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Z3 Quantum Double in a Superconducting Wire Array
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We show that a Z3 quantum double can be realized in an array of superconducting wires coupled via
Josephson junctions. With a suitably chosen magnetic flux threading the system, the interwire Josephson
couplings take the form of a complex Hadamard matrix, which possesses combinatorial gauge symme-
try—a local Z3 symmetry involving permutations and shifts by ±2π/3 of the superconducting phases.
The sign of the star potential resulting from the Josephson energy is inverted in this physical realization,
leading to a massive degeneracy in the nonzero flux sectors. A dimerization pattern encoded in the capac-
itances of the array lifts up these degeneracies, resulting in a Z3 topologically ordered state. Moreover,
this dimerization pattern leads to a larger effective vison gap as compared to the canonical case with the
usual (uninverted) star term. We further show that our model maps to a quantum three-state Potts model
under a duality transformation. We argue, using a combination of bosonization and mean field theory, that
altering the dimerization pattern of the capacitances leads to a transition from the Z3 topological phase
into a quantum XY-ordered phase. Our work highlights that combinatorial gauge symmetry can serve as a
design principle to build quantum double models using systems with realistic interactions.
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I. INTRODUCTION

The identification of possible experimental realizations
of topologically ordered states of matter remains a cen-
tral problem in condensed-matter physics. The fractional
quantum Hall (FQH) effects [1,2] are the quintessential and
best-characterized topological states. Both the fractional
charge [3,4] and, more recently, the fractional statistics
[5,6] of the quasiparticle excitations of Abelian FQH states
have been experimentally measured. In addition to their
fundamental importance, topological phases such as those
associated with non-Abelian FQH states have potential
application to topological quantum computation.

Underlying all qubits that are based on topological
ordered states [7] are quantum liquids of charges, like in
the FQH effects, or spins. While there is no compelling
experimental evidence of gapped spin liquids on par with
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that of FQH liquids, there is a comprehensive body of the-
oretical work that establishes solvable toy models where
the topological liquid states are apparent. Perhaps some
of the most general, and arguably the most elegant too,
are Kitaev’s quantum double models [8]. The construction
builds topological states of matter starting from quantum
states associated to elements of a given group. Kitaev’s
toric code is the simplest such case, where the group is Z2.
These constructions, while exact, contain multibody inter-
actions; a major open problem is how to generate these
topological states with physical interactions. The notion of
combinatorial gauge symmetry was introduced in Ref. [9]
as an effort to address this problem.

Combinatorial gauge symmetry is based on semidirect
or wreath products of a given symmetry group and per-
mutations, which have monomial matrix representations
with elements in the group. Hamiltonians with two-body
interactions can be constructed so as to be invariant under
a closed string of left and right multiplications by mono-
mials. These products, along closed paths, generate an
exact local gauge symmetry, and thus these Hamiltonians
contain the same local symmetries as, say, the Z2 toric
code.

Examples of systems with Z2 combinatorial gauge
symmetry were given for spin systems in Ref. [9] and
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embedded in a D-Wave quantum annealer in Ref. [10], and
for superconducting wire arrays in Ref. [11]. Here we pro-
vide the first example outside of the family of the simplest
type of Z2 topological order, and construct a quantum dou-
ble for the group Z3 using superconducting wire arrays.
This construction serves as an important stepping stone
towards realizing other quantum doubles within physically
accessible Hamiltonians.

The superconducting wire array we present realizes
the Z3 quantum double on the honeycomb lattice. There
are other proposals to generate Zn quantum doubles with
Josephson-junction arrays [12–14]. In those proposals the
gauge symmetry is emergent, i.e., it is realized only in the
perturbative regime where the Josephson energy is dom-
inant. Our proposal differs in that the gauge symmetry is
nonperturbative, i.e., the combinatorial gauge symmetry
construction discussed here holds for any strength of the
coupling constants, including regimes where the charging
energy dominates.

The particular construction discussed in this paper has
the following interesting feature: the star potential that
usually constrains states to lie in the zero flux sector is
inverted, i.e., the states with nonzero flux have the low-
est energy. This inverted potential by itself would lead to
an extensive degeneracy, but the degeneracy can be lifted
by a dimerization pattern encoded in the capacitances of
the array. Of the three wires emanating from a vertex of
the honeycomb lattice, we select one of the directions to
have a smaller capacitance than the other two directions.
This choice stabilizes the Z3 topological quantum liquid
state. We show that this topological phase is stable for a
range of ratios of the capacitances, up to a critical ratio
for which a quantum XY-ordered phase emerges. We study
the phase diagram and estimate the location of the transi-
tion by deploying a duality map of the model to a quantum
three-state Potts model, which we analyze through a com-
bination of bosonization techniques (applied to a limit of
weakly coupled one-dimensional chains) and mean field
theory. The dimerization of the couplings imposed by the
different capacitances translate into two different fields hs
and hw in the Z3 clock model. We estimate these fields in
the effective model in terms of the Josephson energy and
capacitances, using a WKB approximation. We also esti-
mate the size of the effective plaquette term in the quantum
double in terms of these fields hs and hw. We point out a
positive side-effect of the inverted potential: the vison gap
is larger than that in the case of the uninverted potential.

The paper is organized as follows. In Sec. II we present
the superconducting wire array that realizes the Z3 com-
binatorial gauge symmetry yielding the associated topo-
logical quantum double with inverted potential. We show
in Sec. III that the bond dimerizations, which microscopi-
cally are induced by the different values of the capacitances
in the corresponding wires, lifts the massive degener-
acy imposed by star terms arising from the Josephson

couplings and leads to a Z3 topologically ordered ground
state. In Sec. IV we study the stability of the topologi-
cal phase against a quantum XY-ordered state when the
degree of dimerization is reduced. We present a duality
transformation into a Z3 clock model. In the appendices
we present details of the calculations, including the esti-
mates of the fields that enter in the clock model as function
of the microscopic parameters of the superconducting wire
array.

II. SUPERCONDUCTING WIRE ARRAY WITH
COMBINATORIAL GAUGE SYMMETRY

Consider an array of superconducting wires as shown in
Fig. 1. An elementary building block depicted in Fig. 1(b)
consists of three horizontal “gauge” wires and three ver-
tical “matter” wires coupled via Josephson junctions,
forming a “wafflelike” geometry. We further introduce an
external magnetic flux threading each plaquette of an ele-
mentary waffle � = [n + (1/3)]�0, where n is an integer
and �0 = (h/2e) is the flux quantum [15]. The full array
forms a two-dimensional honeycomb lattice with a waffle
at each lattice site, and an extended gauge wire at each link.
Notice that the gauge wires are shared between the sites
whereas the matter wires are localized on each lattice site.
Denoting the superconducting phases of the gauge wires as
θi and the matter wires as φa, the Hamiltonian of such an
array can be written as

H = HJ + HC, (1)

where the Josephson coupling

HJ = −EJ

∑

s

[
∑

i,a∈s

Wai ei(θi−φa) + h.c.

]
, (2)

and the capacitance term

HC = 1
2

∑

s

QT
s C−1Qs. (3)

In the above equations, EJ is the Josephson energy of the
junctions, the vector QT = (Q1, Q2, Q3, q1, q2, q3) denotes
the charge of each gauge wire Qi and matter wire qa, and
C is a 6 × 6 capacitance matrix of the waffle. The charges
and phases are conjugate variables satisfying the standard
commutation relations [θi, Qj ] = iδij and [φa, qb] = iδab.

