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Recent progress in the realm of noisy intermediate-scale quantum (NISQ) devices [J. Preskill, Quantum
2, 79 (2018)] represents an exciting opportunity for many-body physics by introducing new laboratory
platforms with unprecedented control and measurement capabilities. We explore the implications of NISQ
platforms for many-body physics in a practical sense: we ask which physical phenomena, in the domain
of quantum statistical mechanics, they may realize more readily than traditional experimental platforms.
While a universal quantum computer can simulate any system, the eponymous noise inherent to NISQ
devices practically favors certain simulation tasks over others in the near term. As a particularly well-
suited target, we identify discrete time crystals (DTCs), novel nonequilibrium states of matter that break
time translation symmetry. These can only be realized in the intrinsically out-of-equilibrium setting of peri-
odically driven quantum systems stabilized by disorder-induced many-body localization. While promising
precursors of the DTC have been observed across a variety of experimental platforms—ranging from
trapped ions to nitrogen-vacancy centers to NMR crystals—none have all the necessary ingredients for
realizing a fully fledged incarnation of this phase, and for detecting its signature long-range spatiotempo-
ral order. We show that a new generation of quantum simulators can be programmed to realize the DTC
phase and to experimentally detect its dynamical properties, a task requiring extensive capabilities for pro-
grammability, initialization, and readout. Specifically, the architecture of Google’s Sycamore processor is
a remarkably close match for the task at hand. We also discuss the effects of environmental decoherence,
and how they can be distinguished from ‘internal’ decoherence coming from closed-system thermaliza-
tion dynamics. Already with existing technology and noise levels, we find that DTC spatiotemporal order
would be observable over hundreds of periods, with parametric improvements to come as the hardware
advances.
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I. INTRODUCTION

The quest to build a universal quantum computer has
fueled sustained progress towards the development of
“designer” many-body quantum systems across a variety
of platforms ranging from trapped ions to superconduct-
ing qubits [1,2]. While the ultimate goal of a fault-tolerant
quantum computer is still far into the future, the pos-
sibility of harnessing the computational power of the
quantum world with noisy intermediate-scale quantum
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(NISQ) [3] devices is already a reality. A notable mile-
stone in this context was the recent announcement of
“quantum supremacy” (more accurately, “quantum com-
putational supremacy” [4]) in Google’s Sycamore device,
a solid-state, Josephson-junction-based platform with 53
qubits [5]. While the computational task chosen for this
purpose—simulating the output of random quantum cir-
cuits—may seem rather abstract and not useful in and
of itself (though it does have at least one application
[6]), a very active search for high-impact applications of
NISQ devices is underway. In this vein, two recent works
discussed how to implement highly structured circuits
for quantum chemistry simulations [7] and combinatorial
optimization problems [8] on Sycamore.

Now, a quantum computer is also necessarily a highly
controllable many-body system [9], and so these advances
are also extremely tantalizing to many-body physicists
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looking to push the frontiers of their own discipline.
Indeed, Google’s announcement, signifying a major break-
through in computational science, also heralded the advent
of a new laboratory system with Hilbert spaces of sig-
nificant size, which can potentially be used to host and
discover new many-body physics.

This paper is motivated, broadly, by asking what the
NISQ era of tunable, programmable quantum systems por-
tends for many-body physics; and, narrowly, by asking
what interesting physics could be realized immediately
with Google’s device. Which physical phenomena in the
realm of quantum statistical mechanics can these devices
realize, that have not yet been (as) crisply demonstrated in
any other experimental setting? As with the random cir-
cuit problem, a first demonstration should perhaps explore
a landscape where some landmarks are already known and
can be used to guide the search while leaving room for
discovery.

Two conceptual challenges immediately present them-
selves to the many-body physicist. (i) The natural
time evolutions implemented on digital gate-based pro-
grammable simulators (such as Sycamore) are quantum
circuits rather than Hamiltonians. This is quite far from the
typical setting in which condensed matter theory operates,
which concerns the low-energy, long-wavelength emer-
gent properties of equilibrium many-body systems. This
is also distinct from regimes probed by analog simula-
tors, such as cold-atom platforms, which generally target
specific model Hamiltonians [10,11]. And (ii) the trade-
offs between unitary control and platform size inevitably
build some variation in individual circuit elements, which
presents an additional challenge for simulating finely tuned
model systems. We emphasize here that we are not view-
ing these platforms as universal computational devices that
can simulate any desired unitary evolution [1,12,13] or
allow computational investigation of the properties of par-
ticular Hamiltonians and quantum states [14–16]. Instead,
due to near-term limitations in size and coherence time,
we are interested in identifying physical phenomena that
these platforms can immediately and naturally realize,
as opposed to physics they could realize universally and
asymptotically.

A parallel set of developments in quantum statisti-
cal mechanics furnishes a domain where these specific
challenges turn into strengths: the study of nonequilib-
rium dynamics, and specifically the assignation of robust
phase structure to many-body systems out of equilib-
rium. Remarkably, even without the conceptual framework
of equilibrium thermodynamics, a possibility to identify
phases and phase transitions remains [17–19]. This line of
research has led to the discovery of new kinds of dynamical
many-body phenomena that may otherwise be forbidden
by the strictures of equilibrium thermodynamics, with the
discrete time crystal (DTC) phase being the first and most
paradigmatic example of this phenomenon [19–23].

Combining these insights leads us to focus on dynam-
ical phases in disordered, out-of-equilibrium quantum
matter—specifically, many-body localized (MBL) periodi-
cally driven (or Floquet) phases—as natural candidates for
the NISQ-era scientific program outlined above. Indeed,
the quantum circuit structure that is Sycamore’s modus
operandi lends itself naturally to implement various Flo-
quet drive protocols. Further, for these applications, ran-
domness in circuit elements is not only tolerated, but is
in fact necessary to stabilize the system against heating,
and thus for observing interesting phenomena. For these
reasons, in this work we propose precisely such a ‘physics-
forward” use of the Sycamore device and its relatives:
to realize a MBL Floquet DTC, a nonequilibrium many-
body phase of matter that displays an entirely new form
of spatiotemporal order [19–21]. One striking feature of
the DTC phase is that it spontaneously breaks the discrete
time translation symmetry of the drive and exhibits period
doubling, a dynamical phenomenon with a long and rich
history [24,25] that has recently seen a resurgence in inter-
est, with proposals spanning a wide range of classical and
quantum systems [26–32].

Our choice has several desirable aspects: (i) the DTC is
a genuine collective many-body phenomenon, and repre-
sents the best known example of a new paradigm in quan-
tum statistical mechanics, that of an out-of-equilibrium
phase of matter; (ii) it is of clear fundamental and con-
ceptual importance, given its distinctive pattern of spa-
tiotemporal order; and (iii) despite promising precursors
[33–36], a bona fide realization of this phase (or any many-
body out-of-equilibrium phase, for that matter) has proved
elusive for differing reasons in each of the existing exper-
imental platforms in which it has been explored. Indeed,
as we explain below, there are fundamental definitional
aspects of the physics of this phase, specifically its cen-
tral attributes of spatiotemporal order and robustness to
choice of initial state, that have not yet been observed [22].
Not only have these not been observed, detailed theoretical
analysis has shown that these defining features are funda-
mentally absent in the state-of-the-art experiments probing
the DTC [22]. Thus, this proposal is not about repeat-
ing previous experiments with incremental extensions to
the scope of their observations; rather, it is about realiz-
ing and demonstrating the first genuine instance of this
phase.

There is much reason to be optimistic. The prior impres-
sive experimental studies on DTCs have enabled a detailed
understanding of the remaining obstacles to the realization
of this phase, so that this goal appears eminently achiev-
able in the near term. The resulting checklist contains
several requirements that are hard to simultaneously sat-
isfy in the previous setups. But these are sufficiently well
defined to be individually addressed and simultaneously
realized on the Sycamore device. Indeed, as we show in
this work, the existing capabilities, architecture, and gate
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set in Sycamore satisfy all the desiderata, and the platform
seems almost tailor made for this application.

We flesh out our proposal as follows. Section II A con-
tains a telegraphic account of the basics of DTCs to
orient the following discussion. Section II B presents a
detailed account of the insights from previous experiments,
from which we distill a list of experimental desider-
ata in Sec. II C. Section III details how to meet these,
and explains how to address the implementation of the
required experimental protocol on a present-day quantum
device, Google’s Sycamore processor. We then provide
evidence that the phenomenon we are looking for is indeed
present for a range of experimentally achievable parame-
ters (Sec. III B), and present an analysis of noise and other
experimental imperfections to argue that its observation
is possible despite present limitations of the NISQ plat-
form (Sec. IV). We conclude by discussing our results and
directions for future work in Sec. V.

II. THE DISCRETE TIME CRYSTAL: THEORY
AND EXPERIMENTS

We begin by briefly recapitulating the physics of the
DTC phase in Sec. II A, which defines the model and nota-
tion. This provides a minimal set of facts about the DTC
needed to render this article self-contained; it may there-
fore be read diagonally by those with prior exposure to the
field. Section II B discusses the state of the art in experi-
mental efforts to engineer the DTC, followed in Sec. II C
by the enumeration of an experimental checklist of ingredi-
ents for realizing and observing this phase. These have not
been simultaneously achievable in any single platform thus
far. We refer the reader interested in an in-depth account of
these issues to a review on time crystals by some of the
present authors [22].

A. Theoretical definitions and models

1. The DTC and its import

The canonical model of a (discrete) time crystal [19] is
realized in a Floquet system with a time-periodic Hamil-
tonian, with discrete time translation symmetry (DTTS)
H(t) = H(t + T). A DTC spontaneously breaks the DTTS
of the drive: observables in this phase show periodic
dynamics with a period mT, with Z � m > 1, corre-
sponding to a sharp subharmonic response in the fre-
quency domain (for example, m = 2 for period-doubled
dynamics).

The search for a time crystal has roots dating back to
age-old quests for perpetual motion machines, and this
is a phase of matter that is provably disallowed by the
strictures of equilibrium thermodynamics [22,37]. Hence,
the intrinsically nonequilibrium setting of a periodically
driven system is constitutive to realizing a time crystal.

Period doubling (or multiplexing) is ubiquitous in
classical and quantum dynamical systems, in settings
ranging from Faraday waves to parametric oscillators [24,
25,38]. However, these examples arise in single- or few-
body systems, or in systems that are effectively few-body
(in a mean-field sense) [22]. On the other hand, defin-
ing a time crystal as a nontrivial, many-body phase of
matter requires us to consider macroscopic, strongly inter-
acting quantum systems. This is, in fact, the only setting in
which time translation symmetry breaking is unexpected
from the viewpoint of equilibrium thermodynamics; one-
or few-body systems, such as simple harmonic oscilla-
tors, routinely exhibit oscillations and revivals in their
dynamics.

A pervasive challenge with periodically driven many-
body systems is their tendency to absorb energy from the
drive and thermalize to infinite temperature, maximizing
entropy in the absence of conservation laws [39,40]. One
robust mechanism for escaping this “heat death” is many-
body localization (MBL), wherein the dynamics fails to
establish local thermal equilibrium even at arbitrarily late
times due to disorder [41–46]. In particular, the system is
thus prevented from heating to a trivial state.

A most striking property of this many-body local-
ized phase is that it can now support new forms of
order, which can be defined despite the inapplicability
of the usual and familiar framework of equilibrium ther-
modynamics. The assignation of robust phase structure
without relying on ground states or equilibrium Gibbs
states (or even time-independent Hamiltonians) is a fun-
damentally new paradigm in many-body physics, and
the framework goes under the name of eigenstate order
[18]. Most simply, many-body eigenstates of the sys-
tem’s Hamiltonian (or Floquet unitary) may individually
display nontrivial order and correlations, even as aver-
ages over eigenstates, such as in a Gibbs state, show
no order. For example, the eigenstates may come in
pairs, related to each other in the same way as the
symmetry-broken ground states of a standard Ising ferro-
magnet. Unlike the latter, however, the pairing of states
will be present throughout the (quasi)energy spectrum,
with measurable dynamical consequences starting from
states at all energies (instead of merely low-temperature
ones).

