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Rydberg-atom arrays are a leading platform for quantum computing and simulation, combining strong
interactions with highly coherent operations and flexible geometries. However, the achievable fidelities
are limited by the finite lifetime of the Rydberg states, as well as by technical imperfections such as
atomic motion. In this work, we propose a novel approach to Rydberg-atom arrays using long-lived circu-
lar Rydberg states in optical traps. Based on the extremely long lifetime of these states, exceeding seconds
in cryogenic microwave cavities that suppress radiative transitions, and gate protocols that are robust
to finite atomic temperature, we project that arrays of hundreds of circular Rydberg atoms with two-
qubit gate errors around 10−5 can be realized using current technology. This approach combines several
key elements, including a quantum-nondemolition detection technique for circular Rydberg states, local
manipulation using the ponderomotive potential of focused optical beams, a gate protocol using multiple
circular levels to encode qubits, and robust dynamical-decoupling sequences to suppress unwanted inter-
actions and errors from atomic motion. This represents a significant improvement on the current state of
the art in quantum computing and simulation with neutral atoms.
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In recent years, neutral-atom arrays in optical tweezers
interacting via Rydberg states have emerged as a leading
platform for quantum simulation and quantum comput-
ing [1,2]. They combine several attractive features: flex-
ible experimental geometries, large system sizes, excel-
lent coherence, and strong interactions. This has enabled
explorations of many-body quantum dynamics [3–7] and
high-fidelity gates [8–13].

The fidelity of gates based on the interaction between
Rydberg states is fundamentally limited by the finite life-
time of the Rydberg states relative to the achievable oper-
ation speed. The lifetime of laser-accessible states with
orbital angular momentum � ≤ 2 is 100–200 μs at room
temperature, limited by black-body radiation, and can be
improved to 1 ms in a cryogenic environment [1]. Circu-
lar Rydberg states with the maximal angular momentum
|m| = � = n − 1 have longer lifetimes, reaching approx-
imately 10 ms at cryogenic temperatures, because they
have only a single (microwave-frequency) radiative decay
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pathway, to the next highest circular state [14]. Further-
more, their lifetime may be significantly extended inside
a microwave structure that suppresses the local density of
states (LDOS) at this single transition frequency [15,16].
In principle, radiative lifetimes exceeding 100 s can be
realized, six orders of magnitude longer than for laser-
accessible low-� states.

Unfortunately, this increased lifetime does not directly
translate into improved gate fidelity within conventional
approaches based on the Rydberg blockade, because of
the difficulty of exciting circular Rydberg states with high
fidelity [17]. In a standard blockade gate [18], a control
atom in a superposition of two ground states α |g〉 + β |g′〉
is excited to a Rydberg state |r〉 conditioned on start-
ing in the state |g〉, resulting in the state α |r〉 + β |g′〉.
Then, a nearby target atom is driven on the same transi-
tion from |g〉 to |r〉, but this excitation is blocked if the
control atom is already in a Rydberg state, giving rise to
an entangling gate. While it is straightforward to drive the
transition from |g〉 to |r〉 with a laser if |r〉 is a low-� Ryd-
berg state, it is quite difficult if |r〉 is a circular Rydberg
state, because the large difference in angular momentum
(�� ≈ 50) requires a many-photon process. To date, the
highest reported fidelity for exciting a circular Rydberg
state from a low-� Rydberg state is 96% [19–21].

In this work, we propose an approach that sidesteps
this challenge by instead using multiple circular Rydberg
states to encode qubits, avoiding the need to repeatedly
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drive atoms back and forth to ground states. This idea was
recently explored in Ref. [22] in the context of quantum
simulation. There are several significant novel aspects to
our approach that enable the generalization of this idea
to programmable quantum computing with individually
addressed atoms. First, we propose a waveguide-based
microwave structure that enables LDOS suppression while
maintaining high-numerical-aperture (NA) optical access
for trapping and manipulation. Second, we discuss a rapid
site- and state-resolved quantum nondemolition (QND)
measurement technique for single circular Rydberg atoms
using an ancilla atom array. This enables tweezer-based
rearrangement [23–25] to replace defects from imperfect
excitation of circular atoms, as well as nondestructive mea-
surements of the circular qubit states. Third, we outline an
approach to state-insensitive optical trapping of individ-
ual circular Rydberg atoms to reduce motional decoher-
ence of the qubit states. Fourth, we describe a technique
for local manipulation using the ponderomotive potential
of focused Laguerre-Gauss (LG) beams, enabling site-
addressed manipulation of the atoms between the circular
Rydberg states used to encode the qubit. Finally, we pro-
pose a specific gate protocol using four circular levels
[Fig. 1(a)]: a pair of “storage” levels with weak interac-
tions that can be cancelled by global dynamical decou-
pling, and a pair of “active” levels to implement two-qubit
gates.

With this approach, we estimate that arrays of more
than 200 trapped circular atoms with lifetimes exceed-
ing 3 s can be realized. In combination with a projected
two-qubit gate duration of tπ ≈ 4 μs, this sets a lifetime
limit on the two-qubit gate fidelity of approximately F =
1 − 10−6. Including realistic experimental parameters and
leading sources of error, we estimate that two-qubit gate
fidelities F > 1 − 10−5 are achievable, which compares
very favorably to demonstrated entanglement fidelities of
0.991 [13] and projected gate fidelities of approximately
0.999 [26,27] for conventional Rydberg-blockade gates.
Importantly, this can be realized without ground-state cool-
ing of the atomic motion: Doppler shifts are negligible
for microwave transitions between Rydberg states, and
the gates can be made insensitive to motion by exploit-
ing the unique feature that the timescale of the atomic
motion is comparable to the gate time and can be aver-
aged out, to first order, with carefully chosen parameters.
The proposed techniques may be implemented with a vari-
ety of atomic species, including alkali and alkaline-earth
[13,28,29] atoms, and we discuss strategies applicable
to both but give specific states and numbers relevant to
rubidium.

I. OVERVIEW

We begin with an overview of the proposed scheme
before discussing the components in detail. Qubits are
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FIG. 1. (a) Relevant energy levels and transitions for imple-
mentation with Rb. nC denotes the circular state with principal
quantum number n, while nS is the corresponding S1/2 state (5S is
the ground state). (b) Schematic diagram of the proposed exper-
imental sequence (Sec. I). Each circle represents a single atom,
with a state color-coded following part (a). (c) Schematic dia-
gram of microwave waveguide used to enhance the circular-atom
lifetime. The vertical bore (D = 2.2 mm in the center) provides
optical access with NA = 0.5 for tweezers and for imaging and
addressing beams, while the side bores allow atoms, cooling light
for the magneto-optical trap (MOT), and lattice beams into the
structure. Electrodes apply a uniform electric field along ẑ, and
are biased via a reflective stepped-impedance low-pass filter.

encoded in four circular Rydberg levels [Fig. 1(a)]: a pair
of storage states {|0s〉 , |1s〉} = {|59C〉 , |61C〉} and a pair
of active states {|0a〉 , |1a〉} = {|56C〉 , |64C〉} (|nC〉 denotes
the circular state with |n, �, m〉 = |n, n − 1, n − 1〉). The
active states are used to realize two-qubit gates, while
the storage states are, ideally, completely noninteracting.
In practice, all Rydberg states interact with each other,
so the implementation of effectively noninteracting stor-
age states relies on tuning the interaction between them
to precisely dipolar form, where it can be cancelled using
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global dynamical decoupling (DD) sequences such as
WAHUHA [30]. The particular states selected are moti-
vated by tuning the interactions into this form, as outlined
in Sec. VI.

The circular atoms are stored inside an engineered
microwave structure to realize long radiative lifetimes
[Fig. 1(c); Sec. II]. They are individually confined in an
array of “compute” traps (in the x-y plane) with spacing
acirc ≈ 12 μm, which reflects a trade-off between achiev-
ing strong interactions and staying in the perturbative
regime of the van der Waals interaction (we focus here
on a one-dimensional (1D) array, but the extension to two
dimensions is straightforward). The quantization axis is
defined by parallel E and B fields perpendicular to the
array, along ẑ. A second array of ancilla atoms is displaced
along ẑ by dz = 5 μm. The ancilla array allows the state of
the circular atoms to be measured, by exploiting the Ryd-
berg blockade between a low-� Rydberg state of the ancilla
atom, |a〉 = 55S (in Rb), and a circular atom in the com-
pute array. By engineering a Förster resonance between
the ancilla state and a particular circular state, this interac-
tion can be made highly selective to a single circular state,
chosen to be |1a〉 (Sec. IV).

The proposed experimental sequence proceeds as fol-
lows [Fig. 1(b)]. First, the compute and ancilla arrays
are initialized with single ground-state atoms using
rearrangement-based techniques [23–25]. Second, the
compute array is excited into |1a〉 using a combination of
laser excitation and rf rapid adiabatic passage [31]. Since
this excitation is challenging to realize with extremely high
fidelity because of quantum speed limits associated with
the dense spectrum of Rydberg states [32], the ancilla array
is used to nondestructively measure which atoms have
been correctly excited, and a second rearrangement is per-
formed to fill in a small number of defects in the circular
atom array. Then, the atoms are transferred to |0s〉, and the
computation begins.

A sequence of gates is carried out by locally manip-
ulating atoms between circular states using the orbital
angular momentum of focused LG beams (Sec. V). Single-
qubit gates are realized by driving the |0s〉-|1s〉 transition
with �n = 2. Two-qubit gates are realized by transfer-
ring a pair of atoms from the storage states to the active
states using the operation�sa = |0a〉 〈0s| + |1a〉 〈1s| + h.c.
on each atom, with �n = 3.

