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A unitary t-design is a powerful tool in quantum information science and fundamental physics. Despite
its usefulness, only approximate implementations were known for general t. In this paper, we provide
quantum circuits that generate exact unitary t-designs for any t on an arbitrary number of qubits. Our con-
struction is inductive and is of practical use in small systems. We then introduce a tth-order generalization
of randomized benchmarking (t-RB) as an application of exact 2t-designs. We particularly study the 2-RB
in detail and show that it reveals self-adjointness of quantum noise, a metric related to the feasibility of
quantum error correction (QEC). We numerically demonstrate that the 2-RB in one- and two-qubit systems
is feasible, and experimentally characterize background noise of a superconducting qubit by the 2-RB. It
is shown from the experiment that interactions with adjacent qubits induce the noise that may result in an
obstacle toward a realization of QEC.
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I. INTRODUCTION

Randomness in quantum systems has been driving
recent progress of quantum information science [1–34] as
well as fundamental physics [35–46]. Theoretically, quan-
tum randomness is often formulated by a unitary drawn
uniformly at random, also known as a Haar random uni-
tary. However, the Haar randomness is physically unfea-
sible in large quantum systems. From the viewpoint of
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applications, the unitaries that have similar properties of
a Haar random unitary are of great importance because
they can be used instead of the Haar one. When a ran-
dom unitary has the same tth-order statistics as a Haar
random unitary on average, it is called a unitary t-design.
For instance, when a protocol exploits the tth power of
the measurement probability after applying a Haar random
unitary on any state, the protocol also works even if the
Haar random unitary is replaced with a unitary t-design.

A unitary t-design can be regarded as a quantum gener-
alization of t-wise independence [1], and have many appli-
cations, ranging from communication [2–9], cryptography
[10,11], algorithms [12,13], sensing [14–17], to poten-
tially quantum supremacy [18–20]. A unitary t-design
is also related to another important concept in quantum
information science, epsilon-net [21], implying more
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applications yet to be discovered. Furthermore, the concept
of unitary designs has opened a novel research field over
quantum information science, quantum thermodynamics,
strongly correlated physics, and quantum gravity [35–44].
Experimentally, unitary designs and related methods have
been exploited for benchmarking noisy quantum devices
[18,22–34], realizing quantum supremacy [19], demon-
strating quantum chaos and quantum holography [45,46].
It is also worthwhile to mention that unitary designs
have been studied in combinatorial mathematics [47–
52]. Hence, developing the theory of unitary designs is
of substantial interest in a wide range of science, both
theoretically and experimentally.

An important question about unitary t-designs is how
to implement them by quantum circuits. Many implemen-
tations of unitary 2-designs, both approximate and exact,
have been proposed [53–62]. In contrast, only approxi-
mate implementations of unitary t-designs for general t
were known [63–67]. Explicit constructions of exact uni-
tary designs were left open except special cases [49,52,68].
Approximations typically suffice in applications, but exact
designs are more preferable in certain protocols especially
when they are used multiple times in a single run of the
protocol. If this is the case, the error from each approx-
imate implementation accumulates and eventually spoils
the protocol.

One of such protocols is a randomized benchmarking
(RB) protocol [22–24], a standard method for experimen-
tally estimating quantum noise, where unitary 2-designs
are used multiple times. Although the RB is experimen-
tally friendly and is widely used in various experimen-
tal systems, it reveals only the average gate fidelity. To
obtain more information about the noise, a number of vari-
ants have been proposed and experimentally implemented
(see, e.g., Ref. [69] and the references therein), which
are all based on 2-designs. It is highly expected that, by
using higher-order designs, much more information about
the noise in quantum systems can be extracted. To this
end, explicit constructions of exact unitary t-designs are
important.

Constructing exact designs is, however, by far nontriv-
ial. The difficulty is illustrated by a spherical t-design, a
random real unit vector analogous to a unitary t-design.
The existence of exact spherical t-designs was proven in a
nonconstructive manner more than three decades ago [70].
Since then, more concise proofs and explicit constructions
have been under intense investigation in combinatorial
mathematics (see, e.g., Refs. [71–75] and the references
therein). In particular, it was only recently that construc-
tions in general cases [76] and explicit constructions, in
the sense that all the algorithms are given in a computable
form [77], were proposed. Finding explicit constructions of
exact unitary designs, because they are more complicated
than spherical designs, is a rather nontrivial problem.

In this paper, we provide an explicit quantum circuit that
generates an exact unitary t-design for any t on the arbitrary
number N of qubits. More specifically, we show that an
exact unitary t-design on d-dimensional Hilbert space, that
is, a qudit, can be generated from those on smaller spaces,
which is obtained based on the recent mathematical results
by some of the present authors [77]. Using this result, we
provide an inductive construction of quantum circuits for
exact unitary t-designs on N qubits: we first construct a
unitary t-design on a single qubit and then extend it to N
qubits. Unfortunately, the circuit fails to be efficient, but is
still of practical use when the system is small.

As an application of exact unitary designs, we introduce
the tth-order RB, or the t-RB for short, that harnesses the
power of exact unitary 2t-designs. The standard RB corre-
sponds to the 1-RB. The t-RB enables us to experimentally
characterize the higher-order properties of quantum noises
in the manner free from state-preparation and measure-
ment (SPAM) errors. We investigate in particular the 2-RB
in detail and show that it reveals self-adjointness of the
noise in the system. The self-adjointness is a metric of the
noise related to the feasibility of quantum error correc-
tion (QEC): small self-adjointness implies that the noise
cannot be approximated by any stochastic Pauli noise.
The noise on the system being stochastic Pauli is desir-
able both in theory and in practice. Stochastic Pauli noises
are the commonly used noise models in theoretical stud-
ies of QEC, because they are easy to handle numerically,
and the properties of QEC, such as error thresholds and
logical error rates, for stochastic Pauli noises are well-
understood. In addition, there is a practical advantage if
the noise on the system is stochastic Pauli because it can
be corrected simply by applying Pauli operators, making
the error-correcting scheme easier in general.

After numerically demonstrating the feasibility of the 2-
RB, we perform the 2-RB in a superconducting system and
estimate the self-adjointness of background noise, showing
that the 2-RB experiments are feasible. From the exper-
iment, we find that the interactions with adjacent qubits
especially decrease the self-adjointness, which may lead
to degradation of the performance of QEC with standard
decoders. Hence, either improving the system or extend-
ing the noise model in theoretical studies of QEC, or
both, is important for further experimental developments
of quantum information technology.

This paper is organized as follows. In Sec. II, we pro-
vide a general introduction of unitary t-designs. Our main
results are summarized in Sec. III for the quantum-circuit
construction of exact unitary t-designs, and in Sec. IV for
the t-RB protocols. A summary of the experiment of the 2-
RB is provided in Sec. V. After we explain the structure of
the remaining paper in Sec. VI, we provide a proof of the
explicit construction in Sec. VII and the theory of the t-RB
in Sec. VIII. The details of the experiment are provided in
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Sec. IX. We conclude our paper with summary and discus-
sions in Sec. X. Technical statements are provided in the
Appendices.

II. UNITARY t-DESIGNS

Let U(d) be the unitary group of degree d <∞. The
Haar measure H on U(d) is the unique unitarily invariant
measure on the unitary group, that is, it satisfies

∀W ⊂ U(d), ∀V ∈ U(d),

H(VW) = H(WV) = H(W). (1)

When it is needed to clarify the degree of the unitary group,
we denote the Haar measure by H(d).

A unitary t-design Ut(d) is defined by a finite set of uni-
taries that mimics the tth-order statistical moment of the
Haar measure H. Amongst several equivalent definitions
[78], we adopt the following definition here.
Definition 1 (Unitary t-design): For t ∈ Z

+, a finite set
Ut(d) ⊂ U(d) of unitaries is a unitary t-design if

EU∼Ut(d)[U
⊗t ⊗ U†⊗t] = EU∼H(d)[U⊗t ⊗ U†⊗t], (2)

where EU∼Ut(d) is a uniform average over Ut(d), and
EU∼H(d) is the average over the Haar measure.

From an operational viewpoint, this definition implies
that a unitary t-design cannot be distinguished from a
Haar random unitary on average even when t copies of
the unitary are given. To classify this, let us define a
quantum operation, that is, a completely positive and
trace-preserving (CPTP) map, G(t)μ by

G(t)μ (�) := EU∼μ
[
U⊗t�U⊗t†], (3)

for any quantum state � on t qudits, where μ is either the
Haar measure H(d) on a qudit or a uniform measure over a
unitary t-design Ut(d). Then, we can show that Definition
1 is equivalent to that (see, e.g., [78])

G(t)H = G(t)Ut
. (4)

This implies that, in any experiments that use t copies of a
random unitary, no difference will be observed on average
when a t-design is used instead of the Haar one.

For instance, let us consider the probability distribu-
tion {pi(U) := Tr[PiUρU†]} when a one-qudit state is
measured by a given positive operator-valued measure
(POVM) {Pi}i after the application of a unitary U. By set-
ting the t-qudit state � in Eq. (3) to ρ⊗t and using Eq. (4),
it follows that, for any s = 1, . . . , t,

EU∼H

[ s∏

r=1

pir(U)
]
= EU∼Ut

[ s∏

r=1

pir(U)
]

. (5)

Thus, the distribution of the measurement outcomes for
a Haar random unitary and that for an unitary t-design

exactly coincide up to the tth order on average. Note that
this is merely an example, and Eq. (4) implies much more:
a Haar random unitary cannot be differentiated from a uni-
tary t-design even by more complicated experiments over
t qudits.

The existence of an exact unitary t-design on U(d) for
any t and d follows from the Carathéodoty’s theorem and
the fact that the dimension of the space, on which U⊗t ⊗
U†⊗t is defined, is finite. Note, however, that the proof indi-
cates only the existence of an exact unitary t-design. How
to explicitly construct an exact unitary t-design has been a
highly nontrivial problem.

In our construction, it is convenient to introduce a strong
unitary t-design.

Definition 2 (Strong unitary t-design): For t ∈ Z
+, a

finite set U≤t(d) of unitaries on U(d) is called a strong
unitary t-design if

EU∼U≤t(d)[U
⊗r ⊗ U†⊗s] = EU∼H[U⊗r ⊗ U†⊗s], (6)

for all r, 0 ≤ r ≤ t, and all s, 0 ≤ s ≤ t.
Clearly, a strong unitary t-design is a unitary t-design.

Unlike standard unitary designs, strong unitary designs
do not have a clear operational interpretation in quantum
information processing, but we use it in the intermediate
step of our construction.

III. MAIN RESULT 1: QUANTUM CIRCUITS FOR
EXACT UNITARY DESIGNS

In this section, we provide explicit constructions of
strong unitary t-designs for any t. In particular, a quantum
circuit for a strong unitary t-design on N qubits is provided.
We start with preliminaries in Sec. III A, and provide the
construction in Sec. III B. We then comment on the circuit
complexity of the construction in Sec. III C.

A. Preliminaries

Unitary designs have been studied in terms of represen-
tation theory [49,51] because the operator U⊗t ⊗ U†⊗t in
the definition can be regarded as a representation of the
unitary group. Our construction is based on representation
theory, where irreducible decomposition of the operator
plays an important role. A brief introduction of irreducible
representations (irreps) is provided in Sec. VII A. Here, we
mention a couple of well-known facts that are necessary to
state our main result.

Any irrep of the unitary group can be indexed by a non-
increasing integer sequence λ := (λ1, λ2, . . . , λd) of length
d, that is, λi ∈ Z for i = 1, . . . , d, and λ1 ≥ λ2 ≥ · · · ≥ λd
[79]. In particular, spherical representations of U(d) with
respect to K := U(d1)× U(d − d1) are of great impor-
tance in the construction. Let �sph(d1, d, t) be a set of all
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nonincreasing integer sequences λ in the form of

λ = (λ1, . . . , λd1 , 0, . . . , 0,−λd1 , . . . ,−λ1), (7)

where d1 ≤ d/2 and t ≥ λ1 ≥ · · · ≥ λd1 ≥ 0. The spheri-
cal representation is the irrep indexed by λ ∈ �sph(d1, d, t)
[80]. For a spherical representation λ ∈ �sph(d1, d, t), a
zonal spherical function Z(d1)

λ (z1, . . . , zd1) is defined by
the unique bi-K-invariant function [50,77,81]. The zonal
spherical functions are a certain type of symmetric poly-
nomials, and can be explicitly written down (see, e.g.,
Appendix A of Ref. [77]).

B. Inductive constructions

Our main technical result is to construct a strong unitary
t-design on U(d) from those on U(d1) and on U(d − d1).

Theorem 1: Let d1 be a positive integer such that d1 ≤
d/2. Define a set of unitaries Wd1⊕d−d1 in U(d) by

Wd1⊕d−d1 := {U⊕ V|U ∈ U≤t(d1), V ∈ U≤t(d − d1)},
(8)

where U≤t(d1) and U≤t(d − d1) are strong unitary t-
designs on U(d1) and U(d − d1), respectively. Let θλ :=
(θ
(0)
λ , . . . , θ(d1−1)

λ ) (θ
(i)
λ ∈ [0,π/2]) be such that

Z(d1)
λ

(
cos2 θ

(0)
λ , . . . , cos2 θ

(d1−1)
λ

) = 0, (9)

where Z(d1)
λ is the zonal spherical function for λ ∈

�sph(d1, d, t). Let Rλ be a unitary defined by

Rλ =
⎛

⎝
C(θλ) iS(θλ) 0
iS(θλ) C(θλ) 0

0 0 Id−2d1

⎞

⎠ , (10)

where C(θλ) = diag(cos θ(0)λ , . . . , cos θ(d1−1)
λ ) and S(θλ) =

diag(sin θ(0)λ , . . . , sin θ(d1−1)
λ ), and Id−2d1 is the identity

matrix of size d − 2d1. Then,

Wd :=Wd1⊕d−d1

∏

λ∈�sph(d1,d,t)

(RλWd1⊕d−d1) (11)

is a strong unitary t-design on U(d).

Theorem 1 follows from a more general result [77]
shown by some of the authors, which works not only for
the unitary group but also for a broader class of compact
groups. For the sake of completeness, we provide a direct
proof of Theorem 1 in Sec. VII.

We then claim that

W1 = {1,ω,ω2, . . . ,ωt}, (12)

where ω = exp[2π/(t+ 1)] is the (t+ 1)th root of unity,
is a strong unitary t-design on U(1) for any t. This is easily
checked by direct calculations:

EU∼W1[U⊗r ⊗ U†⊗s] = 1
t+ 1

∑

z∈W1

zrz̄s = δrs, (13)

EU∼H(1)[U⊗r ⊗ U†⊗s] =
∫

U(1)
zrz̄s dz = δrs, (14)

where δrs is the Kronecker delta. Hence, we have
EU∼W1[U⊗r ⊗ U†⊗s] = EU∼H(1)[U⊗r ⊗ U†⊗s] for all s, r,
0 ≤ s, r ≤ t, implying that W1 is a strong unitary t-design.

From Theorem 1 and W1, a strong unitary t-design on a
qudit can be constructed inductively.

Corollary 1: For d ≥ 1, let W1⊕d−1 be a set of unitaries
given by

W1⊕d−1 = {z ⊕ V | z ∈W1, V ∈ U≤t(d − 1)}, (15)

where W1 = {1,ω, . . . ,ωt} with ω being the (t+ 1)th root
of unity, and θλ ∈ [0,π/2] be such that

Z(1)λ (cos2 θλ) = 0. (16)

Using a unitary Rλ = eiθλX ⊕ Id−2, where X is the Pauli-X
operator, we obtain that

W1⊕d−1

∏

λ∈�sph(1,d,t)

(RλW1⊕d−1) (17)

is a strong unitary t-design on a qudit.

In this construction, it is important to obtain zeros for
the zonal spherical functions Z(1)λ . This is computationally
feasible because they are polynomials of one variable and
are explicitly given (see Appendix A of Ref. [77]). Fur-
thermore,�sph(1, d, t) contains only t elements. Hence, we
need to solve t polynomials with one variable, which is
tractable as long as t is not too large.

We now consider a strong unitary t-design on N qubits.
Again using Theorem 1, we obtain the quantum circuit on
(N + 1) qubits based on that on N qubits. See also Fig. 1.

