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The entanglement properties of random pure states are relevant to a variety of problems ranging from
chaotic quantum dynamics to black-hole physics. The averaged bipartite entanglement entropy of such
states admits a volume law and upon increasing the subregion size follows the Page curve. In this paper,
we generalize this setup to random mixed states by coupling the system to a bath and use the partial
transpose to study their entanglement properties. We develop a diagrammatic method to incorporate par-
tial transpose within random matrix theory and formulate a perturbation theory in 1/L, the inverse of the
Hilbert-space dimension. We compute several quantities including the spectral density of partial transpose
(or entanglement negativity spectrum), two-point correlator of eigenvalues, and the logarithmic negativ-
ity. As long as the bath is smaller than the system, we find that upon sweeping the subregion size, the
logarithmic negativity shows an initial increase and a final decrease similar to the Page curve, while it
admits a plateau in the intermediate regime where the logarithmic negativity depends only on the size
of the system and of the bath but not on how the system is partitioned. This intermediate phase has no
analog in random pure states, and is separated from the two other regimes by a critical point. We further
show that when the bath is larger than the system by at least two extra qubits the logarithmic negativity is
identically zero, which implies that there is no distillable entanglement. Using the diagrammatic approach,
we provide a simple derivation of the semicircle law of the entanglement negativity spectrum in the latter
two regimes. We show that despite the appearance of a semicircle distribution, reminiscent of Gaussian
unitary ensemble (GUE), the higher-order corrections to the negativity spectrum and two-point correlator

deviate from those of GUE.
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I. INTRODUCTION

Dynamics of strongly interacting quantum systems is an
interdisciplinary research frontier across various fields of
physics including quantum computation, condensed mat-
ter, and high-energy physics. Recent developments suggest
that scrambling of the quantum information and the emer-
gence of thermalization as a result of dynamics in a closed
quantum system are intimately related, which is in turn a
consequence of what is generally known as quantum chaos
[1]. It turned out that several universal properties of such
interacting quantum chaotic systems can be reproduced via
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random matrix theory [2-5]. As a result, random matrix
theory can be used as an effective description where one
can easily carry out calculations by utilizing standard tech-
niques available in random matrix theory and gain further
insights into universal features of dynamics of strongly
correlated systems.

Recently, it was realized that signatures of quantum
chaos and thermalization can be understood from the
reduced density matrix of a single many-body wave func-
tion [6]. In particular, the spectral properties of the reduced
density matrix can be captured by the Wishart random
matrix theory. A Wishart matrix can be obtained from a
random pure state (Page or Haar state) |¥) in a bipar-
tite Hilbert space H = H4 ® Hjp via partial tracing py =
Trg |W) (¥]. Here, the word random means uniformly dis-
tributed on unit norm states. As is well known from
the pioneering work of Page [7], a typical random pure
state obeys a volume-law bipartite entanglement entropy.
Moreover, the entanglement spectrum is given by the
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FIG. 1. Schematic representation of the system under study.
The goal here is to investigate the typical amount of entangle-
ment between 4, and 4,, which are in a random mixed state due
to coupling to subsystem B. The global state of the system 4 U B
is obtained from an ensemble of random pure (Page) states. In
this setup, there is no notion of locality.

Marcenko-Pastur law [8]. A more recent study [9] uses this
setup as a toy model of black-hole evaporation to shed light
on the information paradox [10].

In this paper, we would like to build on the above
observation and further uncover entanglement structures
in random mixed states. For this purpose, we consider a
tripartite geometry where subsystem A is further decom-
posed into two subsystems A; and A4, (see Fig. 1) and
investigate the entanglement (encoded in p,) between 4,
and A,. Alternatively, the subsystem B can be viewed as
external degrees of freedom (or an environment) for sub-
system A. From this viewpoint, this construction provides a
tuning parameter ¢ = Lg/L4 for generating random mixed
states where Ly = dim H, for s = 4, B. We shall call such
density matrices random induced mixed states. Intuitively,
when g < 1, the bath is small and not capable of thermal-
izing the system. Hence, we expect the density matrix to
behave similarly to Page states where there is a volume-
law entanglement. In the other extreme limit, g > 1, the
system is almost fully entangled with the bath (which
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has many degrees of freedom), and we expect p4 to be
maximally mixed (or thermal) where there is little quantum
correlation between A and A,. Comparing the two extreme
limits, we then anticipate an entanglement phase transi-
tion from a volume-law mixed state to an unentangled
(separable) state. In this work, we develop a large-L per-
turbation theory to quantitatively establish this intuitive
picture. In fact, our calculations reveal a richer picture than
this intuition suggests. The density matrix in the volume-
law limit can further be divided into two types: saturated
and maximally entangled states (see the lower region of the
phase diagram in Fig. 2). We explain this fact in greater
detail near the end of this section after we introduce our
methodology.

To quantify the entanglement in mixed states, we use
the partial transpose (PT) [11-17], and the associated
entanglement measure, the logarithmic negativity (LN).
Our choice of PT is motivated by the following reasons:
First, PT exclusively diagnoses quantum correlations, as
opposed to the usual pure-state entanglement measures
such as von Neumann and Rényi entropies, which cap-
ture both quantum and classical correlations. Instead, one
may use the mutual information 1.4, = Sy, +S4, — S4
to quantify the mixed-state entanglement. However, the
mutual information is not an entanglement measure either
and overestimates the entanglement of a specific type of
classically correlated state called separable to be defined
below. Second, the partially transposed density matrix is a
single operator, which characterizes the state and we can
study not only the LN but also its spectral properties, also
known as the negativity spectrum [18,19], which can be
thought of as the analog of the pure-state entanglement
spectrum for mixed states. Lastly, LN can be computed
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FIG. 2. Phase diagram of reduced density matrix p4 obtained from random pure (Page) states. The size of the environment B grows
along the vertical axis, while the horizontal axis characterizes the relative size of 4 partitions. The horizontal line at the bottom Nz = 0
corresponds to pure states where the Page transition occurs at Ny, = Ny, = 0.5N,. A general form of the spectral density of p’2 is
shown for each phase. Arrows (color coded) indicate the paths along which LN is plotted in Fig. 3.
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numerically efficiently and, as we show in this paper, can
also be calculated analytically for the case of random states
in the large Hilbert-space limit.

The PT of random induced mixed states was previously
studied [20-29]. In particular, it was numerically found
that in the large Hilbert-space limit and when the two
subsystems are of identical size, L4, = Ly,, the negativity
spectrum obeys a semicircle law and there exists a transi-
tion from positive partial transpose (PPT) states to negative
partial transpose (NPT) states at Lz = 4L, [20,22,23].
Remarkably, Refs. [21,25,30] used the combinatorics of
noncrossing partitions in free probability theory to put this
result on firm grounds by showing that ,OAT2 (which denotes
partially transposed p,) converges in moments to a semi-
circular distribution [31]. In this work, we complement the
earlier analyses by developing a graphical representation
for partial transpose and present a systematic way to derive
the moments and the resolvent function, which is used to
calculate the negativity spectrum. Our results match those
of Refs. [21,25,30] where they overlap. We further evalu-
ate the 1/L corrections to the resolvent function as well as
the two-point correlation function of eigenvalues of ,ojz to

establish that pjz does not belong to the Gaussian unitary
ensemble (GUE) despite the fact that its spectral density
approaches a semicircle law. Compared to previous meth-
ods [21,30], our diagrammatic approach has the advantage
of not requiring familiarity in specialized areas such as free
probability theory and being more accessible to physicists
and potentially generalizable to other quantum systems of
great interest in the physics community such as the black-
hole information problem [9] and equilibrated pure states
satisfying the eigenstate thermalization hypothesis [32].
Last but not least, we use our quantitative results from ran-
dom matrix theory to highlight some physical observations
regarding tripartite entanglement in random pure states as
we briefly explain below.

Our main results in this paper are summarized in the
phase diagram of Fig. 2, which is obtained analytically in
the thermodynamic limit where the total number of qubits
N4 + Njp are infinitely large while each subsystem contains
a finite portion of the full system [33]. This 2d phase dia-
gram can be thought of as an extension of the 1d phase
diagram of Page states, which corresponds to the horizon-
tal line in the bottom with p, pure, by adding a vertical
axis to parameterize how mixed p, is. In other words, the
regions labeled by II in the phase diagram are remnants of
the two phases in the pure-state limit and the two phase
boundaries denoted by dashed lines are remnants of the
Page transition with a diverging spectral density at zero.

As we move vertically from top to bottom in the phase
diagram, as long as Lg > 4Ly, i.e., the environment is
larger than subsystem A at least by two more qubits (Np >
N4+ 2), pygis typically a PPT state with a vanishing LN
(phase I in Fig. 2) [34]. Moreover, the negativity spectrum
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FIG. 3. Logarithmic negativity between subsystems 4| and 4,

(a) as we increase the size of 4 while keeping the ratio N4, /Ny,
fixed and (b) as we increase the size of 4; while keeping N,/Ng
fixed. The corresponding paths [vertical for (a) and horizontal for
(b)] are shown by arrows in Fig. 2. For reference in (b), we also
show the Page curve in black.

is given by a semicircle over positive domain. On the other
hand, as we go further down and reach the regime Lz <
4L,4, the density matrix is typically a NPT state (phase II
and III) and LN is nonzero. This trend is explicitly shown
in Fig. 3(a). The NPT states can further be divided into two
subcategories depending on the scaling behavior of the LN.
To see this, it is easier to follow the trend of LN [plotted
in Fig. 3(b)] as we move horizontally from left to right in
the NPT regime of the phase diagram. When subsystem
Ay is much smaller than 4,, the amount of entanglement
between A; and A, is bounded by the size of A4, i.e.,
E4y:4, ~ Ny, . Similarly, in the other extreme regime when
A, is very small, we have a similar phenomenon for A4,
and E4,.4, ~ Ny4,. Therefore, LN initially increases lin-
early in N4, and decreases to zero eventually as shown in
Fig. 3(b). We call this regime maximally entangled since
the smaller subsystem is fully entangled to its complement
within subsystem A4. This limit can also be thought of as
bipartite entangled since there is no entanglement between
the smaller subsystem of 4 and B. The negativity spectrum
in this regime consists of two disjoint Marcenko-Pastur
law distributions, one with negative support and one with
positive. For the intermediate regime where both 4| and 4,
are comparable in size and occupy less than half of the total
system, LN is given by &4,.4, ~ (1/2)(N4 — Np), which
is independent of the ratio (N4, /Ny,). The plateau in Fig.
3(b) corresponds to this regime and because of that, we call
it entanglement saturation. We should note that the state in
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TABLE 1. Summary of notations in the paper.