Since the storage states are also weakly interacting, a
DD sequence with period tc is applied to these states with
a global microwave drive, which removes the effect of
interactions between them at certain refocusing times, Ntc.
By executing single-qubit gates at the refocusing times
and synchronizing the two-qubit gates with this cycle, the
effect of the storage-storage and storage-active interac-
tions is removed, leaving only a simple Ising-type interac-
tion between the active states, which drives the two-qubit
gate (Sec. VI). Furthermore, for an appropriately designed

DD sequence, errors arising from atomic motion are also
suppressed if tc is commensurate with the motional period
(Sec. VII).

At the end of the computation, the state |1s〉 is
transferred back to |1a〉 for measurement using the ancilla
array. While this can be done globally with microwaves
to measure the entire array, a subset of the array can be
measured by applying �sa locally to a subset of sites. The
atoms left behind in the storage states (with the dynamical
decoupling sequence continuously applied) are unaffected
by the measurement, allowing partial readout of the qubit
array.

II. ENGINEERING THE LOCAL DENSITY OF
STATES

The heart of the proposed apparatus is a microwave
structure that extends the lifetime of circular Rydberg
atoms by suppressing the LDOS at frequencies where these
states can absorb or emit radiation. The structure must also
provide high-NA optical access for tweezers and single-
atom imaging, and the ability to apply uniform parallel
electric and magnetic fields to define a quantization axis
for the circular states.

Previous approaches to LDOS engineering with circu-
lar Rydberg atoms have used a parallel-plate capacitor
geometry [16,22]. This design suppresses the LDOS for
an in-plane electric field polarization (sufficient to extend
the circular-state lifetime) and allows the application of
uniform electric fields. However, it does not provide high-
NA optical access, and drilling holes or inserting lenses
into the capacitor breaks the translational symmetry, which
mixes in- and out-of-plane fields and spoils the LDOS
suppression. One possible workaround is the use of thin
transparent oxide coatings such as indium tin oxide (ITO)
[10,33], although previous experiments have observed
decreased Rydberg-state lifetimes near laser-illuminated
ITO surfaces arising from an unknown mechanism [10].

On the other hand, a hollow circular waveguide with
diameter D suppresses the LDOS for all polarizations
below a cutoff frequency fc = 1.841c/(πD) [15,34] and
provides high-NA optical access through the end or by
using lenses inserted into the waveguide itself. However,
such a structure also shields static electric fields very
effectively, preventing the application of a bias field.

We propose a hybrid structure that consists of a pair
of parallel annular electrodes placed inside a waveguide
[Fig. 1(c)]. A bias voltage is applied to the electrodes
via a transmission line passing through the waveguide
wall with an embedded reflective low-pass filter to sup-
press microwave leakage. Choosing an appropriate elec-
trode geometry allows fairly uniform electric fields in the
waveguide center, with only a quartic and higher depen-
dence on the radial coordinate. Cross-bores of nearly the
size of the central waveguide can be drilled in the side to

030322-3



SAM R. COHEN and JEFF D. THOMPSON PRX QUANTUM 2, 030322 (2021)

(a)

(b)
Frequency (GHz)

(s
)

FIG. 2. Extending circular-state lifetimes. (a) LDOS suppres-
sion (Purcell) factor inside the microwave waveguide. The
black solid (dashed) line shows the simulated σ± (z)-polarized
LDOS at the center of the structure, while the green line
shows an idealized model for comparison. The long (short) lines
show the frequencies of transitions between the n and n − 1
(n + 2) manifolds for the four computational states. (b) Calcu-
lated circular-Rydberg-state lifetime for the LDOS shown in (a)
at an environment temperature Tb = 4 K. For the full structure
(black), the states used in the protocol are indicated using the
colors used in Fig. 1(a). The dashed line shows the free-space
lifetime at the same temperature.

allow laser beams or atoms to pass through without affect-
ing the microwave properties. Additional cross-bores can
be used to apply microwaves with a controlled polarization
via weakly coupled antennas.

The simulated LDOS of a representative structure is
shown in Fig. 2(a). The spectrum crudely resembles that of
a bandstop filter [Fig. 2(a)], with the lower cutoff frequency
determined by the electrode filter ( fL ≈ 3 GHz) and the
upper cutoff determined by the waveguide ( fU ≈ 80 GHz).
Within the stopband, the LDOS has a finite value Pmin ≈
10−4 because of ohmic losses in the gold walls, as well as
several discrete resonances arising from the filter and elec-
trodes (additional details of the design and simulation can
be found in Appendix A).

The calculated lifetimes of circular states in this struc-
ture are shown in Fig. 2(b), assuming a black-body temper-
ature Tb = 4 K. The lifetimes for the four computational
states exceed 20 s, limited primarily by residual black-
body radiation. The lifetimes at Tb = 0 K are approxi-
mately 5 times longer, limited purely by ohmic losses,
while the lifetimes at room temperature are approximately
200 ms, limited by black-body radiation and increased
ohmic losses associated with the higher resistivity of the
metal walls. Based on additional considerations, including

photon scattering from optical traps, we estimate a useful
lifetime of τcirc ≈ 3 s (Appendix B).

To elucidate the role of the LDOS at different frequen-
cies, we also plot the lifetimes for a simple bandstop model
with P = Pmin = 10−4 from 20 to 40 GHz and P = 1 else-
where. At Tb = 0 K, this would increase the lifetime of
states with n = 56–68 by 1/Pmin from their free-space val-
ues, to about 200 s. However, at Tb = 4 K, the lifetime
is limited to a few seconds by absorption of black-body
photons on transitions with �n = +2. The full design
extends the lifetime by 1–2 orders of magnitude more by
suppressing the LDOS for these higher-frequency transi-
tions for both σ± and π polarizations. Achieving the same
suppression with a parallel-plate capacitor that does not
suppress π -polarized transitions would require freezing
out the black-body radiation with Tb < 1 K [22].

III. STATE-INSENSITIVE OPTICAL TRAPS

Leveraging the long circular-state lifetimes requires that
the atoms be trapped, ideally in a state-insensitive “magic”
trap to suppress motional decoherence. In this section,
we discuss two approaches, based on the ponderomotive
potential (applicable to any atomic species) and on the
polarizability of the ion core (for alkaline-earth atoms).

The nearly free Rydberg electron experiences a pon-
deromotive energy shift in a laser field, which results in
a center-of-mass potential for the Rydberg atom given by
[35]

Un(�R) = e2

4meω2

∫
|ψn(�r)|2|�E(�R + �r)|2 d3�r, (1)

where e and me are the electron charge and mass, ω is the
frequency of the optical field, �E is the electric field of the
laser, and ψn(�r) is the wave function of the Rydberg elec-
tron in |nC〉 at position �r with respect to the nucleus at �R.
This effect has been exploited to confine Rydberg atoms in
optical lattices [36], hollow laser beams [37], and focused
bottle beams [38].

However, a challenge with the ponderomotive poten-
tial is that it is inherently state-dependent, since the wave
function ψn varies between states. If the length scale over
which the intensity |E|2 varies is large compared with the
extent of ψn(�r), then the integral in Eq. (1) is indepen-
dent of n to some approximation. However, in the optical
tweezers used for single-atom trapping and manipulation,
the beam waist is typically below 1 μm, comparable to the
extent of the Rydberg wave function (〈r〉 = a0n2 ≈ 180
nm for |59C〉). This gives rise to significant variation in the
depth and shape of the potential across different Rydberg
states [39], and results in significant motional decoherence.

However, in the special case of a lattice with |E(�R)|2 =
|E0|2

[
1 + cos(2�k · �R)

]
, the ponderomotive potential can
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be written as

Un(�R) = e2|E0|2
4meω2

×
[

1 + cos(2�k · �R)
∫

|ψn(�r)|2 cos(2�k · �r) d3�r
]

.

(2)

In this form, it is clear that the shape of the potential is
the same for all states, and that the magic condition for a
pair of states is realized if the lattice depth given by the
integral in Eq. (2) is the same for both states. If the lat-
tice vector �k is perpendicular to the atomic quantization
axis ẑ, the value of this integral is oscillatory in n [35],
as the wave function expands to cover multiple periods
of the lattice [Fig. 3(a)]. The presence of turning points
in this nonmonotonic dependence results in identical trap-
ping potentials for pairs of Rydberg states with symmetric
displacements from the turning points. This is sufficient to
realize simultaneous magic traps for the pairs {|0s〉 , |1s〉}
and {|0a〉 , |1a〉}, which are symmetrically displaced around
the same midpoint [Fig. 3(b)].

To quantify this, we express the difference in trap poten-
tials for the storage (active) states as ηs (ηa), where η =
(U1 − U0)/U0, and U0 and U1 refer to the depth for the
states 0 and 1, respectively. It is not possible to make
ηa = ηs = 0 exactly. However, exact magic wavelengths
can be found for either pair near λ̃l [Fig. 3(b)]: λ =
629.38 nm gives (ηa, ηs) = (0, 6 × 10−4), and λ = 628.87
nm gives (ηa, ηs) = (3.5 × 10−3, 0). A compromise is also
possible: λ = 629.285 nm gives ηs ≈ ηa ≈ 6 × 10−4. For
comparison, ηa ≈ 0.2 at λ = 800 nm.

We note that there is a second magic wavelength for
the in-plane lattice [λ̃s in Fig. 3(b)]. In addition to being
at a less convenient wavelength, the shorter period results
in significant mixing between circular and elliptical states
(i.e., nearly circular states, with 0 � |m| < n − 1). Near
λ̃l, this effect is negligible if the trap depth is no more than
a few megahertz.