Corollary 2: Let QN be a strong unitary t-design on N
qubits, and Ctrl-QN be a set of controlled-unitaries on
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FIG. 1. The quantum circuit that generates an exact unitary t-
design on N + 1 qubits from those on N qubits. The unitary QN
is a quantum circuit for an exact unitary t-design on N qubits.
The gate X (θλ) is the single-qubit X -rotation controlled by the
other N qubits, which corresponds to RX (θλ) in the main text.
Note that this gate can be decomposed into a sequence of two-
qubit gates using a classical oracle that provides θ(j )λ from j . The
rotation angles θλ are obtained by solving Z(D)λ = 0, where Z(D)λ

is the zonal spherical function for the spherical representation
λ ∈ �sph(D, 2D, t)with D = 2N . The number of the controlled-X
rotations is |�sph(D, 2D, t)|. By the inductive use of this quan-
tum circuit in terms of N , we can decompose the circuit to that
consisting only of two-qubit gates.

N + 1 qubits, defined by

Ctrl-QN := {|0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1 : U0, U1 ∈ QN }.
(18)

For λ ∈ �sph(D, 2D, t), where D = 2N , let θλ := (θ(0)λ , . . . ,
θ
(D−1)
λ ) be such that

Z(D)λ (cos2 θ
(0)
λ , . . . , cos2 θ

(D−1)
λ ) = 0. (19)

Representing {0, . . . , D− 1} in binary form such as
{j }j∈{0,1}N , we write θ(j )λ as θ(j )λ . Let RX (θλ) be a single-
qubit X -rotation controlled by N qubits, defined by

RX (θλ) =
∑

j∈{0,1}N
eiθ(j )λ X ⊗ |j 〉〈j |. (20)

Then,

Ctrl-QN

∏

λ∈�sph(D,2D,t)

(
RX (θλ)Ctrl-QN

)
(21)

is a strong unitary t-design on N + 1 qubits.

Corollary 2 implies that a quantum circuit for an exact
unitary t-design can be inductively constructed from a
strong unitary t-design on one qubit, that is, that on U(2).
Furthermore, a strong unitary t-design on U(2) can be con-
structed using Corollary 1. Thus, combining Corollaries 1
and 2, we obtain a quantum circuit for an exact unitary
t-design for any t and on an arbitrary number of qubits.

Note that the circuit, constructed in this way, can be
explicitly decomposed into two-qubit gates. The controlled

unitary Ctrl-QN part contains up to three-qubit gates, if the
circuit QN on N qubit is already decomposed into two-
qubit gates. The three-qubit gates can be easily rewritten
as a series of two-qubit gates. In addition, the X -rotation
controlled by N qubits, RX (θλ), can be decomposed into
a sequence of two-qubit gates of polynomial length using
a sufficient number of ancillary qubits, which is based on
a classical oracle that computes the angle θ(j )λ from j (see
Appendix A).

In special cases, we can find a much more concise
construction based on a similar technique.

Proposition 1: Let C(4) be the Clifford group on 2
qubits. There exists a fixed two-qubit unitary Uc, such that
C(4)UcC(4) is an exact unitary 4-design on 2 qubits.

Analytically, we can prove that there exist unitaries V1
and V2 such that C(4)V1C(4)V2C(4) is an exact unitary
4-design on 2 qubits [77]. In addition, an algorithm for
computing the unitaries V1 and V2 is given. It, however,
turns out from numerics that it is not necessary to apply
two extra unitaries if we choose a proper unitary Uc, which
leads to Proposition 1. An explicit form of the unitary Uc is
numerically obtained and is provided in Appendix B. Note
that the existence of Uc is confirmed numerically, so the
statement holds up to numerical precision.

This construction is only for a 4-design on 2 qubits, but
the number of unitaries in the 4-design is much smaller
than in Corollary 2. It is an open problem whether a simi-
lar construction works for higher-order designs on a larger
number of qubits.

C. Efficiency and comparison with a Haar unitary

To quantitatively evaluate the complexity of the quan-
tum circuit for an exact unitary t-design obtained in
Corollary 2, we provide an order estimate of the number
G(N ) of two-qubit gates in the circuit. Assuming 2N  t
and using the fact that |�sph(D, 2D, t)| = O(eπ

√
2t/3) owing

to the Hardy and Ramanujan formula for the asymptotics
of the number of partitions, we obtain

G(N ) ≈ exp
[
π

√
2t
3
(N − 1)

]
, (22)

to the leading order of N . Hence, it is necessary to use
exponentially many two-qubit gates as the number of
qubits increases. This inefficiency of the quantum circuit
may be intrinsic because the construction is inductive.

There is another source of inefficiency. In Corollary 2, it
is necessary to find zeros of zonal spherical functions (see
Eq. (19)) for all λ ∈ �sph(D, 2D, t). The zonal spherical
function is given in terms of the summation of the (normal-
ized) Schur polynomials (see Appendix A in Ref. [77]).
It is unlikely that the Schur polynomials have polyno-
mial size algebraic formulas in general [82]. Moreover, the
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number of variables for each Z(D)λ is D = 2N . Hence, find-
ing zeros of zonal spherical functions is computationally
intractable.

In total, the construction for an exact unitary t-design on
a large number of qubits is inefficient from both quantum-
circuit and classical-computation viewpoints. We, how-
ever, think that our construction and our proof technique
will form a solid basis of searching more efficient construc-
tions of exact, as well as approximate, unitary designs. We
also emphasize that, despite its inefficiency, our construc-
tion is of practical use on a few-qubit system, as we seek
in the following sections.

Before we conclude this section, we comment on advan-
tages of our construction of an exact unitary t-design over
a direct implementation of a Haar random unitary. A naive
way of implementing a Haar random unitary by a quan-
tum circuit consists of three steps. First, we sample a Haar
random unitary as a matrix by a classical computer. A clas-
sical algorithm for this is known [83], but it is trivially
inefficient because the size of the matrix is exponentially
large. We then classically compute a decomposition of the
unitary matrix into a sequence of two-qubit unitaries, pro-
viding a classical description of a quantum circuit for the
unitary. This step is also inefficient, and the resulting quan-
tum circuit is almost surely composed of the exponentially
many number of two-qubit gates. Finally, we implement
the circuit in practice.

This quantum circuit for a Haar random unitary is inef-
ficient in terms of the number of qubits and, thus, cannot
be of practical use in a large system. Even in a small sys-
tem, this naive implementation has a crucial difficulty that,
every time a unitary is sampled, the protocol described
previously outputs a quantum circuit with a rather differ-
ent sequence of various two-qubit gates. This implies that,
in each sampling, one needs to significantly modify the
quantum circuit. This is in a sharp contrast to our quantum
circuit for a unitary t-design based on Corollary 2 because
it has a fixed structure. In each sampling, only what one
needs to do is to randomly choose single-qubit gates, or
more precisely elements of U(1) from W1 [see Eq. (12)],
and to plug them into the quantum circuit with a fixed
structure. This will help practical implementations of the
circuit in small systems.

It should be also noted that the single-qubit gates in our
construction can be sampled from a discrete set, though
sampling from a continuous gate set is necessary in the
direct implementation of a Haar random unitary. This is
another advantage of our construction.

IV. MAIN RESULT 2: HIGHER-ORDER
RANDOMIZED BENCHMARKING

We here introduce a higher-order generalization of the
standard RB that uses exact unitary 2t-designs. We call
it the tth-order RB, or simply t-RB. The standard RB

corresponds to 1-RB. From the higher-order RB, more
information about the noise can be extracted. In particular,
we show that an alternative characterization of the noise,
which we call self-adjointness, can be estimated from the
2-RB.

Before we proceed, we emphasize that exact unitary
designs, not approximations, are of crucial importance in
the RB-type protocols. This is because the protocol uses
unitary designs multiple times. Hence, if each unitary has
an error due to the approximation, it accumulates in the
whole process and results in a large error at the end. As the
goal of the RB-type protocol is typically very high, such
as benchmarking the fidelity at more than 95%, the error
originated from the approximate designs would spoil the
protocol. Hence, the use of exact unitary designs is of key
importance. This point is more elaborated on in Sec. IV D.

In Sec. IV A, we overview a couple of metrics of the
noise, i.e., the average fidelity and unitarity, and introduce
the self-adjointness. The importance of the self-adjointness
in QEC is argued in Sec. IV B. We then introduce the t-RB
in Sec. IV C. We argue the importance of exact designs
in more detail in Sec. IV D. We focus on the 2-RB in
Sec. IV E and show that the self-adjointness and the uni-
tarity of the noise can be estimated from the 2-RB at the
same time. We briefly comment on the scalability of the
t-RB in Sec. IV F.

A. Characterizing noises

A noise E acting on a q-qubit system is formulated by
a CPTP map. Let d be defined as d := 2q. The average
fidelity and the unitarity are defined by

F(E) :=
∫

dϕ〈ϕ|E(|ϕ〉〈ϕ|)|ϕ〉, (23)

u(E) := d
d − 1

∫
dϕ

∣∣∣∣E ′(|ϕ〉〈ϕ|)∣∣∣∣2
2, (24)

respectively, where E ′(ρ) := E(ρ − I/d), and ‖A‖2 =
(Tr[A†A])1/2 is the Schatten 2-norm. The average fidelity
satisfies 1/(d + 1) ≤ F(E) ≤ 1, and F(E) = 1 if and only
if the system is noiseless, that is, E is the identity channel,
whereas the unitarity satisfies 0 < u(E) ≤ 1, and u(E) = 1
if and only if the noise is coherent, that is, E is a unitary
channel. The unitarity is an important metric in the con-
text of QEC because coherent noise is known to be hard to
correct in general [84–86].

In the RB-type protocols, it is more natural to use a
fidelity parameter f (E) rather than the average fidelity
itself. It is defined by

f (E) = dF(E)− 1
d − 1

, (25)

and satisfies −1/(d2 − 1) ≤ f (E) ≤ 1.
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We next introduce a self-adjointness of the noise. For
any linear map E , an adjoint map E† is defined by
Tr[AE(B)] = Tr[E†(A)B]. A noise E is called self-adjoint
if E = E†, which is equivalent to that all the Kraus opera-
tors of E are self-adjoint.

The self-adjointness H(E) of the noise E is defined by

H(E) := 1− d + 1
2d

∫
dϕ

∣∣∣∣E(|ϕ〉〈ϕ|)− E†(|ϕ〉〈ϕ|)∣∣∣∣2
2.

(26)

The normalization constant is chosen such that 0 ≤
H(E) ≤ 1. Obviously, H(E) = 1 if and only if E is self-
adjoint, that is, E = E†. Note that the self-adjointness has
two contributions from the noisy map E , one is from the
unital part and the other from the nonunital part. The
nonunital part of the noise makes the self-adjointness
less than one because, if E is not unital, then E† is not
trace-preserving, which implies that E �= E†.

To clearly separate the two contributions, we introduce
a self-adjointness parameter h(E). Using E ′(ρ) = E(ρ −
I/d), we defined it by

h(E) := d
d − 1

∫
dϕ Tr[E ′(ϕ)E ′†(ϕ)]. (27)

The self-adjointness parameter h(E) is related to the self-
adjointness H(E) and the unitarity u(E) by

H(E) = 1− d2 − 1
d2

(
u(E)− h(E))− d + 1

2d2 |αE |2, (28)

where |αE | is a measure of the nonunital part of the noise
(see Sec. VIII A for the definition). We can clearly observe
that H(E) consists of two factors, the unital part h(E) and
the nonunital part |αE |.

The three metrics of noises, namely, fidelity, unitar-
ity, and self-adjointness, all capture different properties of
the noises. The fidelity reveals the first-order property of
the noises, whereas the unitarity and the self-adjointness,
which are independent to each other, reveal the second-
order. In order to improve noisy quantum devices, it is
of crucial importance to obtain the information of noise
as much as possible. Hence, it is certainly of practical
use to introduce the self-adjointness as a metric of noise.
In addition, we argue in the next subsection that the
self-adjointness has important implications for QEC.

B. Importance of self-adjointness in QEC

The most important family of self-adjoint noises is
stochastic Pauli noises, whose Kraus operators are all
proportional to Pauli matrices. In QEC, Pauli noises are
the standard yet most important class of noises both in
theory and in practice. From a theoretical perspective,
Pauli noises are easy to numerically handle. Hence, most

numerical calculations have been carried out by assum-
ing Pauli noises, and it has been confirmed that QEC
has preferable features, such as exponential decreases and
threshold behaviors of logical error rates, if the noise is
Pauli.

The noise being Pauli is also practically preferable in
experimental realizations of QEC because it typically sim-
plifies the decoding tasks. This is especially the case for
stabilizer codes, such as surface and color codes, whose
standard decoders are to estimate what types of Pauli oper-
ators should be applied on which physical qubits during
recovery operations. For stochastic Pauli noises, if the esti-
mation goes well, the state is fully retrieved with high
probability by applying Pauli operators to the suitable
physical qubits. In contrast, it is not possible to fully cor-
rect non-Pauli noises by applying Pauli operators because
they generate undesired coherence between different code
spaces. Thus, QEC of non-Pauli noises generally suffers
from degradation of logical error rates when the standard
decoders are used [86,87] or requires more complicated
algorithms for retrieving the performance of QEC. Nei-
ther of them is preferable in practice because it induces
additional experimental difficulties.

For these reasons, it is desirable to check that the noise
on an experimental system is stochastic Pauli. To this end,
the self-adjointness provides useful information because,
if H(E)� 1, then the noise is far from self-adjoint and
cannot be approximated by Pauli noises. This implies that
the practical situation differs from the standard assumption
in theoretical studies of QEC and incurs additional diffi-
culties on decoding procedure. Thus, the self-adjointness
provides practical information about the feasibility of QEC
using Pauli-based decoders.

Note that the difficulty of QEC for non-Pauli noises,
captured by the self-adjointness, is highly dependent on the
assumptions in QEC schemes. When any decoding pro-
cedure is available, it would not be so important whether
the noise is Pauli or non-Pauli. When this is the case, the
unitarity will be a more suitable metric of noise relevant
to the feasibility of QEC [84–86]. Note also that non-
Pauli noises can be always transformed to a Pauli noise by
Pauli twirling. However, Pauli twirling induces additional
noise onto the system and, as a result, the performance
of QEC will degrade. Thus, it is practically desirable to
manufacture the system so that the noise is stochastic
Pauli.

We also provide a pedagogical example of noise, where
performance of QEC can be directly captured by the self-
adjointness but not by fidelity nor unitarity. Consider a
θ -rotation error around the X -axis on one qubit, that
is, exp[iθX /2], where X is the Pauli-X operator. The
average fidelity Fθ and the self-adjointness Hθ can be
obtained as

1/3 = Fπ < Fπ/2 = 2/3, (29)
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0 = Hπ/2 < Hπ = 1. (30)

The unitarity is 1 for any θ .
One may expect that the π/2-rotation error is easier to

correct than the π -rotation because the former has higher
fidelity than the latter. However, this is not the case because
π -rotation is simply a perfect bit-flip that can be trivially
corrected, whereas the π/2-rotation error is known to be
particularly hard to correct [88]. Thus, neither the aver-
age fidelity nor the unitarity, which is 1 for both errors, is
a good metric of the error correctability. In contrast, the
self-adjointness clearly captures whether the error can be
corrected, at least in this case, because Hπ/2 and Hπ are the
minimum and the maximum values of the self-adjointness,
respectively.

C. General description of the tth-order RB

We now introduce the t-RB using an exact unitary 2t-
design U2t := {Ui}i. As is the case for the standard RB,
we assume that the noise is gate- and time-independent, so
that the noisy implementation of U2t is given by {Gi := E ◦
Ui}i, where E is the CPTP map that represents the noise,
and we used the notation that U(ρ) := UρU†.

Let Oini and Omeas be the initial and measurement oper-
ators, respectively, which we assume to be Hermitian. We
first apply a sequence of unitaries Ui = Uim . . .Ui1 onto the
initial operator Oini. Each Uin is chosen uniformly at ran-
dom from U2t, which we denote by Ui ∼ U×m

2t . We then
apply its inverse Uim+1 := U−1

i , and measure Omeas.
If the system is noiseless, E = id, this protocol results in

a trivial expectation value that

Tr
[
OmeasUim+1 ◦ Uim ◦ · · · ◦ Ui1(Oini)

] = Tr[OmeasOini]
(31)

owing to the inverse unitary Uim+1 . However, when the
system is noisy, the expectation value becomes

〈Omeas〉Oini,i := Tr
[
OmeasGim+1 ◦ Gim ◦ · · · ◦ Gi1(Oini)

]
,

(32)

which, in general, differs from Tr[OmeasOini]. The basic
idea of the RB-type protocol is to extract some information
about the noise E from the difference.

In the t-RB, we especially focus on the average of the
tth power of the expectation value over all choices of the
unitary sequence. That is,

V(t)(m, E |Oini, Omeas) := EUi∼U×m
2t

[(〈Omeas〉Oini,i
)t]. (33)

Using the representation-theoretic technique, it can be
shown that V(t)(m, E |Oini, Omeas) is generally given in the

following form:

V(t)(m, E |Oini, Omeas) =
∑

λ

Tr
[
Â(t)λ

(
Ĉ(t)λ (E)

)m]
, (34)

where λ labels the irreps of the unitary group, Â(t)λ and
Ĉ(t)λ (E) are mλ × mλ matrices with mλ being the multiplic-
ity of the irrep λ. This is well-known in the literature of
RB-type protocols, but we provide a proof in Sec. C for
completeness.