A. Combinatorial gauge symmetry

The magnetic flux threading each plaquette of the waf-
fle enters the Josephson coupling as a phase shift, which
is encoded in the coupling matrix W in Eq. (2). To see
the phase shift in the Josephson coupling energy between
each pair of crossing wires θi and φa, one simply needs
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(a) (b)

FIG. 1. An array of superconducting wires forming a two-dimensional honeycomb lattice. An elementary building block is depicted
in (b), which contains three horizontal (yellow) gauge wires with superconducting phases θi coupled to three vertical (green) matter
wires with phases φa via Josephson junctions, forming a “waffle” like geometry. An external magnetic flux of � = (n + 1

3 )�0 threads
each elementary plaquette of the waffle, leading to a complex coupling matrix W with combinatorial gauge symmetry. On the full
lattice, the gauge wires are shared between two neighboring sites via the blue wires, whereas the matter wires are localized on each
lattice site.

to count the total flux piercing the rectangle formed by
wires (θi,φa, θ1,φ1). For example, consider the Joseph-
son coupling energy between gauge wire θ2 and matter
wire φ2. This coupling acquires a phase shift in the pres-
ence of a flux�: −EJ cos(θ2 − φ2) → −EJ cos[θ2 − φ2 +
2π(�/�0)] = −EJ cos[θ2 − φ2 + (2π/3)]. This corre-
sponds to matrix element W22 = ei(2π/3) in Eq. (2). Sim-
ilarly, the phase shift between wire θ1 and any matter wire
φa, as well as wire φ1 and any gauge wire θi, is zero, since
there is no loop formed in this case, which corresponds to
W1i = Wa1 = 1. One can readily check that the coupling
matrix W in Eq. (2) has the following form:

W = 1√
3

⎛

⎝
1 1 1
1 ω ω

1 ω ω

⎞

⎠ , (4)

where ω = ei(2π/3) and ω = ω2. One recognizes that the
W matrix above is precisely the discrete Fourier trans-
form matrix with entries Wjk = (1/

√
3)ei[2π(j −1)(k−1)/3],

which is also a complex Hadamard matrix satisfying
W†W = WW† = 1. Complex Hadamard matrices of the
form Eq. (4) are invariant under a pair of left and right
monominal transformations, which underlie the combina-
torial gauge symmetry. Specifically, W has the following
automorphism:

L† W R = W, (5)

where L and R are monomial matrices. Equivalently, R and
L generate permutations and shifts of the superconduct-
ing phases on the gauge and matter wires within a waffle,

respectively:

eiθi →
3∑

j =1

Rij eiθj , (6a)

e−iφa →
3∑

b=1

e−iφb (L†)ba, (6b)

under which the Josephson coupling terms in the Hamilto-
nian of a single waffle is invariant. We further restrict the R
matrix to be diagonal, since the gauge wires on the lattice
are shared between sites and cannot be permuted. It turns
out that if we take R to be of the following form:

R =
⎛

⎝
1 0 0
0 ω 0
0 0 ω

⎞

⎠ , (7)

then L is also a monomial matrix

L =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ . (8)

One can further check that L is monomial for any permu-
tation along the diagonal of the R matrix. Notice that L
is uniquely determined for a given R, following from the
automorphism Eq. (5). Permutations of the matter wires
are allowed on the lattice because the matter wires are
localized on each site, and permutations simply correspond
to relabeling the wires. Physically, the transformation R
corresponds to a Z3 phase shift on two out of the three
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FIG. 2. Local Z3 gauge symmetry on an elementary hexagonal
plaquette of the lattice.

gauge wires within a waffle, such that the product
∏3

i=1 eiθi

is preserved.
The automorphism of W under monomial transforma-

tions (L, R) naturally furnishes a local Z3 gauge symmetry
on the full lattice. One can construct the following oper-
ator generating a local gauge transformation around an
elementary hexagonal plaquette on the lattice, as depicted
in Fig. 2:

Gp =
∏

s∈p

L(φ)s

∏

s∈p

R(θ)
s , (9)

where L(φ)s generates permutations and phase shifts of
the matter wires located on site s according to Eq. (6b):
L(φ)s e−iφa(L(φ)s )−1 = ∑

b e−iφb(L†)ba, and R(θ)
s generates

phase shifts on the two gauge wires emanating from site
s: R(θ)

s eiθi(R(θ)
s )−1 = ∑

j Rij eiθj . The automorphism of W
directly leads to the invariance of Hamiltonian (2) under
Gp : [Gp , HJ ] = 0, for all p . Furthermore, the local gauge
transformations on different plaquettes commute with one
another: [Gp , Gp ′] = 0. Thus we have shown that the sys-
tem in the classical limit where only HJ is present has
a local Z3 gauge symmetry. Next, we show that the
capacitance term HC is also invariant under Gp .

The capacitance matrix C contains the following entries:
the self-capacitances of a single gauge wire, Cg , and of
a single matter wire, Cm; the capacitance of the Joseph-
son junction, CJ ; and the mutual-capacitance between two
neighboring wires that are parallel to one another, Cp .
The capacitance Cp is the smallest of all, as can be eas-
ily inferred from the geometry if the wires are thin and
widely separated compared to their width. Neglecting Cp
yields a capacitance matrix C that is invariant under the
permutation of the indices of the matter (as well as gauge)
wires. This symmetry carries to the inverse matrix C−1 that
controls the charging energies [16].

Since the charge and superconducting phases are con-
jugate variables, the Z3 phase shift in the monomial
transformations (L, R) is generated by the unitary operators

U(R)
i = e±i 2π

3 Qi , U(L)
a = e±i 2π

3 qa (10)

acting on the gauge and matter wires, respectively.
Because these unitary operators trivially commute with the
charge operators Qi and qa, and C−1 is invariant under
the permutation of the matter wires, we conclude that
[Gp , HC] = 0. Combining with the previous finding that
[Gp , HJ ] = 0, it follows that [Gp , H ] = 0. Hence the full
lattice Hamiltonian (1) is a gauge theory with local Z3
combinatorial gauge symmetry.

B. Minima of HJ on a single waffle

Having established the local combinatorial gauge sym-
metry of Hamiltonian (1), we now look at the minima of
the classical potential energy HJ on a single waffle. We
show that the superconducting phases of the gauge wires
at the potential minima are Z3 valued. Therefore, when the
Josephson energy is the dominant scale, Hamiltonian (1)
can be effectively described in terms of Z3 variables, from
which the topological phase emerges.

Minimizing the Josephson energy ties together the φa
and θi phase variables (see details in Appendix A),

eiφa =
∑

i Waieiθi
∣∣∑

i Waieiθi
∣∣ . (11)

The minimum energy is given by

Emin = −2EJ

∑

a

∣∣∣∣∣
∑

i

Waieiθi

∣∣∣∣∣ . (12)

We plot the potential profile as a function of θ2 and θ3 while
fixing θ1 = 0 in Fig. 3(a). We find six (three inequiva-
lent) degenerate minima with Emin = −6EJ corresponding
to θ2 and θ3 being 0 or ±(2π/3), such that

∏
i eiθi = ω

or ω. In Fig. 3(b), we show all six inequivalent gauge-
wire phase configurations corresponding to the minima
of the potential energy. For each configuration shown in
Fig. 3(b), there are another two equivalent ones from per-
muting the three phases, yielding a total of 18 ground-state
configurations. Notice that the three degenerate maxima in
Fig. 3(a) with Emax = −2