Along the ẑ direction, the behavior is quite different:
the extent of the wave function is much smaller, and it
varies slowly with n. In this case, a nearly magic trap
can be realized by choosing a ẑ-oriented lattice with a
sufficiently long period �z. If �z = 800 nm, (ηa, ηs) =
(4 × 10−3, 1 × 10−3). Further reduction can be achieved
by increasing �z (i.e., using a shallow intersection angle),
with η ∝ �−2

z .
Realizing a potential depth of 1 MHz in the in-plane

direction using a retroreflected 629-nm beam requires an
intensity IXY = 3 × 106 W/cm2, corresponding to a one-
way power of 11.8 W in a beam with a waist of 100 μm.
In the out-of-plane direction, realizing the same lattice
depth with a retroreflected 1560-nm beam of the same size
requires 0.7 W of one-way power.
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FIG. 3. Ponderomotive optical lattices. (a) Normalized lattice-
depth [integral in Eq. (2)] as a function of n, for an in-plane (filled
circles) or ẑ-oriented (open circles) lattice. The colors denote dif-
ferent wave vectors |k| = 2π/λ with λ = (400, 600, 800, 1000)
nm, shown in (blue, green, orange, red). The insets show the con-
figuration of the Rydberg wave function (black) with respect to
the lattice (red) for the stable trap position at the n indicated. (b)
Ponderomotive lattice depth for the four computational states as
a function of wavelength, highlighting two wavelengths where
the storage and active states have nearly identical trap depths.

In the case of alkaline-earth atoms, the dipole polariz-
ability of the ion core makes an additional contribution
to the trap potential [40,41], as demonstrated for Yb [39]
and Sr [20]. For the in-plane 629-nm lattice, this has the
effect of reducing the required intensity by a factor of
approximately 3.5 for Sr (and 1.8 for Yb) because the
polarizability of the ion core increases the lattice depth.
Since the potential arising from the ion core is completely
independent of the state of the circular electron, the value
of η is reduced by the same factor. For the vertical 1560-
nm lattice, the ion-core polarizability decreases the lattice
depth, but only by a few percent.

This suggests another approach in the case of alkaline-
earth atoms, which is to trap at a wavelength very close
to an ion-core resonance, such that the contribution from
the ion-core polarizability is much larger than the pon-
deromotive potential. In that case, it may be possible to
use red-detuned Gaussian optical tweezers, even though
the variation in the ponderomotive potential is quite large
between states [39]. At a detuning of �t ≈ −1.5 THz
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from the 2S1/2 →2 P1/2 transition in either Yb+ (369 nm)
or Sr+ (422 nm), the ac Stark shift from the ion core is
approximately 100 times greater than the ponderomotive
potential, such that ηa, ηs � 10−3 can be realized in tweez-
ers with a beam waist w0 = 500 nm. This will result in
a photon scattering rate of approximately 50–100 s−1 for
a trap depth of 1 MHz, which is significant but poten-
tially manageable in view of the fact that these events
should not disturb the state of the circular electron. In fact,
the ion-core transitions may even be used for continuous
laser cooling [20]. The inconvenience of using UV or blue
wavelengths may be offset by the small powers required
at such close detunings: less than 100 μW per tweezer is
sufficient to realize a 1-MHz trap depth.

Details of the lifetime and the loading procedure for the
traps are discussed in Appendices B and C, respectively.

IV. NONDESTRUCTIVE MEASUREMENT OF
CIRCULAR RYDBERG ATOMS

Another crucial ingredient of the proposed architecture
is a method to nondestructively detect the states of circu-
lar Rydberg atoms. Previous work with circular Rydberg
atoms has relied on measurements via state-selective field
ionization [14,20,42], which are inherently destructive to
the atoms. In this work, we focus on a novel technique that
is rapid, site-resolved QND. This approach is based on the
van der Waals interaction between the circular atom to be
measured and a low-� state, |a〉, of a nearby ancilla atom
[Fig. 4(a)]. Specifically, by exploiting a Förster resonance
between one of the computational states (|1a〉) and |a〉, the
magnitude of the van der Waals interaction with |1a〉 can
be made significantly larger than for the other computa-
tional states. Probing the Rydberg blockade of the ancilla
atom then yields information about the state of the circular
atom.

In Fig. 4(c), we show the interaction Va,n between a Rb
ancilla in |a〉 = 55S1/2, mJ = −1/2, and a target atom in
various circular states from n = 56 to n = 66. When the
electric field Ez = 0 V/cm, Va,64 is 2 orders of magnitude
larger than for any of the other three computational states,
and this ratio can be made even larger by approaching an
exact Förster resonance around Ez = 0.6 V/cm (the inter-
action is calculated nonperturbatively by diagonalizing the
multipole Hamiltonian [43]; see Appendix E). We note that
the interaction is essentially the same for elliptical states
of the same n (not shown), so the measurement is bet-
ter described as selective for the n = 64 manifold instead
of the single state |1a〉. Similar resonances exist for any
atomic species.

This selective interaction can be used to probe the state
of a circular Rydberg atom using a standard Rydberg-
blockade controlled-Z (CZ) gate on the ancilla atom [18].
Given an ancilla prepared in a superposition of two ground
states |ψ〉 = (|g〉 + |g′〉)/√2, a 2π pulse on the ancilla
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FIG. 4. Nondestructive circular state detection. (a) The mea-
surement is realized by a state-selective Förster resonance
between a Rb ancilla in |a〉 = 55S and |64C〉. (b) An array of
ancilla atoms displaced by dz = 5μm is used to probe the state of
the circular atom array. The excitation to |a〉 is blockaded on sites
with a compute atom in |1a〉. (c) Van der Waals interaction Va,n
between |a〉 and |nC〉, as a function of electric field Ez . The states
n = 56–66 are shown, with the noncomputational states in gray.
(d) |Va,n| at Ez = 0.25 V/cm, with varying lateral separation.

|g〉 to |a〉 transition with Rabi frequency �a imparts a
π phase shift to |g〉 only if it is not blockaded by the
target atom. The resulting spin rotation can be measured
using a subsequent π/2 rotation on the ancilla and fluores-
cence detection distinguishing |g〉 and |g′〉. Errors can arise
from the finite blockade strength as well as from the finite
lifetime of the ancilla state, and are minimized at an opti-
mum value of the Rabi frequency �̃a = (πV2

a,64/τa)
1/3 ≈

2π × 1 MHz (here, we take Va,64 = 2π × 20 MHz and
an ancilla lifetime τa = 200 μs, appropriate for cryo-
genic temperatures). The resulting error probability is
Pg = [

π/(Va,64τa)
]2/3

/2 ≈ 1.3 × 10−3, assuming perfect
initialization and readout of the ancilla spin state. This
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is the same error scaling as for a conventional Rydberg-
blockade gate [26], but with a smaller prefactor since the
circular atom has negligible decay over the gate. Because
of its QND nature, the measurement can be repeated to
improve the accuracy [44], even in the presence of errors
from laser noise or Doppler shifts on the ancilla atom.

Next, we consider crosstalk between adjacent qubits.
Figure 4(d) shows the interaction strength between an
ancilla and neighboring circular Rydberg atoms in the
compute array. The interaction decays rapidly with dis-
tance, and for acirc = 12 μm, the interaction with off-target
sites is suppressed by a factor of 300, ensuring highly
site-resolved measurements.

To measure the entire array, it is sufficient to trans-
fer the population from |1s〉 to |1a〉 on every site before
attempting to excite the ancillae. It is also possible to
measure a subset of the array, by transferring a subset
of the atoms from the storage to the active states using
�sa = |0a〉 〈0s| + |1a〉 〈1s| + h.c. The atoms that are not to
be measured are left in the storage states, and as long as
their ancilla atoms are not excited to |a〉 (i.e., by selec-
tive addressing with�a), they are largely unaffected by the
measurement of their neighbors, with induced errors below
10−6 (Appendix D).

The size of the array that can be initialized is limited
by the measurement error as well as by the decay of the
circular atoms over the measurement and rearrangement
time. Given the measurement error above and assuming
that the ancilla readout and rearrangement can be per-
formed in approximately 10 ms for a decay probability of
Pd ≈ 3 × 10−3, arrays of N ≈ 250 circular atoms can be
realized with an average of one defect.

V. PONDEROMOTIVE MANIPULATION OF
CIRCULAR RYDBERG STATES

Another key component of the proposed scheme is a
mechanism to locally manipulate atoms between circu-
lar states. In current experiments with circular Rydberg
states, transitions between circular levels are driven using
microwave electric fields coupled to the strong electric
dipole transition [19,20,45]. While providing extremely
large Rabi frequencies, microwaves cannot be locally
addressed, and are limited to transitions between states
with |�m| = 1 (in a single-photon transition).

Here, we discuss an alternative approach to manip-
ulating the Rydberg electron, using the ponderomotive
potential from focused LG beams. This enables locally
addressed operations, and the use of orbital angular
momentum instead of the spin angular momentum of the
photon allows the driving of transitions with |�m| = 2 or
3 in a single step, covering all of the transitions between
computational states indicated in Fig. 1(a).

The ability of the ponderomotive potential to couple
states of different angular momentum has been recognized

since the earliest proposal for ponderomotive traps for
Rydberg atoms [35,46], and coupling of degenerate lev-
els by a static intensity (essentially a high-rank tensor
light shift) has been experimentally demonstrated [39,47].
Superimposing very high-order LG beams with different
frequencies to drive direct transitions from low-� to cir-
cular Rydberg states was recently proposed in Ref. [48].
Here, we extend this idea in a few ways. First, we apply
the concept to |�m| = 2 or 3 transitions between nearby
circular states, and observe that it can be quite efficient
because of the good overlap between these LG modes and
the circular wave functions. Second, we estimate the infi-
delity associated with photon scattering, and conclude that
the error per gate is comparable to hyperfine spin manip-
ulation in atomic ground states using two-photon Raman
transitions.

To compute the strength of these transitions, we recast
the ponderomotive potential in Eq. (1) as a matrix element
between two states:

〈ψ ′| Up |ψ〉 = e2

4meω2

∫
ψ ′∗(�r)|�E(�R + �r)|2ψ(�r) d3�r. (3)

The incident electric field is taken to be the sum of two
copropagating LG modes. In the paraxial limit, these are
described in cylindrical coordinates by a function of the
form �Elm(r, z,φ) = Elm(r, z)eimφ x̂, where x̂ is the polariza-
tion direction and ẑ is the propagation direction, parallel
to the quantization axis of the atomic states [49]. The total
field intensity becomes

|E|2 = |Elm(r, z)|2 + |El′m′(r, z)|2

+ 2 Re
[
Elm(r, z)E∗

l′m′(r, z)e−i(ω−ω′)t−i(m−m′)φ
]

,

(4)

where (l, m,ω) are the mode numbers and optical fre-
quency for the first beam, and the primed quantities are
for the second beam.