Variable Description

Total Hilbert-space dimension
Hilbert-space dimension of subsystem s
log, L,

Lp/Ly
LAl / LAz
Lp/Ly,

LpLy, /Ly,

IR IR N>

this regime is tripartite entangled since all three 4, 4,, and
B parties are mutually entangled. The negativity spectrum
in this case is given by a semicircle law which partly covers
the negative domain.

The rest of our paper is organized as follows: In Sec.
11, we review some background materials about the partial
transpose and its applications. In Sec. III, we present the
setup by which we generate random mixed states. Section
IV contains the central result of this paper, where we pro-
pose how PT can be incorporated in the graphical approach
to the random matrix theory. We further run some san-
ity checks for our proposal including computing the Rényi
negativity in this section. In Sec. V, we use this diagram-
matic approach to calculate the resolvent function and the
negativity spectrum where we map out the phase diagram
in Fig. 2. We further derive the higher-order corrections to
the semicircle law. Next, in Sec. VI, we discuss the con-
nected diagrams associated with the two-point function of
eigenvalues and show that it is different from that of GUE.
Finally, we finish our paper by several closing remarks and
future directions in Sec. VII. A summary of notation used
throughout the paper is given in Table I

II. REVIEW OF THE PARTIAL TRANSPOSE

In this section, we briefly review some basics about
the PT and LN. Expert readers may skip this part.
Historically, LN has been shown to be useful in studying
various quantum many-body systems including harmonic
oscillator chains [35—43], quantum spin models [44—-54],
(1 + 1)d conformal and integrable field theories [18,55—
71], topologically phases of matter [72—78], and in out-
of-equilibrium dynamics [79-90], as well as holographic
theories [91-94] and variational states [95-98]. More
recently, PT was used to construct many-body order
parameters for symmetry protected topological phases pro-
tected by antiunitary symmetries [99—103] and there are
experimental proposals to measure it with ion traps and
cold atoms [104-108].

The PT of a density matrix written in a local orthonor-

mal basis {|e(1k)), |eg))},

pa=Y_ pilel.ed el ed]. )
ikl

is defined by exchanging the indices of subsystem A; (or
Ay) asin

r O\ [ B 0
Py’ = Zpijkl |e§')a€;)><e§ e | @)
ijkl

We can understand the effect of PT by comparing it with
the full transpose pl. Recall that full transpose is a Her-
mitian and trace-preserving map, which leads to a new
operator pj = pj; with identical eigenvalues to those of p4
(hence, transpose is a completely positive map). Similarly,
PT is a Hermitian and trace-preserving map, which implies
that the eigenvalues of ,og2 are all real. However, unlike
the full transpose, PT is not a completely positive map,
ie., ,052 may have negative eigenvalues. The existence of

negative eigenvalues for ,ojz turns out to be an indicator
of quantum correlations in p4. Based on this fact, the PT
test is designed to distinguish quantum correlated mixed
states from classically correlated ones. This test is followed
by checking whether or not ,052 contains any negative
; . . T
eigenvalues. The negative eigenvalues of p,*> can then
be summed over to construct a measure of entanglement
[109—111]

prz -1
Ny = —F—, 3)
2

in which ||O||; = Trv/OO" is the trace norm. Since ,0? is
Hermitian, the trace norm is simply the sum of the absolute
value of its eigenvalues. In other words, the above quan-
tity directly measures how negative the eigenvalues are.
For this reason, it is called the negativity. Another useful
quantity is called the LN and can be constructed as

“4)

LN and the negativity are related via £ = log(2N + 1). To
further characterize p4, one can study the distribution of
the eigenvalues of ,052 instead of £4,.4, (or /\fA]; 4,), which
are single numbers. It can be defined formally by

T
SAIZAZ = 10g2 HpAz 1 :

Ly
Pr(g) =Y 8( — &), (5)
i=1

where the eigenvalues of p’2 are denoted by {£;}. This
quantity is usually referred to as the entanglement nega-
tivity spectrum (or in short the negativity spectrum) in the
literature [18,19]. From the definition of LN, Eq. (3), it is
easy to see that

<ng=—£0&5ﬁ@y ©)

An important application of the PT is to identify separa-
ble states. A separable state is a completely classical state,
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which can be written in the following form:

pep = Y PPy ®pY . py > 0. (7)
i

By definition, ps, remains positive semidefinite even after
PT since the transposed operators (,02(’ ))T [or (pfi))T in the
case of pﬁ;;,] are positive semidefinite. This observation
indicates that separable states are a subset of PPT states
[112], or equivalently, a NPT state cannot be separable.
It is known that PPT implies a lack of distillable entan-
glement. The converse, i.e., that NPT necessarily implies
a finite amount of distillable entanglement, remains to be
shown, although no counterexamples are known at present
[113]. In this paper, we distinguish only PPT and NPT
states without reference to distillability.

III. RANDOM INDUCED MIXED STATES

In this section, we introduce our setup, which we use
to carry out various calculations in the coming sections.
We would like to study the entanglement in random mixed
states. As mentioned in the previous section, we choose
to use random induced mixed states for this purpose. An
ensemble of random induced mixed states {04} corre-
sponding to the Hilbert space H, = H4, ® Hy, is gener-
ated by reduced density matrices, which are obtained by
partial tracing random pure states (or Page states [7]) in a
composite Hilbert space H, ® Hp. It is more convenient
to represent such a random pure state in a tensor product
basis as in

Ly Lp

W) =" X [U)) ® [Wg), ®)

i=1 a=1

in terms of a L4 x Lp rectangular random matrix X whose
elements (X, ) are independent Gaussian random complex
variables where the joint probability density is defined by

P({Xu}) = Z " exp {—LiLsTr(XX D} . (9)

Here, Ly = Ly, x Ly, and Ly denote the size of H, and
‘H, respectively, and Z is the overall normalization con-
stant. Throughout this paper, we consider 4 and B systems
to be comprised of qubits. In other words, L, = 2" where
s = Ay, A,, B and N; is the number of qubits. This choice
is not a necessary ingredient for our calculations and is
mainly meant as a physical description of the system.

The random reduced density matrix of system A is then
given by

xxt

P4
We note that p4 isa L4 x L4 square matrix, and the denom-
inator (which is also a random variable) is there to enforce
the normalization condition Trp, = 1.

Entanglement spectrum: The eigenvalues of o4 con-
tains information about the entanglement between 4 and
its bath B. In the limit L, Ly — oo while the ratio L, /Lp
is finite (which we refer to as the large L limit), the joint
probability density function of these eigenvalues can be
derived [114,115]. In doing so, the crucial point is that the
normalization factor Tr(XX ) = 1 + 8 in Eq. (10) is a ran-
dom variable whose fluctuations about its mean value 1 is
negligible to the leading order in (1/L4Lg). Hence, to the
leading order, the denominator can be replaced by its mean
value, and we may write

pa ~ XXT, (11)

which is the celebrated Wishart-Laguerre ensemble [8]
and is extensively studied in the random matrix theory
literature. From this observation, one can infer several
properties of p, in the large L limit. First, the ensemble-
averaged von Neumann entanglement entropy is given
by

L
(S4) = — (Tr(psIn py)) = InLy — f, (12)
B

which in terms of the number of qubits grows as N4 to
the leading order, i.e., a volume law. Second, the spectral
density of the eigenvalues {A;} is given by an appropriately
scaled MarCenko-Pastur (MP) law [§],

gLy VO =0 = 2)
21 A

Ly
PO =) 80 —n) = , (13)
i=1

1
b = —(£1/V0), (14)
A

where A € [A_,A+],q = Lg/Ls > 1. To name a few prop-
erties of the above expression, let us mention that for
g =1, P()) diverges at the origin as A~'/? and for ¢ #
1 the eigenvalues are bounded away from zero. When
g < 1, py is rank deficient and the entanglement spectrum
includes a delta-function at the origin in addition to the MP
distribution.

In the following section, we develop a diagrammatic
method to graphically represent the density matrix, Eq.
(11), and its PT and introduce a systematic way to com-
pute their moments. As we see, one benefit of this approach
is that it is easy to find the general trend of dominant
diagrams in various regimes.

IV. PARTIAL TRANSPOSE IN DIAGRAMMATIC
APPROACH

In this section, we introduce our diagrammatic approach
to treat random induced mixed states. This method is based
on the ‘t Hooft 1/L (double line) perturbation theory,
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which was also used recently in the context of black-
hole information problems [9]. We propose a diagrammatic
implementation for the PT of random matrices. The lat-
ter was inspired by a recent development in a seemingly
disjoint topic: anyonic PT [116] that was proposed to diag-
nose entanglement in unitary modular tensor categories,
which are an effective description of topologically ordered
phases of matter [117].

We begin by reviewing the diagrammatic approach to
random induced states [118—120]. A matrix element of the
pure state density matrix associated with the Page state,
Eq. (8), is denoted as

(e B3

(1) (¥ [lia 5 = XiaXis = | 3

(15)

where the left (right) pair of lines represent a bra (ket)
state, and solid (dashed) lines correspond to subsystem 4
(B). Note that each line carries an index. The lower end of
the diagrams are reserved for matrix manipulations such
as tracing and multiplication, while the upper ends of the
lines are used for ensemble averaging.

Therefore, a matrix element of the reduced density
matrix is represented by

Lp
loalij =Y XinXja= |-----
a=1
(16)

For brevity, from now on we drop the subscript 4 and set
p = p4 unless stated otherwise. Similarly, tracing over the
subsystem A degrees of freedom leads to the following
diagram:

La Lp (e at

Tip= 30 Xl = (Lo

i=1 a=1

(7

The ensemble averaging over the probability distribution,
Eq. (9), is accounted by connecting the diagrams (from the
top) with a double line as in

R
LuLg ¥ A (18)

where the braket ( - ) denotes the ensemble average over
the probability distribution, Eq. (9). For example, we may

write

(Trp) = =1,

where for every solid (dashed) loop we multiply by a factor
of L4 (Lg). This ensures the correct normalization on aver-
age. Rényi entropies can be computed similarly. From now
on, we omit the matrix indices in diagrams for simplicity.