Despite its abstract expression, Eq. (34) has an impor-
tant implication that the matrix Ĉ(t)λ (E)m depends only on
E and m, but not on Oini and Omeas. Hence, from the exper-
imental data of V(t)(m, E |Oini, Omeas) for various m, it is, in
principle, possible to estimate the matrix Ĉ(t)λ (E), which
contains certain information of the noise E , in the way
independent of Oini and Omeas.

In practice, the most important situation is when the rep-
resentation is multiplicity-free, that is, mλ = 1 for any λ. In
this case, V(t) reduces to a much simpler form:

V(t)(m, E |Oini, Omeas) =
∑

λ

A(t)λ
(
C(t)λ (E)

)m, (35)

where A(t), C(t)λ (E) ∈ R. Note that |C(t)λ (E)| ≤ 1 because
V(t) is a bounded function. Hence, in this case, V(t) becomes
a sum of some exponentially decreasing functions with
respect to m.

To be more concrete, let us recall the standard RB, corre-
sponding to the 1-RB. As shown in Ref. [22], V(1) is given
by

V(1)(m, E |Oini, Omeas) = A(1)0 + A(1)1 f (E)m, (36)

where A(1)0 and A(1)1 depend only on Oini and E(Omeas),
and f (E) is the fidelity parameter of the noise E . Thus,
by fitting experimentally obtained data of V(1) for different
m with the fitting function A+ Bαm, we can estimate the
fidelity parameter f (E).

D. Importance of exact designs in RB

In the RB protocol, it is important to use exact unitary
designs because designs are used many times, sometimes a
few hundreds to a thousand, in a single run of the protocol.
To illustrate this, let us consider the 1-RB when the unitary
2-design in the protocol is ε-approximate.

Let m be the length of the unitary sequence as previ-
ously. It is straightforward to show that

V(1)(m, E |Oini, Omeas) ≈ A′0 + A1f m + ε(m− 2)

× (E2f 2+E1f +E0)+O(m2ε2),
(37)

where Ei are some constants that depend on Oini, E(Omeas),
f , and how the design differs from the exact one. See
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Sec. VIII D for the derivation. Compared with the 1-RB
with exact ones, that is, Eq. (36), fitting this function with
respect to m is much harder because it is not a simple
exponential decay.

The fitting may go well if ε � f m/m. This requires
a very high precision of the design because m can be a
few hundreds in actual experiments. For instance, when
f = 0.95, the degree ε of approximation of the unitary
design should be order 10−5 or so. Although it is possible
to achieve this degree of approximation by a sufficiently
long quantum circuit [64,65,67], the RB becomes unprac-
tical if we use such a long circuit at every use of a unitary
design in the protocol and repeat it a few hundreds times.

There might be a possibility to improve Eq. (37)
by using different constructions of approximate unitary
designs at every step, by which the differences from the
exact design may become random so that they cancel out
in total. This will be an interesting question, but at this
point, it is not clear if such a technique works. In addition,
even if it works, we need to assume additional structures
of approximate constructions.

The higher-order RB with approximate designs will
incur more difficulty in practice. As it uses higher moment
of the outcomes, the fitting function becomes more com-
plicated than Eq. (37) when one uses approximate designs.
Similarly to the 1-RB with approximate 2-designs, much
better degree of approximation, that is, longer quantum cir-
cuits, will be needed, which is not practical. Thus, we con-
clude that exact unitary designs are of crucial importance
in a practical implementation of the t-RB.

E. Second-order RB

We next focus on the 2-RB using exact unitary
4-designs, and show that the 2-RB reveals the self-
adjointness of the noise. To this end, we set the ini-
tial operator Oini to a traceless one, that is, Tr[Oini] =
0. This setting, together with the fact that the noise is
trace-preserving, makes the representation multiplicity-
free (see Appendix C). Hence, the expectation value
V(2)(m, E |Oini, Omeas) for the 2-RB is given by a sum of
exponentially decaying functions as shown in Eq. (35).

Note that the expectation value for a traceless initial
operator can be obtained by performing the same exper-
iment for two different quantum states ρ and ρ ′, and by
taking the difference of the expectation values before they
are squared. That is,

V(2)(m, E |, Omeas) = EUi

[(〈Omeas〉ρ,i − 〈Omeas〉ρ′,i
)2]

(38)

where  = ρ − ρ ′ is a traceless operator.
Our second main result in this paper is about

V(2)(m, E |, Omeas) as summarized in Theorem 2.

Theorem 2: In the setting described previously, V(2)

(m, E |, Omeas) is given as follows. For single-qubit
systems,

V(2)(m, E |, Omeas)

= A0u(E)m + A1

(
9
10

f (E)2 − 1
5

u(E)+ 3
10

h(E)
)m

,

(39)

where f (E), u(E), and h(E) are the fidelity parameter, the
unitarity, and the self-adjointness parameter of the noise
E , respectively. For multiqubit systems,

V(2)(m, E |, Omeas) = A0u(E)m +
∑

λ=I,II,III

AλCλ(E)m,

(40)

where 0 ≤ Cλ(E) ≤ 1 depend only on the noise E . More-
over, they satisfy

∑

λ=I,II,III

DλCλ(E) = (d2 − 1)2

2
f (E)2 − u(E)+ d2 − 1

2
h(E),

(41)

where

DI = d2(d − 1)(d + 3)
4

, (42)

DII = d2(d + 1)(d − 3)
4

, (43)

DIII = d2 − 1. (44)

See Sec. VIII E for the proof. In the single-qubit case,
V(2) is a sum of two exponentially decaying functions with
respect to m. Hence, from the double-exponential fitting of
the experimental data of V(2), we can simultaneously esti-
mate u(E) and 9

10 f (E)2 − 1
5 u(E)+ 3

10 h(E). As it can be
shown that the former is not less than the latter, we can esti-
mate which of the two decaying rates corresponds to which
quantity without any ambiguity. It is also possible to esti-
mate the fidelity parameter f (E) from the same data set by
computing V(1)(m, E |, Omeas) because a unitary 2-design
is also a unitary 1-design. Thus, from the experiment of the
2-RB on a single qubit, all of f (E), u(E), and h(E) can be
estimated simultaneously.

In multiqubit systems, V(2) has a little more compli-
cated form and consists of four exponentially decaying
functions. In addition, the decaying rates do not directly
correspond to neither the unitarity nor the self-adjointness
parameter. We observe from Eq. (41) that h(E) can be
obtained from a linear combination of the decaying rates
Cλ(E), the value of u(E), and f (E).
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TABLE I. Coefficients A0, AI, AII, and AIII appearing in
Eq. (40), for the 2-qubit case. The first row provides a pair
of the initial and measurement operators (, Omeas). We have
assumed that the average fidelity of the noise E is close to 1,
so that the inverse unitary Uim+1 can be applied nearly noise-
less (see Sec. VIII E for details). The operator ZZ is Z ⊗ Z, and
ρ− := |00〉〈00| − |11〉〈11|. By choosing proper operators, we can
set some coefficients zero, so that experimental estimations of
Cλ(E) become easy.

(, Omeas)
(
ZZ, |00〉〈00|) (ZZ, ZZ)

(
ρ−, ρ−

)

A0 1/5 16/15 4/15
AI 4/5 48/5 41/15
AII 0 16/3 1/3
AIII 0 0 2/3

One may think that, in the case of multiple qubits, it
is practically intractable to accurately fit four exponen-
tially decaying functions from experimental data because
each data point has an error. This difficulty can be circum-
vented by choosing appropriate initial and measurement
operators. By doing so, we can set some of Aλ as zero
in the ideal situation (see Table I). This allows us to esti-
mate the decaying rates one by one. Note that the initial
and measurement operators in Table I are all diagonal in
the computational basis. Hence, it suffices to perform the
experiments for the four initial operators |00〉, |01〉, |10〉,
and |11〉, with the measurement in the computational basis.
From the data of these experiments, it is possible to
reproduce all cases listed in Table I by postprocessing.

In the multiqubit case, the ambiguity remains to decide
which of the decaying rates corresponds to which quantity.
This is the case even when we use the step-by-step esti-
mation of the rates because, for instance, it is not clear if
the unitarity u(E) is larger or smaller than CI. In this case,
we need to additionally perform the unitarity benchmark-
ing (UB) [69,89] to separately estimate u(E). If we have an
estimated value of u(E), the step-by-step estimation allows
us to decide all decaying rates without any ambiguity.

See Sec. V A and Sec. IX A for the performance of 2-RB
in concrete cases.

F. Scalability

The t-RB for t ≥ 2 inherits most of the desired prop-
erties of the RB-type protocols. For instance, it is exper-
imentally friendly because, apart from using higher-order
designs, the difference of the t-RB from the standard RB
(1-RB) is only taking the tth power of the expectation value
before the average. It is also true that the t-RB is free from
SPAM errors (see Eqs. (34) and (35)).

The property that the standard RB does have and the t-
RB does not in general is the scalability. This is for two
reasons. First, no efficient construction of exact unitary 2t-
designs has been found for t ≥ 2 so far. Second, in the
t-RB protocol, it is necessary to apply the inverse unitary

at the end of the unitary sequence. Hence, we need to com-
pute the inverse of each sequence beforehand. When the
system is large, the task is intractable in general. This dif-
ficulty is avoided in the standard RB by using the Clifford
group, which is an exact unitary 2-design. As the inverse
is contained in the group, we can find the inverse relatively
easily. One may expect that the difficulty of finding the
inverse could be also avoided in the t-RB by using the
2t-design that is also a group, which is called a unitary 2t-
group [52]. However, it is known that unitary 2t-groups
do not exist for t ≥ 2 if the number of qubits is at least
three. Thus, in the t-RB for t ≥ 2, the hardness of finding
the inverse in a large system is inevitable.

Nonetheless, we emphasize that, in the current exper-
imental situations, the RB-type protocols for more than
three qubits are practically intractable due to the limita-
tion of the coherent time. Thus, the experimental use of
the RB-type protocols is currently aiming to characterize
the noise on one- or two-qubit systems in a concise man-
ner. Considering this fact, even if the t-RB is not scalable,
it is practically useful and beneficial: it is as concise as
the standard RB and provides more information about the
noise, such as self-adjointness.

V. MAIN RESULT 3: 2-RB IN A
SUPERCONDUCTING SYSTEM

We finally implement the 2-RB in a superconducting
system and estimate the self-adjointness of background
noise. Unlike the analytical studies, the expectation values
and the average over a unitary 4-design cannot be taken
with arbitrary precision in experiments because the num-
ber of repetitions of the experiment is practically limited.
To check that this limitation does not cause any problem in
the evaluation of the self-adjointness, we start with numer-
ically investigating the feasibility of the 2-RB in Sec. V A.
We then provide a summary of experimental results in
Sec. V B.

In recent years, a number of experiments have been per-
formed to characterize various noises on superconducting
quantum systems in detail [90–93]. From our experiments,
we show that the interactions with the adjacent qubits
particularly decrease the self-adjointness and may cause
problems toward realizations of QEC. In particular, our
result implies that there exists a gap between the super-
conducting system and the common noise model used
in theoretical studies of QEC, and also that the standard
decoders of stabilizer codes may suffer from degradation
of logical errors. Hence, toward the realization of QEC, it
is desired to further improve the system or to develop the
theory of QEC.

A. Numerical evaluation

When the 2-RB is practically implemented, there are
two additional concerns. One is originated from the fact
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that the expectation value 〈Omeas〉Oini,i is obtained from a
limited number of measurements in the basis of Omeas,
resulting in an error owing to a finite number of mea-
surements. The other originates from the evaluation of the
average EUi∼U×m

4
over the sequence of unitaries in the 4-

design. Ideally, all sequences in U×m
4 should be taken, but

practically, the average is often evaluated from a small sub-
set in U×m

4 of randomly chosen sequences, leading to an
additional error of estimation.

Taking sufficiently many measurements and samplings
of unitary sequences will reproduce the analytical results
with high accuracy. However, it is complicated to analyti-
cally derive the numbers sufficient for achieving a desired
accuracy. We, hence, perform numerical experiments and
show that experimentally tractable numbers of samplings
are sufficient for a reliable 2-RB.

1. One-qubit cases

In the case of single-qubit systems, we consider a
specific noisy map given by

E1(ρ) = qeiθX ρe−iθX + (1− q)((1− p)ρ + pX ρX ),
(45)

which is characterized by three parameters p , q, θ . The first
term of the right-hand side represents a unitary part and
the second term represents a stochastic part of the noise. A
parameter q determines a ratio between them. Hence, we
can consider q as a coherent parameter of noise, e.g., noise
is unitary when q = 1 and is a probabilistic Pauli noise
when q = 0. The parameters θ and p represent the rota-
tion angle of the unitary part and the error probability of

the stochastic part, respectively. For simplicity, we choose
θ such that the fidelity parameters of unitary and stochas-
tic parts are equal, that is, p = sin2 θ . Then, the fidelity
parameter f (E1) becomes independent of the coherent
parameter q.

To perform the 2-RB for this noise, we may use the exact
4-design constructed in Corollary 2. However, it is known
that the icosahedral group, which we denote by I, forms an
exact 4-design on one qubit [49]. As the icosahedral group
has less cardinality than our inductive construction, we use
it in the following analysis.

The numerical results for the 2-RB on a single qubit
are shown in Fig. 2. For each sequence length m, we
have taken 5000 random unitary sequences from I×m and
have had 5000 measurements to obtain a single data
point of V(1). A detailed fitting procedure is provided in
Sec. IX A.

To check the accuracy of the 2-RB, we consider the
relative errors |y − ỹ|/(1− y), where y and ỹ are the the-
oretical value and the fitting value, respectively. Note that
1− y ∼ 0 for all the fitting values when a fidelity close to
unity is achieved. For almost all data points of F(E), u(E),
and H(E), we find that the relative errors are less than
5.0%, except the case when p is large or, equivalently,
when the fidelity is small. The relative error becomes mod-
erately large, such as 35%, when p = 0.4 and q ≥ 0.1,
corresponding to F(E1) = 0.7. This is because the decay-
ing rate of the second term in Eq. (39) is rather small,
making the fitting difficult. However, such a case is not
practically relevant because the fidelity is typically higher
than 90%. Thus, we conclude that the 2-RB on 1-qubit
systems works well in practice.
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FIG. 2. The estimated values of F(E1), u(E1), and H(E1) obtained by 2-RB on one-qubit system for various parameters p and q,
where we have taken 5000 samplings both for measurement and for unitary sequences. The dots show the fitting results, and the dashed
lines represent theoretical values.
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TABLE II. Numerically estimated values of the fidelity, uni-
tarity, and self-adjointness from the single-qubit 2-RB with
the finite numbers of measurements and samplings of unitary
sequences. We set p = q = 0.02. The theoretical values are listed
at the bottom of the table.

Measurements Sequences F u H

10 100 0.986(6) 0.9985(5) 0.92(6)
10 500 0.986(1) 0.9984(1) 0.93(1)
10 1000 0.986(6) 0.9984(3) 0.92(3)
100 100 0.986(3) 0.9980(8) 0.92(2)
100 500 0.986(5) 0.9980(4) 0.92(3)
100 1000 0.986(6) 0.9979(4) 0.92(1)
1000 100 0.986(3) 0.9980(1) 0.92(3)
1000 500 0.986(4) 0.9979(5) 0.92(3)
1000 1000 0.986(6) 0.9978(9) 0.92(2)

0.9866 0.99793 0.9247

To analyze the dependence of the accuracy of the 2-RB
on the number of measurements and samplings of random
unitary sequences, we additionally perform the 2-RB on
one qubit with the various numbers of measurements and
samplings. The results are summarized in Table II, where
we set the noise parameters to p = 0.02 and q = 0.02.
From these results, it appears that setting the numbers
of measurements and samplings of random sequences to
a few hundreds is sufficient for a good estimate. These
results further indicate that increasing the number of ran-
dom sequences rather than the number of measurements is
preferable to improve the accuracy. See Sec. IX A for the
details.

2. Two-qubit cases

For two-qubit systems, we consider the noise given by

E2(ρ) = qeiθ(X⊗X )ρe−iθ(X⊗X )

+ (1− q)((1− p)ρ + p(X ⊗ X )ρ(X ⊗ X )),
(46)

which is similar to the one-qubit case. We choose θ as
p = sin2 θ , so that f (E2) is independent of the coherent
parameter q. In this case, we use the construction of exact
unitary 4-designs given in Proposition 1.