The interference term generates a rotating intensity pat-
tern |E|2 ∝ cos

[
(ω − ω′)t − (m − m′)φ

]
, which can res-

onantly drive transitions between atomic states sepa-
rated by angular momentum �m = m − m′ and energy
�E = �(ω − ω′). The matrix element can be evaluated
by integrating Eq. (3) directly or expanding the oper-
ator |�E(�R + �r)|2 in the basis of spherical harmonics
[39]. The localized nature of the circular wave func-
tions also enables an accurate approximation of the
Rabi frequency �n′,n = 〈n′C|Up |nC〉/� using ψ∗

n′ψn =
δ(r − r0)δ(z)ei(n−n′)φ/(2πr0) with the average radius r0 =
1
2 a0(n2 + n′2). If the beam is centered on the atomic
nucleus (i.e., �R = 0), then the transition matrix element in
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the frame rotating at ω − ω′ is

�n′,n = e2

4�meω2 Re
[
Elm(r0, 0)E∗

l′m′(r0, 0)
]
δ�n,�m. (5)

The order of magnitude of �n,n′ can be estimated by
considering the ponderomotive shift arising from a sin-
gle Gaussian beam (E00) in the limit of small n, where
E(r0, 0) ≈ E(0, 0). For a beam focused to a waist w0 =
λ, Up/(�P) = e2/(4π3�ε0c3me) = 2π × 1.44 MHz/mW,
where P is the optical power and ε0 is the permittivity of
free space. In this expression, the 1/ω2 dependence of the
ponderomotive polarizability cancels with the increased
focusing at shorter wavelengths, illustrating that for a fixed
numerical aperture, the optimum wavelength is where the
spatial overlap with the Rydberg-electron wave function is
maximized.

In Fig. 5, we estimate relevant parameters for the states
used in the experiment. Figure 5(a) shows that states
near |60C〉 have good overlap with LG0,1 at λ = 532 nm
(focused with NA = 0.5). In Fig. 5(b), we show the com-
puted Rabi frequencies for the combinations LG0,−1 +
LG0,1 (driving �m = 2) and LG0,−1 + LG0,2 (�m = 3),
for several wavelengths. In both cases, λ = 532 nm is
nearly optimal, but the penalty for using longer wave-
lengths is not excessive and confers the additional benefit

(a)

(b)

(nm)

(M
H

z/
m

W
)

FIG. 5. Local manipulation using LG modes. (a) Overlap of
the radial |59C〉 wave function (black) with LG0,1 (red, λ =
532 nm, NA = 0.5). (b) �n,n′ for different wavelengths focused
with NA = 0.5: 532 nm (blue), 1064 nm (green), and 1550 nm
(red). The filled symbols show n′ = n + 2 transitions driven by
interfering LG0,−1 and LG0,1 modes, while the open symbols
show n′ = n + 3 transitions driven by interfering LG0,−1 and
LG0,2 modes. The corresponding lines show the approximation
of Eq. (5).

of being less sensitive to variation in �R (see Sec. VII). The
maximum Rabi frequencies are approximately 1 MHz per
milliwatt of power in each of the two beams, such that
achieving drive strengths in excess of 10 MHz is practical.

Lastly, we consider incoherent errors, specifically,
Thomson scattering of photons by the nearly free Ryd-
berg electron [22]. Physically, this corresponds to radi-
ation from the dipole formed by the electron oscillating
in the laser field [50]. The total scattering rate is given
by � = IσT/(�ω), where σT = (8π/3)(e2/4πε0mc2)2 is
the Thomson scattering cross section of the elec-
tron and I = ε0c|E|2/2 is the light intensity. Given a
matrix element Up , the error probability per π pulse
is επ = [IσT/(�ω)]/[Up/(2h)] = 4e2ω/(3ε0mec2) ≈ 1 ×
10−6. We note that this compares favorably to the fidelity
of a Raman transition between two spin ground states in
Rb at the optimal detuning, which is επ = 2

√
2π�/�FS ≈

8 × 10−6 [�/(2π) = 6 MHz is the transition linewidth,
and�FS = 7 THz is the fine-structure splitting] [51]. How-
ever, 5–10 times more intensity is required to drive the
ponderomotive transition than the Raman process at its
optimal detuning, and there is no way to trade fidelity for
intensity by moving closer to resonance.

VI. GATE IMPLEMENTATION

The final key result is a scheme for implementing
arbitrary quantum logic operations using qubits encoded
in circular levels. Unlike conventional Rydberg-blockade
gates, where atoms are excited into Rydberg states only
during a multiqubit gate operation, here the atoms are
always in Rydberg states and therefore always interact-
ing to some degree. Managing unwanted interactions is the
central challenge. We address this using four circular Ryd-
berg levels: a pair of “active” levels |0a〉 , |1a〉 for executing
two-qubit gates, and a pair of “storage” levels |0s〉 , |1s〉 for
storing qubits and implementing single-qubit gates.

These levels are selected so that the interaction Hamil-
tonian Hint = Hss + Hsa + Haa takes the form

Hss =
∑

ij

J ss
z Si

zS
j
z + J ss

(
Si

xSj
x + Si

ySj
y

)
+�ssSi

zn
j , (6)

Hsa =
∑

ij

J sa
z Si

zS̄
j
z +�saSi

zn̄
j +�asS̄j

z ni, (7)

Haa =
∑

ij

J aa
z S̄i

zS̄
j
z +�aaS̄i

zn̄
j . (8)

Here, S and S̄ are pseudo-spin-1/2 operators acting on the
subspaces |0s〉 , |1s〉 and |0a〉 , |1a〉, respectively, while n
and n̄ count the numbers of atoms on a site (0 or 1) in
each subspace. The coefficients Jz and J give the strength
of the Ising and exchange interactions, respectively, while
the � terms represent an effective local field depending on
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the presence (but not the state) of another atom. Each inter-
action coefficient has an implied dependence on the vector
�Rij connecting the sites i, j .

Importantly, Hss contains both exchange and Ising
terms, while Hsa and Haa have only Ising couplings. This
form of the Hamiltonian is guaranteed by the choices of the
storage and active states. The storage states {|0s〉 , |1s〉} =
{|59C〉 , |61C〉} have �n = 2, such that the leading-order
Ising and exchange terms are both van der Waals, with a
dominant 1/R6 distance dependence. At the same time, the
active states {|0a〉 , |1a〉} = {|56C〉 , |64C〉} are separated
by �n > 3 from each other and from the storage states,
such that the leading-order exchange terms are of higher
order than quadrupole-quadrupole and can be neglected.
The interaction strengths are calculated nonperturbatively
by directly diagonalizing the multipole Hamiltonian [43];
further details can be found in Appendix E.

A. Storage states

Let us first consider the behavior of an array of atoms in
the storage states. When the condition J ss

z = −2J ss is sat-
isfied, Eq. (6) is equivalent to the interaction between two
dipoles. The influence of Hss (with �ss = 0) on all pairs
of atoms can be cancelled using global DD sequences that
symmetrize the interaction, such as the famous WAHUHA
sequence developed for solid-state NMR [30]. Under
repeated application of such a sequence with period tc, the
many-body system returns to its initial state at times Ntc
[i.e., U(Ntc) ≈ Î ], to at least first order in tc. If gate oper-
ations are driven and measurements are performed only at
times Ntc, the effect of interactions in the storage states
is eliminated. We note that while any interaction Hamil-
tonian can be cancelled using local pulses, the resulting
pulse sequences are long and complex, as nearest-neighbor
interactions, next-nearest neighbor interactions, etc. must
be separately decoupled in nested cycles [52]. Therefore,
tuning Hss to the dipolar form not only reduces the need
for local drives but also reduces the sequence complexity
considerably.

The dipolar condition J ss
z = −2J ss can be realized by

tuning the electric and magnetic fields, as shown in
Fig. 6(a) (the broad tunability of these interactions was
previously discussed in Ref. [22]). Changing the fields
affects mainly J ss

z . At a separation acirc = 12 μm, J ss =
2π × 918 Hz.

To probe the effectiveness of dynamical decoupling
at preserving arbitrary many-body states, we numerically
compute the evolution of an eight-atom chain in the storage
states [Fig. 6(d)]. We compare two sequences: sequence
1, a six-pulse WAHUHA-like sequence [Fig. 6(b)], and
sequence 2, a 12-pulse sequence slightly modified from
“sequence G” in Ref. [53] [Fig. 6(c)]. These sequences
are designed to cancel local disorder from �ss in addi-
tion to the dipolar interactions, which makes them distinct

(a)

(c)

(b) Sequence 1:

Sequence 2:

(d)

J
z
/J

J
z
/J = –2

Seq. 1
Seq. 2

= (X – Y  – Y 2 – Y – X – X 2 – )N

Bz (gauss)

E
z 

(V
/c

m
)

FIG. 6. Decoupling storage-state interactions. (a) J ss
z /J

ss as
a function of electric and magnetic fields. The dashed line
shows the dipolar condition J ss

z = −2J ss. (b) Sequence 1: 6-
pulse WAHUHA-like sequence that cancels dipolar interactions
and disorder. Red (blue) pulses denote ±π/2 rotations around
the x̂ (ŷ) axis, with the minus sign for pulses indicated by bars
below the line. The longer pulses are π rotations. In the text rep-
resentation, X , Y are π/2 rotations (or −π/2 if underlined). (c)
Sequence 2: 12-pulse sequence with better robustness to finite
pulse duration, pulse-angle errors, and thermal motion (Sec. VII).
(d) Storage error for an eight-atom chain without DD (gray
dashed line), and with the sequences 1 (blue) and 2 (orange).
For both, the sequence period is tc = 0.021/J ss ≈ 3.7 μs, and
the pulse duty cycle is Np tp/tc = 2.5 × 10−2. The enlarged data
points show the fidelity at the refocusing times t = Ntc. The black
dashed line shows the incoherent error resulting from a finite
circular lifetime τcirc = 3 s, for comparison.

from the original WAHUHA sequence, which preserves
local fields. We compare the propagator U(t) of the full
system with the propagator U0(t) resulting from the same
pulse sequence but with Hss = 0, and compute the aver-
age error per atom ε̄S = [1 − | 〈ψ | U†

0(t)U(t) |ψ〉 |2]/Na
(Na = 8 is the number of atoms, and the fidelity is aver-
aged over |ψ〉 sampled from Haar-random states within
the space {|0s〉 , |1s〉}⊗Na). We consider a sequence period
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tc = 0.021/J ss ≈ 3.7 μs, chosen to match the two-qubit
gates described in the following section, and a finite rota-
tion strength corresponding to a pulse duty cycle Nptp/tc =
0.025 (here, Np is the number of pulses in a cycle and tp is
the pulse duration).