√
3EJ also correspond to θ being

0 or ±(2π/3), but now with
∏

i eiθi = 1 instead.
Turning on the capacitance term HC introduces quantum

fluctuations in the phases. When the Josephson energies
are larger than the charging energies, HC induces tunneling
between nearest-neighboring minima, which corresponds
to an instanton in Euclidean space time. In Fig. 3(a), we
show two examples of such tunneling processes at leading
order, where one of the three phases is shifted by ±(2π/3)
while the other two remain unchanged. Semiclassically, the
amplitude of such a tunneling process can be estimated
from the Euclidean action of the instanton (or equivalently,
the WKB approximation). We provide detailed calcula-
tions in Appendix B, which lead to a tunneling amplitude
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FIG. 3. (a) Contour plot of the potential −2
∑

a

∣∣∑
i Waieiθi

∣∣ as a function of θ2 and θ3. We fix θ1 = 0. (b) All inequivalent gauge-wire
phase configurations (θ1, θ2, θ3) at the potential minima. For each configuration, there are another two equivalent ones from permuting
the three phases, yielding a total of 18 configurations. The ground-state configurations can be represented by a Z3 variable Z, such
that at each star

∏
i∈s Zi = ω or ω. Configurations satisfying

∏
i∈s Zi = 1 correspond to the maxima of the potential. The capacitance

term generates tunneling processes (instanton) between nearest-neighboring minima, which corresponds to a transverse-field term in
the effective Z3 representation: X + X †. The red arrows in (a) show two examples of such tunneling processes.

approximately exp
(−0.88

√
CeffEJ

)
, where Ceff is an effec-

tive capacitance dependent on Cg , Cm, and CJ . Notice
that this amplitude already takes into account the shifts
in φa, which, when EJ is large, follow the instantaneous
minimum of HJ and is hence locked to θi according to
Eq. (11).

The minima depicted in Fig. 3 suggest that the system
admits an effective representation in terms of Z3-valued
operators at low energy. We place a Z3 degree of freedom
on each bond of the honeycomb lattice (Fig. 4), and intro-
duce Z3 clock operators Zi and Xi satisfying the algebra

X 3
i = Z3

i = 1, X †
i = X 2

i , Z†
i = Z2

i , (13a)

ZiXj = ωδij Xj Zi, ZiX
†

j = ωδij X †
j Zi. (13b)

In the basis where Z is diagonal, Z = {1, ω, ω} represents
the three possible gauge-wire phases eiθi at the potential
minima. The capacitance-induced tunneling can be rep-
resented by a transverse field X + X † that shifts the Z
eigenvalue by ±(2π/3). In terms of the clock variables,
the superconducting wire array can be described effectively
at low energy by

HZ3 = J
∑

s

(As + A†
s )− h

∑

i

(Xi + X †
i ), (14)

where As = ∏
i∈s Zi, J = (6 − 2

√
3/3)EJ > 0, and h ∼

e−0.88
√

CeffEJ . The generator of local Z3 gauge transforma-
tion Eq. (9) now takes the form Gp = X1X †

2 X3X †
4 X5X †

6 and
G†

p around a hexagonal plaquette, as shown in Fig. 4. It is
easy to verify that [Gp , As] = [Gp , A†

s ] = 0 for any p , s;

hence [Gp , HZ3] = 0. With periodic boundary conditions,
As and Gp satisfy the following constraints:

∏

p

Gp = 1,
∏

s∈A

As

∏

s∈B

A†
s = 1, (15)

where A and B denote two sublattices of the honeycomb
lattice. In Appendix C, we show explicitly that Hamil-
tonian (14) with the gauge constraint imposed by Gp is
equivalent to the Z3 quantum double model [8]. However,
since J > 0, the star term in Hamiltonian (14) energeti-
cally favors As = ω orω, while As = 1 has a higher energy.
In other words, we are sitting within a nonzero mixed flux
sector of the quantum double model due to the inverted
potential. As we see in the next section, this key distinction

Z1
Z2

Z3
s

pX1

X3

X5

X†
2

X†
4

X†
6

FIG. 4. Low-energy description of the superconducting wire
array in terms of Z3 clock variables (blue dots) on the link of
a honeycomb lattice. The star operator As and the generator of
local Z3 gauge transformation Gp are highlighted.
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from the conventional quantum double model has impor-
tant consequences on the phase diagram of the system,
and in particular, on how the topologically ordered phase
emerges. In Appendix F, we also provide a W matrix lead-
ing to the usual Z3 quantum double where the star term
favors the zero-flux sector As = 1.

III. Z3 TOPOLOGICALLY ORDERED PHASE
FROM BOND DIMERIZATION

We now discuss the phases that Hamiltonian (14) sus-
tains. For the conventional quantum double model with a
−J in front of the star term, one expects a gapped phase
with Z3 topological order for h/J < (h/J )c. However, the
situation is drastically different for an inverted potential
with a +J in front as in Hamiltonian (14). Let us start
by counting the ground-state degeneracy (GSD) in the
limit J → ∞ (or h = 0), and when the gauge constraint
Gp = G†

p = 1 is imposed. Denote the total number of ver-
tices, bonds, and plaquettes on the honeycomb lattice as
Nv , Nb, and Np , respectively. The ground-state degeneracy
of Hamiltonian (14) on a torus in the large J limit is

D = 3Nb ×
(

1
3

)Nv−1

× 2Nv ×
(

1
3

)Np −1

= 2Nv × 32,

(16)

where we have used the relations Nb = 3Np = 3Nv/2, and
the −1’s on the exponents account for the constraint, Eq.
(15). This indicates that the ground state is massively
degenerate, and that the gauge constraint cannot fully lift
this degeneracy. We show in the next section that upon
further turning on a weak uniform transverse field h, the
system can be mapped to a quantum spin-1/2 XY model,
which is in fact gapless. Therefore, due to the inverted

potential, Hamiltonian (14) as it is does not support a
gapped topological phase.

Nevertheless, a gapped topological phase emerges with
a slight modification of Hamiltonian (14). Instead of a uni-
form transverse field, we apply a strong transverse field
hs on the vertical bonds forming the hexagonal lattice,
and a weak transverse field hw on all other bonds with
hs > hw while keeping both hs and hw much smaller than
J . (Notice that the WKB calculation yields an exponential
suppression in the tunneling amplitudes hs and hw. Thus it
is experimentally feasible to have hs and hw smaller than J
[11].) This leads to a bond dimerization pattern depicted in
Fig. 5(a). Now the Hamiltonian takes the form

HZ3 = J
∑

s

(As + A†
s )− hs

∑

i∈vertical

(Xi + X †
i )

− hw

∑

i/∈vertical

(Xi + X †
i ). (17)

We start by considering the limit when hw = 0. In this
limit, the system becomes a set of decoupled dimers
formed by the strong bonds, since the weak bonds have no
dynamics. In Fig. 5(b), we show the energy levels asso-
ciated with a single dimer in the limit of infinite J . In
the absence of hs, the ground state of the single dimer
is fourfold degenerate in (As1 , As2) corresponding to each
As = ω or ω, which is the source of the massive ground-
state degeneracy in Eq. (16). The excited states correspond
to flipping either or both stars to As = 1, which is separated
from the ground-state subspace by a large energy of order
J . Upon turning on hs, the four degenerate ground states
will split, and the unique ground state, in the star vari-
ables, is (1/2)(|ωω〉 + |ωω〉), whose energy is lowered by
hs. To show that the massive degeneracy on the full lattice

(a) (b)

FIG. 5. (a) A strong transverse field hs is applied on all vertical (orange) bonds, which form the hexagonal lattice; and a weak
transverse field hw is applied on all other (gray) bonds. (b) Energy levels of a single dimer formed by the strong bond in the limit of
infinite J and hw = 0. In the absence of hs, the ground state is fourfold degenerate in (As1 , As2), which is the source of the massive
ground-state degeneracy in Eq. (16). A nonzero hs splits the fourfold degeneracy, leading to a unique ground state in terms of the star
variables. This leads to the ninefold topological ground-state degeneracy in Eq. (18) on the full lattice.
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is indeed split, we compute the ground-state degeneracy in
this case:

D = 3Nb ×
(

1
3

)Nv−1

× 2Nv ×
(

1
3

)Np−1

×
(

1
4

)Np

= 32, (18)

where the additional factor of (1/4)Np corresponds to one
constraint per unit cell imposed by hs, and the total number
of unit cells is equal to Np . We find that the ground state
indeed has a ninefold topological degeneracy on a torus,
which coincides with that of the conventional Z3 quantum
double.