Eigenstate order of this type then underpins various
nontrivial nonequilibrium phases, of both the symmetry-
breaking and topological varieties. For a brief pedagogical
introduction to nonequilibrium phase structure in Floquet
systems, see Ref. [47].

In sum, the importance of the DTC is based on two
pillars. First, it exhibits the spontaneous time transla-
tion symmetry breaking expressed in its name, thereby
closing out a centuries old quest for time crystals and
capturing the imagination of the general public. Sec-
ond, since such time translational symmetry breaking and
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spatiotemporal order is absent from all equilibrium phases,
it stands out as, arguably, the most distinctive and strik-
ing instance of a new paradigm in many-body physics:
an eigenstate-order-based nonequilibrium phase of many-
body matter.

2. Model realizations

We now turn to specific model realizations of this phase.
A standard model of a Floquet DTC is an Ising model peri-
odically “kicked” by a rotation about the x̂ axis [19]. The
dynamics probed at “stroboscopic” times, t = nT, n ∈ Z,
is captured by studying the properties of the “Floquet
unitary,” which is the time-evolution operator over one
period,

UF = e−ig
∑

i Xie−iT(Hz+Hint), (1)

where T ≡ 1 is the drive period, the Xi (Zi) denote spin-
1/2 Pauli x (z) operators on site i, Hz = ∑

i,j Jij ZiZj is
a diagonal Hamiltonian with Ising symmetry P = ∏

i Xi,
and Hint represents additional generic interactions that may
be present (examples include longitudinal fields Hint =∑

i hiZi or XY interactions Hint = ∑
ij J ⊥

ij [XiXj + YiYj ]).
Localizing the system to prevent heating will require
disorder in the couplings Jij .

The model in Eq. (1) can potentially realize a discrete
time-crystal phase in the regime g = 1

2 (π − ε), with ε suf-
ficiently small. This represents an imperfect “π pulse,” i.e.,
a nearly 180◦ rotation about the x axis. To understand the
properties of the phase, consider first the limit ε = Hint =
0. In this case, it easy to see that starting with a product
state in the ẑ basis, one action of the unitary enacts a per-
fect 180◦ rotation and flips all spins; these are then flipped
back under a second action of U(T), thereby showing
period-doubled dynamics, 〈Zi(mT)〉 = (−1)m〈Zi(0)〉.

While the ε = Hint = 0 limit is illustrative, defining the
DTC as a phase of matter requires some degree of stability
to the choice of parameters and interactions. Indeed, what
is remarkable is that, under suitable conditions (requiring
the presence of MBL), the dynamics can remain robustly
locked at period doubling for infinitely long times in an
extended region of parameter space, i.e., even for imper-
fect rotations (ε 	= 0) and in the presence of generic per-
turbing interactions (Hint 	= 0) [19–21]. We emphasize that
this stability is inexplicable using any kind of semiclassi-
cal intuition; without quantum ordering, one would expect
a finite deviation in rotation angle (ε 	= 0) to accumulate
over consecutive cycles, destroying the period doubling
over a finite time scale of approximately ε−1.

Instead, the rigid locking of the dynamics to period
doubling follows from the presence of long-range order
in space that stems from spontaneously breaking Z2
Ising symmetry, whence “spatiotemporal” order [21]. This
requires the Ising interactions Hz to be the dominant part of

the evolution during the first part of the drive. At any stro-
boscopic time, spins are locked into a “frozen” pattern in
space so that 〈ZiZj 〉 is nonzero for arbitrarily large |i − j |
even in highly excited states (but can have a random,
“glassy” sequence of signs as a function of i, j ). This pat-
tern then flips every period. Notably, the DTC phase is also
stable to the addition of interactions that explicitly break
Ising symmetry, such as longitudinal fields Hint = ∑

i hiZi
[20,21]. In this case, the long-range spatial order follows
from spontaneously breaking an emergent Ising symme-
try [21]. This is a manifestation of the fact that the DTC
phase is, in fact, stable to all weak perturbations of the Flo-
quet unitary (1), including those not encapsulated by Hint
or ε—a feature termed absolute stability by a subset of the
present authors [21].

In sum, the DTC is a robust, many-body phase of mat-
ter with spatiotemporal order (long-range order in space
plus infinitely long-lived period doubling dynamics in
time), realized in the intrinsically nonequilibrium setting
of periodically driven, MBL quantum systems. Probing
spatiotemporal order requires measuring site-resolved spa-
tial correlations, e.g., 〈ZiZj 〉, and temporal autocorrelation
functions, e.g., 〈Zi(n)Zi〉.

B. First generation DTC experiments

The DTC phase is particularly amenable to experimental
detection due to its stability and its distinctive measurable
dynamical signatures. Indeed, the theoretical prediction
of this phase was rapidly followed by a pair of experi-
ments, one on disordered trapped ions in one dimension
[34] and the other on disordered nitrogen-vacancy (NV)
centers in three-dimensional (3D) diamond [33]. An exper-
iment using nuclear magnetic resonance (NMR) on a clean
crystalline 3D solid followed soon after [35,36]. We refer
to this set of experiments as “first generation” (FirstGen)
time-crystal experiments.

Each of the FirstGen experiments simulates a model
drive captured by Eq. (1). The experiments differ in var-
ious key details and, between them, realize a varied
matrix of parameters, such as spatial dimension, range
and type of interactions, nature of disorder, state prepa-
ration capabilities, microscopic controllability, etc. Each
one represents an experimental tour de force, and man-
ages to observe temporal signatures of DTC behavior (i.e.,
a signal locked at period doubling) over a finite extent
in parameter space for the (finite) coherence time of the
experiment. Despite the numerous differences between the
platforms, the observed signatures look remarkably sim-
ilar. However, despite these encouraging results, none
of these platforms have all the ingredients needed for
a genuine, asymptotic incarnation of the MBL DTC
phase [22].

A key challenge for all three experiments lies in stabi-
lizing MBL. Despite this, all three platforms still observe
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long-lived precursors of DTC order. This is because,
even in cases where MBL is disallowed, it may nev-
ertheless be possible to engineer a separation of scales
such that thermalization happens on a parametrically slow
scale—referred to as a “prethermal” regime in certain cases
[48–52]. Specifically, the diamond NV center experiment
[33] is incompatible with MBL because of its long-ranged
interactions, but instead realizes a “critical TC” that ther-
malizes in a power-law slow fashion [53]. Likewise, the
NMR setup [35] has no disorder and hence no MBL,
and the long-lived signal therein was later explained as
a prethermal phenomenon associated with a weakly bro-
ken global conservation law [54]. Finally, the trapped ion
setup [34] is the smallest and most controllable, and has
many of the necessary ingredients for realizing MBL; how-
ever, it was shown in Ref. [22] that, unexpectedly, the
nature of disorder in the trapped ion TC experiment in
Ref. [34] is also not sufficient for localization, and the sig-
nal observed therein also turned out to be of a prethermal
rather than asymptotic nature. (However, as we discuss
below, future iterations of the trapped ion experiment
could, in principle, mitigate some of the issues of the first
experiment.)

Despite not realizing an asymptotic MBL DTC, all three
FirstGen experiments (and others [29], mentioned below)
have greatly advanced our conceptual understanding of
the DTC phase and led to new theoretical insights. These
include the elucidation of a new mechanism for prether-
malization [54] following the NMR experiment, and an
understanding of the distinct types of disorder needed to
stabilize MBL phases with distinct types of quantum order
[22]. These insights have enabled us to formulate a detailed
checklist of desired experimental capabilities for the next
generation of DTC experiments. As an example, the
eventual theoretical understanding of the FirstGen exper-
iments as prethermal (or slowly thermalizing) phenom-
ena—albeit of conceptually distinct genres—emphasizes
that a key experimental challenge is to distinguish a gen-
uine MBL DTC phase from a transient prethermal version.
We emphasize that is an issue because of the finite times
accessible to experiments rather than finite size (the dia-
mond and NMR experiments have millions of spins so
small systems sizes are not an issue, and slow prethermal
dynamics stemming from large separations of parameter
values arises even in infinitely large systems). In princi-
ple, the main difference between localized and prethermal
DTCs lies in the lifetime of their quantum order: infinite
for the former, transient for the latter. However, the ubiq-
uity of environmental decoherence makes this distinction
void in practice—measured DTC signals will be transient
no matter what. Nevertheless, as we discuss below, fine-
grained measurements of spatially resolved observables on
a variety of initial states can discriminate between prether-
mal and asymptotic TCs, even within finite experimental
lifetimes.

TABLE I. Summary of experimental requirements for realizing
and observing DTC spatiotemporal order, and the relative merits
of different experimental platforms. The “double” check marks
for the NV and NMR platforms in the “many-body” category are
to emphasize that these setups, with > O(106) constituents, are
operating in the thermodynamic regime, at a size that is orders of
magnitude larger than the trapped ion experiment (approximately
10 ions) and Sycamore (approximately 50 qubits).

Experiments

NV Trapped NMR
Requirements centers ions crystal Sycamore

Definitional
Long coherence time ✓ ✓ ✓ ✓
Many body ✓✓ ∼ ✓✓ ✓

Stabilizing MBL
Short-range int. ✗ ? ✗ ✓
Ising-even disorder ✓ ✗ ✗ ✓

Detection
Site-resolved meas. ✗ ✓ ✗ ✓
Varied initial states ✗ ∼ ✗ ✓

C. Experimental checklist

In all, the FirstGen DTC experiments, with their var-
ied strengths and limitations, have been instrumental in
distilling a checklist of experimental ingredients needed
for the realization and detection of a bona fide DTC phase.
These ingredients, and their presence or absence in the
various experiments, are summarized in Table I and artic-
ulated in more detail below; these serve to achieve two
intertwined goals.

(a) Realizing a genuine asymptotic MBL DTC phase,
i.e., engineering all the theoretical criteria for
achieving MBL and DTC order, so that an “ideal”
experiment (without external decoherence) would
observe an infinitely long-lived signal.This is a mat-
ter of principle—if internal decoherence (due to
many-body quantum thermalization) in an ideal,
noise-free incarnation of the platform destroys the
signal at late times, then the system does not real-
ize an asymptotic DTC phase (this is true of all
FirstGen experiments). On the other hand, if the
lifetime is predominantly limited by external deco-
herence, then this is an issue of engineering that will
see sustained improvement with future hardware
innovations.

(b) Detecting the spatiotemporal order that is a defining
feature of the phase. This also entails experimen-
tally discriminating between asymptotic (infinitely
long-lived) and prethermal (transient) variants of
DTCs, even within the constraints of environmental
decoherence and finite experimental lifetimes.

We now enumerate six desired experimental capabili-
ties, grouped in three broad categories.
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1. Basic definitional requirements

As mentioned earlier, a DTC phase is characterized
by infinitely long lived, quantum-coherent oscillations in
infinitely large, macroscopic many-body systems. While
an actual experiment will always be of finite size with a
finite coherence time, nontrivial realizations still require
both of these to be sizeable, with room for parametric
improvements with engineering advances. Thus, two basic
requirements on the platforms are the following.