Review of Rényi entropy calculations: We now review
how second and third Rényi entropies are calculated and
briefly touch upon the leading-order diagrams in the two
regimes Ly > Lg and L4 << Lp. These would constitute a
useful reference for our later comparison with Rényi nega-
tivities. The purity (or second Rényi entropy) is evaluated
as follows:

(19)

T =|L____ Lo
= | L : (20)
and its ensemble average is found to be
= — + —_—,
Ly Lp (21)

which matches the exactresult [121], (L4 + Lg/L4Lg + 1),
in the large L4Lg limit.
The third moment of p is given by,

3 1

+ (-
=— —5
LALB LA (22)

+
Ly

which also matches with the exact results [28] in the large
Besides a systematic way of evaluating Rényi entropies,
another advantage of the graphical representation is that it
is easy to find the pattern of dominant diagrams in a certain
regime of parameters. For instance, when subsystem 4 is
much larger than subsystem B, i.e., L4 > Lg, we get
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while in the opposite regime L4 << Lg, we obtain

<TI‘pn> %m (A :L1147n

(24)

Another useful way to view the leading terms is by assign-
ing a genus number to the diagrams. As explained in
Appendix B both terms above have zero genus. On a side
note, these diagrams can be viewed as the presence and
absence of replica wormholes, respectively, in the gravita-
tion interpretation of the random matrix theory where each
term correspond to a saddle-point solution [9]. It further
provides a simple way to derive the leading term in Page’s
formula, Eq. (12), for the entanglement entropy.

Implementing partial transpose: We now incorporate
the PT as an operation on the density matrix (16). Let
us recall that subsystem A is further partitioned into A4,
and A4,. So, we define a tripartite vector X(,;,), and trace
out susbystem B to obtain the following reduced density
matrix

[p}hiz,j&jz = ZX(*’L.li2)’(]{X(jlj2),a =it---"[ y
) (25)

where the dotted and solid lines correspond to subsystems
A and 4,, respectively. We define PT diagrammatically by

[pTz]hinljz = ZX?i1j2)7aX(j1i2)7a =
: (26)

The underlying operation in the above diagram is to swap
the indices for one subsystem as emphasized by indices
highlighted in red. Such implementation of the PT is
indeed not limited to random density matrices and can be
applied to deterministic density matrices of spin chains
[122].

We now run two sanity checks on our proposed diagram-
matic representation of the PT. Both conditions must be
met even without ensemble averaging. First, the PT is trace
preserving,

27)

which clearly holds since the crossings are only meant to
rearrange the way matrix indices are contracted and can be
removed or lifted by moving the lines around. Second, PT

has to obey the identity Tr[(p2)?] = Trp? [123],

which is manifestly the case upon comparing with Eq.
(20) and the fact that lines only represent how indices are
contracted and can be moved freely.

Calculating Rényi negativity: The lowest nontrivial
moment of the PT, which differs from the Rényi entropies
is the third power, which is given by

Tr[(p"2)%] =

LA, +3Lalp+ Ly + L,

(LaLp)? 7
(29)
which again matches the exact results [23,25],
L + L3 + Ly +3L4L
(Tr(pT2)3> _ Ay Ay B ALB (30)

(Lalg + D(Lalp +2) °

in the large LyLp limit. The difference between the exact
expression and our large-L formula is at least of order
[1/(L4Lg)?], which is due to normalization factor in the
denominator of Eq. (10). We address a systematic way to
evaluate these corrections later in Sec. 1. It is worth noting
that unlike the Rényi entropies, which are computed for
the untransposed density matrix and contain only planar
diagrams, the partially transposed one may have contribu-
tions in terms of crossed diagrams in the upper half, since
we already have crossings in the lower half of the diagram.
For instance, in the above calculation we see that there are
four terms and the last term involves crossings in the upper
half. This, however, does not occur in the untransposed
case as shown in Eq. (22).
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Comparing with the third Rényi entropy, Eq. (22), we
notice that

(Tr(p®) — Tr(p™)’) = L1 = L3P = L)), (31)

which means on average the third moment after PT is
smaller than that before. Furthermore, it is interesting to
note that the third Rényi negativity, Eq. (28), has a permu-
tation symmetry among the three parties upon exchanging
Ay, A, and B, which also holds for the exact expression,
Eq. (30).

Using the diagrammatic rules, We can write down the
exact expression for the nth Rényi negativity of Wishart
matrices:

1 X X
(P) y c(PyoP) yc(P—oP)
<Tr(pT2>">=m§iL§ Ly "L, (Y
PeS;,

Here, P € S, is a permutation of » indices and c(P) is the
number of cycles in P, including trivial ones; for exam-
ple, O = (12)(3) € S5 has two cycles and c(Q) = 2. Py
are two special permutations defined as PL(i) = (£ 1)
mod n, i.e., cyclic (anticyclic) permutations. P o P, is a
composite permutation, which performs permutation P,
after permuting by P,. This expression was also produced
by free probability theory techniques in Ref. [30].

In the remainder of this section, we use an approximate
form to the above expression by finding the leading-order
term in two possible regimes: Ly < Lp and Ly > Lp,
based on which, we compute the logarithmic negativity by
analytical continuation as in

(Eayuy) = lim log, (Tr(p™)™"). (33)

2

First, in the regime when the subsystem B is larger than A4,
we get

regardless of n being odd or even, where the corrections are
smaller at least by a factor of (L4/Lg). Taking the replica
limit of this formula, we obtain (£4,.4,) = 0. Second, we
consider a regime where L, >> Lg. This regime can in turn
be divided into two subregimes depending on whether or
not 4, and 4, are smaller than half the total system. When
each party is smaller than half the total system, i.e., Ly, <
LgL,, where s = 1,2 and 45 denotes complement of 4, in

subsystem 4, we obtain from Eq. (32) that

CiL
T\ (LAkL;)" n =2k,
(Tr (p 2) )~ rine (34)
it "=kt

which come from diagrams of the following types:

(35)

and

(36)

for even and odd n, respectively. Here, the corrections are
smaller at least by a factor of (L, /LgLy;) or (Lg/L,), and
C,, is the nth Catalan number

, 37
n+1 7)

n .
where k ) denotes n choose k, which comes from

counting the number of leading-order diagrams by using
Eq. (32) (see Appendix A for a derivation). Using free
probability theory techniques, a similar formula was
derived in Refs. [21,26]. The appearance of the Catalan
numbers is the first hint that the spectral density is related
to the semicircle law [8]. This is because

(Tr(p™)") = /dé §"Pr(§), (3%)

and we know that moments of a semicircle probability
distribution is given by the Catalan numbers,

1 2
— | dxx*V4—x2=C,. (39)

2w )

Using Eq. (33), we take the replica limit of Eq. (35) to
obtain

1
(Eayoay) = 2 (log, Ly — log, Lg) + ¢y, (40)

where ¢; = log(8/3m) comes from taking the replica limit
of the Catalan number, Eq. (38).

Lastly, we consider the subregime of L, > Lg where
subsystem A; is larger than half the total system, i.e.,
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Ly, > LgLy,. The dominant terms in Eq. (32) are given
by

Ly "Ly n = 2k,
)~ (41)
(LgLg)'™" n=2k+1.

For instance, the corresponding diagrams for n = 4 and
n = 5 look as follows:

n

(Tr (p")

(42)

(43)

One should notice that there are always n loops of 4;, one
loop of B regardless of the parity of n. In contrast, the num-
ber of loops of 4, depends on n being odd or even: There is
only one loop of 4, in the odd moments while there are two
loops in the even moments. The other limit, Ly, > LgLy,,
can be calculated similarly. Analytically continuing the
even moments implies that

(€4y:4,) ~ min(logy Ly, logy Ly, ). (44)

We can further justify our expansion by another way of dis-
tinguishing leading terms from subleading ones. As usual
in random matrix theory, we can assign a genus number
to a diagram here, too. As we explained in Appendix B,
the diagrams for the moments of p’2 can be characterized
by two genus numbers (as opposed to bipartite geometry
where there is only one genus) associated with the sub-
graphs composed of 4;B and A, B. The PPT and semicircle
law regimes correspond to zero genus numbers, i.e., pla-
nar diagrams with respect to both subgraphs, whereas the
dominant diagram in the maximally entangled phase is
characterized by g; = 0 and g» = [(k — 1/2)] (see details
in Appendix B).

To sum up, let us rephrase all the results in terms of the
number of qubits within each subsystem. We find that

(gAllAz) ~ 09 NA < NB: (45)
while lfNA > NB,

TNy —=Np)+c1, Ny <%,
(gAl :A2 ) ~ (46)
min(Ny,,Ny,),  otherwise.

(a) (b)
FIG. 4. Schematic representation of a tripartite random pure
state in terms of Bell pairs (see the main text for more explana-
tion). Each circle represents a qubit, and two qubits connected
by a line represent a Bell pair. The three phases in Fig. 2 are

illustrated for ten qubits: (a) Entanglement saturation regime, (b)
maximally entangled regime, and (c) PPT regime.

The above expression can be understood heuristically in
terms of a collection of Bell pairs. We denote the number of
Bell pairs shared between s and s’ by ny.¢. Figure 4 shows
examples for each regime when N4+ Nz = 10. Using
Page’s formula for the bipartite entanglement entropy, Eq.
(12), we may write

nA12A2 +nA1:B ZNAI’ (47)
Ngydy + N4y = Ny,, (43)
n4,:8 + n4y:8 = Na, (49)

in the saturated entangled regime where A, and A4, are
comparable in size with each other [and crucially larger
than (1/2)(N4 — Np)]. This in turn gives

1
Edyiay = Nypay = E(NA — Np). (50)

A schematic example in this regime is shown in Fig.
4(a). In this representation, moving the entanglement cut
between A, and 4 is described by moving one of the Bell
pairs shared between 4 and B from A to A, or vice versa.
It is evident that such a process does not change £, .4,.

In contrast, in the maximally entangled regime where
A, is larger than half the system [Fig. 4(b)], from Page’s
formula we have

nA1:A2 +nAIZB =NA|9 (51)
nAliAz + nAz:B = NAl +NB’ (52)
ny4,:3 + n4,:3 = Np, (53)

which implies
Euyay = Nayay, = Ny, (54

A similar derivation leads to &4,.4, = N4, when Ny, >
Ny

2°
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The PPT regime is realized when subsystem B is larger
than subsystem A [Fig. 4(c)]. Here, we may write

nA]IAZ +nAliB =NA1) (55)

N4 dy + N4y = Ny,, (56)

nAllB +nA2:B =NA’ (57)
which implies

gAltAz = Ngy:4y) = 0. (58)

The above observation means that the Bell-pair-type entan-
glement can reproduce the correct scaling form for the
leading-order term of the logarithmic negativity, which
can be a consequence of the fact that tripartite random
states are rarely multipartite entangled. This is an inter-
esting technical point, which is beyond the scope of this
paper and would be a subject of a future study. A similar
phenomenon was already pointed out in stabilizer states
[124,125].