In the two-qubit case, it is needed to fit the exper-
imental data by a sum of four exponentially decaying
functions, which is not, in general, easy especially when
each data point has errors caused by the finite num-
ber of measurements and samplings of unitary sequences.
To avoid this difficulty, we use the method explained in
Sec. IV E, and determine the four decaying rates, i.e.,
u(E2), CI(E2), CII(E2), and CIII(E2) in Eq. (40), one by one.

The results are shown in Fig. 3. We have taken 104

random unitary sequences for each sequence length m
and the parameters p , q. A detailed process of fittings are
explained step by step in Sec. IX A. In the figure, fitted val-
ues are shown as data points. Dashed lines are drawn with
theoretically calculated values.

Similarly to the case of the single-qubit 2-RB, we have
checked the relative errors of the fitting results to the the-
oretical values. The errors are all less than 3% for all
the points except the case when the theoretical value is
exactly zero. As in the case of single-qubit 2-RB, when
we calculate F(E), u(E), and H(E) from the fitting val-
ues, the relative values of almost all the data points are less

FIG. 3. Four coefficients for exponentially decaying functions in the 2-RB are plotted according to coherence parameter q, where
we had 104 measurement and 104 samplings of unitary sequences. Dashed lines are theoretical values. Each color corresponds to each
value of the parameter p .
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than 4.0%. Although the relative errors become large when
p = 0.4, such a case is not a problem in typical calibration
scenario. Thus, the 2-RB works in actual situations also in
the case of two-qubit systems.

B. Experimental implementations of the 2-RB

We demonstrate the 2-RB in a superconducting-qubit
system. We first explain the setup of our experiments, and
then verify the feasibility of the 2-RB experiment by com-
paring the unitarity obtained from the 2-RB with that from
the UB [69,89]. We finally characterize background noise
of the system. As the background noise is gate- and time-
independent, it satisfies the assumptions of the 2-RB (see
Sec. VIII B for the detail).

1. Experimental setup

We use two superconducting qubits (Q1 and Q2) coupled
with each other via an electric dipole interaction, which
are a part of our 16-qubit device [94]. In all the follow-
ing experiments, we use the qubit Q1 as a target qubit of
the single-qubit 2-RB and, in some experiments, Q2 as an
environmental qubit that induces additional error onto Q1.

The simplified system Hamiltonian H is formulated as
follows:

H
�
= ω1

2
Z ⊗ I + ω2

2
I ⊗ Z + χge

2
Z ⊗ Z, (47)

where ωi/2π is the eigenfrequency of the ith qubit and
χge/2π = −0.760 MHz is an effective interaction strength
between the qubits [95]. It can be interpreted that the eigen-
frequency of Q1 switches depending on the quantum state
of Q2. When Q2 is in the |0〉 (|1〉) state, Q1 has the eigen-
frequency (ω1 + χge)/2π ((ω1 − χge)/2π ). In the Bloch
sphere representation, the state vector of the qubit rotates
around the Z-axis with its eigenfrequency as the angular
velocity.

We use a local oscillator synchronized with the eigen-
frequency of the qubit for observation. The state vector is
stationary in a rotating frame of the local oscillator because
the Z-axis rotation speed of the Bloch vector matches with
that of the measurement basis. The rotation frame pic-
ture also holds when the qubit Q1 couples to the adjacent
qubit Q2 when the qubit Q2 is in the |0〉 or |1〉 state. For
instance, when the qubit Q2 is always in the |0〉 state, the
eigenfrequency of Q1 is (ω1 + χge)/2π . We can detune the
frequency of the local oscillator from the qubit frequency
ω1 by χge to make the state vector of Q1 stationary.

It is, however, impossible to keep track of the eigenfre-
quency of the qubit when the state of the adjacent qubit
varies. This results in an inevitable Z-rotation occurring in
the quantum state. In an actual experiment involving mul-
tiple qubits, the frequency of the local oscillator is usually
set to ω1/2π to minimize the average Z-rotation angle. See
Sec. VIII B for the detail.

2. Comparison with the UB

In the experiment aiming to compare the 2-RB and the
UB on a single qubit, we use only Q1 and add an artifi-
cial noise after applying each gate. The isolation of the
qubit Q1 from the qubit Q2 can be done by keeping the
qubit Q2 in the state |0〉 and by setting the frequency of the
local oscillator to (ω1 + χge)/2π , which effectively cancel
the coupling between Q1 and Q2. Regarding the noise, we
especially choose a single-qubit Z-rotation by angle 0.2π ,
denoted by RZ(0.2π).

Both in the case of the 2-RB and the UB, we use
the icosahedral group I and the Clifford group on a sin-
gle qubits, respectively. Note that the former is an exact
4-design on a single qubit, and the latter is an exact
2-design.

We have taken 100 and 1000 random sequences for the
2-RB and the UB, respectively. This is because the UB
with the Clifford group converges slower than the 2-RB
with the icosahedral group, which is likely due to the fact
that the former and the latter are based on unitary 2- and 4-
designs, respectively. A higher-order design typically leads
to a quick convergence because it is more concentrating
around the average [96]. A faster convergence of the UB
with 4-design is expected, which highlights the potential
use of a higher-design also for the UB. We have taken 104

measurements for each random sequence to obtain a data
point of V(2). The results are summarized in Table III.

From the results, we observe that the unitarity charac-
terized by the 2-RB matches with that by the UB. This
indicates that the 2-RB on our single-qubit system works
to characterize the gate performance.

Note that the difference between the unitarity from the
2-RB and that from the UB is slightly beyond the standard
deviation. This is likely because the noise property varies
in the UB experiment. As mentioned, we have taken 1000
random sequences in the UB to ensure the convergence
of the statistical average, which has taken more than 10 h
in total. As the noise in the experimental system drifts in
such a long timescale, the situation of the experiment devi-
ates from the ideal situation, where time-independence of
the noise is assumed. Indeed, unlike the theoretical pre-
diction of the UB, the data is slightly different from a
single-exponential decay. This deviation is expected to be
the origin of a less-precise value of the unitarity estimated
from the UB.

TABLE III. The estimated values of the fidelity, unitarity, and
self-adjointness from the experiment of the 2-RB and that of the
UB in the superconducting qubit system.

Experiment Group F u H

2-RB Icosahedral 0.926(6) 0.970(1) 0.6(1)
UB Clifford . . . 0.977(1) . . .

Theoretical . . . 0.936 1 0.655
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3. Characterizing background noise

We next perform the single-qubit 2-RB, aiming to char-
acterize background noise of the qubit Q1 in the experi-
mental system. We intentionally insert a delay time t after
each application of a gate to extract the information of the
background noise.

In the following experiments, we have taken 100 ran-
dom unitary sequences from I×m, where I is the icosahedral
group, for each sequence length m and have had 104 mea-
surements for each random sequence to get a data point of
V(2).

In the first experiment, we set the frequency of the local
oscillator to (ω1 + χge)/2π and treat the qubit Q1 as a tar-
get qubit isolated from the qubit Q2. The background noise
of the isolated qubit is often phenomenologically modeled
by the Lindblad master equation given by

dρ
dt
=

∑

k∈[1,2]

L†
kρLk − 1

2

{
L†

kLk, ρ
}

, (48)

where L1 = â/
√

T1 represents the energy dissipation with
the relaxation time T1, â = (X + iY)/2 is an annihilation
operator of the qubit, and L2 = Z/

√
2Tφ represents the

phase dissipation with the relaxation time Tφ = 1/(1/T2 −
1/2T1). By solving the Eq. (48), we can obtain phe-
nomenological predictions about the background noise Et
corresponding to the delay time t.

We sweep the delay time t from 100 to 500 ns. The value
V(2) obtained from the experiments is shown in Fig. 4(a).
We estimate the unitarity and the self-adjointness from V(2)

through a fitting based on a sum of two exponentially-
decaying curves given in Eq. (39). However, we observe
single-exponential decays from the results. This indicates
two possibilities. One is that the two decaying rates are
nearly the same. The other is that one of the two decaying
rates is much smaller than the other, so that one expo-
nentially decaying curve becomes quickly negligible as m
increases.

In our experiment, the former is the case because the
average fidelity is high, which is confirmed from the 1-RB.
We can analytically show that the two decaying rates typ-
ically coincide when the fidelity is sufficiently high. More
specifically, we have (see Eq. (101) in Sec. VIII B)

1− 4ε � h(E)+ u(E)
2

, (49)

to the first order of ε, where ε is the infidelity 1− F(E).
This implies that the two decaying rates in Theorem 2
are approximately greater than 1− 4ε and 1− 6ε, respec-
tively. Thus, if ε � 1, which is indeed the case in our
system, the two decaying rates are hard to distinguish,
making the curve of V(2) a single-exponential decay.

We, hence, estimate the single-exponential decay rate
from the experimental data of the 2-RB and derive u(Et)

(a)

(b)
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FIG. 4. (a) Experimental results for the single-qubit 2-RB on an isolated qubit when the interleaved delay times t are swept. We have
taken 100 random unitary sequences from I×m for each sequence length m and have had 104 measurements for each sequence to obtain
a data point of V(2). The stars represent the values of V(2) and the dashed lines are fitting results. The error bars represent the standard
deviation of V(2). As the vertical axis of the figure is logarithmic notation, the error bars at the bottom of the figure are displayed larger.
(b) Estimated values of F(Et), u(Et), and H(Et) obtained by the 2-RB. The stars show the fitting results, and the dashed lines are the
predicted values from the phenomenological model.
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and h(Et) from

u(Et) = 9
10

f (Et)
2 − 1

5
u(Et)+ 3

10
h(Et). (50)

Here, u(Et) is obtained from the estimated decaying rate,
and f (Et) from the 1-RB (see Eq. (39)).

The obtained fidelity, unitarity, and self-adjointness are
summarized in Fig. 4(b). In calculating self-adjointness,
we solved Eq. (28), where we substituted αE of the phe-
nomenological prediction. They reveal that the background
noise of the isolated qubit has the unitarity u(Et) that
slowly decreases as the delay increases, whereas its self-
adjointness H(Et) is nearly independent of the delay. As we
have explained in Sec. IV A, a problem may occur when
the unitarity is high and the self-adjointness is low, which
is not observed in this experiment. Hence, we conclude
that the background noise in this case would not cause any
problem toward the realization of QEC.

In the second experiment, we set the frequency of the
local oscillator to ω1/2π and treated Q1 as a target qubit
exposed to the noise induced by the adjacent qubit Q2. In
this experiment, no control pulses are applied to Q2, so
that Q2 is expected to remain in the |0〉 state. This leads
to a continuous rotation of the state vector of Q1 by the
interaction Hamiltonian term of χgeZ/2.

In this case, the background noise with the interaction
Hamiltonian is modeled by the Lindblad master equation

written as follows:

dρ
dt
=

[χge

2
Z, ρ

]
+

∑

k∈[1,2]

L†
kρLk − 1

2

{
L†

kLk, ρ
}

, (51)

providing a phenomenological model.
Similarly to the first experiment, we sweep the delay

time t from 60 to 180 ns. The delay time is set to a shorter
time than the first experiment because the fidelity deteri-
orates due to the Z-rotation error. As the Z-rotation error
does not affect the unitarity, we conclude that the decay
rate, which is less sensitive to the delay time than the
other, corresponds to the unitarity. The results of the exper-
iment are shown in Fig. 5(a). As seen from the results,
the curves V(2) obey double-exponential decay. From the
two decaying rates, we obtain the unitarity u(Et) and the
self-adjointness H(Et) as a function of the delay time
as depicted in Fig. 5(b). Note that, although the unitar-
ity may seem different from the former experiment, it is
merely due to the different time scale of the horizontal
axis. The unitarities in the two experiments indeed coin-
cide within the standard deviation (see, e.g, the delay time
100 (ns)).

The experimental results qualitatively coincide with the
phenomenological predictions obtained from Eq. (51) [see
Fig. 5(b)]. However, the experimental values tend to be
smaller. This indicates that there exist noise sources not
included in the phenomenological model. The candidates
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FIG. 5. (a) Experimental results for the single-qubit 2-RB on the qubit coupled to another qubit, where we sweep the interleaved
delay time t. We have taken 100 random unitary sequences from I×m for each sequence length m and have had 104 measurements for
each random sequence to take a data point of V(2). The stars correspond to the values of V(2) and the dashed lines are fitting results.
(b) Estimated values of F(Et), u(Et), and H(Et) obtained by the 2-RB. The stars show the fitting results, and the dashed lines are the
predicted values from the phenomenological model.
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of the additional noise sources are calibration errors in
the RX (π/2) gates, the initial thermal excitation rate of
Q2 (7.2%), and the interaction of Q1 with adjacent qubits
other than Q2. Note that the initial thermal excitation of Q2
makes the noise time-dependent owing to the relaxation
and, hence, makes the result different from the theoretical
prediction of the 2-RB.

Compared with the first experiment (Fig. 4), we observe
from Fig. 5 that the fidelity F(Et) and the self-adjointness
H(Et) quickly decrease as the delay time t increases.
The latter decreases especially quickly: H(Et) ≈ 0.48
at t = 140 (ns). This implies that, even if the fidelity
is moderately high (F(Et) ≈ 0.91 at t = 140 (ns)), the
extra Z-rotation induced by the interaction with another
qubit radically changes the property of the noise and
makes the noise far from self-adjoint. Consequently, as
the delay increases, the noise quickly becomes the one
that cannot be approximated by any stochastic Pauli
noise.

This result has an important implication toward a real-
ization of QEC. As mentioned in Sec. IV A, theoretical
studies of QEC commonly assume stochastic Pauli noises
to numerically compute error thresholds and error rates.
Our result implies that, when the interaction with another
qubit is nonnegligible, we cannot directly apply the theo-
retical predictions based on Pauli noises. This problem will
be more prominent when the system size grows because,
in a large system, a qubit interacts with more qubits in
an uncontrolled manner, making the noise much less self-
adjoint and much far from Pauli noises. To circumvent this,
effective cancellation of the dipole interaction is of great
importance in the further improvement because the domi-
nant interaction between qubits should be originated from
the electric dipole interaction.

This feature of the noise, that is, interactions with other
qubits inducing small self-adjointness and the difficulty of
approximating the noise by a Pauli noise, is expected to be
common in any experimental systems. The 2-RB exper-
iment and the self-adjointness offer a useful method and
measure, respectively, to experimentally evaluate the noise
in the system from this perspective.

VI. STRUCTURE OF THE REMAINDER OF THIS
PAPER

The remainder of this paper is organized as follows.
In Sec. VII, a proof of Theorem 1 is provided. A brief
introduction of representations of the unitary group is also
provided before the proof. We then explain the higher-
order RB in Sec. VIII, including the proof of Theorem
2. The methods used in the numerical analysis, and the
experimental demonstrations are provided in Sec. IX. After
we summarize the paper in Sec. X, we prove technical
statements in Appendices.

VII. CONSTRUCTIONS OF EXACT DESIGNS

In this section, we provide a proof of Theorem 1. We
start with a brief introduction of representations of the
unitary group in Sec. VII A, and prove Theorem 1 in
Sec. VII B.

A. Unitary t-designs and representation theory

Unitary t-designs are closely related to representations
of the unitary group because the operator U⊗t ⊗ U†⊗t in
the definition can be regarded as a representation ρ of
U ∈ U(d) on H⊗2t

d with Hd being the Hilbert space with
dimension d, that is, ρ(U) = U⊗t ⊗ U†⊗t. It is natural to
consider irreps of the unitary group.

A well-known fact is that each irrep can be indexed by a
nonincreasing integer sequence λ := (λ1, λ2, . . . , λd), that
is, λ1 ≥ λ2 ≥ · · · ≥ λd, of length d. In particular, each irrep
in U⊗t ⊗ U†⊗t can be indexed by an element of a set�(d, t)
defined by

�(d, t) := {λ = (λ1, λ2, . . . , λd)|λ1 ≥ · · ·
≥ λd, λ+ = λ− ≤ t}, (52)

where λ+ and λ− are the absolute value of sum of posi-
tive and negative λi, respectively. Using this notation, the
representation space H⊗2t

d is irreducibly decomposed into

H⊗2t
d =

⊕

λ∈�(d,t)

V⊕mλ
λ , (53)

where mλ is the multiplicity of the irrep λ. Accordingly,
the map ρ is also decomposed into the irreducible ones ρλ.

