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Quantum supermaps are transformations that map quantum operations to quantum operations. It is
known that quantum supermaps which respect a definite, predefined causal order between their input
operations correspond to fixed-order quantum circuits, also called quantum combs. A systematic under-
standing of the physical interpretation of more general types of quantum supermaps—in particular, those
incompatible with a definite causal structure—is however lacking. In this paper, we identify two types
of circuits that naturally generalize the fixed-order case and that likewise correspond to distinct classes
of quantum supermaps, which we fully characterize. We first introduce “quantum circuits with classi-
cal control of causal order,” in which the order of operations is still well defined, but not necessarily
fixed in advance: it can, in particular, be established dynamically, in a classically controlled manner, as
the circuit is being used. We then consider “quantum circuits with quantum control of causal order,” in
which the order of operations is controlled coherently. The supermaps described by these classes of cir-
cuits are physically realizable, and the latter encompasses all known examples of physically realizable
processes with indefinite causal order, including the celebrated “quantum switch.” Interestingly, it also
contains other examples arising from the combination of dynamical and coherent control of causal order,
and we detail explicitly one such process. Nevertheless, we show that quantum circuits with quantum
control of causal order can only generate “causal” correlations, compatible with a well-defined causal
order. We furthermore extend our considerations to probabilistic circuits that produce also classical out-
comes, and we demonstrate by an example how the characterizations derived in this work allow us to
identify advantages for quantum information processing tasks that could be demonstrated in practice.
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I. INTRODUCTION

The standard paradigm used in quantum information
theory is that of quantum circuits. In this framework,
quantum computations are performed through the appli-
cation of quantum operations on some quantum system
in a given, definite order. An approach that is relevant in
many situations is to consider quantum circuits with open
slots, into which arbitrary input operations can be inserted
[1,2]. Such circuits can be understood as higher-order
transformations that map quantum operations to quantum
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operations. Mathematically, they can be described as quan-
tum supermaps, i.e., maps that take completely positive
(CP) maps to other CP maps [3]. Quantum supermaps cor-
responding to circuits in which the input operations are
performed in a definite, fixed order are also called quantum
combs [1].

More generally however, quantum supermaps do not
need to presuppose a fixed causal order of the differ-
ent operations. The investigation of quantum structures
that go beyond the quantum circuit framework and that
are incompatible with a global causal order between the
operations has begun to receive significant attention, moti-
vated not only by foundational questions [4–6], but also by
the possibility of obtaining advantages in quantum infor-
mation processing [7]. A useful description of quantum
supermaps, encompassing those that are incompatible with
any definite causal structure, is given by the process matrix
framework [5].
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Beyond quantum circuits with a fixed causal order
(those represented by quantum combs), one can consider
situations in which the causal order depends on how the
circuit is being used. The order can, in particular, be estab-
lished dynamically, i.e., the order of future operations can
depend on previous ones [4,8–10]. If the causal order is
thus controlled in a classical manner, then as the circuit
is being used the operations are still realized in a well-
defined causal order, established on the fly. However, one
can also consider situations in which the causal order is
indefinite, for instance, subject to quantum superpositions.
Indeed, a realizable example of a quantum process with
indefinite causal order—or, in a more technical jargon, of
a “causally nonseparable” quantum process [5,9–11]—is
the so-called “quantum switch” [7]. In this process, two
operations are applied to a target system in an order that
is coherently controlled by another quantum system. If
the control system is prepared in a superposition state, the
two operations are applied in a “superposition of orders.”
A generalization to N operations applied in a superposi-
tion of different orders has also been proposed [12–14].
Notably, the quantum switch can provide advantages in
various quantum information processing tasks over stan-
dard, causally ordered quantum circuits [7,12–35], and has
now been demonstrated in several experiments [30,36–42].

In light of such possibilities, it is notable that more
general, constructive formulations of classes of quantum
supermaps encompassing dynamical and coherent control
of causal order have not been forthcoming. In contrast, sig-
nificant progress has been made in classifying quantum
supermaps using the process matrix framework, notably
by studying their causal structure [9–11] and reversibil-
ity [43–45]. This framework, however, adopts an inher-
ently top-down approach, and it remains unclear whether
generic quantum supermaps can be given faithful physical
realizations. In this paper we instead adopt a bottom-
up approach, presenting two general classes of quan-
tum supermaps that are realizable by construction. These
classes can be described as types of generalized quantum
circuits, naturally extending the notion of quantum circuits
with fixed causal order (“QC-FOs,” Sec. III).

We first describe “quantum circuits with classical con-
trol of causal order” (“QC-CCs,” Sec. IV) in which the
causal order between N operations can be classically
controlled and thereby established dynamically, while
ensuring that each operation is applied once and only
once—a crucial assumption to ensure one obtains a quan-
tum supermap. Our study thus formalizes the description of
“classically controlled quantum circuits” proposed in Ref.
[9]. The classical nature of the control in QC-CCs means
that the causal order remains well defined (if not fixed),
so the corresponding processes are causally separable. It
is then natural to consider quantum circuits in which the
causal order is controlled coherently, which leads us to for-
mulate the class of “quantum circuits with quantum control

of causal order” (“QC-QCs,” Sec. V), which contains
the quantum switch as a particular example. This class,
however, also contains more general types of causally non-
separable quantum processes, a fact we illustrate with an
example that qualitatively differs from the quantum switch.
Nevertheless, not all quantum supermaps can be realized
as QC-QCs. In particular, we show that the correlations
generated by QC-QCs are always compatible with a well-
defined causal order, which means that processes that can
violate so-called causal inequalities [5,46–48] cannot be
realized as QC-QCs. The relation between these different
classes of quantum supermaps is summarized in Fig. 1.

For each of these classes of generalized quantum circuits
we show how they can be described as process matrices,
characterize the classes of process matrices they define,
and show how, given a process matrix from one of these
classes, one can construct the corresponding circuit.

In Sec. VI, we then generalize our analysis to prob-
abilistic (postselected) quantum circuits. We characterize
the classes of probabilistic quantum supermaps, or “quan-
tum superinstruments,” that can be realized in terms of
probabilistic QC-FOs, QC-CCs, and QC-QCs.

The perspective of higher-order quantum transforma-
tions has turned out to be very useful for the investiga-
tion of quantum information processing tasks that involve
the processing of unknown operations. For instance, the

FIG. 1. Venn diagram illustrating the relation between the
classes of quantum supermaps studied in this paper. QC-FOs are
quantum circuits compatible with a single, fixed, causal order
(Sec. III), such as the process WP→A1→A2→F described in Eq.
(21). QC-FOs form a nonconvex set since a mixture of QC-FOs
compatible with different orders is, in general, not compatible
with any single order, while some processes, such as the paral-
lel circuit W‖ of Eq. (22) are compatible with any causal order.
QC-CCs are quantum circuits with classical control of causal
order (Sec. IV), such as the “classical switch” WCS [Eq. (33)];
all QC-CCs are causally separable processes. QC-QCs are quan-
tum circuits with quantum control of causal order (Sec. V), such
as the quantum switch WQS [Eq. (65)] and the quantum process
W(68) we describe in Eq. (68), both of which are causally non-
separable. QC-QCs are a strict subset of all quantum supermaps:
those violating causal inequalities, such as the WOCB of Ref. [5]
cannot be described as QC-QCs.
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description of quantum combs (i.e., QC-FOs) in terms of
quantum supermaps has been used to formulate and study
various such tasks as semidefinite optimization problems
[49]. This approach can be extended to the more general
classes of QC-CCs and QC-QCs, based on the character-
izations that we provide in this work. In particular, our
characterization of QC-QCs and their corresponding prob-
abilistic counterparts allows one to investigate possible
quantum information processing applications of quantum
processes that go beyond quantum circuits with a well-
defined causal order, but for which a concrete realization
scheme exists. We illustrate this in Sec. VII, where we
consider a generalization of a recently studied black-box
discrimination task [50] and show that QC-QCs can pro-
vide a higher probability of success than any QC-FO or
QC-CC.

Our work thus paves the way for a more system-
atic study of possible quantum processes with indefinite
causal order, beyond the quantum switch, that are real-
izable in practice with current technologies, and of their
applications for quantum information processing.

II. QUANTUM CIRCUITS AS QUANTUM
SUPERMAPS

Before proceeding further, let us first introduce the
mathematical tools we use to manipulate and study quan-
tum supermaps, and recall how a quantum circuit can be
described by a so-called process matrix [5].

A. Preliminaries: mathematical tools

In this paper we generically use the notation HX (for
various different superscripts X ) to denote a Hilbert space.
L(HX ) is then defined as the space of linear operators
on HX (operators HX → HX ); in particular, the iden-
tity operator is written 1X ∈ L(HX ) [51]. For two Hilbert
spaces HX and HY, we use the short-hand notation HXY :=
HX ⊗ HY to denote their tensor product (the order in
which we write the factors being irrelevant, as long as we
keep track of which space each of them corresponds to).
TrX (TrY) then denotes the partial trace over HX (over HY),
while Tr denotes the full trace.

1. The Choi isomorphism

Linear operators and maps are conveniently expressed
using the Choi isomorphism [52], which allows one to
write them in the form of vectors or matrices. To define
this we choose, for each Hilbert space HX under consider-
ation, a fixed orthonormal basis {|i〉X }i—the computational
basis of HX . For a Hilbert space HXY obtained as the
tensor product of two Hilbert spaces HX and HY with
computational bases {|i〉X }i and {|j 〉Y}j , respectively, the
computational basis is naturally taken to be {|i, j 〉XY :=
|i〉X ⊗ |j 〉Y}i,j .

The choice of fixed computational bases is used, in
particular, to define, for any pair of isomorphic Hilbert
spaces HX and HX ′

with computational basis states |i〉X

and |i〉X ′
in one-to-one correspondence [53], the unnormal-

ized maximally entangled state—written as a “double-ket
vector”

|1〉〉XX ′
:=

∑

i

|i〉X ⊗ |i〉X ′ ∈ HX ⊗ HX ′
. (1)

The computational basis is also used to define transposi-
tion of operators in L(HX ), denoted T, or TX for the partial
transpose over HX only, in the case of an operator over a
composite system in L(HXY).

In this paper we make use of two (directly related) ver-
sions of the Choi isomorphism: the “pure case” and the
“mixed case” versions.

For the first case we define, for any linear operator V :
HX → HY, its Choi vector as [54]

|V〉〉 := (
1X ⊗ V

) |1〉〉XX

=
∑

i

|i〉X ⊗ V |i〉X ∈ HXY. (2)

For the second case, for any linear map M : L(HX ) →
L(HY) we define its Choi matrix as [55]

M := (IX ⊗ M)( |1〉〉〈〈1|XX )

=
∑

i,i′
|i〉〈i′|X ⊗ M( |i〉〈i′|X ) ∈ L(HXY), (3)

[where IX denotes the identity map on L(HX )]. A funda-
mental property is that a linear map M is completely pos-
itive if and only if its Choi matrix is positive semidefinite
[52].

The inverse Choi isomorphism is easily obtained, in the
two cases, as

V = |V〉〉TX =
∑

i

〈i|X ⊗ 1Y |V〉〉 〈i|X , (4)

and

M(ρ) = TrX
[
(ρT ⊗ 1Y)M

]
, (5)

for any ρ ∈ L(HX ). This implies, in particular, that
Tr[M(ρ)] = Tr[ρT(TrY M )], from which one can see that
M is trace preserving (TP) if and only if TrY M = 1X .

2. The link product

We now introduce a special kind of product for vec-
tors and matrices—the so-called link product [1,2]—which
will prove useful in describing the composition of quantum
operations in terms of their Choi representations.
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Let HXY = HX ⊗ HY and HYZ = HY ⊗ HZ be two ten-
sor product Hilbert spaces sharing the same (possibly
trivial) space factor HY, and with nonoverlapping HX ,HZ .

The link product of any two vectors |a〉 ∈ HXY and
|b〉 ∈ HYZ is defined (with respect to the computational
basis {|i〉Y}i of HY) as

|a〉 ∗ |b〉 := (
1XZ ⊗ 〈〈1|YY )

(|a〉 ⊗ |b〉)
= ( |a〉TY ⊗ 1Z) |b〉
=

∑

i

|ai〉X ⊗ |bi〉Z ∈ HXZ , (6)

with |ai〉X := (1X ⊗ 〈i|Y) |a〉 ∈ HX and |bi〉Z := (〈i|Y ⊗
1Z) |b〉 ∈ HZ (so that |a〉 = ∑

i |ai〉X ⊗ |i〉Y and |b〉 =∑
i |i〉Y ⊗ |bi〉Z).
Similarly, the link product of any two operators A ∈

L(HXY) and B ∈ L(HYZ) is defined as [1,2,56]

A ∗ B := (
1XZ ⊗ 〈〈1|YY )

(A ⊗ B)
(
1XZ ⊗ |1〉〉YY )

= TrY
[(

ATY ⊗ 1Z)(
1X ⊗ B

)]

=
∑

ii′
AX

ii′ ⊗ BZ
ii′ ∈ L(HXZ)

, (7)

with AX
ii′ := (1X ⊗ 〈i|Y)A(1X ⊗ |i′〉Y

) ∈ L(HX ) and BZ
ii′ :=

(〈i|Y ⊗ 1Z)A(|i′〉Y ⊗ 1Z) ∈ L(HZ) (so that A = ∑
i,i′ AX

ii′ ⊗
|i〉〈i′|Y and B = ∑

i,i′ |i〉〈i′|Y ⊗ BZ
ii′).

Let us state some properties of these link products that
will be useful. Firstly, note that they are commutative (up
to a reordering of the tensor products). For a trivial one-
dimensional space HY—i.e., for |a〉 ∈ HX and |b〉 ∈ HZ ,
or A ∈ L(HX ) and B ∈ L(HZ) in distinct, nonoverlapping
spaces [57]—they reduce to tensor products (|a〉 ∗ |b〉 =
|a〉 ⊗ |b〉 or A ∗ B = A ⊗ B). For trivial spaces HX and
HZ on the other hand—i.e., for |a〉 , |b〉 ∈ HY, or A, B ∈
L(HY) in the same spaces—they reduce to scalar products
(|a〉 ∗ |b〉 = ∑

i 〈i|a〉 〈i|b〉 = |a〉T |b〉 or A ∗ B = Tr[ATB]).
Note also that the link product of two positive semidefi-
nite matrices is positive semidefinite (or a nonnegative real
number for trivial spaces HX and HZ).

We often consider link products of vectors |a〉 , |b〉 or
matrices A, B in (or acting on) some Hilbert spaces given as⊗

j ∈AHj and
⊗

j ∈BHj , for some (nonoverlapping) tensor
factors Hj and some sets of indices A, B. The defini-
tions above are then used by taking HX = ⊗

j ∈A\BHj ,
HY = ⊗

j ∈A∩BHj and HZ = ⊗
j ∈B\AHj . The two-fold

products can also be extended to define n-fold link prod-
ucts of n vectors |ak〉 ∈ HAk := ⊗

j ∈Ak
Hj or n matrices

Ak ∈ L(HAk ), for n sets of indices Ak. Provided (as is the
case for all n-fold link products written in this paper) that
each constituent Hilbert space Hj appears at most twice in
all HAk —i.e., that Ak1 ∩ Ak2 ∩ Ak3 = ∅ for all k1 �= k2 �=
k3—the n-fold link products thus defined are associative

(in addition to being commutative) [1,2], and can unam-
biguously be written without parentheses as |a1〉 ∗ |a2〉 ∗
· · · ∗ |an〉 or A1 ∗ A2 ∗ · · · ∗ An.

The initial motivation for introducing the link product
(originally for matrices) [1,2] was to give a convenient
way to write the Choi representation of a quantum oper-
ation obtained as the composition of two operations in
sequence. To illustrate this, consider two linear operators
V1 : HX → HX ′Y and V2 : HYZ → HZ′

, with the output
space of V1 overlapping (through the tensor factor HY)
with the input space of V2: see Fig. 2. It can easily be
verified that the Choi vector of the composed operator
V := (1X ′ ⊗ V2)(V1 ⊗ 1Z) : HXZ → HX ′Z′

is obtained, in
terms of the Choi vectors |V1〉〉 ∈ HXX ′Y and |V2〉〉 ∈ HYZZ′

of V1 and V2, as

|V〉〉 = |V1〉〉 ∗ |V2〉〉 ∈ HXX ′ZZ′
. (8)

Similarly, for two linear maps M1 : L(HX ) → L(HX ′Y)
and M2 : L(HYZ) → L(HZ′

) the Choi matrix of the com-
position M := (IX ′ ⊗ M2) ◦ (M1 ⊗ IZ) : L(HXZ) →
L(HX ′Z′

) is obtained, in terms of the Choi matrices M1 ∈
L(HXX ′Y) and M2 ∈ L(HYZZ′

) of M1 and M2, as

M = M1 ∗ M2 ∈ L(HXX ′ZZ′)
. (9)

Finally, we note that the link product allows one to write
the inverse Choi isomorphism in a simple way. Indeed,
the Choi matrix of the operation that consists in prepar-
ing some state (or density matrix) ρ ∈ L(HX )—i.e., of the
map 1 → ρ, with a trivial input space—is ρ itself. The
Choi matrix that represents the preparation of M(ρ)—i.e.,
the composition of the preparation of ρ with the map
M—is also M(ρ) itself, and is obtained by link multi-
plying the Choi matrices M (of M) and ρ:

M(ρ) = ρ ∗ M , (10)

which is indeed equivalent to Eq. (5) [58].

FIG. 2. Composition of two linear maps M1 : L(HX ) →
L(HX ′Y) and M2 : L(HYZ) → L(HZ′

) (as indicated by the
labels on the wires, to be read from left to right). The Choi
matrix of the composed map M := (IX ′ ⊗ M2) ◦ (M1 ⊗ IZ)

is obtained as the link product of the Choi matrices of M1 and
M2, as in Eq. (9)—and similarly for the “pure case” of two linear
operators V1 : HX → HX ′Y and V2 : HYZ → HZ′

, as in Eq. (8).
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B. Process matrices

The sequential composition of two linear maps is an
example of a quantum supermap [1–3]: a process that takes
any two “freely chosen” maps (say, A1,A2) to some new
map (namely, M = A2 ◦ A1). The process matrix frame-
work allows one to describe all possible ways to combine
some “free” maps and define a new map (or originally, a
probability distribution [59]) in a consistent manner [5,43].

Let us make this more precise. Throughout the paper,
we consider scenarios with N ≥ 1 free quantum opera-
tions Ak (k ∈ N := {1, . . . , N }), from some input to some
output Hilbert spaces HAI

k and HAO
k , of (finite, possibly dif-

ferent) dimensions dI
k and dO

k , respectively. That is, the N
operations are any completely positive (CP) linear maps
Ak : L(HAI

k ) → L(HAO
k ). We use the shorthand notations

HAIO
k := HAI

k ⊗ HAO
k and HAIO

N := ⊗
k∈NHAIO

k , or more
generally HAIO

K := ⊗
k∈KHAIO

k for any subset K ⊆ N .
We are interested in how one can combine these N oper-

ations so as to define a quantum operation M : L(HP) →
L(HF), from some dP-dimensional Hilbert space HP to
some dF -dimensional Hilbert space HF , which can be
thought of as embedding quantum systems in a “global
past” and a “global future” of all N operations, respec-
tively; see Fig. 3. That is, how to define a function

f : (A1, . . . ,AN ) �→ M. (11)

For consistency with a probabilistic interpretation, we
impose that f must be N -linear—so that if a given
operation Ak is obtained as a probabilistic mix-
ture of some operations A(j )

k , then the resulting map
M should also be obtained as the corresponding
probabilistic mixture: f (A1, . . . ,

∑
j p (j )A(j )

k , . . . ,AN ) =
∑

j p (j )f (A1, . . . ,A(j )
k , . . . ,AN ). Furthermore, we require

not only that f must transform any set of N CP maps Ak
into another valid CP map, but that it can also be applied
locally to extended maps A′

k : L(HAI
kAI ′

k ) → L(HAO
k AO′

k )

involving some ancillary Hilbert spaces HAI ′
k and HAO′

k

and still gives valid CP maps in such cases. Functions f
that satisfy these constraints define so-called completely
CP-preserving (CCP) quantum supermaps [1,3].

The “supermapping” of Eq. (11) can be written at
the level of the Choi matrices M ∈ L(HPF) of M and
Ak ∈ L(HAIO

k ) of the operations Ak, as (A1, . . . , AN ) �→ M .
Translating the previous constraints on f , it can be shown
that the dependency on the Choi matrices can be written in
terms of a Hermitian operator—a so-called process matrix
[5,43]

W ∈ L(HPAIO
N F), (12)

. . .. . .

FIG. 3. A completely CP-preserving quantum supermap takes
N quantum operations—i.e., CP maps—Ak (for k = 1, . . . , N )
with input and output Hilbert spaces HAI

k and HAO
k , respectively,

to a new CP map M with an input Hilbert space HP in the
“global past” of all operations Ak and an output Hilbert space
HF in their “global future” [5,43]. The Choi representation M
of the global map M is obtained from the Choi representations
Ak of the maps Ak according to Eq. (13), in terms of the pro-
cess matrix W (represented by the salmon-colored area), which
describes how the N operations are combined together to define
the induced map M. Note that how exactly the N operations are
connected—i.e., their causal relations—need not be specified a
priori.

in the form

M = TrAIO
N

[
(AT

1 ⊗ · · · ⊗ AT
N ⊗ 1PF)W

]

= (A1 ⊗ · · · ⊗ AN ) ∗ W ∈ L(HPF), (13)

where in the second line we use the link product nota-
tion defined previously, see Eq. (7). The requirement that
f above must be completely CP-preserving is equivalent
here to W being positive semidefinite, W � 0.

Process matrices were originally introduced to describe
deterministic supermaps, such that if all CP maps Ak are
trace-preserving (TP), then so must be the induced map M
(they have thus sometimes been called superchannels [60,
61]). This condition imposes some “validity constraints”
on the allowed process matrices W—namely, that they
must belong to some particular subspace LV of L(HPAIO

N F),
and be normalized such that Tr W = dP(�k∈N dO

k ) [5,9,11,
43]; see Appendix A 2. By default, by “process matrices”
we refer to such deterministic ones—as considered in Secs.
III–V below. One may, however, also relax these con-
straints and consider probabilistic process matrices, which
turn TP maps into a trace-nonincreasing induced map, and
which may be part of a so-called quantum superinstrument
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[62]—namely, sets of probabilistic process matrices sum-
ming up to a deterministic one. We consider this possibility
further in Sec. VI.

We emphasize that in the general construction of the
process matrix framework, one does not specify a priori
how the N variable operations Ak are to be connected,
and how these are causally related. In fact, while certain
process matrices describe some clear causal connections,
the framework also allows for process matrices, which
are incompatible with any well-defined causal structure
between the N operations [5]. Some of these process matri-
ces (like, e.g., that of the “quantum switch” mentioned
in the Introduction [7]) can be understood as exhibiting
some kind of quantum superposition, or quantum coher-
ent control, of causal orders. In general, however, it has
proven unclear how to interpret causally indefinite pro-
cess matrices or, indeed, to determine which such pro-
cesses can be given an interpretation of this (or any other)
kind.

In the present paper, we study several different classes
of process matrices for which one can give a clear inter-
pretation for the underlying causal relations. These classes
can be described as types of generalized quantum circuits
defining CCP quantum supermaps, into which the free,
“external” operations Ak can be “plugged in” in either a
fixed, a classically controlled, or a coherently controlled
causal order. This latter possibility can notably lead to
causally indefinite process matrices, defining a broad class
of such supermaps, which, by construction, can be mean-
ingfully interpreted. For each type of circuit, we calculate
the induced global map M as a function of the opera-
tions Ak (in their Choi representations), and write their
dependency in the form of Eq. (13), so as to identify the
process matrix W that describes them—noting that as the
Ak can be any CP maps, then A1 ⊗ · · · ⊗ AN spans the
whole space of Hermitian matrices in L(HAIO

N ), so that
the Hermitian matrix W that gives the correct induced
map M, or M for all possible A1, . . . , AN via Eq. (13), is
unique.

III. QUANTUM CIRCUITS WITH FIXED CAUSAL
ORDER

Quantum circuits with fixed causal order (QC-FOs)
have been studied in detail before, often under the
name of “quantum combs” [1,2]. Here we simply recall
their description (Proposition 1) and characterization
(Proposition 2) in terms of process matrices so as to
make the paper self-contained and to set the stage for
the study of quantum circuits without a fixed causal
order.

A. Description

We thus consider a quantum circuit with N “open slots”
into which the CP maps A1, . . . ,AN are placed in a fixed
order (so as to define the global map M, as described
above). We denote, for example, the ordering in which A1
is applied first, then A2, etc., as (A1,A2, . . . ,AN ). A QC-
FO connects these “external” CP maps through “internal”
quantum operations M1, . . . ,MN+1 that take the output
of each external map to the input of the subsequent one,
as shown in Fig. 4. These internal circuit operations may
involve additional ancillary systems or “memories” that
are entangled with the “target systems” that the external
CP maps act upon. For the moment, we consider deter-
ministic circuits that do not themselves produce random
transformations. The internal circuit operations Mn must
therefore preserve the trace of their input states, i.e., they
must be CPTP maps.

More specifically, the circuit initially applies a CPTP
map M1 : L(HP) → L(HAI

1α1), which takes the circuit’s
input in the global past HP and outputs a state in the
input Hilbert space HAI

1 of the first operation A1 (the
target system), which in general may be entangled with
an ancillary system in some Hilbert space Hα1 . Then,
for 1 ≤ n ≤ N − 1, the output state of each external CP
map An in the Hilbert space HAO

n and the ancillary
system in Hαn are jointly mapped to the input Hilbert
space HAI

n+1 of An+1 and an ancillary system in some

FIG. 4. A quantum circuit with fixed causal order (or, equivalently, a “quantum comb” [1,2]), here shown with the order of operations
(A1,A2, . . . ,AN ). Its process matrix representation is given by W = M1 ∗ M2 ∗ · · · ∗ MN+1, in terms of the Choi matrices Mn of the
internal circuit operations Mn, as in Proposition 1.
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Hilbert space Hαn+1 by a CPTP map Mn+1 : L(HAO
n αn) →

L(HAI
n+1αn+1). Finally, after the last operation AN , a

CPTP map MN+1 : L(HAO
NαN ) → L(HF) takes the out-

put state of AN in HAO
N , together with the ancillary state

in HαN , to the global output state of the full circuit in
the global future HF . The maps M1, Mn+1, and MN+1

above have Choi representations M1 ∈ L(HPAI
1α1), Mn+1 ∈

L(HAO
n αnAI

n+1αn+1), and MN+1 ∈ L(HAO
NαN F), respectively.

Let us elaborate further on the trace-preservation con-
ditions we impose on the internal circuit operations Mn.
As mentioned, these should preserve the trace of their
input states; note however that we only require this for
their possible input states—i.e., not necessarily for their
full input spaces L(HAO

n−1αn−1), but only for its subspace
that can actually be populated following the internal and
external circuit operations previously applied. Indeed if,
for instance, a subspace of Hαn−1 is never populated by
the previous internal operation Mn−1, then we do not care
about how Mn acts on that subspace.

It is in this relaxed sense, restricted to the possi-
bly populated input spaces—which we call the effective
input spaces—that the TP conditions are to be understood
throughout the paper [63]. In the present case of QC-FOs,
we show in Appendix B 1 that these TP conditions can be
expressed as the following constraints on the operations’
Choi matrices:

TrAI
1α1

M1 = 1P, (14)

∀ n = 1, . . . , N−1, TrAI
n+1αn+1

(M1 ∗ · · · ∗ Mn ∗ Mn+1)

= Trαn(M1 ∗ · · · ∗ Mn)⊗ 1AO
n , (15)

and TrF(M1 ∗ · · · ∗ MN ∗ MN+1)

= TrαN (M1 ∗ · · · ∗ MN )⊗ 1AO
N , (16)

which are in general weaker than (and indeed implied by)
the TP assumptions applied to the full input spaces of the
operations Mn (which can be written as TrAI

n+1αn+1
Mn+1 =

1AO
n αn for n = 1, . . . , N−1, and TrF MN+1 = 1AO

NαN ).
The previous description of the process represented

in Fig. 4, with the internal circuit operations satisfying
the TP constraints of Eqs. (14)–(16), formally defines
what we call a quantum circuit with fixed causal order
(QC-FO). These processes are indeed “standard” quan-
tum circuits and, as shown in Refs. [1,2], are the
most general CCP quantum supermaps (obtained with an
“axiomatic approach”) that respect the fixed causal order
(A1,A2, . . . ,AN ), i.e., that do not allow for any signal-
ing “from the future to the past” [64]. More precisely, this
means that for any n, the output state following An (i.e.,
the target system in HAO

n ) does not depend on the external
operations An+1, . . . ,AN applied “later” in the circuit.

Let us now consider how to obtain the description of
a QC-FO as a process matrix. Recall first that the Choi
matrix of the sequential composition of quantum opera-
tions is obtained by link multiplying the composite oper-
ations. Here, the Choi matrix of the induced global map
M : L(HP) → L(HF) is thus

M = M1 ∗ A1 ∗ M2 ∗ · · · ∗ MN ∗ AN ∗ MN+1

= (A1 ⊗ · · · ⊗ AN ) ∗ (M1 ∗ M2 ∗ · · · ∗ MN ∗ MN+1)

∈ L(HPF), (17)

where in the second line we used the commutativity and
associativity of the link product, and the fact that it reduces
to tensor products for nonoverlapping Hilbert spaces, to
write it in the form of Eq. (13). This allows us to identify
the process matrix W as the second term in parentheses
above, and which, as noted at the end of Sec. II, is more-
over unique. This thus proves the following description.

Proposition 1 (Process matrix description of QC-FOs):
The process matrix corresponding to the quantum circuit
of Fig. 4, with the fixed causal order (A1,A2, . . . ,AN ), is

W = M1 ∗ M2 ∗ · · · ∗ MN ∗ MN+1 ∈ L(HPAIO
N F). (18)

We note that this coincides precisely with the descrip-
tion of quantum combs given in Refs. [1,2].