Now that we have established the basic properties of our
graphical representation of the PT, we take one step fur-
ther to investigate the spectral properties of p’2 in the next
two sections. We should also note that the above derivation
of the logarithmic negativity is based on analytical contin-
uation of the leading-order terms of the Rényi negativity
in various regimes. However, this process may have some
issues especially how we analytically continue the Rényi
index. In the next part, we find the resolvent function and
calculate the full spectral density of p’2, which provides an
unambiguous way to derive the logarithmic negativity and
justifies Eqgs. (46) and (47).

V. NEGATIVITY SPECTRUM

Our central goal in this section is to find the spectral den-
sity of the partially transposed density matrix as defined
in Eq. (5). Let G(z) be a resolvent function (or one-point
Green function) for a random matrix H,

G(z) = i<Tr<Z_1H)>, (59)

in terms of which we can compute the spectral density

Ly )
PE) = —;Im 611_1)1}) G(z)|z=€+l.€, (60)
since
li PV b s\ (61)
im = — —im .
€0 ) + ie P

Diagrammatically, it is more convenient to work with the
untraced quantity, i.e., the inverse matrix,

Giz) = (z—H)™Y, (62)

which is related to G(z) via
[G))y = GGy, (63)

thanks to the disorder averaging, Eq. (18). Because of this
property (also known as the Haar symmetry), we can use
the matrix G(z) or the scalar G(z) interchangeably.

The diagrammatic approach follows by expanding G(z)
in inverse powers of z

1 1
G =1 2 oo (TrCH™)

n=0

1 1 1.1 1 1 1
<Tr<—+—H—+—H—H—+~-->>. (64)

Ly z z z z z Z

In our graphical representation of a given term, we insert
the diagram (26) for every power of H.

In what follows, we evaluate the above infinite sum by
finding a recursive relation for G(z), also known as the
Schwinger-Dyson (SD) equation. First, we show that the
SD equation in the regime where each subsystem of 4
is smaller than half the total system, i.e., Ly, < Ly.Lg,
takes a quadratic form and the spectral density is given
by a semicircle law. In this limit, we neglect certain dia-
grams. Next, we explain the lowest-order corrections to
the semicircle law distribution. Finally, we discuss a more
general calculation, which assumes only L, > Ly, (with
no constraint on Lg) and includes the diagrams, which we
neglected in the semicircle regime. This calculation results
in a cubic SD equation, which is used to map out the phase
diagram in Fig. 2.

A. Semicircle law

Here, we find the resolvent function in the regime where
each subsystem A;, A, is smaller than half of the full
system, Ny, < (N/2). Mathematically, this regime cor-
responds to the limit where (Ly,/LpLy.) < 1 where A
denotes the complement of 4, within subsystem 4. To
carry out calculations systematically such that our pertur-
bative expansion makes sense, we use a different normal-
ization than that of Eq. (18). The actual normalization will
be included via rescaling after the spectral density is eval-
uated. To the leading order, we neglect the denominator in
Eq. (10) and consider the Wishart matrix

H=Lp(xxH", (65)

in the G(z) expansion, Eq. (65). The ensemble average
is then represented by triple lines with amplitude (1/L4)
(given the above normalization),
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We should note that in the right-hand side of the above
equation terms are ordered such that they contribute as g,
g%, ¢°, -+ (except the first term in the first row, which
is 1/z), where ¢ = Lg/L4 as defined earlier. Also, the
diagrams of the following sort (which appear in the dia-
grammatic expansion of the propagator for p [118]) are
subleading here, since

N LBL1241 o LB 1

L% Lal?%)

(68)

which compared to the dominant diagram of Tr(p'2)3 (that
is of order ¢?) is smaller by a factor of (L4, /L4,Lg) (that is
our perturbation parameter). We note that all diagrams here
are planar with respect to both subgraphs 4,8 and A, B, or
in other words, g, = g» = 0.

Thus, G can be evaluated as a geometric series in terms
of a self energy ¥ as in

@D DO

z—%(z) 69)

(66)

(67)

where the self-energy ¥ consists of the sum of all one-
particle irreducible diagrams and reads as

(70)
(71)

which leads to the algebraic relation
Y =q(l +G). (72)

Notice that in the graphical representation (72) we resolved
the crossings as they are mainly implemented to keep track
of matrix index contractions. Finally, we combine Egs.
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(70) and (73) to arrive at
—(z—gq)G+1=0. (73)

The corresponding solution then reads,
1 2
6@ =5 (c—p-Ve—0>—4g). (4
q
Using Eq. (61), we get a semicircle-law spectrum

n(x) = q\/4q - (x—9)7, (75)

which upon a proper rescaling leads to

2Ly
Pr&) = (é - —) ‘S ——|<a (76)
where the radius is given by
= an
a= .
VLiLp

The semicircle law, which we derive here, was used as an
empirical fit to numerical simulations in previous works
[23,24]. As we see, to the leading order in our pertubation
parameter (L4, /LgL,.) the spectral density (and hence the
log negativity) depends only on L4/Lg and not on the rela-
tive ratio of the subsystem sizes L4, /L4,. This means that
the entanglement is independent of how we partition 4 and
may be thought of as topological. For this reason, we call
p a saturated entangled state.

A comparison of the semicircle law with the exact
numerics is shown in Fig. 5, which indicates a good agree-
ment. An immediate result of the semicircle distribution is
that for @ > (1/L4), there exist some negative eigenval-
ues, while a < (1/L,4) all eigenvalues are positive. This
is the anticipated NPT-PPT transition (also known as the
entanglement phase transition [24] or sudden death of the
entanglement in the literature [42,57]). The transition point
corresponds to Lg = 4L, (or ¢ = 4), which can be inter-
preted as when subsystem B has two more qubits than
subsystem A4.

Another interesting observation is that the range of the
eigenvalues is the same both before and after PT, 2a =
Ay —A_ = (4/s/LyLp), where Ay are the limits of the
MP distribution in Eq. (14). Extreme deviations from this
behavior occurs away from the saturated entangled regime.

1.5
« Ng=6 0
Ng=7 2
z
« Ng=8 " s
e Ng=9 < -
1.01 NB—10 g °
« Np= <
("9 -
<
-~ 1 v
st ¢ Na,/Na !
a
0.5 -
//‘y \"\\
0.0 / : r +
-1 0 1 2 3

FIG. 5. Negativity spectrum of a random mixed state, Eq. (10),
in the entanglement saturation regime (cf. region III in Fig.
2). Circles are numerical simulation and solid lines are semi-
circle law, Eq. (77). Inset shows the location of each curve
(color coded) in the phase diagram. Here, we choose Ny, =
N4, = 3. Ensemble averages are performed over 10* samples.
Small fluctuations are remnant of the universal oscillations due
to finite-size effects.

We plug in the semicircle law to Eq. (6) and derive an
approximate form of the average negativity [23],

i (ﬂm%)ﬂ),

3n

<5A|:A2 >S log (
(78)

where (-),, denotes average using the semicircle law
approximation, Eq. (77). Above the transition point ¢ > 4,
i.e., Lg > 4L, this formula gives zero for the average LN.
Furthermore, if we take the limit ¢ < 1 (deep in the NPT
regime) the dominant term comes from the second term
inside parenthesis above and yields the same result as Eq.
(41) including the order-one constant c;.

As mentioned, so far in this regime, neither the spec-
tral density nor the LN depend on how we partition the
subsystem A. In fact, the dependence on the ratio of sub-
systems A; and A, shows up only at higher orders, which
we elaborate below.

1. 1/L corrections

Here, for simplicity of discussion, we restrict to the
concrete large-L limit where Ly, Ly — oo and ¢ = Lg/Ly4
is held fixed with 0 < g < co. We further assume that
n =Ly, /Ly, is kept fixed with 0 < n < 00 as Ly — o0.
The one-point Green’s function of H = Lg(XX ")’ there-
fore has a perturbative expansion in terms of a single
small parameter 1/L4 with Eq. (75) being the leading-
order result. The next-to-leading-order correction to this
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one-point function is found to be

-1
Gm@=—4?%L)G@@@U+am.0%
A

Here, by abusing the notation, G(z) denotes the leading-
order one-point function. The key to compute GV is to
consider the following two diagrams:

’ (80)

o q/Ln+mod(n,2)72
= A ,

(81)

both of which contribute to GV (z) when n = 3 or 4 [126]
and we have neglected them in Eq. (68) as discussed
around Eq. (69). In fact, the most general diagrams for
G (z) can be obtained by decorating the above diagrams
at n = 3,4 with order-one terms, which consists of two
steps. First, each internal bare propagator (not the two
ends) should be replaced by G(z) that is the full leading-
order propagator. Second, we can take any single diagram
of G(z), cut on a bare propagator to separate it into two
parts (possibly still connected by contraction lines) and
then glue the two parts to the two ends of each order-
1/L4 diagrams above. This second step gives a factor
(1/z) x [-zG'(z)] where —zG'(z) counts the number of
different ways to separate a G(z) diagram into two and 1/z
is the additional bare propagator resulting from the cut-
ting. Combining all these contributions leads to Eq. (80)
for GV (2). This expression is derived for the Wishart ran-
dom matrix, Eq. (11), which does not have a fluctuating
trace in the denominator as in the random mixed state, Eq.
(10). However, it turned out that the fluctuations of this
normalization factor in Eq. (10) is of order 1 /Lf1 and there-
fore contribute at higher orders. We have verified that Eq.
(80) coincides with the exact expansion (32) near z = oo
at least up to order 1/z!'! in the large-L limit.