In the above countings, the gauge constraint Gp = G†
p =

1 is imposed by hand. In our model, such a plaquette term
can be generated perturbatively upon turning on hw, yield-
ing an associated energy scale corresponding to the vison
gap. Here we point out another key distinction from the
usual Z3 quantum double with a −J in the Hamiltonian. In
that case, a plaquette term is generated only at sixth order
in h/J in degenerate perturbation theory, yielding a very
small vison gap when h/J < (h/J )c. The reason for such
a small vison gap is that h creates star excitations with a
large energy cost of order J , which suppresses the gap. In
our model, Eq. (17), with an inverted potential and dimer-
ized transverse fields, however, one does not have to pay an
energy of order J to create an excitation. Rather, there are
cheaper excitations one can make that only cost an energy
of order hs, which correspond to transitioning between the
ground state and first excited state in the presence of hs as
shown in Fig. 5(b). Furthermore, the plaquette term now
can be generated at fourth order in hw/hs, leading to a
larger vison gap than in the usual Z3 quantum double [17].

We compute the plaquette term from Hamiltonian (17)
using degenerate perturbation theory. In Fig. 6 we show a
fourth-order process in which a pair of excitations is cre-
ated and annihilated around a plaquette. In the absence of
hw, the ground state written in terms of star variables is
a tensor product of (1/

√
2)(|ωω〉 + |ωω〉) on all strong

bonds. Applying hw on a weak bond shifts the two stars
connected to the weak bond by ω or ω. For example,
consider the action of a weak transverse field on a bond
connected to s1 of a dimer (s1, s2) in its ground state:

− hw(X1 + X †
1 )

1√
2
(|ωω〉 + |ωω〉)

→ |ωω〉 + |ωω〉 + |1ω〉 + |1ω〉, (19)

where the last two states cost an energy of order J and
can be projected out in the limit of infinite J . The first two
states, on the other hand, are low-energy excitations with
energy hs only. Define the projector onto the low-energy

X1 X1 X†
2 X1 X†

2

X†
3

X1 X†
2

X†
3X4

FIG. 6. A fourth-order process in degenerate perturbation the-
ory where a pair of excitations are created and annihilated around
a plaquette under the action of hw.

subspace: Q = |ωω〉〈ωω| + |ωω〉〈ωω|. One can thus com-
pute the effective Hamiltonian at fourth order in hw/hs
acting within the ground-state subspace. For example, the
process shown in Fig. 6 gives a contribution to the effective
Hamiltonian:

Heff ⊃ − h4
w

(2hs)3

∑

p

[
X1QX †

2 QX †
3 QX4 + h.c.

]
. (20)

There are in total 24 different fourth-order processes of
pair creations and annihilations around a plaquette, and
contributions from all other processes can be calculated
in a straightforward manner. The important point here is
that the perturbative vison gap is fourth order in hw/hs as
opposed to sixth order in h/J , and hence can be made sig-
nificantly larger than that in the usual Z3 quantum double.
In Appendix D, we provide numerical results of Hamil-
tonian (17) on an elementary “spiderlike” geometry, and
compare with the conventional Z3 quantum double with
−J . The numerical results indeed suggest that a larger gap
can be achieved in our model.

To conclude, Hamiltonian (17) sustains a gapped phase
with Z3 topological order upon introducing strong and
weak transverse fields as depicted in Fig. 5. Our analy-
sis above mainly focuses on the perturbative regime where
J � hs � hw, but we expect the topological phase to per-
sist for hs/J < (hs/J )c, and hw < hs. For hs/J > (hs/J )c,
the transverse field dominates and the system becomes a
trivial paramagnet. In the next section, we consider the
regime where hw ≥ hs, and hs/J < (hs/J )c.

IV. QUANTUM XY-ORDERED PHASE

Now that we have established the existence of a topolog-
ical phase in our system, let us now consider what happens
if hw becomes greater than hs while both hs/J and hw/J
are small. In this regime, since the star operator still has a
nonzero expectation value in the ground state, it is useful
to consider a dual description of Hamiltonian (17) in terms
of Z3 clock degrees of freedom on the vertices of the hon-
eycomb lattice, which we have been implicitly using in the
previous section. In this section, we first show a duality
mapping from Hamiltonian (17) to a quantum three-state
Potts model. In the dual picture, the isotropic point hw = hs
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maps to a quantum spin-1/2 XY model with XY order-
ing in the ground state and a gapless spectrum [18,19].
For hw > hs, we consider the limit hs = 0, when the sys-
tem maps to decoupled XY chains. A small hs couples the
chains, and we analyze the effect of interchain couplings
using abelian bosonization. We find that the interchain cou-
pling due to a weak hs is marginal around the decoupled
chain fixed point, and hence the system should remain
gapless for a nonzero but weak hs.

A. Duality mapping: quantum three-state Potts model

The duality we demonstrate here is in close analogy
with the familiar Kramers-Wannier duality between the
two-dimensional transverse-field Ising model and the Z2
quantum double [20]. Define Z3 clock degrees of freedom
μz and μx on each vertex of the honeycomb lattice, and the
following duality tranformations (shown in Fig. 7):

μz
s = As =

∏

i∈s

Zi, s ∈ sublattice A, (21a)

μz
s = A†

s =
∏

i∈s

Z†
i , s ∈ sublattice B, (21b)

μx
sμ

x†
s̃ = Xi, i ≡ (ss̃), (21c)

where (ss̃) denotes the bond connecting adjacent vertices
s ∈ sublattice A and s̃ ∈ sublattice B. Notice that a single
μx operator is expressed as a string operator in terms of the
gauge degrees of freedom:

μx
s =

∏

C

X †
i Xj , (22)

where C denotes an arbitrary path starting from a link ema-
nating from site s and ending at infinity. The string operator
involves alternating X and X †, and we choose the conven-
tion that a string with endpoint on sublattice A ends with
X , and a string with endpoint on sublattice B ends with X †.
With this convention, one can readily check that the dual
variables μx and μz satisfy the correct commutation rela-
tions for Z3 clock variables. In terms of the dual variables,
Hamiltonian (17) maps to

HPotts = J
∑

i

(μz
i + μ

z†
i )− hs

∑

〈ij 〉∈vertical

(μx
iμ

x†
j + μ

x†
i μ

x
j )

− hw

∑

〈ij 〉/∈vertical

(μx
iμ

x†
j + μ

x†
i μ

x
j ). (23)

Hamiltonian (23) describes a Z3 clock model with ferro-
magnetic interactions, which is equivalent to a three-state
Potts model.