As seen in Fig. 6(d), the error grows quickly without
any DD, but both sequences refocus the state at times Ntc.
After one cycle, the coherent error arising from imper-
fect refocusing is several orders of magnitude smaller than
the incoherent error from the finite lifetime of the circu-
lar states (tc/τcirc ≈ 1 × 10−6 for these parameters). While
the basic sequence 1 decouples the interactions very well,
sequence 2 performs better and is also more robust to errors
and thermal motion, as discussed in Sec. VII. The most
important parameter, however, is the pulse period: the error
for both sequences scales as approximately (tcJ ss)4 [see
Fig. 8(a)].

The coherent errors from residual interactions grow
quadratically with time, and without mitigation will even-
tually exceed the incoherent errors, which grow linearly, as
seen for sequence 1 in Fig. 6(d). The quadratic growth rate
can be suppressed by using longer sequences that cancel
interactions to higher order in tc, as is common in NMR
[54]. An alternative approach from the field of quantum
computing is randomized compiling [55], where random
single-qubit twirling operators are inserted to frustrate the
coherent evolution of unitary errors. We observe in numer-
ical simulations that the insertion of random single-qubit
rotations after each period of the DD sequence results in
linear error growth. Since the form of the coherent errors is
known analytically, even greater suppression may be pos-
sible with deterministic compilation of twirling operators
in a particular circuit.

The DD sequence on the storage atoms can be driven
using �m = 2 ponderomotive transitions as described in
Sec. V. However, since the same pulses are applied to
all atoms, it is preferable to use global microwave driv-
ing (via a two-photon transition). In the latter case, a small
exchange interaction is introduced during the pulse from
the population of the intermediate state |60C〉. This must be
incorporated into the design of the DD sequence by tuning
Hss slightly away from dipolar form.

B. Two-qubit gates in the active states

To implement a two-qubit gate, a pair of atoms are
moved from the storage subspace to the active subspace
at a refocusing time Ntc, and returned at a later time N ′tc.
The operation �sa = |0a〉 〈0s| + |1a〉 〈1s| + h.c. is applied
using locally addressed ponderomotive transitions imme-
diately before or after the last pulse in the DD sequence.
While the atoms are in the active states, they are unaf-
fected by global DD pulses acting on the storage states,
which are detuned far from transitions affecting the active
states. Therefore, the atoms interact under Haa for a time

(a)

(b)

t
g

Seq. 1
Seq. 2
Seq. 3

Bz (gauss)

FIG. 7. (a) Strength of the Jz terms in Eqs. (6)–(8) as a func-
tion of Bz , moving along the lower branch of the J ss

z /J
ss = −2

contour in Fig. 6(a). J aa
z and J sa

z both pass through Förster reso-
nances, enabling wide control of their magnitude. At Bz = 1.39
G (dashed line), J aa

z = 2π × 33.6 kHz, corresponding to tπ =
3.7 μs. (b) Error in a four-qubit array during a two-qubit gate
operation, as a function of the gate duration tg . The blue and
orange curves correspond to sequences 1 and 2, while the green
curve corresponds to sequence 3 [see text and Fig. 12(c)].

tg = (N ′ − N )tc, which realizes a CZ gate when tg = tπ =
π/(4J aa

z ). This is accompanied by a single-qubit rotation
on each qubit, which can be compensated by adjusting the
phase of one of the terms in �sa.

During the gate operation, atoms in the active states
interact with spectator storage atoms through the J sa

z term
in Hsa. However, since S̄z is constant during the gate oper-
ation (it commutes with Hsa and Haa), it appears in Hsa as a
constant detuning for the storage atoms, which is removed
by the DD sequence along with the � terms. By the same
token, the action of the spectator storage atoms on the
active qubits is removed. It is crucial that Hsa and Haa not
have any exchange terms, as these would not be refocused
in the same way.

The gate fidelity is fundamentally limited by the dura-
tion tπ , which determines the incoherent error probability
over the gate cycle ετ = tπ/τcirc. The value of J aa

z can be
tuned by adjusting the value of the E and B fields, as shown
in Fig. 7(a). A Förster resonance at low fields gives wide
tunability, and at the indicated field Bz ≈ 1.39 G, a value of
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tπ = 3.7 μs can be obtained with J aa
z /J

ss
z ≈ 18, resulting

in a lifetime-limited error probability ετ ≈ 10−6.
In Fig. 7(b), we show the coherent error rate of a

two-qubit gate in a four-atom array with two specta-
tor qubits. The error rate is computed as εCZ = 1 −
| 〈ψ | U†

CZU |ψ〉 |2. Here, U is the numerically computed
propagator, and UCZ describes the ideal CZ gate (including
single-qubit phases from �sa and �aa), and an average is
taken over Haar-random |ψ〉 from {|0s〉 , |1s〉}⊗4 (the oper-
ation �sa is included in the simulation, so the qubits start
and end in the storage states). A finite pulse strength for
both local and global pulses, corresponding to a duty cycle
Nptp/tc = 0.025, is included for all pulses.

Sequences 1 and 2 in Figs. 6(b) and 6(c) achieve coher-
ent errors below 10−5. Further suppression can be achieved
by using a sequence that consists of sequence 2 concate-
nated with its inverse [sequence 3, Fig. 12(c)], which
maintains the robustness of sequence 2 but is reflection
symmetric to cancel higher-order terms that arise during
the active gate operation from the nonnegligible value
of J sa

z (J sa
z /J

ss
z ≈ −3.2). This sequence realizes coherent

errors well below 10−6.
Since the 1/R6 interaction is inherently short-ranged,

gates can be applied in parallel on multiple pairs of atoms
within a large array. In one dimension, a separation of 3acirc
(i.e., two intermediate storage sites) results in a crosstalk
error below 10−6. Thus, half of the array can participate in
a gate at any point in time.

VII. OTHER SOURCES OF ERROR

In this section, we consider several potentially signif-
icant sources of error, estimate their impact on the gate
fidelities, and discuss mitigation strategies.

A. Pulse imperfections

Imperfections and finite rotation strength in the pulses
for the DD sequence can have a significant impact on the
fidelity of the DD in the storage states. However, these
effects can be mitigated by careful pulse sequence design.
In Figs. 8(b) and 8(c), we show the errors resulting from
finite pulse duration (expressed in terms of the pulse duty
cycle Nptp/tc, where Np is the number of pulses in one
cycle and tp is the pulse duration) and static rotation-angle
errors (i.e., resulting from an inhomogeneous microwave
field strength across the array). Sequences 2 and 3 perform
considerably better than sequence 1 in both cases, and can
achieve coherent errors of less than 10−6 per cycle for duty
cycles approaching 1 (equivalent to zero free-precession
period between the pulses) and rotation-angle errors of
more than several percent.

(a) (b) (c)

(d)

(e)

Av
er

ag
e 

er
ro

r (
2t

c)
Av

er
ag

e 
er

ro
r (
t c)

Av
er

ag
e 

er
ro

r

FIG. 8. (a)–(c) Storage-state DD errors at t = 2tc for
sequences 1–3 as a function of (a) sequence period, (b) pulse
duty cycle, and (c) static rotation-angle error. Each plot uses the
values (tcJ ss, Np tp/tc, ε) = (0.021, 0.025, 0) for the parameters
not being varied. The horizontal line is at 10−6, a characteristic
value for the incoherent error over one two-qubit gate cycle. (d)
Sensitivity to errors in sequence 2 arising from thermal motion
with (blue) and without (red) matching of the sequence period
to the atomic motion frequency. The red and blue circles (©)
show the effect of a nonmagic trap (η = 2 × 10−3); the upward-
pointing triangles (

�
) show the effect of the position dependence

of �ss; and the downward-pointing triangles (
�

) show that of
J ss

z and J ss. The black triangles show the sum of all errors for
the optimal sequence period. The dashed line shows the lifetime-
limited error over one cycle, 2 × 2π/(ωτcirc) ≈ 7 × 10−6. (e)
Storage-state DD fidelity with no atomic motion (black dashed
line), T = 10 μK (blue line), and T = 50 μK, with sequence 2 at
the optimal period. The light traces show the evolution for indi-
vidual randomly sampled trajectories, and the dark traces show
the average. In (d),(e), acirc = 16 μm to match the condition
tπ = 4 × 2π/ω with ω = 2π × 100 kHz.

B. Atomic motion

A major technical imperfection in all atomic and
ion qubit platforms is unwanted atomic motion [56,57].
This is often the leading source of error in standard

030322-11



SAM R. COHEN and JEFF D. THOMPSON PRX QUANTUM 2, 030322 (2021)

Rydberg-blockade gates, where it enters as a Doppler shift
and as a variation in the interaction strength [8–12] and
spin-motion entanglement from photon recoil [58].