Using Eq. (80), we obtain the relevant correction to the
spectral density of H via

Sn(x) = —L—AIm lim GV (x + ie) (82)
T e—0t '

(a) (b)

0.0

—0.1

sn(z)/(n+n"")
LaSN/(n+n"")

z q

FIG. 6. (a) Correction to the entanglement negativity spec-
trum: 8n(x)/(n +n~") for a few different values of ¢ as indi-
cated on the top of the figure. (b) Correction to the negativity:
L8N /(n+n~") as a function of g = Lg/Ly.

dn(x) is supported on [a_,a ] with ax = g +2,/q, iden-
tical to the support of the leading-order spectral den-
sity, Eq. (76). Furthermore, én satisfies the condition
[ dx x>28n(x) = 0, reflecting the fact that GV (z) con-
tains only order z™* or higher terms near z = co. Con-
sequently, the correction to the spectral density of p’2 is
given by dPr(&) = Lgén(Lg&), and the correction to the
negativity NV'(p) in Eq. (3) is computed via

SN = ———

dx xén(x).
qLA x<0

(83)

Figure 6 shows §n(x) for a few different values of ¢ and
SN as a function of ¢. n(x) almost always has power-law
divergences with power —1/2 near the two ends a4 of its
support, except for ¢ = 1 where n(x) diverges at a, but is
finite at a_. We find that the correction to the negativity
is always negative when ¢ < 4 and zero when g > 4. The
factor (L/]l2 + LZZZ) =L;'(n+n~") then implies that the
entanglement between A, and A, is maximized when n =
1 provided that L, and Lg are held fixed.

We finish this part by some remarks regarding the rela-
tion between p’2 and the GUE ensemble. Recall that the
leading-order spectral density of p’2 is given by a semi-
circle law, which looks the same as that of a (shifted and
properly rescaled) GUE matrix. Such a GUE-type matrix
can be defined using a 1-Hermitian matrix integral

Z = / dH e FTVH) | (84)

where H is an L, x L, Hermitian matrix and V(x) in
general is a real analytic function that directly applies to
the eigenvalues of H. Our result for G\ (z) shows that a
partially transposed Wishart random matrix is not equiv-
alent to a GUE-type matrix for arbitrary g and 7, since
there is no correction of order 1/L in GUE [127]. In
fact, it is not equivalent to any 1-Hermitian matrix inte-
gral defined above because for such random matrices, the
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general multi-point Green’s functions at all orders are com-
pletely determined by the leading-order one-point function
[127,128].

In the next part, we take on a less restrictive limit Ny, >
N4, and calculate the resolvent function by including all
terms of type Eq. (81) in the sum Eq. (68). The resulting
resolvent function captures the right half of the phase dia-
gram in Fig. 2 and also reproduces the semicircle law in
the regime studied above.

B. General result

Here, we derive the resolvent function in the limit where
N4, > Ny,. To this end, we choose the normalization of
the random matrix as /' = LpL,, (XX %2 in Eq. (65) and
carry out a (1/Ly4,) perturbation theory. Given this normal-
ization, the ensemble average is represented by triple lines
with a factor of (1/Ly,),

‘ =7 51'1]'152'2]'2504[3?
A (85)

and as usual close loop of subsystem s = A4, A4, or B gives
a factor of Lj.

We note that since there is an even and odd effect for
the Rényi negativity, we need to consider two self-energy
functions in the expansion of the resolvent function

(86)

where

(88)

corresponding to effectively crossing and noncrossing dia-
grams of order (Lg/L,,) and (LgLy4,/Ly,), respectively.

A few comments on the topology of the diagrams are
in order. As we saw, PT involves a line crossing and

the matrix ensemble (XX ")”2 is not a Gaussian ensem-
ble. Therefore, planar diagrams are not necessarily dom-
inant terms to the resolvent function. As we explained in
Appendix B, one can assign two genus numbers g; and
& to the two subgraphs 4B and A4,B. In the X, and
¥, series shown above, the diagram are all planar with
respect to 4B, i.e., g, = 0, whereas g, varies between 0
and [(k — 1/2)] depending on the diagrams. As discussed
in Sec. IV [below Eq. (45)], the dominant diagram cor-
responds to g, = [(k — 1/2)]. An alternative derivation of
the SD equation using digarmatic approach without defin-
ing self-energies is discussed in Appendix C where the
g1 = 0 property looks more manifest.

To derive the Schwinger-Dyson equation, we first define

(89)
and
which lead to the following algebraic relations:
2o(2) = aFy(2), o1
Ee(z) = ﬁFe(Z)’ (92)

where the Hilbert-space dimension ratios are given by

_ LB _ LBLAZ

Ly, Ly

1

Next, we write self-consistent equations for F' functions as
in

(94)
I b 95)
which lead to the following algebraic relations:
F,2) = 1 + F.()G(2), (96)
Fe(z) = Fo(2)G(2). o7
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They can be solved in terms of G(z) as in where 6 = /3, and
3z( —z2) — (B — 1)?
6 0() = MGAR (101)
Fe(Z) = G(Z) X FO(Z) = I—Gz() (98) 9z
z 92(8 — D)@ —z2) — 2722 —2(8 — 1)}
O(2) = i , (102)
Putting everything together and solving for G(z), we obtain

o 108 £ D@) = 0}@) + G(2). (103)

a cubic equation

Our cubic Eq. (100) fully matches the spectral density
G+ B-DG+@—2)G+1=0. (99)  derived from the Stieltjes transform in Ref. [30]. We fur-
ther note that the moments of p’2 is identical to those of
the difference of two independent random Wishart matrices

The proper solution to the above equation can be written  (see Appendix D and Ref. [30] for details).
as Despite the applicability of the above resolvent function
to a wide range of parameters (since we assume only N, >
Gl — e 0 (2) 0 s N 41,), it has a drawb'flck that it is given in terms of a solu-
(2) = D ¢ [0:2(2) + v D(2)] tion to a cubic equation where taking the imaginary part to
[92(2) + @] obtain the spectral density [as in Eq. (61)] leads to quite

1-p an involved expression. Nevertheless, we can numerically
+ , (100)  ° .
3z implement Eq. (61) for the solution (101) and compare
0.0
= PPT (@ Ng =2 (b) Ng =3
i 0.010 0.04
= 05/ _Entanglement saturation -~ 0.008 0.03
E 5 \\\ f’/. <7 0.006
= Maximally™~ _ - Maximally j 0.02
entangled . .7 ¢éntangled - 0.004
Lo N < o002 0.01
0-0 05 10 0.000 ' < 0.00
N4, /Na 20 0 20 40 -0 o 10 20
(C)NB:4 (d)NB:5 (e)NB:6 (f)NB:7
03 0.20 0.20 0.3
0.15 0.15
5 02 0.2
S I\ 0.10 0.10
~— | \\
& ot /N 0.05 0.05 o1
0.0~ — 0.00 0.00 0.0
=T 0 10 5 0 5 25 00 25 50 =2 0 2 4
(9)Np =8 (h)Ng =9 (i) Ng =10 (Y Nsg=11
0.4 05 1.0
0.6
0.4 0.8
5 03
N 03 0.6
- 0.2 0.4 / \
~ / \ 0.2 / 0.4
& / \ / \
0.1 {/ \ o1 021 \\ 02
00l L oo 0.0 J | P
0 2 0 1 2 0 1 2 05 100 15
Lag Lag L4g L4g

FIG. 7. Evolution of the negativity spectrum as the size of subsystem B is increased. This trend corresponds to sweeping a vertical
path from bottom to top in the phase diagram as shown in the first panel. The color circles in each panel are numerical simulations
(averaged over 10* samples) and solid lines correspond to Eq. (101). Here, we set N4, = 2 and N4, = 6. The shaded regions indicate
the domain of negative eigenvalues. Two transitions occur as we crank up Np: First, the transition from maximally entangled to
a saturated entangled state at Nz = 4, characterized by diverging spectral density at £ = 0, second, the NPT to PPT transition at
Np = 10 where the semicircle’s support becomes completely non-negative.
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with matrix simulations. We confirm that LN matches our
earlier result in Eq. (47) when computed via the spectral
density by Eq. (6). Furthermore, Fig. 7 shows a good agree-
ment between the analytical formula (101) and numerical
simulations as we go along a vertical line in the phase dia-
gram (Fig. 2) from a maximally entangled state deep in
the NPT regime towards a PPT state. Along this path we
encounter two transitions: First, maximally entangled to
saturated entangled transition [Fig. 7(c)] and second, NPT
to PPT transition [Fig. 7(1)]. As we see in Figs. 7(a)-7(c),
the spectral density in the maximally entangled regime
where o, 8 < 1 decomposes into two disjoint distribu-
tions. Using the aforementioned property that moments of
p™2 and difference of two independent Wishart matrices are
identical, we find that each of the two distributions in this
regime can be approximated by a MP distribution in the
form of Eq. (14) (see Appendix D for more details). From
this, we also find that (£4,.4,) = logLy,, which justifies
our naive leading-order expansion in Eq. (42).
Furthermore, we can reproduce the semicircle law from
the cubic equation in the right regime of parameters. We
recall that saturated entanglement corresponds to the limit
Ly, < LgLy,, ie., B > 1. Upon appropriate rescaling of
variable z — yL,, which also implies G(z) — L, G(y)

where G(y) := G(yLy,), we obtain

~ 1 - -
2 G+ (g-5 )P +@-nG+1=0, (104)
2 2,

in which ¢ = Lg/L,4. The 1/L,, terms are negligible and
hence we recover the SD equation for the semicircle
approximation (74). We elucidate this behavior in Fig. 8 by
fixing L4 and Ly while changing L4, and L4,. We consider
N = 10 qubits and partition them as Ny = 10 and Nz = 8.
As we see in this figure, for 3 < N, <7 the spectral
density can very well be approximated by the semicircle
law.