Based on the irrep (ρλ, Vλ) of the unitary group,
a unitary t-design Ut(d) can be characterized in a
representation-theoretic manner: for any λ ∈ �(d, t),

EU∼Ut(d)[ρλ(U)] = EU∼H(d)[ρλ(U)]. (54)

The strong unitary t-designs are similarly characterized in
terms of irreps [49]. To this end, let �≤(d, t) be

�≤(d, t) := {λ = (λ1, λ2, . . . , λd)|λ1 ≥ · · · ≥ λd, λ± ≤ t},
(55)

where λ+ is not necessarily equal to λ−. Then, a strong
unitary t-design U≤t(d) satisfies

EU∼U≤t[ρλ(U)] = EU∼H[ρλ(U)], (56)

for any λ ∈ �≤(d, t).
One of the merits in this characterization is that the

right-hand sides of Eqs. (54) and (56) are zero for all
nontrivial irreps owing to Schur’s orthogonality relation,
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which states that, for any unitarily inequivalent irreps λ
and λ′,

EU∼H
[
(ρλ(U))ij (ρλ′(U))i′j ′

] = 0, (57)

for any i, j , i′, j ′, where (ρλ(U))ij is the (i, j ) element of
the matrix. By setting the irrep ρλ′ to a trivial irrep, that is,
ρλ′(U) = 1 for any U ∈ U(d), we have

EU∼H
[
ρλ(U)

] = 0, (58)

for any nontrivial irrep λ. On the other hand, for any trivial
irrep λ, it is trivial that

EU∼H
[
ρλ(U)

] = 1. (59)

From these facts, (strong) unitary t-designs can be defined
in terms of representation as follows.
Definition 3 (Unitary designs in representation theory):
An ensemble Ut(d) of unitaries is an exact unitary t-design
if it holds for any irrep ρλ with λ ∈ �(d, t) that

EU∼Ut(d)[ρλ(U)] =
{

1 if the irrep is trivial,
0 otherwise.

(60)

An ensemble U≤t(d) is a strong unitary t-design if Eq. (60)
holds for any irrep ρλ with λ ∈ �≤(d, t).

B. Proof of theorem 1

We now prove Theorem 1, which states that Wd defined
by

Wd :=Wd1⊕d−d1

∏

λ∈�sph(d1,d,t)

(RλWd1⊕d−d1), (61)

is a strong unitary t-design on U(d). Here,

Wd1⊕d−d1 = {U⊕ V | U ∈ U≤t(d1), V ∈ U≤t(d − d1)},
(62)

where U≤t(d) and U≤t(d − d1) are strong unitary t-designs
on U(d) and U(d − d1), respectively, and Rλ is constructed
by solving the zonal spherical function Zλ.

It suffices to show

EU∼Wd [ρλ(U)] = 0, (63)

for all nontrivial irreps indexed by λ ∈ �≤(d, t). Note that
the average over U ∼Wd consists of the independent aver-
ages over all Wd1⊕d−d1 , further consisting of those over the
strong unitary t-designs U≤t(d1) and U≤t(d − d1).

Let us first fix a nontrivial irrep λ ∈ �≤(d, t) and con-
sider Wλ defined by

Wλ := EU∼Wd1⊕d−d1
[ρλ(U)]. (64)

As we consider only irreps λ ∈ �≤(d, t), this average can
be replaced with the averages over the product H(d1)×
H(d − d1) of the Haar measures on K := U(d1)× U(d −
d1). That is,

Wλ = EU∼H(d1)×H(d−d1)[ρλ(U)]. (65)

To investigate Wλ, we consider the irreps of K. As K is
a subgroup of U(d), each irreducible space Vλ of U(d)
is decomposed into a direct sum of those of irreps of K.
For the same reason as in Definition 3, every nontriv-
ial irrep of K becomes zero by taking the average over
H(d1)× H(d − d1). Hence, if the nontrivial irrep space Vλ
of U(d) does not contain trivial irreps of K, Wλ = 0. In
contrast, if a nontrivial irrep λ of U(d) contains trivial
irreps of K, then the matrix elements of Wλ corresponding
to the trivial irreps of K are one, and the others are zero.

Trivial irreps of K in a nontrivial irrep λ of U(d) were
studied in a great detail because (U(d), K) is an example
of a Gelfand pair [97,98]. It is known that the irreps of
U(d) indexed by λ ∈ �sph(d1, d, t) contains only one trivial
irreps of K, and that other irreps of U(d) contain no triv-
ial irrep of K [80]. As trivial irreps are one-dimensional,
we denote by |wλ〉 ∈ Vλ a unit vector that spans the trivial
irrep of K in the spherical representation λ ∈ �sph(d1, d, t)
of U(d). Then, we have

Wλ =
{

0 if λ /∈ �sph(d1, d, t),
|wλ〉〈wλ| if λ ∈ �sph(d1, d, t).

(66)

If λ /∈ �sph(d1, d, t), we immediately obtain EU∼Wd1⊕d−d1
[ρλ(U)] = 0 from the definition of Wλ, which implies
Eq. (63).

If λ ∈ �sph(d1, d, t), we define a matrix Mλ(U) on Vλ
(U ∈ U(d)) by

Mλ(U) := EV1,V2∼H(d1)×H(d−d1)[ρλ(V1UV2)]. (67)

Importantly, for any λ ∈ �sph(d1, d, t), there exists at least
one Rλ ∈ U(d) such that 〈wλ|Mλ(Rλ)|wλ〉 = 0. This fol-
lows from the fact that

EU∼H(d)[〈wλ|Mλ(U)|wλ〉] = 〈wλ|EU∼H(d)[ρλ(U)]|wλ〉
(68)

= 0, (69)

where we have used the unitary invariance of H(d)
and that the irrep ρλ is nontrivial, so that EU∼H(d)
[ρλ(U)] = 0. Owing to the intermediate value theorem,
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there always exists at least one unitary Rλ ∈ U(d) such that
〈wλ|Mλ(Rλ)|wλ〉 = 0.

Using such Rλ ∈ U(d) and Eq. (66), it is straightforward
to observe that WλMλ(Rλ)Wλ = 0. Furthermore, it follows
that

WλMλ(Rλ)Wλ = EU,U′,V1,V2∼Wd1⊕d−d1
[ρλ(UV1RλV2U′)]

(70)

= EW1,W2∼Wd1⊕d−d1
[ρλ(W1RλW2)] (71)

= EU∼Wd1⊕d−d1 RλWd1⊕d−d1
[ρλ(U)]. (72)

We, hence, obtain

EU∼Wd1⊕d−d1 RλWd1⊕d−d1
[ρλ(U)] = 0. (73)

Thus, the finite set of unitaries Wd1⊕d−d1RλWd1⊕d−d1 sat-
isfies the condition for the design, that is, Eq. (63) for any
nontrivial irrep λ ∈ �≤(d, t), which leads to the statement
that the set of unitaries defined by

Wd =Wd1⊕d−d1

∏

λ∈�sph(d1,d,t)

(RλWd1⊕d−d1), (74)

is a strong t-design on U(d).
Finally, let us clarify the relation between Rλ and the

zero of the zonal spherical function. To this end, we first
observe that the matrix element 〈wλ|Mλ(U)|wλ〉 of Mλ is
the zonal spherical function Zλ(U). This can be checked
by a simple calculation: for any W1, W2 ∈ K and U ∈ U(d),
we have

Zλ(W1UW2) = 〈wλ|E[ρλ(V1W1UW2V2)]|wλ〉 (75)

= 〈wλ|E[ρλ(V1UV2)]|wλ〉 (76)

= Zλ(U), (77)

where the averages are all taken over V1, V2 ∼ H(d1)×
H(d − d1). Thus, Zλ(U) is bi-K-invariant and, thus, it is
the zonal spherical function. This implies that Rλ is indeed
a zero of the zonal spherical function.

Based on this fact, we can provide a matrix form of Rλ
in the fixed basis in which a unitary in Wd1⊕d−d1 is repre-
sented as U⊕ V. To this end, it is important to note that the
bi-K-invariance of the zonal spherical function implies that
it is characterized by the cosets of K = U(d1)× U(d − d1)

in U(d). The cosets can be further identified with d1-
dimensional subspaces corresponding to the support on
which U(d1) acts. For instance, the identity element in the
coset of K corresponds to the subspace V0 spanned by the
first d1 vectors of the fixed basis. The matrix form of Rλ
is obtained by specifying the relation between V0 and the
subspace corresponding to another representative of the
coset.

To characterize the relation between two subspaces,
we use the principal angles. For two subspaces X and
Y, let us refer to θ = min argcos|〈x|y〉|, where the min-
imum is taken over all unit vectors |x〉 ∈ X , |y〉 ∈ Y,
as the minimum angle between X and Y. The prin-
cipal angles (θ0, . . . , θm−1) between two m-dimensional
subspaces X and Y are then defined as follows: θ0 is
the minimum angle between X and Y, and θi+1 is the
minimum angle between X ∩ span{|x0〉, . . . , |xi〉} and Y ∩
span{|y0〉, . . . , |yi〉}, where (|xj 〉, |yj 〉) is a pair of the unit
vectors that leads to θj .

The cosine of the principal angles between V0 and the
subspace corresponding to another representative in the
coset determines the value of the zonal spherical function
Zλ, and so, Zλ can be written as Zλ(cos2 θ0, . . . , cos2 θd1−1)

[50,77]. See, for example, Refs. [50,77,81] for the explicit
form of Zλ as a polynomial of (cos2 θ1, . . . , cos2 θd1).

By solving the polynomial, we obtain the principal
angles (θ(0)λ , . . . , θ(d1−1)

λ ) between V0 and the subspace cor-
responding to the zero of Zλ. Recalling the definition of the
principal angles and using the left- and right-invariance of
the coset by any unitary in K, we can take a matrix form of
Rλ as follows:

Rλ =
⎛

⎝
C(θλ) iS(θλ) 0
iS(θλ) C(θλ) 0

0 0 Id−2d1

⎞

⎠ , (78)

where C(θλ) = diag(cos θ(0)λ , . . . , cos θ(d1−1)
λ ) and S(θλ) =

diag(sin θ(0)λ , . . . , sin θ(d1−1)
λ ), and Id−2d1 is the identity

matrix of size d − 2d1. Note that Rλ is not necessarily in
this form because the coset is invariant under the action
of K. �

VIII. HIGHER-ORDER RB

In this section, we investigate the higher-order RB in
detail. We begin with a preliminary in Sec. VIII A and
explain several basic properties of the self-adjointness in
Sec. VIII B. We consider the t-RB for general t and the
2-RB in Secs. C and VIII E, respectively.

A. Liouville representation

Let σ0 = I/
√

2, σ1 = X /
√

2, σ2 = Y/
√

2, and σ3 =
Z/
√

2 be normalized Pauli operators on one qubit,
where normalization is in terms of the Hilbert-Schmidt
inner product. For q qubits, we introduce a vector �n =
(n1, n2, . . . , nq) (ni ∈ {0, 1, 2, 3}) and use the notation that

σ�n := σn1 ⊗ · · · ⊗ σnq . (79)

We also denote 2q by d in this section.
The Liouville representation is a matrix representation

of quantum channels, also known as the Pauli trans-
fer matrix. See, for example, Refs. [84,89,99]. Let |·〉〉
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be a linear map from a set of all linear operators on a
d-dimensional Hilbert space to a d2-dimensional vector
space that specifically maps σ�n to a canonical orthonormal
basis vector e�n. As the map is linear, we have

|A〉〉 :=
∑

�n
Tr[σ�nA]|σ�n〉〉, (80)

for any linear operator A. Note that 〈〈A|B〉〉 = Tr[A†B].
Based on this vector representation of linear operators,

a linear supermap E can be represented by a matrix. The
Liouville representation of a linear supermap E is defined
by

LE :=
∑

�n
|E(σ�n)〉〉〈〈σ�n|, (81)

which is a regular matrix of size d2. The matrix element in
the canonical basis of {|σ�n〉〉}�n is given by

(
LE

)
�n �m = 〈〈σ�n|E(σ �m)〉〉 = Tr[σ�nE(σ �m)]. (82)

The vector and Liouville representations satisfy the follow-
ing properties:

1. LE |ρ〉〉 = |E(ρ)〉〉;
2. LE2◦E1 = LE2LE1 ;
3. LαE1+βE2 = αLE1 + βLE2 (α,β ∈ C);
4. LE1⊗E2 = LE1 ⊗ LE2 ;
5. LE† = L†

E .

Properties of a linear supermap E can be also expressed in
terms of the Liouville representation. For instance, the lin-
ear map E is trace-preserving if and only if (LE)�0�0 = 1 and
(LE)�0�n = 0 for any �n �= �0. As we are interested in the CPTP
map E that represents a noise, its Liouville representation
is always in the form of

LE =
(

1 0
αE L̃E

)
, (83)

where 0 is a row vector of length d2 − 1 with all elements
being zero, αE is a column vector of length d2 − 1, called a
nonunital part of the noise, and L̃E is a (d2 − 1)× (d2 − 1)
matrix. The nonunital part αE of the noise is the zero vector
if and only if the map E is unital, that is, E(I) = I with I
being the identity operator.

In the Liouville representation, the fidelity parameter
f (E) and the unitarity u(E) of a noisy CPTP map E are
given by

f (E) = 1
d2 − 1

∑

�n�=�0
〈〈σ�n|LE |σ�n〉〉 (84)

= 1
d2 − 1

Tr[L̃E ], (85)

u(E) = 1
d2 − 1

∑

�n �=�0
〈〈σ�n|L†

ELE |σ�n〉〉, (86)

= 1
d2 − 1

Tr[L̃†
E L̃E ], (87)

respectively.

B. Properties of the self-adjointness

For a CPTP map E , the self-adjointness H(E) and the
self-adjointness parameter h(E) are defined by

H(E) := 1− d + 1
2d

∫
dϕ

∣∣∣∣E(|ϕ〉〈ϕ|)− E†(|ϕ〉〈ϕ|)∣∣∣∣2
2,

(88)

h(E) := d
d − 1

∫
dϕ Tr[E ′(ϕ)E ′†(ϕ)], (89)

= 1
d2 − 1

Tr[L̃2
E ], (90)

where E ′(ρ) = E(ρ − I/d), and the last line is shown in
Appendix D.

We first show the relation between H(E) and h(E), that
is, Eq. (28) in Sec. IV A:

H(E) = 1− d2 − 1
d2

(
u(E)− h(E))− d + 1

2d2 |αE |2. (91)

From the definition of H(E), we have

2d
d + 1

(
1− H(E))

=
∫

dϕ
[

Tr[E(|ϕ〉〈ϕ|)2]+ Tr[E†(|ϕ〉〈ϕ|)2]

− 2 Tr[E(|ϕ〉〈ϕ|)E†(|ϕ〉〈ϕ|)]
]

. (92)

By rewriting E with E ′, the first term on the right-hand side
is expressed in terms of the unitarity u(E), such as

∫
dϕ Tr[E(|ϕ〉〈ϕ|)2] = d − 1

d
u(E)+ Tr

[E(I/d)2]. (93)

By using the swap operator F :=∑
�n σ�n ⊗ σ�n, and the

property that Tr[MN ] = Tr[F(M ⊗ N )] for any matrices

030339-19



YOSHIFUMI NAKATA et al. PRX QUANTUM 2, 030339 (2021)

M and N , which is called a swap trick, it follows that

Tr
[E(I/d)2] = Tr

[
FE(I/d)⊗2] (94)

= 1
d

∑

�n
〈〈σ�n|LE |σ�0〉〉2 (95)

= 1
d
|αE |2 + 1

d
, (96)

which leads to
∫

dϕ Tr[E(|ϕ〉〈ϕ|)2] = d − 1
d

u(E)+ 1
d
|αE |2 + 1

d
. (97)

Similarly, we obtain
∫

dϕ Tr[E†(|ϕ〉〈ϕ|)2] = d − 1
d

u(E)+ 1
d

, (98)

from the facts that LE† = L†
E and that |αE† | = 0 for any

trace-preserving map E .
From the definition of E ′, it is straightforward to show

that the self-adjointness parameter h(E) is given by

h(E) = 1
d − 1

[
d

∫
Tr

[E(ϕ)E†(ϕ)
]
dϕ − 1

]
. (99)

Combining these altogether, we arrive at

2d
d + 1

(
1− H(E)) = 2(d − 1)

d
(
u(E)− h(E))+ 1

d
|αE |2,

(100)

implying Eq. (91).
The self-adjointness parameter also satisfies the follow-

ing properties (they are all shown in Appendix D):

1. − 1
d2−1
≤ h(E) ≤ u(E);

2. h(E) = u(E) if and only if L̃E = L̃†
E ; for a unital

noise E , h(E) = u(E) if and only if the noise is
self-adjoint (E = E†);

3. h(E) = − 1
d2−1

if and only if Tr[KiKj ] = 0 for any
i, j , where {Ki} are the Kraus operators of E ;

4. the average gate fidelity F(E) is bounded from
above by u(E) and h(E),

F(E) ≤ d − 1
d

√
h(E)+ u(E)

2
+ 1

d
. (101)

C. A general expression for the t-RB

We show here that the expectation value V(t)(m, E |Oini,
Omeas) in the t-RB has a general form of

V(t)(m, E |Oini, Omeas) =
∑

λ

Tr
[
Âλ(Ĉλ(E))m

]
, (102)

where Âλ is a regular matrix depending on Oini and
E(Omeas), and Ĉλ(E) is a regular matrix depending only

on E . As we show in the following, λ labels the irreps of a
t-copy representation of the unitary group, and the size of
the matrices is equal to the multiplicity of each irrep.