B. Characterization

This description of QC-FOs allows us to obtain the
following characterization of their process matrices.

Proposition 2 (Characterization of QC-FOs): For a
given matrix W ∈ L(HPAIO

N F), let us define the reduced
matrices [for 1 ≤ n ≤ N, and relative to the fixed
order (A1,A2, . . . ,AN )] W(n) := [1/(dO

n dO
n+1 · · · dO

N )]

TrAO
n AIO

{n+1,...,N }F W ∈ L(HPAIO
{1,...,n−1}AI

n).

The process matrix W ∈ L(HPAIO
N F) of a quantum circuit

with the fixed causal order (A1,A2, . . . ,AN ) is a positive
semidefinite matrix such that its reduced matrices W(n) just
defined satisfy

TrAI
1

W(1) = 1P,

∀ n = 1, . . . , N − 1, TrAI
n+1

W(n+1) = W(n) ⊗ 1AO
n ,

and TrF W = W(N ) ⊗ 1AO
N .

(19)

Conversely, any positive semidefinite matrix W ∈
L(HPAIO

N F) whose reduced matrices W(n) satisfy the con-
straints of Eq. (19) is the process matrix of a quantum
circuit with the fixed causal order (A1,A2, . . . ,AN ).
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Equivalent results were already proved in Refs. [2,65].
We give a self-contained proof in Appendix B 1, and here
simply outline the proof approach.

To prove the first direction (the necessary condition),
one needs simply to note that, for a QC-FO as described
above, the reduced matrices defined above are of the
form W(n) = Trαn(M1 ∗ · · · ∗ Mn) and, according to Eqs.
(14)–(16) indeed satisfy Eq. (19). Note that Eq. (19)
implies that W satisfies the validity constraints for process
matrices (cf. Appendix A 2).

For the second direction (the sufficient condition), we
provide an explicit construction: for a given W whose
reduced matrices W(n) satisfy Eq. (19), we construct CPTP
maps Mn (with Choi matrices Mn obtained from the
reduced matrices), which, for 1 ≤ n ≤ N , act as isome-
tries on their effective input spaces, and whose link product
gives W as in Eq. (18). That is, given such a W, we
provide a way to explicitly construct the corresponding
QC-FO. Note that this realization is not unique, and differ-
ent circuits may be described by the same process matrix.
Moreover, a process matrix of this class may be compatible
with different fixed causal orders.

The description we gave of QC-FOs includes, as a spe-
cific case, the situation where the CP maps An (or just
some of them) are used in parallel. The parallel compo-
sition of CP maps is equivalent to their composition in
an arbitrary fixed order, with internal circuit operations in
between that send the different input systems to the respec-
tive CP maps one at a time, while passing on the outputs
of the preceding CP maps, as well as the inputs of the
subsequent ones, via some ancillary systems; see the sec-
ond explicit example below, and Appendix C for further
details. For completeness and ease of reference, let us state
here how the process matrix characterization of Proposi-
tion 2 simplifies for such quantum circuits with operations
used in parallel (QC-PARs).

Proposition 3 (Characterization of QC-PARs): The
process matrix of a quantum circuit with operations
used in parallel is a positive semidefinite matrix W ∈
L(HPAIO

N F) such that

TrF W = W(I) ⊗ 1AO
N with TrAI

N
W(I) = 1P, (20)

for some matrix W(I) ∈ L(HPAI
N ).

Conversely, any positive semidefinite matrix W ∈
L(HPAIO

N F) satisfying Eq. (20) is the process matrix of a
quantum circuit with operations used in parallel.

A proof of this proposition, as well as a more detailed
exposition of QC-PARs, are given in Appendix C.

C. Examples

As a simple example of a QC-FO, consider a process in
which two CP maps A1 and A2 are applied successively

FIG. 5. A QC-FO applying the CP maps A1 and A2 succes-
sively to a system initially provided in the global past HP. The
internal operations M1,M2,M3 are simply identity channels
between the respective Hilbert spaces (cf. Fig. 4).

to the input state from the global past, and then the output
is sent to the global future; see Fig. 5. This scenario corre-
sponds to a QC-FO with the order (A1,A2), with internal
circuit operations that are (clearly TP) identity channels
(between isomorphic Hilbert spaces HP and HAI

1 , HAO
1 and

HAI
2 , and HAO

2 and HF , with Choi matrices of the form
|1〉〉〈〈1|XY), and that do not involve additional ancillary sys-
tems. The corresponding process matrix, as per Proposition
1, is

WP→A1→A2→F = |1〉〉〈〈1|PAI
1 ⊗ |1〉〉〈〈1|AO

1 AI
2 ⊗ |1〉〉〈〈1|AO

2 F ,
(21)

and it is straightforward to verify that it satisfies the
characterization of Proposition 2.

Another example is a scenario where a bipartite state
is prepared in the global past and sent (via identity chan-
nels) in parallel to A1 and A2, whose outputs are then
sent (again via identity channels) to the global future;
see Fig. 6. Here the past Hilbert space decomposes as
HP = HP1 ⊗ HP2 , with each HPk isomorphic to HAI

k , and
the future Hilbert space decomposes as HF = HF1 ⊗ HF2 ,
with each HFk isomorphic to HAO

k . The corresponding
“parallel” process matrix is

W‖ = |1〉〉〈〈1|P1AI
1 ⊗ |1〉〉〈〈1|P2AI

2 ⊗ |1〉〉〈〈1|AO
1 F1

⊗ |1〉〉〈〈1|AO
2 F2 . (22)

W‖ is the process matrix of a QC-PAR, as can be veri-
fied from Proposition 3. It is thus also a QC-FO, com-
patible with both orders (A1,A2) and (A2,A1) (and
satisfies Proposition 2 for both orders). Indeed, a real-
ization of W‖ as a QC-FO conforming to the descrip-
tion above with the causal order (A1,A2) is given
through the circuit operations (in their Choi representa-
tion) M1 = |1〉〉〈〈1|P1AI

1 ⊗ |1〉〉〈〈1|P2α1 , M2 = |1〉〉〈〈1|AO
1 α2 ⊗

|1〉〉〈〈1|α1AI
2 , and M3 = |1〉〉〈〈1|AO

2 F2 ⊗ |1〉〉〈〈1|α2F1 , by intro-
ducing some ancillary Hilbert spaces Hα1 isomorphic to
HP2 and HAI

2 , and Hα2 isomorphic to HAO
1 and HF1

(see Fig. 6 and Appendix C). A realization of W‖ in
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FIG. 6. A QC-FO which applies the CP maps A1 and A2 to
the respective parts of a bipartite system prepared in HP1 ⊗ HP2 ,
and then sends the outputs to HF1 ⊗ HF2 . The process matrix
describing this QC-FO, W‖, could also be implemented as a QC-
FO compatible with the order A2 ≺ A1, or directly as a QC-PAR
(cf. Appendix C).

terms of a QC-FO with the order (A2,A1) is similarly
given by the operations M ′

1 = |1〉〉〈〈1|P1α
′
1 ⊗ |1〉〉〈〈1|P2AI

2 ,
M ′

2 = |1〉〉〈〈1|AO
2 α

′
2 ⊗ |1〉〉〈〈1|α′

1AI
1 , and M ′

3 = |1〉〉〈〈1|AO
1 F1 ⊗

|1〉〉〈〈1|α′
2F2 , with now Hα′

1 isomorphic to HP1 and HAI
1 ,

and Hα′
2 isomorphic to HAO

2 and HF2 . It can easily be
checked that M1 ∗ M2 ∗ M3 = M ′

1 ∗ M ′
2 ∗ M ′

3 = W‖.
This example illustrates the fact that a given process

matrix may have different realizations, and, more particu-
larly, that process matrices described in the class of QC-FO
may be compatible with different causal orders, or even
with a parallel composition of the external operations. Note
also that the class of QC-FOs (i.e., quantum circuits com-
patible with some fixed order) is not convex (in contrast
to those compatible with a single fixed order): a convex
mixture of process matrices compatible with two different
orders may not be compatible with any single fixed order,
and thus not describe a QC-FO.

IV. QUANTUM CIRCUITS WITH CLASSICAL
CONTROL OF CAUSAL ORDER

While QC-FOs form an important and well-studied
class of quantum supermaps, it is nonetheless a rather
restrictive class. Indeed, there are supermaps that are
compatible with a well-defined causal structure (i.e., are
causally separable [5,9,10]) but which cannot be described
as QC-FOs. This is the case, for instance, of many
supermaps representing probabilistic mixtures of QC-FOs
with different causal orders, or of processes in which the
causal order is established dynamically [4,8–10]. Here,
motivated by a preliminary formulation in Ref. [9], we
present a circuit model encompassing such possibilities,
in which the causal order between the N quantum oper-
ations Ak is still well defined, but not fixed from the
outset. Instead, in these quantum circuits with classical
control of causal order (QC-CCs) it can be established
dynamically, with the operations in the past determin-
ing the causal order of the operations in the future. We
show below how to describe QC-CCs in terms of process

matrices (Proposition 4), and characterize the set of pro-
cess matrices they define (Proposition 5).

As recalled in Sec. II B, in order for such circuits to
define valid quantum supermaps they must be linear in the
operations Ak. It is thus necessary to require that QC-CCs
always apply each operation exactly once. This excludes
scenarios, for instance, where certain operations may or
may not be applied, depending on the state of some con-
trol system [66–68]. Thus, only the order, and not the use,
of the operations can be controlled classically within the
framework considered here.

A. Description

We consider a generalized quantum circuit as repre-
sented schematically in Fig. 7, with N “open slots” at
different time slots tn (1 ≤ n ≤ N ). At each time slot, one
(and only one) operation Ak will be applied (and each
operation Ak can a priori be applied at any time slot tn)
[69]. Compared to the previous case of QC-FOs, however,
precisely which operation is applied at each time slot tn is
not predefined in a QC-CC. Instead, before the first time
slot t1, and between each pair of consecutive time slots
tn, tn+1 (for 1 ≤ n ≤ N − 1), the circuit applies an inter-
nal quantum operation, which determines, in particular,
which (thus far unused) operation Ak shall be applied next
(while also transforming its input state and, potentially,
additional ancillary systems). A final internal operation is
then applied, taking the output of the operation applied at
the last time slot tN to the output of the circuit in HF .

The internal operations thus not only map the output
state of the preceding operation to the input state of some
subsequent one (together with potential ancillary systems):
they now also produce a classical outcome, indicating
which is the subsequent external operation to be applied.
Such operations that keep track of both the classical and
the quantum output are called quantum instruments [70].
Mathematically, a quantum instrument is a collection of CP
maps (associated to the different classical outputs), which
sum up to a CPTP map.

More precisely, before the first time slot t1, the circuit
applies some internal quantum instrument {M→k1

∅ }k1∈N ,

where each operation M→k1
∅ : L(HP) → L(HAI

k1
α1),

attached to the classical output k1 that “controls” which
external operation shall be applied first, maps the circuit’s

input in HP to the incoming space HAI
k1 of the opera-

tion Ak1 and (possibly) also to some ancillary system in
some Hilbert space Hα1 [71]. Between the time slots tn
and tn+1, for 1 ≤ n ≤ N − 1, the circuit applies a quantum
instrument {M→kn+1

(k1,...,kn)
}kn+1∈N\{k1,...,kn} conditioned on the

sequence (k1, . . . , kn) of operations that have already been
performed [72]. Each operation M→kn+1

(k1,...,kn)
: L(HAO

kn
αn) →

L(HAI
kn+1

αn+1
), attached to the classical output kn+1
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FIG. 7. Quantum circuit with classical control of causal order (QC-CC). The causal order is controlled, and established dynamically,
by the outcomes kn of the internal circuit operations M→kn

(k1,...,kn−1)
, represented by the double-stroke arrows. The superimposed boxes

Akn at each time slot tn indicate that any of the N external operations Ak can a priori be applied at any time slot; we illustrate here the
case where the causal order of operations ends up being (k1, k2, . . . , kN−1, kN ). The process matrix W that represents the circuit above
is a (classical) combination of the different contributions corresponding to the different (dynamically established) orders (k1, . . . , kN ).
It is obtained from the Choi matrices M→kn

(k1,...,kn−1)
of the internal circuit operations M→kn

(k1,...,kn−1)
according to Proposition 4.

indicating the next operation to apply, takes the output
system of the last performed operation Akn , together with

the ancillary system in Hαn , to the incoming space HAI
kn+1

of some yet unperformed operation Akn+1 (hence with
kn+1 ∈ N \{k1, . . . , kn}) and an ancillary system in some
Hilbert space Hαn+1 . Before the time slot tN only one oper-
ation AkN is left to be performed (so that the instruments
{M→kN

(k1,...,kN−1)
} only have one possible outcome kN ), and

after tN all operations Ak have been performed exactly
once. The circuit then applies a CPTP map M→F

(k1,...,kN )
:

L(HAO
kN
αN ) → L(HF) that takes the output system of

AkN , together with the ancillary state in HαN , to the output
of the circuit in HF .

Let us elaborate further on the constraints required
for the internal circuit operations to be valid quantum
instruments (and thus for the circuit to be determinis-
tic). While each individual CP map of an instrument,
say {M→kn+1

(k1,...,kn)
}kn+1∈N\{k1,...,kn}, need not be TP, the trace

should be preserved once all outcomes are summed over
[i.e., the quantity

∑
kn+1

TrM→kn+1
(k1,...,kn)

(·)] for any state in
the effective input space of the operation. As we show
in Appendix B 2, analogously to Eqs. (14)–(16), these
(effective) TP conditions translate here into the following
constraints on the operations’ Choi matrices [73]:

∑

k1

TrAI
k1
α1

M→k1
∅ = 1P, (23)

∀ n = 1, . . . , N−1, ∀ (k1, . . . , kn),
∑

kn+1

TrAI
kn+1

αn+1

(
M→k1

∅ ∗ · · · ∗ M→kn
(k1,...,kn−1)

∗ M→kn+1
(k1,...,kn)

)

= Trαn

(
M→k1

∅ ∗ · · · ∗ M→kn
(k1,...,kn−1)

) ⊗ 1AO
kn , (24)

and ∀ (k1, . . . , kN ),

TrF
(
M→k1

∅ ∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ M→F
(k1,...,kN )

)

= TrαN

(
M→k1

∅ ∗ · · · ∗ M→kN
(k1,...,kN−1)

) ⊗ 1
AO

kN . (25)

The previous description of the process under consid-
eration, as represented in Fig. 7 and with the internal
circuit operations M→k1

∅ ,M→kn+1
(k1,...,kn)

,M→F
(k1,...,kN )

satisfying
the TP constraints of Eqs. (23)–(25), formally defines
what we call a quantum circuit with classical control of
causal order (QC-CC). Note that QC-FOs are a special
case of QC-CCs as the internal CPTP maps of a QC-
FO can be seen as instruments with only one nontrivial
classical output.

Let us now see how to obtain the description of a QC-
CC as a process matrix. As for QC-FOs [cf. Eq. (17)],
in the case where the operations M→k1

∅ , M→k2
(k1)

, M→k3
(k1,k2)

,

. . . , M→kN
(k1,...,kN−1)

and M→F
(k1,...,kN )

are applied in between the
external operations Ak—which thus end up being applied
in the dynamically established order (k1, k2, . . . , kN )—the
Choi matrix of the global CP map induced by the circuit is
obtained as the link product

M→k1
∅ ∗ Ak1 ∗ M→k2

(k1)
∗ Ak2 ∗ M→k3

(k1,k2)

∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ AkN ∗ M→F
(k1,...,kN )

= (A1 ⊗ · · · ⊗ AN ) ∗ (
M→k1

∅ ∗ M→k2
(k1)

∗ M→k3
(k1,k2)

∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ M→F
(k1,...,kN )

)
, (26)

where we used, in particular, the fact that each operation
Ak appears once and only each in Ak1 ∗ Ak2 ∗ · · · ∗ AkN to
reorder these terms.

As just stated, this induced map is conditioned on
the causal order ending up being (k1, k2, . . . , kN ) [74].
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However, we want to describe the deterministic map that
does not “postselect” on this order; indeed, the outcomes
of the internal quantum instruments are internal to the pro-
cess. We thus need to sum Eq. (26) above over all possible
orders (k1, k2, . . . , kN ) to obtain the induced global map:

M =
∑

(k1,...,kN )

M→k1
∅ ∗ Ak1 ∗ M→k2

(k1)
∗ · · · ∗ M→kN

(k1,...,kN−1)
∗ AkN

∗ M→F
(k1,...,kN )

∈ L(HPF). (27)

Noting that the sum can be applied only to the sec-
ond term in parentheses in Eq. (26) [which, for each
(k1, . . . , kN ), belongs to the same space L(HPAIO

N F)], and
that the induced map is then written in the form of Eq. (13),
we can directly identify the process matrix W and obtain
the following description.

Proposition 4 (Process matrix description of QC-CCs):
The process matrix corresponding to the quantum circuit
with classical control of causal order depicted in Fig. 7 is

W =
∑

(k1,...,kN )

W(k1,...,kN ,F), (28)

where

W(k1,...,kN ,F) := M→k1
∅ ∗ M→k2

(k1)
∗ M→k3

(k1,k2)
∗ · · · ∗ M→kN

(k1,...,kN−1)

∗ M→F
(k1,...,kN )

∈ L(HPAIO
N F). (29)

B. Characterization

The above description of QC-CCs allows us to obtain
the following characterization of their process matrices.

Proposition 5 (Characterization of QC-CCs): The pro-
cess matrix W ∈ L(HPAIO

N F) of a quantum circuit with
classical control of causal order can be decomposed
in terms of positive semidefinite matrices W(k1,...,kn) ∈
L(HPAIO

{k1,...,kn−1}AI
kn ) and W(k1,...,kN ,F) ∈ L(HPAIO

N F), for all
nonempty ordered subsets (k1, . . . , kn) of N (with 1 ≤ n ≤
N, ki �= kj for i �= j ), in such a way that

W =
∑

(k1,...,kN )

W(k1,...,kN ,F), (30)

and
∑

k1

TrAI
k1

W(k1) = 1P,

∀ n = 1, . . . , N−1, ∀ (k1, . . . , kn),
∑

kn+1

TrAI
kn+1

W(k1,...,kn,kn+1) = W(k1,...,kn) ⊗ 1AO
kn ,

and ∀ (k1, . . . , kN ), TrF W(k1,...,kN ,F) = W(k1,...,kN ) ⊗ 1
AO

kN .
(31)

Conversely, any Hermitian matrix W ∈ L(HPAIO
N F) that

admits a decomposition in terms of positive semidefinite

matrices W(k1,...,kn) ∈ L(HPAIO
{k1,...,kn−1}AI

kn ) and W(k1,...,kN ,F) ∈
L(HPAIO

N F) satisfying Eqs. (30) and (31) above is the pro-
cess matrix of a quantum circuit with classical control of
causal order.

The full proof is given in Appendix B 2; here, we simply
outline briefly the proof approach.

As was the case of QC-FOs, the necessary condition fol-
lows from the form of Eqs. (28) and (29), and the TP con-
straints of Eqs. (23)–(25), with W(k1,...,kn) ≡ Trαn

(
M→k1

∅ ∗
· · · ∗ M→kn

(k1,...,kn−1)

)
.

To prove the sufficient condition, we again provide an
explicit construction of a QC-CC: given a matrix W with a
decomposition satisfying Eqs. (30) and (31), we construct
the operations M→k1

∅ , M→kn+1
(k1,...,kn)

and M→F
(k1,...,kN )

(which,
except in general for the last one, can each be taken to have
a single Kraus operator) whose induced process matrix is
precisely W. As was the case for QC-FOs, this construction
is not unique and different QC-CCs may be described by
the same process matrix.

It can be verified that Eqs. (30) and (31) imply that W
satisfies the validity constraints for process matrices (cf.
Appendix A 2). Note, however, that the individual matri-
ces W(k1,...,kN ,F) in Proposition 5 may or may not be valid
(deterministic) process matrices.

If the W(k1,...,kN ,F) are valid process matrices (up to nor-
malization), each compatible with the fixed causal order
(k1, . . . , kN ), then W is simply a probabilistic mixture of
quantum circuits with different fixed causal orders. We
recover the case of QC-FOs when there is only one term in
the sum of Eq. (30); if that single term corresponds to the
order (k1, . . . , kN ) = (1, . . . , N ), the constraints of Eq. (31)
simply reduce to those of Eq. (19) (with W(1,...,n) ≡ W(n)
and W(1,...,N ,F) ≡ W).

If the W(k1,...,kN ,F) are not valid process matrices, then the
causal order depends, at least in part, on the input state of
the circuit (in the global past space HP) and on the exter-
nal operations An inserted in the slots of the QC-CC. The
W(k1,...,kN ,F) can, in that case, be interpreted as probabilis-
tic process matrices, which are postselected on the order
(k1, . . . , kN , F) being realized (see Sec. VI).

We finish by noting that if we consider the case with triv-
ial one-dimensional global past and global future Hilbert
spaces HP and HF—i.e., the “original” version of pro-
cess matrices as supermaps that take linear CP maps to
probabilities [5]—then the characterization of Proposi-
tion 5 (given more explicitly for this case in Appendix
A 3) coincides precisely with the sufficient condition for
the causal separability of general N -partite process matri-
ces obtained in Ref. [10]. Hence, unsurprisingly, QC-CCs
define causally separable processes [75].
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FIG. 8. The two possible realizations of the classical switch.
In this QC-CC, the order of the two CP maps A1 and A2 is con-
trolled incoherently through the “control system” in HPc , which
is measured as part of the first internal circuit operation. The pro-
cess matrix WCS is obtained as the sum of the two corresponding
probabilistic process matrices W(1,2,F) and W(2,1,F) [cf. Eq. (33)].

C. Example

The simplest example of a QC-CC without a predeter-
mined (even probabilistic) causal order is the “classical
switch” [7], in which a classical “control system” is used to
incoherently control the order in which two CP maps, A1
and A2, are applied to some “target system”; see Fig. 8.
These two systems are initially provided in the global past
HP = HPt ⊗ HPc and, after the operations are applied, are
sent to the global future HF = HFt ⊗ HFc . Here, HPt and
HFt are dt-dimensional Hilbert spaces for the target system
and HPc and HFc are two-dimensional Hilbert spaces (with
computational bases denoted here {|1〉 , |2〉}) in which the
classical control bit is encoded. The operations A1 and
A2 thus also act on dt-dimensional spaces HAk

I ,HAk
O . The

circuit begins by performing a measurement on the con-
trol system, and depending on the (classical) measurement
outcome, the target system is sent (via identity channels)
first to A1 and then to A2 (outcome “1”), or vice versa
(outcome “2”). The order is thus not fixed a priori, but is
established through the preparation of the control system
in the global past.

To see that the classical switch can be described as a
QC-CC, we can take the internal circuit operations with
Choi matrices

M→k1
∅ = |1〉〉〈〈1|PtAI

k1 ⊗ |k1〉〈k1|Pc ,

M→k2
(k1)

= |1〉〉〈〈1|AO
k1

AI
k2 ,

M→F
(k1,k2)

= |1〉〉〈〈1|AO
k2

Ft ⊗ |k1〉〈k1|Fc .

(32)

These operations can be interpreted intuitively: M→k1
∅ is

an identity channel sending the initial target system in HPt

to the input space of the first operation Ak1 , postselected
on the outcome k1 of the measurements on HPc ; M→k2

(k1)
is

an identity channel sending the target from the output of
Ak1 to the input of Ak2 ; and M→F

(k1,k2)
sends the output of

the second operation to the global future, while preparing
the control system in HFc in the appropriate state, |k1〉〈k1|.
It is easy to verify that these operations indeed satisfy the
TP conditions of Eqs. (23)–(25).

The process matrix describing the classical switch
defined by the operations (32) is thus

WCS = M→1
∅ ∗ M→2

(1) ∗ M→F
(1,2) + M→2

∅ ∗ M→1
(2) ∗ M→F

(2,1)

= |1〉〈1|Pc |1〉〉〈〈1|PtAI
1 |1〉〉〈〈1|AO

1 AI
2 |1〉〉〈〈1|AO

2 Ft |1〉〈1|Fc

+ |2〉〈2|Pc |1〉〉〈〈1|PtAI
2 |1〉〉〈〈1|AO

2 AI
1 |1〉〉〈〈1|AO

1 Ft |2〉〈2|Fc

∈ L(HPcPtAIO
1 AIO

2 FtFc), (33)

(where the tensor products are implicit). One can read-
ily check that WCS indeed satisfies the characterization
of Proposition 5, with W(k1) = M→k1

∅ , W(k1,k2) = M→k1
∅ ⊗

M→k2
(k1)

, and W(k1,k2,F) = M→k1
∅ ⊗ M→k2

(k1)
⊗ M→F

(k1,k2)
.

Note that this process goes beyond a probabilistic mix-
ture of two fixed-order quantum circuits. Indeed, the two
individual summands in Eq. (33) do not satisfy the valid-
ity constraints for process matrices, and only their sum
does. This reflects the fact that the first internal operation
applied by the circuit, {M→k1

∅ }k1∈N , is probabilistic, and
if we postselect on one of the two outcomes, we do not
end up with a valid (deterministic) supermap. (Indeed, as
we see later in Sec. VI, the individual terms are probabilis-
tic process matrices.) To obtain a valid process, we thus
need to combine the terms corresponding to the different
outcomes. This also proves (as was already shown in Ref.
[7]), that such a classical switch cannot be realized by a
standard QC-FO.

Lastly, let us observe that if one traces out F from the
process matrix of the classical switch, the resulting matrix
TrF WCS is also a valid QC-CC (with now a trivial global
future) with a still well-defined, but not predefined, causal
order. (This is also the case if one only traces out Ft or
Fc.) Indeed, taking M→k1

∅ and M→k2
(k1)

as in Eq. (32) and

M→F
(k1,k2)

= 1
AO

k2 , one recovers the corresponding process
matrix.

V. QUANTUM CIRCUITS WITH QUANTUM
CONTROL OF CAUSAL ORDER

In this section we go one step further, defining a class of
circuits in which the causal order is controlled not classi-
cally, as in QC-CCs, but coherently in a quantum manner.
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Such circuits may no longer always combine the oper-
ations Ak in a well-defined causal manner, but instead
they do so in an indefinite causal order. As for the classes
above, we show how to describe these quantum circuits
with quantum control of causal order (QC-QCs) as pro-
cess matrices (Proposition 6) and characterize the set of
process matrices they define (Proposition 7). Before we
present these QC-QCs, however, we revisit QC-CCs from
a slightly different angle. In particular, we first present a
different, but equivalent, description of QC-CCs that will
lead more naturally to this class of QC-QCs.

A. Revisiting the description of quantum circuits with
classical control of causal order

1. Introducing explicit control systems

In the previous section we said that each internal oper-
ation M→kn+1

(k1,...,kn)
applied by the circuit between the time

slots tn and tn+1 was conditioned on which operations Ak
had already been performed (thereby allowing us to ensure
that each external operation is applied once and only once,
as required), and their order (k1, . . . , kn). This conditioning
can, in fact, be included in the description of the opera-
tion applied between tn and tn+1 by introducing a physical
“control” system that explicitly encodes the outcomes kn

of the instruments {M→kn
(k1,...,kn−1)

}kn , and stores on the fly
the dynamically established causal order.

To this end, we add an explicit control system to the cir-
cuit, in which we encode the full order of the preceding
(and currently applied) external operations in the compu-
tational basis states |(k1, . . . , kn)〉C(′)n of some Hilbert space
HC(′)n (for 1 ≤ n ≤ N ). Here Cn denotes the control sys-
tem just before the external operation Akn (at time tn) is
applied, while C′

n denotes the control system just after
(see below). As these control systems will, for now, act
“classically,” it will be useful to use the following notation:

[[(k1, . . . , kn)]]C(′)n := |(k1, . . . , kn)〉〈(k1, . . . , kn)|C
(′)
n . (34)

Note that while the example of the classical switch in Sec.
IV C utilized a control qubit in the global past HP and
future HF , the role of the explicit control system we intro-
duce here is more precise. In that example, it would be
used, e.g., to propagate the control qubit in HPc through
the circuit to HFc and apply the correct external operation
at each time slot.

This control system is used to control both the choice
of external operation Akn and the internal operations
M→kn+1

(k1,...,kn)
, as illustrated in Fig. 9. To formally achieve this,

we need to embed the input and output Hilbert spaces at
each time slot tn within a common Hilbert space, before
introducing global controlled operations acting in these
spaces. To simplify this, we henceforth, and without loss of
generality [76], assume that all the external operations Ak

have the same input space dimension (dI
k = dI ∀k), and the

same output space dimension (dO
k = dO ∀k). All their input

spaces are thus isomorphic to each other, and likewise for
their output spaces. As a result, the “target” system at each
time slot is always of the same dimension, regardless of
which external operation is applied to it (although the input
and output dimensions may still differ, i.e., if dI �= dO).