For circular Rydberg qubits, the Doppler shift and pho-
ton recoil are negligible for microwave-frequency transi-
tions between circular states. Atomic motion still enters
in other ways, chiefly as a variation in the interaction
parameters and drive strength, and as a time-dependent
energy shift in nonmagic traps. However, the fact that the
gate operations occur at speeds comparable to the atomic
motion allows these effects to be suppressed using dynam-
ical decoupling, effectively exploiting the long correlation
time of this noise: a trapped atom is a high-Q mechanical
oscillator. Slow heating can arise from photon scattering or
trap-intensity and position noise, but we note that motional
coherence times up to 12 s have been observed in opti-
cal lattices [59]. In this section, we give a conceptual
overview of the approach to DD in the presence of thermal
motion, and refer the reader to Appendix F for a fully quan-
tum mechanical treatment of spin-motion coupling using
average-Hamiltonian theory.

Let us first consider the two-qubit gates. During a two-
qubit gate operation, atomic motion creates an uncertainty
in J aa

z , which in turn leads to an uncertainty in the accumu-
lated phase. The resulting infidelity is approximately 10−3

for atoms at Ta = 10 μK in a trap with motional frequency
ω = 2π × 100 kHz. However, S̄z is constant over the dura-
tion of the gate operation, so the final accumulated phase
is given by the average value of J aa

z over the gate time. If
the gate time is chosen to satisfy tπ = 2πn/ω, the average
value is independent of the motional amplitude x0 along the
interatomic axis to first order in x0/acirc, and also indepen-
dent of the phase of the motion with respect to the gate. If
ω = 2π × 100 kHz, this requires slowing down the gate to
tπ = 10μs, which increases the incoherent error during the
gate operation by a factor of 3. Only the motion along the
interatomic axis is relevant: the motion in the orthogonal
directions enters to second order.

In a nonmagic trap, atomic motion also gives rise to
dephasing. In the active states, a random phase with aver-

age magnitude
√

〈φ2
D〉 = ηakBTatπ/(2�) accumulates dur-

ing the gate operation [60], leading to a bit-flip probability
Pφ = φ2

D/6 (here ηa is the fractional difference in trap
depth for |0a〉 and |1a〉). For tπ = 10 μs and Ta = 10 μK,
Pφ < 10−6 requires η < 4 × 10−4, which can be achieved
as described in Sec. III. Alternatively, this phase can be
cancelled using a composite sequence where the atoms are
brought to the active states for a time tπ/2 (such that a
nonlinear phase of π/2 is accumulated) and then returned
to the storage states, where an X (bit-flip) operation is
applied before going back to the active states for tπ/2
again. In this sequence, if tπ/2 is an integral multiple of
the motional period [i.e., tπ = 2π(2n)/ω], then the same
phase φD is accumulated by both qubit states of each atom,

and it becomes a global phase that factors out. We note that
motion in all three directions contributes to φD, so achiev-
ing perfect cancellation requires the three trap frequencies
to be matched (or have integer ratios).

Atomic motion also affects the atoms in storage states,
resulting in errors during idle operations. However, as we
derive in Appendix F, these effects can be mitigated by
careful design of the DD sequence, in analogy to the design
of filter functions for quantum sensing of time-dependent
fields [61,62]. Sequence 2 is designed to decouple from
all types of errors (nonmagic trapping and variation in
the interaction parameters J , Jz and �) at commensurate
frequencies, such that these errors can be simultaneously
suppressed when tc = 2 × 2π/ω. This is compatible with
the condition above for decoupling the active states from
atomic motion if tπ/2 = 2 × 2π/ω or, equivalently, tπ =
4 × 2π/ω ≈ 40 μs. In this case, the lifetime-limited error
probability per two-qubit gate is approximately 10−5.

To demonstrate this suppression, we simulate the
dynamics of a four-atom chain in the storage states with
random thermal motion [Figs. 8(d) and 8(e)]. The motion
is treated classically, as a time-dependent variation in
the Hamiltonian parameters at a single frequency ω. In
Fig. 8(d), we show that matching the sequence period to
the atomic motion results in a dramatic suppression of
the errors [defined as in Fig. 6(d)]. The dominant error
arises from nonmagic trapping potentials (here, a value of
ηs = 2 × 10−3 is chosen), and a substantial suppression is
achieved by matching the sequence period to the motion.
For these parameters, the coherent errors are below the
incoherent error rate (now approximately 10−5 per cycle)
for temperatures Ta ≤ 20 μK. In Fig. 8(e), we show the
error over several cycles for Ta = 10 μK and Ta = 50 μK.

Note that meeting the conditions above requires align-
ing tc, tπ , and ω. While tc can be varied arbitrarily with the
sequence timing, ω cannot be varied over a wide range,
so tπ needs to be adjusted to match. While this can be
done using the Förster resonance shown in Fig. 7(a), a bet-
ter approach is to vary the distance between atoms, which
maintains the large ratio of J aa

z /J
ss
z that allows the DD

sequence to perform well.
Lastly, we consider operations that are not part of the

dynamical-decoupling sequence, such as single-qubit rota-
tions (at the refocusing times) and the storage-active tran-
sition �sa. These operations are driven by the focused
LG beams, and the resulting Rabi frequency is quite sen-
sitive to misalignment and atomic motion. In particular,
for the parameters in Fig. 5(b), � = �0e−r2/2σ 2

, with σ =
(107, 200, 287) nm for λ = (532, 1064, 1550) nm and the
δn = 2 transition. For an atom at Ta = 10 μK, this results
in an average rotation-angle error ε = (0.09, 0.03, 0.015).
However, assuming the pulses can be applied quickly with
respect to the atomic motion (or separated by an integer
number of periods), composite pulses such as the BB1
pulse can be used, which can suppress static errors to the
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level of ε6 [63]. This is sufficient, in principle, to realize
rotation errors below 10−5 for the above-mentioned condi-
tions. Other beam geometries may also help mitigate this
effect.

C. Other sources of error

Another consideration is population leakage to noncir-
cular states. In particular, if the microwave-field polariza-
tion is not pure or uniform across the array, transitions to
elliptical states can occur during the DD sequence. We esti-
mate that a polarization purity of Ez/E+ ≈ 2.5 × 10−3 and
E−/E+ ≈ 4.2 × 10−2 is sufficient to realize a population
leakage of less than 10−6 per π/2 pulse on the storage
transitions (here, Ez denotes the z-polarized microwave
electric field strength, and E+ and E− denote the σ+ and
σ− strengths, respectively). This estimate considers only
the matrix elements—the finite detuning of the final states
will give additional suppression depending on the over-
all strength of the rotation. While demanding, this level
of polarization purity has been demonstrated for rf fields
driving Rydberg atoms using phased antenna arrays [45],
and the well-controlled boundary conditions of the waveg-
uide structure are favorable for engineering a similar level
of suppression.

Even with perfect polarization of the driving fields, the
dipolar interaction mixes the circular states with nearby
elliptical states, resulting in weakly allowed transitions
separated by several megahertz from the intended transi-
tions for the parameters presented here. Leakage to these
states can be suppressed using Derivative Removal by Adi-
abatic Gate (DRAG) pulses or multifrequency drives [64].
Moving the atoms farther apart also helps dramatically,
both by reducing the mixing and by decreasing the interac-
tion strength, which reduces the required pulse bandwidth.
The analysis of these techniques and their interaction with
the performance of the DD sequence is beyond the scope
of this work.

Lastly, we note that the typical average-Hamiltonian-
theory analysis considers the evolution of two-body spin
operators [30,53,54]. In a many-body system, nonlocal
interactions emerge from higher-order terms in the Mag-
nus expansion. It has been noted [65–68] that the Magnus
expansion does not formally converge for many-body sys-
tems with extensive energy, and that at long times the
system should approach an infinite-temperature state as
it absorbs energy from the drive. However, those stud-
ies have shown that this behavior does not occur before
an exponentially large critical time t∗ = O (

e1/(tcJ )
)
, and

that before this time the average-Hamiltonian description
is nearly exactly correct up to some order n∗. We assume
that t∗ can be made much longer than the duration of the
computation by adjusting tc. The exponential dependence
of t∗ on tc has recently been experimentally observed in a
cold-atom system [69].

VIII. DISCUSSION

Several technical comments are in order. First, we con-
sider the choice of atomic species and Rydberg levels.
Although the properties of the circular states themselves
are completely independent of the atomic species, the
atom affects aspects of trapping, cooling, and measure-
ment. Alkaline-earth atoms can be readily cooled to very
low temperatures using narrow intercombination lines [28,
29,70]. Furthermore, the optically active ion core allows
trapping in standard tweezers [39], albeit with a strong
trade-off between state sensitivity and heating rate. This
may be mitigated by the possibility of also using the ion
core for laser cooling without disturbing the circular elec-
tron [20], and narrow-line cooling may even be possible
using electric quadrupole transitions (to D states), with
controllable broadening from a repumper [71]. All of the
necessary ingredients can also be found in alkali atoms:
cooling to very low temperatures has been demonstrated
in tweezers [72,73], and magic ponderomotive lattices can
provide highly state-insensitive Rydberg trapping.

The choice of n is constrained to n > 50 by requiring
reasonable dimensions for the microwave structure. As n
increases, the atoms must be moved farther apart to stay
within the perturbative regime of the van der Waals inter-
action, which increases the demands on the tweezer and
imaging optics for the same number of trap sites. The range
n = 50–70 seems ideal.

Second, we observe that the nonresonant nature of
the addressing light creates considerable flexibility for
advanced photonics integration for scalable addressing,
which is a major challenge with current atom and ion
experiments [74]. Working at longer wavelengths such as
1064 or even 1550 nm enables a wider range of materials
for integrated photonics, and CMOS-compatible grating
outcouplers for LG beams have already been demonstrated
[75,76]. It is an additional advantage to be able to work
within the wavelength bands of low-noise fiber lasers and
amplifiers, and mode-locked lasers may provide a partic-
ularly simple path to driving the necessary 60–110 GHz
transitions between computational states [77].

