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Violating Bell’s inequalities (BIs) allows one to certify the preparation of entangled states from min-
imal assumptions—in a device-independent manner. Finding BIs tailored to many-body correlations as
prepared in present-day quantum computers and simulators is however a highly challenging endeavor. In
this work, we focus on BIs violated by very coarse-grain features of the system: two-body correlations
averaged over all permutations of the parties. For two-outcome measurements, specific BIs of this form
have been theoretically and experimentally studied in the past, but it is practically impossible to explic-
itly test all such BIs. Data-driven methods—reconstructing a violated BI from the data themselves—have
therefore been considered. Here, inspired by statistical physics, we develop a novel data-driven approach
specifically tailored to such coarse-grain data. Our approach offers two main improvements over the exist-
ing literature: (1) it is directly designed for any number of outcomes and settings; (2) the obtained BIs are
quadratic in the data, offering a fundamental scaling advantage for the precision required in experiments.
This very flexible method, whose complexity does not scale with the system size, allows us to systemati-
cally improve over all previously known Bell inequalities robustly violated by ensembles of quantum spin
1/2; and to discover novel families of Bell inequalities, tailored to spin-squeezed states and many-body
spin singlets of arbitrary spin-j ensembles.
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I. INTRODUCTION

Multipartite entanglement is a central feature of quan-
tum many-body systems, fundamentally challenging our
ability to efficiently simulate them on classical comput-
ers [1,2]. For the same reason, quantum entanglement
distributed among many degrees of freedom represents
a key resource for quantum simulators and computers.
Consequently, proving that the multipartite states pre-
pared in quantum simulators or computers are indeed
entangled—namely, the task of entanglement certifica-
tion—is a key step in assessing the quantum advantage
offered by such devices. Depending on the assumptions
made about the individual components of the device,
two different paradigms may appear suitable. In a so-
called device-dependent framework, the subsystems are
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well characterized: the Hilbert space is known (e.g., a
qubit space), and the measurements correspond to well-
defined quantum observables (e.g., spin measurements);
in this framework, entanglement certification relies on
the violation of a certain entanglement witness [3]. On
the other hand, in a device-independent framework, no
assumption is made about the Hilbert space of the sub-
systems, and consequently the measurements correspond
to unknown quantum observables; this framework appears
especially suitable when considering effective few-level
systems, where the actual Hilbert space can contain an
unlimited number of physical degrees of freedom. Relax-
ing certain assumptions about the system clearly makes
entanglement certification more demanding; nevertheless,
device-independent entanglement certification is possible
if the violation of a certain Bell inequality [4] can be estab-
lished. Designing many-body Bell tests is the focus of the
present paper.

As fully characterizing the many-body correlations
among the subsystems requires exponentially many mea-
surements, any scalable Bell test must rely on incom-
plete information, obtained from an accessible number of
measurements—for instance, the knowledge of few-body
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correlations among the parties [5–7]. In particular, in order
to mitigate scalability issues, a successful strategy is to
symmetrize the data from which Bell nonlocality is to
be certified, over all permutations of the parties [7–12].
Correspondingly, the Bell inequalities relevant to such
coarse-grain features of the system involve a number of
coefficients, which is independent of the number of par-
ties. On the experimental side [9,10], this allows one to
reduce the statistical uncertainty on the data entering the
Bell inequality; on the theoretical side, this allows one to
reduce the computational complexity, often leading to the
analytical characterization of Bell’s inequalities [7,8,12].
A second challenge for entanglement certification is to take
advantage, to the largest possible extent, of all the avail-
able information, without a priori knowing the structure
of entanglement within the many-body state. In particu-
lar, failing to violate all known Bell inequalities does not
imply that device-independent entanglement certification
is impossible based on the available data. This motivates
the development of data-driven methods [5,7,11], where
the data serve as input into an algorithm, which builds,
from the data themselves, a tailored Bell inequality. In
the case of two-outcome measurements—especially suited
to spin-1/2 systems—a data-driven method for permuta-
tionally invariant Bell inequalities based on semidefinite-
positive relaxations, has been proposed in the past [11].
To our knowledge, this method has however not led to
the discovery of new families of Bell inequalities; and
its extension to more outcomes—relevant to spin-j > 1/2
systems—has never been achieved.

Taking inspiration from statistical physics, in this work
we develop an alternative flexible data-driven method,
which takes, as input data, one- and two-body correlation
functions averaged over all permutations of the subsys-
tems—for any number of measurement outcomes and set-
tings. Similarly to the method of Ref. [11], the complexity
of our algorithm is independent of the system size, and
tests exhaustively an infinite number of Bell inequalities
in a data-driven fashion. This leads us to recover tighter
versions of all previously known permutationally invariant
Bell inequalities [7,8,12] in an unbiased way. Furthermore,
in contrast to Ref. [11], our scheme is directly applica-
ble to any number of outcomes, and is validated by the
study of quantum spin-j > 1/2 ensembles. Finally, the
Bell inequalities inferred by our method are nonlinear in
the input data, and tightly wrap around the polytope of
local-variable models (see Fig. 2 for an example). This
feature offers a fundamental scaling improvement regard-
ing experimental requirements, including for all previously
known Bell inequalities invariant under permutations
[7–10,12]. Among other results obtained with our novel
method, we discover new families of many-body Bell
inequalities, for measurements involving arbitrarily many
outcomes, violated by paradigmatic many-body entangled
states for ensembles of quantum spins j ≥ 1/2—namely,

spin-singlet and spin-squeezed states—a topic of timely
experimental relevance to many experimental platforms
manipulating qudit ensembles.

Before entering into the details of our new method,
in the rest of this section we review the framework of
device-independent entanglement certification (Sec. I A),
and the notion of Bell inequalities invariant under permu-
tations (Sec. I B). In Sec. II, we present our method in
the case of two-outcome measurements (Sec. II A), and
apply it to improve over and extend previously known
Bell inequalities in the case of spin singlets (Sec. II C)
and spin-squeezed states (Sec. II D) for spin-1/2 ensem-
bles. In particular, we emphasize the fundamental scaling
improvement offered by the nonlinear nature of the Bell
inequalities inferred by our algorithm (see, e.g., Fig. 2).
Section III is then devoted to the hitherto unexplored case
of spin-j > 1/2 (namely, qudits) ensembles, for which we
extend our approach to an arbitrary number of outcomes
(Sec. III A). We then apply it again to spin singlets (Sec.
III B) and spin-squeezed state (Sec. III C), leading us to
characterize analytically novel families of Bell’s inequali-
ties, valid for any number of parties and outcomes. Section
IV contains experimental considerations: in Sec. IV A, we
list different platforms and their respective capabilities to
detect entanglement and Bell correlations; in Sec. IV B
we discuss the statistical requirements to acquire the data
used as input to our algorithm. Finally, Sec. V displays our
conclusions and prospects.

A. Device-independent entanglement certification

Bell scenario. Arguably, the violation of Bell’s inequal-
ities [4] represents the most robust scheme to certify
entanglement, avoiding detailed assumptions about the
physical nature of the degrees of freedom being measured,
and about the accurate calibration of the measurements
being performed. In this so-called device-independent sce-
nario (Fig. 1), each subsystem i ∈ {1, . . . N } (for instance,
a quantum spin j ) is treated as a black box, namely, no
assumption is made about the actual Hilbert space of the
system. This black-box treatment is especially relevant
when dealing with effective few-level systems. On each
subsystem, k different measurement settings can be imple-
mented. In practice, they correspond to certain quantum
operators ŝ(i)

a (a ∈ {0, . . . , k − 1}), for instance spin mea-
surements along particular directions na, but in a device-
independent scenario the actual quantum measurement,
which is performed is not assumed; instead, only the out-
come of the measurement, denoted s, is collected (see
Fig. 1) (throughout the paper, we denote as Ô a quantum
observable, and as O the outcome of its measurement).
The only assumption made is that the number d of pos-
sible outcomes for each measurement is finite. In practice,
the possible values of s are the eigenvalues of the quantum
operator ŝ(i)

a (for instance, the 2j + 1 possible values of a
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spin-j measurement), but in a device-independent scenario
these are mere labels for the outcomes, with no spe-
cific physical meaning. For convenience and later connec-
tion with quantum violations of Bell’s inequalities when
performing appropriate spin measurements on quantum
many-body systems, we denote these possible outcomes
as s ∈ {−j , −j + 1, . . . , j } with d = 2j + 1—but it should
be emphasized that within a device-independent frame-
work, these labels are arbitrary. A Bell experiment [4]
consists in repeating the following sequence: (1) choose
a setting a(i) ∈ {0, . . . , k − 1} for each subsystem; (2) per-
form the corresponding measurements, yielding the N
outcomes s = {s(i)}N

i=1. By repeating this sequence, vary-
ing the measurement settings a = {a(i)}N

i=1, statistics of the
measurement outcomes are collected. Complete informa-
tion is obtained if one reconstructs all N -body marginal
probability distributions: P(s|a) for all choices of settings
a. If one denotes �̂(i)

a,s the projector onto the eigenspace of
the observable ŝ(i)

a associated to the eigenvalue s, then these
probabilities are given by

P(s|a) = Tr[ρ̂ ⊗N
i=1 �̂

(i)
a(i),s(i)

], (1)

where ρ̂ is the density matrix of the system—notice that
even if, in a device-independent scenario, we remain
agnostic about the Hilbert space over which ρ̂ acts, such
a decomposition exists in principle.

Bell’s inequalities and entanglement certification.
The state ρ is not entangled (namely, it is separable) if
it can be decomposed as a statistical mixture of product
states:

ρ̂sep =
∫

λ

dμ(λ) ⊗N
i=1 ρ̂

(i)
λ , (2)

where ρ̂
(i)
λ is an arbitrary local quantum state (pure or

mixed) for subsystem i, acting on the local Hilbert space
whose dimension is arbitrary. λ is some classical ran-
dom variable, sampled with probability measure dμ(λ),
which encodes classical correlations among the local quan-
tum states ρ̂

(i)
λ . The central observation behind device-

independent entanglement certification is that if ρ is sepa-
rable [Eq. (2)], then P(s|a) can always be reproduced by a
local-variable (LV) model in the sense of Bell [4,13]:

PLV(s|a) =
∫

λ

dμ(λ)

N∏
i=1

P(i)
λ [s(i)|a(i)], (3)

where P(i)
λ (s|a) = Tr[ρ̂(i)

λ �̂(i)
a,s]. In a device-independent

framework, we do not know the explicit expressions of the
projectors �̂(i)

a,s corresponding to the measurements, which
are actually being performed; and even the Hilbert space
of the system, over which the quantum state ρ̂ and these

projectors are defined, is unknown and arbitrary—it could
even be infinite dimensional. Yet, regardless of the actual
Hilbert space describing the system, if the state is not
entangled, then a decomposition as in Eq. (3) must exist
for the experimentally observed correlations contained in
P(s|a).