At each time slot tn, we first introduce the “generic”
input and output spaces HÃI

n and HÃO
n (with tildes),

isomorphic to the HAI
kn and HAO

kn spaces, respectively.
We can then formally “identify” each HAI

kn with HÃI
n

and each HAO
kn with HÃO

n , and write the external
operations Akn : L(HAI

kn ) → L(HAO
kn ) as operations of

the form Ãkn : L(HÃI
n) → L(HÃO

n ), with Choi matri-
ces Ãkn ∈ L(HÃI

nÃO
n ), and the internal circuit operations

M→kn+1
(k1,...,kn)

: L(HAO
kn
αn) → L(HAI

kn+1
αn+1

) of a QC-CC as

M̃→kn+1
(k1,...,kn)

: L(HÃO
n αn) → L(HÃI

n+1αn+1), with Choi matri-

ces M̃→kn+1
(k1,...,kn)

∈ L(HÃO
n αnÃI

n+1αn+1) [77]. Similarly, we write

M→k1
∅ and M→F

(k1,...,kN )
as M̃→k1

∅ : L(HP) → L(HÃI
1α1)

and M̃→F
(k1,...,kN )

: L(HÃO
NαN ) → L(HF), with respective

Choi matrices M̃→k1
∅ ∈ L(HPÃI

1α1) and M̃→F
(k1,...,kN )

∈
L(HÃO

NαN F).
This allows us, at each time slot tn (for 1 ≤ n ≤ N ), to

then embed the external operations Ãkn into some “larger”
conditional operations Ãn which use the control system to
apply the correct Ãkn :

Ãn :=
∑

(k1,...,kn)

Ãkn ⊗ π
Cn→C′

n
(k1,...,kn)

: L(HÃI
nCn)→L(HÃO

n C′
n),

(35)

where πCn→C′
n

(k1,...,kn)
is the (classical) map that projects the

control system onto the state [[(k1, . . . , kn)]]Cn , while rela-
beling the control system Cn to C′

n. The corresponding
Choi matrix of Ãn is

Ãn =
∑

(k1,...,kn)

Ãkn ⊗ [[(k1, . . . , kn)]]Cn ⊗ [[(k1, . . . , kn)]]C′
n

∈ L(HÃI
nCnÃO

n C′
n). (36)

Similarly, we can embed the internal circuit operations
M̃→kn+1

(k1,...,kn)
into some “larger” operations that also involve

the control systems, as shown in Fig. 9. These enlarged
operations, unlike the M̃→kn+1

(k1,...,kn)
, are deterministic (i.e.,

CPTP) operations since the probabilistic choice of out-
come kn+1 is now encoded in the (classical) correlations
between the control system and the joint target-ancilla
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FIG. 9. Another possible representation of a QC-CC, equivalent to Fig. 7. Here we show explicitly the transmission of the informa-
tion about the causal order, established dynamically and stored on the fly in the states [[(k1, . . . , kn)]]C(′)n of some control system. The
double-stroke lines indicate that this information is classical. This information is used to control which external operation Akn is to be
applied at each time slot tn, thus defining the joint operation Ãn of Eq. (35) on the target and control systems. It is also used to control
the internal circuit operations M→k1

∅ , M→kn+1
(k1,...,kn)

, and M→F
(k1,...,kN )

, defining the joint operations M̃1, M̃n+1, and M̃N of Eqs. (37)–(39)
on the target, ancillary, and control systems.

system. More precisely, we now have (for 1 ≤ n ≤ N − 1)

M̃n+1 :=
∑

(k1,...,kn,kn+1)

M̃→kn+1
(k1,...,kn)

⊗ π
C′

n→Cn+1
(k1,...,kn),kn+1

:

L(HÃO
n αnC′

n) → L(HÃI
n+1αn+1Cn+1), (37)

where π
C′

n→Cn+1
(k1,...,kn),kn+1

: L(HC′
n) → L(HCn+1) is the (clas-

sical) map that projects the control system onto
[[(k1, . . . , kn)]]C′

n (the state just after the conditional oper-
ation Ãn, with a prime) and updates it to [[(k1, . . . ,
kn, kn+1)]]Cn+1 (the state of the control system just before
the next conditional operation Ãn+1, with no prime). Like-
wise, the edge cases of the first and last operations are
now

M̃1 :=
∑

k1

M̃→k1
∅ ⊗ π

∅→C1
∅,k1

: L(HP) → L(HÃI
1α1C1),

(38)

and

M̃N+1 :=
∑

(k1,...,kN )

M̃→F
(k1,...,kN )

⊗ π
C′

N →∅
(k1,...,kN ),F

:

L(HÃO
NαN C′

N ) → L(HF), (39)

where π∅→C1
∅,k1

and π
C′

N →∅
(k1,...,kN ),F

are the maps that create the
initial control states [[(k1)]]C1 and that project onto the final
control states [[(k1, . . . , kN )]]C′

N , respectively.
We can thus see explicitly that the control system Cn

controls which external operation Akn is applied at time

slot tn (and hence the causal order) as well as the inter-
nal operations M→kn+1

(k1,...,kn)
, and that it does so in a classical

manner. Indeed, the internal operations cannot create any
entanglement between the control system and the target
or ancillary systems; instead, there is only ever classical
correlation between the (classical) state of the control sys-
tem and the other systems. This justifies, in particular, the
terminology of QC-CC.

The Choi matrices of the internal operations, for com-
pleteness, are

M̃1 =
∑

k1

M̃→k1
∅ ⊗ [[(k1)]]C1 ∈ L(HPÃI

1α1C1), (40)

M̃n+1 =
∑

(k1,...,kn,kn+1)

M̃→kn+1
(k1,...,kn)

⊗ [[(k1, . . . , kn)]]C′
n

⊗ [[(k1, . . . , kn, kn+1)]]Cn+1

∈ L(HÃO
n αnC′

nÃI
n+1αn+1Cn+1), (41)

M̃N+1 =
∑

(k1,...,kN )

M̃→F
(k1,...,kN )

⊗ [[(k1, . . . , kN )]]C′
N

∈ L(HÃO
NαN C′

N F). (42)

The TP conditions for the internal operations of a QC-
CC previously given in Eqs. (23)–(25) (in terms of the
Choi matrices M→k1

∅ , M→kn+1
(k1,...,kn)

and M→F
(k1,...,kN )

of the cor-
responding maps) are readily recovered in this alterna-
tive formulation by imposing that the enlarged operations
M̃n are TP (on their effective input spaces) and that
they preserve the probabilities for a given order of the
thus-far applied external operations to be realized; see
Appendix B 2.
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Finally, let us check that this formulation of QC-CCs
is indeed equivalent to that given in the previous section.
Note first that the operations Ãn and M̃n described above
are applied in a well-defined order. The global induced
map (in its Choi version) is then obtained, similarly to
Eq. (17) for the QC-FO case, by link multiplying all these
operations:

M = M̃1 ∗ Ã1 ∗ M̃2 ∗ · · · ∗ M̃N ∗ ÃN ∗ M̃N+1

=
∑

(k1,...,kN )

M̃→k1
∅ ∗ Ãk1 ∗ M̃→k2

(k1)
∗ · · · ∗ M̃→kN

(k1,...,kN−1)

∗ ÃkN ∗ M̃→F
(k1,...,kN )

=
∑

(k1,...,kN )

M→k1
∅ ∗ Ak1 ∗ M→k2

(k1)
∗ · · · ∗ M→kN

(k1,...,kN−1)

∗ AkN ∗ M→F
(k1,...,kN )

∈ L(HPF), (43)

where the second equality is obtained by “contracting”
all control systems in the link products (in particular,
by exploiting that [[(k1, . . . , kn)]]Cn ∗ [[(k′

1, . . . , k′
n)]]

Cn =
δk1,k′

1
· · · δkn,k′

n , with δ the Kronecker delta), and where our
formal identification (via the appropriate isomorphism, see
Ref. [77]) of the external operations’ input and output
spaces HAI

kn and HAO
kn with the generic spaces HÃI

n and
HÃO

n at each time slot tn allowed us, in the last line, to
remove the tildes and obtain the third equality.

We thus recover Eq. (27) from the previous descrip-
tion of QC-CCs, and consequently also the same process
matrix description of our QC-CC as in Proposition 4, and
the same characterization of QC-CC process matrices as in
Proposition 5.

2. “Purifying” the internal circuit operations

With the goal of progressing towards circuits with quan-
tum, rather than classical, control of causal order, we make
here one further simplification. We show that it suffices to
consider only “pure” QC-CCs, in which all the internal cir-
cuit operations are isometries, and to consider the action of
such QC-CCs when pure external operations are inserted
in them. This will make it significantly easier to describe
coherence between the control and the target and ancil-
lary systems, which will be a crucial aspect of the shift
to quantum control.

To this end, let us note that since we do not make any
particular assumption about the ancillary Hilbert spaces
Hαn (e.g., about their dimension), they can be used to
“purify” [78] the operations M→kn

(k1,...,kn−1)
for 1 ≤ n ≤ N .

Without loss of generality, we can thus assume they
consist of the application of just one Kraus operator,

which we denote V→kn
(k1,...,kn−1)

: HAO
kn−1

αn−1 → HAI
kn
αn (so

that M→kn
(k1,...,kn−1)

(�) = V→kn
(k1,...,kn−1)

�V→kn†
(k1,...,kn−1)

); the Choi

representations of the operations are then simply

M→kn
(k1,...,kn−1)

= |V→kn
(k1,...,kn−1)

〉〉〈〈V→kn
(k1,...,kn−1)

| , (44)

where |V→kn
(k1,...,kn−1)

〉〉 ∈ HAO
kn−1

αn−1AI
kn
αn (or |V→k1

∅ 〉〉 ∈
HPAI

k1
α1 for n = 1) is the Choi vector representation of

V→kn
(k1,...,kn−1)

, as introduced in Sec. II A. Similarly, for the
final operations M→F

(k1,...,kN )
, one can introduce an ancil-

lary Hilbert space HαF so as to purify these operations and
write them in terms of only one Kraus operator V→F

(k1,...,kN )
,

before tracing out the ancillary system in HαF . Without
loss of generality we can thus write

M→F
(k1,...,kN )

= TrαF |V→F
(k1,...,kN )

〉〉〈〈V→F
(k1,...,kN )

| , (45)

with |V→F
(k1,...,kN )

〉〉 ∈ HAO
kN
αN FαF .

It will similarly be convenient to assume that the exter-
nal operations Ak correspond to the application of a single
Kraus operator. In a slight, but generally unambiguous,
conflict of notation we reuse the notation Ak for this Kraus
operator, with Choi vector representation |Ak〉〉 ∈ HAI

kAO
k

[so that the Choi matrix of the map Ak is now |Ak〉〉〈〈Ak| ∈
L(HAI

kAO
k )]. The general case of multiple Kraus operators

can then easily be recovered by summing what we would
get for different combinations of Kraus operators for each
Ak.

With these simplifications, the calculation of the induced
map M following Eq. (27) is made significantly easier.
More importantly, when we consider a quantum control
system it will allow us to directly study a pure global map
V : HP → HFαF , with Choi vector |V〉〉 ∈ HPFαF as a func-
tion of all pure external and internal operations (and only
trace out the HαF ancillary system at the very end).

B. Turning the classical control into a coherent control
of causal order

The reformulation of QC-CCs above provides a clearer
view of how to proceed towards quantum control of causal
order, namely by turning the classical control system into
a quantum one which can be used to coherently con-
trol the internal circuit operations. In order to capture
the most general form of quantum control, however, it is
necessary to make one crucial adjustment to the control
system. Recall that in the case of a classical control, the
state [[(k1, . . . , kn)]]C(′)n of the control system was used to
keep track of the whole history of which operations had
been applied so far. For a quantum control we instead use
the control system to record only which operations have
already been applied and to encode which operation should
be applied at a given time slot, but, importantly, we do not
require that it keep track of the order in which the previous
operations were applied.
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For these circuits to define valid supermaps, recall that
we need to ensure that each external operation is applied
once and only once. The unordered set {k1, . . . , kn−1} of
operations already applied is thus the minimal informa-
tion needed to ensure that, at each time slot tn and in
each coherent “branch” of the computation, an operation
is applied that has not previously been used in that branch.
This relaxed control system will notably allow, for exam-
ple, for different orders (k1, . . . , kn−1) and (k′

1, . . . , k′
n−1)

corresponding to the same set Kn−1 = {k1, . . . , kn−1} =
{k′

1, . . . , k′
n−1} to “interfere” and thus make the causal order

indefinite.
In what follows, it will be useful to adopt the following

notation. We generically denote by Kn a subset of N with
n elements (with 0 ≤ n ≤ N ), so that, in particular, K0 =
∅ and KN = N . We identify singletons with their single
element, so as to write, for instance, K\k = K\{k}, kN =
{kN } = N \KN−1, or Kn−1 ∪ kn = Kn−1 ∪ {kn} = Kn.

1. General description

In order to define quantum circuits with quantum control
of causal order (QC-QCs), we thereby consider general-
ized quantum circuits of the form represented in Fig. 10.
As anticipated by the above discussions, we exploit a quan-
tum control system in the Hilbert spaces HC(′)n , which now

have computational basis states of the form |Kn−1, kn〉C(′)n ,
where Kn−1 specifies the (unordered) set of n − 1 opera-
tions that have already been applied before the time slot
tn, and kn /∈ Kn−1 labels the operation to be applied at
time slot tn. This control system thus controls coherently
both the application of the external operations Akn (which,
recall, we now identify with a single Kraus operator) as
well as the pure operations V→kn+1

Kn−1,kn
within the internal

circuit operations.
To achieve this, we work, as in the previous subsection,

with the “generic” input and output spaces HÃI
n and HÃO

n ,
isomorphic to HAI

kn and HAO
kn , respectively. The external

operations Akn : HAI
kn → HAO

kn can then be rewritten as
operations on these spaces as Ãkn : HÃI

n → HÃO
n with Choi

vectors |Ãkn〉〉 ∈ HÃI
nÃO

n [79]. These are then embedded into
larger conditional operations Ãn (for 1 ≤ n ≤ N ), which
use the control system to apply the correct Ãkn at time slot
tn [cf. Eq. (35)] [80]:

Ãn :=
∑

Kn−1,kn

Ãkn ⊗ |Kn−1, kn〉C′
n 〈Kn−1, kn|Cn :

HÃI
nCn → HÃO

n C′
n , (46)

where here, as in the remainder of what follows, summa-
tions of this form assume kn /∈ Kn−1. The corresponding

Choi vector of Ãn is

|Ãn〉〉 =
∑

Kn−1,kn

|Ãkn〉〉 ⊗ |Kn−1, kn〉Cn ⊗ |Kn−1, kn〉C′
n

∈ HÃI
nCnÃO

n C′
n . (47)

In place of the CP maps M→kn+1
(k1,...,kn)

for QC-CCs,
the internal circuit operations now control (coherently)
the application of “pure” operators V→kn+1

Kn−1,kn
: HAO

kn
αn →

HAI
kn+1

αn+1 (for 1 ≤ n ≤ N − 1, with kn /∈ Kn−1, kn+1 /∈
Kn−1 ∪ kn). These operators depend on both Kn−1 and kn,
and take the output of Akn (along with the ancillary sys-
tem in Hαn) to the input of Akn+1 (and the ancillary system
in Hαn+1). Similarly, the first and last internal operations

control the operators V→k1
∅,∅ : HP → HAI

k1
α1 and V→F

KN−1,kN
:

HAO
kN
αN → HFαF (with kN = N \KN−1). As with the

external operations, we work with the translation of these
operators into the generic input and output spaces HÃI

n and
HÃO

n , denoted Ṽ→k1
∅,∅ : HP → HÃI

1α1 , Ṽ→kn+1
Kn−1,kn

: HÃO
n αn →

HÃI
n+1αn+1 (for 1 ≤ n ≤ N − 1) and Ṽ→F

KN−1,kN
: HÃO

NαN →
HFαF , and with respective Choi vectors |Ṽ→k1

∅,∅ 〉〉 ∈ HPÃI
1α1 ,

|Ṽ→kn+1
Kn−1,kn

〉〉 ∈ HÃO
n αnÃI

n+1αn+1 and |Ṽ→F
KN−1,kN

〉〉 ∈ HÃO
NαN FαF .

The circuit, as shown in Fig. 10, is then obtained by
embedding these operations into larger operations that
involve the control system. More precisely, before the time
slot t1, the circuit transforms the input state into a state
that is sent coherently to all operations Ak1 and, possibly,
also to some ancillary system in Hα1 , while accordingly
attaching the control state |∅, k1〉C1 to each component of
the superposition. That is, instead of the operation M̃1 in
the QC-CC case, the circuit now applies a (pure) operation
of the form

Ṽ1 :=
∑

k1

Ṽ→k1
∅,∅ ⊗ |∅, k1〉C1 : HP → HÃI

1α1C1 . (48)

Between the time slots tn and tn+1, for 1 ≤ n ≤ N − 1,
the circuit acts coherently on the target, ancillary, and con-
trol systems. It coherently controls the operation V→kn+1

Kn−1,kn

to apply depending on the state |Kn−1, kn〉C′
n of the con-

trol system, before coherently sending the target system to
all remaining Akn+1 (with kn+1 /∈ Kn−1 ∪ kn) and, possibly,
an ancillary system in Hαn+1 , while updating the control
system to |Kn−1 ∪ kn, kn+1〉Cn+1 , thereby encoding the next
operation to apply, kn+1 and erasing the information about
the specific previous operation kn (among all the previ-
ously applied operations) by just recording the whole set of
previously applied operations Kn := Kn−1 ∪ kn. Formally,
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FIG. 10. Quantum circuit with quantum control of causal order (QC-QC). We replace the classical control system of Fig. 9 by a
quantum control system with basis states |{k1, . . . , kn−1}, kn〉Cn , which only store information about which operations ({k1, . . . , kn−1})
have already been applied (but not about their order) and the currently performed operation (kn). (Note that in contrast to the previous
figures, the “boxes” are labeled by linear operators, rather than linear CP maps). We illustrate here the component |w(k1,...,kN ,F)〉 of the
process, corresponding to the order (k1, . . . , kN )—which is coherently superposed with other components, corresponding to different
orders, in order to obtain the process matrix W from the internal operations V→kn+1

Kn−1,kn
of the circuit; see Proposition 6.

the circuit applies the operation

Ṽn+1 :=
∑

Kn−1,
kn,kn+1

Ṽ→kn+1
Kn−1,kn

⊗ |Kn−1 ∪ kn, kn+1〉Cn+1 〈Kn−1, kn|C′
n :

HÃO
n αnC′

n → HÃI
n+1αn+1Cn+1 , (49)

where the sum assumes, extending our established conven-
tion, that kn, kn+1 ∈ N \Kn−1 with kn �= kn+1.

Finally, after time slot tN , the application of the oper-
ations V→F

KN−1,kN
(with KN−1 = N \kN ) is coherently con-

trolled on the control system, taking the output of AkN ,
together with the ancillary state in HαN , to the global out-
put of the circuit in HF and, possibly, an ancillary system
in HαF . The circuit thus applies the operation

ṼN+1 :=
∑

kN

Ṽ→F
N\kN ,kN

⊗ 〈N \kN , kN |C′
N :

HÃO
NαN C′

N → HFαF . (50)

The final ancillary system in HαF is subsequently dis-
carded by the circuit. Note that, in this final operation
ṼN+1 the control system does not need to be updated as,
with F replacing AI

kN+1
, it would always be in the state

|N , F〉CN+1 . Indeed, this is crucial to allowing different
causal histories to interfere within the QC-QC. Moreover,
this highlights the fact that, at the end of the circuit,
each external operation has been applied exactly once,
as required if the circuit is to give us a valid quantum
supermap.

The Choi vectors of the operators, for completeness, are

|Ṽ1〉〉 =
∑

k1

|Ṽ→k1
∅,∅ 〉〉 ⊗ |∅, k1〉C1 ∈ HPÃI

1α1C1 , (51)

|Ṽn+1〉〉 =
∑

Kn−1,
kn,kn+1

|Ṽ→kn+1
Kn−1,kn

〉〉 ⊗ |Kn−1, kn〉C′
n

⊗ |Kn−1 ∪ kn, kn+1〉Cn+1

∈ HÃO
n αnC′

nÃI
n+1αn+1Cn+1 , (52)

|ṼN+1〉〉 =
∑

kN

|Ṽ→F
N\kN ,kN

〉〉 ⊗ |N \kN , kN 〉C′
N

∈ HÃO
NαN C′

N FαF . (53)

From these, the Choi matrices for the internal operations as
CPTP maps (as considered in the previous sections), can
be recovered as M̃n = |Ṽn〉〉〈〈Ṽn| for n ≤ N , and M̃N+1 =
TrαF |ṼN+1〉〉〈〈ṼN+1|.

2. Trace-preserving conditions

The TP conditions on the internal operations arise from
the requirement that the operators Ṽn : � �→ Ṽn�Ṽ†

n must
act as isometries on their effective input spaces. As for the
previously considered classes of circuits, we simply state
the TP conditions here, while their full derivation is given
in Appendix B 3.
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To express the conditions in a compact form, let us first
define, for all 1 ≤ n ≤ N and all (k1, . . . , kn),

|w(k1,...,kn)〉 := |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ · · · ∗ |V→kn

{k1,...,kn−2},kn−1
〉〉

∈ HPAIO
{k1,...,kn−1}AI

kn
αn , (54)

in terms of the Choi vectors of the operators V→kn+1
Kn−1,kn

(i.e., in the original, nongeneric, Hilbert spaces) and, for
all strict subsets Kn−1 of N with |Kn−1| = n − 1 and all
kn ∈ N \Kn−1,

|w(Kn−1,kn)〉 :=
∑

(k1,...,kn−1):
{k1,...,kn−1}=Kn−1

|w(k1,...,kn)〉 ∈ HPAIO
Kn−1

AI
kn
αn ,

(55)

where the sum is taken over all ordered sequences
(k1, . . . , kn−1) of Kn−1. For the case of n = N + 1, replac-
ing kN+1 by F , we similarly obtain, for all (k1, . . . , kN ),
the vectors |w(k1,...,kN ,F)〉 and |w(N ,F)〉 ∈ HPAIO

N FαF [see Eqs.
(61) and (62) in Proposition 6 below for explicit defini-
tions]. Note that by construction we have |w(k1,...,kn,kn+1)〉 =
|w(k1,...,kn)〉 ∗ |V→kn+1

{k1,...,kn−1},kn
〉〉 and

|w(Kn,kn+1)〉 =
∑

kn∈Kn

|w(Kn\kn,kn)〉 ∗ |V→kn+1
Kn\kn,kn

〉〉 . (56)

In terms of these vectors the TP conditions can then be
written as

∑

k1

TrAI
k1
α1

|w(∅,k1)〉〈w(∅,k1)| = 1P, (57)

∀ n = 1, . . . , N − 1, ∀ Kn,
∑

kn+1 /∈Kn

TrAI
kn+1

αn+1
|w(Kn,kn+1)〉〈w(Kn,kn+1)|

=
∑

kn∈Kn

Trαn |w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ⊗ 1AO
kn , (58)

and

TrFαF |w(N ,F)〉〈w(N ,F)|
=

∑

kN ∈N
TrαN |w(N\kN ,kN )〉〈w(N\kN ,kN )| ⊗ 1

AO
kN , (59)

where we note that, in the first condition, |w(∅,k1)〉 =
|w(k1)〉 = |V→k1

∅,∅ 〉〉.
The previous description of the process under con-

sideration, as represented in Fig. 10 and with internal

circuit operations V→k1
∅,∅ , V→kn+1

Kn−1,kn
, V→F

N\kN ,kN
giving vectors

|w(∅,k1)〉 , |w(Kn\kn,kn)〉 , |w(N\kN ,kN )〉 satisfying the TP con-
straints of Eqs. (57)–(59), formally defines what we call
a quantum circuit with quantum control of causal order
(QC-QC).

3. Process matrix description

To obtain the description of a QC-QC as a process
matrix, we proceed analogously to the previous sections.
Indeed, note that as in the previous cases, the operations
Ṽn and Ãn are applied in a well-defined order. The global
operation V : HP → HFαF induced by the circuit (prior
to tracing out HαF ) when the external operations Ak are
applied is obtained by composing all these operations Ṽn

and Ãn in that well-defined order. Correspondingly, and
similarly to the previous cases [see, e.g., Eqs. (17) and
(43)], its Choi vector |V〉〉 ∈ HPFαF is obtained by link mul-
tiplying the Choi vectors of all these operations. With the
Choi vectors given by Eq. (47) and Eqs. (51)–(53), we
obtain

|V〉〉 = |Ṽ1〉〉 ∗ |Ã1〉〉 ∗ |Ṽ2〉〉 ∗ · · · ∗ |ṼN 〉〉 ∗ |ÃN 〉〉 ∗ |ṼN+1〉〉
=

∑

(k1,...,kN )

|Ṽ→k1
∅,∅ 〉〉 ∗ |Ãk1〉〉 ∗ |Ṽ→k2

∅,k1
〉〉 ∗ · · · ∗

|Ṽ→kN
{k1,...,kN−2},kN−1

〉〉 ∗ |ÃkN 〉〉 ∗ |Ṽ→F
{k1,...,kN−1},kN

〉〉
=

∑

(k1,...,kN )

( |A1〉〉 ⊗ · · · ⊗ |AN 〉〉 ) ∗ |w(k1,...,kN ,F)〉

= ( |A1〉〉 ⊗ · · · ⊗ |AN 〉〉 ) ∗ |w(N ,F)〉 ∈ HPFαF , (60)

where the second equality is obtained by contracting the
control systems [similarly to Eq. (43)], and the final
two follow by identifying the external operations’ Hilbert
spaces with the corresponding generic ones (via the appro-
priate isomorphism, see Ref. [79]), reordering the terms
in the link product [as in Eq. (26)], and rewriting the
link product of internal operators in terms of the vectors
|w(k1,...,kN ,F)〉 and |w(N ,F)〉 ∈ HPAIO

N FαF defined in Eqs. (54)
and (55) [with kN+1 replaced by F; cf. Eqs. (61) and (62)
below].

Analogous to the identification of the process matrix
in the previous sections, we can identify |w(N ,F)〉 as a
“process vector” describing the QC-QC in the pure Choi
representation prior to HαF being discarded. In order to
obtain the process matrix, we write the corresponding Choi
matrix and trace out HαF . We thus obtain the following
process matrix description for general QC-QCs.

Proposition 6 (Process matrix description of QC-QCs):
The process matrix corresponding to the quantum circuit
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with quantum control of causal order depicted on Fig. 10 is

W = TrαF |w(N ,F)〉〈w(N ,F)|
with |w(N ,F)〉 :=

∑

(k1,...,kN )

|w(k1,...,kN ,F)〉 , (61)

and with

|w(k1,...,kN ,F)〉 := |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |V→k3

{k1},k2
〉〉

∗ · · · ∗ |V→kN
{k1,...,kN−2},kN−1

〉〉
∗ |V→F

{k1,...,kN−1},kN
〉〉 ∈ HPAIO

N FαF . (62)

Note that the process vector |w(N ,F)〉 is a superposition
of terms in each of which the target system is passed to
each external operation exactly once (possibly in different
orders). This ensures that W is linear in the operations,
allowing us to obtain a valid quantum supermap, and
reiterates the sense in which each operation is applied
once and only once, even in the case where the order
of application is placed in a superposition. This more-
over excludes, for instance, situations where a coherent
control is used to control which operations are applied
(rather than their order), as considered, for example, in
Refs. [66–68,81]—scenarios that indeed do not correspond
to quantum supermaps.

C. Characterization

The description of QC-QCs above allows us now to
obtain the following characterization of their process
matrices.

Proposition 7 (Characterization of QC-QCs): The pro-
cess matrix W ∈ L(HPAIO

N F) of a quantum circuit with
quantum control of causal order is such that there exist

positive semidefinite matrices W(Kn−1,kn) ∈ L(HPAIO
Kn−1

AI
kn ),

for all strict subsets Kn−1 of N and all kn ∈ N \Kn−1,
satisfying

∑

k1∈N
TrAI

k1
W(∅,k1) = 1P,

∀ ∅ � Kn � N ,
∑

kn+1∈N\Kn

TrAI
kn+1

W(Kn,kn+1)

=
∑

kn∈Kn

W(Kn\kn,kn) ⊗ 1AO
kn ,

and TrF W =
∑

kN ∈N
W(N\kN ,kN ) ⊗ 1

AO
kN . (63)

Conversely, any Hermitian matrix W ∈ L(HPAIO
N F) such

that there exist positive semidefinite matrices W(Kn−1,kn) ∈

L(HPAIO
Kn−1

AI
kn ) for all Kn−1 � N and kn ∈ N \Kn−1 satis-

fying Eq. (63) is the process matrix of a quantum circuit
with quantum control of causal order.

The full proof is given in Appendix B 3, and below we
simply outline the proof approach.

The necessary condition is obtained by taking W(Kn−1,kn)

:= Trαn |w(Kn−1,kn)〉〈w(Kn−1,kn)|, with |w(Kn−1,kn)〉 defined in
Eq. (55). The constraints then follow readily from the form
of Eq. (61) and the TP conditions Eqs. (57)–(59).

To prove the sufficient condition, we once more show
how to obtain an explicit construction of a QC-QC for any
W with such a decomposition; i.e., we show how to obtain
the operators V→k1

∅,∅ , V→kn+1
Kn−1,kn

, and V→F
N\kN ,kN

satisfying the
TP conditions needed to construct the circuit. As for the
other classes of circuits we have considered, this construc-
tion is not unique and different QC-QCs may be described
by the same process matrix.

Finally, one can again verify that the constraints of Eqs.
(63) indeed imply that W satisfies the validity constraints
for a process matrix (cf. Appendix A 2).

As one may expect, QC-CCs are a (strict) subset of
QC-QCs. One way to see this is from the character-
izations of the corresponding classes: given a process
matrix W for a QC-CC with a decomposition in terms
of positive semidefinite matrices W(k1,...,kn) as in Proposi-
tion 5, it is easily checked that the matrices W(Kn−1,kn) :=∑

(k1,...,kn−1):{k1,...,kn−1}=Kn−1
W(k1,...,kn−1,kn) satisfy the con-

straints of Proposition 7, and thus W is also the process
matrix for a QC-QC. The fact QC-QCs are a strictly larger
class of circuits (for N ≥ 2) follows from the examples
presented in the following subsection.

One way to explicitly recover QC-CCs from QC-QCs
is by projecting the control system onto the “classical”
basis [[Kn−1, kn]]Cn := |Kn−1, kn〉〈Kn−1, kn|Cn prior to each
time slot [cf. Eq. (37)]. This corresponds to the case where
the control system of a QC-QC is decohered, and any
coherence between the different causal orders is destroyed.
Although this leads to circuits with an effectively classical
control system recording only (Kn−1, kn) rather than the
full order, such a control is already sufficient to describe
fully the class of QC-CCs. Indeed, the full order of oper-
ations can always be recorded in an ancillary system and
used to further control the internal operations. We could
thus have also defined QC-CCs as using the classical con-
trol systems [[Kn−1, kn]]C(′)n and would have obtained the
same class of process matrices.