(i) Truly many body. The experimental systems should
contain a number of qubits that does not qualify as “few
body.” While there is no sharp boundary between “few”
and “many,” it is clear that the NV and NMR experi-
ments satisfy this requirement (> 106 qubits), while the
trapped ion experiment (10 qubits) may be considered bor-
derline—a few tens to hundreds of qubits would more
comfortably fit the description. An added bonus is if
the platform permits one to vary the system size, which
would allow for finite-size scaling analysis of various order
parameters. Another scenario ruled out by this requirement
is that of effectively few-body systems where, despite a
nominally large number of qubits, the dynamics becomes
few body in a mean-field sense. Several recent TC experi-
ments fall into this category [29,30,55,56], with Ref. [29]
furnishing a particularly nice example using NMR on
“star-shaped” molecules. We remark that this point is not
about classical simulability, but specifically about physics.
Time crystals are only nontrivial for macroscopic many-
body systems; few-body systems exhibit special phenom-
ena (e.g., recurrences) that do not scale to the many-body
limit, and could prove confounding to the observation of
the desired phenomenon.

(ii) Long coherence time. Experimental platforms aim-
ing to exhibit dynamical phases clearly must be able to
preserve quantum coherence for long enough, so that the
underlying dynamical phenomena can be distinguished
from short-time transients. Again, while there is no sharp
boundary, revealing DTC order requires a coherence time
of at least multiple tens to hundreds of Floquet cycles.
We caution, however, that this may still not be enough
to discriminate between MBL and prethermal TCs with-
out using additional fine-grained probes [cf. points (v) and
(vi) below]. All the FirstGen platforms had a lifetime of
the order of 100 Floquet periods.

2. Requirements for stabilizing MBL

MBL is an essential ingredient for realizing a robust
DTC phase in an extended region of parameter space, and
in preventing periodic driving from heating the interact-
ing system to infinite temperature. However, MBL is only
stable under certain conditions sensitive to the range of
interactions, and the scope for engineering disorder.

(iii) Short-ranged interactions. Long-ranged inter-
actions are known to destabilize localization [57–59].

Interactions with strength scaling as 1/rαij are incompatible
with MBL if α < d, where d is the dimension of the sys-
tem [57]. They are perturbatively compatible with MBL
[60] if α > 2d [58]. Finally, the regime d < α < 2d is not
fully understood in general; localization (or its absence)
in this regime depends on the particular form of inter-
actions present in specific Hamiltonians [58,59]. Out of
the FirstGen experiments, the only one possibly satisfying
the requirement of short-ranged interactions is that based
on trapped ions (d = 1, α ≈ 1.51), but it is not presently
settled whether the long-range Ising interactions therein
are compatible with localization for the chosen value of
α ≈ 1.51 [61]. This is indicated in Table I by a question
mark. However, we note that, in principle, α is a tun-
able parameter in the trapped ion platform, and hence the
trapped ion experiment could be repeated in the future with
a value of α > 2d. Both the diamond NV and NMR exper-
iments have d = α = 3 and are thus not compatible with
MBL.

(iv) Dominantly Ising interactions with Ising-even
disorder. While stabilizing MBL generically requires dis-
order in the drive parameters, the nature of the disorder
required to stabilize a MBL DTC is more specific: one
requires strong disorder in Ising-even interactions Hz =∑

ij Jij ZiZj [22] in a drive with dominantly Ising interac-
tions of the form (1). If, instead, the only operators coupled
to disorder are odd under the Ising symmetry Px = ∏

i Xi
(as is the case, e.g., for on-site fields Hint = hiZi), then
this is not sufficient to stabilize MBL. This is because the
Floquet evolution over two cycles, U2

F , is only weakly dis-
ordered, and the dynamics is consequently not MBL. The
effective disorder strength is weak because the Ising-odd
disordered fields are “echoed out” by the approximate π
pulse, to leading order (see Appendix A for a discussion
of this point). Of the FirstGen experiments, only the NV
platform realizes Ising-even disorder due to the random
position of NV centers in three-dimensional space; while
this alone is not enough for MBL (because of the long-
range interactions), the disorder still leads to algebraically
slow themalization, giving a “critical time crystal” in
the NV setup. The NMR system is clean and spatially
ordered, and hence not localized. Finally, the trapped ion
experiment features disorder only in Ising-odd longitudi-
nal fields, while the Ising-even interactions are nonrandom
and well approximated as Jij ∼ J0/rαij . In a finite lattice
the displacements rij of the trapped ions (and thus the
interactions Jij ) will include weak inhomogeneities due
to the interplay of Coulomb interactions with the con-
fining trap; however, these inhomogeneities are perfectly
deterministic and reflection symmetric, and turn out to be
insufficient to stabilize MBL [22]. In general, it is easier for
many experimental setups to implement disorder in onsite
fields rather than Ising couplings, and this requirement is a
key engineering obstacle towards realizing DTCs on many
such platforms, including in trapped ions.
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3. Requirements for detection

Finally, we turn to the requirements of unambiguously
demonstrating the asymptotic DTC phase and distinguish-
ing it from its transient prethermal cousins—even within
the reality of finite experimental lifetimes.

The key discriminator is that MBL TCs show period-
doubled oscillations from all generic short-range cor-
related initial states, while prethermal TCs only show
long-lived oscillations from certain special initial states.
In addition, spatiotemporally resolved correlators show
long-range order and period doubling in MBL TCs,
while certain variants of prethermal TCs only show long-
lived oscillations in globally averaged observables but
not site-resolved ones. Thus, studying varied initial states
and making site-resolved measurements even for finite
experimental times would distinguish between an asymp-
totic MBL DTC and all known alternate mechanisms
that could support a prethermal DTC, as illustrated in
Fig. 1.

In more detail, the key idea of prethermal dynamics is
that, in a suitable reference frame, the system behaves for
a long time as though it was governed by a static effec-
tive Hamiltonian (although the temperature of the state
slowly increases en route to infinite temperature) [48,49].
If the effective Hamiltonian has an ordered phase below
a critical temperature Tc, then a low-energy initial state
would display quantum order for a long time, before even-
tually heating past Tc, thus causing the order to melt [50].
However, a high-energy initial state would not show any
order, even for short times. Thus, practically, a useful dis-
criminatory criterion is the dependence of the signal on
the choice of initial state. In MBL DTCs there should be
no strong dependence (as the whole spectrum is local-
ized). On the other hand, prethermal DTCs associated with
symmetry breaking display long-lived oscillations for low-
temperature ordered states but not for others [Figs. 1(a)
and 1(b)].

Separately, another mechanism for prethermalization is
the emergence of a quasiconserved quantity associated to
an approximate symmetry of the prethermal Hamiltonian
[49,54]. This mechanism for slow thermalization can be
at play even for very high-temperature initial states. In
this case, measurements of global observables such as the
total magnetization are at risk of detecting the slow relax-
ation of a quasiconserved quantity rather than the DTC
pattern of spatiotemporal order. However, measuring site-
resolved correlations can distinguish between prethermal
U(1) DTCs and MBL DTCs [Figs. 1(a) and 1(c)]. Thus,
the following conditions are required.

(v) Widely tunable initial states. To distinguish local-
ized and prethermal DTCs within a finite experimen-
tal lifetime, one needs to test a variety of initial states
(prethermal DTCs are highly sensitive to the choice unlike
MBL DTCs). In practice, the ability to prepare any
computational basis state, i.e., product states in the z basis,

n (floquet cycle)

(a)

(b)

(c)

FIG. 1. Illustrative sketch for distinguishing MBL and prether-
mal DTCs, even with access to only finite experimental coher-
ence times (vertical dashed line, nexp). (a) In a MBL DTC, local
autocorrelators remain large for all initial product states in the
Z basis. (b) In a prethermal DTC, low-temperature initial states
have long-lived autocorrelators whose lifetime may exceed the
experimental coherence time. However, generic bitstring initial
states (high temperature) decay quickly: the dependence on ini-
tial states—visible within experimental time scales nexp—is a
signature of prethermalization. (c) In a U(1) prethermal DTC,
the total magnetization Ztot = ∑

i Zi is nearly conserved (for all
initial states, including high-temperature ones). However, local
operators Zi decay quickly: the U(1)-prethermal behavior is
revealed through site-resolved measurements.

would be enough. This cannot be done on platforms that
only allow for the preparation of special initial states, such
as fully polarized ones. Of the FirstGen platforms, only
the trapped ion experiment has the capability to widely
vary initial states, although this was not fully explored
in Ref. [34]. The experiment only considered two initial
states: a fully polarized state, |0〉⊗L, and a state polar-
ized on the left and right halves, |0〉⊗L/2|1〉⊗L/2. However,
polarized or near polarized states are maximally ineffectual
at distinguishing between MBL and prethermal dynamics
[22,54]. Because the trapped ion experiment has long-
range interactions, the effective Hamiltonian governing the
prethermal dynamics can have an Ising symmetry breaking
transition at a finite temperature Tc even in one dimension,
and near polarized states are in the low-temperature sec-
tor of the effective Hamiltonian. Indeed, detailed numerical
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simulations of the trapped ion experiment on a wider class
of initial states found strong initial state dependence, with
the DTC signal decaying much more rapidly for randomly
picked computational-basis states, consistent with prether-
mal DTC order [22]. Separately, a different mechanism for
prethermalization entails the long-lived quasiconservation
of a global operator such as the total magnetization. Again,
polarized initial states have large total magnetization and
can show slow dynamics due to the quasiconservation law,
while randomly picked z product states would not.

(vi) Site-resolved measurements. Detecting genuine
spatiotemporal order requires measuring site-resolved spa-
tial correlation functions of the form 〈ZiZj 〉, in addition to
temporal autocorrelators. This capability to locally probe
individual qubits is also necessary for distinguishing MBL
TCs from prethermal variants involving global quasicon-
servation laws. For instance, the NMR experiment operates
in an extremely hot regime, with very high temperature
initial states that would be well above the ordering tem-
perature Tc of the effective Hamiltonian; but these can
still show slow dynamics in global observables that couple
to a quasiconservation law, such as the total magnetiza-
tion [54]. In contrast, local autocorrelators would show a
fast decay in this regime. In contrast, site-resolved auto-
correlators show oscillations forever in a MBL TC. The
NMR and NV center experiments (which involve > 106

qubits) are limited to probing spatially averaged quan-
tities such as the total magnetization

∑
i Zi, which do

not provide the necessary resolution. Among the FirstGen
experiments, only the trapped ion experiment satisfies this
requirement. Table I summarizes the matrix of experimen-
tal desiderata and their availability in different FirstGen
experiments.

We now turn to how the next generation (NextGen)
of quantum simulators—such as the already operational
Google Sycamore processor—can be programmed to real-
ize all these ingredients in turn, and hence to furnish the
first bona fide realization of the time-crystal phase. We
should note that, while the trapped ion experiment has not
yet demonstrated a MBL DTC phase, it may be possible
for future iterations of this platform to do so. The key engi-
neering challenges entail scaling up the system to suitably
larger numbers of ions, and adding uncorrelated disorder
in the Ising couplings Jij (which is possible, in princi-
ple, with extensively many tuning knobs [62,63]). These
are achievable given enough time and effort. Likewise,
quantum simulators using Rydberg or dressed Rydberg
atoms meet almost all the desired criteria, and are cur-
rently limited only by their coherence time [64]. Future
improvements will no doubt also enable the observation
of such phenomena on this versatile platform. However,
as we demonstrate next, currently existing capabilities
in the Sycamore device already satisfy all the desider-
ata and, indeed, the platform seems tailor made for this
application.