One can further check that Hamiltonians (17) and (23)
indeed have the same Hilbert-space dimension, although
naively the quantum double seems to have more degrees

μz
B = Z†

1Z†
2Z†

3

μz
A = Z1Z2Z3

XX†

X

X†

X μx
A

FIG. 7. Duality transformations defined in Eqs. (21) and (22).
Gauge degrees of freedom in the original model are placed on
the links (blue dots), and the dual clock variables are placed on
the vertices (squares). The mappings for μz are different for sub-
lattice A (purple squares) and B (green squares). A single μx

operator is expressed as a string operator in terms of the gauge
degrees of freedom.

of freedom. The Hilbert-space dimension of the Potts
model (23) is DPotts = 3Nv . On the other hand, the quan-
tum double subject to the gauge constraint Gp = 1 has a
Hilbert-space dimension of Dgauge = 3Nb−Np . Again using
the relations among Nv , Nb, and Np on a honeycomb lattice,
one finds DPotts = Dgauge.

B. Reduction to quantum XY model

Based on Hamiltonian (23), the system admits a simpler
description in the regime J � hs, hw that we are interested
in. In this regime, each μz can only take values ω or ω
in the ground state, which can be modeled as a two-level
system. Define the Pauli spin operator σ z = +1 if μz = ω,
and σ z = −1 ifμz = ω. A pair of nearest-neighbor spins is
flippable under the ferromagnetic term in Hamiltonian (23)
leads to the following low-energy effective Hamiltonian:

HXY = −hs

∑

〈ij 〉
σ x

i σ
x
j (1 − σ z

i σ
z
j )− hw

∑

(ij )

σ x
i σ

x
j (1 − σ z

i σ
z
j )

= −hs

∑

〈ij 〉
(σ x

i σ
x
j + σ

y
i σ

y
j )− hw

∑

(ij )

(σ x
i σ

x
j + σ

y
i σ

y
j ),

(24)

where we introduce the short-hand notations 〈ij 〉 and (ij )
for a bond that is or is not vertical, respectively. In par-
ticular, at the isotropic point hs = hw, the system maps to
an isotropic quantum spin-1/2 XY model. The spin-1/2 XY
model is known to have long-range order in the ground
state in dimensions greater than 1, and the spectrum is gap-
less [18,19]. Moreover, in Appendix E we show that the XY
phase is stable in the regime hs � hw starting from weakly
coupled chains, using bosonization techniques.

These results underscore the necessity of a strong dimer-
ization with hw < hs to stabilize the Z3 topological phase,
as discussed above. We conclude with a schematic of the
phase diagram of Hamiltonian (17) in Fig. 8.
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hw/J

hs/J

Paramagnet

Topological

Z3

XY

FIG. 8. Schematic phase diagram of Hamiltonian (17).

V. MEAN FIELD THEORY IN THE
BOND-OPERATOR REPRESENTATION

We now present a mean field theory that is capable of
capturing the phase transition between the Z3 topological
phase and the XY-ordered phase. Such a mean field theory
is most conveniently formulated in the dual model (23).
Since J is large in this regime, we can again work with
a truncated Hilbert space with two states per site: |ω〉 and
|ω〉. From our previous discussions in Sec. III, deep inside
the topological phase, the system essentially forms dimers
on the strong bonds, and the vertices within a dimer are
strongly entangled. Therefore, we formulate our mean field
theory using the bond-operator representation [21]. The
variational wave function is then chosen as a tensor prod-
uct of dimers on the vertical bonds in the bond-operator
basis.

The four states in the Hilbert space of a bond can be
combined to form singlet and triplet states:

|s〉 = 1√
2
(|ωω〉 − |ωω〉) ,

|tx〉 = −1√
2
(|ωω〉 − |ωω〉) ,

|ty〉 = i√
2
(|ωω〉 + |ωω〉) ,

|tz〉 = 1√
2
(|ωω〉 + |ωω〉) .

(25)

We take the following variational ansatz of the wave
function:

|	〉 =
⊗

dimers

(
cs |s〉 + cx |tx〉 + cy |ty〉 + cz |tz〉

)
. (26)

We expect such a variational wave function to be a good
ansatz for the actual quantum state deep in the topological
phase when hs � hw. The variational energy per unit cell

is

Evar = 〈	 |HJ→∞|	〉
= hs

(|cs|2 − |cz|2
)

+ hw

[
2

(|cs|2 − |cz|2
) (

|cx|2 + ∣∣cy
∣∣2

)

+
(

c2
x + c2

y

) (
c2

s + c2
z

) +
(

c2
x + c2

y

) (
c2

s + c2
z

)]
.

(27)

Notice in the above expression that only terms on the third
line depend on the phases of the variational parameters,
while all others depend only on their norms. Thus, we may
choose the phases of the variational parameters such that
the third line is minimized. Let us define c2

x + c2
y ≡ A =

|A| eiφ , and c2
s + c2

z ≡ B = |B| eiθ , and rewrite the third
line as 2 |A| |B| cos(φ − θ). This term is minimized when
φ − θ = π , the phases of cx and cy are equal, and the
phases of cs and cz are equal. One can then use the free-
dom in the global U(1) phase of the wave function to set
both cs and cz to be real, which also fixes cx and cy to
be purely imaginary. Let us now define real parameters:
ds ≡ cs, dz ≡ cz, dx ≡ −icx, and dy ≡ −icy , in terms of
which the variational energy becomes

Evar = hsd2
s + (−4hw − hs)d2

z + 4hwd2
s d2

z + 4hwd4
z (28)

where we use the normalization condition of the wave
function. When hs and hw are both positive, there are
always two local minima of the variational energy at

ds = 0, dz = ±
√

hs + 4hw

8hw
.

However,
√
(hs + 4hw)/8hw > 1 when hw/hs < 1/4,

which lies outside the domain d2
0 + d2

z ≤ 1. Therefore,
when hw/hs < 1/4, the true minimum is achieved at the
boundary, where ds = 0, dz = ±1.

This gives us the phase transition in the mean field the-
ory. When hw/hs < 1/4, the ground state is

⊗
dimers |tz〉 =⊗

dimers(|ωω〉 + |ωω〉)/√2, consistent with the scenario
in the topological phase that we discussed in Sec. III.
When hw/hs > 1/4, the ground state has ds = 0 and dz
taking a value less than 1, which means that d2

x + d2
y

becomes nonzero. Moreover, the variational energy mini-
mum depends only on d2

x + d2
y , hence forming a “Mexican-

hat”-like profile with O(2) symmetry on top of which an
XY-ordered phase can emerge from fluctuations beyond
mean field.

While the above simplification in the infinite J limit
allows for an elegant analytical treatment for the phase
transition, we further perform numerical minimization of
the variational energy by including all nine basis states
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hs/J
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(a)

(b)

0.04
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0.08
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h
w
/
J

d2
x + d2

y > 0

d2
x + d2

y = 0

dydx

E

hw � hs

dydx

E

hw � hs

FIG. 9. Numerical results of variational calculations with all
nine basis states associated with a bond included in the vari-
ational wave function. (a) Color plot showing regions in the
parameter space where {|ωω〉 , |ωω〉} components in the ground-
state wave function are zero versus nonzero. (b) Schematic plots
of the variational energy against dx and dy in the two phases.

associated with a bond in the variational wave function.
We use the total weight of the {|ωω〉 , |ωω〉} components
in the ground-state wave function as an indicator of the
phase transition, which is equal to d2

x + d2
y . The results

are shown in Fig. 9. Again, we find a critical hw beyond
which a nonzero d2

x + d2
y emerges in the ground states,

indicating the transition from the topological phase into
the XY-ordered phase. Notice that the paramagnetic phase
shown in Fig. 8 is absent in the mean field calculations. The
paramagnetic phase corresponds to the ferromagnetically
ordered phase in the dual model, for which the variational
ansatz (26) is no longer a good one. Hence our mean field
theory does not capture the transition into the paramagnetic
phase.