Therefore, if conversely P(s|a) is found to violate a Bell
inequality—denying the possibility to decompose P(s|a)

as in Eq. (3)—then ρ̂ must be entangled. Crucially, this
holds regardless of the Hilbert space of the individual
subsystems, and regardless of the measurements, which
were actually performed to generate P(s|a). Violating a
Bell inequality therefore certifies that ρ̂ is entangled in a
device-independent manner.

Note that in principle, violating a Bell inequality allows
for quantum-information protocols more powerful than
merely witnessing entanglement [4], which is the task on
which we focus in this paper.

B. Permutationally invariant Bell inequalities from
two-body correlations

Certifying entanglement from two-body correla-
tions. Overall, reconstructing P(s|a) requires collecting
kN (dN − 1) probabilities. This exponential scaling clearly
makes full reconstruction of these marginals unpractical,
and therefore, methods based on partial information have
been developed. The simplest nontrivial strategy, which we
follow in this paper, is to consider jointly all two-body
marginals: P(ij )(s, t|a, b) (i �= j ), namely the probability
to obtain the pair of outcomes (s, t) if measurement a is
performed on subsystem i, and measurement b on subsys-
tem j , for all possible pairs of subsystems 1 ≤ i < j ≤ N ,
and all possible pairs of measurement settings 0 ≤ a, b ≤
k − 1.

Local-variable models as distributions over classi-
cal spin configurations. The à-la-Bell formulation of LV
models as in Eq. (3) makes transparent the link with
entangled quantum states. It is however more intuitive to
represent LV models as probability distributions over the
measurement results treated as classical variables s(i)

a [7].
Indeed, as first proved by Fine [4,14], a LV decomposition
as in Eq. (3) exists if and only if there exists a grand-
probability distribution PLV[σ ] over the fictitious ensem-
ble of classical variables σ = {s(i)

a ; a = 0, . . . , k − 1; i =
1, . . . , N }, such that the observed statistical properties are
obtained as marginals against PLV, i.e., [7,14]

P(ij )
LV (s, t|a, b) =

∑
σ∈{−j ,...,j }kN

PLV[σ ]δs(i)a ,sδs(j )b ,t
, (4)

where δ is the Kronecker symbol (δx,y = 1 if x = y, and
δx,y = 0 otherwise). In LV models, measurement results
may therefore be viewed as sampled from an underly-
ing classical “spin” configuration σ , where k “hidden”
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FIG. 1. Illustration of an ideal multipartite Bell test for entanglement certification. Right: a composite quantum system prepared by
the source is shared among N spatially separated observers (on the sketch, N = 3), each of which chooses a measurement settings
a ∈ {0, 1, . . . , k − 1}, obtaining an outcome s ∈ {−j , −j + 1, . . . , j }. In this work, we focus on spin measurements on quantum spin-j
particles, sketched as Stern-Gerlach magnets oriented along directions �na—but Bell tests are independent of these assumptions. This
procedure is repeated several times in order to accumulate statistics, where at each round the measurement settings and the observed
outcomes may vary. If the observed statistics exhibit Bell’s nonlocal correlations, one certifies that the multipartite state is quantum-
mechanically entangled. Left: in a Bell test, each subsystem i is treated as a black box, with no assumption about the Hilbert space.
The actual observables ŝ(i)

a being measured are attributed arbitrary input labels a, and the measurement outcomes s have no physical
meaning. Entanglement is therefore certified in a device-independent manner.

d-level spins s(i)
a ∈ {−j , −j + 1, . . . j } are attached to each

subsystem i, encoding the outcome of the measurement.
While, at each measurement run with setting a = {a(i)}N

i=1,
the value of only one of the k hidden spins is revealed
[namely, s(i)

a(i)], in LV models all the unobserved outcomes
[s(i)

b , for b �= a(i)] also objectively exist independently of
the act of their measurement. This contradicts standard
interpretations of quantum physics if they correspond to
incompatible quantum observables performed on the same
subsystem, [ŝ(i)

a , ŝ(i)
b ] �= 0—and is categorically excluded if

the P(ij )(s, t|a, b) violate a Bell inequality, and if actions at
a distance are not allowed [4].

Permutationally invariant Bell inequalities. Deciding
whether or not the marginals P(ij )(s, t|a, b) are compati-
ble with a grand probability PLV(σ ) can be mapped onto
a so-called inverse Ising problem [7], which can generi-
cally be solved in polynomial time by Monte Carlo meth-
ods—while worst-case instances are exponentially hard.
A convergent hierarchy of relaxations to this problem has
also been developed, whose computational cost is strictly
polynomial at each relaxation level [5]. Here, we drasti-
cally simplify the problem by further symmetrizing the
data over all permutations of the subsystems [8,11], which
leads us to introduce

P̄(s, t|a, b) = 1
N (N − 1)

∑
i�=j

P(ij )(s, t|a, b). (5)

Bell’s inequalities are constraints, of the form

f (P̄LV) ≥ Bc, (6)

where f is some function, and Bc the so-called classi-
cal bound, obeyed by all distributions P̄LV(s, t|a, b), which
descend from a grand probability PLV(σ ). If the particu-
lar P̄ under investigation happens to violate such a Bell
inequality [namely, if f (P̄) < Bc], then no grand probabil-
ity PLV(σ ) can ever explain the data, which in turn implies
that the quantum state ρ̂ of the system must be entangled.

Our main result is to construct a very flexible data-
driven algorithm, whose complexity is independent of N ,
allowing one to build a Bell inequality violated by the
data P̄(s, t|a, b) (Sec. II A). This allows us to recover all
previously known permutationally invariant Bell inequal-
ities, which are robustly violated by appropriate quantum
states in the thermodynamic limit [7,9], to improve these
Bell inequalities by considering more measurement set-
tings (Sec. II), and to generalize them to scenarios with
arbitrarily many outcomes (Sec. III). We discuss the poten-
tialities of several experimental platforms to observe the
Bell nonlocality in Sec. IV, and draw our conclusions in
Sec. V.

II. TWO-OUTCOME MEASUREMENTS

Summary of the main results. In this section, we
introduce our method by focusing on the simplest sit-
uation where the measurements can only deliver d = 2
outcomes. The method itself is presented in Sec. II A: the
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FIG. 2. The (nonlinear) Bell inequalities obtained with
our method, which involve C̃ab [Eq. (8b)], are tighter
than standard (linear) Bell inequalities, which involve Cab
[Eq. (7b)]. Here, this is illustrated for N = 10 for the
Bell inequality of Eq. (19), which strengthens the previ-
ously known Eq. (18) [8,9]. We slice the five-dimensional
space (M0, M1, C00, C01 = C10, C11) along a randomly cho-
sen 2d plane [specifically, along the (�u, �v) plane with �u =
(0.076 79, 0.243 72, −0.349 06, −0.753 59, 0.494 94) and �v =
(0.291 67, −0.905 83, −0.207 83, −0.214 43, −0.072 26)]; x and
y are the coordinates within this 2d plane. The convex black
region PL is the polytope of LV models, the dashed blue line
is the linear Bell inequality of Eq. (18) [8,9], and the red solid
line is the corresponding nonlinear Bell inequality of Eq. (19),
constructed from the C̃ab correlations, with the same coefficients.

key results are contained in Eqs. (9)–(11), which form
the core of our data-driven algorithm. To be practically
useful, the algorithm must be fed with carefully chosen
quantum data. In Sec. B, we consider a situation where
the data correspond to spin measurements on a collec-
tion of quantum spin 1/2. We expose the dependence of
these data on collective-spin fluctuations, as represented
by Eq. (14). We then begin our data-driven exploration
of Bell’s inequalities with spin singlets (Sec. II C) and
spin-squeezed states (Sec. II D), for which permutation-
ally invariant Bell inequalities are already known. In both
cases, we find tighter Bell inequalities, leading to sufficient
“witness” conditions on collective spin fluctuations, which
are easier to satisfy than existing ones. Concerning singlets
(Sec. II C), our main finding is a family of Bell inequalities
for arbitrarily many measurement settings [Eq. (15)]. The
corresponding witness condition is contained in Eq. (17).
Concerning spin-squeezed states (Sec. II D), we illustrate
the generic improvement offered by the nonlinear nature of
our Bell inequalities on Fig. 2. We then go beyond existing
Bell inequalities [8–10] by adding an extra measurement
setting, whose advantage for entanglement certification is
illustrated on Figs. 3 and 4.
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FIG. 3. Bell’s inequality violation for j = 1/2 spin-squeezed
states, as a function of the measurement angle θ . Dashed red
line: relative violation of the Bell inequality of Eq. (19), which
involves k = 2 measurement settings at angles ±θ . Dashed-
dotted-dotted green line: relative violation of the Bell inequality
of Eq. (21), which involves a third measurement along the y axis
(see the sketch on the bottom-left corner), with a = 1 in Eq. (21).
Solid orange line: same inequality, for the optimal value of the
parameter a. The quantum state, chosen from Ref. [9], has a mean
spin 2〈Ĵ x〉/N = mx = 0.98, and transverse collective-spin fluc-
tuations 4Var(Ĵ y)/N = χ2 = 0.272 (assuming 〈Ĵ y〉 = 0). For all
inequalities, the absolute value of the relative violation is equal
to the amount of white noise tolerated by the data to observe a
nonzero violation (see text).

A. A convex-optimization algorithm

We assume that all measurements ŝ(i)
a can deliver only

d = 2 possible outcomes, denoted s = ±1/2 (the usual
convention in the literature would be to denote them s =
±1, but we follow our general convention s ∈ {−j , −j +
1, . . . j } with d = 2j + 1; as already emphasized, these
labels are arbitrary). Instead of working with the pair
probability distribution P(ij )(s, t|a, b), we equivalently con-
sider one- and two-body correlations 〈s(i)

a 〉 and 〈s(i)
a s(j )

b 〉
(the two representations are related by elementary linear
transformations). As coarse-grain features of the experi-
mental data, equivalently to the averaged pair distribution
P̄(s, t|a, b), we consider the one- and two-body correlations
summed over all permutations of the subsystems:

Ma =
N∑

i=1

〈s(i)
a 〉, (7a)

Cab =
∑
i�=j

〈s(i)
a s(j )

b 〉. (7b)

In a LV description, the s(i)
a are Nk classical Ising spins

(with values ±1/2). A LV model compatible with the
(coarse-grain) experimental data corresponds to a prob-
ability distribution PLV({s(i)

a }) over the configurations of
these Ising spins, such that Ma and Cab are obtained as
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marginals against PLV. Let us assume that a LV model
fitting the data exists, and derive necessary conditions
obeyed by the corresponding Ma and Cab (namely, Bell’s
inequalities). We first introduce the collective variables
Sa = ∑N

i=1 s(i)
a , and their fluctuations δSa = Sa − 〈Sa〉, so

that we have

Ma = 〈Sa〉, (8a)

C̃ab := Cab − MaMb = 〈δSaδSb〉 −
N∑

i=1

〈s(i)
a s(i)

b 〉 . (8b)