III. NEXT GENERATION: REALIZING A DTC ON
THE SYCAMORE PROCESSOR

NextGen programmable quantum simulators are designed
with quantum computing applications as a major drive.
These applications happen to require many of the items
of the above checklist. The preparation of arbitrary
computational-basis states and the capability for site-
resolved readout are both key ingredients for quantum
computing [9], so it is fair to assume their availabil-
ity on a NISQ device, up to small control and mea-
surement errors. Moreover, these devices are designed
to implement quantum circuit elements that are typically
one- and two-qubit gates, which in the quantum many-
body language means on-site fields and nearest-neighbor
interactions. While the selective realization (elimination)
of short-ranged (long-ranged) couplings is an engineer-
ing challenge in all quantum computing platforms (cur-
rently addressed with varying degrees of accuracy in each
one, and sure to see sustained effort in the future), it is
fair to assume that on near-term digital quantum sim-
ulators crosstalk between distant qubits will be limited,
and the dominant interactions will be between neighbor-
ing qubits. Such finite-range interactions are much more
suitable for MBL compared to the power-law decaying
couplings native to many platforms [65]. Thus, short-
ranged interactions [requirement (iii)], site-resolved mea-
surements [requirement (vi)], and tunable initial states
[requirement (v)] are all at our disposal, within reason-
able levels of approximation. Moreover, as these devices
enter the 50-to-200-qubit NISQ regime [3], they can be
safely regarded as legitimate quantum many-body systems
[requirement (i)].

According to the checklist in Sec. II C, the last two
points to be addressed are (a) whether the coherence times
are long enough, given the eponymous noise inherent to
NISQ devices and (b) whether the devices can implement
a kicked Ising drive similar to that in Eq. (1), with disorder
in the Ising couplings, Jij . While a universal fault-tolerant
quantum computer can, of course, realize any drive with
any set of couplings [12,66], present-day NISQ devices
may present obstructions due to their finite coherence time.
Again, we are motivated by near-term applications that
are immediately and naturally realizable on these plat-
forms (as opposed to universally and asymptotically). To
address these points in a more specific way, we focus on
Google’s Sycamore processor for the remainder of this
work. In Sec. III A we lay out the details of implementing
the Floquet DTC as a quantum circuit with gates available
on Sycamore, while in Sec. III B we map out the phase
diagram of this circuit model and present several diag-
nostics of the MBL DTC phase. All of the analysis for
now assumes an “ideal,” i.e., decoherence-free realization;
the analysis of noise that informs the coherence time is
presented in Sec. IV.
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A. Floquet DTC circuit on Sycamore

We begin by noting that the Floquet unitary evolution
operator for the canonical model of a DTC, Eq. (1), can be
naturally written as a sequence of gates when Hint = 0, and
when the Jij couplings are limited to nearest neighbors. We
confine the dynamics to a one-dimensional system, where
the existence of MBL and thus of the DTC phase is on
firmest ground [42,65]. In this case, one first acts with a
layer of Ising gates e−iJZZ on the even bonds of the 1D
subsystem, then a layer of Ising gates on the odd bonds,
and then a layer of single-qubit X rotations, e−igX :

UF = e−ig
∑

i Xie−i
∑

i JiZiZi+1

=
∏

i

Rx
i (2g)

∏

i

e−iJ2i−1Z2i−1Z2i
∏

i

e−iJ2iZ2iZ2i+1 (2)

with Rx
i (α) = e−iαXi/2 a single-qubit X rotation. This

model has Ising symmetry and is exactly solvable, being
mappable to free fermions. In this limit, the system is in
the DTC phase (with period-doubled dynamics and spon-
taneously broken Ising symmetry) as long as the average J
couplings obey [19]

∣
∣
∣Ji − π

4

∣
∣
∣ ≤ g − π

4
(3)

(one can take g, Ji ∈ [0,π/2] without loss of generality
as the phase diagram repeats symmetrically outside this
square). As mentioned earlier, the DTC phase persists for
a finite region in parameter space surrounding g = π/2,
even upon perturbing the drive in Eq. (2) with generic
interactions to make the model nonintegrable, as long as
the disorder in Ji is strong enough to stabilize MBL.

On the Sycamore chip, a unitary evolution close to
Eq. (2) can be straightforwardly implemented. Single-
qubit X rotations Rx

i are readily available [5]. For the
two-qubit interaction, the Sycamore device allows imple-
mentation of a continuously parameterized family of high-
fidelity gates of the form [67,68]

G1,2 = Rz
1(ha)Rz

2(−ha)F1,2(θ ,φ)Rz
1(hb)Rz

2(hc), (4)

where Rz
i (α) = e−iαZi/2 is a single-qubit Z rotation, the h

angles result from the frequency excursion of the single
qubits during the interaction [69], and F is the “fermionic
simulation” two-qubit gate [70],

F1,2(θ ,φ)

= exp
(

−i
θ

2
(X1X2 + Y1Y2)− iφ

Z1 − I
2

Z2 − I
2

)

, (5)

defined by an “iSWAP angle” θ and a “controlled-phase
angle” φ. The latter provides the crucial ingredient for the

Floquet DTC unitary: the two-qubit Ising coupling e−iJZZ ,
with the identification J ≡ φ/4.

The remaining terms in Eq. (4), i.e., the iSWAP angle
θ and the single-qubit Z rotations (coming both from F
and from the h angles), represent deviations away from
the solvable limit in Eq. (2), but these deviations can
be controlled and manipulated rather straightforwardly.
Specifically, the angles θij , one for each coupler in the
Sycamore chip, can be independently tuned to arbitrary
values (including zero) within calibration accuracy. For
the purpose of this paper, we sample each θij out of a
normal distribution with variable mean θ and standard
deviation�θ = π/50, representing a gate calibration error
of a few degrees (π/50 rad = 3.6◦), a deliberately conser-
vative upper bound. The “extra” single-qubit Z rotations
can also be tuned and canceled “by hand” (within calibra-
tion accuracy) with active Z rotations of appropriate angles
on each qubit before and after each application of G; see
Fig. 2(a). The result is a modified gate

G̃i,j = Rz
i (δh

ij
a )R

z
j (−δhij

a )e
−iθij (XiXj +YiYj )/2−iφij ZiZj /4

× Rz
i (δh

ij
b )R

z
j (δh

ij
c ), (6)

where the δh are small residual rotation angles, taken to
be normal random variables of standard deviation �h =
π/50. Note that the nonzero �h, θ , and �θ make the
model genuinely interacting and nonintegrable; the �h
terms also break the Ising symmetry. Both effects are
necessary for a nontrivial demonstration of the stability
of the phase. Thus, even as calibration errors continue
to improve, these deviations can and should be deliber-
ately included for a nontrivial demonstration of the phase.
We have explicitly verified by numerical diagonalization
that �h = �θ = π/50 is large enough to visibly break
integrability even when θ = 0.

With the G̃ gate defined above, it is now straightforward
to define our model Floquet circuit,

UF =
∏

i

Rx
i (2g)

∏

i

G̃2i−1,2i

∏

i

G̃2i,2i+1, (7)

sketched in Fig. 2(b). This represents a generically per-
turbed and nonintegrable variant of the solvable model in
Eq. (2). Single-qubit rotations are widely and easily tun-
able on Sycamore, allowing for arbitrary values of the
x̂ rotation angle 2g (or, equivalently, the π -pulse imper-
fection ε = π − 2g). The two-qubit gates act, in turn, on
the even and odd bonds along a one-dimensional path
through Sycamore, such as that sketched in Fig. 2(c). All
the parameters specifying the individual G̃ij gates (φij , θij ,
δhij

a,b,c) are drawn randomly for each gate (one per spa-
tial bond), but are time independent: all these choices are
fixed once per realization, and then repeated in time so
as to define an ideal time-periodic (Floquet) model [71].
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(a)

(b)

(c)

FIG. 2. Simulating a 1D Floquet DTC on the Sycamore chip.
(a) Modified gate G̃ in terms of the native gate G and single-qubit
Z rotations. (b) Circuit for the DTC Floquet unitary: each Floquet
cycle acts with G̃ on each pair of neighboring qubits, followed by
single-qubit X rotations, as depicted. (c) A closed loop through
the Sycamore chip, simulating a 1D system. During each cycle,
G̃ gates act first on the blue bonds, then on the black bonds. All
other bonds remain idle during the dynamics.

Again, we chose to use a one-dimensional path through
Sycamore rather than the full 2D array of couplers in order
to remain within the territory where MBL and the DTC
phase are firmly established on theoretical grounds. How-
ever, we note the extreme flexibility of this platform in
potentially choosing different geometries—e.g., 1D paths
of different lengths, with open or periodic boundary con-
ditions, or 2D patches of various shapes—all on the same
chip, simply by selecting which couplers to activate and
which to leave idle during the dynamics.

Having discussed the parameters g, θij , δhij
a,b,c above, we

now turn to the φij angles, which set the strength of the
ZZ coupling and address the final requirement of Ising-
even disorder. From an engineering perspective, two-qubit
gates are generally more demanding than single-qubit rota-
tions: each distinct gate acting on a given bond 〈i, j 〉 must
be calibrated individually [67]. The phases φij are thus
drawn randomly from a discrete set of M values (M � 10
appears realistic in the near term), rather than a continu-
ous distribution as is usually assumed in studies of MBL.
This is because choosing gate parameters from a contin-
uum would require one to calibrate each gate in the circuit
for each distinct disorder realization, making the process
highly impractical. In contrast, it is vastly easier to cali-
brate M gates per bond at the beginning (so approximately
LM distinct gates in total), and then use these to generate

a virtually infinite (approximately M L) number of disorder
realizations.

In this work we choose the discrete set of disordered
couplings to be

{φ + W cos[πm/(M − 1)] : m = 0, . . . , M − 1}, (8)

where φ sets the average coupling and W the disorder
strength. The use of a nonlinear function ensures that there
are incommensurate spacings between the different phases
φij , thus limiting the effect of accidental resonances [72];
the choice of cos(x) is otherwise arbitrary and is expected
to yield generic results. For specificity, in the following
we fix the average controlled-phase angle to φ = π corre-
sponding to J = π/4. This choice is at the center of the
DTC phase in the noninteracting model, and allows for the
widest range of rotation angles g [cf. Eq. (3)]. The disor-
der strength is set to W = π/2; this is fairly strong while
also ensuring that all the φ angles are far from 0 (where
the experimental implementation could be problematic in
some cases [68]). Finally, we set M = 8 based on numeri-
cal results obtained via full diagonalization of the Floquet
unitary UF that indicate that M = 8 disorder values are
sufficient to qualitatively replicate the continuous disorder
(M → ∞) case.

The quantum circuit so defined captures all the crucial
aspects of the canonical Floquet DTC, Eq. (1), in a “Trot-
terized” form. It differs from the solvable limit, Eq. (2), in
specific ways: the nonzero iSWAP angles θij introduce inter-
actions and make the model nonintegrable; the nonzero
longitudinal fields, �h, also add interactions and weakly
break the Ising symmetry; and finally the disorder in the
φij couplings is discrete rather than continuous.

In the following we confirm that these do not destroy the
DTC phase, as expected from its absolutely stable nature
[21]. By varying g and θ , with all other parameters fixed as
described above, we obtain a phase diagram for the model
circuit, shown in Fig. 3. This was obtained by combining
various phase diagnostics, discussed in the next section. It
includes two MBL phases for sufficiently weak θ : a DTC
phase near g = π/2 (corresponding to an imperfect π flip),
and a paramagnetic phase near g = 0. These are separated
by a large thermal region, which expands as the interaction
strength θ is increased, eventually destroying both MBL
phases for θ � π/8. The next section presents a detailed
discussion of the diagnostics used to obtain this phase dia-
gram and to detect the different phases in an experimental
setting.