The expectation value is defined by

V(t)(m, E |Oini, Omeas)

:= EUi

[(
Tr

[
OmeasGim+1 ◦ Gim ◦ · · · ◦ Gi1(Oini)

])t],
(103)

where EUi is the average over all unitary sequences Ui ∼
U×m

2t . Note that Gi = E ◦ Ui and that Ui is the unitary chan-
nel defined by Ui(ρ) = UiρU†

i . In terms of the Liouville
representation, we have

Tr
[
OmeasGim+1 ◦ Gim ◦ · · · ◦ Gi1(Oini)

]

= 〈〈O′meas|LU ′m◦E◦U
′†
m
. . . L

U ′1◦E◦U
′†
1
|Oini〉〉, (104)

where we have used that Gi = E ◦ Ui, U ′n = Un ◦ Un−1 ◦
· · · ◦ U2 ◦ U1, and O′meas = E(Omeas).

Noting the tth power and the fact that each unitary is
independently chosen from a unitary 2t-design U2t, we
obtain

V(t)(m, E |Oini, Omeas) =
(〈〈O′meas|⊗t)(Lav)

m(|Oini〉〉⊗t),
(105)

where Lav is defined by

Lav : = EU∼U2t[(LU◦E◦U†)
⊗t], (106)

= EU∼U2t[(LULELU†)
⊗t] (107)

= EU∼H[(LULELU†)
⊗t]. (108)

The last line follows because U2t is an exact unitary 2t-
design.

To write down Lav explicitly, let us consider the tensor-t
Liouville representation given by

U(d) � U→ LU⊗t ∈ GL(K), (109)

where GL(K) is the general linear group acting on the dq-
dimensional vector space K defined by

K := span{
t⊗

s=1

|σ�ns〉〉 : �ns ∈ {0, 1, 2, 3}q, s ∈ [1, t]}. (110)

We denote the irreducible decomposition by

K =
⊕

λ

K⊕mλ
λ , (111)

where λ labels the irreps and mλ is the multiplicity of the
irrep labeled by λ.
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The key observation is that

∀V ∈ U(d), [Lav, LV⊗t] = 0, (112)

which simply follows from the unitary invariance of the
Haar measure. This implies that Lav ∈ EndU(K), where
EndU(K) is a set of all endomorphisms of K that commute
with the tensor-t Liouville action of U(d). It is well-known
that EndU(K) is isomorphic to the direct sum of matrix
algebras:

EndU(K) �
⊕

λ

M (mλ, C), (113)

where M (mλ, C) is a set of all mλ × mλ matrices over C.
Thus, the operator Lav ∈ EndU(K) can be represented by a
direct sum of matrices.

To obtain the explicit form of Lav, let K(1)
λ ⊕ · · · ⊕K(mλ)

λ

be a fixed decomposition of K⊕mλ
λ , and denote ηp→q

λ be the
isomorphism from K(p)

λ to K(q)
λ . We also denote by �(p)

λ

the projection onto K(p)
λ . Then, from the explicit form of

the isomorphism, we have

Lav =
∑

λ

mλ∑

p ,q=1

(Ĉλ(E))pqη
p→q
λ �

(p)
λ , (114)

where Ĉλ(E) ∈ M (mλ, C). Each element Ĉλ(E) is given by

(Ĉλ(E))pq = Tr[Lavη
q→p
λ �

(q)
λ ], (115)

= Tr
[
EU∼H[(LULELU†)

⊗t]ηq→p
λ �

(q)
λ

]
, (116)

= EU∼H Tr
[
L⊗t
E L⊗t

U†η
q→p
λ �

(q)
λ L⊗t

U
]
, (117)

= EU∼H Tr
[
L⊗t
E η

q→p
λ �

(q)
λ

]
, (118)

= Tr
[
L⊗t
E η

q→p
λ �

(q)
λ

]
, (119)

where we have used the irreducibility in the fourth line.
Consequently, it follows that

(Lav)
m =

∑

λ

mλ∑

p ,q=1

(
Ĉλ(E)m)pqη

p→q
λ �

(p)
λ . (120)

Substituting this into Eq. (105), we obtain

V(t)(m, E |Oini, Omeas) =
∑

λ

Tr
[
Âλ(Ĉλ(E))m

]
, (121)

where the mλ × mλ matrices Âλ are given by

(Âλ)pq = 〈〈E(Omeas)
⊗t|ηq→p

λ �
(q)
λ |O⊗t

ini〉〉. (122)

This completes the proof. �

D. The first-order RB

Let us briefly overview the 1-RB using an exact unitary
2-design, namely, the standard RB. We also explain how
the result changes when the 2-design is an approximate one
rather than the exact one.

In the 1-RB, the representation space is given by

K = span
{|σ�n〉〉 : �n ∈ {0, 1, 2, 3}q}. (123)

We need to find a irreducible decomposition of K under the
action of a unitary group U(d) as U→ LU . The Liouville
representation LU is defined by LU |ρ〉〉 = |UρU†〉〉. Hence,
K is irreducibly decomposed to

K = K0 ⊕K1, (124)

where

K0 = span{|σ�0〉〉}, (125)

K1 = span{|σ�n〉〉 : �n ∈ {0, 1, 2, 3}q, �n �= �0}. (126)

Denoting by �0 and �1 projectors onto K0 and K1,
respectively, we have

Lav := EU∼U2[(LU◦E◦U†)], (127)

= �0 + f (E)�1, (128)

where f (E) is the fidelity parameter. Note that U2 is an
exact unitary 2-design. We thus obtain that

V(1)(m, E |, Omeas) = A0 + A1f (E)m, (129)

where Ai = 〈〈E(Omeas)|�i|Oini〉〉 for i = 0, 1.
When the 2-design is an approximate one U(ε)

2 , Eq. (128)
holds only approximately. The degree of approximation
depends on how we measure it, but we here assume that
the design is ε-approximate when Eq. (128) holds up to
ε-approximation. That is, we assume that

L(ε)av := EU∼U(ε)2
[(LU◦E◦U†)], (130)

= Lav + ε, (131)

where is some operator of O(1). Note that standard defi-
nitions of approximate designs require harder criteria (see,
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e.g., Ref. [78]). In this case, instead of Eq. (129), we have

V(1)(m, E |, Omeas)

= A0 + E + A1f m + ε(m− 2)(E2f 2 + E1f + E0)

+ O(m2ε2), (132)

where

E2 = 〈〈E(Omeas)|�0�0|Oini〉〉, (133)

E1 = 〈〈E(Omeas)|(�0�1 +�1�0)|Oini〉〉, (134)

E0 = 〈〈E(Omeas)|�1�1|Oini〉〉, (135)

E = 〈〈E(Omeas)|{�0,} + f {�1,}|Oini〉〉. (136)

Comparing Eqs. (129) and (132), we observe that using
approximate unitary 2-designs result in more complicated
form or the fitting function.

E. The second-order RB

We now focus on the 2-RB. Although the representation
space in this case is

K = span
{|σ�n1⊗�n2〉〉 : �n1, �n2 ∈ {0, 1, 2, 3}q}, (137)

where we have used the notation that σ�n1⊗�n2 = σ�n1 ⊗
σ�n2 , it is not necessary to consider the whole space
because we assume that the initial operator  is trace-
less. This, together with the fact that the noise map is
trace-preserving, implies that the operator remains trace-
less during the whole process. We also observe that the
whole process is symmetric under the exchange of the
first and the second spaces, each labeled by �n1 and �n2 in
Eq. (137). Hence, in the analysis of the 2-RB, the relevant
space is only the traceless symmetric subspace defined by

KTS := span{|σ�n1⊗�n2 + σ�n2⊗�n1〉〉
: �n1, �n2 ∈ {0, 1, 2, 3}q, (�n1, �n2) �= (�0, �0)}, (138)

where �0 = (0, . . . , 0). The irreducible decomposition of
KTS can be obtained by an extensive use of the result in
Ref. [100] (see Appendix C), based on which we explicitly
compute V(2)(m, E |, Omeas).

It turns out that the situation differs depending on
whether q = 1 or q ≥ 2. We, hence, deal with the two cases
separately.

1. 2-RB in a single-qubit system

When q = 1, the irreducible decomposition of KTS is
given by

KTS = K0 ⊕K1, (139)

which is multiplicity-free. Here, K0 and K1 are

K0 := span{|σ⊗2
1 + σ⊗2

2 + σ⊗2
3 〉〉}, (140)

K1 := span{|S1,2〉〉, |S1,3〉〉, |S2,3〉〉,
|σ⊗2

1 − 2σ⊗2
2 + σ⊗2

3 〉〉, |σ⊗2
1 − σ⊗2

3 〉〉}, (141)

respectively, with Sn,m := (σn ⊗ σm + σm ⊗ σn)/
√

2. It is
obvious that d0 := dimK0 = 1 and d1 := dimK1 = 5.

This decomposition implies that the expectation
V(2)(m, E |, Omeas) is in the form of

V(2)(m, E |, Omeas) = A0C0(E)m + A1C1(E)m, (142)

where both Aλ and Cλ are given by

Aλ = 〈〈E(Omeas)
⊗2|�λ|⊗2〉〉, (143)

Cλ(E) = Tr[�λL⊗2
E ]

Tr[�λ]
, (144)

with �λ being the projections onto Kλ. As the projections
can be constructed explicitly from Eqs. (140) and (141),
we can compute Cλ(E).

First, we have

C0(E) = 1
3

3∑

n,m=1

(〈〈σn|LE |σm〉〉
)2, (145)

= 1
3

3∑

n=1

〈〈σn|L†
ELE |σn〉〉, (146)

= u(E). (147)

For C1(E), we start from the relation that

�1 = �sym −�0 − |σ⊗2
0 〉〉〈〈σ⊗2

0 | −
3∑

n=1

|S0,n〉〉〈〈S0,n|,

(148)

where �sym is the projection onto the symmetric sub-
space of K⊗2. The projection �sym is also expressed by
(I+ F)/2. Here, I is the identity operator on K⊗2 and F is
the swap operator on K⊗2 defined by

∑3
n,m=0 |σn〉〉〈〈σm| ⊗

|σm〉〉〈〈σn|. Using the swap trick, we have

Tr[�symL⊗2
E ] = 1

2
(
Tr[LE ]2 + Tr[L2

E ]
)
. (149)

Moreover, from the direct calculations, we obtain

Tr[|σ⊗2
0 〉〉〈〈σ⊗2

0 |L⊗2
E ] = L2

00, (150)

Tr[|S0,n〉〉〈〈S0,n|L⊗2
E ] = L00Lnn + L0nLn0, (151)
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where Lnm = 〈〈σn|LE |σm〉〉. Further using the relations

Tr[LE ] = L00 + Tr[L̃E ], (152)

Tr[L2
E ] = L2

00 + 2
3∑

n=1

L0nLn0 + Tr[L̃2
E ], (153)

we obtain from Eq. (148) that

Tr[�1L⊗2
E ] = 1

2
Tr[L̃2

E ]− u(E)+ 1
2

Tr[L̃E ]2, (154)

= 3
2

h(E)− u(E)+ 9
2

f (E)2. (155)

Altogether, we obtain

V(m, E |, Omeas)

= A0u(E)m + A1

(
9

10
f (E)2 − 1

5
u(E)+ 3

10
h(E)

)m

.

(156)

2. 2-RB in a multiqubit system

For a multiqubit system (q ≥ 2), the traceless symmetric
subspace is decomposed into four irreducible subspaces:

KTS = K0 ⊕KI ⊕KII ⊕KIII, (157)

where K0 = span{∑�n�=�0 |σ�n⊗�n〉〉} and the others are given
in Appendix C. Each irrep is multiplicity-free. We denote
by Dλ the dimension of each subspace, which are

D0 = 1, (158)

DI = d2(d − 1)(d + 3)
4

, (159)

DII = d2(d + 1)(d − 3)
4

, (160)

DIII = d2 − 1. (161)

As the decomposition is multiplicity-free, V(2)(m, E |,
Omeas) is a sum of four exponentially decaying functions.
Furthermore, from the fact that K0 = span{∑�n �=�0 |σ�n⊗�n〉〉},
we obtain that C0(E) = u(E). Hence, we have

V(2)(m, E |, Omeas) = A0u(E)m +
∑

λ=I,II,III

AλCλ(E)m,

(162)

where

Aλ = 〈〈E(Omeas)
⊗2|�λ|O⊗2

ini 〉〉, (163)

Cλ(E) = Tr[�λL⊗2
E ]

Tr[�λ]
, (164)

with �λ being the projections onto the irrep Kλ.

It is not clear whether each Cλ(E) (λ = I, II, III) has a
clear physical meaning, such as C0(E) = u(E) being the
unitarity. However, a linear combination of them does. To
see this, we use the relation that

�I +�II +�III

= �sym −�0 − |σ�0⊗�0〉〉〈〈σ�0⊗�0| −
∑

�n�=�0
|S�0�n〉〉〈〈S�0�n|,

(165)

where S�0�n := (σ�0⊗�n + σ�n⊗�0)/
√

2. From this relation, we
can show, by a similar calculation to the one-qubit case,
that

Tr
[
(�I +�II +�III)L⊗2

E
]

= (d2 − 1)2

2
f (E)2 − u(E)+ d2 − 1

2
h(E). (166)

As Tr[�λL⊗2
E ] = Tr[�λ]Cλ(E) = DλCλ(E), we obtain

∑

λ=I,II,III

DλCλ(E) = (d2 − 1)2

2
f (E)2− u(E)+ d2− 1

2
h(E).

(167)

We finally note that Table I in Sec. IV E is obtained by
constructing the orthonormal basis in each subspace KI,
KII, and KIII (see Appendix C). We also assume that the
noise E is weak, so that E(Omeas) ≈ Omeas. Based on this
assumption, we have

Aλ ≈ 〈〈O⊗2
meas|�λ|O⊗2

ini 〉〉, (168)

enabling us to compute Aλ for given initial and measure-
ment operators.

IX. EXPERIMENTAL REALIZATION OF 2-RB

Based on the former sections, we explain in detail how
we have experimentally implemented the 2-RB and esti-
mated the self-adjointness of the noise in the system. In
Sec. IX A, we provide the details of the numerical evalua-
tion of the one- and two-qubit 2-RB discussed in Sec. V A.
The details of experiment is given in Sec. VIII B.

A. Numerical analysis

1. Single-qubit systems

We explain the fitting procedure of the 2-RB on one-
qubit systems in detail. The noise we consider is given by
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the following CPTP map:

E1(ρ) = qeiθX ρe−iθX + (1− q)((1− p)ρ + pX ρX ),
(169)

which is characterized by three parameters p , q, and θ . We
particularly choose θ as p = sin2 θ for the fidelity parame-
ter f (E1) to be independent of the coherence parameter q.
Using the Liouville representation, it is straightforward to
compute the fidelity parameter, the unitarity, and the self-
adjointness parameter of this noise. They are, respectively,
given by

f (E) = 1− 4
3

p , (170)

u(E) = 1− 8
3

p(1− p)(1− q2), (171)

h(E) = 1− 8
3

p(1− p)(1+ q2). (172)

As shown in Theorem 2, V(2) for one qubit is

V(2)(m, E1|, Omeas)

= A0u(E1)
m + A1

(
9
10

f (E1)
2 − 1

5
u(E1)+ 3

10
h(E1)

)m

.

(173)

To obtain Fig. 2 in Sec. V A, we first estimate the
fidelity parameter f (E1) from the 1-RB, that is, by fitting
V(1)(m, E1||0〉〈0|, |0〉〈0|) and then obtain u(E1) and h(E1)

from the fitting results of V(2)(m, E1|Z, |0〉〈0|) and the esti-
mated value of f . The fitting of V(2) is first performed
based on Eq. (173) by regarding the coefficients A0, A1
and the two exponential decaying rates as free parameters.
Then, we subtract the first exponential curve of Eq. (173)
from the data and carry out the fitting of the second expo-
nential curve again where we consider A1 and the base of
the second exponential curve as free parameters. This pro-
cedure is redundant, but turns out to improve the accuracy
of the fitting because, in most cases, the first exponential
decaying rate is larger than the second, and thus the second

Sequence length Sequence length Sequence length

FIG. 6. Numerical results for the single-qubit 2-RB with various numbers of samplings for measurement and those for unitary
sequences when the noise parameters are set to p = q = 0.02. The dots correspond to the values of V(2) obtained from the given
numbers of samplings for measurement and for unitary sequences, and the dashed lines are fitting results. Theoretical values are shown
in the solid lines.
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exponential curve is clearly visible in the region of long
sequence length.