The terms on the rhs of Eq. (8b) are not directly observable.
In particular, the terms 〈s(i)

a s(i)
b 〉 correspond to correlations

among the measurement settings a and b on the same sub-
system i. In the general case, these settings correspond
to incompatible quantum observables, [ŝ(i)

a , ŝ(i)
b ] �= 0, and

therefore these terms do not have a direct meaning in
quantum physics. However, they are perfectly well defined
in LV models. The first key observation, which under-
lies the method developed in the present paper, is that
for any k × k positive semi-definite (PSD) matrix A 

0, and for any configuration of the collective variables
Sa, we have

∑
a,b δSaAabδSb = δSTAδS ≥ 0. We introduce

the vector notation S := (S0, . . . Sk−1)
T, and use the fact

FIG. 4. Entanglement detection for j = 1/2 spin-squeezed
states. Below each line, the corresponding entanglement criterion
is violated. Dashed-dotted black line: Wineland spin=squeezing
criterion; solid orange line: violation of the Bell inequality Eq.
(21) with the optimal parameter a; dashed-dotted-dotted green
line: the same Bell inequality with a = 1 [12]; dashed red line:
violation of the Bell inequality Eq. (19) [9]. Black star: exper-
imental data from Ref. [9], assuming 〈Ĵ y〉 = 0. Notice that the
previously known results were in fact involving 〈Ĵ 2

y〉. We prove
in this work that they remain valid with Var(Ĵ y) instead of 〈Ĵ 2

y〉,
leading to systematically tighter criteria. In particular, the data of
Ref. [9] (black star), using the actual value of 〈Ĵ y〉 in the exper-
iment, would be lower along the vertical axis, and similarly for
the data of Ref. [10] (not shown).

that, by definition of a PSD matrix, uTAu ≥ 0 for any
vector u. Therefore, for any A 
 0 and any vector h =
(h0, . . . hk−1)

T, we have

Tr(AC̃) + h · M =
∑
a,b

AabC̃ab +
∑

a

haMa

≥ −
N∑

i=1

⎡
⎣∑

a,b

Aab〈s(i)
a s(i)

b 〉 −
∑

a

ha〈s(i)
a 〉

⎤
⎦

≥ −NEmax(A, h), (9)

where Emax(A, h) = maxs∈{±1/2}k [sTAs − h · s]. This is a
Bell inequality, obeyed by all data (Cab, Ma) compatible
with LV models, any PSD matrix A, and any vector h. The
bound Emax(A, h) may easily be evaluated by enumerating
all 2k configurations of the s variables, whenever k (the
number of settings) is not too large. The goal is then to
find a PSD matrix A and a vector h such that Eq. (9) is
violated. In order to build them, our second key obser-
vation is that Emax(A, h) is a convex function of its argu-
ments. A simple proof of convexity, inspired by statisti-
cal physics, is to write Emax(A, h) = limβ→∞ log Zβ(A, h),
where Zβ(A, h) = ∑

s∈{±1/2}k exp[β(sTAs − h · s)], and to
recognize that log Zβ is a convex function for any β. Fur-
thermore, Tr(AC̃) + h · M, which is a linear function of A
and h, is also convex. Therefore, we may introduce the
convex cost function:

L(A, h) = Tr(AC̃) + h · M + NEmax(A, h), (10)

which by Eq. (9) is non-negative if (C, M) are compatible
with a LV model. Our data-driven algorithm [15] consists
therefore in solving the following optimization problem:

minimize L(A, h)

such that A 
 0.
(11)

As the PSD constraint A 
 0 maintains the convex nature
of the optimization problem [16], if there exists a Bell
inequality of the form of Eq. (9), which is violated by the
data, then we have the guarantee to find the corresponding
A 
 0 and h such that L(A, h) < 0. Notice that if L(A, h) =
−l < 0 in Eq. (10) then for any x > 0, L(xA, xh) = −xl,
so that L is unbounded below. In a practical implementa-
tion of the algorithm, one may therefore add a cutoff on A
and h; for this work, we impose ‖A‖2 = ∑

a,b A2
ab ≤ 1 and

‖h‖2 = ∑
a h2

a ≤ 1, which maintains the convex nature of
the optimization. Clearly, if L(A, h) = −l, then by defin-
ing x = 1/ max(‖A‖, ‖h‖), one has L(xA, xh) = −xl < 0
with ‖Ax‖ ≤ 1 and ‖xh‖ ≤ 1, and therefore adding this
cutoff does not compromise the search for a violated Bell
inequality.

Clearly, the possibility to discover new and useful Bell
inequalities via our method crucially depends on the input
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quantum data {Cab, Ma}, which must be able to display
Bell’s nonlocality. We consider a situation where the quan-
tum data are obtained by spin measurements (Sec. B). In
this case, Cab and Ma are completely determined by the
first and second moments of the collective spin. As a first
application, we recover and improve over the existing Bell
inequalities in scenarios with d = 2 outcomes, which are
violated by appropriate measurements on spin singlets [7]
(Sec. II C) and spin-squeezed states [9] (Sec. II D), and
whose violation is robust in the thermodynamic limit. In
Sec. III, we then generalize these results to scenarios with
d > 2 outcomes.

B. Spin measurements

Throughout the paper, we investigate the violation of
Bell’s inequalities when the local measurement settings
correspond to spin measurements in the x-y plane, in a
direction independent of the subsystem. We emphasize that
this choice is only a convenient way to produce hypo-
thetical quantum data, used as input to our data-driven
algorithm. The discovered Bell inequalities themselves are
valid independently of any assumption about the system.
Furthermore, we present in detail several Bell inequalities
discovered by our algorithm; this lead us to derive sim-
ple conditions on the quantum state of a spin ensemble
which are sufficient to violate the Bell inequalities if the
appropriate measurements are performed (in the literature,
such conditions are often referred to as “Bell-correlation
witnesses”). These witness conditions are independent of
the specific data we use to discover the Bell inequalities of
interest. We choose therefore

ŝ(i)
a = Ŝ(i)

x cos θa + Ŝ(i)
y sin θa, (12)

where Ŝ(i)
x and Ŝ(i)

y are local spin observables in directions
x and y. ŝ(i)

a defines a projective spin measurement along
the direction (cos θa, sin θa), and has therefore eigenval-
ues ±1/2. Introducing the collective spin Ĵ x = ∑N

i=1 Ŝ(i)
x

and Ĵ y = ∑N
i=1 Ŝ(i)

y , we also define the collective spin
observables:

Ĵ a =
N∑

i=1

ŝ(i)
a = Ĵ x cos θa + Ĵ y sin θa. (13)

With these conventions, the quantum data used as input of
our algorithm, and against which the Bell inequalities are
evaluated, are (for a given quantum state ρ̂):

Ma = 〈Ĵ a〉 = 〈Ĵ x〉 cos θa + 〈Ĵ y〉 sin θa, (14a)

C̃ab = Re〈δĴ aδĴ b〉 − N
4

cos(θa − θb), (14b)

where δĴ a = Ĵ a − Ma, so that Re〈δĴ aδĴ b〉 = 〈Ĵ aĴ b +
Ĵ bĴ a〉/2 − MaMb is the covariance of the collective spin

observables Ĵ a and Ĵ b. We define 〈Â〉 = Tr(Âρ̂), and we
introduce the variance Var(Â) = 〈Â2〉 − 〈Â〉2.

C. A family of Bell inequalities for singletlike
correlations

As a first application of our data-driven method, we
derive Bell’s inequalities maximally violated by many-
body singlets, defined by 〈Ĵ 2

x〉 = 〈Ĵ 2
y〉 = 〈Ĵ 2

x〉 = 0. Many-
body singlets are zero eigenstates of the total spin operator
Ĵ

2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z . They are therefore SU(2) invariant

(that is, they are left invariant by any rotation exp[−in · Ĵ]
with n a unit vector) and generalize the Bell pair (| ↑↓〉 −
| ↓↑〉)/√2 to an arbitrary even N . They form a manifold
of N !/[(N/2)!(N/2 + 1)!] ∼ N−3/22N √

8/π orthogonal
states [17]—all entangled—and are naturally produced as
ground states of Heisenberg antiferromagnets [18], e.g., at
low energy in Fermi-Hubbard models [19]. We emphasize
that the working assumption of having a many-body sin-
glet is only used to produce ideal quantum data, which then
serve as input to our algorithm, leading us to discover new
Bell inequalities. The Bell inequalities themselves, and the
corresponding Bell correlation witnesses, are independent
of any assumption about the quantum state. It is already
known that a state is entangled when Var(Ĵ x) + Var(Ĵ y) <

N/4 [20]. It is also known that [〈Ĵ 2
x〉 + 〈Ĵ 2

y〉]/N < 1/(8 +
6
√

2) ≈ 0.060 660 . . ., which is a more demanding con-
dition, leads to violation of a many-body Bell inequality
[7]. The measurement strategy to maximally violate the
Bell inequality of Ref. [7] is composed of k coplanar spin
measurements at angles θa = aπ/k. Our main result in this
section is to show that the Bell inequality of Ref. [7] is not
the tightest one in this measurement scenario for k ≥ 4,
leading us to discover a new family of Bell inequalities.
We find that Bell nonlocality can be demonstrated when-
ever [Var(Ĵ x) + Var(Ĵ y)]/N < 1/2 − 4/π2 ≈ 0.094 715,
in the limit of k → ∞.

Bell’s inequality. As input quantum data, we consider
a perfect spin singlet, for which Ma = 0 and 4C̃ab/N =
− cos[θa − θb] = − cos[π(a − b)/k] [from Eq. (14), and
using the property Ĵ aρ̂singlet = 0 for any collective spin
operator Ĵ a and any singlet state ρ̂singlet]. Applying our
algorithm to these data for up to k = 10, we find that the
following Bell inequality is violated:

〈B〉 =
k−1∑

a,b=0

C̃ab cos[π(a − b)/k], (15a)

≥ −N max
s∈{±1/2}k

k−1∑
a,b=0

sasb cos[π(a − b)/k], (15b)

= − N
4 sin2[π/(2k)]

:= Bc, (15c)
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where on the second line we use Eq. (9). The classical
bound Bc is obtained by noting that

∑k−1
a,b=0 sasb cos[π(a −

b)/k] =
∣∣∣∑k−1

a=0 saeiaπ/k
∣∣∣2. The maximum is obtained by

choosing all sa = 1/2, and is 1/{4 sin2[π/(2k)]}.
Quantum violation. To evaluate Eq. (15) against a

generic quantum state [Eq. (14)], not necessarily SU(2)

invariant, we first introduce the matrix Aab = cos[π(a −
b)/k]. Using Aab = Re[eiaπ/ke−ibπ/k], the matrix A is
diagonalized as A = (k/2)(c · cT + s · sT) with the nor-
malized vectors cT = √

2/k[cos(aπ/k)]k−1
a=0 and sT =√

2/k[sin(bπ/k)]k−1
a=0. To evaluate

∑
ab Ĵ aAabĴ b, we first

compute
∑k−1

a=0 caĴ a = √
2/k

∑k−1
a=0 cos(aπ/k)[cos(aπ/k)

Ĵ x + sin(aπ/k)Ĵ y] = √
k/2Ĵ x. Similarly, we find

∑k−1
a=0

saĴ a = √
k/2Ĵ y . Finally, using

∑k−1
a,b=0 cos2[π(a − b)/k] =

k2/2, we find

k∑
a,b=1

C̃ab cos[π(a − b)/k] = k2

4
[Var(Ĵ x)+ Var(Ĵ y)] − Nk2

8
.