One can similarly use ancillary systems in QC-QCs to
coherently control the order of operations based on the
full order of previous operations (as is indeed done in the
“quantum N -switch” described in Appendix D 1). How-
ever, in the case of a quantum control, storing only the
pair (Kn−1, kn) allows the order of the operations in Kn−1
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to be forgotten, creating interference between the differ-
ent causal orders and leading (in general, for N ≥ 3) to a
larger class of circuits than if control systems of the form
|(k1, . . . , kn)〉C(′)n were used.

Finally, we note that QC-QCs can also be defined for the
case of process matrices with trivial global past and future
Hilbert spaces. For this case, corresponding to the origi-
nal formulation of process matrices, we give a simplified
formulation of the constraints of Proposition 7 in
Appendix A 3.

D. Examples

1. The “quantum switch”

The canonical example of a causally indefinite QC-QC
is the “quantum switch” [7]. It can be seen as a gen-
eralization of the classical switch, which we presented
as a QC-CC in Sec. IV C, to the case where the qubit
system provided in HPc in the global past is used to
control coherently, rather than classically, the order in
which N = 2 external operations A1 and A2 are applied
to the dt-dimensional target system, initially provided in
HPt . Adopting the same notation employed in Sec. IV C
(notably, for the global past HP = HPt ⊗ HPc and future
HF = HFt ⊗ HFc), the circuit begins by coherently send-
ing (via identity channels) the target system to A1 then
A2 when the “control qubit” provided in HPc is in the
state |1〉, and vice versa when it is |2〉 (cf. the possible
implementation shown in Fig. 11).

It is important to note here that, while the system in HPc

(and subsequently recovered in HFc) is generally referred
to in the literature as the “control qubit,” it is distinct from
what we call the control system in the Hilbert spaces HC(′)n

in the description of a QC-QC. Instead, the information
in HPc is propagated through the circuit in the QC-QC’s
control system and used to control the internal and external
operations.

To see that the quantum switch can be described as a
QC-QC, we can take [cf. Eq. (32) for the classical switch]

|V→k1
∅,∅ 〉〉 = |1〉〉PtAI

k1 ⊗ |k1〉Pc ,

|V→k2
∅,k1

〉〉 = |1〉〉AO
k1

AI
k2 ,

|V→F
{k1},k2

〉〉 = |1〉〉AO
k2

Ft ⊗ |k1〉Fc .

(64)

The corresponding operations can be interpreted intu-
itively: V→k1

∅,∅ is an identity channel sending the initial
target system in HPt to the input space of Ak1 when the
state in HPc is |k1〉; V→k2

∅,k1
is an identity channel sending the

output of Ak1 to the input of Ak2 ; and V→F
{k1},k2

sends the out-
put of Ak2 to the global future, while recording coherently
|k1〉 in HFc , thereby completing the transmission of the
control qubit initially provided in HPc (and whose state is

transferred via the enlarged operations Ṽ1 and Ṽ2, as these
update the control systems to |∅, k1〉C1 and |{k1}, k2〉C2). It
is easy to verify that these operators indeed satisfy the TP
constraints of Eqs. (57)–(59).

The process matrix describing the quantum switch
defined by the operations (64), according to Proposition
6, is thus

WQS = |wQS〉〈wQS| with

|wQS〉 := |1〉Pc |1〉〉PtAI
1 |1〉〉AO

1 AI
2 |1〉〉AO

2 Ft |1〉Fc

+ |2〉Pc |1〉〉PtAI
2 |1〉〉AO

2 AI
1 |1〉〉AO

1 Ft |2〉Fc

∈ HPcPtAIO
1 AIO

2 FtFc ,

(65)

where the tensor products are implicit. We see clearly that
we have a coherent superposition of terms corresponding
to different causal orders, in contrast to the incoherent mix-
ture in the process matrix WCS of the classical switch in Eq.
(33). Indeed, one recovers WCS by projecting the systems
in HPc and/or HFc onto the basis {|1〉 , |2〉} (or, similarly,
by decohering the control system on the QC-QC; cf. the
discussion at the end of Sec. V C). Note also that one can
readily check that WQS indeed satisfies the characteriza-
tion of Proposition 7, with W(∅,k1) = |V→k1

∅,∅ 〉〉〈〈V→k1
∅,∅ | and

W({k1},k2) = |V→k1
∅,∅ 〉〉〈〈V→k1

∅,∅ | ⊗ |V→k2
∅,k1

〉〉〈〈V→k2
∅,k1

|.
The form of Eq. (65) can be interpreted intu-

itively in a similar way to the individual opera-
tions in Eq. (64) discussed above. When the con-
trol qubit in the global past is prepared in the state
|1〉Pc , the induced “conditional” process vector for the
remaining systems is precisely |w1

QS〉 = |1〉Pc ∗ |wQS〉 =
|1〉〉PtAI

1 |1〉〉AO
1 AI

2 |1〉〉AO
2 Ft |1〉Fc , corresponding to identity

channels taking the target system from Pt to A1, then to A2,
and finally to Ft (while Fc receives the untouched “con-
trol” qubit |1〉Fc). Likewise, for the initial preparation of
|2〉Pc , one obtains the conditional process vector |w2

QS〉 =
|2〉Pc ∗ |wQS〉 describing identity channels first to A2, then
A1. More interestingly, when one prepares a superposition
|ϕc〉Pc = α |1〉Pc + β |2〉Pc , the conditional process vector
is |wϕc

QS〉 = α |w1
QS〉 + β |w2

QS〉, corresponding to a superpo-
sition of the two causal orders. Of particular interest is the
case of an equal superposition with α = β = 1√

2
, and when

the target system in HPt is a qubit prepared in some state
|ψt〉Pt . Then, the conditional process vector (now with a
trivial global past) is given by

|w+,ψt
QS 〉 := 1√

2

(
|ψt〉AI

1 |1〉〉AO
1 AI

2 |1〉〉AO
2 Ft |1〉Fc

+ |ψt〉AI
2 |1〉〉AO

2 AI
1 |1〉〉AO

1 Ft |2〉Fc
)

∈ HAIO
1 AIO

2 FtFc ,

(66)
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with corresponding conditional process matrix W+,ψt
QS =

|w+,ψt
QS 〉〈w+,ψt

QS |, which is precisely the process matrix for the
quantum switch given originally in Refs. [9,11].

Since the process matrix of the quantum switch, as
written above, is rank-1 (hence it cannot be further decom-
posed as a nontrivial mixture of different process matrices)
and since |w+,ψt

QS 〉 is clearly not compatible with a given,
fixed causal order between A1 and A2, it follows that
the quantum switch is causally nonseparable [9,11]. Note,
however, that if we trace out the system in HFc one is left
only with an incoherent mixture of terms corresponding to
the two different causal orders. Indeed, one has TrFc WQS =
TrFc WCS, so one essentially recovers the classical switch
and all coherent control is lost. On the other hand, if one
traces out only the target system sent to the global future
in HFt , one still has a nonclassical switch with the coher-
ence between the different causal orders maintained by the
system in HFc [11].

The natural generalization of the quantum switch to a
superposition of the N ! possible orders of N external oper-
ations [12–14] can also be described as a QC-QC, as we
show in Appendix D 1. One key difference worth mention-
ing in the general case is that one needs to use the ancillary
systems Hαn to record the full causal order, as the pair
(Kn−1, kn) stored by the QC-QC’s control systems does not
keep track of the full permutation to be applied. (For the
N = 2 case described above, this was not an issue as Kn−1
never contained more than one element.)

2. A QC-QC with both dynamical and coherently
controlled causal order

The quantum switch (and rather straightforward gener-
alizations with more operations) has, thus far, been the
only causally nonseparable process for which a physical
implementation is known. Our general description pro-
vides a framework allowing us to find QC-QCs beyond
this example. As an illustration, we present here a three-
operation QC-QC which differs qualitatively from the
quantum switch in several key ways. Firstly, unlike the
standard “3-switch” (cf. Appendix D 1), it allows for
the causal order to really be established “dynamically,”
depending (coherently) on the output of external oper-
ations (and not only a subsystem of HP). Secondly,
it exploits the fact the control system only stores the
unordered set of already applied operations in order to
create interference between terms corresponding to differ-
ent causal histories. And lastly, its process matrix remains
causally nonseparable, with no well-defined “final” opera-
tion, despite having only a trivial global future HF .

This type of circuit fits our general description of QC-
QCs as follows (cf. also the possible implementation dis-
cussed in the following subsection and Fig. 12). Consider a
QC-QC with N = 3 external operations, two-dimensional
input and output spaces HAI

k , HAO
k (i.e., a qubit “target”

system, with computational basis {|0〉 , |1〉}), and with triv-
ial global past and future HP, HF (i.e., dP = dF = 1) [82],
defined by the operators

V→k1
∅,∅ = 1√

3
|ψ〉AI

k1 ,

V→k2
∅,k1

=
{

|0〉AI
k2 〈0|AO

k1 if k2 = k1 + 1 (mod 3)

|1〉AI
k2 〈1|AO

k1 if k2 = k1 + 2 (mod 3)
,

V→k3
{k1},k2

=
{

|0〉AI
k3 |0〉α3 〈0|AO

k2 + |1〉AI
k3 |1〉α3 〈1|AO

k2 if k2 = k1 + 1 (mod 3)

|0〉AI
k3 |1〉α3 〈0|AO

k2 + |1〉AI
k3 |0〉α3 〈1|AO

k2 if k2 = k1 + 2 (mod 3)
,

V→F
{k1,k2},k3

= 1
AO

k3
α3→α

(1)
F ⊗ |k3〉α

(2)
F ,

(67)

where we introduce an ancillary two-dimensional system
α3 (but no α1,α2), a four-dimensional system α

(1)
F , and

a three-dimensional system α
(2)
F , defining αF := α

(1)
F α

(2)
F

(with corresponding Hilbert spaces HαF := Hα
(1)
F α

(2)
F ), and

|ψ〉 is an arbitrary qubit state. One can verify that the Choi
vectors of these operators indeed satisfy the TP constraints
of Eqs. (57)–(59), as required.

These operations can be interpreted as follows. V→k1
∅,∅

sends the state |ψ〉 to Ak1 (and to each choice of k1 with

equal weight, in a superposition). V→k2
∅,k1

sends the output
of Ak1 to one of the remaining operations Ak2 (for k2 �=
k1) dynamically and coherently depending on the state of

said output: the component in the state |0〉AO
k1 is sent to

Ak1+1 (mod 3), while the component in the state |1〉AO
k1 is

sent to Ak1+2 (mod 3). V→k3
{k1},k2

then sends the output of Ak2

to the remaining operation Ak3 and attaches an ancillary
state |0〉α3 if k2 = k1 + 1 (mod 3) or |1〉α3 if k2 = k1 + 2
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(mod 3), that is then flipped if AI
k3

is in the state |1〉AI
k3 (i.e.,

a controlled NOT gate is applied) [83]. Finally, V→F
{k1,k2},k3

sends the output of Ak3 along with the system in Hα3 to
α
(1)
F , while |k3〉 is sent to α(2)F .
The (tripartite) process matrix of this QC-QC, according

to Proposition 6, is

W = TrαF |w〉 〈w|
with |w〉 =

∑

(k1,k2,k3)

|V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |V→k3

{k1},k2
〉〉

∗ |V→F
{k1,k2},k3

〉〉 .

(68)

Using the technique of causal witnesses [10,11,84], one
can check, for any fixed but arbitrary state |ψ〉, that this
process matrix is causally nonseparable (see Appendix
D 2). It is interesting also to note that although tracing out
αF (or even just α(2)F ) turns W into an (incoherent) sum of
three matrices (one for each value of k3), these three matri-
ces are not themselves valid process matrices: W is not
simply a convex mixture of three tripartite process matri-
ces, each compatible with one operation Ak3 being applied
last [85] (as is, for instance, the “3-switch,” cf. Appendix
D 1, after tracing out F). This is due to the fact that the
causal order here is established dynamically.

Our general description of the QC-QC class thus
allowed us to present here a type of example that combines
both a coherent and dynamical control of causal order in
a way not done by the quantum switch or its direct gen-
eralizations. In Appendix D 2, we present a slightly more
general family of such processes that may be of further
interest and provides further insight into the form of the
particular example presented here. We hence see that QC-
QCs provide an interesting class of quantum supermaps
with concrete interpretations that go beyond the well-
studied quantum switch and its generalizations. Further
study of this class, and of other types of QC-QCs, may
uncover further interesting examples, and we believe this
to be an important direction for future research.

E. Possible implementations

The theoretical description of QC-QCs above raises of
course the question of their practical realization. Here we
present some basic ideas, which show that such implemen-
tations are indeed possible.

The problem at hand is to find some physical systems
on which the desired operations can be implemented. In
particular, one needs to find suitable systems to encode the
control states of the form [86] |Kn−1, kn〉Cn that can be used
to control both the external operations Ãkn (acting on some
other, target systems) as in Eq. (46), as well as the internal
circuit operations Ṽ→kn+1

Kn−1,kn
, and be updated by the Ṽn as in

Eqs. (48)–(50).

One natural choice is to let the external operations be
implemented at N different spatial locations, and to let the
target systems be carried by a physical entity (e.g., a pho-
ton) that passes through them; which operation is actually
realized on the target carrier then depends on its path. This
idea leads one to consider control states of the refined form
|Kn−1, kn〉Cn = |Kn−1|kn〉Cpast ops.

n ⊗ |kn〉Cpath
n , where |kn〉Cpath

n

denotes the path kn of the carrier that undergoes operation
Ak at time tn, and |Kn−1|kn〉Cpast ops.

n is the state of some com-
plementary control system that records the required infor-
mation about Kn−1 (which, in general, may be encoded dif-
ferently for different kn) [87]. This complementary system,
just like potential ancillary systems, could be encoded,
e.g., on some different degrees of freedom of the physical
carrier, other than the path and the target system.

In such an implementation, the internal circuit opera-
tions Ṽn need to route the physical carrier while performing
the operations V→kn+1

Kn−1,kn
, i.e., to act jointly on the path and

internal degrees of freedom of the carrier, so as to recover
Eqs. (48)–(50). As these internal circuit operations are, in
general, different for each value of n = 1, . . . , N + 1, one
possibility for their implementation is to have a circuit with
fast-switching elements. Another possibility is to introduce
yet an additional system that acts as a “timer” (of dimen-
sion at most N + 1), to be “incremented” at every time
slot tn, and which also controls (in an essentially classi-
cal manner) the application of the correct internal circuit
operation.

In what follows, we outline more concretely how such
generic approaches to implementing QC-QCs can be
applied to the two examples discussed above [i.e., the
quantum switch, and the QC-QC defined by Eq. (67)] using
photons as the physical carriers.

Let us first note, however, that the same ideas can
of course be used for implementing QC-CCs, as par-
ticular cases of QC-QCs. Indeed, this would actually
be simpler experimentally as the control systems need
not be kept coherent. One then has refined classi-
cal control states of the form [[(k1, . . . , kn−1, kn)]]Cn =
[[(k1, . . . , kn−1)]]Cpast ops.

n ⊗ [[kn]]Cpath
n , and the physical car-

rier can be routed to the correct external operation at each
time slot using only classical routers. Note, nevertheless,
that although all QC-CCs are causally separable it remains
an open problem whether all causally separable process
matrices correspond to a QC-CC or, more generally, are
physically realizable [9,10].

1. The quantum switch

The generic implementation procedure described above
can be applied to the example of the quantum switch pre-
sented in Sec. V D1. One possible such implementation
using photonic particle carriers is shown in Fig. 11, where
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fast-switching removable mirrors are used to implement
the different internal operations.

Interestingly, this proposal differs from previous pho-
tonic implementations of the quantum switch [36–42], and
highlights previously overlooked redundancies in some
such implementations. Indeed, compared with the imple-
mentation initially proposed in Ref. [13] and realized
experimentally in Refs. [39,40], this proposal exploits
fewer degrees of freedom of the photons (at the price of
using such fast-switching optical elements in the circuit):
just the path as the control, and some internal degree of
freedom of the photon (e.g., polarization or orbital angu-
lar momentum) as the target systems. In contrast, in Refs.
[13,39,40], the control system is copied (coherently) from
the polarization to the path degrees of freedom, induc-
ing a redundancy in the implementation [88]. Similarly,
in the implementations of Refs. [36,37,42], four spatial
degrees of freedom are exploited, rather than the two in
the implementation we propose here. As a result, the inter-
nal operations can be ensured to be applied to photons in
the same spatial modes (although at different times), ensur-
ing that the applications of each Ak at different time slots
are truly indistinguishable.

As suggested above, one could avoid using fast-
switching elements by introducing an explicit “timer” sys-
tem. Here, for instance, if the target system is encoded
in some other internal degree of freedom of the photon,
then polarization could be used as such a “timer” by ini-
tially preparing it in the state |V〉, replacing the removable
mirrors in the setup of Fig. 11 by fixed polarizing beam
splitters (which reflect |V〉 and transmit |H 〉), and adding
wave plates, e.g., at the exit ports of A1 and A2 that
switch the polarization, |V〉 ↔ |H 〉 (so as to “increment”
the timer). We then simply have a passive optical circuit,
which uses the path, polarization and some other degree

FIG. 11. A possible photonic implementation of the quantum
switch, in which the control qubit gets encoded in the path degree
of freedom, and the target system in an internal degree of free-
dom of the photon. The dashed optical elements ( ) are reflecting
mirrors, which are momentarily removed between the time slots
t1 and t2 (i.e., between the applications of the operations A1 and
A2, in either order). Example operations in the global past P (the
preparation of an initial target state |ψt〉Pt and the control qubit
in a superposition state |ϕc〉Pc , see Sec. V D1) and future F (the
measurement of the final control system in Fc in a superposition
basis) are shown in gray for clarity.

of freedom of the photon as the target system—as in Refs.
[13,39,40], although in a structurally different manner.

2. QC-QC with dynamical and coherently controlled
causal order

The implementation procedure we outline can also be
used to give a concrete proposal for the implementation
of the QC-QC presented in Sec. V D2 and defined by
Eq. (67). In Fig. 12 we depict a possible such photonic
implementation, in which a two-dimensional target sys-
tem (initially in the state |ψ〉t, in the generic target space
Ht) is encoded in some internal degree of freedom of a
photon (e.g., its orbital angular momentum). The control
systems C1 and C3 are simply the path of the photon, such

that |∅, k1〉C1 = |k1〉Cpath
1 and |{k1, k2}, k3〉C3 = |k3〉Cpath

3 ; to
define the control system C2 on the other hand, we need
to make use of some further two-dimensional degree of
freedom α of the photon, which we take to be the polar-
ization (with basis states |0〉α = |V〉 , |1〉α = |H 〉), such
that |{k1}, k2〉C2 = |0〉α ⊗ |k2〉Cpath

2 if k2 = k1 + 1 (mod 3),
|{k1}, k2〉C2 = |1〉α ⊗ |k2〉Cpath

2 if k2 = k1 + 2 (mod 3). The
ancillary system α3 is also taken to be the polarization.

The “COPY” and “CNOT” gates implement the opera-
tions VCOPY = ∑

i=0,1 |i〉t |i〉α 〈i|t and VCNOT = ∑
i,j =0,1

|i〉t |i ⊕ j 〉α 〈i|t 〈j |α (with ⊕ denoting addition modulo 2),
respectively. (Note that VCOPY could be realized by prepar-
ing the polarization in the state |0〉α and applying VCNOT.)
As can be checked, with the choice of encoding above,
the circuit shown in Fig. 12 indeed realizes the internal
operations Ṽn obtained from Eq. (67), via Eqs. (48)–(50).
It can clearly be seen in this circuit how the causal order
is established dynamically: which operation Ak2 the pho-
ton is routed to after undergoing the first operation Ak1
depends on its polarization (with |V〉 being reflected, |H 〉
being transmitted at the polarizing beam splitters)—which
the output of Ak1 is “copied” onto (in the {|0〉 , |1〉} basis)
by VCOPY. It can also be seen (by following the trajectories
taken by each of the |V〉 and |H 〉 components, which are
untouched between the COPY and CNOT gates) how the pro-
posed configuration of the beam splitters guarantees that
each operation is applied once and only once on each path.

While the realization of this QC-QC in the lab would
undoubtedly be a major challenge, it would represent a
major step towards showing that more general QC-QCs
exploiting dynamical, coherent control of causal order can
be realized and, eventually, exploited in the laboratory, and
we challenge experimental groups to the task.

F. Correlations generated by quantum circuits with
quantum control of causal order

One of the initial motivations in the study of processes
with indefinite causal order was the possibility that they
might allow one to generate correlations incompatible
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FIG. 12. A possible proposal for the realization of our QC-
QC defined by Eq. (67) in a photonic circuit. The target system
on which the external operations Ak act is an internal degree of
freedom of a photon, while the control and ancillary systems
are encoded in the path and polarization degrees of freedom, as
described in the main text. The COPY gate, as part of Ṽ2, copies
the internal state onto the polarization state, which contributes to
the control system C2. The polarizing beam splitters (PBS) route
the photon based on its polarization. The CNOT gates finally act
jointly on the internal and polarization degrees of freedom, so as
to realize the desired operation Ṽ3, as prescribed by Eqs. (49) and
(67). Note that the circuit is depicted here in an “unfolded” form,
for clarity. In fact, each operation Ak should be realized once and
only once, and the boxes depicted here thus identified as a single
operation delocalized in time [89]. Correspondingly, each phys-
ical “box” Ak should be built only once: the circuit connections
should “loop back” between time slots tn and tn+1, from the out-
put of one box to the input of some other boxes—e.g., using fast
switching elements (or a “timer” system) to realize the different
operations Ṽn as in the implementation of the quantum switch in
Fig. 11.

with any well-defined causal structure, thereby provid-
ing a particularly strong, model independent proof of the
nonclassical causal structure of the world [5]. This, in par-
ticular, was a question the process matrix framework was
originally conceived to tackle [5]. In this approach, the
external operations Ak are interpreted as being applied by
“parties” Ak in closed, locally causal, laboratories, and the
process matrix W as describing the physical process by
which these parties interact, possibly in a causally indefi-
nite manner. Since we are interested in the relation between
the parties—and, in particular, the correlations they can
observe—we take both the global past and future to be
trivial (i.e., dP = dF = 1). Each party Ak can then apply
an instrument, potentially conditioned on some setting (a
classical “input”) xk, producing outcomes (the “outputs”)
ak and hence with Choi matrices denoted {Aak |xk }ak .

The correlation between all N parties’ inputs and out-
puts is represented by the conditional probability distri-
bution P(a1, . . . , aN |x1, . . . , xN ), which can be calculated,
within the process matrix formalism [see, in particular, Eq.
(13) and Ref. [59] in Sec. II B], from the process matrix
W and the Choi matrices of the parties’ instruments by the

so-called “generalized Born rule” [5,11]:

P(a1, . . . , aN |x1, . . . , xN ) = (Aa1|x1 ⊗ · · · ⊗ AaN |xN ) ∗ W

= Tr
[
(Aa1|x1 ⊗ · · · ⊗ AaN |xN )

TW
]
.

(69)

Of particular interest is whether correlations obtained from
a process matrix are “causal”—i.e., can be explained by
referring to a well-defined causal structure (allowing for
probabilistic causal structures and for dynamical causal
orders)—or not [5,9,46]. More specifically, in the multi-
partite case, causal correlations can be characterized [9]
or directly defined [46] in a recursive manner, as con-
vex combinations of correlations compatible with a given
party acting first, and such that whatever that party does,
the conditional correlation shared by the remaining ones
is again causal (with a single-partite correlation being
trivially causal). It was shown that the set of causal cor-
relations (for a given scenario, i.e., a given number of
parties, each with a given number of possible inputs, and a
given number of possible outputs for each input) forms a
convex polytope [9,46,47], delimited by so-called “causal
inequalities” [5].

The correlations generated by causally separable pro-
cesses are necessarily causal [5,9,46,47]. However, by
only imposing a quantum description for the parties’
local operations, and without making any assumption on
the global causal structure, the general process matrix
formalism allows in principle for (causally nonsepara-
ble) processes that generate noncausal correlations (and
thus violate causal inequalities) [5]. Nevertheless, not all
causally nonseparable processes can generate noncausal
correlations [9,11,90]. In fact, it is an open question of
considerable interest whether any physically conceivable
process, that could be built in the lab, can indeed violate a
causal inequality.

The class of quantum circuits considered here does
not, unfortunately, allow us to answer this open question.
Indeed, even though QC-QCs may define causally nonsep-
arable processes, in Appendix E we prove the following
result.

Proposition 8 (Causality of QC-QC correlations):
Quantum circuits with quantum control of order can only
generate causal correlations.

Hence, QC-QCs cannot violate causal inequalities. (This
implies, a fortiori, that QC-CCs, or QC-FOs, can also
not violate causal inequalities, although this was already
known; indeed, as we showed in the previous sections,
those classes contain only causally separable processes.)
This generalizes the previous results of Refs. [9,47] for the
quantum switch.
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VI. PROBABILISTIC QUANTUM CIRCUITS

So far, we have studied quantum circuits that, although
taking probabilistic external operations as inputs, are by
themselves deterministic; that is, they arise from the com-
position of deterministic internal operations and can be
realized without postselection. In general, however, one
can also consider circuits consisting of probabilistic oper-
ations that can produce several classical outcomes. In
this section, we characterize the probabilistic quantum
supermaps obtained when allowing for probabilistic cir-
cuit operations in the classes that we introduced above.
To that end, we replace each internal CPTP map in the
above descriptions by a set of (trace nonincreasing) CP
maps (each corresponding to a given outcome) that sum up
to a CPTP map [91]—i.e., by a quantum instrument [70].

Such combinations of CP maps define “probabilistic
quantum circuits” that can be represented by a set of
“probabilistic process matrices,” and that can be realized
by postselecting on the corresponding classical outcomes
(where the probability of postselection may depend on
the external operations plugged into the circuit). Techni-
cally speaking, such probabilistic quantum circuits define
so-called “quantum superinstruments” [62].

In what follows, we characterize the probabilistic quan-
tum circuits thus obtained—and their elements, i.e., the
probabilistic process matrices—for fixed causal order
(Propositions 9 and 10), for operations used in parallel
(Proposition 11), for classical (Propositions 12 and 13)
and quantum (Propositions 14 and 15) control of causal
order, and even for general quantum superinstruments
(Proposition 16).

We note that results similar to those developed in this
section have recently been presented in Ref. [92], where
Bavaresco et al. define so-called “two-copy parallel,”
“two-copy sequential,” “two-copy general” and “two-
copy separable” testers. These correspond to the particular
case with N = 2 and trivial HP and HF of the classes
characterized in our Propositions 11, 10, 16 and 15 respec-
tively. Here, we derive these characterizations (as well
as that of an additional class in Proposition 13) for the
general N -operation case using our constructive approach.
Our results notably imply that the “two-copy separable”
testers (in the terminology of Ref. [92]) can be realized as
probabilistic circuits with quantum control of causal order,
providing a physical interpretation for that class.

A. Probabilistic quantum circuits with fixed causal
order

Let us start with the probabilistic counterpart of QC-
FOs. This case has previously been studied in the literature,
and equivalent or closely related concepts have been intro-
duced under the names of probabilistic quantum network
[2,93], generalized instrument [2,93], measuring strategy
[65], quantum tester [2,49,93], and process POVM [94].

A given realization (for a given set of classi-
cal outcomes) of a probabilistic quantum circuit with
the fixed causal order (A1, . . . ,AN ) consists of inter-
nal CP maps M[r1]

1 : L(HP) → L(HAI
1α1), M[rn+1]

n+1 :

L(HAO
n αn) → L(HAI

n+1αn+1) for 1 ≤ n ≤ N − 1, and
M[rN+1]

N+1 : L(HAO
NαN ) → L(HF), which are composed as

in Fig. 4, with r1, . . . , rN+1 denoting the classical out-
comes, and with each of the CP maps being part of a quan-
tum instrument—that is, with their sum over the classical
outcomes yielding a CPTP map.

To simplify the description, we note that the classical
outcomes can always be encoded onto suitable orthogonal
states of the ancillary systems, and the postselection can be
performed at the end as part of the last internal operation
(before F). This allows us to describe any such probabilis-
tic circuit without loss of generality as a circuit in which all
internal operations are still deterministic, except for the last
one, which is a CP map M[r]

N+1, belonging to an instrument
{M[r]

N+1}r with classical outcomes r [2].
The TP conditions satisfied by the internal operations

are thus given by Eqs. (14) and (15) and by the TP con-
dition for the final instrument, which is simply obtained
by replacing MN+1 by

∑
r M [r]

N+1 in Eq. (16) (see Appendix
B 2). We formally call any such process with circuit oper-
ations M1, . . . ,MN and {M[r]

N+1}r that are composed as
in Fig. 4 and that satisfy these trace-preserving condi-
tions, a probabilistic quantum circuit with fixed causal
order (pQC-FO). Similarly to Proposition 1, we obtain the
following process matrix description of pQC-FOs.

Proposition 9 (Process matrix description of pQC–
FOs): The probabilistic process matrix describing the
specific realization of such a pQC-FO, corresponding to
the classical outcome r, is

W[r] = M1 ∗ M2 ∗ · · · ∗ MN ∗ M [r]
N+1 ∈ L(HPAIO

N F).
(70)

The entire pQC-FO is described by the set {W[r]}r of
all such probabilistic process matrices, for all classical
outcomes r.

The corresponding characterization follows directly
from that of QC-FOs given by Proposition 2, and is proven
in Appendix B 1. An equivalent result has also been proven
in Ref. [2] (Theorem 4).

Proposition 10 (Characterization of pQC-FOs): A
probabilistic quantum circuit with a fixed causal order
is represented by a set of positive semidefinite matrices
{W[r] ∈ L(HPAIO

N F)}r, whose sum W := ∑
r W[r] is the pro-

cess matrix of a quantum circuit with the same fixed causal
order (as characterized in Proposition 2).