VI. SUMMARY AND OUTLOOK

In this paper we presented a realization of a Z3 quan-
tum double through a Hamiltonian with only physical
interations, namely the Josephson couplings and the capac-
itances of a superconducting wire array. The construction
hinges on the combinatorial Z3 gauge symmetry of the
Hamiltonian: both the Josephson and capacitive terms

are invariant under left and right monomial transforma-
tions. This invariance allows the construction of strings of
operators that generate an exact local gauge symmetry.

We discussed in detail the consequences of having an
inverted star potential in the Z3 quantum double model,
and the dimerizations that lead to a topologically ordered
ground state versus those that stabilize a quantum XY-
ordered state. We obtained the phase diagram of the model
as a function of parameters hs and hw that microscopically
are tied to the capacitances and the Josephson energy scale
J . We show that another consequence of the inverted star
potential is that the vison gap can be larger than that in
the uninverted case, as it occurs to lower order in pertur-
bation theory and as a function of a larger dimensionless
ratio (hw/hs, instead of hs,w/J ).

Our work opens fronts to tackle the problem of realiz-
ing quantum double models with realistic interactions that
span beyond the specific construction for the group Z3 in
superconducting arrays. As a simple example, once one
obtains the Hadamard matrices using the complex num-
bers ω,ω (that originate from fluxes in the superconducting
realization), one can easily construct spin-1/2 systems with
one- and two-body interactions with the necessary combi-
natorial symmetry to realize the same quantum double. It
then remains to be investigated whether the model sup-
ports a gapped phase with Z3 topological order. That
this spin representation is possible follows from replacing
these complex numbers 1,ω,ω by their 3 × 3 permutation
representations:

1 →
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , ω →
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ ,

ω →
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ . (29)

The W matrix then becomes a 9 × 9 matrix, invariant under
pairs of left and right monomial transformations as in
Eq. (5), which are now represented by 9 × 9 permutation
matrices. This matrix of interactions corresponds to ZZ
spin interactions between nine matter spins at the sites of
the honeycomb lattice, with three gauge spins at each of the
links emanating from each site. While this may appear an
unlikely model to encounter in nature, we stress that these
kinds of couplings are the same as those used to embed
the Z2 model in the D-Wave DW-2000Q quantum device
[10]. Embedding the Z3 model in such devices is not unre-
alistic, specially if one explores newer architectures with
larger qubit connectivities, such as those in the D-Wave
Advantage device.

On yet a different level, the successful construction of
the Z3 quantum double on top of combinatorial gauge
symmetry is not an end on itself, but simply points to
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the promise that other quantum doubles—Abelian and,
more interestingly, non-Abelian—could be constructed.
The search for realistic models with at most two-body
interactions acquires a systematic path: one must first find
coupling matrices with elements in a given group G that
are invariant under multiplication on the left and right by
monomial matrices with elements in G. If the condition is
further satisfied by right matrices that are diagonal, with
only two of the elements along the diagonal not equal to
1, loops can be constructed defining a local gauge symme-
try. Once this abstract step of constructing such coupling
matrices succeeds, one can find a monomial representa-
tion of the group elements and consequently translate the
abstract model to a spin Hamiltonian with at most two-
body interactions. The pursuit of this generic pathway
to constructing quantum doubles for different groups is a
possibility that this paper raises.
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APPENDIX A: MINIMUM OF THE JOSEPHSON
POTENTIAL

We seek the minimum of the Josephson potential

−EJ

∑

s

[
∑

i,a∈s

Wai ei(θi−φa) + h.c.

]
. (A1)

Let us denote zi = eiθi and va = eiφa . The potential minima,
subject to the constraint |zi|2 = |va|2 = 1, can be found by
minimizing the function

F = −EJ

∑

ia

(
zi Wai v

∗
a + va W∗

ia z∗
i

)

−
∑

i

λi
(|zi|2 − 1

) −
∑

a

γa
(|va|2 − 1

)
, (A2)

where λi and γa are Lagrange multipliers. Taking the
derivative with respect to v∗

a yields

∂F
∂v∗

a
= −EJ

∑

i

ziWai − γava = 0. (A3)

Using the fact that va is a pure phase, and γa is real, we
obtain

|γa| = EJ

∣∣∣∣∣
∑

i

ziWai

∣∣∣∣∣ , and γa = −EJ

∑

i

zi Wai v
∗
a .

(A4)

The minimal energy can be written as

Emin = −EJ

∑

ia

(
zi Wai v

∗
a + va W∗

ia z∗
i

) = 2
∑

a

γa

≥ −2
∑

a

|γa| = −2EJ

∑

a

∣∣∣∣∣
∑

i

ziWai

∣∣∣∣∣ . (A5)

Equation (A5) implies that the Josephson energy min-
ima are given by the gauge wire phase configurations
(θ1, θ2, θ3) such that the potential

−2EJ

∑

a

∣∣∣∣∣
∑

i

Waieiθi

∣∣∣∣∣ (A6)

is minimized. Notice from Eq. (A3) that the matter wire
phases φa are completely tethered to θi. Using the fact that
γa < 0 at the minima, one can solve for φa for a given set
of θi via

eiφa =
∑

i Waieiθi
∣∣∑

i Waieiθi
∣∣ . (A7)

APPENDIX B: ESTIMATE OF THE TUNNELING
AMPLITUDE FROM EUCLIDEAN ACTION OF

THE INSTANTON

We estimate the amplitude for tunneling between adja-
cent minima as shown in Fig. 3. As we discussed in
Sec. II B, such processes correspond to shifting the super-
conducting phases of one gauge wire by ±(2π/3) while
keeping the other two unchanged, thus it gives an esti-
mate for the transverse-field strength in the effective Z3
Hamiltonian (14).
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The Euclidean action for a single waffle is written as

SE
[
θ ,φ; θ̇ , φ̇

] =
∫ τf

τi

LE(θ ,φ; θ̇ , φ̇) dτ ,

=
∫ τf

τi

[
K(θ̇ , φ̇)+ V(θ ,φ)

]
dτ , (B1)

where the potential energy

V(θ ,φ) = −EJ

∑

i,a

(
Wai ei(θi−φa) + h.c.

)
, (B2)

and the kinetic energy

K(θ ,φ) = 1
2

Cg

3∑

i=1

θ̇2
i + 1

2
Cm

3∑

a=1

φ̇2
a

+ 1
2

CJ

∑

i,a

(
θ̇i − φ̇a

)2

+ 1
2

Cp

[(
θ̇1 − θ̇2

)2 + (
θ̇2 − θ̇3

)2
]

+ 1
2

Cp

[(
φ̇1 − φ̇2

)2 + (
φ̇2 − φ̇3

)2
]

. (B3)

As we mentioned in the main text, a small value of Cp
breaks the permutation symmetry among the three matter
wires; nevertheless, if Hamiltonian (1) supports a gapped
phase with Z3 topological order, it will remain stable in
the presence of a small combinatorial symmetry breaking
perturbation so long as the gap stays open.