(16)

Violation of the Bell inequality is therefore detected when-
ever

1
N

[Var(Ĵ x) + Var(Ĵ y)] <
1
2

− 1
k2 sin2(π/2k)

. (17)

The tightest condition is achieved in the limit k → ∞,
yielding the bound 1/2 − 4/π2. This condition requires
no assumption about the underlying quantum state—apart
from being composed of N individual spin 1/2—and
assumes only a correct calibration of the measurements
of Ĵ x and Ĵ y . Notice that the condition of Eq. (17) is
tighter than the one derived in Ref. [7], not only because
the rhs is larger—and therefore detecting more data as
exhibiting Bell’s nonlocality in the same measurement
scenario—but also because it involves variances of the
collective operators, making the condition more robust
against experimental noise—see the related Fig. 2, and
Sec. IV B.

D. Spin-squeezed states

Spin-squeezed states of N two-level systems represent
paradigmatic many-body entangled states, and are a central
resource for quantum-enhanced interferometry [21].

State-of-the-art Bell inequality. In the context of Bell’s
nonlocality, spin squeezing is known to be essential for the
robust violation of the following Bell inequality involving
k = 2 measurement settings per subsystem [8–10,22]:

〈B〉 = C00 + C11 − C01 − C10 − (M0 + M1) ≥ −N .
(18)

Notice that we are using the convention that the outcomes
are ±1/2, different from the convention ±1 used in the

above-cited papers; this explains why the coefficients of
Eq. (18) are different. We use the experimental Ref. [9] to
infer data serving as input to our algorithm, leading us to
recover a tighter version of the above Bell inequality:

〈B〉 = C̃00 + C̃11 − C̃01 − C̃10 − (M0 + M1),

= C00 + C11 − C01 − C10 − (M0 − M1)
2 − (M0 + M1),

≥ −N . (19)

This shows that, if Eq. (18) had not been known from
Ref. [8], the tighter Eq. (19) would have been recovered
in a data-driven way by our method. This clearly demon-
strates the concrete advantage offered by our method in
analyzing experimental data in an unbiased way. Notice
that while the coefficients of the Bell inequalities Eq.
(18) and Eq. (19) are the same, Eq. (18) involves the
correlations Cab [Eq. (7b)], and not C̃ab = Cab − MaMb
[Eq. (8b)]. Therefore, Eq. (19) includes the extra term
−(M0 − M1)

2 ≤ 0, and is therefore strictly tighter than
Eq. (18)—see Fig. 2 for an illustration. Since this extra
term is of order O(N 2) while the classical bound is O(N ),
the relative improvement generically grows with N . The
classical bound is found, following Eq. (9), by writ-
ing B = (δS0 − δS1)

2 − ∑N
i=1[(s0 − s1)

2 + s0 + s1](i), and
noting that (s0 − s1)

2 + s0 + s1 ≥ −1 for all possibles val-
ues of s0, s1 = ±1/2. This Bell inequality can be violated
by preparing a spin-squeezed state, defined by NVar(Ĵ y) <

〈Ĵ x〉2 [21], and performing two projective spin mea-
surements in directions ŝ(i)

a = Ŝ(i)
x cos θ ± Ŝ(i)

y sin θ [9,22].
Computing the quantum value from Eq. (14), we obtain
〈B〉 = 4 sin2 θVar(Ĵ y) − 2 cos θ〈Jx〉 − N sin2 θ . The opti-
mal angle θ , minimizing 〈B〉 for fixed data (Var(Ĵ y), 〈Ĵ x〉),
is cos θ = 〈Ĵ x〉/[N − 4Var(Ĵ y)]. For this choice of mea-
surement, we obtain 〈B〉 = −N + 4Var(Ĵ y) − 〈Ĵ x〉2/[N −
4Var(Ĵ y)]. Notice that for Eq. (18), a similar condition may
be derived, but involving 〈Ĵ 2

y〉 instead of Var(Ĵ y). When-
ever 〈Ĵ y〉 = εN with ε �= 0, 〈Ĵ 2

y〉 ∼ N 2, which represents a
fundamental obstruction to the violation of Eq. (18) in the
thermodynamic limit for nonideal data. Instead, working
with the tighter Eq. (19), and the corresponding criterion
involving Var(Ĵ y), such obstruction is removed. For per-
fect squeezed states [Var(Ĵ y) → 0, 〈Ĵ x〉 → N/2], we can
obtain violation up to 〈B〉 = −5N/4. In this section, we
show that the robustness of the Bell nonlocality detection
for spin-squeezed states can be improved by considering
extra measurements (k ≥ 3).

Finding tighter and more robust Bell inequalities.
To find better Bell inequalities, our strategy is to consider
quantum data [Eq. (14)] obtained from a squeezed state at
the limit of violating the Bell inequality Eq. (19), and add
extra measurements in the x-y plane to potentially discover
other violated Bell inequalities. In particular, adding a third

030329-8



BELL INEQUALITIES FOR SPIN-j ENSEMBLES PRX QUANTUM 2, 030329 (2021)

spin measurement Ŝ(i)
y along the y axis, we find a family of

Bell inequalities, defined by the following coefficients [see
Eq. (9)]:

A =
⎛
⎝ 1 −1 a

−1 1 −a
a −a a2

⎞
⎠ , (20a)

hT = −(1 + a, 1 + a, 0), (20b)

where a ≥ 0. The corresponding Bell inequality reads

〈B〉 = Tr(AC̃) + h · M ≥ −N (1 + a/2)2 := Bc, (21)

and reduces to Eq. (19) when a = 0. Remarkably, for a =
1, Eq. (21) represents a tighter version of a Bell inequal-
ity analyzed in Ref. [12]—tighter, due to the nonlinear
nature of Eq. (21), which involves C̃ instead of C. Similarly
to Eq. (19), we discover this family of Bell inequalities
parametrized by a in a data-agnostic way, using data from
a spin-squeezed state as input to our algorithm. The clas-
sical bound Bc may be found in the following manner.
Noting that xTAx = (x0 − x1 + ax2)

2 for any vector x, we
may write

B = [δ(S0 − S1 + aS2)]2 −
N∑

i=1

{(1 + a)[s0 + s1]

+ [s0 − s1 + as2]2}(i). (22)

The classical bound Bc = −N (1 + a/2)2 is then found
by enumerating the configurations of the variables s(i)

a =
±1/2. On the other hand, in the quantum-measurement
setting we consider, we find

〈B〉 = [Var(Ĵ y) − N/4](a + 2 sin θ)2 − 2(1 + a)〈Ĵ x〉 cos θ .
(23)

The quantum data (C̃ab, Ma) being fixed, it is then natu-
ral to consider the optimal values of θ and a to have the
most robust violation of the Bell inequality. If white noise
is added to the data, then (Cab, Ma) → (1 − r)(Cab, Ma)

with r the noise amplitude. If we assume that 〈Ĵ y〉 =
0, so that Var(Ĵ y) = 〈Ĵ 2

y〉, then correspondingly 〈B〉 →
(1 − r)〈B〉. The noise robustness may be interpreted as
the intrinsic robustness of a given Bell inequality viola-
tion against generic errors during the preparation of the
quantum system, modeled as ρ̂ = (1 − r)ρ̂(ideal) + r1/D
with D the dimension of the total Hilbert space (a more
detailed discussion of the experimental requirements to
accurately estimate the data is given in Sec. IV B). Max-
imizing the noise robustness is therefore equivalent to
maximizing the ratio |〈B〉/Bc| = [(1 + a)mx cos θ + (1 −

χ2)(a/2 + sin θ)2]/(1 + a/2)2, where we introduce mx =
2〈Ĵ x〉/N (the Rabi contrast [9]) and χ2 = 4Var(Ĵ y)/N (the
scaled second moment). For each value of θ , we may
then find the value of a, which maximizes this ratio. As
illustrated on Fig. 3 for the data of Ref. [9] (mx = 0.98
and χ2 = 0.272 assuming that 〈Ĵ y〉 = 0), adding a third
measurement along the y axis and optimizing over the
parameter a yields a systematic improvement over both
Eq. (19) (which involves only two measurement settings),
and over Eq. (21) with a = 1, as proposed in Ref. [12].
Notice that we assume that 〈Ĵ y〉 = 0. Therefore, in the spe-
cific measurement settings we consider, working with the
C̃ quantities in the Bell inequalities Eq. (19) or Eq. (21) is
equivalent to C; however, in analyzing experimental data
where 〈Ĵ y〉 is never exactly zero, the nonlinear nature of
our Bell inequalities (namely, working with C̃) will lead to
a systematic improvement over all previously known Bell
inequalities [8–10,12]. It would be interesting to analyze
the experimental data of Refs. [9,10] from this perspec-
tive—this would certainly lead to a more robust detection
of Bell correlations.

Finally, for given values of (mx, χ2), we may find the
measurement angle θ and parameter a, which maximize
the robustness of the violation of Eq. (21). This is done on
Fig. 4, which shows the parameter regime in the (mx, χ2)

where Bell nonlocality is detected. For comparison we
also plot the regime where nonlocality is detected based
on the violation of Eq. (19), on the violation of Eq. (21)
with a = 1, and where entanglement is detected based on
the Wineland spin-squeezing criterion m2

x > χ2. The Bell
inequality Eq. (21) with optimal a systematically extends
the parameter space where nonlocality can be detected
with k = 3 settings. Notice that this parameter space can
be further extended by considering more measurement
settings [12].

Further improvement. Even more robust Bell inequal-
ities may be found by considering k ≥ 2 pairs of mea-
surements in the x-y plane, in directions ŝ(i)

a = Ŝ(i)
x cos θa +

Ŝ(i)
y sin θa and [ŝ(i)

a ]′ = Ŝ(i)
x cos θa − Ŝ(i)

y sin θa, and one mea-
surement along y denoted ŝ(i)

k = Ŝ(i)
y . In this Bell scenario

with 2k + 1 settings applied to spin-squeezed states, this
generically leads to Bell inequalities of the form:

[
k−1∑
a=0

αa(Sa − S′
a) + Sk

]2

−
N∑

i=1

{
k−1∑
a=0

βa(sa + s′
a)

+
[

k−1∑
a=0

αa(sa − s′
a) + sk

]2
⎫⎬
⎭

(i)

≥ Bc (24)

for some data-tailored coefficients αa and βa. Similarly as
in the previous paragraph, for given values of (mx, χ2),
it is then possible to numerically optimize over the mea-
surement angles θa in order to maximize the violation
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robustness. Similarly to the case with three measurements
discussed above, one can expect to obtain systematically
tighter Bell inequalities as compared to Ref. [12], where
an arbitrary number of settings are considered in a similar
measurement scenario.

