-qubit XX
crosstalk noise happens, each two adjacent qubits will
experience a coherent rotation after the implementation
of the random unitary gate RXX (θ) = e−iθXX , where θ =
3kπ/100, k = 0, 1, 2, 3, 4, 5. For clarity, we estimate the
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FIG. 8. Five-qubit GHZ two-point correlation function esti-
mation under the coherent noise models, including single-qubit
X -axis rotation and two-qubit XX -coupling noise.

two-point correlation function of the fifth qubit with every
other qubit and plot the average values.

2. Gate-dependent noise: more details

Here, we present more details about the gate-dependent
noise simulations in Sec. VIII of the main text.

Gate decomposition. In our simulations, we decompose
each single-qubit Clifford gate using the three generators

{
RP

(
π

2

)
= exp

(
−i
π

4
P
)

, P = X , Y, Z
}

. (E2)

To see how this works, note that each single-qubit Clifford
gate can be uniquely specified by its conjugation on Pauli
Z and Pauli X operators. Any single-qubit Clifford gate C
can be equivalently described by the notation

{st[C] := CZC†, de[C] := CXC†}, (E3)

where st[C] and de[C] are both one of {±X ,±Y,±Z}.
They are usually called the stabilizer and destabilizer of C,

FIG. 9. Rotational decomposition of the Hadamard gate.
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respectively. Another way to say this is that C rotates the
3D Cartesian coordinates so that the +X (+Z) direction is
now at the st[C] (de[C]) direction.

Now, we can decompose C into two subsequent rota-
tions. First rotate the +Z direction into the direction spec-
ified by st[C] along either the X or Y axis. Then rotate
the new +X direction into de[C] along the st[C] axis.
Each rotation is of angle {0,π/2,π , 3π/2}, so it can be
implemented by concatenating up to three generators.

As an example mentioned in the main text, the
Hadamard gate has the stabilizer and destabilizer

{st[H ] = +X , de[H ] = +Z},

so it can be decomposed as H = R2
X (π/2)RY(π/2), as

shown in Fig. 9.
Gate dependence of the noise model. We claim in the

main text that both pulse miscalibration and random over-
rotation are gate-dependent noise models. Here we explain
this claim in more detail. The noisy generators for the pulse
miscalibration error are

{
R̃P

(
π

2

)
= exp

[
−i

1
2

(
π

2
P +�0

)]
, P = X , Y, Z

}
.

By the Baker-Campbell-Hausdorff formula, this can be
expanded as

R̃P

(
π

2

)
= exp

(
−i
π

4
P
)

exp
(
−i

1
2
�0

)

× exp
(
π

16
[P,�0]

)
· · · .

As long as [P,�0] is different for different P, the noise
channel is different for different generators. We also note
that the gate-dependent effect only appears in higher-
order terms. For the random over-rotation error, the noisy

TABLE I. Directions of �0 that are uniformly randomly sam-
pled from a sphere.

Label of samples v (direction of �0)

1 (−0.550,+0.288,+0.784)
2 (−0.086,+0.987,−0.136)
3 (+0.652,−0.396,+0.647)
4 (+0.589,+0.183,+0.787)
5 (+0.543,−0.781,−0.309)
6 (−0.666,−0.720,−0.196)
7 (+0.174,−0.512,−0.841)
8 (+0.908,+0.417,+0.034)
9 (−0.183,+0.935,−0.304)
10 (+0.599,−0.704,−0.382)

generators are

R̃P = exp
[
−i

1
2

(
π

2
+ δ

)
P
]

.

For a generator RP, the noise channel for this noise model
can be written as

�P(ρ) =
∫

dδ p(δ; σ)RP(δ)ρR†
P(δ)

=
∫

dδ p(δ; σ)e−iδP/2ρeiδP/2, (E4)

where p(δ; σ) = (1/σ
√

2π) exp(−δ2/2σ 2) is the Gaus-
sian distribution. Let |P±〉 denote the ±1 eigenvectors of
P, and carry out the Gaussian integral. Then

�P(ρ) = |P+〉 〈P+| 〈P+| ρ |P+〉
+ |P−〉 〈P−| 〈P−| ρ |P−〉
+ e−σ

2/2 |P+〉 〈P−| 〈P+| ρ |P−〉
+ e−σ

2/2 |P−〉 〈P+| 〈P−| ρ |P+〉 . (E5)

This is a dephasing channel on the |P±〉 basis. Since this
basis is different for different Pauli P, this noise model is
gate dependent by definition.

Different directions of �0. In the numerical results of
Fig. 7, we fixed a random direction for �0 and only var-
ied its magnitude. Here we show that there is nothing
special about the direction we picked. We uniformly sam-
ple ten unit vectors v and set �0 to be 0.1π × (v1X +
v2Y + v3Z). For each of these noise settings, we use
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FIG. 10. Ground-state energy estimation of H2 with pulse mis-
calibration noise. Here we choose �0 = 0.1π × (v1X + v2Y +
v3Z), where each different label of the x axis corresponds to a
different sample of v given in Table I.
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R = 30 000 (N = 3000, K = 10) calibration samples and
R = 10 000 (N = 1000, K = 10) estimation samples for
RShadow, and R = 10 000 (N = 1000, K = 10) samples
for standard Shadow. The performance is shown in Fig. 10
in which the average and standard deviation are calculated
over ten independent runs. For all cases, RShadow gives a
more accurate estimate than standard Shadow.
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