C. Phase diagram

In addition, the fact that the spectral density at z =0
undergoes certain changes as we transition from one phase
to another led us to introduce the spectral density at zero,

L
P(0) = —2Im lim G(z =0 +ie),  (105)
T e—0t

as an “order parameter” to map out the phase diagram in

Fig. 2. Putting z = 0 in Eq. (100) and solving for G, we get

—a+Ja2—4B-1)
26— 1) ‘

There are two types of phase boundaries in the phase
diagram: First, the boundary shown as the dashed lines

G(0) =

(106)

0.25 1

0204 °

> 0.15

Pr(La

0.10 1

0.05 1

0.00 -

La&

FIG. 8. Negativity spectrum of a random mixed state p4, Eq.
(10), for different partitions of subsystem 4. Inset shows the loca-
tion of each curve (color coded) in the phase diagram. Here,
Np =38, Ny=10, and Ny, = Ny — Ny,. Circles are numeri-
cal simulations (ensemble averaged over 10* samples), solid
lines are the analytical solution (101), and the dashed line
shows the semicircle law, Eq. (77). Note that for Ny, = 3,4,5
where both subsystems are smaller than half of the full system,
ie., Ny, Ny, < %, the spectrum approaches the semicircle law
regardless of the size of partitions.

which separates the two entangled regimes with different
scaling behaviors, second, the horizontal solid line, which
shows a transition from saturated entangled (semicircle
law) states to PPT states. The former phase boundary is
a continuation of the Page transition and characterized by
a diverging spectral density. For instance, the right dashed
curve corresponds to a vanishing denominator in Eq. (107),

=1 = N; = (107)

5
where N = N4 + Np denotes the total number of qubits.
This means that for Ny, < Nj] both 4 and A4, are smaller
than half the system and we are in the semicircle regime,
whereas for Ny, > Nj we are in the maximally entangled
regime. Similar analysis can be done for the left dashed
curve in Fig. 2. Moreover, we can find the diverging behav-
ior of G(z) near z = 0 by putting 8 = 1 in the cubic Eq.
(100),

2G4+ (@ —z)G+1=0. (108)
The solution near z = 0 is given by the following series
expansion:

e L i3 ),
z1/12 ° 2a 8ar5/2

G@2) = + 0(2), (109)

which implies that Pr(£) ~ £~1/? near & = 0 similar to the
Page transition for pure states.
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The NPT-PPT boundary is characterized by the onset of
vanishing spectral density at zero, that is given by
o> =4 —1). (110)
In terms of number of qubits, this condition can be recast
as
Np =2+ Ny +log, (1= 2%~} (111)
We note that the last term is absent in the NPT-PPT tran-
sition point calculated from the semicircle law, however,
this difference is negligible in the thermodynamic limit
N — oo.
In the next section, we discuss the two-point function,
which reveals further structure in the eigenvalues of p’2
in the saturated entangled regime and indicates a clear

deviation from the GUE ensemble already at the leading
order.

VI. TWO-POINT FUNCTION

To further characterize the negativity spectrum of
random mixed states and uncover potential differences
between p’2 and the GUE ensemble, we compute the
two-point function in this section. This calculation also
provides an example where the trace normalization fac-
tor Tr(XX ") in the density matrix, Eq. (10), can not be
neglected. The two-point function G(z,w) generally pro-
vides more information than the one-point function (prop-
agator) G(z) about correlations between the eigenvalues. It
is defined by

1 1 1
= (i) (L))

where (4B), = (AB) — (4) (B) denotes a connected ensem-
ble average. We restrict to the large-L limit where
Ly,Lp — o0 and g = Lg/L, is held fixed with 0 < ¢ <
oo, such that G(z,w) has a perturbative expansion in
1/L4. In what follows, we first calculate the leading-order
connected two-point function for the partially transposed
Wishart matrix Hy = LpXX " and next, we consider H =
Lpp™ by taking into account the fluctuations of Tr(XX 7).
Our main goal here is to compute the two-point function
and show that p’2 is different from GUE. Nevertheless,
our formulas can be used to calculate joint probability
distribution of two eigenvalues via the following relation:

1
P, 0) = 7 (Tré(§ — H) Tré (¢ — H)).,
A

1
=~ [G(++) + G(——)

- G(—+) - G+, (113)

where G(&,4) = G(& £i0%,¢ £i0%). We note that the
diagrammatic approach is capable of addressing the eigen-
value correlations on scales larger than the spacing
between the eigenvalues (where the physics is essentially
controlled by level repulsion). This is because in the dia-
grammatic method we first take L4 (or similar parameters)
to infinity, which gives us a systematic way to choose dom-
inant diagrams and calculate G(z, w). Eventually, we take
z and w to approach the real axis and derive P(§, ¢). The
fact that we take L4 to infinity first, makes the discrete set
of poles of G(z,w) on the real axis merge into a branch
cut, and we lose all the fine structures [119]. Therefore, the
study of level statistics of p’2 is beyond the scope of this
paper as it requires a different technology, which could be
subject of a separate study.

A. Partially transposed Wishart matrix

We begin by considering the two-point function of the
properly normalized partially transposed Wishart matrix,
Eq. (66), Hy = Lz(XX")™2. Following Refs. [120] and
[118], we expand

oo o0 1
NiGo(zw) = .0, » >

Each term in the expansion can be computed diagramati-
cally. The most general diagram looks like a wheel

(115)

where the inner and outer big circles represent the two
traces, G denotes the one-point function that we have com-
puted to the leading order and I' is a four-point vertex
function yet to be determined. We find that the follow-
ing diagrams of I' contribute to the leading order of the
two-point function:

................... . —|¢/p

c/p
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where the small squares on the right labeled by ¢ or p are
defined as

— =L

(117)

G.
La,  (118)

These two channels are not of the same order, but one has
to consider both since they differ in how the terminals are
connected: ¢ for crossing means that the two solid lines
switch positions after going through the c-type channel,
while p for parallel means that the solid lines preserve their
positions. Let m be the number of I" insertions in the wheel
diagram above. We find that when m = 1, each of the two
small squares for I' can either be ¢ type or p type. How-
ever, when m > 1, only c-type channels contribute at the
leading order. Summing up all these diagrams, we obtain

L2Go(z,w) = BZBW{ —In[1 — ¢gG(z)GW)] + ¢G(z)G(w)
x [G@) + Gw) + G@Gw)] ). (119)
To compare this with the two-point function of GUE, it

would be more insightful to recast the above expression in
the following form:

G (2)G (W) 1\’ )
(G — Gl (z - w) ta0E

x G W[G(z) + Gw) + 2G(2)GW)].
(120)

L2Goy(z,w) =

The first two terms are nothing but the GUE result whereas
the last term signatures a deviation. This further substan-
tiates that the partially transposed Wishart matrix (XX )72
in the semicircle regime is not a GUE matrix, besides what
we found in the previous section that the 1/L corrections
to the negativity spectrum is different from those of GUE.
In deriving Eq. (121), we make use of the identity

—w)G(2)G

(121)

which is in turn obtained from 1/G(z) = z — q(1 + G) by
combining Eqgs. (70) and (73).

B. Partially transposed random mixed state

Here, we would like to investigate the effect of the nor-
malization factor in Eq. (10). We consider H = Lgp’2,

which differs from Hy = Lg(XX )™ by the trace fluctua-
tion. We write H = H,/(1 4 8) where

1 N [
=Tr(xXXH-1=— i\ i
§=T(xXx 1= )

(122)

The —1 subtraction indicates that, when applying the
right-most diagrammatic representation, one shall avoid
self-contraction loops of 8. Let f (z) = Tr[1/(z — Hp)], we
have the Taylor expansion:

1 o0
Tr< ) =Y [L,f @18",  (123)
z—H e
where £, is a differential operator defined as
| - 1 9n—1
0: L.z=—Z=" n-l ,
" @= T Y aon® s
(124)
n=0: Ly=1 (125)

Therefore, the two-point function has the expansion

LiGEw) =Y La@LuW]{f @Ff ()8™™)

n,m

— [ @8")r we") .

Let us now explain how to compute expectation val-
ues with § insertions. Take (f (z)8") for example. Before
adding the §" term, we already have a set of diagrams
contributing to (f (z)), which we call the main diagrams.
Inserting the §’s represented by the staple-shaped figure
may modify the original diagrams in two ways: the staples
may either attach to contraction lines of the main diagram,
each contributing a factor 1/(L4Lg), or they can form loops
among themselves (but not single loops, which have been
subtracted away). Obviously the latter type is more signif-
icant whenever possible because more loops are formed
which give more dominant large-L factors. We compute
the following expectation values, which contribute to the
leading order of the two-point function:

(126)

1
(f (2)8) = » LB[—ﬁl(z)uf(z)), (127)
{f 2)8%) = {f (2)) + higher, (128)
LyLg
1
f @f ) = ——[=L12) = LiII{f @)f (W),
ALB
(129)
1
{f @f W)8?*) = 77 f @ W) + higher. (130)
AL B

The first line is obtained using the fact that the operator
—L1(2) extracts the number of contraction lines in a main
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diagram for (f (z)), similar for the third line. Combining
all these results, we find

L2G(z,w) = L Go(z,w) — é[G(z) +2G'(2)]

x [G(w) + wG' (w)]. (131)
We see that the two-point function of p'2 differs from that
of GUE by the last terms in the above equation and Eq.
(121). We note that the former contribution is proportional
to ¢~ ! while the latter is proportional to g.

VII. DISCUSSION

In conclusion, we investigated the entanglement prop-
erties of random mixed states (of two parties 4; and A,
which are coupled to the bath B) through the window of
the partial transpose and logarithmic negativity. To this
end, we developed a graphical representation of a random
mixed state and its partial transpose, which provides a sys-
tematic large-L perturbation theory to compute the Rényi
entanglement negativities, resolvent function, and other
useful quantities to characterize the density matrix.

Studying random mixed states can be thought of as
adding a new axis to the one-dimensional (1D) phase dia-
gram of random pure states to account for how mixed
the random state is due to the coupling to an external
bath. In other words, we were dealing with two knobs:
the relative ratio of number of qubits within our system 4,
(N4, /N4,), and the relative size of the system to the bath
(Np/Ny4). This results in a two-dimensional (2D) phase dia-
gram (Fig. 2) which is mirror symmetric with respect to
the middle line Ny, = Ny, similar to the 1D phase dia-
gram of Page states, which is symmetric with respect to
the middle point. There are three distinct phases in the
2D phase diagram: maximally entangled, saturated entan-
gled, and PPT (unentangled) states. In the case of NPT
(entangled) states, the bath has to be smaller than the sys-
tem by two qubits, i.e., N < N4 + 2, otherwise the bath
destroys the entanglement in 4 and fully decoheres p4 into
a PPT state. The maximally entangled states are realized
when either 4; or A, are larger than their complement
(e.g., Ny, > N4, + Np), and the logarithmic negativity is
bounded by the size of smaller subsystem. As we increase
the number of qubits in B, the entanglement negativity
does not change until the limit N = N, — N, is reached
where the system undergoes a transition and the spectral
density of p’2 diverges at zero. The rigidity of the max-
imally entangled phase against increasing the bath size
may be related to the fact that entanglement within 4 is
encoded in a complex way, which cannot be reduced by
weak perturbations. This phenomenon is reminiscent of
what has recently been observed in late-time states of ran-
dom quantum circuits [129,130] where the state is said to
be a quantum error-protected code in the sense that the

entanglement is robust against weak projective measure-
ments. In the saturated entangled states both subsystems
are smaller than their complements and the logarithmic
negativity is related to the difference of the system size
and the bath size, i.e., Ny — Np. Interestingly, the entan-
glement in the latter case does not depend on how p, is
partitioned. We also calculated the spectral density of ,052
or the entanglement negativity spectrum for these phases in
the thermodynamic limit where Ny, Ny,, Npg — oo while
the ratios are held fixed. We found that to the leading order
in the Hilbert size dimensions, the maximally entangled
states give two disconnected MP distributions, while both
saturated entangled and PPT states give a semicircle-law
spectral density. The semicircle-law regime has no analog
in random pure states, especially in the saturated entan-
gled regime, which describes a multipartite entangled state
among A4, A,, and B.