Conversely, any set of positive semidefinite matrices
{W[r] ∈ L(HPAIO

N F)}r whose sum is the process matrix of
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a QC-FO represents a probabilistic quantum circuit with
the same fixed causal order.

That is, for a probabilistic quantum circuit with the fixed
causal order (A1, . . . ,AN ), the reduced matrices W(n) of
W := ∑

r W[r], as defined in Proposition 2, satisfy the con-
straints of Eq. (19). A given matrix W[r] ∈ L(HPAIO

N F) is
then a probabilistic process matrix describing a particular
realization of a pQC-FO if and only if it is an element of a
pQC-FO {W[r]}r, characterized as in Proposition 10 above.

As a simple example of a pQC-FO, we revisit the
first example from Sec. III C, where the two external
operations are applied one after the other. Let us add
a measurement in the computational basis after the sec-
ond external operation, with the postmeasurement state
being sent to the global future. That is, the identity
channel from HAO

2 to HF gets replaced by a quan-
tum instrument {M[i]

3 }i, with M[i]
3 : L(HAO

2 ) → L(HF)

given by M[i]
3 (ρ) = Tr

[
ρ |i〉〈i|AO

2
] |i〉〈i|F , with Choi matri-

ces M [i]
3 = |i〉〈i|AO

2 ⊗ |i〉〈i|F and where {|i〉AO
2 }i and {|i〉F}i

are the computational bases (in one-to-one correspon-
dence) of HAO

2 and HF . According to Proposition 9, the
probabilistic process matrix that describes the specific real-
ization of such a pQC-FO, corresponding to a particular
measurement outcome i, is

W[i]
P→A1→A2→F = |1〉〉〈〈1|PAI

1 ⊗ |1〉〉〈〈1|AO
1 AI

2

⊗ |i〉〈i|AO
2 ⊗ |i〉〈i|F . (71)

The entire pQC-FO is described by the set
{W[i]

P→A1→A2→F}i, and it is straightforward to check that it
satisfies the characterization of Proposition 10.

The particular case with operations used in parallel is
discussed in Appendix C. There, we outline a proof of
the following characterization of probabilistic quantum
circuits with operations used in parallel (pQC-PARs):

Proposition 11 (Characterization of pQC-PARs): A
probabilistic quantum circuit with operations used in par-
allel is represented by a set of positive semidefinite matri-
ces {W[r] ∈ L(HPAIO

N F)}r, whose sum W := ∑
r W[r] is the

process matrix of a quantum circuit with operations used
in parallel (as characterized in Proposition 3).

Conversely, any set of positive semidefinite matrices
{W[r] ∈ L(HPAIO

N F)}r whose sum is the process matrix of
a QC-PAR represents a probabilistic quantum circuit with
operations used in parallel.

B. Probabilistic quantum circuits with classical control
of causal order

To obtain the probabilistic counterpart of QC-CCs, the
deterministic objects that need to be replaced by proba-
bilistic ones are the CPTP maps obtained by summing

up the elements of the circuit instruments {M→k1
∅ }k1∈N

etc. Equivalently, one replaces these circuit instruments
by more “fine-grained” instruments that admit addi-
tional classical outcomes. A particular realization of
such a circuit thus starts with a CP map M→k1[r1]

∅ :

L(HP) → L(HAI
k1
α1), which is part of a quantum instru-

ment {M→k1[r1]
∅ }k1∈N ;r1 with a classical output value k1

that determines the first external operation to be applied,
as well as an additional classical output r1. Similarly,
the subsequent circuit maps are given by M→kn+1[rn+1]

(k1,...,kn)
:

L(HAO
kn
αn) → L(HAI

kn+1
αn+1

), and belong to instruments
{M→kn+1[rn+1]

(k1,...,kn)
}kn+1∈N\{k1,...,kn};rn+1 [95].

Similarly to the QC-FO case above, the fine-grained
outcomes can be encoded in the ancillary systems of the
circuit, and the postselection can be deferred to the last
map. This gives rise to a circuit which is determinis-
tic except for the last internal operation before F—this
gets replaced by CP maps M→F [r]

(k1,...,kN )
, which belong to

instruments {M→F [r]
(k1,...,kN )

}r. The TP conditions satisfied by
the internal operations are thus given by Eqs. (23) and
(24), together with the TP conditions for the last internal
operation, which are obtained by replacing M→F

(k1,...,kN )
by

∑
r M→F [r]

(k1,...,kN )
in Eq. (25) (see Appendix B 2).

We formally call any process of the kind described, with
internal circuit operations {M→k1

∅ }k1 , {M→kn+1
(k1,...,kn)

}kn+1 , and

{M→F [r]
(k1,...,kN )

}r that are composed as in Fig. 7 and that satisfy
these trace-preserving conditions, a probabilistic quantum
circuit with classical control of causal order (pQC-CC).
The process matrix description of pQC-CCs is obtained
similarly to Proposition 4.

Proposition 12 (Process matrix description of
pQC-CCs): The probabilistic process matrix describing
the specific realization of such a pQC-CC, corresponding
to the classical outcome r, is given by

W[r] =
∑

(k1,...,kN )

W[r]
(k1,...,kN ,F), (72)

with

W[r]
(k1,...,kN ,F) := M→k1

∅ ∗ M→k2
(k1)

∗ M→k3
(k1,k2)

∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ M→F[r]
(k1,...,kN )

. (73)

The entire pQC-CC is described by the set {W[r]}r of
all such probabilistic process matrices, for all classical
outcomes r.
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Probabilistic quantum circuits with classical control of
causal order can then be characterized as follows.

Proposition 13 (Characterization of pQC-CCs): A
probabilistic quantum circuit with classical control of
causal order is represented by a set of positive semidefi-
nite matrices {W[r]}r, where the matrices W[r] ∈ L(HPAIO

N F)

can be decomposed in terms of positive semidefinite

matrices W(k1,...,kn) ∈ L(HPAIO
{k1,...,kn−1}AI

kn ) and W[r]
(k1,...,kN ,F) ∈

L(HPAIO
N F), in such a way that

∀ r, W[r] =
∑

(k1,...,kN )

W[r]
(k1,...,kN ,F), (74)

and such that the matrices W(k1,...,kn) and W(k1,...,kN ,F) :=∑
r W[r]

(k1,...,kN ,F) satisfy Eq. (31) of Proposition 5.
Conversely, any set {W[r]}r of positive semidefinite

matrices with the properties above represents a proba-
bilistic quantum circuit with classical control of causal
order.

The proof extends directly from that of Proposition 5;
see Appendix B 2. We then have that a given matrix W[r] ∈
L(HPAIO

N F) is a probabilistic process matrix describing a
particular realization of a probabilistic QC-CC if and only
if it is an element of a pQC-CC {W[r]}r, characterized as in
Proposition 13 above.

Note that, contrary to the case of pQC-FOs and pQC-
PARs above (Propositions 10 and 11) and to the cases of
pQC-QCs and general quantum superinstruments (pGENs)
discussed below (Propositions 15 and 16), simply requir-
ing that the sum over the classical outcomes should yield
the process matrix of a QC-CC is not sufficient for a
set {W[r]}r to have a realization as a pQC-CC. A coun-
terexample that satisfies this weaker condition, but not the
stronger constraints of Proposition 13, is discussed at the
end of Sec. VI C below (see also Ref. [96] in the proof in
Appendix B 2).

We already encountered an example of a pQC-CC ear-
lier in this paper. The matrices W(k1,...,kN ,F) introduced in
Sec. IV that describe the particular realization of a QC-
CC where the order ends up being (k1, k2, . . . , kN ) are
probabilistic process matrices, and the set of all such
matrices, for all possible orders, constitutes a pQC-CC. It
describes the situation where the additional, fine-grained
outcomes on which one postselects coincide with the out-
comes k1, . . . , kN that determine the order of the external
operations. Formally, the classical outcomes r are taken to
be the ordered sequences (k1, . . . , kN ) of elements in N ,
and the last internal CP maps are given by M→F [r]

(k1,...,kN )
=

δr,(k1,...,kN )M→F
(k1,...,kN )

. According to Proposition 12, the pro-
cess matrix description of the pQC-CC thus obtained is
{W[r=(k1,...,kN )]}(k1,...,kN ), with W[r=(k1,...,kN )] = W(k1,...,kN ,F).

C. Probabilistic quantum circuits with quantum
control of causal order

As we did for the previous classes of circuits, we can
once again use the circuit’s ancillary systems to encode
the classical outcomes (and defer the postselection to the
last operation only), and to purify all internal operations
(so that all circuit operations, except for the last one, have
a single Kraus operator). Without loss of generality, we can
thus describe a probabilistic quantum circuit with quantum
control of causal order as we did for a (deterministic) QC-
QC in Sec. V B, with circuit operations Ṽ1, Ṽn+1 as in Eqs.
(48) and (49), and simply replacing ṼN+1 in Eq. (50) by a
set of operators

Ṽ[r]
N+1 :=

∑

kN

Ṽ→F [r]
N\kN ,kN

⊗ 〈N \kN , kN |C′
N , (75)

each corresponding to the classical outcome r of the circuit.
The first N operations Ṽn are required to satisfy the

TP conditions of Eqs. (57) and (58), as before. For the
final internal circuit instrument, it is now the map � �→∑

r Ṽ[r]
N+1�Ṽ[r]

N+1 (rather than � �→ ṼN+1�ṼN+1) that must
be TP. The corresponding TP condition is simply obtained
(see Appendix B 3) by replacing TrFαF |w(N ,F)〉〈w(N ,F)| by∑

r TrFαF |w[r]
(N ,F)〉〈w[r]

(N ,F)| in Eq. (59), with |w[r]
(N ,F)〉 given

below in Eq. (77). That is, it reads

∑

r

TrFαF |w[r]
(N ,F)〉〈w[r]

(N ,F)|

=
∑

kN ∈N
TrαN |w(N\kN ,kN )〉〈w(N\kN ,kN )| ⊗ 1

AO
kN . (76)

We formally call any process abiding by the above
description, with internal circuit operations Ṽ1, Ṽn+1 and
Ṽ[r]

N+1 given by Eqs. (48), (49), and (75), respectively,
which are composed as in Fig. 10 and which satisfy
the TP conditions of Eqs. (57), (58), and (76), a prob-
abilistic quantum circuit with quantum control of causal
order (pQC-QC). Similarly to Proposition 6, we obtain the
process matrix description of pQC-QCs as follows.

Proposition 14 (Process matrix description of
pQC-QCs): The probabilistic process matrix describing
the particular realization of such a pQC-QC, correspond-
ing to the measurement outcome r, is given by

W[r] = TrαF |w[r]
(N ,F)〉〈w[r]

(N ,F)| with

|w[r]
(N ,F)〉 :=

∑

(k1,...,kN )

|V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |V→k3

{k1},k2
〉〉

∗ · · · ∗ |V→kN
{k1,...,kN−2},kN−1

〉〉 ∗ |V→F [r]
{k1,...,kN−1},kN

〉〉 .
(77)
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The entire pQC-QC is described by the set {W[r]}r of
all such probabilistic process matrices, for all classical
outcomes r.

The following proposition then characterizes proba-
bilistic quantum circuits with quantum control of causal
orders.

Proposition 15 (Characterization of pQC-QCs): A
probabilistic quantum circuit with quantum control of
causal order is represented by a set of positive semidefinite
matrices {W[r] ∈ L(HPAIO

N F)}r, whose sum W := ∑
r W[r]

is the process matrix of a quantum circuit with quantum
control of causal order (as characterized in Proposition
7).

Conversely, any set of positive semidefinite matrices
{W[r] ∈ L(HPAIO

N F)}r whose sum is the process matrix of
a QC-QC represents a probabilistic quantum circuit with
quantum control of causal order.

The proof extends directly from that of Proposition 7;
see Appendix B 3. We then have that a given matrix W[r] ∈
L(HPAIO

N F) is the probabilistic process matrix describing a
particular realization of a pQC-QC if and only if it is an ele-
ment of a pQC-QC {W[r]}r, characterized as in Proposition
15 above.

Similarly to the example that we discussed above for the
QC-CC case, the matrices W(N\kN ,kN ) in Proposition 7 are
probabilistic process matrices that constitute a pQC-QC.
They are realized when the last internal operation ṼN+1
is replaced by an operation that measures the control sys-
tem C′

N (while also transforming the output state of the last
operation and the ancilla). Formally, one takes r ∈ N and
V→F [r]
N\kN ,kN

= δr,kN V→F
N\kN ,kN

in Eq. (75). The pQC-QC thus
obtained is {W[r=kN ]}kN with W[r=kN ] = W(N\kN ,kN ).

As another example, let us once again consider the
quantum switch, with its process matrix description Eq.
(65), and where the control qubit is measured at the end
of the circuit in the basis {|+〉Fc , |−〉Fc}, with |±〉Fc :=
(|1〉Fc ± |2〉Fc)/

√
2. The internal operations that consti-

tute the corresponding probabilistic quantum circuit are (in

their Choi representation) |V→k1
∅,∅ 〉〉 = |k1〉Pc ⊗ |1〉〉PtAI

k1 and

|V→k2
∅,k1

〉〉 = |1〉〉AO
k1

AI
k2 as in Eq. (64), and now |V→F [±]

{k1},k2
〉〉 =

(−1)k2 |1〉〉AO
k2

Ft
/
√

2.
The corresponding probabilistic process matrix descrip-

tion is therefore, according to Proposition 14, {W[+]
QS , W[−]

QS }
with W[±]

QS = |w[±]
QS 〉〈w[±]

QS |, and

|w[±]
QS 〉 = 1√

2

(
|1〉Pc |1〉〉PtAI

1 |1〉〉AO
1 AI

2 |1〉〉AO
2 Ft

± |2〉Pc |1〉〉PtAI
2 |1〉〉AO

2 AI
1 |1〉〉AO

1 Ft
)

. (78)

We then have that W[+]
QS + W[−]

QS = TrFc WQS is indeed the
process matrix of a QC-QC. In fact, it is even the process
matrix of a QC-CC [97], since TrFc WQS = TrFc WCS, with
WCS the process matrix of the classical switch [Eq. (33)].
Nevertheless, {W[+]

QS , W[−]
QS } is not a probabilistic QC-CC. In

order to realize it, the two causal orders need to be coher-
ently superposed in the switch before the control qubit is
measured.

To see this, note that the matrices W[±]
QS do not sat-

isfy the additional constraints in Proposition 13. That
is, W[±]

QS cannot be decomposed as W[±]
QS = W[±]

(1,2,F) +
W[±]
(2,1,F), such that, with W(1,2,F):=W[+]

(1,2,F) + W[−]
(1,2,F) and

W(2,1,F):=W[+]
(2,1,F) + W[−]

(2,1,F), we obtain a decomposition of
W[+]

QS + W[−]
QS = W(1,2,F) + W(2,1,F) as in Proposition 5. This

follows from the fact that W[±] are rank-one projectors, and
can therefore not be further decomposed into a (nontrivial)
sum of positive semidefinite matrices, and neither W[+]

QS nor
W[−]

QS satisfies individually the constraints on either W(1,2,F)
or W(2,1,F) in Eq. (31).

Note that the example we described here is precisely the
probabilistic quantum circuit that one uses in the canonical
application of the quantum switch, a task where one has
two unitaries that either commute or anticommute, and the
aim of which is to determine which of the two properties
holds true [15]. The pQC-QC described here allows one to
discriminate between the two cases with certainty, while
this is not possible with a pQC-CC [11,15].

We thus recover straightforwardly this known advantage
of the quantum switch over causally separable processes.
However, the characterization of the full class of QC-QCs
and of their probabilistic versions now also allows us to go
beyond that simple, canonical example, and to search for
new applications of physically realizable, causally nonsep-
arable processes in a more systematic way. In Sec. VII, we
illustrate this through a specific example.

D. General quantum superinstruments

As already mentioned in Sec. II B, one can also con-
sider probabilistic supermaps in the most general situation,
where it is not specified a priori how the external opera-
tions are to be connected. A particular such probabilistic
supermap takes the N external operations Ak to a CP map
M[r] : L(HP) → L(HF), associated to a classical output
r, such that summing over all r yields a deterministic
supermap [i.e., such that the induced map

∑
r M[r](·) is

TP whenever all external operations are TP]. We call the
set of such probabilistic supermaps for all classical out-
puts r a general quantum superinstrument (pGEN). Such
general quantum superinstruments have previously been
characterized in Refs. [61,98].

It follows from Eq. (13) that the process matrix descrip-
tion of a particular realization of a pGEN is given by a
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positive semidefinite matrix W[r], with the sum over all W[r]

being a valid (deterministic) process matrix. We therefore
have the following characterization.

Proposition 16 (Characterization of pGENs): A general
quantum superinstrument is represented by a set of posi-
tive semidefinite matrices {W[r] ∈ L(HPAIO

N F)}r, whose sum
W := ∑

r W[r] is a valid process matrix.
Conversely, any set of positive semidefinite matrices

{W[r] ∈ L(HPAIO
N F)}r whose sum is a valid process matrix

represents a general quantum superinstrument.

VII. APPLICATIONS

One of the motivations for the investigation of quan-
tum causal structures is the prospect that indefinite causal
orders could enable new quantum information process-
ing tasks and protocols, and that causal nonseparability
could be used as an information processing resource [7].
Indeed, some advantages in this respect have recently been
identified, for instance, in regard to quantum query com-
plexity [12–15,30], quantum communication complexity
[16,17], and other information processing tasks [18–29,
31–34]. These studies have focused particularly on the
quantum switch and its straightforward N -operation gen-
eralization, since these were so far the only known exam-
ples of causally nonseparable processes with a physical
interpretation.

The process matrix descriptions of the different classes
of circuits we introduce here, as well as their proba-
bilistic versions, allow us to more systematically search
for advantages in quantum information processing arising
from causal nonseparability. By finding tasks for which
QC-QCs provide an advantage over circuits with definite
causal order, we can thereby identify new applications
of causally nonseparable processes that are more gen-
eral than the quantum switch and for which a physical
implementation scheme exists.

One natural type of information processing task in the
context of higher-order maps are “higher-order quantum
computation” problems, such as the cloning [1], the stor-
age and retrieval [1], or the replication of the inverse
or transpose [49,61,98] of some undisclosed, black-box
operation of which one or multiple copies are available.
Another natural type of task are generalized channel dis-
crimination problems, in which one is given some black-
box operations which, collectively, belong to one of a finite
number of classes (or, equivalently, are promised to obey
one of several properties). Examples are the discrimination
of phase relations between unitary operations [13,15,30] or
the discrimination between different cause and effect struc-
tures of unitaries [99]. To quantify how a given class of
circuits performs for some task, one needs to optimize over
the corresponding higher-order transformations in order to
maximize some figure of merit, such as the channel fidelity

between the desired “target” channel and the output of the
supermap, or the success probability of the task.

The characterizations provided in this paper allow us to
optimize the performance of different classes of circuits
in both these types of problems by exploiting semidefinite
programming (SDP) techniques. In this section, we present
a concrete example of one such problem and show, in par-
ticular, a gap between the performance of probabilistic
QC-CCs and QC-QCs. The task is a natural generaliza-
tion of the discrimination task studied in Ref. [50], which
we call the K-unitary equivalence determination prob-
lem. One is given K reference boxes, which implement
black-box unitary operations U1, . . . , UK , and a further tar-
get box that implements one of the Uk (1 ≤ k ≤ K) with
probability 1/K . The aim is to determine which of the
reference boxes is implemented by the target box, while
using each of the K + 1 boxes exactly once. For sim-
plicity (as in Ref. [50]) we consider the case where the
boxes all implement qubit unitaries, with the reference
boxes chosen randomly according to the Haar measure on
SU(2) [100].

Let us denote the input and output spaces of the refer-
ence boxes as HAI

k and HAO
k (with k = 1, . . . , K), those

of the target box as HAI
K+1 and HAO

K+1 , and the proba-
bilistic quantum circuit that we have at our disposal by
{W[r]}r=1,...,K , with W[r] ∈ L(HAIO

{1,...,K+1}), where P and F
are trivial, and the outcome r of the probabilistic circuit
corresponds to the guess of which reference box is imple-
mented by the target box. The success probability (for a
specific choice of U1, . . . , UK ) is then

p(U1,...,UK ) = 1
K

K∑

r=1

S(U1, . . . , UK , Ur) ∗ W[r], (79)

where S(U1, . . . , UK , Ur) := |U1〉〉〈〈U1| ⊗ · · · ⊗ |UK〉〉〈〈UK |
⊗ |Ur〉〉〈〈Ur| (which lives in the same space L(HAIO

{1,...,K+1})
as W[r], so that the link product above returns a scalar
value, as required).

For the case we are considering of Haar random Uk, the
probability of success is obtained by averaging Eq. (79)
over the (normalized) Haar measure μ, giving

psucc =
∫

· · ·
∫

dμ(U1) · · · dμ(UK)p(U1,...,UK )

= 1
K

K∑

r=1

S̃r ∗ W[r], (80)

where S̃r := ∫ · · · ∫ dμ(U1) · · · dμ(UK)S(U1, . . . , UK , Ur).
For qubits, the S̃r can be calculated analytically by using
the fact that, for U ∈ SU(2), one has

∫
dμ(U) |U〉〉〈〈U| =

1
21 and

∫
dμ(U) |U〉〉〈〈U| ⊗ |U〉〉〈〈U| = 1

4 (1 + 1
3

∑
i,j σi ⊗
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TABLE I. Maximal success probability psucc for the K-unitary
equivalence determination problem for K = 2, 3 for probabilistic
quantum circuits from the indicated classes. Starred figures were
already given in Ref. [50].

K pQC-PAR pQC-FO pQC-CC pQC-QC pGEN

2 0.875∗ 0.875∗ 0.875 0.875 0.875
3 0.6919 0.6998 0.6998 0.7080 0.7093

σj ⊗ σi ⊗ σj ) (where the σi are the three Pauli matrices
σx, σy , σz).

For a given class pXK of K-outcome probabilistic quan-
tum circuits, with pX ∈ {pQC-PAR, pQC-FO, pQC-CC,
pQC-QC, pGEN}, the problem is thus to find

pX
succ = max psucc

s.t. {W[r]}r=1,...,K ∈ pXK .
(81)

For each of the classes pXK specified above, characterized
by one of the Propositions 10, 11, 13, 15 or 16, this opti-
mization task is a SDP problem and is thus tractable for
small enough K .

For K = 2, Ref. [50] found pQC-PAR
succ = pQC-FO

succ = 0.875.
Using the SDP solver SCS [101,102], we found that no
improvement over this was possible even with general
quantum superinstruments (and thus also for the classes
of probabilistic QC-CCs and QC-QCs since pQC-PAR

succ ≤
pQC-FO

succ ≤ pQC-CC
succ ≤ pQC-QC

succ ≤ pGEN
succ ) [103]. For K = 3,

however, we found a (admittedly small, but still) strict
separation between all the classes of probabilistic quan-
tum circuits except pQC-FOs and pQC-CCs (indicating
that dynamical definite causal order provides no advantage
in the 3-unitary equivalence determination problem). The
results are summarized in Table I. Finally, we note that,
for K > 3, the SDP problem (81) became too large for us
to solve [104].

This shows that causal indefiniteness is indeed a
resource for the 3-unitary equivalence determination prob-
lem, and moreover that an advantage can be obtained
using probabilistic QC-QCs, i.e., in a way that is phys-
ically realizable, at least in principle. This is in contrast
with other problems such as the exact probabilistic rever-
sal of an unknown unitary operation. For the particular
instances of that problem studied in Ref. [98], we found
no advantage using QC-QCs, although (as shown in Ref.
[98]) general quantum superinstruments can provide an
advantage over QC-FO ones. This means that the results
presented in the present paper do not provide a physical
interpretation of the advantage identified in Ref. [98]. We
expect further study to unveil new quantum information
tasks for which (probabilistic) QC-QCs provide advan-
tages over all circuits with a definite, possibly dynamical,
causal structure.

VIII. DISCUSSION

The central question of our paper was which completely
CP-preserving (CCP) quantum supermaps beyond those
that correspond to standard, fixed-order quantum circuits
have a physical interpretation. A major motivation for
this study was that general CCP quantum supermaps can
exhibit indefinite causal order, a phenomenon which has
recently attracted substantial interest and whose physical
realizability is a crucial open question. Similarly to pre-
vious investigations that focused on the fixed-order case
[1,2], we adopted a constructive, bottom-up approach in
order to find concrete realizations of more general types
of quantum supermaps in terms of generalized quantum
circuits. This first led us to introduce quantum circuits
with classical control of causal order (QC-CCs), in which
the order of operations is established dynamically in a
classically controlled manner. A crucial point in our con-
struction was to keep track of which “external” input
operations had already been applied, in order to ensure
that each external operation is applied once and only once
throughout the circuit. We then moved on to quantum cir-
cuits with quantum control of causal order (QC-QCs) by
including explicit control systems that encode the rele-
vant information and by introducing coherences between
the target and ancillary systems and the control. Impor-
tantly, in the QC-QC case, we let the control system record
the unordered set of previously applied operations rather
than their full order, allowing different orders to “interfere”
while still ensuring that each external operation appears
once and only once in each coherent “branch” of the
circuit.

Although we have thus-far overlooked this point, in
the case of coherent control, it is no longer obvious
that the latter can be understood as each external oper-
ation being applied once and only once in the over-
all circuit. For the quantum switch, in particular, this
has led to some controversy, and it has been argued
by some authors that its standard quantum-mechanical
realizations should be considered simulations rather than
genuine realizations of the corresponding supermap with
indefinite causal order, given that each external opera-
tion is associated with two spacetime events [105,106].
In Ref. [89], it has been shown that the external opera-
tions in the quantum switch are indeed applied once and
only once on some well-defined input and output sys-
tems. These systems are time-delocalized subsystems, that
is, they are nontrivial subsystems of composite systems
whose constituents are associated with different times.
This argument applies also to general QC-QCs, where
one can similarly identify time-delocalized input and out-
put subsystems for all external operations, and which
can therefore be seen as genuine realizations of quan-
tum supermaps with indefinite causal order in that same
sense.
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All the types of generalized circuits we described cor-
respond to distinct classes of quantum supermaps, which
we fully characterized in the process matrix framework
(Propositions 2, 3, 5, and 7). These characterizations in
terms of convex semidefinite constraints notably allow one
to verify whether a given process matrix is in a given
class or not. Using similar techniques as for witnesses of
causal nonseparability [10,11,84] one can, for instance,
show that the classical switch does not have a fixed order,
that the quantum switch cannot be described by a classi-
cal control (in that case the problem reduces to a witness
of causal nonseparability), or that the process matrix WOCB
originally introduced by Oreshkov et al. [5] or the tripar-
tite “classical” example of Baumeler et al. [107] are not
realizable as QC-QCs [108].

Let us elaborate further on how the classes of quantum
supermaps we identified here relate to other classes that
have been studied before. As noted in Sec. IV, the pro-
cess matrices describing QC-CCs are causally separable.
Whether the converse holds—i.e., whether any causally
separable process matrix satisfies the constraints of Propo-
sition 5 and can therefore be realized as a QC-CC—is an
open problem in the general N -operation case [10]. A sim-
ilar open question is whether the process matrices in the
QC-QC class are the only process matrices that cannot vio-
late causal inequalities, i.e., whether any extensibly causal
process matrix [9,90] can be realized as a QC-QC. Another
important class is that of unitary or pure supermaps, which
map unitary input operations to a unitary output oper-
ation. This class was introduced in Ref. [43], where it
was argued that physically realizable supermaps should
be unitarily extensible, that is, recoverable from a unitary
supermap by preparing a fixed state in some subsystem
of the global past, and tracing out some subsystem of the
global future. One can check that by introducing suitable
additional Hilbert spaces and suitably extending the inter-
nal circuit operations, one can find such a unitary extension
for any QC-QC process matrix (and therefore also for any
QC-CC, QC-FO, and QC-PAR process matrix). For the
case of two input operations, the converse also holds, that
is, any unitarily extensible supermap with two input opera-
tions can be realized as a QC-QC. This follows from Refs.
[44,45], where it was shown that all unitary supermaps
with two input operations are “variations of the quan-
tum switch,” which can straightforwardly be verified to
satisfy the characterization of two-operation QC-QCs. In
the general case, however, the set of unitarily extensible
process matrices is strictly larger than the QC-QC class,
since there exist unitarily extensible process matrices with
three input operations that violate causal inequalities [43].
This finding in fact motivated the authors of Ref. [43] to
suggest a bottom-up approach of the kind taken in our
paper.

The fact that there remains a gap between the class
of QC-QCs obtained from our bottom-up approach and

the class of general quantum supermaps, which was
obtained from a top-down approach by just imposing
some consistency constraints, stands in contrast to the
fixed-order case, where the form of QC-FOs obtained
constructively and with an axiomatic approach matched
[2]. Another central question for future research is there-
fore whether and how quantum supermaps outside the
QC-QC class can be given a physical interpretation.
In an upcoming work [109], it is shown that certain
supermaps that go beyond the QC-QC class have real-
izations on time-delocalized subsystems as introduced in
Ref. [89]. Note also that while we relaxed the assumption
of a well-defined causal order for the external opera-
tions, there remains some well-defined causal order “inside
the circuit,” for the internal circuit operations. One may
wonder whether there could be a way to also relax
this definite causal order of the internal operations, and
whether it could allow one to realize more general CCP
supermaps.

More generally, another direction is also to study new
types of circuits beyond quantum supermaps in which the
requirement that each operation should be applied once
and only once is relaxed [66–68,110], or where the trace-
preserving constraints are not required to hold for all
possible external operations, but only for some limited sub-
sets that are allowed to be plugged in. We note in this
regard that our negative result on the impossible viola-
tion of causal inequalities would still hold in the latter case
(with a similar proof).