III. ARBITRARY-OUTCOME MEASUREMENTS

Summary of the main results. In the previous section,
we focused on measurements with d = 2 outcomes—and
considered a physical implementation with spin-1/2 mea-
surements. In this section, we extend these results to
arbitrarily many outcomes (d > 2), corresponding to the
physical situation where spin measurements are per-
formed on individual spin-j components (with d = 2j +
1). Section III A presents an incremental generalization of
the algorithm of Sec. II A, which incorporates an extra fea-
ture of the quantum data [Eq. (25)]. This turns out to be
an essential ingredient to generalize the Bell inequalities
of the previous section. We first consider spin-j singlets
in Sec. III B, and restrict our attention to k = 3 spin mea-
surements in a given plane. We unveil an increasingly
complex situation for j > 1/2, as illustrated on Fig. 5,
with 2j inequivalent Bell inequalities, already in this sim-
ple setting. We could however characterize analytically
two families of Bell’s inequalities, which emerged from
our algorithm (Sec. III B). One of them extends Eq. (15)
to arbitrary half-integer spins (for k = 3 measurements),
and the corresponding witness condition is given by Eq.
(39). The other family is valid for both integer and half-
integer spins, and the witness condition is given by Eq.
(41). We conclude our exploration in Sec. II D with spin-j
squeezed states. Our main result is a generalization of the
Bell inequality of Eq. (19) to arbitrary j ≥ 1/2 [Eq. (43)].
The corresponding witness condition for spin-j squeezed
states is given by Eq. (45).

A. Algorithm tailored to spin measurements

We consider the general scenario in which the local mea-
surements ŝ(i)

a (a ∈ {0, . . . k − 1}, i ∈ {1, . . . N }) can deliver
d ≥ 2 possible outcomes, denoted s = {−j , −j + 1, . . . j }
with d = 2j + 1. In general, the pair probability distribu-
tion P(ij )(s, t|a, b) may be reconstructed from the single-
body expectation values 〈[s(i)

a ]α〉 with α ∈ {1, . . . d −
1}, and two-body correlations 〈[s(i)

a ]α[s(j )
b ]β〉 with α, β ∈

{1, . . . d − 1}. The averaged pair probability distribution
P̄(s, t|a, b) = [N (N − 1)]−1 ∑

i�=j P(ij )(s, t|a, b) may then
be obtained by averaging over all permutations of the sub-
systems. In Appendix A, we give a general formulation
of our data-driven algorithm for finding a Bell inequal-
ity violated by P̄. However, aiming at finding new Bell
inequalities for many-spin systems with j > 1/2, we find
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FIG. 5. Bell’s inequalities for many-body spin singlets. As
input quantum data [Eq. (27)] to our algorithm, we consider
k = 3 spin measurements in the x-y plane, forming angles t1,
0, and −t2 with the x axis [inset of (a)]. We find violated
Bell inequalities as in Eq. (28), with a conventional normaliza-
tion

∑
ab A2

ab + ∑
a[h(2)

a ]2 = 1, and a classical bound given by
Eq. (30). (a)–(d) Difference between the classical bound and
the quantum value [Eq. (31)], divided by N . (a) j = 1/2; (b)
j = 1; (c) j = 3/2; (d) j = 2. The integers 1–5 label inequiva-
lent families of Bell inequalities, which are found in the different
regions of parameters (t1, t2) (boundaries between these regions
are indicatively emphasized as dotted white lines). In general,
we find 2j Bell inequalities inequivalent under relabeling of the
outcomes. Labels 1 and 2, respectively, correspond to the coeffi-
cients of Eqs. (38) and (40). (e) Along t := t1 = t2 [white dashed
line on (a)–(d)], bound on Var(Ĵ x)/N to observe Bell nonlo-
cality assuming SU(2) invariance in this measurement setting
[Eq. (37)]. The maximum at t = π/3 for half-integer spins cor-
responds to label 1, and the witness condition is that of Eq.
(39). The right-most local maximum at t = arccos[1/(4j )] cor-
responds to label 2, and the witness condition is that of Eq.
(41).
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it sufficient to include only

M (2)
a =

N∑
i=1

〈[s(i)
a ]2〉 (25)

as an extra coarse-grain feature of the quantum data, in
addition to Ma and Cab defined in Eq. (7). Apart from this
modification, we may then follow the same construction
as in Sec. II A, where the kN local classical variables s(i)

a
can now take the d possible values −j , −j + 1, . . . j . The
analog of Eq. (9) now contains an extra term h(2) · M(2) to
allow for Bell’s inequalities involving this extra feature of
the data. Explicitly, for any PSD matrix A, and any vectors
h = (h1, . . . hk) and h(2) = (h(2)

1 , . . . h(2)

k ), we have

Tr(AC̃) + h · M + h(2) · M(2)

=
∑
a,b

AabC̃ab +
∑

a

haMa +
∑

a

h(2)
a M (2)

a ,

≥ −
N∑

i=1

〈∑
a,b

Aabs(i)
a s(i)

b −
∑

a

has(i)
a −

∑
a

h(2)
a [s(i)

a ]2

〉
,

≥ −NEmax(A, h, h(2)), (26)

where now Emax(A, h, h(2)) = maxs∈{−j ,...j }k E(s), with
E(s) = ∑

ab Aabsasb − ∑
a[hasa + h(2)

a s2
a]. Equation (26) is

a Bell inequality, satisfied by all data Ma, M (2)
a , and Cab

compatible with a LV model with d-outcome measure-
ments. We may then parallel the end of Sec. II A: intro-
duce the convex cost function L(A, h, h(2)) = Tr(AC̃) + h ·
M + h(2) · M(2) + NEmax(A, h, h(2)), and minimize it via a
convex-optimization routine, imposing the PSD constraint
A 
 0. If we find L < 0, a violated Bell inequalities is then
reconstructed from the corresponding A, h, and h(2).

Applying this algorithm, we discover Bell’s inequalities
violated by spin-j spin singlets, and by spin-j squeezed
states. These Bell inequalities generalize the results of Sec.
II to arbitrary j ≥ 1/2.

B. Bell’s inequalities for arbitrary-j many-body
singlets

We start our investigation of Bell’s inequalities tailored
to spin-j systems by considering, as input to our algorithm,
many-body singlets. This will lead us to extend some of the
results obtained in Sec. II C for j = 1/2 to arbitrary spins.
Here again, the assumption of having a many-body singlet
is only used to produce quantum data leading us to dis-
cover new Bell inequalities via our data-driven algorithm.
The Bell inequalities are independent of any assumption
about the quantum systems being measured, and the wit-
ness inequalities assume only that a collection of N spin-j
particles are measured along appropriately calibrated axes.
As in the case of j = 1/2, spin singlets are SU(2)-invariant

states defined by the sole condition 〈Ĵ 2
x〉 = 〈Ĵ 2

y〉 = 〈Ĵ 2
z 〉 =

0. It is known that if Var(Ĵ x) + Var(Ĵ y) + Var(Ĵ z) ≤ Nj ,
then the state is multipartite entangled [23], and therefore
spin singlets are entangled for any j . We have considered
k = 3 coplanar spin measurements, in directions ŝ(i)

a =
Ŝ(i)

x cos θa + Ŝ(i)
y sin θa, with {θa} = (t1, 0, −t2). We did not

find violated Bell inequalities with k = 2 settings, and
using noncoplanar spin measurements did not lead to more
robust Bell inequalities. However, we do not exclude that
better Bell inequalities could be found using noncoplanar
measurements, with k ≥ 4 settings, or including more gen-
eral SU(2j + 1) measurements. In summary, this setting
appeared as the simplest one to discover new Bell inequal-
ities, and even in this simplest scenario we could not
characterize all the Bell inequalities, which appear when
increasing j . Figure 5 summarizes our findings, where we
plot the violation of Bell’s inequalities in the (t1, t2) plane,
for j ∈ {1/2, 1, 3/2, 2}, together with the witness condition
on the collective spin variance Var(Ĵx) to observe violation
[assuming global SU(2) invariance]. We discuss in detail
two families of Bell inequalities, which are characterized
analytically for arbitrary j .

1. General considerations

We begin with general considerations on the Bell
inequalities discovered by using, as input to our algorithm,
the data obtained measuring a many-body singlet along k
directions in the x-y plane. As a consequence of SU(2)

invariance, a many-body singlet has no mean spin ori-
entation: for any direction a, 〈Ĵ a〉 = ∑N

i=1〈ŝ(i)
a 〉 = 0. Fur-

thermore, as a consequence of [Ŝ(i)
x ]2 + [Ŝ(i)

y ]2 + [Ŝ(i)
z ]2 =

j (j + 1) and of SU(2) invariance, we have
∑N

i=1〈[ŝ(i)
a ]2〉 =

Nj (j + 1)/3. In a many-body singlet, the quantum data
C̃ab, Ma, and M (2)

a are [Eqs. (8) and (25)]

C̃ab = −[Nj (j + 1)/3] cos(θa − θb), (27a)

Ma = 0, (27b)

M (2)
a = Nj (j + 1)/3, (27c)

(in the specific cases discussed in further details below,
θ0 = t1, θ1 = 0, and θ2 = −t2).

Structure of the Bell inequalities. As a consequence
of Ma = 0, the Bell inequalities tailored to singlets do not
involve terms linear in Ma [namely, in the notations of Eq.
(26), we have h = 0], and they take the general form:

〈B〉 =
∑

ab

AabC̃ab +
∑

a

h(2)
a M (2)

a ≥ Bc, (28)
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where A is a symmetric PSD matrix. For LV models, we
have

BLV =
∑

ab

δSaAabδSb −
∑

i

∑
ab

s(i)
a [Aab − h(2)

a δab]s(i)
b ,

≥ −NEmax(Ã) , (29)

where we define Ãab = Aab − h(2)
a δab, and

Emax(Ã) := max
{sa}∈{−j ,...j }k

∑
ab

saÃabsb. (30)

Notice that the bound is tight for N even. Indeed,
if {s(opt)

a }k−1
a=0 is a configuration saturating Emax, then

{−s(opt)
a }k−1

a=0 is also saturating Emax. We may therefore
always choose Sa = ∑N

i=1 s(i)
a = 0, while saturating the

bound, by choosing the configuration {s(opt)
a }k−1

a=0 for N/2
subsystems, and {−s(opt)

a }k−1
a=0 for the other N/2 subsystems.