We also estimate how many measurements and unitary
sequences suffice to obtain a good estimate of the noise
parameters. In Fig. 6, we provide V(2) for various numbers
of measurement and samplings of unitary sequences. We
observe that 1000 for both suffice to obtain a good estimate
when p = q = 0.02, which corresponds to the gate fidelity
of 97.3%.

When the number of measurements is small, experimen-
tal values are positively biased from theoretical values with
the infinite number of samplings (see the figures in the
top line of Fig. 6). This difference can be understood as
follows. Let 〈Omeas〉Oini,i,n be the expectation value for a
random sequence described by i with the finite number n of
measurements. We describe the expectation value and vari-
ance of this random variable averaged over all choices of
the unitary sequence as μ and σ 2/n, respectively. Note that
this mean value is independent of n, and this variance is
inversely proportional to n because 〈Omeas〉Oini,i,n is a linear
combination of binomial distribution. V(2) is the expecta-
tion value of squared random variable 〈Omeas〉2Oini,i

, and its
expectation value over random sequences is derived as

E[〈Omeas〉2Oini,i] = E[(〈Omeas〉Oini,i − μ)2]+ μ2 (174)

= σ 2/n+ μ2. (175)

Therefore, an experimentally obtained value with a finite
number of measurements is positively biased by σ 2/n. In
practice, we can remove the effect of this bias by increasing
the number of sampling n and using the region satisfying
μ2 � σ 2/n for fitting.

We finally check the robustness of the 2-RB on single-
qubit systems against SPAM errors. Although the 2-
RB is ideally SPAM-error free, the fitting may become
harder with the existence of SPAM errors. Our anal-
ysis, however, reveals that this is unlikely the case.
Here, we model the state-preparation error ηprep as ρ =
ηprep|0〉〈0| + (1− ηprep)|1〉〈1| and ρ ′ = (1− ηprep)|0〉〈0| +
ηprep|1〉〈1|, and measurement error ηmeas as readout bit-
flip error, that is, the POVM is {�x′ |x′ ∈ {0, 1}} where
�x′ =

∑
x∈{0,1} ηmeas(x′|x)�x and ηmeas(x′|x) is conditional

probability. In this numerical experiments, we assume that
η = ηprep = ηmeas(0|1) = ηmeas(1|0) and obtain 1000 sam-
ples and 1000 random sequences. We set the parameters
p = q = 0.02.

The results are provided in Fig. 7 and Table IV. The rel-
ative errors of estimates for F , u, and H are within 5%
except for the estimate for u when η = 0.3, thus the 2-
RB is likely to work well even in realistic situations with
SPAM errors as expected from the analytical studies.

Sequence length

FIG. 7. Numerical results for the single-qubit 2-RB with
SPAM errors for p = q = 0.02. We have taken 1000 measure-
ments and 1000 random unitary sequences. The dots represent
the numerically obtained data and the dashed lines are the fitting
curves.

2. Two-qubit systems

For two-qubit systems, we investigate the noise given
by

E2(ρ) = qeiθ(X⊗X )ρe−iθ(X⊗X )

+ (1− q)((1− p)ρ + p(X ⊗ X )ρ(X ⊗ X )),
(176)

where we set θ to p = sin2 θ . From Theorem 2, V(2) in this
case shall be in the form of

V(2)(m, E2|, Omeas) = A0u(E2)
m +

∑

λ=I,II,III

AλCλ(E2)
m,

(177)

TABLE IV. The estimates of F , u, and H from the numerics
shown in Fig. 7. The parameter η is for SPAM errors such as
η = ηprep = ηmeas(0|1) = ηmeas(1|0). The theoretical values are
listed at the bottom of the table.

SPAM error η F u H

0.0 0.986(6) 0.9979(5) 0.92(5)
0.001 0.986(5) 0.9979(6) 0.92(7)
0.003 0.986(5) 0.9978(5) 0.92(1)
0.01 0.987(0) 0.9979(2) 0.92(2)
0.03 0.986(5) 0.9980(1) 0.92(8)
0.1 0.986(5) 0.9978(9) 0.92(7)
0.3 0.986(6) 0.9981(8) 0.92(7)

0.9866 0.99793 0.9247
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Sequence lengthSequence lengthSequence lengthSequence length

FIG. 8. A step-by-step fitting process of 2-RB for two-qubit systems are shown. The first line of the matrix are about the standard
RB (1-RB). The second, third, and fourth lines show 2-RB with two, three, and four exponentially decaying functions, respectively.
The initial and measurement operators for 2-RB are chosen according to Table I. See the main text for details.

and Cλ(E2) satisfy

84CI(E)+ 20CII(E)+ 15CIII(E)

= 225
2

f (E)2 + 15
2

h(E)− u(E). (178)

With this setting, theoretical values are derived as follows.

f (E2) = 1− 16
15

p , (179)

u(E2) = 1− 32
15

p(1− p)(1− q2), (180)

CI(E2) = 1− 4
105

p
(
56− 31p + 14(1− p)q2), (181)

CII(E2) = 1− 4
15

p
(
8− 5p − 2(1− p)q2), (182)

CIII(E2) = 1− 16
15

p
(
2− p − (1− p)q2), (183)
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from which the theoretical value of the self-adjointness
parameter h(E) can be computed from Eq. (178).

A step-by-step fitting process of two-qubit systems is
shown in Fig. 8 for p = 0.01. The numbers of measure-
ment and samplings of unitary sequences are both set to
104. The fidelity parameters f (E2) can be obtained from
V(1)(m, E1||00〉〈00|, |00〉〈00|), which are plotted in the top
line of the figure. In the figure, dashed lines are theo-
retical values, and the shaded area represents a standard
deviation of each data. When q is near to unity, stan-
dard deviations are large even when the sequence length
increased. This is because the final quantum state is nearly
pure state when q ∼ 1, and probability distributions fluctu-
ate randomly according to chosen random sequences. On
the other hand, when q ∼ 0, the final quantum state quickly
converges to the maximally mixed state, and thus probabil-
ity distribution becomes independent of the chosen random
sequences.

We then fit four values u, CI, CII, CIII step by step where
initial and measurement operators  and Omeas are chosen
according to Table I. The fitting results for several q are
listed in Table V.

First, we obtain u and CI from V(2)1 := V(2)(m, E2|ZZ,
|00〉〈00|). The obtained results are shown in the second
line of Fig. 8. The sampled data points and fitting results
are shown as blue points and dashed lines, respectively.
These lines are linear combinations of two exponentially
decaying functions. Exponential decays with coefficient u
and CI are shown as orange and green lines, respectively.
Although we can clearly see two exponential decays for
coherent noise, that is, in the case of q ∼ 1, an exponential
decay of CI part becomes dominant when noise becomes
probabilistic. Even in this case, the fitting results are still
reliable as listed in Table V.

Then, we estimate CII from V(2)2 := V(2)(m, E2|ZZ, ZZ)
and CIII from V(2)3 := V(2)(m, E2|ρ−, ρ−), where these ini-
tial and measurement operators are chosen from the third
and fourth columns of Table I. The obtained results are
shown in the third and fourth lines of Fig. 8. In each
figure, numerical data is plotted as blue circles and fitting

TABLE V. Fitting results for p = 0.01 in the two-qubit 2-
RB. In each cell, fitting results are written in the first line and
theoretical values are written in the second line.

q u CI CII CIII

0.00 0.9792(7) 0.9787(2) 0.978869(7) 0.97896(1)
0.97888 0.97879 0.9788000 0.978773

0.50 0.98416(9) 0.97744(3) 0.98015(1) 0.98150(2)
0.984160 0.977465 0.980120 0.981413

0.95 0.997942(9) 0.97401(3) 0.98354(3) 0.98830(5)
0.9979410 0.974020 0.983565 0.988304

1.00 0.999994(6) 0.97349(6) 0.98414(5) 0.98930(9)
1.0000000 0.973505 0.984080 0.989333

TABLE VI. Processed data for p = 0.01 in the two-qubit 2-
RB. In each cell, fitting results are written in the first line and
theoretical values are written in the second line.

q F u H

0.00 0.9920004(5) 0.9792(7) 0.999(2)
0.99200000 0.97888 1.0000

0.50 0.991998(3) 0.98416(9) 0.9902(3)
0.9920000 0.984160 0.99010

0.95 0.99203(1) 0.997942(9) 0.9630(5)
0.992000 0.9979408 0.96426

1.00 0.99198(1) 0.999994(6) 0.9610(8)
0.992000 1.0000000 0.96040

results are shown as dashed lines. In each fitting process,
only a single exponentially decaying term is unknown in
advance. We showed unfitted exponential decay as orange
circles and fitting results as dashed lines. Although accu-
racy of orange data becomes not reliable when its value
becomes much smaller than the others, we can fit CII and
CIII reliably.

We calculate the averaged fidelity F(E), unitarity u(E),
and self-adjointness H(E) from the fitting results. The
processed values are listed in Table VI. We evaluate rel-
ative errors for all the plots with the same method as the
single-qubit 2-RB, and confirm that the relative errors are
less than 4% for all the cases of p = 0.01, 0.02, 0.1, 0.2
except the case when the theoretical value is exactly zero.
Although the relative errors of the self-adjointness become
a few tens of percent in the case of p = 0.4, we can say
that reliable values can be obtained when the fidelities of
operations are sufficiently high. Note that, although stan-
dard deviations of the fitting results become large when u
is almost equal to CI, we confirmed that the fitted results
are close to theoretical values even in such cases. Thus, we
conclude that 2-RB works also for two-qubit systems.

B. Details of the experiments

In this section, we provide the details of the experiments
in Sec. V B. A superconducting qubit can be regarded as a
sort of the LC resonant circuit, where a Josephson junction
is an effective inductance, and has the Hamiltonian equiv-
alent to that of the one-dimensional free particle trapped
in anharmonic potential. The parameter fields of the qubits
are summarized in Table VII.

All unitary gates required in the 2-RB for a single-qubit
case were implemented by two RX (π/2) gates and three

TABLE VII. The parameter fields of the qubits.

ωq/2π α/2π T1 T2 echo

Q1 9.077 GHz −328.9 MHz 9.724 μs 13.670 μs
Q2 8.927 GHz −419.9 MHz 12.634 μs 15.763 μs
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FIG. 9. T1 decay experiment. The horizontal axis represents
the delay time, the vertical axis represents the projected value
of the IQ readout signal. The blue and orange dots represents
the experimental results of the T1 decay experiments with and
without flip operation just before measurement, respectively. The
lines are fitting curves.

RZ gates with an arbitrary rotation angle, which are imple-
mented by the shaped microwave pulse (Half-DRAG) with
the length 11.70 ns [101] and the Virtual-Z gates [102],
respectively. The premeasured averaged gate fidelity of the
single-qubit Clifford gate is 0.991.

The single-shot qubit readout was performed via the
impedance-matched Josephson parametric amplifier [103],
and the assignment fidelity of the readout is 0.943.

As supplemental experiments, T1 decay and Ramsey
oscillation were observed to clarify the background noise
source of Q1. The experimental results of the T1 decay
is shown in Fig. 9, where the horizontal and the vertical
axes represent the delay time and the projected value of
the IQ readout signal, respectively. The blue and orange
dots represent the experimental results with and without a
flip operation just before measurement, respectively. The
lines provide the fitting curves. As seen from the result,
the T1 decay of Q1 follows exponential behavior, which is
consistent with the expected behavior in isolated qubits.

The experimental results of the Ramsey oscillation is
also given in Fig. 10, where the horizontal and vertical
axes represent the detuning from the qubit eigenfrequency
and the power spectrum of the Ramsey oscillation, respec-
tively. The points connected by a blue line represent the
experimental data, and the orange line provides a fitting
curve. In the fitting, we did not take the data in the small
power spectrum region (< 1 V2) into account. This is
because the noise floor derived from the white noise is
dominant there. As seen from the result, the power spec-
trum of the Ramsey oscillation has no peaks other than the
qubit eigenfrequency. From the fitting curve, we find that
the detuning from the qubit eigenfrequency  (MHz) and
the power spectrum of the Ramsey oscillation PS() (V2)

FIG. 10. Ramsey oscillation experiment. The horizontal axis
represents the detuning from the qubit eigenfrequency, and the
vertical axis represents the power spectrum of the Ramsey oscil-
lation. The points connected by the blue line represent the
experimental data, and the orange line represents the fitting
curve.

are related as

PS() ∝ −2.004. (184)

This is consistent with the expected behavior when the
transmon qubits are isolated well.

From the results of these supplemental experiments, we
conclude that Q1 is not in the strong coupling regime with
any noise source, which implies that the background noise
of Q1 is time-independent. Thus, the requirements for 2-
RB are met in our experimental system.

X. SUMMARY AND DISCUSSION

In this paper, we have provided an explicit constructions
of exact unitary t-designs for any t. In particular, quantum
circuits for exact unitary t-designs on N qubits have been
provided. Our construction is inductive with respect to the
number of qubits. Hence, all constructions obtained in this
paper are inefficient when the number of qubits is large,
implying that it is of practical use only when the size of
the system is small.

As an application of exact unitary 2t-designs on a small
system, we have proposed the t-RB, which enables us
to experimentally estimate higher-order properties of the
noise on a quantum system. As the unitary designs are
used in multiple times in a single run of the protocol, it
is important for the design to be exact. After providing a
general scheme of the t-RB, we have studied the 2-RB in
detail. It has been shown that the 2-RB reveals the self-
adjointness of the noise, a characterization of the noise that
we argue to play an important role in QEC especially when
decoders are based on applications of Pauli operators.
Our results have been demonstrated numerically, which
shows that the 2-RB is experimentally tractable. We have
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then experimentally implemented the single-qubit 2-RB on
the superconducting qubit system. From the experimental
results, we found that the characteristics of the background
noise of a qubit changes depending on the presence of the
interaction with the adjacent qubits.

Our results open a number of future problems. Regard-
ing the implementation of t-designs, it is important to
improve the efficiency. Despite that the inefficiency in our
construction is likely to be intrinsic owing to an induc-
tive nature of the construction, the representation-theoretic
method provides a way to search more efficient ones. More
specifically, the key in the construction is the relation
between the representation of the whole unitary group and
that of a certain subgroup of the unitary group. This indi-
cates that finding the construction of exact unitary designs
may be reduced to the problem of searching for a sub-
group whose representation has a good relation to that of
the whole unitary group.

It is also important to further develop the theory of the
t-RB protocol. In this paper, we have analyzed only the 2-
RB in detail. It then turns out that self-adjointness of the
noise can be revealed. It is of great interest to concretely
investigate what characterization of the noise can be gen-
erally obtained from the t-RB. In the context of QEC, it
is also important to comprehensively analyze quantitative
relations between the self-adjointness and the feasibility of
QEC. Another promising future problem is to use exact
higher-designs in the other RB-type protocols. The t-RB is
a straightforward generalization of the standard RB. How-
ever, there are numerous variant protocols [69], most of
which, if not all, are based on the Clifford group that is
an exact unitary 2-design. By extending such protocols to
those with higher-designs, the noise on the system can be
characterized in more detail.
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APPENDIX A: DECOMPOSING RX (θλ) INTO
TWO-QUBIT GATES WITH ARBITRARY

ACCURACY

We here explicitly show how to decompose RX (θλ)

defined by

RX (θλ) =
∑

j∈{0,1}N
eiθ(j )λ X ⊗ |j 〉〈j | (A1)

into two-qubit gates with arbitrary precision under the
assumption that ancillary qubits and an oracle that approx-
imately compute θ(j )λ from j can be used.

More precisely, let φ̃(j )λ be a m-digit binary represen-
tation of θ(j )λ /(2π) ∈ [0, 1) with an accuracy 2−m, and
suppose that an oracle Q works as |j 〉|x〉 �→ |j 〉|x ⊕ φ̃(j )λ 〉
for an arbitrary m-qubit computational basis |x〉. From the
oracle Q and an m-qubit working register, we can construct
an (N + 1)-qubit unitary gate R̃X (θλ) which approximates
RX (θλ) as

R̃X (θλ)RX (θλ)
† =

∑

j

ei2πεj X ⊗ |j 〉〈j |, (A2)

where εj < 2−m for all j with two queries to the oracle Q
and with two-qubit quantum gates whose number grows
polynomially to m.