Our approach allowed us to find examples of physically
realizable processes with indefinite causal structure that go
beyond the quantum switch and its straightforward gener-
alizations, and we discussed one such example in detail in
Sec. V D 2. On that basis, an interesting future research
direction is to devise laboratory experiments that imple-
ment such processes in practice. A suitable experimental
platform could be photonic setups, similarly to those used
in laboratory implementations of the quantum switch, with
spatially separate “boxes” realizing the operations Ak, and
with the control system including the path, as outlined in
Sec. V E. Other types of implementations could also be
conceivable, for instance, based on superconducting qubits
[111] or trapped ions [112].

Indefinite causal order has also been speculated to arise
at the interface of quantum theory and gravity, and a grav-
itational realization of the quantum switch, which involves
a massive object in a quantum superposition of locations,
has been proposed as a thought experiment [6]. A natural
question is whether other QC-QCs could have realizations
in similar gravitational settings.

Finally, in Sec. VI we extended our characterizations
to probabilistic quantum circuits (Propositions 10, 11,
13, 15, and 16). These results open the door to a more
systematic search for applications of quantum circuits
beyond causally ordered ones. We illustrated this by an

030335-31



WECHS, DOURDENT, ABBOTT, and BRANCIARD PRX QUANTUM 2, 030335 (2021)

example in Sec. VII, a discrimination problem where prob-
abilistic QC-QCs yield a higher success probability than
probabilistic QC-CCs. Identifying further such tasks for
which QC-QCs perform better than circuits with well-
defined causal order will shed more light on the useful-
ness of indefinite causal order for quantum information
processing.
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Note added in proof.—In a recent work [113], it
is shown independently that causal inequalities can-
not be violated in some similar circuitlike quantum
models.

APPENDIX A: PROCESS MATRICES WITH OR
WITHOUT “GLOBAL PAST” AND “GLOBAL

FUTURE” SYSTEMS P, F

1. Equivalence between the two process matrix
frameworks

Process matrices were initially introduced as the most
general way to map quantum operations to probabilities
in a consistent manner (so as to only output nonnega-
tive and normalized probabilities), without assuming any
a priori global causal structure [5]. Here, as in Ref. [43],
we consider a slightly different version of process matri-
ces that take the N CP maps Ak : L(HAI

k ) → L(HAO
k ),

with Choi representation Ak ∈ L(HAIO
k ), to a new CP map

M : L(HP) → L(HF) (rather than to some probabilities),
from some “global past” Hilbert space HP to some “global
future” Hilbert space HF , with Choi representation M ∈
L(HPF); see Fig. 3.

Any mapping from quantum operations to probabili-
ties, as described by a process matrix W in the original
version of the framework [5], can equivalently be seen
as a deterministic CCP quantum supermap conforming to
the definition in Sec. II B, which acts as in Eq. (13), and
where the “global past” and “global future” Hilbert spaces
are trivial, i.e., one-dimensional (dP = dF = 1). As men-
tioned in Ref. [59], the “generalized Born rule,” which
yields the probabilities in the original formalism, is for-
mally recovered by identifying in that case the (scalar)
output of the induced map M : 1 �→ (A1 ⊗ · · · ⊗ AN ) ∗
W with the probability distribution P(A1, . . . ,AN ). The
nonnegativity and normalization of these probabilities,

as imposed in the original framework, implies that the
corresponding supermap must indeed be CCP and deter-
ministic.

Conversely, the process matrix W that specifies the
action of a deterministic supermap [cf. Eq. (13)] can be
seen as a process matrix in the original framework where
one has two additional operations, one of which corre-
sponds to a state preparation in the “global past” Hilbert
space (i.e., its output Hilbert space is HP and its input
Hilbert space is trivial), and the other to a measurement
of the output system in the “global future” Hilbert space
(i.e., its input Hilbert space is HF and its output Hilbert
space is trivial). The constraints on a CCP and determin-
istic quantum supermap imply that one indeed obtains a
mapping to valid (nonnegative and normalized) probabil-
ities, as required in the original version of the process
matrix framework, when these two additional operations
are included.

2. Validity conditions for process matrices

The requirement that process matrices must yield non-
negative and normalized probabilities can be expressed
more directly in terms of some simple conditions that these
matrices must satisfy. These validity constraints were first
derived for the case of two operations in Ref. [5] and gen-
eralized to more complex scenarios (including the general,
N -operation case) in Refs. [9–11,43]. With the equivalence
of the two frameworks established above, we can use these
previous characterizations in order to formulate the valid-
ity constraints for a matrix W to describe a completely
CP-preserving and deterministic quantum supermap as per
Eq. (13).

We use a somewhat different notation here. For any W ∈
L(HPAIO

N F) and any nonempty subset K of N , we define
the partial traces [114] W[PKF] := TrAIO

N\K
W ∈ L(HPAIO

K F),

W[PK] := TrAIO
N\KF W ∈ L(HPAIO

K ) and W[P] := TrAIO
N F W ∈

L(HP). We furthermore use the “trace-out-and-replace”
notation of Ref. [11], defined as

X W := (TrX W)⊗ 1X

dX
, [1−X ]W:=W − X W, (A1)

where dX := dimHX [and where the second part of
the definition above can be applied recursively, in a
commutative manner, so that, e.g., �k∈{k1,k2,...,kn}[1−Xk]W =
[1−Xk1 ]

(
�k∈{k2,...,kn}[1−Xk]W

)
].

We then have that W ∈ L(HPAIO
N F) is a valid process

matrix if and only if W � 0, Tr W = dP�k∈N dO
k , and W

is in some subspace LPNF of L(HPAIO
N F), characterized as
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W ∈ LPNF ⇔ ∀∅ � K ⊆ N , ∏
k∈K[1−AO

k ]W
[PK] = 0 and [1−P]W[P] = 0

⇔ ∀∅ � K � N , W[PKF] ∈ LPKF , ∏
k∈N [1−AO

k ]W
[PN ] = 0 and [1−P]W[P] = 0. (A2)

For trivial spaces HP and HF , one directly recovers Eqs.
(A5) and (A6) from Ref. [10].

One can check that all (classes of) deterministic pro-
cess matrices characterized in the paper (cf. Propositions
2, 3, 5, and 7) satisfy these validity constraints. To see
this directly, e.g., for the QC-QC class (which contains the
other classes under consideration), one can show recur-
sively, from |K| = N down to |K| = 1 [115], that the
constraints of Eq. (63) imply that

W[PK] =
∑

∅⊆K′⊆N\K
dO
K′ TrAIO

N\KK′

∑

k∈K
W(N\K′k,k) ⊗ 1AO

k ,

(A3)

and W[P] = dO
N1P (using the short-hand notations dO

K′ :=
�k∈K′dO

k , KK′ := K ∪ K′, and K′k := K′ ∪ {k}), from
which the first set of constraints in Eq. (A2) above are
easily verified.

3. Characterization of quantum circuits with
trivial “global past” and “global future” systems

For ease of reference, we give here explicit versions of
our characterizations for trivial “global past” and “global
future” systems (dP = dF = 1)—i.e., for the original ver-
sion of process matrices that map quantum operations to
probabilities.

For QC-FOs, Proposition 2 becomes as follows.

Proposition 2′ (Characterization of QC-FOs with
trivial HP , HF): The process matrix W ∈ L(HAIO

N )
of a quantum circuit with the fixed causal order
(A1,A2, . . . ,AN ) is a positive semidefinite matrix such
that its reduced matrices W(n) := [1/(dO

n dO
n+1 · · · dO

N )]

TrAO
n AIO

{n+1,...,N }
W ∈ L(HAIO

{1,...,n−1}AI
n) (defined for 1 ≤ n ≤ N,

relative to the fixed order just specified) satisfy

Tr W(1) = 1,

∀ n = 1, . . . , N − 1, TrAI
n+1

W(n+1) = W(n) ⊗ 1AO
n ,

and W = W(N ) ⊗ 1AO
N .

(A4)

Conversely, any positive semidefinite matrix W ∈
L(HAIO

N ) whose reduced matrices W(n) satisfy the con-
straints of Eq. (A4) is the process matrix of a quantum
circuit with the fixed causal order (A1,A2, . . . ,AN ).

For QC-PARs, Proposition 3 becomes as follows.

Proposition 3′ (Characterization of QC-PARs with triv-
ial HP , HF): The process matrix W ∈ L(HAIO

N ) of a
quantum circuit with operations used in parallel is of the
form

W = W(I) ⊗ 1AO
N with Tr W(I) = 1, (A5)

for some positive semidefinite matrix W(I) ∈ L(HAI
N )

(which is nothing but a density matrix describing a quan-
tum state sent to all N operations).

Conversely, any positive semidefinite matrix W ∈
L(HAIO

N ) satisfying Eq. (A5) above is the process matrix
of a quantum circuit with operations used in parallel.

For QC-CCs, Proposition 5 becomes as follows.

Proposition 5′ (Characterization of QC-CCs with triv-
ial HP , HF): The process matrix W ∈ L(HAIO

N ) of a quan-
tum circuit with classical control of causal order can
be decomposed in terms of positive semidefinite matrices

W(k1,...,kn) ∈ L(HAIO
{k1,...,kn−1}AI

kn ), for all nonempty ordered
subsets (k1, . . . , kn) of N (with 1 ≤ n ≤ N, ki �= kj for
i �= j ), in such a way that

W =
∑

(k1,...,kN )

W(k1,...,kN ) ⊗ 1
AO

kN , (A6)

and

∑

k1

Tr W(k1) = 1,

∀ n = 1, . . . , N−1, ∀ (k1, . . . , kn),
∑

kn+1

TrAI
kn+1

W(k1,...,kn,kn+1) = W(k1,...,kn) ⊗ 1AO
kn .

(A7)

Conversely, any Hermitian matrix W ∈ L(HAIO
N ) that

admits a decomposition in terms of positive semidefi-

nite matrices W(k1,...,kn) ∈ L(HAIO
{k1,...,kn−1}AI

kn ) satisfying Eqs.
(A6) and (A7) above is the process matrix of a quantum
circuit with classical control of causal order.
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As mentioned in the main text, this characterization
is equivalent to the sufficient condition for causal sep-
arability presented in Ref. [10]—albeit using different
notation: what is denoted W(k1,...,kn) here corresponds to
[1/(dO

kn
· · · dO

kN
)] TrAO

kn
AIO

{kn+1,...,kN }
W(k1,...,kn) in Ref. [10]; Eq.

(A6) corresponds to Eq. (30) in Ref. [10], and the last line
in (A7) is equivalent (for n = 1, . . . , N − 1) to Eq. (32) in
Ref. [10].

Note that for N = 2, in the case of a trivial HP (and
in fact, whether HF is trivial or not) the characteriza-
tion of Proposition 5 just reduces to a probabilistic mix-
ture of the two possible fixed causal orders (A1,A2) and
(A2,A1). Indeed, the constraints in this case read W =
W(1,2,F) + W(2,1,F), Tr W(1) + Tr W(2) = 1, TrAI

k2
W(k1,k2) =

W(k1) ⊗ 1
AO

k1 , and TrF W(k1,k2,F) = W(k1,k2) ⊗ 1
AO

k2 . One
thus sees that W is the convex mixture, with weights
Tr W(k1), of the process matrices [1/(Tr W(k1))]W(k1,k2,F) (or
0 if Tr W(k1) = 0), each compatible with the corresponding
fixed order (Ak1 ,Ak2). In order to have an order between
the N operations Ak that is not predefined (even proba-
bilistically), in that case with trivial HP, we therefore need
N ≥ 3. In contrast, for N = 2 and a nontrivial HP, a non-
predefined order is possible: an example is the classical
switch considered in Sec. IV C (even with HF traced out).

Finally, for QC-QCs, Proposition 7 becomes as follows.

Proposition 7′ (Characterization of QC-QCs with triv-
ial HP , HF): The process matrix W ∈ L(HAIO

N ) of a quan-
tum circuit with quantum control of causal order is such
that there exist positive semidefinite matrices W(Kn−1,kn) ∈
L(HAIO

Kn−1
AI

kn ), for all strict subsets Kn−1 of N and all
kn ∈ N \Kn−1, satisfying

∑

k1∈N
Tr W(∅,k1) = 1,

∀ ∅ � Kn � N ,
∑

kn+1∈N\Kn

TrAI
kn+1

W(Kn,kn+1)

=
∑

kn∈Kn

W(Kn\kn,kn) ⊗ 1AO
kn ,

and W =
∑

kN ∈N
W(N\kN ,kN ) ⊗ 1

AO
kN .

(A8)

Conversely, any Hermitian matrix W ∈ L(HAIO
N ) such

that there exist positive semidefinite matrices W(Kn−1,kn) ∈
L(HAIO

Kn−1
AI

kn ) for all Kn−1 � N and kn ∈ N \Kn−1 satis-
fying Eq. (A8) is the process matrix of a quantum circuit
with quantum control of causal order.

Note that for N = 2, with a trivialHF (and now, whether
HP is trivial or not), the characterization of Proposition 7

coincides with that of Proposition 5, i.e., QC-QCs reduce
to QC-CCs. In that case, the last line of Eq. (63) becomes
W = W({1},2) ⊗ 1AO

2 + W({2},1) ⊗ 1AO
1 , and the constraints

are identical to those in Proposition 5, with W(k1) = W(∅,k1),

W(k1,k2) = W({k1},k2) and W(k1,k2,F) = W({k1},k2) ⊗ 1
AO

k2 . For
N = 2 with a nontrivial HF , on the other hand, the two
classes do not coincide. A counterexample is given by the
quantum switch [even when taking its “global past” space
HP to be trivial, by fixing the input state as in Eq. (66)],
which is causally nonseparable.

Together with the observation made after Proposition
5′, it follows that for N = 2 with both dP = dF = 1,
the classes of QC-QCs and QC-CCs both collapse to a
probabilistic mixture of QC-FOs.

The characterization of the various classes of probabilis-
tic quantum circuits for dP = dF = 1 (Propositions 10, 11,
13, 15, and 16) can be obtained similarly to what we have
done here for the deterministic case.

APPENDIX B: PROCESS MATRIX
CHARACTERIZATION OF QUANTUM CIRCUITS

In this Appendix we prove the process matrix char-
acterizations of the different classes of quantum circuits
considered in this paper. For each of these classes, we first
derive the TP conditions that the respective internal circuit
operations must satisfy so that they act trace-preservingly
on all input states they can receive, i.e., on their “effective
input spaces.” We then prove the necessary and sufficient
conditions for the deterministic case separately. In order to
prove the sufficient condition, in particular, we provide a
method to construct an explicit circuit from a given process
matrix in the class under consideration. We then extend the
proofs to the respective probabilistic circuits.

In the proofs (for the sufficient conditions) below we
use the following lemma to “invert” the link product for
vectors.

Lemma 17 (Link product inversion): Let |a〉 ∈ HXY and
|c〉 ∈ HXZ, and define AX := TrY |a〉〈a| ∈ L(HX ).

A necessary condition for the existence of |b〉 ∈ HYZ

such that |a〉 ∗ |b〉 = |c〉 is that |c〉 ∈ range(AX )⊗ HZ.
Under this condition, a solution is given by

|b〉 := |a+〉 ∗ |c〉
with |a+〉 := ( 〈a| A+

X ⊗ 1Y)T ∈ HXY, (B1)

where A+
X is the Moore-Penrose pseudoinverse of AX .

Proof. Let us denote by {|i〉Y}i the computational basis of
HY and define, for any |a〉 ∈ HXY and |b〉 ∈ HYZ , |ai〉 :=
(1X ⊗ 〈i|Y) |a〉 ∈ HX and |bi〉 := (〈i|Y ⊗ 1Z) |b〉 ∈ HZ .
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By noting that |a〉 ∗ |b〉 = ∑
i |ai〉 ⊗ |bi〉 [as in Eq. (6)]

and AX = ∑
i |ai〉〈ai|, it appears clearly that the link prod-

uct |a〉 ∗ |b〉 is in range(AX )⊗ HZ , which proves the
necessary condition stated in the proposition.

Suppose that this condition is indeed satisfied. The vec-
tors |a+〉 and |b〉 above can be written more explicitly, in
terms of the |ai〉, as [116]

|a+〉 = ∑
i

( 〈ai| A+
X

)T ⊗ |i〉Y ,

|b〉 = ∑
i |i〉Y ⊗ ( 〈ai| A+

X ⊗ 1Z |c〉 )
.

(B2)

We then have |a〉 ∗ |b〉 = ∑
i |ai〉 ⊗ |bi〉 = ∑

i |ai〉 ⊗ 〈ai| A+
X

⊗ 1Z |c〉 = AX A+
X ⊗ 1Z |c〉 = |c〉, where we used the fact

that AX A+
X is the projector onto (and therefore acts as

the identity within) the range of AX . This proves that |b〉
defined in Eq. (B1) is indeed a solution to |a〉 ∗ |b〉 =
|c〉. �

To verify the necessary condition |c〉 ∈ range(AX )⊗
HZ when using Lemma 17 in the proofs below, let us also
make the following observation.

Observation 18: Let {|ck〉}k be a family of vectors,
with each |ck〉 ∈ HXZk = HX ⊗ HZk for some (possibly
different) Hilbert spaces HX ,HZk , and define CX :=∑

k TrZk |ck〉〈ck| ∈ L(HX ).
One has that for each k, |ck〉 ∈ range(CX )⊗ HZk .

Proof. Denoting by �X :=CX C+
X the projector onto the

range of CX and by �⊥
X := 1X −�X its orthogonal pro-

jector in HX , one has

∑

k

Tr
[
(�⊥

X ⊗ 1Zk ) |ck〉〈ck|
] =

∑

k

Tr
[
�⊥

X (TrZk |ck〉〈ck|)
]

= Tr
[
�⊥

X CX
] = 0. (B3)

Since the individual summands in the sum above cannot
be negative, we conclude that each of them [and hence,
(�⊥

X ⊗ 1Zk ) |ck〉] must be zero, and therefore that (�X ⊗
1Zk ) |ck〉 = |ck〉—i.e., |ck〉 ∈ range(CX )⊗ HZk . �

1. QC-FOs: Proofs of Propositions 2 and 10

Here, we prove the characterizations of QC-FOs (Propo-
sition 2) and pQC-FOs (Proposition 10). Equivalent results
were already proven in Refs. [2,65]. Below we make the
constructive proofs for the sufficient conditions somewhat
more explicit. Also, the proofs for QC-CCs and QC-QCs
will follow very similar paths, so it is useful to first present
the simpler case.

For ease of notations and to avoid repetitions, it will be
convenient in this section to define HAI

N+1 := HF .

a. Trace-preserving conditions

Let us first derive the TP conditions of Eqs. (14)–(16)
that the internal circuit operations of a QC-FO must sat-
isfy. Consider for that a QC-FO as depicted in Fig. 4, and
suppose one inputs some state ρ ∈ L(HP) into the circuit.

We first require the state M1(ρ) = ρ ∗ M1 after apply-
ing the first internal circuit operation M1 to have the same
trace as ρ. That is, we want

Tr[ρ ∗ M1] = Tr[(ρT ⊗ 1AI
1α1)M1]

= Tr[ρT(TrAI
1α1

M1)] = Tr[ρ] (= Tr[ρT]).
(B4)

As this must hold for all ρ ∈ L(HP), this constraint is
equivalent to

TrAI
1α1

M1 = 1P, (B5)

as in Eq. (14), which is indeed the standard trace-
preserving condition for the Choi representation of a
quantum map.

For n = 1, . . . , N , the states of the global system going
through the circuit right before and right after the applica-
tion of Mn+1 are obtained (in terms of the Choi represen-
tations and link products) as ρ ∗ M1 ∗ A1 ∗ M2 ∗ · · · ∗ Mn
∗ An = (ρ ⊗ A1 ⊗ · · · ⊗ An) ∗ (M1 ∗ M2 ∗ · · · ∗ Mn) ∈
L(HAO

n αn) and ρ ∗ M1 ∗ A1 ∗ M2 ∗ · · · ∗ Mn ∗ An ∗ Mn+1 =
(ρ ⊗ A1 ⊗ · · · ⊗ An) ∗ (M1 ∗ M2 ∗ · · · ∗ Mn ∗ Mn+1) ∈
L(HAI

n+1αn+1), respectively (with AI
N+1 = F and a trivial

ancillary space HαN+1 for n = N ). Their traces are

Tr[(ρ ⊗ A1 ⊗ · · · ⊗ An) ∗ (M1 ∗ · · · ∗ Mn)]

= Tr
[{
(ρ ⊗ A1 ⊗ · · · ⊗ An)

T ⊗ 1αn
}

{
(M1 ∗ · · · ∗ Mn)⊗ 1AO

n
}]

= Tr
[
(ρ ⊗ A1 ⊗ · · · ⊗ An)

T

{
Trαn(M1 ∗ · · · ∗ Mn)⊗ 1AO

n
}]

, (B6)

and

Tr[(ρ ⊗ A1 ⊗ · · · ⊗ An) ∗ (M1 ∗ · · · ∗ Mn ∗ Mn+1)]

= Tr
[{
(ρ ⊗ A1 ⊗ · · · ⊗ An)

T ⊗ 1AI
n+1αn+1

}

(M1 ∗ · · · ∗ Mn ∗ Mn+1)
]

= Tr
[
(ρ ⊗ A1 ⊗ · · · ⊗ An)

T

TrAI
n+1αn+1

(M1 ∗ · · · ∗ Mn ∗ Mn+1)
]
. (B7)

We require these to be equal, for all possible initial states
ρ ∈ L(HP) and all possible external CP maps with Choi
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matrices Ak ∈ L(HAIO
k ). As ρ ⊗ A1 ⊗ · · · ⊗ An spans the

whole space L(HPAIO
{1,...,n}), this is indeed equivalent to

TrAI
n+1αn+1

(M1 ∗ · · · ∗ Mn ∗ Mn+1)

= Trαn(M1 ∗ · · · ∗ Mn)⊗ 1AO
n , (B8)

as in Eqs. (15) (for 1 ≤ n < N ) and (16) (for n = N ).
The TP conditions for probabilistic QC-FOs follow from

the exact same reasoning, with the last internal circuit
operation MN+1 replaced by

∑
r M[r]

N+1, the CPTP map
obtained by summing over the classical outcomes.

b. Proof of Proposition 2: Necessary condition

Consider the process matrix W = M1 ∗ M2 ∗ · · · ∗ MN+1
of a QC-FO, as per Proposition 1, with the Choi matrices
Mn satisfying the TP conditions of Eqs. (14)–(16).

Note first that as all Mn � 0, it directly follows that W is
positive semidefinite.

Defining W(N+1):=W, the reduced matrices W(n) defined
in Proposition 2 can be obtained recursively (from n = N ,
down to n = 1) as W(n) = (1/dO

n )TrAO
n AI

n+1
W(n+1). Simi-

larly, Eqs. (15) and (16) imply that Trαn(M1 ∗ · · · ∗ Mn) =
(1/dO

n )TrAO
n AI

n+1
[Trαn+1(M1 ∗ · · · ∗ Mn ∗ Mn+1)]. Since W(n)

and Trαn(M1 ∗ · · · ∗ Mn) are equal for n = N + 1 (with a
trivial HαN+1) and satisfy the same recursive property, it
follows that they are the same for all n = 1, . . . , N + 1:

W(n) = Trαn(M1 ∗ · · · ∗ Mn). (B9)

The constraints of Eq. (19) are then simply equivalent to
(and therefore readily implied by) the TP conditions of
Eqs. (14)–(16).

c. Proof of Proposition 2: Sufficient condition

Consider a positive semidefinite matrix W ∈ L(HPAIO
N F)

whose reduced matrices W(n) := [1/(dO
n dO

n+1 · · · dO
N )]

TrAO
n AIO

{n+1,...,N }F W ∈ L(HPAIO
{1,...,n−1}AI

n) satisfy the constraints
of Eq. (19). We show that W is the process matrix of a QC-
FO with the causal order (A1, . . . ,AN ), by constructing
some internal circuit operations Mn [CPTP maps, in the
sense of the constraints of Eqs. (14)–(16)] explicitly.

Since W � 0, then all W(n) � 0 as well (for 1 ≤ n ≤
N + 1, with again W(N+1):=W), which admit a spectral
decomposition of the form

W(n) =
∑

i

|wi
(n)〉〈wi

(n)| , (B10)

for some eigenbasis consisting of rn := rank W(n) (non-
normalized and nonzero) orthogonal vectors |wi

(n)〉 ∈
HPAIO

{1,...,n−1}AI
n . Let us then introduce, for each n =

1, . . . , N + 1, some rn-dimensional ancillary Hilbert space
Hαn with its computational basis {|i〉αn}rn

i=1, and define

|w(n)〉 :=
∑

i

|wi
(n)〉 ⊗ |i〉αn ∈ HPAIO

{1,...,n−1}AI
nαn , (B11)

such that W(n) = Trαn |w(n)〉〈w(n)|.
For n = 1, . . . , N , the assumption that TrAI

n+1
W(n+1) =

TrAI
n+1αn+1

|w(n+1)〉〈w(n+1)| = W(n) ⊗ 1AO
n implies, after fur-

ther tracing out over AO
n and via Observation 18 (here

with a single vector |ck〉), that |w(n+1)〉 ∈ range(W(n))⊗
HAO

n AI
n+1αn+1 . Using Lemma 17 above, this property

ensures that one can relate |w(n)〉 and |w(n+1)〉 by defining,
for 1 ≤ n ≤ N , [117]

|w+
(n)〉 := (〈w(n)| W+

(n) ⊗ 1αn)T ∈ HPAIO
{1,...,n−1}AI

nαn , (B12)

|Vn+1〉〉 := |w+
(n)〉 ∗ |w(n+1)〉 ∈ HAO

n αnAI
n+1αn+1 , (B13)

so that

|w(n)〉 ∗ |Vn+1〉〉 = |w(n+1)〉 . (B14)

By further defining |V1〉〉 := |w(1)〉 ∈ HPAI
1α1 , one recur-

sively obtains that

|V1〉〉 ∗ |V2〉〉 ∗ · · · ∗ |Vn〉〉 = |w(n)〉 , (B15)

for all 1 ≤ n ≤ N + 1.
From the double-ket vectors |Vn〉〉 just introduced we can

then define the operators

Mn := |Vn〉〉〈〈Vn| for 1 ≤ n ≤ N

and MN+1 := TrαN+1 |VN+1〉〉〈〈VN+1| ,
(B16)

such that

Trαn(M1 ∗ · · · ∗ Mn) = Trαn |w(n)〉〈w(n)| = W(n)

and M1 ∗ · · · ∗ MN+1 = W.
(B17)

As the W(n) are assumed to satisfy the constraints of Eq.
(19), then by construction the (positive semidefinite) Mn
satisfy the [equivalent, once Eq. (B17) is established] TP
conditions of Eqs. (14)–(16). This proves that the oper-
ators Mn define CPTP maps M1 : L(HP) → L(HAI

1α1),
Mn+1 : L(HAO

n αn) → L(HAI
n+1αn+1) for n = 1, . . . , N −

1, and MN+1 : L(HAO
NαN ) → L(HF), as required for the

internal circuit operations of a QC-FO. The second line
of Eq. (B17) above shows, according to Proposition 1,
that W is indeed the process matrix of the QC-FO thus
constructed.
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d. Proof of Proposition 10

The proofs of both the necessary and the sufficient
conditions above extend easily to the characterization of
probabilistic QC-FOs, as given by Proposition 10 in Sec.
VI A.

For the necessary condition, recall that a pQC-FO with
the order (A1, . . . ,AN ) is described by the matrices W[r]

given in Proposition 9. Since all Mn, M [r]
N+1 � 0, then

clearly each W[r] is positive semidefinite; furthermore,
since all Mn for 1 ≤ n ≤ N , as well as

∑
r M [r]

N+1, satisfy the
TP conditions of Eqs. (14)–(16), then the sum

∑
r W[r] =

M1 ∗ M2 ∗ · · · ∗ MN ∗ (∑
r M [r]

N+1

)
is indeed the process

matrix of a QC-FO (with the same fixed causal order) as
per Proposition 1.

Conversely for the sufficient condition, let {W[r]}r
be a set of positive semidefinite matrices whose sum
is the process matrix of a QC-FO with the order
(A1, . . . ,AN ). Introducing a Hilbert space HF ′

with com-
putational basis states {|r〉F ′ }r, let us define the (pos-
itive semidefinite) “extended” matrix W′ := ∑

r W[r] ⊗
|r〉〈r|F ′ ∈ L(HPAIO

N FF ′
), such that W′ ∗ |r〉〈r|F ′ = W[r] and

TrF ′ W′ = ∑
r W[r], so that W′ and

∑
r W[r] have the same

reduced matrices W(n) (as defined in Proposition 2). As∑
r W[r] is assumed to satisfy the constraints of Eq. (19),

then so does W′ (with F replaced by FF ′), so that W′
is the process matrix of a (deterministic) QC-FO with
the same order and with the global future space HFF ′

as
per Proposition 2. We can thus decompose it as W′ =
M1 ∗ M2 ∗ · · · ∗ MN ∗ M ′

N+1, where all M1 ∈ L(HPAI
1α1),

Mn+1 ∈ L(HAO
n αnAI

n+1αn+1), and M ′
N+1 ∈ L(HAO

NαN FF ′
) are

CP maps satisfying the TP conditions of Eqs. (14)–(16).
Defining the CP maps M [r]

N+1:=M ′
N+1 ∗ |r〉〈r|F ′

, whose
sum

∑
r M [r]

N+1 = TrF ′ M ′
N+1 satisfies the TP condition of

Eq. (16), we then obtain W[r] = W′ ∗ |r〉〈r|F ′ = M1 ∗ M2 ∗
· · · ∗ MN ∗ M [r]

N+1, which is of the form of Eq. (70) and
thus proves according to Proposition 9 that {W[r]}r indeed
has a realization as a pQC-FO with the fixed causal order
(A1, . . . ,AN ).

2. QC-CCs: Proofs of Propositions 5 and 13

In this section, we derive the TP conditions for QC-CCs,
and prove Propositions 5 and 13.