B. Diagnostics of the MBL DTC phase

Nonequilibrium phases and phase transitions are under-
stood as eigenstate phases [18,73–75]; their theoretically
sharpest diagnostics involve properties of the many-body
eigenspectrum and of individual many-body eigenstates of
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Thermal

FIG. 3. Phase diagram of the circuit, Eq. (7), as a function of
the pulse parameter g and the average iSWAP angle θ . The phase
boundary is based on finite-size crossing points (black dots) of
the level spacing ratio, computed numerically for systems of 8 ≤
L ≤ 12 qubits. Inset: level spacing ratio 〈r〉, Eq. (9), versus g on
the θ = 0 cut. The value of 〈r〉 is averaged over eigenstates and
over between 400 and 4000 realizations of disorder (depending
on L).

the Floquet unitary UF , which change in a singular man-
ner across phase boundaries. While theoretically useful,
these eigensystem diagnostics are not directly accessible
to experiment, and their numerical exploration is lim-
ited to the small sizes amenable to exact diagonalization
of UF . Fortunately, these diagnostics translate to dis-
tinctive measurable signatures in dynamics from generic
computational-basis initial states, that are both observable
in experiment and accessible to numerics for much larger
sizes.

We now present various eigenspectrum and dynamical
diagnostics for identifying both MBL and the DTC order,
which were used to derive a phase diagram for the model
presented in the previous section.

Level repulsion. Many-body localization, aside from its
dynamical signatures in the form of a persistent memory of
initial conditions, is characterized by the absence of repul-
sion between quasienergy levels in the spectrum of UF .
The eigenvalues of UF are phases {e−iEn}; these can be
used to obtain the quasienergies {En}, defined modulo 2π .
The statistics of quasienergy levels has been a powerful
tool in the numerical study of MBL on finite systems, in
particular the level-spacing ratio [76]:

r = min(δn, δn+1)

max(δn, δn+1)
(9)

with δn = En+1 − En, the nth spacing between the
quasienergies of UF . In a MBL phase, the value of 〈r〉 aver-
aged over eigenstates and disorder realizations approaches
the Poisson value 〈r〉Poisson � 0.39 with increasing sys-
tem size, reflecting the lack of level repulsion that arises
from localization. In an ergodic phase it should instead
approach the Gaussian unitary ensemble (GUE) value

〈r〉GUE � 0.60, characteristic of random-matrix behavior
[77]. Finite-size scaling of this quantity across different
cuts in parameter space is used to map out the phase dia-
gram in Fig. 3. The inset displays one such cut, at θ =
0, with two crossings separating the thermal phase (〈r〉
increasing with L) from the two MBL phases (〈r〉 decreas-
ing with L). Note that the dip below the Poisson value near
g = π/2 is a finite-size effect due to the restoration of the
Ising symmetry at g = π/2, where the h fields are exactly
“echoed out” over two periods.

Real-time oscillations. The level spacing ratio distin-
guishes between MBL and thermal phases, but not between
different MBL phases. To do this, we need to consider
specific features of the quantum order inherent in a MBL
DTC. The hallmark of a DTC is spatiotemporal order:
infinitely long-lived period-doubled oscillation of spins, in
conjunction with long-range glassy order in space. This is
encoded in the behavior of a two-point correlation function
[19,21]

Cij (n) = 〈Zi(0)Zj (n)〉 ∝ (−1)nsij (10)

at late times, where n counts Floquet cycles and sij
encodes the “glassy” spatial order (i.e., is nonzero, but
may have random sign as a function of i and j ). This
means that memory of an initial glassy configuration is pre-
served forever, with the configuration itself flipped at every
cycle. Starting from a computational basis state |ψ(0)〉 =
|σ 〉 (σ ∈ {0, 1}L), the statement in Eq. (10) simplifies to
〈Zj (n)〉 ∝ (−1)n〈Zj (0)〉: each spin gets flipped at every
cycle, while maintaining a finite fraction of its initial (max-
imal) polarization. In contrast, a MBL paramagnet will
retain memory of the initial configuration, but the spins do
not get flipped.

We perform exact numerical simulations of time evo-
lution (via sparse matrix-vector multiplication) under the
circuit, Eq. (7), on systems of up to L = 22 qubits start-
ing from various computational basis states (ranging from
polarized states to pseudorandom bitstrings). Representa-
tive plots for all three phases are shown in Figs. 4(a)–4(c)
for θ = 0 and one value of g in each phase. We com-
pute and plot C(n) = (1/L)

∑
i Cii(n) that is the spatially

resolved autocorrelator, Eq. (10), averaged over all sites
i and over at least 103 disorder realizations. In the DTC
phase, all initial states show a persistent period-doubled
DTC signal C(n) ∝ (−1)n up to at least nmax = 104 Flo-
quet cycles [Fig. 4(a)]. In contrast, the MBL paramagnetic
phase near g = 0 shows a persistent signal C(n), but at
frequency ω = 0 rather than ω = π [Fig. 4(c)]. The large
steady signal for a wide range of choices in initial states is
a signature of MBL DTCs, which distinguishes them from
prethermal DTCs. For example, a similar numerical simu-
lation of autocorrelators in the trapped ion experiment sees
strong state-to-state dependence, with C(n) quickly decay-
ing for most initial states [22]. Finally, the behavior of both
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(a) (b)

(e)(d)

(c)

(f)

FIG. 4. Dynamics of the ideal (noise-free) circuit in the MBL DTC (g/π = 39/80), thermal (g/π = 19/80), and MBL paramag-
netic (g/π = 1/80) phases (θ = 0). (a)–(c) Position- and disorder-averaged temporal autocorrelator C(n) starting from various initial
bitstring states for L = 20 qubits. In the DTC phase the envelopes at even and odd times are highlighted; the signal oscillates strobo-
scopically between these two envelopes (lighter curves). Insets: space-time color plots of expectation values 〈Zx(n)〉 for L = 16 qubits.
(d)–(f) Disorder-averaged probability distribution of the Hamming distance d from the initial bitstring in two consecutive Floquet
cycles at late time, n = 104, for L = 20 qubits.

MBL phases should be contrasted with that of the thermal
phase [Fig. 4(b)] where the autocorrelator C(n) quickly
decays to zero for all initial states.

The insets for panels (a)–(c) in Fig. 4 show space-time
color plots of 〈Zi(t)〉, visually depicting the oscillating
glassy order in the MBL DTC, frozen memory in the MBL
paramagnet, and rapid thermalization in the thermal phase.
Importantly, measuring such site-resolved space-time cor-
relators for a wide range of initial states is well within
the existing capabilities of the Sycamore device. As dis-
cussed in Sec. II C, such measurements are essential for
a detection of the spatiotemporal order that defines the
MBL DTC, and for distinguishing between MBL DTCs
and prethermal variants.

Frequency-space peaks. The real-time dynamics can
also usefully be examined in frequency space, and used to
probe how the DTC order melts and gives way to a thermal
phase as the π -pulse imperfection ε = π − 2g is increased
[19]. Figure 5(a) shows data obtained from dynamics simu-
lations of L = 14 to 20 qubits at several values of the pulse
parameter g between g = π/2 (perfect 180◦ pulse, cen-
ter of the DTC phase) and g = π/4 (center of the thermal
phase). The position- and disorder-averaged autocorrela-
tor C(ω) [obtained from Fourier transforming the real-time
signal C(n) collected out to nmax = 104] shows a peak at
ω = π in the DTC phase, as expected; its height drops

smoothly as one exits the phase [Fig. 5(a)]. While this is
expected to sharpen with increasing system size, the finite-
time limitation turns this into a smooth crossover [Fig. 5(a)
inset]. Such an analysis can, of course, also be done with
experimentally measured dynamical signals.

Given that real-time dynamics simulations are inevitably
limited to finite time n, a useful complementary per-
spective is achieved by examining spectral functions,
where—at the expense of more severe finite-size limi-
tations—we can effectively probe infinitely long times
by a full diagonalization of the Floquet unitary UF . The
period-doubled behavior in Eq. (10) corresponds to a sharp
delta-function peak at frequency ω = π in the spectral
function

Cij (ω) = 1
2L

∑

μ,ν

〈μ| Zi |ν〉 〈ν| Zj |μ〉 δ(Eμ − Eν − ω),

(11)

where μ, ν label the eigenstates of the Floquet unitary UF
and the Eμ are its quasienergies, i.e., UF |μ〉 = e−iEμ |μ〉.
This function represents a Fourier transform of the auto-
correlator, Eq. (10), over infinite stroboscopic times and
averaged over all initial states. It was used in conjunction
with the level statistics to map the phase diagram in Fig. 3,
as described below.
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(a)

(b)

(d)

(c)

Thermal

FIG. 5. Other diagnostics of the DTC order. (a) Fourier trans-
form of the temporal autocorrelator, C(ω), averaged over posi-
tion and disorder, for several values of g spanning the DTC
and thermal phases. Data from dynamics simulations of L = 18
qubits starting from a fixed bitstring state and evolving to nmax =
104 Floquet cycles. Inset: height of the ω = π peak as a function
of g. (b),(c) Spectral function C (π , δω) [see Eq. (12)] from exact
diagonalization of UF on small sizes, averaged over disorder.
The DTC phase develops a plateau for δω → 0 corresponding
to a delta-function π peak in the Fourier response, while in the
thermal and MBL PM phases we find that C (π , δω) ∼ δω. (d)
Spin glass order parameter χSG evaluated at late times, nmax/2 ≤
n ≤ nmax, from dynamics simulations as in (a). A crossing for
increasing system size indicates a transition consistent with the
phase boundary in Fig. 3 at θ = 0.

In a finite-size system, the spectral function Cij (ω)

must be regularized by integrating over a finite frequency
window δω,

C̃ij (ω, δω) ≡
∫ ω+δω

ω−δω
dω′Cij (ω

′). (12)

A delta-function peak Cij (ω) ∼ δ(ω − π) in the infinite-
size limit translates to a finite limit

lim
δω→0

C̃ij (π , δω) = const 	= 0,

as opposed to the generic non-DTC behavior C̃ij (ω, δω) ∼
δωγ , γ > 0 as δω → 0. Figures 5(b) and 5(c) show numer-
ical results for C̃ (ω = π , δω) at representative points in

the three phases. The onset of a plateau is clearly visible
for increasing system size in the DTC phase, indicating the
formation of a delta-function peak in C (ω) at ω = π . Both
the thermal and MBL paramagnetic phases instead obey
the scaling C̃ (ω, δω) ∼ δω → 0 as δω → 0.

Glassy spatial order. As discussed already, a key fea-
ture of the DTC phase is long-range spatial “spin-glass”
order that stems from spontaneously breaking an (emer-
gent) Ising symmetry [19,21]. This can be detected from
long-range spatial correlation functions measured in the
many-body eigenstates of the Floquet unitary (or, equiv-
alently, from nonzero mutual information between distant
subregions of the eigenstates [20]). It can also be detected
in dynamics through autocorrelators of the form Eq. (10).

Here we use a classic diagnostic of spin glasses related
to the Edwards-Anderson order parameter [78]:

χSG = 1
L

∑

i,j

〈ψ | ZiZj |ψ〉2 . (13)

This quantity is extensive in a phase with glassy order
(where all L2 items in the sum are finite); otherwise, it is
of order 1 (with only the i = j contributions being signif-
icant). It can be examined in the many-body eigenstates
of a Hamiltonian or of UF [19,79], and its finite-size scal-
ing provides yet another mechanism to deduce the phase
diagram in Fig. 3.

Importantly, in a platform such as Sycamore with full
spatial resolution, this quantity can also be examined
dynamically starting from varied initial states. In Fig. 5(d),
χSG (averaged over late times and disorder realizations) is
plotted as a function of g for θ = 0, and clearly shows a
crossing with increasing system size, at a value of g con-
sistent with the phase boundary in Fig. 3. Note that the
effective system size probed on Sycamore can be easily
varied by choosing which couplers to activate, i.e., consid-
ering “snakes” of various lengths (cf. Fig. 2). This presents
a unique opportunity for experimentally conducting finite-
size scaling studies of the novel phase transition between
the MBL and thermal phases, whose nature remains an
active area of theoretical investigation.