This is done as follows. Suppose that an initial state is
|ψ0〉 :=∑

j |j 〉|0〉⊗m|ψj 〉 without loss of generality. Use

the oracle Q to obtain
∑

j |j 〉|φ̃(j )λ 〉|ψj 〉. Apply N two-
qubit gates �k = |0〉〈0| ⊗ I + |1〉〈1| ⊗ exp(i2π2−(k+1)X )
for 0 ≤ k < N to the quantum state where the first
part of the tensor product in �k acts on the kth qubit
of the second register and the latter part acts on the
last register, then we obtain

∑
j |j 〉|φ̃(j )λ 〉ei2πφ̃(j )λ X |ψj 〉. We

finally undo the second register with an oracle access
to obtain

∑
j |j 〉|0〉⊗mei2πφ̃(j )λ X |ψj 〉 = (

∑
j |j 〉〈j | ⊗ I⊗m ⊗

ei2πφ̃(j )λ X )|ψ0〉.
As 2πφ̃(j )λ − θ(j )λ < 2−m, this process approximates

RX (θλ) within arbitrary accuracy by using sufficiently
many number of ancillary qubits m.

APPENDIX B: A CLIFFORD-BASED 4-DESIGN ON
TWO QUBITS

Denoting by RW(θ) = exp[iθW] (W = X , Y, Z) a single-
qubit rotation around the W-axis, we define a single-qubit
rotation R1(θ1, θ2, θ3) by

R1(θ1, θ2, θ3) = RZ(θ1)RY(θ2)RZ(θ3). (B1)

We also define a two-qubit rotation R2(ϕX ,ϕY,ϕZ) by

R2(ϕX ,ϕY,ϕZ) = exp
[
−i

∑

W=X ,Y,Z

ϕWW⊗W
]

. (B2)

We also let Uc be a fixed two-qubit unitary given by

Uc =
(
R1(θ1, θ2, θ3)⊗ R1(θ

′
1, θ ′2, θ ′3)

)

R2(ϕX ,ϕY,ϕZ)
(
R1(θ4, θ5, θ6)⊗ R1(θ

′
4, θ ′5, θ ′6)

)
, (B3)
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TABLE VIII. Irreducible representations for a single-qubit sys-
tem. The definitions of the irreducible spaces are based on the
irreps of the Clifford group given in Ref. [100], and are explained
in the main text.

Highest Weight Dimension Multiplicity Irreducible spaces

(2,−2) 5 1 KI
(1,−1) 3 3 Kl,Kr,K{A}
(0, 0) 1 2 K0,Kid

where

(θ1, θ2, θ3) = (1.50097, 5.69898, 2.53181) (B4)

(θ ′1, θ ′2, θ ′3) = (1.25383, 0.01700, 6.21127) (B5)

(ϕX ,ϕY,ϕZ) = (0.376407, 0.368786, 3.69014) (B6)

(θ4, θ5, θ6) = (4.66335, 3.04854, 1.45524) (B7)

(θ ′4, θ ′5, θ ′6) = (0.337423, 3.38137, 3.82503). (B8)

Then, C(4)UcC(4) is an exact unitary 4-design on 2 qubits,
up to the numerical precision.

These numbers are obtained by numerically searching
a zero of a function that is related to the C(2)-invariant
functions. See Sec. 9.3 of Ref. [77] for more details.

APPENDIX C: IRREDUCIBLE
REPRESENTATIONS

We here provide the irreps of a unitary group U(d) on
the vector space

K := span{|σ�n1⊗�n2〉〉 : �n1, �n2 ∈ {0, 1, 2, 3}q}, (C1)

under the action of LV⊗2 with V(ρ) := VρV† (V ∈ U(d)).
To this end, we index the irreps of unitary group U(d) by

nonincreasing integer sequences: (λ1, λ2, . . . , λd), where
λi ∈ Z, and λi ≥ λj (i ≥ j ). The above representation con-
tains the irreps indexed by λ, where λ+ ≤ 2, with λ+ being
the sum of positive integers in λ, and

∑
i λi = 0.

For a given index λ, the dimension of the correspond-
ing representation space is given by Weyl’s dimension

formula:

∏
1≤i≤j≤d(λi − λj + j − i)

∏d−1
k=1 k!

. (C2)

The multiplicity can be obtained from the Littlewood-
Richardson rule. As a single-qubit case (q = 1) is special,
in the following we consider the single-qubit case and the
multiqubit case separately.

The dimension and the multiplicity of irreps are summa-
rized in Table VIII for one-qubit systems and Table IX for
multiqubit systems.

1. Single-qubit systems

To explicitly obtain all the irreps for one qubit, we start
with the irreps of the Clifford group C(2), which are pro-
vided in Ref. [100]. As the Clifford group is a subgroup
of the unitary group U(2), irreps of the unitary group are
obtained by taking the union of some irreps of the Clif-
ford group. As the dimensions of the irreps, both of the
Clifford and the unitary groups, are known, we can check
which irreps of the Clifford group should be combined by
dimension counting.

First, from Theorem 1 in Ref. [100], the irreducible
decomposition of K in terms of C(2) is given by

Kid ⊕K0 ⊕K1 ⊕Kr ⊕Kl ⊕K{S} ⊕K{A}. (C3)

Here, the important subspaces in our analysis are

K0 := span{|σ⊗2
1 + σ⊗2

2 + σ⊗2
3 〉〉}, (C4)

K1 := span{|S1,2〉〉, |S1,3〉〉, |S2,3〉〉}, (C5)

K{S } := span{|σ⊗2
1 − 2σ⊗2

2 + σ⊗2
3 〉〉, |σ⊗2

1 − σ⊗2
3 〉〉}.

(C6)

See Ref. [100] for the definitions of the other subspaces,
where the vector space is denoted by V instead of K. For
instance, Kid in our notation corresponds to Vid in the
notation of Ref. [100].

TABLE IX. Irreducible representations for a multiqubit system, where d = 2q. The definitions of the irreducible spaces are based on
the irreps of the Clifford group given in Ref. [100], and are explained in the main text.

Highest Weight Dimension Multiplicity Irreducible spaces

(2, 0, . . . , 0,−2) (d2(d − 1)(d + 3))/4 1 KI
(2, 0, . . . , 0,−1,−1) ((d2 − 1)(d2 − 4))/4 1 K[A]
(1, 1, 0, . . . , 0,−2) ((d2 − 1)(d2 − 4))/4 1 K⊥{adj}
(1, 1, 0 . . . , 0,−1,−1) (d2(d + 1)(d − 3))/4 1 KII
(1, 0 . . . , 0,−1) d2 − 1 4 Kl,Kr,K[adj],K{adj}
(0, . . . , 0) 1 2 K0,Kid
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The dimension of each subspace is also given in
Ref. [100] as

dimKid = dimK0 = 1, (C7)

dimK1 = 2, (C8)

dimKr = dimKl = dimK{S} = dimK{A} = 3. (C9)

Comparing these with the dimensions of irreps of the uni-
tary group, given in Table VIII, it is clear that Kid,K0 are
also irreps of U(2).

We can also show that KI := K{S} ⊕K1 is an irrep of
U(2). To this end, we show that ∃U ∈ U(2), ∃|v〉〉 ∈ K1
such that LU⊗2 |v〉〉 has a support on K{S}. Together with
the dimension counting, it immediately leads to that KI is
irreducible.

The statement is shown by construction. Let T :=
diag(1, eiπ/4) be a diagonal unitary matrix in U(2). Using
the simple relation that

TXT† = 1√
2
(X + Y), (C10)

TZT† = Z, (C11)

it is straightforward to show that

LT ⊗2 |σ⊗2
1 − σ⊗2

3 〉〉 ∝ −|σ⊗2
1 − 2σ⊗2

2 + σ⊗2
3 〉〉 + 3|S1,2〉〉.

(C12)

As |σ⊗2
1 − σ⊗2

3 〉〉 ∈ K1 and |S1,2〉〉 ∈ K{S}, we obtain the
desired statement.

The fact that KI, K0, and Kid are irreducible with respect
to U(2) implies that so are the rest, that is, Kl, Kr, and K{A},
owing to the dimension condition. We, hence, obtain that
the irreducible decomposition of K:

Kid ⊕K0 ⊕Kr ⊕Kl ⊕K{A} ⊕KI, (C13)

where Kid and K0 are equivalent representations, and Kr,
Kl, and K{A} are equivalent.

We finally mention the fact that the traceless symmetric
ones are only K0 and KI, which can be directly confirmed
from their definitions. Thus, the traceless symmetric space
KTS is decomposed into irreducible subspaces as

KTS = K0 ⊕KI, (C14)

which is multiplicity-free.

2. Multiqubit systems

For q ≥ 2, we also start with the irreps of the Clifford
group C(d). From Theorem 1 in Ref. [100], the irreducible

decomposition by C(d) is given by

K = Kid ⊕K0 ⊕K1 ⊕K2 ⊕K[adj] ⊕K[1] ⊕K[2]

⊕K{adj } ⊕K{1} ⊕K{2} ⊕K{A} ⊕K⊥{adj }. (C15)

Similarly to the single-qubit case, by comparing the dimen-
sion of each subspace with those in Table IX, we obtain
that Kid and K0 are the trivial irreps, and that Kl,Kr,K[adj],
and K{adj} are those corresponding to (1, 0, . . . , 0,−1). We
can also observe that K[A] and K⊥{adj} are also irreps, cor-
responding to (2, 0, . . . , 0,−1,−1) and (1, 1, . . . , 0,−2),
respectively.

We, hence, need to identify which of K1, K2, K[1], K[2],
K{1}, and K{2} consist of the irrep KI with (2, 0, . . . , 0,−2)
and the irrep KII with (1, 1, 0, . . . , 0,−1,−1). This can
be done again by dimension counting. From [100], the
dimension of each subspace is given by

dimK1 = d(d + 1)
2

− 1, (C16)

dimK2 = d(d − 1)
2

− 1, (C17)

dimK[1] = (d2 − 1)
[

d(d + 2)
8

− 1
]

, (C18)

dimK[2] = (d2 − 1)
[

d(d − 2)
8

− 1
]

, (C19)

dimK{1} = d(d2 − 1)(d + 2)
8

, (C20)

dimK{2} = d(d2 − 1)(d − 2)
8

. (C21)

By a straightforward calculation, it can be shown that the
only possible combination to satisfy the dimension con-
dition that dimKI = (d2(d − 1)(d + 3))/4 and dimKII =
(d2(d + 1)(d − 3))/4 is

KI := K1 ⊕K[1] ⊕K{1}, (C22)

KII := K2 ⊕K[2] ⊕K{2}. (C23)

We finally consider the irreducible decomposition of the
traceless symmetric subspace KTS. From the definitions
of each subspace [100], we can easily check that the
irreducible decomposition of KTS by U(d) is given by

KTS = K0 ⊕KI ⊕KII ⊕K[adj], (C24)

which is multiplicity-free. In the main text, we have
denoted K[adj] by KIII for the simplicity of notation.

APPENDIX D: CHARACTERIZATIONS OF A
NOISE

We here show the following properties of the self-
adjointness H(E) and the self-adjointness parameter
h(E).
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1. In the Liouville representation, the self-adjointness
parameter h(E) is given by

h(E) = 1
d2 − 1

∑

�n �=�0
〈〈σ�n|L2

E |σ�n〉〉 (D1)

= 1
d2 − 1

Tr[L̃2
E ]. (D2)

2. The self-adjointness parameter h(E) satisfies

− 1
d2 − 1

≤ h(E) ≤ u(E), (D3)

which immediately implies that 0 ≤ H(E) ≤ 1.
3. We have h(E) = u(E) if and only if L̃E = L̃†

E . For a
unital noise, h(E) = u(E) if and only if the noise is
self-adjoint.

4. We have h(E) = −1/(d2 − 1) if and only if
Tr[KiKj ] = 0 for any i, j , where {Ki} are the Kraus
operators of E .

5. The average gate fidelity F(E) is bounded from
above by u(E) and h(E):

F(E) ≤ d − 1
d

√
h(E)+ u(E)

2
+ 1

d
. (D4)

We first show Eq. (D1). Recalling that (LE)�0�n = 0 for any
�n �= �0 because E is trace-preserving, we have

∑

�n, �m �=�0
Tr

[
σ�nE(σ �m)] Tr[σ �mE(σ�n)

]
(D5)

=
∑

�n, �m �=�0
Tr

[
σ⊗2
�n (E ⊗ E†)(σ⊗2

�m )
]

(D6)

= Tr
[(

F− σ⊗2
�0

)
(E ⊗ E†)

(
F− σ⊗2

�0
)]

(D7)

= Tr
[
F(E ⊗ E†)(F)

]− 1, (D8)

where F :=∑
�n σ
⊗2
�n is the swap operator on K⊗2. Note

that, in the last line, we have used the fact that E is trace-
preserving, also implying that E† is unital. We now use
another expression of the swap operator, which is

F = d
[
(d + 1)

∫
ϕ⊗2 dϕ − σ⊗2

�0

]
, (D9)

which simply follows from Schur’s lemma. Substituting
this and using the relation that Tr[F(A⊗ B)] = Tr[AB] for

any operators A and B, we obtain

1
d2 − 1

∑

�n �=�0
〈〈σ�n|L2

E |σ�n〉〉

= 1
d − 1

[
d

∫
Tr

[E(ϕ)E†(ϕ)
]

dϕ − 1
]

. (D10)

On the other hand, it is straightforward to show that

h(E) := d
d − 1

∫
Tr

[E ′(ϕ)E ′†(ϕ)] dϕ, (D11)

= 1
d − 1

[
d

∫
Tr

[E(ϕ)E†(ϕ)
]

dϕ − 1
]

, (D12)

which follows from the definition of E ′, that is, E ′(ρ) :=
E(ρ − I/d). Hence, we have Eq. (D1). Note that Eq. (D2)
follows simply from the definition of L̃E .

We next show Eq. (D3) and properties 3 and 4. The
lower bound of h(E) in Eq. (D3) is obtained from Eqs. (D1)
and (D8), which lead to

h(E) = 1
d2 − 1

(
Tr

[
F(E ⊗ E†)(F)

]− 1
)
. (D13)

Using the Kraus operators {Ki} for E and the swap trick,
this can be rewritten as

h(E) = 1
d2 − 1

(∑

i,j

|Tr[KiKj ]|2 − 1
)

, (D14)

which is not smaller than −1/(d2 − 1). The equality holds
if and only if Tr[KiKj ] = 0 for any i, j , which is property
4. A simple instance of such a noise is a unitary noise that
maps ρ to

√
X ρ
√

X
†
.

The upper bound of h(E) in Eq. (D3) is obtained from
the relation that

∫
dψ Tr

[(E(|ψ〉〈ψ | − I/d)− E†(|ψ〉〈ψ | − I/d)
)2

]

= 2(d − 1)
d

(
u(E)− h(E)), (D15)

which can be checked by a direct calculation. As the left-
hand side is nonnegative, we have u(E) ≥ h(E). Regarding
property 3, it is obvious that h(E) = u(E) if E = E†. The
converse is shown as follows:

h(E) = u(E), (D16)

⇔ Tr[L̃2
E ] = Tr[L̃†

E L̃E ], (D17)

⇔
∑

�n> �m

(
(LE)�n �m − (LE) �m�n

) = 0, (D18)
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⇔ (LE)�n �m = (LE) �m�n, ∀�n, �m, (D19)

⇔ LE = L†
E . (D20)

Note that the last line follows from the fact that LE is a real
matrix in the Pauli basis.

We finally show the relation between the average fidelity
F(E), the self-adjointness parameter h(E), and the unitar-
ity u(E), that is, Eq. (D4). To this end, we again use the
fact that LE is a real matrix in the Pauli basis, leading to
Tr[L̃E ] = Tr[L̃†

E ]. We, hence, have

(
Tr[L̃E ]

)2 = 1
4
(
Tr[L̃E ]+ Tr[L̃†

E ]
)2, (D21)

≤ 1
4

∣∣∣∣Tr[L̃E ]+ Tr[L̃†
E ]

∣∣∣∣2
1, (D22)

≤ d2 − 1
4

∣∣∣∣Tr[L̃E ]+ Tr[L̃†
E ]

∣∣∣∣2
2, (D23)

= d2 − 1
4

Tr
[
L̃2
E +

(
L̃†
E
)2 + 2L̃†

E L̃E
]
, (D24)

= (d2 − 1)2

2
(
h(E)+ u(E)), (D25)

where the second inequality follows from the relation that
‖M‖1 ≤

√
D‖M‖2 for any D× D matrix M , and the last

line from that LE is a real matrix, which implies that
Tr[L̃2

E ] = Tr[(L̃†
E)

2]. As F(E) = (Tr[LE ]+ d)/d(d + 1)
and Tr[LE ] = Tr[L̃E ]+ 1, we obtain Eq. (D4).
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