Third, the proposed QND detection scheme also pro-
vides an interface between circular and ground-state qubits
that can be used to realize longer-term storage in hyperfine
ground states, as well as photonic interconnects between
multiple modules [78] for large-scale quantum computing
systems [79].

Lastly, other qubit-encoding and gate schemes are pos-
sible. For example, using states with �n = 1 to realize
two-qubit gates may allow gate times below 1 μs with
long-range (1/R3) interactions, as well as multiqubit gates
using the dipole blockade. Alternatively, it may be possible
to exploit the vast multiplicity of elliptical states to realize
analogs of bosonic codes [80]. Deliberate introduction of
microwave resonances into the structure could enable very
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long-range interactions between circular atoms in certain
states, or controllable dissipation. Finally, given the long
atomic lifetime, physically moving qubits within the array
may be a viable path towards long-range connectivity.

IX. CONCLUSION

We propose an architecture for a quantum computer
based on individually trapped and manipulated circular
Rydberg atoms. By leveraging the seconds-scale lifetimes
available in a cryogenic engineered microwave environ-
ment, we anticipate that two-qubit gate errors around 10−5

are achievable in system sizes of hundreds of atoms with-
out ground-state cooling. We additionally propose a tech-
nique for high-fidelity and rapid QND measurements of
the circular Rydberg-atom state. This is used to overcome
low circular-state initialization fidelities and for measuring
the final circuit output. It can also be applied selectively to
measure error syndromes for fault-tolerant quantum com-
puting, or to implement interactive verification protocols
[81]. Our gate implementation is robust to small variations
in the Hamiltonian parameters arising from atomic motion;
this approach may also be useful in the context of gates
with polar molecules [82].

We note that the techniques discussed here may also be
very valuable for quantum simulation, even without local
addressing. The tunability of the circular Rydberg Hamil-
tonian between the storage states realizes an XXZ model
over a wide range of parameters [22], and the ability to
apply strong global drives creates many possibilities for
Floquet engineering of more exotic phases [83]. Addi-
tionally, the ability to perform QND measurements on
subsets of the array opens the door to studying the inter-
play between measurement and coherent evolution, such
as measurement-induced phase transitions [84,85].
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APPENDIX A: DETAILS OF THE WAVEGUIDE
STRUCTURE

The center of the waveguide is a cylindrical bore with
diameter D = 2.2 mm. Cones with an opening angle of 60◦
(corresponding to an optical NA = 0.5) are drilled from
either side. The apex of each cone is centered at the origin.

TABLE I. Parameters of the stepped-impedance filter (ID,
inner conductor diameter; Z, impedance; L, length). Segment 1
is the innermost segment.

Segment ID (mm) Z (�) L (mm)

1 0.48 50 0.48
2 1.01 5 1.48
3 0.149 120 2.99
4 1.01 5 0.55
5 0.149 120 1.71
6 1.01 5 0.26
7 0.149 120 0.36
8 0.48 50 0.48
Total 8.29

The electrode rings have an inner and an outer diame-
ter of 0.88 and 2.08 mm and a thickness of 0.1 mm (the
performance is essentially the same with a 0.3-mm thick-
ness), and are separated by 1.43 mm, chosen to maximize
the uniformity of the electric field by zeroing the second
derivative with respect to the radial coordinate, leaving
only a fourth-order term (the odd terms vanish through the
azimuthal symmetry).

The filter is a stepped-impedance filter designed accord-
ing to an insertion loss method [34] for a cutoff frequency
of 2.5 GHz. It is housed in a cylindrical bore with diam-
eter 1.15 mm, and the parameters of the inner conductor
are given in Table I. We note that a critical property of the
filter is that it is highly reflective: a dissipative filter would
provide a decay channel for the circular states.

The LDOS is simulated using Ansys HFSS with a driven
modal solution. A small, perfectly conducting dipole is
placed inside, and the radiated power is determined from
the real part of the admittance Y(ω) [86]. The Purcell fac-
tor is obtained by normalizing Re[Y(ω)] by its value in
free space. A radiation boundary condition is used out-
side the structure, and the filters leading to the electrodes
are terminated with a 50-� lumped RLC boundary, rep-
resenting a resistive terminator thermalized to the bath
temperature Tb. The conductivity of all components of the
structure is taken to be σ = 5 × 109 S/m, 100 times that of
room-temperature copper, appropriate for copper or gold
at cryogenic temperatures [87].

A simulation of the pieces of the assembly helps elu-
cidate the contributions of the individual components
(Fig. 9). The waveguide structure alone [Fig. 9(c)] has
an exponentially decreasing Purcell factor below its low-
est cutoff frequency of fc = 80 GHz. This factor reaches
a minimum level of Pmin ≈ 10−4 because of the finite
electrical conductivity of the sidewalls. This value can
be estimated from the Fresnel reflection coefficient R =
[(n − 1)/(n + 1)]2 for a good metal with complex refrac-
tive index n ≈ (1 + i)

√
σ/2ωε0 as 1 − R ≈ 4

√
2ε0ω/σ =

1.3 × 10−4 at 50 GHz (Ref. [15] contains a similar esti-
mate, Pmin = δ/D, where δ is the skin depth). The addition
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FIG. 9. (a) σ±-polarized Purcell factor and (b) ẑ-polarized Purcell factor for the microwave structure built up one component at a
time. The legend labels refer to the illustrations in parts (c)–(f). (c) Waveguide only. (d) Waveguide with annular electrodes included.
(e) Waveguides, annular electrodes, and coaxial feedthroughs to apply a bias voltage, terminated with 50 � (not shown). (f) As (e),
but with stepped-impedance filters added to the feedthroughs.

of the annular electrodes [Fig. 9(d)] results in an additional
suppression at high frequencies, presumably because they
form effective mirrors for the fundamental TE11 mode. It
also introduces a resonance at f ≈ 45 GHz, which may
be understood to arise from a series-LC equivalent cir-
cuit for a ring inside a waveguide [88]. Connecting these
electrodes to the environment using a 50-� transmis-
sion line [Fig. 9(e)] creates a significant decay pathway,
resulting in P > 10−2 at most frequencies. The effect is
larger for z-polarization than for in-plane dipoles, pre-
sumably because the coupling to the annular electrodes is
largely suppressed by symmetry in the latter case. The final
addition of the reflective filter [Fig. 9(f)] suppresses the
transmission at most frequencies, but introduces additional
resonances near 20 and 60 GHz. We note that these res-
onances are not completely understood by us, and can be
pushed around somewhat by changing the relative dimen-
sions of the components. More exploration may allow a
refined design with a larger interior space (i.e., more sep-
aration between the atoms and the metal walls) or greater
optical access.

Finally, we note that the LDOS is essentially constant
over a significant volume in the center of the structure. In
particular, we observe no significant change in the LDOS
for displacements of more than 200 μm in any direction
from the geometric center.

APPENDIX B: CIRCULAR-STATE LIFETIME

The lifetime of the circular states is affected by a num-
ber of processes in addition to spontaneous emission and
black-body radiation. Reference [22] presents a thorough
discussion, which is largely applicable to the present work,
including the negligible role of autoionization and pho-
toionization processes for the circular states and an esti-
mate of background gas collisions in cryogenic vacuum
conditions (a transition rate of 1/400 s−1 is estimated at
10−14 Torr).

The total radiative lifetime is estimated in Fig. 2, and
exceeds 20 s at Tb = 4 K for all of the computational
states. However, in a ponderomotive optical trap, there
is a state-transition mechanism resulting from Thomson
scattering [22]. A naive estimate of this rate is discussed
in Sec. V. Through a detailed calculation [50], we esti-
mate that approximately three quarters of such scattering
events result in a state change, with the vast majority of
these causing a transition to one of the neighboring circular
states. Therefore, we estimate a state-changing scattering
rate of 3 × 10−7 times the trap depth, or 0.3 s−1 for a lattice
depth of 1 MHz. This is the dominant limitation on the cir-
cular lifetime, resulting in τcirc ≈ 3 s. We note that this loss
rate could be reduced by 10–100 times using near-resonant
traps based on the ion-core polarizability for alkaline-earth

030322-15



SAM R. COHEN and JEFF D. THOMPSON PRX QUANTUM 2, 030322 (2021)

atoms, at the expense of a larger motional heating rate from
photon scattering in the core.

Lastly, Ref. [22] considers mixing with shorter-lived
elliptical states arising from the van der Waals interac-
tion. In our structure, with a complete LDOS suppression
for all polarizations, the lifetime of the closest few ellip-
tical states is nearly as long as that of the circular states
(the radiative transition rate for states with |m| = n − 2 is
only 3 times greater, for example), and the admixtures are
small (less than a few percent) at the larger separations
used here. Therefore, this decay process is negligible for
our parameters.

APPENDIX C: INITIALIZING THE CIRCULAR
ARRAY

The following procedure can be used to initialize the
circular-atom array using Rb. Atoms are initially loaded
into optical tweezer arrays and excited to |a〉 and then
to |54D〉 and |53F〉 using a series of microwave transi-
tions. From there, they are circularized into |53C〉 using rf
rapid adiabatic passage [19,31]. Then, a series of narrow-
band microwave pulses transfers the atoms from |53C〉
to |64C〉 (|1a〉), where the ancilla array is used to probe
which sites were successfully excited. Importantly, the
final microwave transfer step leaves behind imperfectly
circularized atoms in long-lived elliptical states in the n =
53 manifold [19]. Since the interaction with the ancilla
does not distinguish circular atoms from nearly circular
atoms of the same n, these would be erroneously recorded
as a successful initialization if the circularization was per-
formed directly in the n = 64 manifold. Sites that are
not confirmed to be in n = 64 are emptied by turning off
the traps, and the remaining atoms are rearranged into a
defect-free array with the desired pattern [23–25].