Due to the combinatorial symmetry, it suffices to con-
sider one particular tunneling process, e.g., the horizon-
tal arrow depicted in Fig. 3(a) where θ2 changes from
−(2π/3) to 0, and θ1 = 0, θ3 = −(2π/3). Through the
tunneling process, all three φ’s will change. However, their
trajectories are completely fixed by that of the varying θ ,
following from Eq. (11). Thus, one may write

φ̇a = dφa

dθ
θ̇ , (B4)

where we suppress the gauge wire subscript in θ . The
Lagrangian can be simplified as

LE(θ , θ̇ ) = 1
2

Cg θ̇
2 + 1

2
Cm

3∑

a=1

(
dφa

dθ

)2

θ̇2

+ 1
2

CJ

3∑

a=1

(
dφa

dθ

)2

θ̇2

× 2 + 1
2

CJ

3∑

a=1

(
1 − dφa

dθ

)2

θ̇2 + Vmin(θ)

= 1
2

[
Cg +

3∑

a=1

(
dφa

dθ

)2

(Cm + 2CJ )

+
3∑

a=1

(
1 − dφa

dθ

)2

CJ

]
θ̇2 + Vmin(θ)

≡ 1
2

Ceffθ̇
2 + Vmin(θ), (B5)

where we define an effective capacitance Ceff, and Vmin is
given by Eq. (A5), which is the profile plotted in Fig. 3(a).
A particle initially at one minimum of Vmin has energy
Emin = −6EJ . From energy conservation (in Euclidean
space), one obtains

θ̇ =
√

2[Vmin(θ)+ 6EJ ]
Ceff

. (B6)

Hence, the Euclidean action corresponding to this classical
trajectory is given by

SE =
∫ θf =0

θi=− 2π
3

√
2Ceff[V(θ)+ 6EJ ] dθ , (B7)

and the tunneling amplitude is ∼ e−SE .
In principle, the effective potential Ceff is not a constant

along the trajectory, due to the θ dependence in dφa/dθ .
Nevertheless, a straightforward calculation of Eq. (11)
yields the following simple relations between φa and θ :

φ1 = 1
2
θ − π

6
, (B8a)

φ2 = 1
2
θ + π

2
, (B8b)

tanφ3 = sin
(
θ − 2π

3

)

2 + cos
(
θ − 2π

3

) . (B8c)

We find that both dφ1/dθ and dφ2/dθ are in fact con-
stant. Therefore as an approximation, we may take Ceff to
be a constant along the trajectory. Evaluating the action
numerically yields the tunneling amplitude approximately
e−0.88

√
CeffEJ .

APPENDIX C: EQUIVALENCE BETWEEN
HAMILTONIAN (14) AND QUANTUM DOUBLE

MODEL

We show that Hamiltonian (14) with the gauge con-
straint is equivalent to Kitaev’s quantum double model
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FIG. 10. Formulation of the quantum double model D(Z3) on
the dual triangular lattice. The arrows indicate the orientation
rules of the lattice.

D(Z3) in the nonzero flux sector. Since our gauge trans-
formation Gp ’s are defined on the plaquettes, the cor-
responding quantum double model is most conveniently
formulated on the dual triangular lattice, as depicted in
Fig. 10.

Let us define an orthonormal basis on each link of
the triangular lattice: {|1〉, |ω〉, |ω〉}. The construction of
D(Z3) starts from the following group-element-indexed
linear operators acting on the above Hilbert space [8]

Lg
+|z〉 = |gz〉 Th

+|z〉 = δh,z|z〉, (C1)

where g, h, z ∈ Z3. And similarly, one can define Lg
− and

Th
−, which, for abelian groups, are simply Lg

− = Lg−1

+ and
Th

− = Th−1
+ . In terms of the clock operators, Lg

± and Th
± have

the explicit form

LI
+ = I Lω+ = X Lω+ = X 2, (C2a)

TI
+ = 1

3
(I + Z + Z2) Tω+ = 1

3
(I + ωZ + ωZ2)

Tω+ = 1
3
(I + ωZ + ωZ2). (C2b)

One can further check that the above operators Lg
± and Th

±
satisfy the commutation relation

Lg
+Th

+ = Tgh
+ Lg

+, (C3)

from which all other commutation relations involving Lg
±

and Tg
± follow. We further choose an orientation rule on

the triangular lattice as depicted in Fig. 10, such that
the arrows go clockwise (counterclockwise) around every
upward (downward) pointing triangle. For each vertex s

and the bonds emanating from s, we take Lg
− if the arrow is

pointing towards s, and Lg
+ otherwise. For each plaquette p

and the bonds surrounding p , we take Th
− if p is to the left

of the bond following the arrow, and Th
+ otherwise. Using

the above rules, one can construct the generators of D(Z3)

as follows:

AI (s) = IAω(s) = X1X †
2 X3X †

4 X5X †
6

Aω = X †
1 X2X †

3 X4X †
5 X6, (C4a)

BI (p) = 1
3
(I + Z0Z1Z2 + Z†

0Z†
1Z†

2)

Bω(p) = 1
3
(I + ωZ0Z1Z2 + ωZ†

0Z†
1Z†

2)

Bω(p) = 1
3
(I + ωZ0Z1Z2 + ωZ†

0Z†
1Z†

2), (C4b)

where the labels are shown in Fig. 10. In terms of the above
generators, one can write down the star term, which has the
form of a projector [8]:

A(s) = 1
3

[I + Aω(s)+ Aω(s)] , (C5)

and the plaquette term

B(p) = Bω(p)+ Bω(p). (C6)

Notice that in the usual quantum double model, the pla-
quette term enforces a zero flux: B(p) = BI (p). Here B(p)
instead favors sectors with flux ω or ω, which corresponds
to the inverted potential in Hamiltonian (14). Finally, we
can write down the Hamiltonian for the quantum double
model D(Z3):

H =
∑

s

[1 − A(s)] +
∑

p

[1 − B(p)] . (C7)

Going back from the dual triangular lattice to the hon-
eycomb lattice, this is precisely Hamiltonian (14) in the
absence of a transverse field and with the gauge constraint
imposed.

APPENDIX D: NUMERICAL RESULTS OF
HAMILTONIAN (17) ON A “SPIDERLIKE”

GEOMETRY

We show exact diagonalization results of Hamiltonian
(17) on an elementary “spiderlike” geometry depicted in
Fig. 11. Since one can tile the entire two-dimensional hon-
eycomb lattice using the spider as an elementary building
block, the spider can be thought of as a minimal lattice on
which one can test our model numerically.

As shown in Fig. 11, we fix the eight external leg
configurations {Z0, Z1, . . . , Z7}, and diagonalize the spec-
trum of the eight internal clock degrees of freedom under
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FIG. 11. The “spiderlike” geometry considered in exact diag-
onalization, and its tiling of the entire lattice.

Hamiltonian (17). We can interpret this particular setup as
a single plaquette embedded in the lattice environment,
whose configurations are fixed one at a time. There are
in total 38 possible external leg configurations that one
can fix to. From energetic considerations in the regime
hw � hs � J as we discussed in Sec. III, the ground state
forms dimers on the strong bonds. Therefore, we expect
that the ground-state energy of the spider is minimized
when

∏

s∈A

As

∏

s∈B

A†
s = 1. (D1)

Notice that for the entire system on a torus, the above
equation is an identity that imposes a constraint on the
spectrum; here it arises from energetics instead. Applying
Eq. (D1) on a spider, we obtain

Z3Z4Z5Z6Z†
0Z†

1Z†
2Z†

7 = 1. (D2)

Out of the 38 external leg configurations, Eq. (D2) yields
37 configurations such that the ground-state energy is min-
imized. We have tested that fixing the external legs to be
any of the 37 configurations satisfying Eq. (D2) yields the

0.02 0. .05 0 10 0.20
hw

10−10

10−8

10−6

10−4

10−2

Δ
E

hstrong = 0.25

J = 1 gap, ∼ h3.79
w

J = −1 gap, ∼ h4.13
w

FIG. 12. Energy gap between the ground state and first excited
state of Hamiltonian (17) on a spider as a function of hw, for fixed
hs = 0.25 and J = ±1.

same ground state and first excited state energies, which is
a direct consequence of the gauge symmetry.