To avoid repetitions we define here kN+1:=F ,

HAI
kN+1 := HF and HÃI

N+1 := HF , as, for instance,

in M→kN+1
(k1,...,kN )

= M→F
(k1, ..., kN )

[∈ L (HAO
kN

αN AI
kN+1 ) =

L(HAO
kN
αN F

)] and W(k1,...,kN ,kN+1) = W(k1,...,kN ,F)[∈
L(HPAIO

N AI
kN+1 ) = L(HPAIO

N F)].

a. Trace-preserving conditions

The TP conditions of Eqs. (23)–(25) for QC-CCs can
be obtained in the very same way as those for the QC-FO
case (see Appendix B 1a) after noting that, according to
the description of QC-CCs given in Sec. IV A, it is now
[for each (k1, . . . , kn)] the sums [118]

∑
kn+1

M→kn+1
(k1,...,kn)

that
must preserve the trace of all possible input states (rather
than the internal operations Mn+1 in the QC-FO case).

Note that these constraints can also similarly be obtained
from the alternative description of QC-CCs given in Sec.
V A, by requiring that the global internal circuit operations
M̃n preserve the trace of their global input states (includ-
ing the control systems), as well as the probabilities for a
given order (k1, . . . , kn) (for the thus-far applied external
operations) to be realized. Let us indeed check that, for
consistency.

Suppose that one inputs some state ρ ∈ L(HP) into the
circuit. Requiring first that M̃1 [with Choi matrix given in
Eq. (40)] preserves the trace of ρ, we must have

Tr[M̃1(ρ)] = Tr[ρ ∗ M̃1]

= Tr
[(
ρT ⊗1ÃI

1α1C1
)(∑

k1
M̃→k1

∅ ⊗ [[(k1)]]C1
)]

= Tr
[
ρT(∑

k1
TrAI

k1
α1

M→k1
∅

)] = Tr[ρ],

(B18)

(where the isomorphism between HÃI
1 and each HAI

k1

allowed us to remove the tildes in the last line, that is,
we use that TrÃI

1α1
M̃→k1

∅ = TrÃI
1α1

[M→k1
∅ ∗ |1〉〉〈〈1|AI

k1
ÃI

1 ] =
TrAI

k1
α1

M→k1
∅ , see Ref. [77]). As this must hold for all

ρ ∈ L(HP), this constraint is indeed equivalent to Eq.
(23).

For n = 1, . . . , N , the states �′
(n) ∈ L(HÃO

n αnC′
n) and

�(n+1) ∈ L(HÃI
n+1αn+1Cn+1) of the global system going

through the circuit right before and right after the appli-
cation of M̃n+1, [119] respectively, are easily obtained
recursively as

�′
(n) = ρ ∗ M̃1 ∗ Ã1 ∗ M̃2 ∗ Ã2 ∗ · · · ∗ M̃n ∗ Ãn

=
∑

(k1,...,kn)

(
ρ ∗ M→k1

∅ ∗ Ak1 ∗ M→k2
(k1)

∗ Ak2 ∗ · · · ∗ M→kn
(k1,...,kn−1)

∗ Akn ∗ |1〉〉〈〈1|AO
kn

ÃO
n

) ⊗ [[(k1, . . . , kn)]]C′
n , (B19)
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and

�(n+1) = ρ ∗ M̃1 ∗ Ã1 ∗ M̃2 ∗ Ã2 ∗ · · · ∗ M̃n ∗ Ãn ∗ M̃n+1

=
∑

(k1,...,kn,kn+1)

(
ρ ∗ M→k1

∅ ∗ Ak1 ∗ M→k2
(k1)

∗ Ak2 ∗ · · · ∗ M→kn
(k1,...,kn−1)

∗ Akn ∗ M→kn+1
(k1,...,kn)

∗ |1〉〉〈〈1|A
I
kn+1

ÃI
n+1

)

⊗ [[(k1, . . . , kn, kn+1)]]Cn+1 , (B20)

where the isomorphism from Ref. [77] allows us
again to use the “nontilde” versions of the inter-
nal and external circuit operations, as we did also in
Eq. (43) of the main text; only the identifications of

HAO
kn with HÃO

n , and that of HAI
kn+1 with HÃI

n+1 need

to be maintained here [120]. The probability that a
given order (k1, . . . , kn) is realized can be obtained
in both cases as Tr[{1Ãn

Oαn ⊗ [[(k1, . . . , kn)]]C′
n}�′

(n)] and
∑

kn+1
Tr[{1ÃI

n+1αn+1 ⊗ [[(k1, . . . , kn, kn+1)]]Cn+1}�(n+1)],
with [similarly to Eqs. (B6)–(B7)]

Tr
[{1Ãn

Oαn ⊗ [[(k1, . . . , kn)]]C′
n}�′

(n)

] = Tr
[
ρ ∗ M→k1

∅ ∗ Ak1 ∗ · · · ∗ M→kn
(k1,...,kn−1)

∗ Akn

]

= Tr
[(
ρ ⊗ Ak1 ⊗ · · · ⊗ Akn

)T{ Trαn(M
→k1
∅ ∗ · · · ∗ M→kn

(k1,...,kn−1)
)⊗ 1AO

kn
}]

, (B21)

and
∑

kn+1

Tr[{1ÃI
n+1αn+1 ⊗ [[(k1, . . . , kn, kn+1)]]Cn+1}�(n+1)]

=
∑

kn+1

Tr
[
ρ ∗ M→k1

∅ ∗ Ak1 ∗ · · · ∗ Akn ∗ M→kn+1
(k1,...,kn)

]

= Tr
[(
ρ ⊗ Ak1 ⊗ · · · ⊗ Akn

)T ∑

kn+1

TrAI
kn+1

αn+1
(M→k1

∅ ∗ · · · ∗ M→kn+1
(k1,...,kn)

)
]
. (B22)

For a classical control these probabilities must be
preserved—i.e., the expressions in Eqs. (B21) and (B22)
above must be equal—for each (well-defined) order
(k1, . . . , kn). (Note that imposing that all these probabilities
are preserved also implies that the whole trace of �′

(n) and
�(n+1) is preserved.) As this must hold for all ρ ∈ L(HP)

and all Ak ∈ L(HAIO
k ), we then obtain the TP conditions

of Eqs. (24) (for 1 ≤ n < N ) and (25) (for n = N , with

kN+1 = F , HAI
kN+1 = HF and a trivial HαN+1), as claimed

above.
To derive the TP conditions for probabilistic QC-CCs,

one again follows the exact same reasoning as for the deter-
ministic case, with M→F

(k1,...,kN )
replaced by

∑
r M→F [r]

(k1,...,kN )
.

b. Proof of Proposition 5: Necessary condition

Consider the process matrix W = ∑
(k1,...,kN )

W(k1,...,kN ,F)
of a QC-CC, as per Proposition 4, with the W(k1,...,kN ,F)
of the form of Eq. (29), and with the Choi matrices

M→kn+1
(k1,...,kn)

(� 0) of the internal circuit operations satisfying
the TP conditions of Eqs. (23)–(25).

Let us then define, for all 1 ≤ n ≤ N and all (k1, . . . , kn),
the matrices

W(k1,...,kn) := Trαn

(
M→k1

∅ ∗ M→k2
(k1)

∗ · · · ∗ M→kn
(k1,...,kn−1)

)

∈ L(HPAIO
{k1,...,kn−1}AI

kn ). (B23)

As all M→kn+1
(k1,...,kn)

� 0, it directly follows that all W(k1,...,kn)

(including the W(k1,...,kN ,kN+1) = W(k1,...,kN ,F) for n = N +
1) are also positive semidefinite. Furthermore, the con-
straints of Eq. (31) are simply equivalent to the TP con-
ditions of Eqs. (23)–(25), and are thus readily satisfied by
assumption.

c. Proof of Proposition 5: Sufficient condition

Consider a Hermitian matrix W ∈ L(HPAIO
N F) that

admits a decomposition in terms of positive semidefinite
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matrices W(k1,...,kn) ∈ L(HPAIO
{k1,...,kn−1}AI

kn ) and W(k1,...,kN ,F) ∈
L(HPAIO

N F) satisfying Eqs. (30) and (31). We show that
W is the process matrix of a QC-CC by explicitly
constructing some internal circuit operations M→kn+1

(k1,...,kn)
satisfying the TP conditions of Eqs. (23)–(25), as
required.

The positive semidefinite matrices W(k1,...,kn) (for 1 ≤
n ≤ N + 1, recalling that kN+1 = F) admit a spectral
decomposition of the form

W(k1,...,kn) =
∑

i

|wi
(k1,...,kn)

〉〈wi
(k1,...,kn)

| , (B24)

for some eigenbasis consisting of r(k1,...,kn) := rank
W(k1,...,kn) (nonnormalized and nonzero) orthogonal vectors

|wi
(k1,...,kn)

〉 ∈ HPAIO
{k1,...,kn−1}AI

kn . Similarly to what we did for
the QC-FO case, let us introduce, for each n = 1, . . . , N
+ 1, some ancillary Hilbert space Hαn of dimension rn ≥
max(k1,...,kn) r(k1,...,kn) with computational basis {|i〉αn}rn

i=1,
and define [121]

|w(k1,...,kn)〉 :=
∑

i

|wi
(k1,...,kn)

〉 ⊗ |i〉αn ∈ HPAIO
{k1,...,kn−1}AI

kn
αn ,

(B25)

such that W(k1,...,kn) = Trαn |w(k1,...,kn)〉〈w(k1,...,kn)|.
Similarly again to the QC-FO case, it can be

seen here, via Observation 18, that the assump-
tion [from Eq. (31)] that

∑
kn+1

TrAI
kn+1

W(k1,...,kn,kn+1) =
∑

kn+1
TrAI

kn+1
αn+1

|w(k1,...,kn+1)〉〈w(k1,...,kn+1)| = W(k1,...,kn) ⊗
1AO

kn implies that |w(k1,...,kn+1)〉 ∈ range(W(k1,...,kn))⊗
HAO

kn
AI

kn+1
αn+1 . Recalling again Lemma 17, this property

ensures that one can relate |w(k1,...,kn)〉 and |w(k1,...,kn+1)〉
by defining, for 1 ≤ n ≤ N and for each (k1, . . . , kn, kn+1)

[122],

|w+
(k1,...,kn)

〉 := (〈w(k1,...,kn)| W+
(k1,...,kn)

⊗ 1αn)T

∈ HPAIO
{k1,...,kn−1}AI

kn
αn , (B26)

|V→kn+1
(k1,...,kn)

〉〉 := |w+
(k1,...,kn)

〉 ∗ |w(k1,...,kn,kn+1)〉

∈ HAO
kn
αnAI

kn+1
αn+1 , (B27)

so that

|w(k1,...,kn)〉 ∗ |V→kn+1
(k1,...,kn)

〉〉 = |w(k1,...,kn,kn+1)〉 . (B28)

By further defining |V→k1
∅ 〉〉 := |w(k1)〉 ∈ HPAI

k1
α1 , one

recursively obtains

|V→k1
∅ 〉〉 ∗ |V→k2

(k1)
〉〉 ∗ · · · ∗ |V→kn

(k1,...,kn−1)
〉〉 = |w(k1,...,kn)〉 ,

(B29)

for all 1 ≤ n ≤ N + 1 and all (k1, . . . , kn).
From the double-ket vectors |V→kn

(k1,...,kn−1)
〉〉 just intro-

duced we can then define the operators

M→kn
(k1,...,kn−1)

:= |V→kn
(k1,...,kn−1)

〉〉〈〈V→kn
(k1,...,kn−1)

| for 1 ≤ n ≤ N

and M→F
(k1,...,kN )

:= TrαN+1 |V→F
(k1,...,kN )

〉〉〈〈V→F
(k1,...,kN )

| ,
(B30)

such that

Trαn(M
→k1
∅ ∗ M→k2

(k1)
∗ · · · ∗ M→kn

(k1,...,kn−1)
)

= Trαn |w(k1,...,kn)〉〈w(k1,...,kn)| = W(k1,...,kn)

and M→k1
∅ ∗ M→k2

(k1)
∗ · · · ∗ M→F

(k1,...,kN )
= W(k1,...,kN ,F).

(B31)

As the W(k1,...,kn) are assumed to satisfy the
constraints of Eq. (31), then by construction the
(positive semidefinite) M→kn

(k1,...,kn−1)
satisfy the [equiv-

alent, once Eq. (B31) is established] TP conditions
of Eqs. (23)–(25). This proves that the operators
M→kn
(k1,...,kn−1)

define valid QC-CC internal circuit operations

M→k1
∅ : L(HP) → L(HAI

k1
α1), M→kn+1

(k1,...,kn)
: L(HAO

kn
αn) →

L(HAI
kn+1

αn+1
) for n = 1, . . . , N − 1, and M→F

(k1,...,kN )
:

L(HAO
kN
αN ) → L(HF). The last line of Eq. (B31)

above shows, according to Proposition 4, that W =∑
(k1,...,kN )

W(k1,...,kN ,F) is indeed the process matrix of the
QC-CC thus constructed.

d. Proof of Proposition 13

The proofs above extend again easily to the characteri-
zation of probabilistic QC-CCs, as given by Proposition 13
in Sec. VI B.

For the necessary condition, recall that according to
Proposition 12, a pQC-CC is described by a set of positive
semidefinite matrices W[r] obtained indeed as in Eq. (74),
with the matrices W[r]

(k1,...,kN ,F) obtained as in Eq. (73). As all

matrices M→kn
(k1,...,kn−1)

and
∑

r M→F [r]
(k1,...,kN )

must satisfy the TP
conditions of Eqs. (23)–(25), then the (positive semidef-
inite) matrices W(k1,...,kn) := Trαn(M

→k1
∅ ∗ M→k2

(k1)
∗ · · · ∗

M→kn
(k1,...,kn−1)

) and W(k1,...,kN ,F) := ∑
r W[r]

(k1,...,kN ,F) = M→k1
∅ ∗

M→k2
(k1)

∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ (∑
r M→F [r]

(k1,...,kN )

)
are those that

enter the decomposition of the process matrix of a QC-CC
(see Sec. B 2b above), and therefore must satisfy Eq. (31)
of Proposition 5.

Conversely for the sufficient condition, consider a
set of positive semidefinite matrices W[r] that can be
decomposed in terms of positive semidefinite matri-
ces W(k1,...,kn) and W[r]

(k1,...,kN ,F) as per Proposition 13,
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and define again the “extended” matrix W′ := ∑
r W[r] ⊗

|r〉〈r|F ′ ∈ L(HPAIO
N FF ′

) by introducing an additional Hilbert
space HF ′

with computational basis states {|r〉F ′ }r.
We note now that W′ is the process matrix of
a (deterministic) QC-CC with global future space
HFF ′

[96], since it has a decomposition as in Propo-
sition 5 (with W′

(k1,...,kN ,FF ′) := ∑
r W[r]

(k1,...,kN ,F) ⊗ |r〉〈r|F ′

and TrFF ′ W′
(k1,...,kN ,FF ′) = TrF W(k1,...,kN ,F), which satisfies

the corresponding constraints by assumption). One can
therefore construct internal circuit operations M→kn+1

(k1,...,kn)

and M ′ →FF ′
(k1,...,kN )

as in the proof for the sufficient con-
dition of Proposition 5 above, satisfying the TP
conditions of Eqs. (23)–(25), such that, in partic-
ular, W′

(k1,...,kN ,FF ′) = M→k1
∅ ∗ M→k2

(k1)
∗ · · · ∗ M→kN

(k1,...,kN−1)
∗

M ′ →FF ′
(k1,...,kN )

. Defining the CP maps M→F [r]
(k1,...,kN )

:=M ′ →FF ′
(k1,...,kN )

∗
|r〉〈r|F ′

(whose sum
∑

r M→F [r]
(k1,...,kN )

= TrF ′ M ′ →FF ′
(k1,...,kN )

satisfies

the required TP condition), we obtain W[r]
(k1,...,kN ,F) =

W′
(k1,...,kN ,FF ′) ∗ |r〉〈r|F ′ = M→k1

∅ ∗ M→k2
(k1)

∗ · · · ∗ M→kN
(k1,...,kN−1)

∗ M→F [r]
(k1,...,kN )

, so that each W[r] is indeed of the form of Eqs.
(72) and (73), which proves, according to Proposition 12,
that {W[r]}r is a pQC-CC.

3. QC-QCs: Proofs of Propositions 7 and 15

In this section, we derive the TP conditions for QC-QCs,
and prove Propositions 7 and 15.

As in the previous section, we define kN+1:=F ,

HAI
kN+1 := HF and HÃI

N+1 := HF , and here also HαN+1 :=
HαF , as for instance in |V→kN+1

KN \kN ,kN
〉〉 = |V→F

N\kN ,kN
〉〉 (∈

HAO
kN
αN AI

kN+1
αN+1 = HAO

kN
αN FαF ) and W(KN ,kN+1) = W(N ,F)

:= W[∈ L(HPAIO
KN

AI
kN+1 ) = L(HPAIO

N F)] (with KN = N ).

a. Trace-preserving conditions

The TP conditions of Eqs. (57)–(59) are obtained by
imposing that each internal circuit operation Ṽn in a QC-
QC preserves the norm (as we consider pure states and
pure operations) of their global input state, involving the
target, the ancillary and the control systems.

Suppose that one inputs some state |ψ〉 ∈ HP into the
circuit. The global state |ϕ(1)〉 ∈ HÃI

1α1C1 right after the first
internal circuit operation Ṽ1 is

|ϕ(1)〉 = |ψ〉 ∗ |Ṽ1〉〉 =
∑

k1

( |ψ〉 ∗ |Ṽ→k1
∅,∅ 〉〉 ) ⊗ |∅, k1〉C1 .

(B32)
We want its norm to be equal to that of |ψ〉—i.e., we want

〈ϕ(1)|ϕ(1)〉 =
∑

k1

Tr
[ |ψ〉〈ψ | ∗ |Ṽ→k1

∅,∅ 〉〉〈〈Ṽ→k1
∅,∅ | ]

= Tr
[( |ψ〉〈ψ | )T( ∑

k1

TrAI
k1
α1

|V→k1
∅,∅ 〉〉〈〈V→k1

∅,∅ | )]

= 〈ψ |ψ〉 { = Tr
[( |ψ〉〈ψ | )T]}, (B33)

where, similarly to Eq. (B18), we removed the tildes by
using the appropriate isomorphism (see Ref. [79]).

As this must hold for all |ψ〉 ∈ HP, this constraint is
indeed equivalent to Eq. (57) (with |w(∅,k1)〉 = |w(k1)〉 =
|V→k1

∅,∅ 〉〉).
For n = 1, . . . , N , the states |ϕ′

(n)〉 ∈ HÃO
n αnC′

n and

|ϕ(n+1)〉 ∈ HÃI
n+1αn+1Cn+1 of the global system going

through the circuit right before and right after the applica-
tion of Ṽn+1, respectively, are easily obtained recursively,
and can be expressed—by rearranging the sums, intro-
ducing the vectors |ψ , AKn〉 := |ψ〉⊗

k∈Kn
|Ak〉〉 ∈ HPAIO

Kn

and using the vectors |w(Kn−1,kn)〉 ∈ HPAIO
Kn−1

AI
kn
αn defined

in Eqs. (55) and (61)—as

|ϕ′
(n)〉 = |ψ〉 ∗ |Ṽ1〉〉 ∗ |Ã1〉〉 ∗ |Ṽ2〉〉 ∗ |Ã2〉〉 ∗ · · · ∗ |Ṽn〉〉 ∗ |Ãn〉〉

=
∑

(k1,...,kn)

( |ψ〉 ∗ |V→k1
∅,∅ 〉〉 ∗ |Ak1〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |Ak2〉〉 ∗ · · · ∗ |V→kn

{k1,...,kn−2},kn−1
〉〉 ∗ |Akn〉〉 ∗ |1〉〉AO

kn
ÃO

n
)

⊗ |{k1, . . . , kn−1}, kn〉C′
n

=
∑

Kn,(k1,...,kn)∈Kn

|ψ , AKn〉 ∗ ( |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ · · · ∗ |V→kn

{k1,...,kn−2},kn−1
〉〉 ) ∗ |1〉〉AO

kn
ÃO

n ⊗ |{k1, . . . , kn−1}, kn〉C′
n

=
∑

Kn,kn∈Kn

( |ψ , AKn〉 ∗ |w(Kn\kn,kn)〉 ∗ |1〉〉AO
kn

ÃO
n

) ⊗ |Kn\kn, kn〉C′
n , (B34)
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and

|ϕ(n+1)〉 = |ψ〉 ∗ |Ṽ1〉〉 ∗ |Ã1〉〉 ∗ · · · ∗ |Ṽn〉〉 ∗ |Ãn〉〉 ∗ |Ṽn+1〉〉

=
∑

(k1,...,kn,kn+1)

( |ψ〉 ∗ |V→k1
∅,∅ 〉〉 ∗ |Ak1〉〉 ∗ · · · ∗ |Akn〉〉 ∗ |V→kn+1

{k1,...,kn−1},kn
〉〉 ∗ |1〉〉AI

kn+1
ÃI

n+1
) ⊗ |{k1, . . . , kn}, kn+1〉Cn+1

=
∑

Kn,(k1,...,kn)∈Kn,
kn+1 /∈Kn

|ψ , AKn〉 ∗ ( |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ · · · ∗ |V→kn+1

{k1,...,kn−1},kn
〉〉 ) ∗ |1〉〉AI

kn+1
ÃI

n+1 ⊗ |{k1, . . . , kn}, kn+1〉Cn+1

=
∑

Kn,kn+1 /∈Kn

( |ψ , AKn〉 ∗ |w(Kn,kn+1)〉 ∗ |1〉〉AI
kn+1

ÃI
n+1

) ⊗ |Kn, kn+1〉Cn+1 , (B35)

(where the sums
∑

Kn
are over all subsets Kn of N such that |Kn| = n). From the second lines in Eqs. (B34)–(B35), we

again removed the tildes using the appropriate isomorphism [similarly to Eqs. (B19)–(B20) above, and as in Eq. (60) in
the main text].

The squared norms of |ϕ′
(n)〉 and |ϕ(n+1)〉 are then

〈ϕ′
(n)|ϕ′

(n)〉 =
∑

Kn,kn∈Kn

Tr
[ |ψ , AKn〉〈ψ , AKn | ∗ |w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ∗ |1〉〉〈〈1|AO

kn
ÃO

n
]

=
∑

Kn

Tr
[( |ψ , AKn〉〈ψ , AKn |

)T( ∑

kn∈Kn

Trαn |w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ⊗ 1AO
kn

)]
, (B36)

and

〈ϕ(n+1)|ϕ(n+1)〉 =
∑

Kn,kn+1 /∈Kn

Tr
[ |ψ , AKn〉〈ψ , AKn | ∗ |w(Kn,kn+1)〉〈w(Kn,kn+1)| ∗ |1〉〉〈〈1|A

I
kn+1

ÃI
n+1

]

=
∑

Kn

Tr
[( |ψ , AKn〉〈ψ , AKn |

)T( ∑

kn+1 /∈Kn

TrAI
kn+1

αn+1
|w(Kn,kn+1)〉〈w(Kn,kn+1)|

)]
. (B37)

We require these norms to be the same, for all possible |ψ〉 and all Ak. Let us take, for a given Kn with |Kn| = n, all
Ak′ = 0 for all k′ /∈ Kn. The sums

∑
Kn

in Eqs. (B36) and (B37) above then reduce to just the single term corresponding
to that particular Kn. Hence, the equality of Eqs. (B36) and (B37) must in fact hold for each Kn individually (and not just
for their sums):

Tr
[( |ψ , AKn〉〈ψ , AKn |

)T( ∑

kn+1 /∈Kn

TrAI
kn+1

αn+1
|w(Kn,kn+1)〉〈w(Kn,kn+1)|

)]

= Tr
[( |ψ , AKn〉〈ψ , AKn |

)T( ∑

kn∈Kn

Trαn |w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ⊗ 1AO
kn

)]
. (B38)

As this must hold for the |ψ , AKn〉〈ψ , AKn | spanning the
whole spaces L(HPAIO

Kn ), this implies that one must have,
for all Kn,

∑

kn+1 /∈Kn

TrAI
kn+1

αn+1
|w(Kn,kn+1)〉〈w(Kn,kn+1)|

=
∑

kn∈Kn

Trαn |w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ⊗ 1AO
kn , (B39)

which indeed gives the TP conditions of Eqs. (58) (for 1 ≤
n < N ) and (59) (for n = N , with kN+1 = F , HAI

kN+1 =
HF , αN+1 = αF and |w(KN ,kN+1)〉 = |w(N ,F)〉).

For the case of probabilistic QC-QCs, the only differ-
ence is that we impose

∑
r 〈ϕ[r]

(N+1)|ϕ[r]
(N+1)〉 = 〈ϕ′

(N )|ϕ′
(N )〉,

where |ϕ[r]
(N+1)〉 = |ψ〉 ∗ |Ṽ1〉〉 ∗ |Ã1〉〉 ∗ · · · ∗ |ṼN 〉〉 ∗ |ÃN 〉〉 ∗

|Ṽ[r]
N+1〉〉 is the (unnormalized) state of the global sys-

tem after the last internal operation Ṽ[r]
N+1, corresponding
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to the classical outcome r of the probabilistic circuit.
The same reasoning as above leads to the same con-
straint as Eq. (59), with TrFαF |w(N ,F)〉〈w(N ,F)| replaced by∑

r TrFαF |w[r]
(N ,F)〉〈w[r]

(N ,F)|.

b. Proof of Proposition 7: Necessary condition

Consider the process matrix W = TrαF |w(N ,F)〉〈w(N ,F)|
with |w(N ,F)〉 = ∑

(k1,...,kN )
|w(k1,...,kN ,F)〉 of a QC-QC, as

per Proposition 6, with |w(k1,...,kN ,F)〉 ∈ HPAIO
N FαF of the

form of Eq. (62), and with the internal circuit operations
V→kn+1
Kn−1,kn

satisfying the TP conditions of Eqs. (57)–(59),
written in terms of the vectors |w(Kn−1,kn)〉 defined in Eq.
(55).

Let us then define, for all 1 ≤ n ≤ N , all subsets Kn−1 of
N with |Kn−1| = n − 1 and all kn ∈ N \Kn−1, the matrices

W(Kn−1,kn) := Trαn |w(Kn−1,kn)〉〈w(Kn−1,kn)|

∈ L(HPAIO
Kn−1

AI
kn ). (B40)

It is clear, from their definition, that all W(Kn−1,kn) are
positive semidefinite. Furthermore, the constraints of Eq.
(63) are simply equivalent to the TP conditions of Eqs.
(57)–(59), and are thus readily satisfied by assumption.

c. Proof of Proposition 7: Sufficient condition

Consider a Hermitian matrix W ∈ L(HPAIO
N F) such that

there exist positive semidefinite matrices W(Kn−1,kn) ∈
L(HPAIO

Kn−1
AI

kn ) for all Kn−1 � N and kn ∈ N \Kn−1 sat-
isfying Eq. (63). As in the cases above, we show that W is
the process matrix of a QC-QC by explicitly constructing
now some internal circuit operations V→k1

∅,∅ , V→kn+1
Kn−1,kn

, and
V→F
N\kN ,kN

satisfying the TP conditions of Eqs. (57)–(59), as
required.

The positive semidefinite matrices W(Kn−1,kn) (for 1 ≤
n ≤ N + 1, with kN+1:=F and W(N ,F):=W) admit a spec-
tral decomposition of the form

W(Kn−1,kn) =
∑

i

|wi
(Kn−1,kn)

〉〈wi
(Kn−1,kn)

| , (B41)

for some eigenbasis consisting of r(Kn−1,kn) := rank
W(Kn−1,kn) (nonnormalized and nonzero) orthogonal vec-

tors |wi
(Kn−1,kn)

〉 ∈ HPAIO
Kn−1

AI
kn . Similarly to what we did

for the previous cases, let us introduce, for each n =
1, . . . , N + 1, some ancillary Hilbert space Hαn of dimen-
sion rn ≥ max(Kn−1,kn) r(Kn−1,kn) with computational basis
{|i〉αn}rn

i=1, and define [123]

|w(Kn−1,kn)〉 :=
∑

i

|wi
(Kn−1,kn)

〉 ⊗ |i〉αn ∈ HPAIO
Kn−1

AI
kn
αn ,

(B42)

such that W(Kn−1,kn) = Trαn |w(Kn−1,kn)〉〈w(Kn−1,kn)|.
Contrary to the previous two cases, we do not want to

relate |w(Kn−1,kn)〉 and |w(Kn,kn+1)〉 directly by a link product
[as in Eqs. (B14) and (B28)], but via a sum as in Eq. (56).
Some more preliminary work is therefore required. To this
aim, let us introduce some Hilbert space HO′

isomorphic
to any HAO

k (which we assumed to all be isomorphic)
and some N -dimensional Hilbert space � with computa-
tional basis {|k〉�}k∈N , and let us define, for each nonempty
subset Kn of N ,

|ωKn〉 :=
∑

kn∈Kn

|w(Kn\kn,kn)〉 ⊗ |1〉〉AO
kn

O′ ⊗ |kn〉�

∈ HPAIO
KnαnO′� , (B43)

such that �Kn := TrαnO′� |ωKn〉〈ωKn | = ∑
kn

Trαn

|w(Kn\kn,kn)〉〈w(Kn\kn,kn)| ⊗ 1AO
kn = ∑

kn
W(Kn\kn,kn) ⊗ 1AO

kn ∈
L(HPAIO

Kn ).
As before it can be seen here, via Observa-

tion 18, that the assumption [from Eq. (63)] that∑
kn+1

TrAI
kn+1

W(Kn,kn+1) = ∑
kn+1

TrAI
kn+1

αn+1
|w(Kn,kn+1)〉

〈w(Kn,kn+1)| = ∑
kn

W(Kn\kn,kn) ⊗ 1AO
kn = �Kn implies that

|w(Kn,kn+1)〉 ∈ range(�Kn)⊗ HAI
kn+1

αn+1 . Using once again
Lemma 17, this ensures that one can relate |ωKn〉 and
|w(Kn,kn+1)〉 by defining, for each Kn and kn+1 /∈ Kn,

|ω+
Kn

〉 := (〈ωKn |�+
Kn

⊗ 1αnO′�)T ∈ HPAIO
KnαnO′� , (B44)

|Vkn+1
Kn

〉 := |ω+
Kn

〉 ∗ |w(Kn,kn+1)〉 ∈ HαnO′�AI
kn+1

αn+1 , (B45)

so that

|ωKn〉 ∗ |Vkn+1
Kn

〉 = |w(Kn,kn+1)〉 . (B46)

From |Vkn+1
Kn

〉 thus obtained, let us then define [124]

|V→kn+1
Kn\kn,kn

〉〉 := ( |1〉〉AO
kn

O′ ⊗ |kn〉�
) ∗ |Vkn+1

Kn
〉

∈ HAO
kn
αnAI

kn+1
αn+1 . (B47)

With this, and using the definition of Eq. (B43), Eq. (B46)
gives

∑

kn∈Kn

|w(Kn\kn,kn)〉 ∗ |V→kn+1
Kn\kn,kn

〉〉 = |w(Kn,kn+1)〉 . (B48)

By further defining |V→k1
∅,∅ 〉〉 := |w(∅,k1)〉 ∈ HPAI

k1
α1 and

|w(k1,...,kn)〉 := |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |V→k3

{k1},k2
〉〉

∗ · · · ∗ |V→kn
{k1,...,kn−2},kn−1

〉〉 , (B49)
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for all (k1, . . . , kn), one recursively obtains from Eq. (B48)

|w(Kn,kn+1)〉 =
∑

(k1,...,kn):
{k1,...,kn}=Kn

|w(k1,...,kn,kn+1)〉 , (B50)

for all 0 ≤ n ≤ N and all Kn, kn+1, as desired [see Eq.
(55)].