A complementary way of describing these three entan-
glement phases is in terms of replica symmetry. A replica
symmetry transformation corresponds to the cyclic permu-
tation of replicas (i.e., density matrices) in the moments
Tr[(p"2)"]. Hence, Tr[(p'2)"] is manifestly invariant under
this transformation. When viewed diagrammatically, the
nth moment looks like an n-site chain and the Z, cyclic
permutation corresponds to a shift by one lattice con-
stant (or a discrete translation symmetry). The dominant
diagrams in the maximally entangled and PPT phases
given in Egs. (43) and (34) are invariant under the cyclic
permutation; however, each term in the saturated entan-
gled phase is not invariant (cf. diagrams in Appendix A)
and the saturated entangled phase can be regarded as a
replica symmetry breaking phase [131]. This phenomenon
may be helpful in understanding critical properties at the
transition points. We should note that of course the overall
sum remains invariant in all three phases.

Having a systematic technique at hand to do calcula-
tions, we rigorously address potential confusions regarding
the following numerical observation: The appearance of
the semicircle-law spectral density at the leading order
may suggest that pjz belongs to a (shifted) GUE ensem-
ble. However, we showed that this similarity stops beyond
the leading order, and the higher-order corrections to the
resolvent function and the connected part of the two-point
function of eigenvalues are manifestly different between
p:? and GUE.

There are several open questions and new avenues for
future research. The diagrammatic implementation of par-
tial transpose proposed in this paper may be adapted
to implement other manipulations of the random den-
sity matrix such as realignment [132—134] and reflected
entropy [135], which are also considered as candidates to
detect entanglement in mixed states. It would be interesting
to map out the phase diagram of random mixed states by
means of these measures and find out possible similarities
and differences.
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It is well known that random pure states share a lot of
similarities with the late-time state of a system, which is
evolved under a chaotic Hamiltonian or an arbitrary high-
energy eigenstate of such a Hamiltonian (which satisfies
the eigenstate thermalization hypothesis [1]). It would be
interesting to check to what extents our findings for ran-
dom matrices apply to the actual states (see Ref. [136]
for a recent study in this direction). To motivate this idea,
we numerically checked our prediction for the logarith-
mic negativity curve [colored blue in Fig. 3(b)] in a highly
excited state of a spin chain Hamiltonian. See Appendix E
for details of the numerics. The result is plotted in Fig. 9,
which shows good agreement. As a reference, we also pro-
vided the results for two integrable spin chains: Ising and
Heisenberg, which show a stark difference, especially in
the plateau regime (see also Appendix E for more exam-
ples in XXZ spin chain). More numerical investigations
of this type deserves a separate study and worth pursu-
ing. Beyond such theoretical analyses, the PPT-NPT and
plateau transitions could in principle be experimentally
studied in trapped-ion quantum simulators [137] thanks to
recent advances in calculating Rényi negativity using the
correlations of randomized measurements [107]. Another
closely related setup, which realizes a volume-law entan-
gled state is time evolution under random unitary circuits
[138,139]. Given the correspondence between the late-
time states under such time evolution and random pure
states [140], studying the time-dependent entanglement
negativity spectrum could be an interesting direction (see
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FIG. 9. Logarithmic negativity of two adjacent intervals of
length N4, and N4, in a highly excited state of a chaotic quantum
spin-1/2 chain (blue circles). Here, Ny, + N4, = 10 and Nz = 4.
For reference, we also show the corresponding plot for two inte-
grable spin chains: Ising chain (red triangles) and Heisenberg
chain (green crosses). See Appendix E for details of the numer-
ics. The agreement between the random matrix theory (dashed
line) and chaotic spin chain is evident. To calculate LN from ran-
dom matrix theory (RMT), we numerically take the imaginary
part of the solution to the cubic Eq. (101) and then calculate the
negativity via Eq. (6).

Ref. [141] for preliminary results). More generally, it
would be interesting to apply our results to chaotic Hamil-
tonians using the equilibrated pure state formalism of Ref.
[32]. This may provide a direct connection between our
diagrammatic approach and the replica wormholes of Ref.
[9], leading to a more detailed understanding of the entan-
glement structure present in the black-hole evaporation
process. We leave this to future work.

In this paper, we studied tripartite random Page states.
It would be interesting to apply the formalism developed
here to other types of random states with different struc-
tures and probability distributions such as states on random
graphs [142,143], random matrix product states [144], and
states in constrained Hilbert spaces [145].

Finally, it is worth comparing the leading-order terms in
the logarithmic negativity Eq. (47) with a more commonly
used quantity, namely, the mutual information (albeit it
is not an entanglement measure because it is sensitive to
classical correlations). First of all, the mutual informa-
tion remains nonzero throughout the phase diagram with
a smooth behavior across the NPT to PPT transition. Sec-
ond, we can use the Page formula (12) to calculate the
leading-order term of the mutual information as follows:

(Lgy:4,) =0, Ny < Np, (132)
while if Ny > Np,
Ny — Np, Ny < %,
(IAI:A2> ~ (133)
2min(Ny,,Ny,), otherwise.

Using Egs. (23) and (24), we note that the Rényi mutual
information also yields the same leading-order result.
Hence, we may write £ = (1/2)I® for random mixed
states where « is the Rényi index. Although such a rela-
tion for @ = 1/2 typically holds for tripartite pure states of
(1 + 1)d conformal field theories and integrable models in
and out of equilibrium (where quasiparticle description is
applicable [82,83]), it does not necessarily hold in chaotic
systems (potentially due to the breakdown of quasiparticle
picture [90]). From this point of view, it is a bit surprising
to see that random mixed states obey this relation despite
being representative chaotic states. Further investigations
along this line would be illuminating.
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Note added— Recently, Ref. [136] appeared, which
proposed interesting probes of quantum dynamics based
on entanglement negativity, and which has some modest
overlap with our results in Sec. IV on the Rényi negativity,
albeit in the limits L, = Ly, and L,/Lg — 0 or oo.

APPENDIX A: DERIVATION OF CATALAN
NUMBER IN RENYI NEGATIVITY

Here, we show how the Catalan numbers appear in
the Rényi negativity [Eq. (35)] in the saturated entangled
(semicircle) regime. This can be easily seen by noting how
loops of subsystem B are formed. For instance, we can
write

(A3)

(A4)

where we show all diagrams for the first three even
moments and a few for the eighth moment all of which

are of order L,/ (LyLp)* for n = 2k. To emphasize the B
loops, we mark them by a yellow shading. The number
of diagrams is then equal to the number of noncrossing
partitions of k points, where there are two density matri-
ces per point. For example, group the density matrices
as {(1,2),(3,4),...(2k—1,2k)} where (i,i+ 1) repre-
sents a point. Such a noncrossing partition of points is
by definition the Catalan number C;. A similar derivation
can be carried out for n = 2k + 1 where we single out one
density matrix and treat the rest similar to what is done
above.

APPENDIX B: DIAGRAMMATIC APPROACH
AND THE GENUS EXPANSION

In this Appendix, we discuss the genus expansion of the
moments of the partially transposed density matrix. We
should note that we already have the exact expression for
the moments of (XX )72 [see Eq. (32)]. Here, we wish to
assign a genus number to each term such as those shown
in Table II.

In this context, a Feynman diagram is viewed as a graph.
The genus of a graph is the minimal integer g such that the
graph can be placed on a sphere with g handles (i.e., an
oriented surface of genus g) without crossing itself. The
mapping from a Feynman diagram to a graph works as
follows: the lower part of the diagram is contracted to a
point and the arcs associated with the ensemble averaging
are regarded as edges. For instance, the &th moment of the
density matrix has & (double-line) edges and one vertex.
Using Euler’s relation 2 — 2g = V' — E + F, we have

2-2¢=1—k+F, (B1)

TABLE II.  Subgraph genus and number of loops for each sub-
system in Tr[(p"2)*] diagrams in Eq. (B4). For instance, the
corresponding diagrams for k = 3 are shown in Eq. (28).

k

1
2

0Q
09
3
3
3

N
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where F is the number of loops in a given diagram (or faces
of the corresponding graph) [8]. Therefore, knowing either
genus or number of loops determines the other.

As a warm-up example, let us consider the moments of
the reduced density matrix (i.e., the Wishart matrix). It can
be expanded as follows:

[(k—1)/2]
Tr(p") = LLg)* Z Z ag(m,n) LgLy,  (B2)
( 4 B) g=0 mn>0

where the number of loops is /' = m + n or alternatively,

n+m=k+1-2g, (B3)
Here, ag;(m,n) denotes the number of different pairings
(or degeneracy of a diagram). To find the dominant dia-
gram we need to maximize the exponent in 2"Ns+7N4
where m and n are subject to the constraint that m 4+ n <
k + 1 because the genus g in Eq. (B3) is a non-negative
integer. For Ny > Np, the maximum value of the expo-
nent corresponds to m = 1 and n = k, which impliesg = 0
[e.g., diagram of Eq. (23)]. Similarly, for Nz > N, the
maximum is reached by m =k, n =1, and g =0 [e.g.,
diagram of Eq. (24)]. When N, = Np, the exponent is pro-
portional to k+ 1 —2g so all g = 0 terms contribute at
leading order. Therefore, the dominant term is always a
zero-genus (planar) diagram.