Quantum value on a singlet. Considering the quantum
value on a spin singlet [Eq. (27)], we find

〈B〉singlet = −Nj (j + 1)

3

∑
ab

Ãab cos(θa − θb). (31)

Using that Ãab = Ãba, we have
∑

ab Ãab cos(θa − θb) =∑
ab e−iθa Ãabeiθb . The optimal angles, leading to the max-

imal violation of the Bell inequality, are those that maxi-
mize

∑
ab e−iθb Ãabeiθa . We therefore define

Qmax(Ã) := max
{θa}∈[−π ,π ]k

∑
ab

e−iθa Ãabeiθb . (32)

This should be contrasted to the case of LV models
where, in order to find the classical bound, one max-
imizes

∑
ab saÃabsb over the variables sa ∈ {−j , . . . j }

[see Eq. (30)]. On Figs. 5(a)–5(d), we plot the quan-
tum violation of the Bell inequalities we found, for j ∈
{1/2, 1, 3/2, 2}, with k = 3 spin-measurement directions
{θa} = (t1, 0, −t2). In general, varying the measurement
angles t1 and t2, we find 2j inequivalent inequalities. We
characterize analytically one Bell inequality appearing for
all half-integer j , and one family appearing for all j (see
below).

Witness condition. For each Bell inequality of the form
Eq. (28) found by our approach, and for given measure-
ment directions {θa}, one may derive witness conditions,
which can be measured via global measurements on an
ensemble of N spin-j particles, and which demonstrate the
capability of the quantum state to violate the considered
Bell inequality without further assumptions [in particular,
without assuming SU(2) invariance]. We first express the

average value of the Bell operator [Eqs. (28) and (29)] in
terms of spin observables:

〈B〉 =
〈∑

ab

δĴ aAabδĴ b

〉
−
〈∑

i

∑
ab

ŝ(i)
a Ãabŝ(i)

b

〉
, (33)

where δĴ a = Ĵ a − 〈Ĵ a〉, Ĵ a = ∑N
i=1 ŝ(i)

a , and ŝ(i)
a = Ŝ(i)

x cos θa

+ Ŝ(i)
y sin θa. Using Aab = Aba, Ãab = Ãba and elementary

algebra, we obtain
〈∑

ab

δĴ aAabδĴ b

〉
= Var(Ĵ x)

∑
ab

cos θaAab cos θb

+ Var(Ĵ y)
∑

ab

sin θaAab sin θb

+ (1/2)〈{δĴ x, δĴ y}〉
∑

ab

Aab sin(θa

+ θb), (34)

where {x̂, ŷ} = x̂ŷ + ŷ x̂, and
〈∑

i

∑
ab

ŝ(i)
a Ãabŝ(i)

b

〉
= 〈[Ŝ(i)

x ]2〉
∑

ab

cos θaÃab cos θb

+ 〈[Ŝ(i)
y ]2〉

∑
ab

sin θaÃab sin θb

+ (1/2)〈{Ŝ(i)
x , Ŝ(i)

y }〉
∑

ab

Ãab

× sin(θa + θb). (35)

We derive explicitly the corresponding witnesses for two
families of Bell inequalities in the next section. For
the sake of illustration, on Fig. 5(e) we plot the wit-
ness condition for the Bell inequalities we found for j ∈
{1/2, 1, 3/2, 2}, with angles {θa} = (−t, 0, t) [that is, along
the diagonal of (a)–(d) of the same Fig. 5]. To realize this
plot and derive a simple condition involving only the col-
lective spin fluctuations Var(Ĵ x), we further assume SU(2)

invariance of the state. With this assumption, we find

〈B〉SU(2) = 〈B〉singlet + Var(Ĵ x)
∑

ab

e−iθaAabeiθb , (36)

where 〈B〉singlet is given by Eq. (31). The witness condition
is 〈B〉SU(2) < −NEmax(Ã) with Emax(Ã) given by Eq. (30).
Explicitly, the witness condition for SU(2) invariant states
is

Var(Ĵ x)

N
<

min{sa}
∑

ab{[j (j + 1)/3]ei(θb−θa) − sasb}Ãab∑
ab e−iθaAabeiθb

,

(37)

where the min is over {sa} ∈ {−j , . . . , j }k. This upper
bound is plotted on Fig. 5(e).
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2. A Bell inequality for half-integer spin singlets

The Bell inequality presented in Eq. (15), and valid for
j = 1/2, can be extended to arbitrary spins. Here, we focus
on the simplest extension with k = 3 measurement set-
tings, which corresponds to the region labeled “1” on (a)
and (c) of Fig. 5. The coefficients we find are

Ã =
⎛
⎝−1 1 −1

1 −1 1
−1 1 −1

⎞
⎠ , (38a)

h(2) = (3, 3, 3). (38b)

We notice that for arbitrary complex numbers x0, x1, x2,
we have

∑
ab x∗

aÃabxb = −|x0 − x1 + x2|2 ≤ 0. For inte-
ger spins, choosing s0 = s1 = s2 = 0 gives Emax = 0, so
that the classical bound cannot be violated by measur-
ing spin singlets [Eq. (31)]. In contrast, for half-integer
spins, the minimal value of |s0 − s1 + s2| is 1/2, so that
Emax = −1/4. Instead, for singlets, choosing the measure-
ment angles {θa} = (π/3, 0, −π/3) (which is optimal), we
find

∑
ab e−iθa Ãabeiθb = 0. We now derive a witness con-

dition for this optimal choice of measurements, valid with
no assumption about the quantum state. From Eq. (35), we
find that 〈∑i

∑
ab ŝ(i)

a Ãabŝ(i)
b 〉 = 0. From Eq. (34), recalling

that Aab = Ãab + δabh(2)
a , we find 〈B〉 = (9/2)[Var(Ĵ x) +

Var(Ĵ y)]. Therefore, violation of the Bell inequality Eq.
(28), with coefficients given by Eq. (38), and whose clas-
sical bound is Bc = N/4, is possible whenever

Var(Ĵ x) + Var(Ĵ y) <
N
18

. (39)

In order to reach this conclusion, we assume only that
a collection of N spin-j particles, with j a half-integer,
is measured along well-calibrated axes x and y. Maxi-
mal violation is obtained for perfect singlets, which satisfy
Var(Ĵ x) = Var(Ĵ y) = 0. This generalizes a result of Ref.
[7] to arbitrary half-integer spins. On Fig. 5(e) where
SU(2) invariance is further assumed [so that Var(Ĵ x) =
Var(Ĵ y)], this condition corresponds to the maximum at
t = π/3 for j ∈ {1/2, 3/2}.

3. A family of Bell inequalities for arbitrary spin singlets

The second family of Bell inequalities we characterize is
violated by states sufficiently close to a many-body singlet
for arbitrary j , and corresponds to the region labeled “2”
on (b)–(d) of Fig. 5. The coefficients of the Bell inequality
are

Ã = 2j

⎛
⎝−2j 1 −2j

1 0 1
−2j 1 −2j

⎞
⎠ , (40a)

h(2) = 8j 2(1, 1, 1) + (1, 0, 1). (40b)

In this case, for arbitrary complex numbers x0, x1, x2, we
have (2j )−1 ∑

ab x∗
aÃabxb = x∗

1(x0 + x2) + (x∗
0 + x∗

2)[x1 −
2j (x0 + x2)]. The classical bound is Bc = 0. Indeed,
replacing the complex variables xa by the variables sa ∈
{−j , . . . j }, we find E/(2j )2 := (s0 + s2)[s1/j − (s0 +
s2)] ≤ 0. This quantity is only ≥ 0 when s0 + s2
is between 0 and s1/j . But since |s1/j | ≤ 1, and
since s0 + s2 is always an integer, we conclude that
Emax(Ã) = 0. Concerning the quantum value on spin sin-
glets [Eq. (31)], the optimal measurement angles [Eq.
(32)] are {θa} = {arccos[1/(4j )], 0, − arccos[1/(4j )]}, for
which we obtain

∑
ab eiθa Ãabeiθb = 1. From Eq. (35),

we find that 〈∑i
∑

ab ŝ(i)
a Ãabŝ(i)

b 〉 = ∑N
i=1〈[Ŝ(i)

x ]2〉. We then
compute [Eq. (34)]

∑
ab sin θaAab sin θb = 1 + 16j 2 −

1/(8j 2),
∑

ab cos θaAab cos θb = 2 + 8j 2 + 1/(8j 2), and∑
ab sin θaAab cos θb = 0, which leads us to the witness

condition:

Var(Ĵ x)

(
2 + 8j 2 + 1

8j 2

)
+ Var(Ĵ y)

(
1 + 16j 2 − 1

8j 2

)

−
N∑

i=1

〈[Ŝ(i)
x ]2〉 < 0. (41)

In contrast to Eq. (39), this condition is a Bell-correlation
witness for arbitrary j , and only assumes correct calibra-
tion of the measurements. Notice that for j = 1/2 (for
which [Ŝ(i)

x ]2 = 1/4), this condition is the same as Eq. (39).
A simplified witness condition can be obtained by further
assuming SU(2) invariance:

Var(Ĵ x)

N
<

j (j + 1)

9(1 + 8j 2)
. (42)

On Fig. 5(e), this condition corresponds to the right-most
maximum at t = arccos[1/(4j )].

Further improvement. The Bell inequalities reported
here are the simplest ones discovered via our data-driven
method, involving only k = 3 co-planar spin measure-
ments. Adding extra measurements, possibly genuine
SU(d) measurements, can only lead to more robust Bell
inequalities, and looser witness conditions than Eqs. (39)
and (41). We leave this exploration open to future studies,
for which our algorithm [15] represents a natural starting
point.

C. Spin-squeezed states

A Bell inequality for arbitrary-spin-squeezed states
with two settings. Similarly to the measurement sce-
nario leading to the violation of Eq. (19) for spin-1/2
squeezed states, we consider a situation where two projec-
tive spin measurements, ŝ(i)

0/1 = Ŝ(i)
x cos θ ± Ŝ(i)

y sin θ , are
locally performed on a collection of N spin-j particles.
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Using data from a spin-j squeezed state, we find the
following generalization of Eq. (19):

〈B〉 = C̃00 + C̃11 − C̃01 − C̃10

+ 2M (2)

0 + 2M (2)

1 − M0 − M1 ≥ 0. (43)

For j = 1/2, we have M (2)
a = N/4, and therefore recover

Eq. (19). More generally, the classical bound ≥ 0 is
obtained by writing BLV = (δS0 − δS1)

2 − ∑N
i=1[(s0 −

s1)
2 − 2s2

0 − 2s2
1 + s0 + s1](i) ≥ − maxs0,s1 E(s0, s1), where

E(s0, s1) = (s0 − s1)
2 − 2s2

0 − 2s2
1 + s0 + s1 = −(s0 + s1)

(s0 + s1 − 1). Since s0/1 are the outcomes of spin-j mea-
surements, they are either both integers, either both half-
integers. This implies that s0 + s1 is always an integer.
Since E(x) = −x(x − 1) ≤ 0 for all integers x, we con-
clude that 〈B〉 ≥ 0 for LV models. On the other hand, for
the measurement setting we consider, we have the quantum
value

〈B〉= 4Var(Ĵ y) sin2 θ − 2〈Ĵ x〉 cos θ + 4 cos2 θ

N∑
i=1

〈[Ŝ(i)
x ]2〉.