Recall that the matrices W(Kn−1,kn) = Trαn |w(Kn−1,kn)〉
〈w(Kn−1,kn)| are assumed to satisfy Eq. (63). This implies
that the operations V→k1

∅,∅ , V→kn+1
Kn\kn,kn

, and V→F
N\kN ,kN

con-
structed above (via their Choi representations) satisfy the
[equivalent, once Eq. (B50) is established, with |w(k1,...,kn)〉
defined in Eq. (B49)] TP conditions of Eqs. (57)–(59), and
thus define valid internal circuit operations for a QC-QC.

All in all, we thus find that

W = W(N ,F) = TrαF |w(N ,F)〉〈w(N ,F)| , (B51)

with αF := αN+1, |w(N ,F)〉 = ∑
(k1,...,kN )

|w(k1,...,kN ,F)〉
according to Eq. (B50) (for n = N + 1, with again
kN+1:=F), and with the |w(k1,...,kN ,F)〉 defined by Eq.
(B49)—as in Proposition 6. This proves that W is indeed
the process matrix of the QC-QC thus constructed.

d. Proof of Proposition 15

Once again, the proofs above extend easily to the char-
acterization of probabilistic QC-QCs, as given by Proposi-
tion 15 in Sec. VI C, in an analogous way to the proofs for
pQC-FOs and pQC-CCs.

For the necessary condition, consider a pQC-QC
{W[r]}r—i.e., according to Proposition 12, a set of
matrices W[r] of the form of Eq. (77), with the
operations V→k1

∅,∅ , V→kn+1
Kn−1,kn

, and V→F[r]
N\kN ,kN

satisfying the
TP conditions of Eqs. (57)–(58) and (76). Introduc-
ing some additional ancillary system α′

F with com-
putational basis states |r〉α′

F , and defining V→F
N\kN ,kN

:=
∑

r V→F[r]
N\kN ,kN

⊗ |r〉α′
F and |w(N ,F)〉 := ∑

r |w[r]
(N ,F)〉 ⊗ |r〉α′

F ,
one can then write

∑
r W[r] = ∑

r TrαF |w[r]
(N ,F)〉〈w[r]

(N ,F)| =
TrαFα

′
F

|w(N ,F)〉〈w(N ,F)|, with |w(N ,F)〉 of the form of Eq.

(61), and with the operations V→k1
∅,∅ , V→kn+1

Kn−1,kn
, and V→F

N\kN ,kN
now satisfying the appropriate TP conditions (57)–(59) for
a QC-QC (with αF replaced by αFα

′
F ). This shows, accord-

ing to Proposition 6, that
∑

r W[r] is indeed the process
matrix of a QC-QC.

Conversely for the sufficient condition, consider a
set of positive semidefinite matrices {W[r] ∈ L(HPAIO

N F}r
whose sum is the process matrix of a QC-QC. As we
did before, let us define the “extended” matrix W′ :=∑

r W[r] ⊗ |r〉〈r|F ′ ∈ L(HPAIO
N FF ′

) by introducing an addi-
tional Hilbert space HF ′

with computational basis states

|r〉F ′
. The decomposition of

∑
r W[r] in terms of posi-

tive semidefinite matrices W(Kn−1,kn) obtained from Propo-
sition 7 readily gives essentially the same decomposi-
tion for W′, which also satisfies the required constraints
(with just F replaced by FF ′)—which proves that W′
is also the process matrix of a QC-QC. According to
the proof in the previous subsection, we can thus con-
struct internal circuit operations V→k1

∅,∅ , V→kn+1
Kn−1,kn

[satisfy-

ing the TP conditions of Eqs. (57)–(58)] and V→FF ′
N\kN ,kN

,
such that W′ = TrαF |w(N ,FF ′)〉〈w(N ,FF ′)| with |w(N ,FF ′)〉
:= ∑

(k1,...,kN )
|V→k1

∅,∅ 〉〉 ∗ |V→k2
∅,k1

〉〉 · · · ∗ |V→kN
{k1,...,kN−2},kN−1

〉〉 ∗
|V→FF ′

{k1,...,kN−1},kN
〉〉 satisfying the TP condition of Eq.

(59) (with F replaced by FF ′). Defining (via their
Choi representation) the operations |V→F[r]

{k1,...,kN−1},kN
〉〉 :=

|V→FF ′
{k1,...,kN−1},kN

〉〉 ∗ |r〉F ′
and from these the vectors |w[r]

(N ,F)〉
:= ∑

(k1,...,kN )
|V→k1

∅,∅ 〉〉 ∗ |V→k2
∅,k1

〉〉 · · · ∗ |V→kN
{k1,...,kN−2},kN−1

〉〉 ∗
|V→F[r]

{k1,...,kN−1},kN
〉〉 = |w(N ,FF ′)〉 ∗ |r〉F ′

[which now satisfy the
TP condition of Eq. (76)], we find that each W[r] = W′ ∗
|r〉〈r|F ′ = TrαF |w[r]

(N ,F)〉〈w[r]
(N ,F)| is of the form of Eq. (77),

which proves, according to Proposition 14, that {W[r]}r is
indeed a pQC-QC.

APPENDIX C: QUANTUM CIRCUITS WITH
OPERATIONS USED IN PARALLEL

In this Appendix we describe quantum circuits with
operations used in parallel (QC-PARs), and show explic-
itly how these can be obtained as particular cases of
QC-FOs.

We consider a circuit as on the left-hand side in Fig. 13,
with just a first internal circuit operation MP : L(HP) →
L(HAI

N α) [with Choi matrix MP ∈ L(HPAI
N α)] and a

final internal circuit operation MF : L(HAO
N α) → L(HF)

[with Choi matrix MF ∈ L(HAO
N αF)], which satisfy the TP

conditions [easily obtained in the same way as those of
Eqs. (14)–(16) for the more general QC-FO case]

TrAI
N α MP = 1P (C1)

and TrF(MP ∗ MF) = Trα MP ⊗ 1AO
N . (C2)

The corresponding process matrix is easily obtained as

W = MP ∗ MF ∈ L(HPAIO
N F). (C3)

The fact that such a (positive semidefinite) pro-
cess matrix satisfies Eq. (20) in Proposition 3 fol-
lows directly from the TP conditions above, with
W(I) = Trα MP. [Note that it also clearly satisfies Eq.
(19) in Proposition 2, with W(n) = TrAI

{n+1,...,N }α
MP ⊗
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=

. . .

. . .

. . .

. . .

FIG. 13. The left-hand side shows a quantum circuit with operations used in parallel (QC-PAR), with its process matrix represen-
tation given by W = MP ∗ MF . The right-hand side shows an equivalent circuit that conforms to our description of QC-FOs, with
internal circuit operations M2, . . . ,MN that simply transfer the inputs of subsequent operations and the outputs of previous ones via
ancillary systems, and with process matrix representation W = M1 ∗ M2 ∗ · · · ∗ MN+1 = MP ∗ MF . This demonstrates that QC-PARs
are a particular case of QC-FOs.

1AO
{1,...,n−1} for each n.] Conversely, consider a posi-

tive semidefinite matrix W ∈ L(HPAIO
N F) satisfying Eq.

(20). Following the proofs of the previous appendix
(see Appendix B 1c, and Ref. [117], in particular), one
can diagonalize W(I) in the form W(I) = ∑

i |wi
(I)〉〈wi

(I)|
with orthogonal nonzero vectors |wi

(I)〉 ∈ HPAI
N , intro-

duce a (rank W(I))-dimensional ancillary Hilbert space
Hα with computational basis {|i〉α}i, and define |w(I)〉 :=∑

i |wi
(I)〉 |i〉α , MP := |w(I)〉〈w(I)| (such that TrαMP = W(I))

and MF := ∑
i,i′ |i〉〈i′|α ⊗

[(〈wi
(I)|/〈wi

(I)|wi
(I)〉 ⊗ 1AO

N F
)
W

(|wi′
(I)〉/〈wi′

(I)|wi′
(I)〉 ⊗ 1AO

N F
)]

. One can check that the maps
MP and MF thus defined satisfy the TP constraints
(C1)–(C2) above, and allow one to recover W = MP ∗ MF
as the process matrix of the corresponding QC-PAR.

In order to see that our presentation of QC-PARs here
fits in the more general description of QC-FOs, let us
introduce, for each n = 1, . . . , N , some ancillary systems
Hαn := HαO

1 ...α
O
n−1α

I
n+1...α

I
Nα , with each HαI

k isomorphic to
HAI

k and each HαO
k isomorphic to HAO

k so as to transfer the
inputs of subsequent operations and the outputs of previous
ones via these ancillary systems (as hinted at in the main
text); cf. Fig. 13.

The internal circuit operations can then be defined as
follows. The first operation M1 : L(HP) → [L(HAI

1α1) =
L(HAI

1α
I
2...α

I
Nα)] is taken to be formally the same

as MP : L(HP) → L(HAI
N α), up to the identification

αI
k ≡ AI

k (via the isomorphism that relates each HαI
k

to HAI
k ) [125]. The subsequent internal circuit oper-

ations Mn+1 : [L(HAO
n αn) = L(HAO

n α
O
1 ...α

O
n−1α

I
n+1...α

I
Nα)] →

[L(HAI
n+1αn+1) = L(HAI

n+1α
O
1 ...α

O
n α

I
n+2...α

I
Nα)] are taken to

be the identity, up to the identifications AO
n ≡ αO

n and
αI

n+1 ≡ AI
n+1. Finally, the last internal operation MN+1 :

[L(HAO
NαN ) = L(HAO

Nα
O
1 ...α

O
N−1α)] → L(HF) is taken to be

formally the same as L(HAO
N α) → L(HF), up to the iden-

tification αO
k ≡ AO

k .
One can easily verify that one thus recovers the process

matrix as W = M1 ∗ M2 ∗ · · · ∗ MN+1 = MP ∗ MF .
The probabilistic counterpart of a QC-PAR is obtained

by replacing the last internal circuit operation MF by an
instrument {M[r]

F }r, which satisfies the TP condition of
Eq. (C2), with MF replaced by

∑
r M [r]

F . It is immedi-
ate to check that the set of probabilistic process matrices
{W[r]}r, with W[r] = MP ∗ M [r]

F satisfies the characteriza-
tion of Proposition 11. Conversely, for a set of positive
semidefinite matrices {W[r] ∈ L(HPAIO

N F)}r whose sum is
the process matrix of a QC-PAR, we define (as we did
for pQC-FOs, pQC-CCs, and pQC-QCs in the previ-
ous Appendix) the “extended” matrix W′ := ∑

r W[r] ⊗
|r〉〈r|F ′ ∈ L(HPAIO

N FF ′
), which is the process matrix of a

(deterministic) QC-PAR with the global future space HFF ′

as per Proposition 3, and can thus be decomposed as W′ =
MP ∗ M ′

F , where MP ∈ L(HPAI
N α) and M ′

F ∈ L(HAO
N αFF ′

)

satisfy the TP conditions of Eqs. (C1) and (C2). Defin-
ing the CP maps M [r]

F :=M ′
F ∗ |r〉〈r|F ′

, we obtain W[r] =
W′ ∗ |r〉〈r|F ′ = MP ∗ M [r]

F , which provides a realization of
the matrices W[r] as probabilistic process matrices of a
pQC-PAR.

APPENDIX D: FURTHER EXAMPLES OF QC-QCS

Here we present some generalizations of the examples
of QC-QCs presented in Sec. V D.

1. The “quantum N -switch” and generalizations

The quantum switch can easily be generalized to a
setup involving N operations Ak (all with isomorphic
dt-dimensional input and output Hilbert spaces, for sim-
plicity) and a “control system” used to coherently control
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between applying the operations in the N ! possible permu-
tations of orders (or some subset thereof) [12–14,23,28,30,
33,34,126,127]. Such an N -operation quantum switch (or
“quantum N -switch”) requires, in general, a control sys-
tem of dimension N ! so as to encode each of the possible
permutations π :=(k1, . . . , kN ) of the N operations. It can
be obtained as a QC-QC, for instance by introducing dt-
dimensional Hilbert spaces HPt and HFt (for the “target”
systems in the global past and future) and N !-dimensional
isomorphic Hilbert spaces HPc , HFc , and Hαn (for the
global past and future “control” systems, and for the ancil-
lary systems) with orthonormal bases {|π〉}π∈�N , with�N
denoting the set of all permutations π = (π(1), . . . ,π(N ))
of N , and by taking [128]

∀ k1, |V→k1
∅,∅ 〉〉 = |1〉〉PtAI

k1 ⊗
∑

π∈�N :
π(1)=k1

|π〉Pc ⊗ |π〉α1 ,

∀ Kn−1, kn, kn+1, |V→kn+1
Kn−1,kn

〉〉 = |1〉〉AO
kn

AI
kn+1

⊗
∑

π∈�N :
{π(1),...,π(n−1)}=Kn−1,
π(n)=kn,π(n+1)=kn+1

|π〉αn ⊗ |π〉αn+1 ,

∀ kN , |V→F
N\kN ,kN

〉〉 = |1〉〉AO
kN

Ft ⊗
∑

π∈�N :
π(N )=kN

|π〉αN ⊗ |π〉Fc .

(D1)

These indeed satisfy the TP constraints of Eqs. (57)–(59),
and give W(N )

QS = |w(N )QS 〉〈w(N )QS | with

|w(N )QS 〉 :=
∑

(k1,...,kN )=:π

|π〉Pc |1〉〉PtAI
k1 |1〉〉AO

k1
AI

k2 · · ·

· · · |1〉〉AO
kN−1

AI
kN |1〉〉AO

kN
Ft |π〉Fc ∈ HPcPtAIO

N FtFc ,
(D2)

according to Proposition 6. Note that in the quantum
N -switch, while the control of causal order is indeed
quantum, there is no real notion of “dynamical” causal
order, as the full order π :=(k1, . . . , kN ) corresponding to

each component |π〉Pc |1〉〉PtAI
k1 · · · |1〉〉AO

kN
Ft |π〉Fc of |w(N )QS 〉

is encoded from the start in the state of the control sys-
tem [and, with the choice of Eq. (D1), is transmitted,
untouched, throughout the circuit by the ancillary states
|π〉αn].

As was the case for the quantum switch (i.e., when N =
2), the process matrix TrFc W(N )

QS obtained by tracing out
the system in HFc from the quantum N -switch is simply
an incoherent mixture of terms corresponding to the N !
different orders. Indeed, one obtains a “classical N -switch”
generalizing the classical switch described in Sec. IV C.

While the quantum N -switch is the most straightforward
and extensively studied generalization of the quantum
switch, further generalizations are possible. The simplest
such possibility would be to replace all the identity chan-
nels in the quantum N -switch [i.e., the |1〉〉 in Eq. (D1)
or (D2)] applied to the target system by any, potentially
different, arbitrary unitaries (or even, taking the external
operations to have nonisomorphic input and output Hilbert
spaces, isometries), as was considered, for instance, for
the case of N = 2 in Refs. [45,129]. Such a choice would
indeed still give QC-QCs satisfying the TP constraints of
Eqs. (57)–(59), as is easily verified. Taking this one step
further, one could introduce further ancillary systems α′

n to
act as “memory channels” across the different time slots.

Like the quantum N -switch, none of these generaliza-
tions exhibit any form of really dynamical causal order,
and instead exploit only coherent control conditioned on
some quantum system that remains fixed throughout the
process. Indeed, this is also true of other previous attempts
to define coherent control of causal order (see, e.g., Ref.
[127]).

2. A family of QC-QCs with dynamical and coherently
controlled causal order

Here we present a more general family of QC-QCs, of
which the example given in Sec. V D2 of the main text is a
specific case.

We consider, as in the main text, QC-QCs with N = 3
operations A1, A2, A3. For simplicity, all input and output
Hilbert spaces HAI

k and HAO
k are taken to be isomorphic (of

the same dimension dt). In contrast to the example of Sec.
V D2, we consider here a nontrivial global past P:=PtPc
(with corresponding Hilbert space HP := HPtPc , dPt = dt
and dPc = 3) and global future F:=FtFαFc (with corre-
sponding Hilbert space HF := HFtFαFc , dFt = dt, dFα ≥ 2
and dFc = 3).

A relatively simple way to satisfy the TP constraints of
Eqs. (57)–(59) is to consider operators V→k1

∅,∅ , V→kn+1
Kn−1,kn

, and
V→F
N\kN ,kN

of the form

V→k1
∅,∅ := 1

Pt→AI
k1 ⊗ 〈k1|Pc , (D3)

V→k2
∅,k1

:= (1
AI

k2 ⊗ 〈σ(k1,k2)|α)Vk1 , (D4)

for some isometries [130] Vk1 : HAO
k1 → HAI

k2
α , where

we introduced a two-dimensional auxiliary Hilbert space
Hα with orthonormal basis {|0〉α , |1〉α}, which encodes
the “signature” of the order (k1, k2) in such a way that
σ(k1,k2):=0 if k2 = k1 + 1 (mod 3), and σ(k1,k2):=1 if k2 =
k1 + 2 (mod 3) (and such that ∀ k1,

∑
k2

|σ(k1,k2)〉〈σ(k1,k2)|α
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= 1α);

V→k3
{k1},k2

:= V ′
k3
(1

AO
k2 ⊗ |σ(k1,k2)〉α

′
), (D5)

for some isometries V ′
k3

: HAO
k2
α′ → HAI

k3
α3 , where we

similarly introduce a two-dimensional auxiliary Hilbert

space Hα′
, as well as an ancillary (dFα -dimensional) sys-

tem α3; and

V→F
{k1,k2},k3

:= 1
AO

k3
→Ft ⊗ 1α3→Fα ⊗ |k3〉Fc . (D6)

According to Proposition 6, the process matrix correspond-
ing to the choice of operators above is then W = |w〉〈w|
with |w〉 := ∑

(k1,k2,k3)
|w(k1,k2,k3,F)〉 and

|w(k1,k2,k3,F)〉 = |V→k1
∅,∅ 〉〉 ∗ |V→k2

∅,k1
〉〉 ∗ |V→k3

{k1},k2
〉〉 ∗ |V→F

{k1,k2},k3
〉〉

= |k1〉Pc ⊗ |1〉〉PtAI
k1 ⊗ ( |Vk1〉〉

AO
k1

AI
k2
α ∗ |σ(k1,k2)〉α

)

⊗ ( |V ′
k3

〉〉AO
k2
α′AI

k3
α3 ∗ |σ(k1,k2)〉α

′ ∗ |1〉〉α3Fα
) ⊗ |1〉〉AO

k3
Ft ⊗ |k3〉Fc . (D7)

Since W = |w〉〈w| is a rank-1 process matrix, and since
there exists some preparation of states in the global past
such that the induced process is not compatible with any
given operation being applied first, then it follows (refer-
ring to the same argument as for the “pure” quantum switch
[9,11]) that W is causally nonseparable.

As in the example of Sec. V D2, one may now choose
to fix the preparation of some particular global past
state, and/or (perhaps partially) trace out some systems
in the global future. Whether the resulting process matrix
remains causally nonseparable or not may then depend on
the choice of initial state and of isometries Vk1 and V ′

k3
. The

specific example of the main text corresponds to inputting
the initial state |ψ〉Pt ⊗ 1√

3

∑
k1

|k1〉Pc , choosing Vk1 =
VCOPY and V ′

k3
= VCNOT (see Sec. V E2) and tracing out

F completely, which indeed results in a causally nonsepa-
rable process [131]. Had we chosen, for instance, V ′

k3
=

1
AO

k2
→AI

k3 ⊗ 1α
′→α3 instead (with the same initial state

preparation and the same Vk1 , corresponding to removing
the CNOT gates in Fig. 12), the resulting process matrix
after tracing out F would have become causally separa-

ble. Indeed, one would have |V ′
k3

〉〉AO
k2
α′AI

k3
α3 ∗ |σ(k1,k2)〉α

′ ∗
|1〉〉α3Fα = |1〉〉AO

k2
AI

k3 ⊗ |σ(k1,k2)〉Fα , and thus

TrF W =
∑

(k1,k2,k3)

TrF |w(k1,k2,k3,F)〉〈w(k1,k2,k3,F)| . (D8)

The sum above gives a decomposition of the process TrF W
(now with a trivial F) into terms W(k1,...,k3,F) satisfying
the conditions of Proposition 5, thereby showing that this
process is a QC-CC and thus causally separable.

The construction above thus provides a family of QC-
QCs that can exhibit a range of different behaviors. One
can imagine yet further generalizations, for example by
introducing further ancillary systems in a nontrivial way.

The exploration of such possibilities, or of completely new
families of causally nonseparable QC-QCs, provides a key
direction for future research.

APPENDIX E: QUANTUM CIRCUITS WITH
QUANTUM CONTROL OF CAUSAL ORDER

CANNOT VIOLATE CAUSAL INEQUALITIES

In this final Appendix we prove Proposition 8, that
QC-QCs (and a fortiori, QC-CCs or QC-FOs) can only
generate causal correlations.

For any subset K = {k1, . . . , kn} of N , we denote
by �xK := (xk1 , . . . , xkn) and �aK := (ak1 , . . . , akn) the list
of inputs and outputs for the parties in K, and by
A�aK|�xK := ⊗

k∈KAak |xk ∈ L(HAIO
K ) the corresponding joint

operations (in their Choi representation). With these nota-
tions, the correlations P(�aN |�xN ) obtained from a QC-QC
are given, as in Eq. (69) (and for all �xN , �aN ), by [132]

P(�aN |�xN ) = A�aN |�xN ∗ W, (E1)

with W satisfying the constraints of Proposition 7′,
i.e., such that there exist positive semidefinite matrices
W(Kn−1,kn), for all strict subsets Kn−1 of N and all kn ∈
N \Kn−1, satisfying Eq. (A8). In order to lighten the nota-
tions, we replace here the dummy labels Kn, kn, and kn+1
used in Eq. (A8) by just K, k, and �, respectively.

Let us define, for any nonempty strict subset K of N ,
any k ∈ K and any � ∈ N \K,

r(K,�)(�aK|�xK):=A�aK|�xK ∗ (
TrAI

�
W(K,�)

)
,

s(K\k,k)(�aK|�xK):=A�aK|�xK ∗ (
W(K\k,k) ⊗ 1AO

k
)
,

(E2)

with the first definition extending to r(∅,�)(�a∅|�x∅) :=
Tr W(∅,�) for K = ∅, and the second one also applying to
K = N . We note that r(K,�)(�aK|�xK) and s(K\k,k)(�aK|�xK)
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are nonnegative functions of the inputs and outputs of the
parties in K, which inherit the following properties from
Eq. (A8):

∑

�∈N
r(∅,�)(�a∅|�x∅) = 1,

∀ ∅ � K � N ,
∑

�∈N\K
r(K,�)(�aK|�xK) =

∑

k∈K
s(K\k,k)(�aK|�xK),

and P(�aN |�xN ) =
∑

k∈N
s(N\k,k)(�aN |�xN ). (E3)

This incites us to further define the functions

fK(�aK|�xK) :=
∑

�∈N\K
r(K,�)(�aK|�xK)

=
∑

k∈K
s(K\k,k)(�aK|�xK), (E4)

with f∅(�a∅|�x∅) := ∑
� r(∅,�)(�a∅|�x∅) = 1 and fN (�aN |�xN ) :=∑

k s(N\k,k)(�aN |�xN ) = P(�aN |�xN ) for K = ∅ and K = N ,
respectively.

As the r(K,�) are nonnegative, it is clear from
the definition above that for each K � N , �xK, �aK
there must exist some weights q�K,�xK,�aK ≥ 0 such that∑

�∈N\K q�K,�xK,�aK = 1 and

r(K,�)(�aK|�xK) = fK(�aK|�xK)q�K,�xK,�aK , (E5)

for all � ∈ N \K. Furthermore, using the fact that (for
each x�) the sum

∑
a�

Aa�|x� is a CPTP map, i.e., that

TrAO
�

∑
a�

Aa�|x� = 1AI
� , one finds [replacing K\k by K and

k by �(/∈ K) in the definition of Eq. (E2)] that

∑

a�

s(K,�)(�aK∪�|�xK∪�)

= (
A�aK|�xK ⊗

∑

a�

Aa�|x�
) ∗ (

W(K,�) ⊗ 1AO
�
)

= (
A�aK|�xK ⊗ TrAO

�

∑

a�

Aa�|x�
) ∗ W(K,�)

= (
A�aK|�xK ⊗ 1AI

�
) ∗ W(K,�)

= A�aK|�xK ∗ (
TrAI

�
W(K,�)

) = r(K,�)(�aK|�xK). (E6)

It follows, as above, that one can define (for all K, �xK, �aK
and all � ∈ N \K) a valid conditional probability distribu-
tion P(�)K,�xK,�aK(a�|x�) for party A�—which, as indicated by
the subscript, depends on K, �xK and �aK—such that

s(K,�)(�aK∪�|�xK∪�) = r(K,�)(�aK|�xK) P(�)K,�xK,�aK(a�|x�). (E7)

With this in place, we are now in a position to prove the
following claim.

Proposition 19: For any n = 0, . . . , N, one can decom-
pose the correlations P(�aN |�xN ) as

P(�aN |�xN ) =
∑

K:|K|=n

fK(�aK|�xK)Pcausal
K,�xK,�aK(�aN\K|�xN\K),

(E8)

where the sum runs over all n-partite subsets K of N ,
with fK(�aK|�xK) defined in Eq. (E4), and where (for all
K, �xK, �aK) the Pcausal

K,�aK,�xK(�aN\K|�xN\K) are causal correla-
tions for the parties in N \K [and with Pcausal

N ,�xN ,�aN (�a∅|�x∅) =
1 for the n = N case].

Proof. We prove the above claim recursively, starting from
n = N , down to n = 0.

For n = N , the result follows directly from the fact
that fN (�aN |�xN ) = P(�aN |�xN ) [as noted above, and which
follows from the third line of Eq. (E3)].

Suppose that a decomposition of the form of Eq. (E8)
exists, with a sum over subsets K′ of cardinality n + 1
(with n + 1 ≥ 1). Then using the definition of fK′(�aK′ |�xK′),
rewriting the sums

∑
K′:|K′|=n+1

∑
�∈K′ in the equivalent

form
∑

K:|K|=n
∑

�∈N\K (with K = K′\�, so that K′ =
K ∪ �) and using Eqs. (E7) and (E5), we obtain

P(�aN |�xN ) =
∑

K′:|K′|=n+1

∑

�∈K′
s(K′\�,�)(�aK′ |�xK′)Pcausal

K′,�xK′ ,�aK′ (�aN\K′ |�xN\K′)

=
∑

K:|K|=n

∑

�∈N\K
s(K,�)(�aK∪�|�xK∪�)Pcausal

K∪�,�xK∪�,�aK∪�(�aN\K\�|�xN\K\�)

=
∑

K:|K|=n

fK(�aK|�xK)
∑

�∈N\K
q�K,�xK,�aK P(�)K,�xK,�aK(a�|x�)Pcausal

K∪�,�xK∪�,�aK∪�(�aN\K\�|�xN\K\�). (E9)
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One can see that
∑

�∈N\K q�K,�xK,�aKP(�)K,�xK,�aK(a�|x�)
Pcausal
K∪�,�xK∪�,�aK∪�(�aN\K\�|�xN\K\�) in the above expression

defines (for each K, �xK, �aK) a causal probability distribu-
tion for the parties in N \K [9,46]: indeed it is written
as a convex mixture (with weights q�K,�xK,�aK) of correla-
tions compatible with a given party � ∈ N \K acting first
[with a response function P(�)K,�xK,�aK(a�|x�), which does not
depend on the inputs of the other parties in N \K\�] and
such that whatever that party’s input and output, the con-
ditional correlations Pcausal

K∪�,�xK∪�,�aK∪�(�aN\K\�|�xN\K\�) shared
by the other parties in N \K\� are causal.

This shows that Eq. (E9) provides a decomposition of
P(�aN |�xN ) in the form of Eq. (E8), and thereby proves, by
recursion, that such a decomposition indeed exists for all
n = 0, . . . , N . �

To conclude the proof of Proposition 8, it then suffices
to notice [remembering that f∅(�a∅|�x∅) = 1] that the latter
simply corresponds to the case n = 0 of Proposition 19
above.
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