Hamming distance. Finally, we present a diagnostic of
spatiotemporal order that, while quite unusual from the
point of view of many-body physics, is tailor made for
devices like Sycamore. The “quantum supremacy” exper-
iment [5] started with an initial bitstring, time evolved it
under a random circuit, and then probed the output state
by sampling its probability distribution over all bitstrings.
We present a diagnostic for the different phases in our
model that is in that vein, by considering the probability
distribution of Hamming distances between the initial and
time-evolved states.

Unlike ergodic dynamics, which quickly turns an ini-
tial bitstring state into a random state spread out over the
entire computational basis, MBL prevents an initial state
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from veering too far from its initial condition. This fact can
be quantified by the Hamming distance d [80,81], which
counts the minimum number of bit flips necessary to turn
a bitstring σ ∈ {0, 1}L into another, σ ′: for example, d = 0
(L) only for identical (flipped) bitstrings, while typically
d = L/2 between two random bitstrings. Given a com-
putational basis state |ψ(0)〉 = |σ 〉 and its time evolution
after n Floquet cycles, |ψ(n)〉, we can define the Hamming
distance distribution

Pn(d) = 〈ψ(n)|�σ (d) |ψ(n)〉 , (14)

where �σ (d) is the projector on bitstrings σ ′ that are a
Hamming distance d away from σ . We note that the aver-
age of the Hamming distance distribution, d = ∑

d Pn(d)d,
is information that can also be extracted from local expec-
tation values of Z, since 2d = L − ∑

i(−1)σi〈Zi(t)〉; in
particular, for the polarized initial state, this becomes a
global observable, the total magnetization

∑
i Zi. However,

the full distribution P(d) requires measuring the probabili-
ties of entire bitstrings—a natural task for a programmable
quantum simulator such as Sycamore that may instead
be impractical or impossible on other platforms where
such detailed readout is unavailable. While measuring the
average d is enough to discriminate between MBL and
ergodic phases, and a detailed measurement of the entire
distribution Pn(d) (particularly of its tails) would require
considerably more sampling, it is nonetheless useful to
have this capability. Even a coarse estimate of the dis-
tribution’s width would be informative about the size of
the subset of Hilbert space explored by the initial state
during the dynamics, which in turn relates to the localiza-
tion length (i.e., the spatial extent of the local integrals of
motion).

Figures 4(d)–4(f) show data for the Hamming dis-
tance distribution Pn(d) [Eq. (14)] in consecutive Floquet
cycles at late times, n1 = 104 and n2 = n1 + 1, in the
three phases. In the DTC phase [Fig. 4(d)], Pn(d) remains
peaked near d = 0 (the initial bitstring) at even n and,
symmetrically, near d = L (the globally flipped initial bit-
string) at odd n. On the contrary, in the MBL paramagnet
[Fig. 4(f)] Pn(d) remains peaked near d = 0 at all times.
The behavior of both MBL phases should be contrasted
with that of the thermal phase [Fig. 4(e)], where the
Hamming distance distribution quickly becomes peaked at
d = L/2.

IV. EFFECT OF NOISE

The discussion in the previous section shows that the
Sycamore device has, in principle, all the ingredients nec-
essary to stabilize and detect a DTC phase. We now
address the important question of the robustness of the
implementation and diagnostics to errors (in the form of
noisy gates, environmental decoherence, and spurious time

dependence of the circuit parameters). These give a sig-
nal that will be decaying in time, in practice. As discussed
below, estimates of current noise thresholds predict that the
distinctive temporal signatures of the DTC order should
still be visible for multiple hundreds of driving periods.
We emphasize again that spatial randomness is an inherent
part of the DTC Floquet circuit, so small calibration errors
between target gates and actual circuit elements are not a
problem, provided these are reliably repeatable in time to
give a Floquet circuit.

We model noise by considering one- and two-qubit
depolarizing error models [82], acting on the system’s
density matrix ρ as

�
(1q)
i (ρ) = (1 − p1)ρ + p1

3

∑

α 	=0

σα,iρσα,i,

�
(2q)
ij (ρ) = (1 − p2)ρ + p2

15

∑

α,β

′
σα,iσβ,j ρσα,iσβ,j

(15)

[the primed sum denotes (α,β) 	= (0, 0)]. Each single-
qubit gate acting on a qubit i is followed by an application
of the channel �(1q)

i ; each two-qubit gate on bond (i, j ) is
followed by �(2q)

ij . Conservative order-of-magnitude esti-
mates for the depolarizing error rates with current technol-
ogy [5,67] are p1 ≈ 10−3 and p2 ≈ 10−2. The additional
errors introduced by the active single-qubit rotations in the
definition of G̃ [Eq. (6)] can be taken into account approx-
imately by enhancing the values of p1, p2. In the following
we set p2 = p , p1 = p/10, and refer to the single parameter
p as the “Pauli error rate” unless otherwise specified.

Channels (15) subsume the effect of fairly generic
experimental errors, e.g., environmental decoherence, tem-
porally random fluctuations of gate parameters, etc. In
reality the errors may be anisotropic, e.g., Z Pauli errors
(phase flip) may be more or less frequent than X (bit-
flip) errors. While this issue can be completely neglected
in ergodic circuits [5], where each qubit’s Bloch sphere
is quickly scrambled and the error model is made effec-
tively isotropic, in this MBL setting this need not be
true. Indeed, in structured evolutions that explore their
Hilbert space unevenly, the effect of errors depends on
the details of the circuit. Nonetheless, in the absence of
more detailed device-specific error modeling, the depolar-
izing model is a reasonable choice in that it involves all
Pauli errors. We have additionally verified that our conclu-
sions do not change qualitatively under a non-Pauli error
model (the single-qubit amplitude-damping channel [82]);
see Appendix B.

Quantum channels such as Eq. (15) can be “unraveled”
into stochastic unitary evolutions [83,84]. Let us focus on
the one-qubit channel �(1q)

i for simplicity. Its effect can be
thought of as follows: after acting with each single-qubit
gate Rx

i from Eq. (7), the experimentalists toss a biased
coin; with probability p1, they apply an additional gate
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(“error”) drawn at random from {Xi, Yi, Zi}; otherwise, they
apply I (i.e., they do nothing). After n cycles they get a
pure state |ψr(n)〉, where the label r keeps track of the error
record, i.e., which error gates were applied, where and
when during the entire evolution. Iterating this stochastic
process gives an ensemble of pure-state unitary evolutions
(“quantum trajectories” [85]) {|ψr(n)〉} that can be used
to recover the density matrix ρ(t) resulting from the real
noisy evolution:

ρ(n) � 1
Nr

∑

r

|ψr(n)〉 〈ψr(n)| (16)

with Nr the number of sampled trajectories (this becomes
exact in the limit Nr → ∞). Thus, at the expense of sim-
ulating multiple trajectories, one can evolve pure states
instead of density matrices, greatly reducing the amount
of memory needed for the computation.

Aside from their computational usefulness, quantum tra-
jectories also offer a conceptually appealing view of the
underlying error process. By unraveling a channel as out-
lined above, it is possible to think of the combined effect
of all nonideal processes taking place in the experiment
as “digital,” with discrete errors taking place at specific
locations in spacetime during the circuit dynamics. In the
“quantum supremacy” experiment, Ref. [5], it was argued
that a single such digital error could completely random-
ize the output state: only “error-free” circuit realizations
could contribute to the signal being measured in that
work; hence, its decay as (1 − p)Ln ≈ e−pLn (for p � 1).
Therefore, the signal’s lifetime gets worse with increas-
ing system size, n� ∼ 1/(pL). This argument however need
not hold for MBL dynamics, where information propa-
gates very slowly in space. It is plausible to expect in this
case that a “digital” error at a given location will only
affect observables in its vicinity, rather than completely
randomize the output state.

This expectation is borne out by numerical simula-
tions of quantum trajectories. Given the depolarizing error
model of Eq. (15), the autocorrelator Cii(n) = 〈Zi(0)Zi(n)〉
inevitably decays in time. Even under the ideal DTC cir-
cuit (with perfect π pulse ε = 0 and no θij couplings)
one can see that Z operators decay exponentially: Zi is
invariant under the two-qubit gates but decays under the
subsequent error, �(2q)

ij (Zi) = (1 − 16p2/15)Zi; after two
iterations of this (with its two neighbors), Zi picks up
a minus sign under the π pulse, followed by the decay
under single-qubit noise �(1q)

i (Zi) = (1 − 4p1/3)Zi. Thus,
overall, Zi �→ −e−γZi over one Floquet cycle, with

γ = − ln
[(

1 − 16
15

p2

)2(

1 − 4
3

p1

)]

(17)

an effective decoherence rate. Introducing nonideal ele-
ments to the DTC drive (ε 	= 0, θij 	= 0, etc.) is not going

(a)

(b)

Noise

FIG. 6. Noisy dynamics. (a) Time evolution of the spatially
averaged correlator C(n) for a circuit with L = 20 qubits in the
presence of depolarizing noise (p = 10−2) for the MBL DTC,
MBL paramagnetic, and thermal phases, starting from a fixed
bitstring state. The dashed line is the noise limit e−γ t (see the
main text). Inset: Fourier transforms of the signals show (broad-
ened) peaks at ω = π for the MBL DTC and ω = 0 for the MBL
PM. (b) DTC signal for different system sizes L and error rates
p . All curves in the main panel overlap within statistical error,
showing that the signal does not depend on L, and depends on p
only through the product pn, proportional to the number of accu-
mulated errors per site. Inset: same data versus the number of
Floquet cycles n. Different system sizes are indistinguishable.

to counter this decay; rather, it will generically include a
(finite, transient) amount of “internal decoherence.” The
DTC signal is thus expected to be bounded by ±e−γ n. The
data in Fig. 6(a) show a DTC signal with amplitude close
to the maximal level allowed by noise.

Already with current hardware, this would yield a
detectable DTC signal for hundreds of Floquet cycles.
Indeed, the measurement task consists of resolving the
expectation 〈Zi(n)〉 (which is small, decaying as e−γ n

at late times) of a binary variable with standard devia-
tion

√
1 − 〈Zi(n)〉2 � 1; this requires repeating the same

experiment Ns � 1 times, which is not a problem for the
Sycamore device given its high speed of operation (for the
“quantum supremacy” experiment [5] Ns = 106 samples
were obtained in a few minutes). Equating the signal to
the statistical noise floor then gives e−γ n ∼ 1/

√
Ns; i.e.,

the signal can be resolved up to n ≤ n� � (1/2γ ) ln(Ns).
Letting p = 10−2 (a conservative estimate for the present
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technology) and Ns = 106 we obtain n� = 303 Floquet
cycles. We also note here that measurement is currently the
lowest-fidelity process on Sycamore, with an average error
rate of approximately 2.5%; however, this process happens
only once per run, and thus its effect does not scale with
the size or depth of the circuit [86]. The estimate above
would improve logarithmically with the number of sam-
ples Ns, but most importantly it would improve linearly
in the inverse Pauli error, which is set to see substantial
improvements in the future.