(44)

We introduce the notation s2
x = N−1 ∑N

i=1〈[Ŝ(i)
x ]2〉. The

optimal measurement angle θ , leading to the minimal value
of 〈B〉, is such that cos θ = 〈Ĵ x〉/[4Ns2

x − 4Var(Ĵ y)] (if this
is ≤ 1), for which we obtain

〈B〉 = 4Var(Ĵ y) − 〈Ĵ 2
x〉

4[Ns2
x − Var(Ĵ y)]

. (45)

Violation is detected whenever 〈B〉 < 0. This general-
izes the results for j = 1/2 [9,22] to arbitrary spins. In
Appendix B, we present another Bell inequality, for which
violation has been found with j ≤ 1. Clearly, adding extra
measurements (k ≥ 3) could only lead to more robust Bell
inequalities (see Sec. II D for the case j = 1/2): we leave
this exploration open to future works.

IV. EXPERIMENTAL IMPLEMENTATION

In this work, we have introduced a new methodology to
learn, from experimental data themselves, the best device-
independent entanglement criterion that the data allow one
to construct—in the form of a Bell inequality whose coef-
ficients are inferred via a data-driven algorithm. We have
demonstrated the effectiveness of this new approach by
using, as input to our algorithm, either actual experimental
data [9], or data which could be obtained by collecting the
appropriate two-body correlations on realistic many-body
quantum states. The new Bell inequalities presented in this
work include and surpass all robust permutationally invari-
ant Bell inequalities reported so far in the literature. There-
fore, these Bell inequalities could already be useful for

entanglement certification in existing or near-term quan-
tum devices, if the relevant states are prepared, and if the
appropriate measurements are performed (see below). But
most importantly, the data-driven nature of our approach
makes it especially suitable to explore a virtually infinite
variety of experimental data, potentially unveiling new and
unexpected Bell inequalities. It is indeed not unrealistic to
anticipate that present-day quantum simulators and com-
puters are processing quantum-entangled states, while the
experimentalists are not able to prove it simply because
they lack entanglement criteria tailored to their experimen-
tal data. To facilitate this exploration by other researchers,
we have released a pedagogical open-access version of the
code used throughout this paper [15]. Furthermore, in this
section, we present an (incomplete) list of experimental
platforms able to produce suitable data, allowing one to
potentially certify the preparation of many-body entangled
state with the data-driven method presented in this work.
The present section does not contain new results; rather, it
consists of a guide towards the existing literature relevant
to the experimental implementation of device-independent
entanglement certification. Such implementation requires
answering two questions:

(A) Can one collect the data sets used as inputs to our
data-driven algorithm?

(B) Can one prepare quantum many-body states mani-
festing Bell nonlocality?

The measurement question can take two conceptually dif-
ferent forms: (A1) the one- and two-body correlations
forming the data set [Eqs. (7), (8), and (25)] are measured
individually, which requires individual addressing of the
subsystems; (A2) these data are inferred from the fluc-
tuations of collective observables. In the first case (A1),
one realizes a situation conceptually close to a proper Bell
test, even though avoiding, e.g., the locality loophole might
be very challenging. In contrast, in the second case (A2),
one does not realize a Bell test, but rather demonstrates
the ability to prepare many-body entangled states, which
would yield violation of the reconstructed Bell inequal-
ities, if such a Bell test could be implemented. Clearly,
(A2) is less demanding and requires only access to col-
lective variables (as realized in Refs. [9,10]), which are
sums of spins or pseudospins of individual components of
the system. These individual components could be atoms
of spin j = 1/2, 1, 3/2, . . ., or atoms, ions, and supercon-
ducting qubits realizing effective few-level systems. First
and second moments of the collective-spin components
must be measured. For spin-j particles, witness condi-
tions such as those we derived [Eqs. (41) and (45)] may
involve quantities of the form Ô = ∑N

i=1 f (Ŝ(i)
n ), where

Ŝ(i)
n is a spin observable along an arbitrary direction n,

and f (x) may be an arbitrary function. Such observables
can be measured via collective measurements in atomic
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systems, e.g., after Stern-Gerlach splitting of the magnetic
sublevels before imaging [24]. Indeed, we may express
Ô = ∑j

s=−j P̂(n)
s f (s), where P̂(n)

s is the number of atoms
detected with spin s after the Stern-Gerlach splitting with
a magnetic field gradient along n.

Concerning the preparation (B), the goal is to gener-
ate strongly entangled many-body states, such as squeezed
states or spin singlets. Notice that while spin-singlet and
spin-squeezed states are paradigmatic examples of many-
body entangled states, on which we focused in this work
to demonstrate the effectiveness and flexibility of our new
method, other classes of states are potentially interest-
ing; for instance, Dicke states are clear candidates [25,26]
while the potentialities of j ≥ 1 ensembles subjected to
more general SU(d) measurements, are virtually unlimited.
In this section, we present an incomplete list of plat-
forms for which both A and B questions can be answered
positively. We then discuss the experimental effort, in
terms of the number of repetitions of the preparation-
measurement procedure, in order to establish the violation
of permutationally invariant Bell inequalities.

A. Experimental platforms

Atomic ensembles. These are clouds of (not-necessarily
cold) atoms with spin. (A) The total spin components
can be measured employing quantum Faraday effect, i.e.,
looking at the polarization rotation of the light passing
through the atomic cloud [27]. This method is also fre-
quently called spin polarization spectroscopy (SPS). In
principle, one has access here to the full quantum statis-
tics of the total spin components. Using standing driving
fields, one can also detect spatial Fourier components of
the collective spin [28]. (B) Atomic ensembles are partic-
ularly suitable to achieve strong squeezing of the atomic
spin. Using quantum feedback, spin-singlet states have
also been prepared [29–31]. Combining feedback with the
ideas of Ref. [28], practically arbitrary spin-spin correla-
tions could be generated [32]. Using a one-dimensional
atom-light interface, quantum spin noise limit can be
achieved [33]. Spin-squeezed states and even Bell’s non-
locality have been achieved for macroscopic ensembles,
using optical-cavity-assisted measurements [10].

Ultracold spinor Bose-Einstein condensates. (A) The
techniques developed for atomic ensembles can be applied
to Bose-Einstein condensates [34]. In ultracold trapped
spinor gases, the principal nonlinear mechanism leading
to squeezing (among other interesting entangled states)
corresponds to spin-changing collisions [35]. Here, all
spin components and their fluctuations can be measured.
Beyond spin components, e.g., the nematic tensor for
spin-1 condensates can be measured, including in a spa-
tially resolved way [36]. (B) The possibility to violate
the many-body Bell inequalities of Ref. [8] were in fact
first confirmed in twin-mode squeezed states in spinor

condensates [9], and these systems allow one to gen-
erate nonclassical states going beyond squeezing (for a
review, see Ref. [21]). Entanglement between spatially
separated condensates, and even Einstein-Podolsky-Rosen
steering, can be generated [37–39]. More recently, high-
spin cold-atom ensembles, which display dipolar magnetic
interactions, have been generated [40–43], which appear as
ideal playgrounds to explore Bell’s inequalities tailored to
arbitrary-spin systems, as established in the present work.

Ultracold atoms in optical lattices. (A) Ultracold atoms
in optical lattices provide one of the best platforms for
quantum simulations [44]. All the methods mentioned
above can be carried over to atoms in optical lattices.
SPS has emerged as a promising technique for detecting
quantum phases in lattice gases via the coherent mapping
of spin correlations onto scattered light, realizing quan-
tum nondemolition measurements. In particular, spatially
resolved SPS that employs standing-wave laser config-
urations [28] allows for a direct probing of magnetic
structure factors and order parameters [45–48]. Moreover,
quantum gas microscopes, which are able to resolve indi-
vidual atoms located in single lattice sites, have been
developed [49–51]. These techniques allow for a direct
inspection into the spatial structure of entanglement within
the system [52], and direct violation of the Bell inequal-
ities (A1) could be envisioned. (B) These systems may
lead to a very large variety of strongly correlated many-
body states. In particular, spin singlets, which are ground
states of quantum antiferromagnets according to theorems
by Mattis [18], are expected to emerge at low energy in
quantum simulators of the Fermi-Hubbard model [19]. A
review of potentially achievable correlations can be found
in Ref. [53]. High-spin atomic ensembles in optical lat-
tices [54,55] clearly represent very promising systems to
investigate novel classes of entangled many-body states,
especially concerning Bell’s inequalities involving many
outcomes.

Trapped ions. (A) Trapped ions represent a very versa-
tile platform, and one of the most promising candidates for
quantum computing. Small systems of ions allow for full
quantum tomography of the density matrix, from which the
statistics of all observables can be recovered. This includes
in particular spin-spin correlations (see, for instance, Ref.
[56]), but also, e.g., third-order correlations, which have
been used for the detection of genuine three-body entan-
glement in a system of few ions. Clearly, trapped ions are
a platform of choice to directly probe the spatial struc-
ture of quantum correlations, and direct violation of the
Bell inequalities could be achieved (A1). (B) Few-ion sys-
tems can be used for the generation of a very wide variety
of entangled states on demand: recent examples include
ground states of lattice gauge theory models [57–59], and
dynamically generated entanglement [60], among others.

Significant others. These include, but are not limited to,
atoms in nanostructures [61], Rydberg atoms [62], and a
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large number of condensed-matter systems, ranging from
circuit QED, through quantum dots, to superconducting
Josephson junctions [63]. All of these systems could poten-
tially prepare and detect the entangled states suitable to
violate the Bell inequalities investigated in this work—and
most importantly, generate correlation patterns from which
data-driven methods such as ours could reveal novel Bell
inequalities.

B. Measurement effort

In order to implement the data-driven method presented
in this paper, one needs to estimate the data Ma and C̃ab
[Eq. (8)] {the generalization to include also terms such as
M (2)

a [Eq. (25)] for measurements with d > 2 outcomes
is straightforward}. In order to evaluate them directly to
realize a device-independent entanglement test (i.e., with-
out inferring them via collective measurements to estimate
Bell correlation witnesses), one needs to have the experi-
mental capability to individually address each subsystem,
and to choose independently the measurement setting a ∈
{0, . . . , k − 1} on each of them. The following procedure
may be repeated R times.