Now, let us consider the diagrams associated with the
moments of p’2. They look more complicated because of
the crossings at the base of the diagram. Nevertheless, we
can characterize these diagrams in terms of the topology of
two subgraphs 4B and 4, B and write

[(k—1)/2]
Tr[(p2)F] =
(™)1 = T gg:o
b e (B4
gl,gz,k(manl’nz) B Al AZ’ ( )

m,ny,ny>0
where

ng+m=k+1-2g, s=12, (BS)
and bg, g, x(m,n1,ny) is the number of different pairings
with the same topology. Here, g, denotes the genus of the
subgraph composed of 4; and B lines after removing the A
lines. Equation (B5) and the fact that exponents are posi-
tive implies that g, < (k — 1)/2. The number of loops and
genus numbers for a few small moments are summarized
in Table II. It is worth noting that there is an additional
constraint on (m,ny,ny,g1,g2) that the diagrams must be
drawn as triple line with & crossings (due to the partial

transpose). By inspection, we find that the necessary and
sufficient condition is

ny+ny; <k+2— (kmod?2). (B6)
We conjecture that three constraints given by the genus
numbers in Eq. (B5) and the above inequality produces
all terms in the exact expression (32). The genus-number
equations can be explicitly derived from diagrams; how-
ever, Eq. (B6) was derived by inspection. To check the
validity of the latter, we verified that the possible diagrams
according to the genus expansion are in one-to-one corre-
spondence with the exact expression up to 12-th power in
Tr(p™)". A rigorous proof would be subject of a future
work.

Now, let us discuss which term dominates in each phase.
In terms of number of qubits, each term in the expan-
sion scales as 2”8 N4 T12Nay Firgt we consider the limit
Np, N4, < Ny, as a representative of the maximally entan-
gled regime. In this case, we need to maximize n; where
we get ny = k and m = 1. Using Eq. (B6), we find that
the maximum value for n; is 1 (2) for odd (even) values
of k. Hence, the dominant diagram here has g; = 0 and
g = [(k—1/2)]. As for the subleading terms, we have
summed over all planar diagrams with respect to the 4B
subgraph as is done in Eqgs. (88) and (89). Similar results
can be derived for the regime N, < N4, by exchanging 4,
and A4,.

The semicircle-law (entanglement saturation) regime
is described as when all three subsystems are smaller
than their complement. Therefore, we need to maximize
all three exponents. To maximize the left-hand side of
Eq. (B5), we need to put g; =g, = 0, which implies
planar diagrams. For odd moments, the solution to Eq.
(B5) is given by n; =n, =m = (k+ 1/2). For even
moments, the two candidate solutions are ny = ny, = m +
1 =(k/2)+1and ny = ny = m— 1= (k/2), but the for-
mer term is the dominant term since it is larger by a factor
of 2¥4=N8_The corresponding diagrams are shown in Egs.
(36) and (37) for even and odd moments, respectively.
Lastly, we should note that g; =g, = 0 diagrams are
already included as subleading terms in the summation for
the resolvent function in the ME phase, which means that
the SD equation in this case contains the semicircle-law
solution in the right limit.

Finally, in the PPT regime characterized by N4 < Nj,
we need to maximize m. Hence, we obtain m = k, n; =
ny = 1, which implies g, = g» = 0.

APPENDIX C: ALTERNATIVE DERIVATION OF
THE SCHWINGER-DYSON EQUATION

In this Appendix, we present another diagrammatic way
of deriving the cubic SD Eq. (100) in the limit L, > Ly,.
Therefore, the result is applicable to the right half of the
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phase diagram when N, > Ny,. Similar results can be
obtained for the other half by exchanging 4, and 4,. We
start with the matrix elements of the resolvent function,

+ -
(ChH
Hence, we get the following algebraic relation:
~ Sii 1 . G -
Gj=—+—G; +——Gj
/ Z+ZLA j+ZL124LB )
| B O
* 312 (G2 izky G kv
LT G )
+ ZLjL% [Golisky Giy ey i TT(GS) + - - (C2)

where we define partial traces over the resolvent matrix

[Gl]il,jl = Z Giliz,jliz = TrAQG, (C3)
iy

[GZ]iz,jz = Z Gi[i2,i1j2 = TI'AIG, (C4)

i
which implies

G@) = Gi(z) =Ty Gy = Try,Go. (CH)

We may drop the subscript for the trace unless it is unclear
which subsystem we are tracing out. Performing the trace

over subsystem 4, and A,, we arrive at

Lpg 2k—1
! ; (LaLg)*=1 "2

Lp k72
+ k2=l: DL TGT, (C6)

As mentioned in the main text, because of the Haar sym-
metry G is proportional to the identity matrix; therefore,
we may write

G
—4

[GZ]iz,/'z = LA (C7)
2

12,2

which gives
Tr(GY) ¢
T 7) = P
Ly

(C8)

Hence, the SD equation above is further simplified into

Z Lg G2k—1
zG = LA +

2k—1 7 2(k—1)
o Lalp)™ 0 Ly

+> LGP (C9)
2k 72(k=1)"

o (Lale)™ Ly

Carrying out the geometric series and rescaling the vari-

ables as z — (z/Ly,Lp) and G — LyL4,LpG, we recover
Eq. (100).

APPENDIX D: DECOMPOSING THE RESOLVENT
FUNCTION IN THE MAXIMALLY ENTANGLED
REGIME

According to the free probability theory, the free cumu-
lants R,(H) of the random matrix H in Eq. (65) can be
read off from the inverse of G(z) [denoted by G~'(z)] as
follows:

—1 _ l - n—1
Gl =_+ ;Rn(H)Z : (D1)

where the sum in the right-hand side is usually denoted
by R(z) and called R transform [146]. Free convolution
theorem states that the free cumulants of a sum of two
independent random Hermitian matrices is simplified into
a sum of free cumulants, i.e.,

Ru(H) + H) = R,(Hy) + R, (Hy), (D2)
where H;’s denote the two random matrices. Hence, the
role of R(z) in free probability theory is very similar to that
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of the log of the Fourier transform of probability distribu-
tion in regular probability theory, where the distribution of
two independent random variables x 4 y is given by the
convolution of the respective probability distributions, i.e.,
f (&x+y) =fi(x) *f2(y) and its Fourier transform is given
by a product as in F(w) = F(w)F> ().

From the definition of self energy in Eq. (70), it is easy to
see that R(G) = X (G). In other words, R transform is iden-
tical to the self-energy function X[G(z)] when expressed in
terms of G(z). In our case, from Eq. (99) we obtain

BG+
2(G) = ——. D3
(©) = (D3)
Thus, ¥ can be written as ¥ = ¥ + X, where
X1 = 2g+oé;)’
(D4)
B—«
Yo=————.
2(14+G)

We should note that the self energies of the form ¥ =
t/(1 — G) corresponds to the resolvent function of a
Wishart matrix and the respective MP distribution is given
by

VO =)0 =)

PO) = 2w A

(D5)

where A+ = (1 & /7). Similarly, ¥ = —¢/(1 4+ G) belongs
to minus times a Wishart matrix with the same distribu-
tion as above up to flipping the sign of A. Using the free
convolution theorem, we deduce that the spectral density
given by the solution of the cubic Eq. (100) is the same
as the spectral density of the difference of two Wishart
matrices, W, — W,, with parameters ¢, = (1/2)(« + B)
and % = (1/2)(B — «), respectively. A similar property
was also discussed in Ref. [30].

We can use the above simplification in terms of differ-
ence of two Wishart matrices to calculate the leading-order
term for the negativity in the maximally entangled regime.
As we take the thermodynamic limit, i.e., ¢ < 8 K 1,
there is a simplification in the form of spectral density. The
rank of each matrix can be computed by the area under
the curve P()), which is found to be BL,/2. This means
that there are Ly(1 — 8/2) > 1 zero eigenvalues in both
W, and W,. Therefore, the fact that subspaces of nonzero
eigenvalues are random implies that projection operators
into such subspaces for the two independent matrices W
and W, are orthogonal with high probability. This means
that these two matrices are simultaneously diagonalizable
or in other words they commute. A direct consequence
of this argument is that the spectral density of pjz can
be approximated by a sum of two MP distributions over
positive and negative domains associated with W; and

W,, respectively. We numerically check that this property
holds in Figs. 7(a)-7(c). Using the fact that [ AP(X)d\ = ¢
for the MP distribution Eq. (D5), we can further find the
negativity in this limit

Ly
LsL,

1
(N:‘ll:Az) = h= E(LAZ - 1)7 (D6)

where the extra factor in the first identity comes from
including the correct normalization factor for the density
matrix.

APPENDIX E: CHAOTIC SPIN CHAIN

In this Appendix, we provide details of the numerical
simulation of a highly excited state of a chaotic spin chain.
We consider the following Hamiltonian for a spin-1/2
system

N
Hl — _Z(ZiZH_l +l’leXv[+hzZi), (El)

i=1

as a representative model, which realizes both integrable
and nonintegrable regimes [147]. Here, X; and Z; are
Pauli matrices, we set A, = 1.05, and periodic bound-
ary condition, Z;,y = Z;, is imposed. We study the above
Hamiltonian for two choices of parameter 4,. At i, = 0,
the Hamiltonian is nothing but the transverse-field Ising
model, which is integrable. Consequently, its energy-level
spacings have Poisson statistics. We use this limit as a ref-
erence. At i, = 0.5, the Hamiltonian is chaotic in the sense
that its energy-level spacing has Wigner-Dyson statistics.
We study highly excited states of this Hamiltonian near
zero energy and compare to the RMT results. We find a
very close correspondence in the chaotic regime but not the

—=- RMT
A=0.10
—e— A=0.20
—e— A=0.30
—e— A=0.40
—e— A=0.50
A=0.60
—e— A=0.70
A=0.80
A=0.90
—e— A=1.00

Na,
FIG. 10. Logarithmic negativity of two adjacent intervals of
length Ny, and N4, in a highly excited state of a XXZ spin
chain Eq. (E2) for various values of ZZ coupling A. Here,
Ny, + N4, =10 and Nz = 4. The deviation from the random
matrix theory (dashed line) is consistent with the fact that this
model is integrable.
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integrable regime (see Fig. 9). Given that our exact diag-
onalization scheme is limited to 14 spins, we smoothen
the results by averaging over a small band of energy
eigenstates near zero.

We also studied the antiferromagnetic XXZ chain as
another canonical example of an integrable system,

N
H, = Z XiXiy1 + YiYir + AZiZiyy) . (E2)

i=1

Figure 10 shows that the entanglement negativity curves
deviate from the random matrix theory predictions as
expected.
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