Finally, some remarks about the statistics of sam-
pling the DTC signal. First, measurement is destruc-
tive—reading out the DTC signal at time n arrests the
evolution, which then needs to be started over for addi-
tional samples. Thus, producing an experimental version
of Fig. 6(a) up to nmax cycles would require a number of
runs scaling with nmax. However, one could more econom-
ically extract robust evidence of spatiotemporal order from
O(1) time points, e.g., a snapshot at cycle n (revealing
spatial glassy order), one at n + 1 (revealing the inversion
of the glassy pattern), and one at 2n (revealing the stabil-
ity of the original glassy pattern). Second, because we are
ultimately interested in the quantity 〈Zi(n)〉, averaged not
only over quantum measurements but also over indepen-
dent disorder realizations of the circuit for each starting
state, the Ns = NdNq experimental runs will be divided in
practice between Nd disorder realizations and Nq separate
runs of each circuit for quantum averaging. Benchmarking
and calibrating a given realization of UF is more experi-
mentally demanding than multiple runs of the same circuit;
Nq ∼ O(104 − 106) and Nd ∼ O(10 − 100) seems feasible
in the near term, which should provide enough averaging
to resolve the signal.

In contrast to the long-lived temporal signal in the DTC
phase, the signal from a circuit in the ergodic phase decays
within a few Floquet cycles. In the thermal phase, the
signal lifetime is not limited by external noise but rather
by internal decoherence, i.e., by the system itself acting
as a bath for the local observable [43], as shown in the
error-free simulations of Fig. 4(b).

Because the signal’s lifetime in the DTC is only limited
by external sources of error, future hardware improve-
ments would directly translate to potentially much longer-
lived realizations of the time crystal phase, as shown in
Fig. 6(b). Furthermore, the signal’s decay rate does not
scale with size, suggesting that only errors in the vicinity
of a given qubit cause damage to the local DTC signal. To
confirm this picture, we have also simulated the dynam-
ics of a system where a single bond (i, i + 1) is subject to
decoherence, and we find that the local DTC signal Cjj (n)
decays as e−n/τj with a time constant that diverges expo-
nentially in the spatial distance from the faulty bond, τj ∼
exp |j − (i + 1/2)|/ξ ; see Appendix C. Thus, when all
bonds are noisy, by far the dominant source of decoherence
for the signal at any site j is the noise in its immediate

vicinity, and the decay is to a very good approximation
independent of L.

In sum, conservative estimates of noise levels suggest
that Sycamore should already be able to observe a DTC
signal for hundreds of Floquet cycles, which is on par
with what was observed in FirstGen experiments, but with
significant improvements expected as the hardware con-
tinues to advance. Importantly, the signal decay time does
not directly scale with system size, so that the platform
can be scaled up in size without a corresponding cost in
experimental lifetime.

V. DISCUSSION AND OUTLOOK

A. Summary

In this work we have considered the question: what
does the dawning age of NISQ devices and programmable
quantum simulators have in store for quantum many-body
physics? We have observed that, while these devices offer
universal gate sets that can in principle simulate any quan-
tum system, their limitation in coherence time practically
favors certain simulation targets over others in the near
term. Thus, when thinking of these devices as experi-
mental platforms for many-body quantum mechanics, it
is important to engage with their strengths and limita-
tions, which are quite different from, and in some ways
complementary to, those of the more traditional arenas
for quantum many-body physics. This requires develop-
ing physical insight and intuition matching those needed
in materials physics (regarding the choice of chemical
compound, its synthesis, the selection and optimization of
the experimental platform, and its theoretical modeling)
or in cold-atomic systems (regarding the choice of atom
or molecule, the cooling and loss suppression strategies,
Hamiltonian engineering, and observable readout).

In the spirit of tailoring the application to what is
most natural for the device in the near term, we noted
that unitary circuits implement various kinds of driven
quantum evolutions more straightforwardly than they do
time-independent Hamiltonians. We have thus focused
on out-of-equilibrium many-body phases in driven (Flo-
quet) systems. Specifically, we have pointed to the Flo-
quet discrete time crystal as a candidate well suited as
a “physics-forward” simulation task on Sycamore; this
phase is simultaneously interesting as the first example
of an intrinsically nonequilibrium many-body phase of
matter, a good fit for Sycamore’s capabilities, and not
yet realized in any other experimental platform. We have
shown through detailed numerical simulations that the Flo-
quet DTC can be stabilized on Sycamore over a range
of realistic parameters, even under conservative assump-
tions about gate calibration error, and that all facets of the
DTC spatiotemporal order can be compellingly revealed
using the device’s extensive capability for initialization
and site-resolved readout.
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We have also addressed the effects of noise and deco-
herence on detecting the DTC spatiotemporal order. While
all quantum simulators have to contend with the effects
of environmental decoherence, the Sycamore platform has
an edge insofar as the noise rates have been benchmarked
with great care (while a full characterization of the noise
processes is an ongoing research effort [87]). This would
make it easier, in practice, to disentangle the effects of
“internal” and “external” decoherence upon observing a
decaying signal in time. Further, the great control afforded
by this platform could also permit the use of various “echo
sequences” (such as that used in the NMR experiment
[35,36]) to further separate the effects of internal and exter-
nal decoherence. We note that the former is a matter of
principle: if even in an ideal, noise-free model the signal is
eventually destroyed by internal decoherence (i.e., quan-
tum thermalization), then the system does not realize a
DTC phase (this is true of all FirstGen DTC experiments).
On the other hand, if the signal’s lifetime is limited by
external decoherence (i.e., environmental noise and con-
trol errors), then this is an issue of engineering and, as
such, will see sustained improvement with future hardware
innovations.

Our proposal falls squarely in the latter category. The
signal lifetime, already in the hundreds of cycles with
current technology, is predicted to steadily increase with
hardware improvements. The prospects for increasing the
spatial size of the system are also promising. We have
shown that the DTC order is sensitive to noise only locally,
so that its lifetime is not negatively affected by increasing
system size. The main constraint on the number of qubits
thus becomes the geometry of the device.

B. Directions for future research

We conclude by mentioning interesting directions for
future work along these lines. A set of mild variations of
the setup proposed here can realize and probe a host of
other interesting questions. Among these are prethermal
time crystals [50], in particular in two dimensions. Exper-
imental requirements are essentially identical to those we
outlined, except of course for using all qubits and couplers
on Sycamore’s two-dimensional grid, rather than a one-
dimensional subset of them. Floquet symmetry-protected
topological phases [88] are another natural target. These
would require implementing a circuit that respects an Ising
symmetry to a good approximation, and are thus a good
target for future tests of high-precision many-body sim-
ulations. Among two-dimensional nonequilibrium phases,
the “anomalous” (or “chiral”) Floquet insulator [89–91] is
another interesting target for simulation. This phase, where
a MBL bulk coexists with quantized, chiral information
flow at the edge, would also be realizable as a quantum
circuit within Sycamore’s gate set. Specifically, its circuit
implementation would consist of five steps: four of them

are given by near-SWAP gates (i.e., angles φ � π , θ � π/2
in Sycamore’s two-qubit gate set, with tolerance for suf-
ficiently small imperfections), and the fifth is given by
single-qubit disorder (e.g., Z rotations by a site-dependent
angle). The need for disorder only in single-qubit gates
makes this particularly easy for Sycamore, as disorder real-
izations can be generated without additional calibration of
two-qubit gates. Thus, the gate set poses no problem. What
may require further technological progress is size: the chi-
ral Floquet insulator, and its signature quantized transport
of quantum information at the edge, requires a clear demar-
cation between bulk and boundary, with states on distinct
edges not interacting with one another. This may be out of
reach with the current approximately (6 × 8)-sized device.
A precise determination of requirements is a task for future
research, as is the design of scalable protocols to mea-
sure the quantized flow of information within accessible
coherence times.

Separately, quantum circuits are increasingly being stud-
ied as toy models for exploring a host of foundational
questions in quantum statistical mechanics ranging from
quantum chaos [92–99] to the dynamics of quantum
entanglement [95,100,101] to the emergence of hydrody-
namics [95,102]. Exploring some of these issues exper-
imentally could have a transformational impact on our
understanding.

Finally, a direction we leave for future study is that
of estimating the classical computing resources needed
to simulate the proposed circuits. Circuits implemented
on a specific hardware platform in the presence of finite
errors require careful estimates of classical computational
resources. In general, however, we note there are no effi-
cient classical algorithms for exploring the entire phase
diagram in Fig. 3. Indeed, the nature of MBL-to-thermal
phase transition is still a largely open question, in no
small part because of severe finite-size effects plaguing
numerical explorations [103–110]. Experiments on ana-
log quantum simulator platforms have already investigated
many interesting features of the MBL phase [111–118]; the
increased flexibility of digital platforms such as Sycamore
may, in addition, enable experimental finite-size scal-
ing studies of the MBL-to-thermal phase transition [cf.
Fig. 5(d)], potentially reaching much larger sizes than
existing numerical studies, which could lend important
insights to some of these open questions.
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APPENDIX A: NECESSITY OF ISING-EVEN
DISORDER

Here we explain why stabilizing a MBL DTC phase in
model (1) requires having disorder in the Ising-even cou-
plings Jij ZiZJ , whereas disorder in the longitudinal fields
hiZi is insufficient. Considering the case θij = 0 for sim-
plicity (small nonzero values do not qualitatively change
the argument), the time evolution over two consecutive
periods is given by

U2
F = P2ge−iHz[J,h]P2ge−iHz[J,h], (A1)

where Hz[J, h] ≡ ∑
i JiZiZi+1 + hiZi and P2g ≡ ∏

i Rx
i

(2g) = ∏
i e−igXi is the imperfect π flip, with 2g ≡ π − ε.

By using the fact that Zi anticommutes with the Ising
symmetry Pπ = ∏

i Xi, we rewrite Eq. (A1) as

U2
F = P−ε e−iPπHz[J,h]PπP−ε e−iHz[J,h]

= P−ε e−iHz[J,−h]P−ε e−iHz[J,h].

The crux of the argument is the fact that the fields hi have
opposite signs in the two consecutive actions of e−iHz : to
leading order in ε, their effects cancel (“echo out”). To see
this in more detail, we may write U2

F as

U2
F = P−2ε e−iPεHz[J,−h]P†

ε e−iHz[J,h]

= P−2ε e−iPεHz[J,0]P†
ε e−iPεHz[0,−h]P†

ε

× e−iHz[0,h]e−iHz[J,0],

where we have decomposed e−iHz[J,h] into the (commuting)
factors e−iHz[J,0]e−iHz[0,h]. Now if we take the J couplings
to be clean, Ji ≡ J , the above expression can be rewritten

by isolating the disordered part as

U2
F = U(1)

clean ·
∏

i

eihiPεZiP
†
ε e−ihiZi · U(2)

clean.

Straightforward algebra yields

eihiPεZiP
†
ε e−ihiZi = e−ih̃in̂i·σ i ,

where n̂i is a unit vector and h̃i obeys

cos h̃i = 1 − sin2(hi)(1 − cos ε); (A2)

hence, when ε � 1, we have h̃i ≈ ε sin hi � 1. Thus, the
effective disorder strength in the fields hi is greatly reduced
precisely in the regime where the DTC order should be
found (small ε), posing a problem for the stabilization of
the MBL DTC. Note that this is not a problem at small g
(ε ≈ π ), where disorder in the onsite fields does not get
echoed out and can stabilize a MBL paramagnet. Numeri-
cal simulations of the model confirm this scenario, giving
only a MBL paramagnetic phase (at sufficiently small g)
and an ergodic phase in the rest of parameter space.