In Fig. 12, we plot the energy gap between the ground
state and the first excited state as a function of hw, for
fixed J = 1 and J = −1, hs and external leg configura-
tion satisfying Eq. (D2). This can be viewed as the vison
gap obtained numerically from a spider building block. In
our model where J > 0, we find that the fitted gap scales
as �E ∼ h3.82

w for small hw, which is consistent with our
perturbative calculations in Sec. III. As a comparison, we
also plot in Fig. 12 the energy gap for Hamiltonian (17)
with J < 0, which corresponds to the conventional quan-
tum double model with zero flux. In this case, we find a
much smaller vison gap than in Fig. 12(a) with an inverted
potential. The plaquette term for J < 0 is generated at sixth
order in perturbation theory, which leads to a small vison
gap.

APPENDIX E: WEAKLY COUPLED CHAIN
LIMIT: BOSONIZATION

Another interesting regime that can be understood is
when hs � hw. In the limit when hs = 0, the system
becomes a set of decoupled chains extending along the hor-
izontal direction, as can be seen from Fig. 5(a). Since each
chain is described by an XY model, which is equivalent to
free fermions in one dimension, the system is apparently
gapless in this limit. A weak hs introduces interchain cou-
plings along the vertical direction. We now study the effect
of this interchain coupling using abelian bosonization.

Consider a two-leg ladder shown in Fig. 13, which is
described by the following Hamiltonian:

H = H1 + H2 + H⊥, (E1)

where Hα describes the decoupled chain for α = 1, 2. In
terms of bosonic fields, the bosonized decoupled chain
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α = 1

α = 2

φ1(x), θ1(x)

φ2(x), θ2(x)

FIG. 13. A two-leg ladder considered in bosonization. Each
leg is described in terms of a bosonic field φα and its dual θα
(not to be confused with the superconducting phases).

Hamiltonian can be written as

Hα = 1
2

∫
dx

[
(∂xφα)

2 + (∂xθα)
2] , (E2)

where θα is the dual variable of φα (not to be confused
with the superconducting phases). We ignore the Luttinger
parameter K = 1, as well as a prefactor of vF ∝ hw. To
derive the bosonized form of the interchain coupling H⊥,
we need the bosonized form of the spin operators. First,
recall the Jordan-Wigner transformation:

σ
†
j = eiπ

∑
i<j ψ

†
i ψiψ

†
j , (E3a)

σ−
j = ψj e−iπ

∑
i<j ψ

†
i ψi . (E3b)

In the continuum limit, the fermion operator expanded near
±kF can be written as

ψ(x) ≈ eikF xψR(x)+ e−ikF xψL(x), (E4)

where ψR/L(x) describes right and left movers. Finally, we
need the following bosonization dictionary [22,23]:

ψR(x) = 1√
2πa

e−i
√
π(φ+θ), (E5a)

ψL(x) = 1√
2πa

e−i
√
π(θ−φ), (E5b)

ρ(x) = ρ0 + 1√
π
∂xφ(x), (E5c)

where we suppress the chain index α for now. Using the
above expressions, we can now derive [24,25]

σ †(x) → eiπ
∫

dxρ(x)ψ†(x)

= eikF x+i
√
πφ(x)

√
2πa

[
e−ikF xei

√
π(φ+θ) + eikF xei

√
π(θ−φ)

]

= ei
√
πθ

√
2πa

[
(−1)x + cos(2

√
πφ)

]
, (E6)

and similarly for σ−(x). The interchain coupling

H⊥ = −hs

∑

i

σ
†
i,1σ

−
i,2 + h. c. (E7)

can now be readily bosonized. Introducing the follow-
ing new variables corresponding to the symmetric and

antisymmetric sectors:

φ± = 1√
2
(φ1 ± φ2), θ± = 1√

2
(θ1 ± θ2), (E8)

the full Hamiltonian can be written as

H = H++H−+Hcouple, (E9)

where

H+ = 1
2

[
(∂xφ+)2 + (∂xθ+)2

]
, (E10a)

H− = 1
2

[
(∂xφ−)2 + (∂xθ−)2

] + 1
πa

cos(
√

2πθ−),

(E10b)

Hcouple = 1
2πa

cos(
√

2πθ−) cos(2
√

2πφ+)

+ 1
2πa

cos(
√

2πθ−) cos(2
√

2πφ−). (E10c)

In the above expressions, we keep only the slowly
varying, nonstaggered contributions. We find that a
cos(

√
2πθ−) term is generated in the antisymmetric sec-

tor by the interchain couplings. This term has a scaling
dimension of � = (

√
2π)2/4π = 1/2, which is relevant.

Thus, the antisymmetric sector H− becomes gapped. To
determine the fate of the H+ sector, we may replace
cos(

√
2πθ−) by its expectation value:

λ ≡ 1
2πa

cos(
√

2πθ−). (E11)

Then the cos(2
√

2πφ+) term has a scaling dimension of
� = (2

√
2π)2/4π = 2, which is marginal. Therefore, we

find that the system should remain gapless for a nonzero
but weak hs.

APPENDIX F: A Z3 QUANTUM DOUBLE WITH
AN UNINVERTED STAR TERM

We give an explicit construction of the usual Z3 quan-
tum double with a star term favoring As = 1. Consider the
Josephson energy (2) with the following W matrix:

W = 1√
6

⎛

⎜⎜⎜⎜⎜⎝

1 1 ω

1 ω 1
1 ω ω

1 1 ω

1 ω 1
1 ω ω

⎞

⎟⎟⎟⎟⎟⎠
. (F1)

The corresponding superconducting wire array now con-
tains six matter wires and three gauge wires per lattice site
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(a) Potential minima (b)

ω

ω1

ω

1 1

ω

1

ω

ω

ω

ω
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-
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FIG. 14. (a) Contour plot of the potential −2
∑

a

∣∣∑
i Waieiθi

∣∣ as a function of θ2 and θ3. We fix θ1 = 0. (b) All inequivalent gauge-
wire phase configurations (θ1, θ2, θ3) at the potential minima. The potential minima satisfy

∏
i eiθi = 1, corresponding to the usual

(uninverted) star term.

(“waffle”). The above W matrix satisfies W†W = �, and
has the following automorphism:

L† W R = W, (F2)

where L and R are monomial matrices. Hence, the Joseph-
son energy is invariant under transformations (6) on θi and
φa. We again restrict R to be diagonal matrices that do not
change the product of the three gauge-wire phases

∏
i eiθi

at each vertex. For example, if we take a R matrix

R =
⎛

⎝
1 0 0
0 ω 0
0 0 ω

⎞

⎠ , (F3)

and a L matrix

L =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎠
, (F4)

it is easy to check that the automorphism (5) holds. In
Fig. 14(a), we plot the potential energy profile Eq. (12)
for the W matrix (F1), which shows the minima of the
Josephson energy. We find that the minima now cor-
respond to gauge-wire phases with a zero net flux∏

i eiθi = 1. In Fig. 14(b), we show all inequivalent gauge-
wire phase configurations at the potential minima. There-
fore, the effective Z3 description of the star term now has
the usual form: −J

∑
s(As + A†

s ) with J > 0.
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