1. Choose randomly and independently a measure-
ment setting ai(r) on each subsystem i ∈ {1, . . . , N },
with a uniform probability over {1, . . . , k}. (r ∈
{1, . . . , R} labels the rth measurement run);

2. Perform the corresponding measurement, collecting
the string of outcomes s(r) = [s1(r), . . . , sN (r)].

We denote as R(i)
a the number of times the setting a has

been implemented on subsystem i, and R(ij )
ab the number of

times the pair of settings (a, b) has been implemented on
the pair of subsystems (i, j ), i.e.,

R(i)
a =

R∑
r=1

δa,ai(r), (46a)

R(ij )
ab =

R∑
r=1

δa,ai(r)δb,aj (r). (46b)

On average, for each subsystem, each setting a is imple-
mented R/k times; and for each pair of subsystems, each
pair of settings (a, b) is implemented R/k2 times. The data
are then obtained as

M (exp)
a =

N∑
i=1

1

R(i)
a

R∑
r=1

δa,ai(r)si(r), (47a)

C(exp)

ab =
∑
i�=j

1

R(ij )
ab

R∑
r=1

δa,ai(r)δb,bj (r)si(r)sj (r), (47b)

C̃(exp)

ab = C(exp)

ab − M (exp)
a M (exp)

b . (47c)

The collective quantity Ma is typically scaling as O(N )

with fluctuations of order O(
√

N ) (this holds whenever
there is a finite correlation length in the system). On the
other hand, the collective quantity Cab scales as O(N 2)

with fluctuations of order O(N ). The quantity C̃ab is
instead scaling as O(N ), but its fluctuations, stemming
from the fluctuations of Cab and MaMb, which are both of
order O(N ), are also of order O(N ). Therefore, the error on
Ma and C̃ab due to finite statistics scale as

|M (exp)
a − Ma| = O

(√
N

R/k

)
, (48a)

|C̃(exp)

ab − C̃ab| = O

(
N√
R/k2

)
(48b)

and the relative errors scale according to O
(√

k/RN
)

and

O
(√

k2/R
)

, respectively. The most demanding estimation

is for the two-body correlations contained in C̃ab. Notice
that, as a consequence of the fact that the data involve only
extensive quantities, the number R of measurement runs
required to reach a given relative precision of ε scales as
R ∼ k2/ε2, and therefore does not scale with the system
size. Notice also that if the goal is not to collect the data to
be used as input of our data-driven algorithm, but instead
to evaluate the violation of a given permutationally invari-
ant Bell inequality, such as those presented in this work,
it might be more efficient to select the measurement set-
tings with probabilities depending on the coefficients of the
Bell inequality in question. One then needs to estimate the
error on

∑
ab AabC̃ab + ∑

a haCa − Bc (with Bc the classi-
cal bound), which should be significantly negative for the
certification to be conclusive (under the Gaussian-statistics
assumption, see below).

Improvement due to the nonlinear nature of the Bell
inequalities. As already noticed in Sec. II D, the fact that
our Bell inequalities involve the (nonlinear) C̃ab quan-
tities leads to significantly tighter results than the Bell
inequalities involving Cab (see, in particular, Fig. 2), espe-
cially for N large. Indeed, Cab is typically of order O(N 2),
while Ma, C̃ab = O(N ), together with the classical bound,
which is also O(N ) [see Eq. (9) or Eqs. (15) and (19) for
explicit examples]. Therefore, any systematic error will
lead to an error of O(N 2) on Cab, making more challeng-
ing in practice the detection of Bell nonlocality for large N
(see, however, Refs. [9,10]). Instead, given that all terms
in our Bell inequalities are extensive, a systematic error
will lead to O(N ) deviations, which does not represent an
obstruction to scalable Bell tests.

Relaxing the Gaussian-statistics assumption. If the
implicit Gaussian-statistics assumption leading to the scal-
ing R ∼ k2/ε2 is to be relaxed, more elaborate finite-
statistics analysis must be carried out, typically using tail
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bounds on the distribution of outcomes (see, e.g., Refs.
[64–66]). Similarly, if a Bell correlation witness, based on
collective measurements, is to be evaluated, from which
the ability of the prepared state to violate a Bell inequality
is to be assessed, special care in the data analysis must be
taken if the Gaussian-statistics assumption is relaxed [12],
leading to an overhead in terms of measurement effort.

C. Summary of the concrete implementation of our
method

In summary, detecting entanglement via our data-driven
method proceeds in four steps.

1. Define a partition of the multipartite system into N
subsystems, and select several (incompatible) local
quantum observables ŝ(i)

a for i ∈ {1, . . . N }, whose
outcome are denoted s(i)

a .
2. Collect one-body terms

∑N
i=1〈s(i)

a 〉, and two-body
terms

∑
i�=j 〈s(i)

a s(j )
b 〉, either by measuring individu-

ally the subsystems, or by inferring such data via
collective measurements.

3. Use these data as input to our algorithm to poten-
tially find a violated Bell inequality [15]. If no vio-
lation is found, one could modify the measurements
chosen at step (1).

4. Analytically analyze the Bell inequality inferred
from the data, to understand the essential features
leading to entanglement detection.

V. CONCLUSIONS

We have presented a new data-driven method to detect
multipartite entanglement in quantum simulators and com-
puters. We devised an algorithm (Sec. II A), which con-
structs a violated nonlinear Bell inequality from one- and
two-body correlations averaged over all permutations of
the subsystems. Our approach is applicable to any num-
ber of measurement outcomes. In order to do so, we have
expressed the two-body coefficients of the Bell inequal-
ity as a positive semidefinite matrix, whose optimization
allows for a systematic exploration of all potentially vio-
lated Bell inequalities of this form. As an illustration of the
potentialities of this new approach to entanglement detec-
tion, we could improve over previously known many-body
Bell inequalities violated by j = 1/2 spin-squeezed [8–10,
12] and spin-singlet states [7] in the thermodynamic limit
(Sec. II). In addition, we could extend these results to simi-
lar states for arbitrary j > 1/2 individual spins, by consid-
ering Bell scenarios with arbitrarily many outcomes (Sec.
III)—to our knowledge, this represents the first example
of such families of many-body Bell inequalities. As our
(nonlinear) Bell inequalities involve only zero-momentum
fluctuations, sufficient conditions on many-body quantum
states for their violation could be established, in the form of
Bell-correlation witnesses—involving first moments and

variances of collective observables. Such witnesses can be
measured in state-of-the-art cold-atom systems with only
global measurements (Sec. IV). Importantly, the nonlinear
nature of the Bell inequalities reconstructed by our method
offers a fundamental scaling improvement over the linear
Bell inequalities, which have been considered so far. Due
to its very flexible nature and a very small computational
cost (independent of the system size, and exponential in
the number of measurement outcomes), our data-driven
approach opens the way to the systematic exploration of
permutationally invariant Bell inequality in many-qudit
systems—as a matter of fact, the Bell inequalities pre-
sented in the paper represent only a fraction of all those
discovered with our approach [15], already for the simple
classes of spin-squeezed and spin-singlet states. We antic-
ipate that exploring other many-body entangled states, for
instance, considering Dicke states, or going beyond spin
measurements to consider genuine SU(d) measurement
[36], either theoretically, or directly from experimental
data, will lead to the discovery of yet many other and—by
construction—useful many-body Bell inequalities. Finally,
we would like to point out that our algorithm searches
for Bell inequalities whose two-body coefficients form
a positive semidefinite matrix. While all robust permu-
tationally invariant Bell inequality reported in the liter-
ature satisfy this condition, it is worth investigating its
limitations.
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APPENDIX A: CONVEX OPTIMIZATION
ALGORITHM BASED ON THE AVERAGED PAIR

PROBABILITY DISTRIBUTION

In this section, we present a general formulation of the
convex optimization algorithm to find a Bell inequality
violated by the pair probability distribution averaged over
all permutations of the subsystems [Eq. (5)]:
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P̄(s, t|a, b) = 1
N (N − 1)

∑
i�=j

P(ij )(s, t|a, b). (A1)

The probability distribution P̄ is the central object recon-
structed from experimental observations. a, b = 0, . . . k −
1 label the measurement settings, while s, t = 1, . . . d label
the measurement outcomes. Assuming that a LV model
PLV(σ ) exists, which returns P(ij ) as a marginal, with
σ = {s(i)

a } a collection of classical variables representing
the measurement outcomes, we have [Eq. (4)]

P(ij )(s, t|a, b) =
∑

σ

PLV(σ )δs(i)a ,sδs(j )b ,t
. (A2)

We may then decompose P̄ as

P̄ = 1
N (N − 1)

⎡
⎣∑

i,j

P(ij ) −
∑

i

P(ii)

⎤
⎦ . (A3)

Even though P(ii)(s, t|a, b) is not observable (since it would
require measuring simultaneously the settings a and b on
the same subsystem i, and in general they correspond to
incompatible quantum observables), it exists at the level
of the LV model. The key point is then that if we define
Q(s,a),(t,b) = ∑

i,j P(ij )(s, t|a, b), then Q [as a (kd) × (kd)

matrix] is PSD. Indeed, considering a kd-component vec-
tor f (s|a), we have

f TQf =
∑

s,t

∑
a,b

∑
i,j

P(ij )(s, t|a, b)f (s|a)f (t|b),

=
∑

σ

PLV(σ )
∑

i,j

∑
a,b

∑
s,t

δs(i)a ,sf (s|a)δ
s(j )b ,t

f (t|b),

=
∑

σ

PLV(σ )
∑

i,j

∑
a,b

f [s(i)
a |a]f [s(j )

b |b],

=
∑

σ

PLV(σ )

{∑
i

∑
a

f [s(i)
a |a]

}2

,

≥ 0. (A4)

Consequently, for any PSD matrix M(s,a),(t,b) := M (s, t|a, b),
we have

∑
a,b

∑
s,t

M (s, t|a, b)P̄(s, t|a, b),

≥ − 1
N (N − 1)

∑
i

∑
a,b

∑
s,t

M (s, t|a, b)P(ii)(s, t|a, b),

≥ − 1
N − 1

Emax(M ), (A5)

where

Emax(M ) = max
s∈{1,...d}k

∑
a,b

M (sa, sb|a, b). (A6)

The optimal PSD matrix M may therefore be found by a
convex-optimization program, minimizing the cost func-
tion:

L(M ) =
∑
a,b

∑
s,t

M (s, t|a, b)P̄(s, t|a, b) + 1
N − 1

Emax(M )

(A7)

over all PSD matrices M .

APPENDIX B: BELL’S INEQUALITY FOR
SPIN-SQUEEZED STATES

Exploring j = 1 spin-squeezed states with k = 2 spin
measurements in the x-y plane, at angle ±θ with respect
to the x axis, we found another violated Bell inequality
similar to the one presented in Sec. II D:

〈B〉 = C̃00 + C̃11 − C̃01 − C̃10

+ M (2)

0 + M (2)

1 − 2M0 − 2M1, (B1)

= 〈δ(S0 − S1)
2〉 + 2

N∑
i=1

〈s0s1 − s0 − s1〉(i), (B2)

≥ −2Nj 2. (B3)

The quantum value is (with s2
a = N−1 ∑N

i=1〈[Ŝ(i)
a ]2〉 for

a = x, y)

〈B〉 = 4Var(Ĵ y) sin2 θ − 4〈Ĵ x〉 cos θ + 2N (s2
x cos2 θ

− s2
y sin2 θ). (B4)

The optimal angle is such that cos θ = 〈Ĵ x〉/[Ns2
x + Ns2

y −
2Var(Ĵ y)], for which we have

〈B〉 = 2[2Var(Ĵ y) − Ns2
y] − 2〈Ĵ x〉2

Ns2
x + Ns2

y − 2Var(Ĵ y)
.

(B5)

We found violation for squeezed states of j = 1/2 or
j = 1.
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