To illustrate this, we have performed dynamics sim-
ulations of the model realizable in Sycamore, Eq. (7),
with maximal disorder in the hij

a/b/c angles (sampled uni-
formly from [0, 2π ]), both with and without disorder in
the φ angles (again the identification between controlled-
phase angles and Ising couplings is φ = 4J ). We use the
same discrete-disorder model as in the main text, with
M = 8 values, φ = π , and disorder strength W set to either
W = π/2 (as in the main text) or W = 0. Finally, we take
θ = 0 and �θ = π/50. The results are shown in Fig. 7.
While the MBL PM phase (g = π/80) is fully stabilized
by the h fields, with negligible effect of W, the MBL DTC
(g = 39π/80, i.e., ε = π/40) requires W 	= 0. In sum, in

FIG. 7. Temporal autocorrelator C(n) for L = 16 qubits, aver-
aged over position, 100 disorder realizations, and 100 initial
states, with maximal disorder in the Ising-odd h fields (h ∈
[0, 2π ]), and with disorder W in the Ising-even φ angles.

030346-18



MANY-BODY PHYSICS IN THE NISQ ERA... PRX QUANTUM 2, 030346 (2021)

(a)

(b)

FIG. 8. (a) Temporal autocorrelator C(n) for L = 20 qubits in
the presence of noise (rate p = 10−2) in the MBL DTC phase
(g/π = 39/80, disorder in the controlled-phase angles W =
π/2) for the four initial bitstring states indicated in the legend.
For each state, the data are averaged over position and at least
103 combined realizations of disorder and noise (i.e., quantum
trajectories). The dashed line indicates the decoherence bound
e−γ n, also present in Fig. 6(a), with γ defined in Eq. (17). The
bitstring indicated by |random〉 is |00101010100110111001〉.
(b) Same simulation but without disorder in the controlled-phase
angles, W = 0 [with φ̄ = π as in (a)]. Other model parameters
are �θ = θ̄ = �h = π/50.

the absence of disorder in Ising-even interactions, disor-
der in the Ising-odd longitudinal fields hi is insufficient to
stabilize the DTC phase.

Finally, to show that this phenomenon would be vis-
ible even in the presence of external decoherence, we
have repeated the analysis in the presence of an error
rate p = 10−2 (same as in Fig. 6). The results are dis-
played in Fig. 8. For W = π/2, we have a genuine MBL
DTC phase, showing very limited state-to-state variation
and temporal autocorrelators C(n) consistent with an O(1)
asymptotic value modulated by external decoherence, in
line with the exponential envelope in Eq. (17). On the
contrary, in Fig. 8(b) we turn off the disorder in the φ
angles, setting W = 0, and observe much stronger state-to-
state fluctuations. Special “low temperature” states (such
as the polarized one, or the one with only two domain
walls) nearly saturate the decoherence envelope at early
times; however, they start to decay more quickly after a
few tens of cycles—at that point, one expects several bit
flips have taken place due to the noise, and the states are
progressively less “special.” Typical (“high-temperature”)
bitstrings, on the other hand, immediately decay faster than

decoherence alone would dictate, indicating an intrinsic
instability. This distinctive behavior is evident well within
the coherence time of approximately 100 cycles.

APPENDIX B: EFFECT OF DIFFERENT NOISE
MODELS

1. Control errors and decoherence

In this work we have modeled the effects of noise and
decoherence via a depolarizing channel. This is a justified
assumption if the underlying dynamics is strongly scram-
bling, but not if it is highly structured, as in a MBL phase.
It is thus important to study the effects of different noise
models.

To simplify the comparison of different models, we
restrict to single-qubit decoherence channels, �(1q). These
are assumed to act after all gates, whether one or two
qubits; so, e.g., an application of Rz

i is followed by the
action of �(1q)

i , while an application of Gi,j is followed
by the action of �(1q)

i ⊗�
(1q)
j . We consider four fami-

lies of quantum channels [82], all parameterized by a rate
p ∈ [0, 1] as follows.

1. Depolarizing channel,

�i(ρ) = (1 − p)ρ + p
3
(XiρXi + YiρYi + ZiρZi).

2. Bit-flip channel,

�i(ρ) = (1 − p)ρ + pXiρXi.

3. Phase-flip channel,

�i(ρ) = (1 − p)ρ + pZiρZi.

4. Amplitude-damping channel,

�i(ρ) = AiρA†
i + BiρB†

i

with

A =
(

1 0
0

√
1 − p

)

, B =
(

0
√

p
0 0

)

.

Unlike the depolarizing model, the other three act
anisotropically on the Bloch sphere. Moreover, the
amplitude-damping channel is not unital, i.e., does not pre-
serve the maximally mixed state (it has |0〉 〈0| as its only
fixed point).

The results of simulations of the dynamics under these
error models, using the same method described in the main
text, are shown in Fig. 9. We find that the depolarizing, bit-
flip, and amplitude-damping channels have similar effects,
causing an exponential decay with a rate close to p , within
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Noise channel
Amplitude damping
Bit flip
Depolarizing
Phase flip

FIG. 9. Effect of different noise models on the DTC signal
[autocorrelator C(n), averaged over position and 103 disor-
der realizations] for L = 20 qubits at g/π = 39/80. All noise
channels are single qubit and have rate p = 3 × 10−3 (see the
text).

factors of order unity. On the contrary, the phase-flip error
model causes a much slower decay (by over an order of
magnitude in this case).

This behavior follows from the existence of local inte-
grals of motion (lbits) in the MBL phase, which are nearly
aligned with the Z axis in these models. To the extent that
the quantum jump operators Zi commute with the lbits, one
can decouple the ideal dynamics (the Floquet unitary UF )
from the decoherence,

ρ �→ Un
F

[⊗

i

�n
i (ρ)

]

(U†
F)

n.

If the initial state is itself an eigenstate of the Zi, it is
immune to the phase-flip decoherence and one recovers
the ideal dynamics. Thus, the effect of decoherence is sup-
pressed by how closely aligned the lbits are with the Z axis.
As the tilt is induced by the “transverse field” (pulse imper-
fection), one expects the rate of decoherence in this case
to scale as |g| in the MBL PM phase and as |g − π/2| in
the MBL DTC. For the case of Fig. 9, this yields a life-
time enhancement of approximately 40/π � 13, which is
in line with the data.

Finally, we note that the depolarizing noise is effec-
tively a weighted average of bit-flip and phase-flip noise,
and is thus intermediate between the two. The amplitude-
damping noise behaves similarly as well.

2. Measurement error

Here we consider the effect of (possibly correlated) read-
out errors on the various diagnostics studied in this paper.
We model the measurement error as a stochastic process
where the outcome of a qubit state measurement (in the Z
computational basis) is randomly flipped, with probability
pm, away from its correct value. A realistic estimate for pm
on Sycamore is pm � 2.5%.

We start by considering local observables, such as
Cii(n) = 〈Zi(n)Zi(0)〉. Assuming that the initial state is

a bitstring |ψ〉 = |s〉 (si ∈ Z2) prepared perfectly, we
have Cii(n) = si〈Zi(n)〉; letting A± = 〈[1 ± Zi(n)]/2〉 be
the probability that qubit i points up (down) at time n,
the result of the noisy measurement process is Zi = +1
with probability A+(1 − pm)+ A−pm, and Zi = −1 with
probability A+pm + A−(1 − pm). In all, the estimate for
Cii(n) with measurement error, CME

ii (n), becomes

CME
ii (n) = A+(1 − 2pm)− A−(1 − 2pm)

= (1 − 2pm)Cii(n), (B1)

where we used the fact that Cii(n) = A+ − A−. This argu-
ment goes through for each site i, independent of any
correlations in the measurement errors; hence, averaging
over position yields CME = (1 − 2pm)C(n), i.e., a damp-
ing by a time-independent overall prefactor. This lowers
the signal’s lifetime by a modest amount, but does not
qualitatively change its behavior.

Correlations in readout errors have an effect on quanti-
ties that specifically diagnose the spatial glassiness, such
as the Edwards-Anderson (spin glass) order parameter,
Eq. (13). Qubits on Sycamore are measured in groups
of six via a frequency-multiplexing scheme [5], which
could introduce correlations in the measurement errors. As
we envision an effective one-dimensional system living
on a path that zigzags through Sycamore, such correla-
tions in measurement errors will in general be nonlocal
in the one-dimensional system. We consider an extreme
scenario where the system’s qubits are partitioned into
groups G1, G2, . . . and the measurement errors are per-
fectly correlated within each group (and uncorrelated
between groups): for each set Gα , with probability pm,
all qubits in Gα are measured incorrectly (i.e., flipped);
otherwise, they are all measured correctly. (One could
study models with imperfect correlations in measurement
errors and arrive at similar conclusions.) The Edwards-
Anderson order parameter is measured by first obtaining
a quantum average of sij ≡ 〈Zi(n)Zj (n)〉, then computing
χSG = (1/L)

∑
i,j s2

ij , and averaging the result over disor-
der realizations. For two qubits in the same group Gα , sij
does not suffer any measurement error—either both qubits
flip, or neither does, leaving the product fixed. However,
for two qubits in distinct groups, we have sij �→ sij [(1 −
pm)

2 + p2
m − 2pm(1 − pm)] = sij (1 − 2pm)

2. Adding up all
contributions, we find that

χSG,ME = χSG
diag + (1 − 2pm)

4[χSG − χSG
diag], (B2)

where we introduced the “diagonal” sum

χSG
diag = 1

L

∑

α

∑

i,j ∈Gα

s2
ij .

The case of uncorrelated measurement errors is recovered
by setting Gα ≡ {iα} (each qubit forms its own set), which
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gives χSG
diag = 1 and, thus,

χSG,ME = 1 + (1 − 2pm)
4(χSG − 1). (B3)

Because all partial sums are positive, one has χSG
diag ≥ 1

in the presence of correlations. It follows, by comparing
Eqs. (B2) and (B3), that correlations in measurement errors
in fact slightly enhance the lifetime of χSG (compared to
uncorrelated errors), and in any case do not qualitatively
change its behavior.

APPENDIX C: LOCALITY OF DECOHERENCE IN
MBL PHASES

Here we discuss the effects of MBL on the propaga-
tion of decoherence in the system. In a strongly ergodic
system, an error anywhere in the system quickly random-
izes the entire wavefunction (within a ballistic lightcone).
In a MBL system, on the other hand, an error at a given
location has effects only within a logarithmic “lightcone”
[119,120], so, for all practical purposes, the effects of deco-
herence are local—loss of coherence at a given site is
dominantly the consequence of errors at that site or in its
immediate vicinity.

We illustrate this point by simulating a qubit chain
where the evolution is ideal and unitary everywhere,
except for a single location in space. For specificity, we
choose a bond (qubits i = 0, 1); there, the same (one- and
two-qubit) depolarizing noise model used in the main text
acts at every time step. We then measure the DTC signal,
i.e., the staggered autocorrelator (−1)nCii(n) at all qubits i.

Site i

FIG. 10. Numerical simulation of L = 16 qubits in the DTC
phase with depolarizing noise (as in Fig. 6, with p = 0.01) act-
ing only on a single bond (qubits i = 0, 1; boundary conditions
are periodic), averaged over 104 realizations of disorder. The
dashed line represents an arbitrary threshold (0.8) used to extract
a “decay time” τ for each site. Inset: DTC signal’s decay time,
τ(d), diverges exponentially in the distance d from the noisy
bond, consistent with the presence of exponentially localized
integrals of motion in the MBL DTC phase.

The results are shown in Fig. 10. We find that the decay
time scale for qubit i diverges as a function of its distance
d from the faulty bond as τ(d) ∼ ed/ξ . This is consis-
tent with the expectation for a system with exponentially
localized lbits: each lbit is depolarized at a rate propor-
tional to its overlap with the noisy sites, which in turn
is set by the exponentially decaying envelope of the lbit,
τ z

i ∼ ∑
j e−|i−j |/ξOj , where each Oj is supported around

site j .
As a consequence of this, loss of the DTC signal at a

given position is chiefly the result of errors at or near that
position, even after a long time. Thus, the overall lifetime
of the DTC signal is approximately independent of system
size, as seen in Fig. 6.
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