The approach outlined above starts with excitation to
|a〉, and therefore has the benefit of requiring only a sin-
gle Rydberg laser for both excitation and measurement.
However, the transfer from |53C〉 to |64C〉 requires a large
number of microwave frequencies. This could be circum-
vented by exciting directly to 63S, from which one would
circularize to |1s〉, at the expense of needing a second
Rydberg-excitation laser.

If the compute atoms are to be held in a ponderomo-
tive lattice, several stages of traps are required to initialize
the array. First, the compute and ancilla arrays are pre-
pared in standard red-detuned optical tweezers, and rear-
ranged using existing techniques demonstrated in one [24],
two [23,25], and three [38] dimensions. Then, a shallow-
angle blue-detuned lattice is applied along the vertical
direction, confining the two arrays in planes separated
by dz (the combination of a vertical lattice and tweezers
has been recently demonstrated [89]). Next, the com-
pute array is transferred into a set of hollow blue-detuned
tweezers formed by LG0,1 beams that can confine both

ground-state and Rydberg atoms (the vertical confinement
is provided by the lattice), and is excited into circular
states as described above. The atoms are measured using
the ancilla array, and then the compute array is rearranged
using the LG0,1 tweezers. Finally, the compute and ancilla
atoms are transferred to the in-plane, state-insensitive lat-
tice before the computation starts. The in-plane lattice
has the opposite polarizabilty for the ground-state ancil-
lae compared with the circular states, but trapping the
ancilla array with a lateral offset of λ/2 ≈ 300 nm will
have negligible impact.

The sequence is somewhat simpler using alkaline-earth
atoms and near-resonant optical tweezers for the circu-
lar states. The compute and ancilla arrays are initialized
in red-detuned tweezers and rearranged. Then, the com-
pute array is excited to circular states following a sim-
ilar sequence, though the details depend on the atomic
species [20]. For an appropriately chosen tweezer wave-
length and beam waist, the low-� and circular states can
be trapped in the same tweezers that confine the ground-
state atoms [39]. The circular excitation is verified with
the ancilla array, and the compute array is rearranged a
second time. Finally, the defect-free circular-atom array
is transferred into a superimposed near-resonant tweezer
array that provides state-insensitive trapping, keeping the
ancilla array in ground-state tweezers. If out-of-focus light
from the ancilla traps adversely affects the compute array,
the ancillae may be moved away during the computation
or switched into a configuration where they are in the
same plane as the compute array but displaced laterally by
dx = acirc/3. The resulting interactions are essentially the
same as those in Fig. 4.

APPENDIX D: MEASUREMENT FIDELITY

Here we consider the fidelity of the measurement pro-
cess in detail. For concreteness, we assume a lifetime of
the ancilla |S〉 Rydberg state of τa = 200 μs (appropriate
for |55S〉 at cryogenic temperatures), and assume that the
interaction strength between an ancilla and a target atom in
the target state is �t = Va,64 = 2π × 20 MHz (Fig. 4).

One approach to reading out the circular state is to
execute a Rydberg-blockade gate on the ancilla. As with
a conventional Rydberg-blockade gate [18], a 2π pulse
on the ancilla atom with Rabi frequency �a creates a π
phase shift if it is not blockaded by the target atom. In
this approach, errors can arise from the finite blockade
strength as well as from the finite lifetime of the circular
Rydberg state, and are minimized at an optimum value of
�̃a = (π�2

t /τa)
1/3 ≈ 2π × 1 MHz. At this value, the error

probability is Pg = [π/(�tτa)]2/3 /2 ≈ 1.3 × 10−3 (this is
the same error scaling as for a two-atom Rydberg-blockade
gate [26], but with a smaller prefactor since the circular
atom has negligible decay over the gate).
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(µm)

FIG. 10. Admixture of other pair states Pε(n) into the pair
|a, nC〉 for n = 56–66. The computational states are color-coded
following Fig. 1(a), and the others are shown in gray. The
horizontal lines show lattice sites with acirc = 12 μm.

Another source of error arises from the possibility
for the measurement process to alter the state of the
target atom, leaving it in an incorrect state. The van der
Waals interaction mixes the single-atom eigenstates of
the ancilla and target atoms (|a〉 and |nC〉) with other
states. This results in pair eigenstates of the form |ψan〉 =√

1 − ∑
i |εn,i|2 |a, nC〉 + ∑

i εn,i |a′
i, n′

i〉, where |a′
i, n′

i〉 are
other states that are mixed in by the dipolar interaction (the
states |a′

i〉 are all P states, while the states |n′
i〉 are circu-

lar or nearly circular). A spontaneous decay of the ancilla
atom has a probability Pε(n) = ∑

i |εn,i|2 of projecting the
target atom into a different state (assuming the lifetimes of
|a〉 and |a′

i〉 are similar). In Fig. 10, we show this quantity
for various circular states.

To estimate the error resulting from this effect, we con-
sider the blockaded and nonblockaded cases separately.
In the blockaded case (n = 64), Pε ≈ 0.2 is rather large,
but the spontaneous-emission probability Psc is very small
because the ancilla is excited with only a low probabil-
ity, so that Psc = [π/(�tτa)]4/3 ≈ 6.3 × 10−6. This gives a
total pair-projection error probability Pp = PεPsc = 1.2 ×
10−7. In the other states (n = 56, 59, 61), Pε � 10−4, but
the probability of decaying is much higher, i.e., Psc =
Pg/2, resulting in Pp � 10−7. In both cases, these errors
are very small compared with Pg . One can also con-
sider crosstalk: the probability for an ancilla to project
its target atom’s neighbor is, in the worst case, PNN

p =
(Pg/2)PNN

ε ≈ 10−6, where PNN
ε ≈ 10−3 is evaluated at the

nearest-neighbor distance for an atom in |64C〉 (Fig. 10).
This is also small.

This measurement technique is also suited to QND read-
out of a qubit array, where it is desired to maintain an
arbitrary superposition of |0s〉 , |1s〉 in a neighboring atom.
For these states at the nearest-neighbor distance, Pε <
10−6. However, there is a small phase rotation resulting

from the differential interaction energy of the storage states
with the excited neighboring ancilla. The ancilla Ryd-
berg state is populated for an average time 2π/(8�̃a) =
0.13 μs, and the differential shift on a neighboring atom
in |0s〉 , |1s〉 is approximately 1 kHz [Fig. 4(d)]; therefore,
the resulting phase shift is φ = 8 × 10−4, corresponding to
an error probability Pφ = 1.1 × 10−7, much less than that
arising from spontaneous emission over the duration of the
measurement, Pd.

In summary, it is possible to realize measurement errors
at the level of 10−3 using a blockade gate on an ancilla
atom. The measurement perturbs the target and neighbor-
ing atoms at a level below 10−6, which allows repeating
the measurement with several ancillae or with the same
ancilla, sequentially, to achieve even higher fidelity by
averaging over several repetitions of the gate [44].

APPENDIX E: INTERACTION CALCULATIONS

The effective interaction coefficients in the Hamiltoni-
ans in Eqs. (6)–(8) are numerically computed. To compute
the interaction between atoms in the circular states n and
n′, we construct a large basis of pairs of nearby Ryd-
berg states (typically of order 103 pairs are included), and
compute a Hamiltonian with one-atom terms (E and B
fields) and two-atom interaction matrix elements up to
the desired multipole order [43] (radial matrix elements
are computed using analytic hydrogenic wave functions).
This matrix is diagonalized, and the pair eigenstates |ñ, n′〉
with the highest overlap with the pure |n, n′〉 pair states
are identified. If n = n′, the van der Waals coefficient
Vnn is extracted as the shift of the energy of this state
with respect to the one-atom Hamiltonian (or, equiva-
lently, with respect to its energy at infinite separation in
the pair Hamiltonian). If n �= n′, then we instead find the
eigenstates ˜|ψ±〉 with the highest overlap with the pair
states (|n, n′〉 ± |n′, n〉)/√2. The van der Waals coefficient
Vnn′ is extracted from the average energy shift of these
states, (E+ + E−)/2, while the exchange interaction coef-
ficient is Enn′ = E+ − E−. We describe this interaction
as a van der Waals coefficient because it is dominated
by the second-order dipole-dipole contribution, with a
1/R6 decay. However, we emphasize that its value is not
a perturbative approximation: numerical diagonalization
of the pair Hamiltonian gives the exact eigenstates and
eigenenergies, up to the highest multipole order included
(octupole-octupole).

From V and E, we construct an effective Hamiltonian
acting on the eigenstates |ñ, n′〉 and ˜|ψ±〉. By associating
state n with spin down and n′ with spin up for a ficti-
tious spin-1/2 particle, we can write the coefficients as a
matrix in the product basis and express it in terms of spin
operators [22]:

030322-17



SAM R. COHEN and JEFF D. THOMPSON PRX QUANTUM 2, 030322 (2021)

Hint =

⎛
⎜⎝

Vnn 0 0 0
0 Vnn′ Enn′ 0
0 Enn′ Vn′n 0
0 0 0 Vn′n′

⎞
⎟⎠

= JzS1
z S2

z + J (S1
x S2

x + S1
y S2

y )+�(S1
z + S2

z )+ E0Î,
(E1)

with the operator coefficients (note that Sz has eigenvalues
±1)

Jz = (Vnn − Vnn′ − Vn′n + Vn′n′)/4, (E2)

J = Enn′/2, (E3)

� = (Vnn − Vn′n′)/4, (E4)

E0 = (Vnn + Vnn′ + Vn′n + Vn′n′)/4. (E5)

We apply this procedure with (n, n′) = (59, 61) to com-
pute the storage-state interactions [i.e., the coefficients J ss,
J ss

z , and �ss in Eq. (6)] and with (n, n′) = (56, 64) to
compute the active-state interactions [i.e., J aa

z , �aa in Eq.
(8)].

To compute the interactions between the storage and
active atoms, we consider the basis implied by the operator
SzS̄z:

Hint =

⎛
⎜⎝

V0s0a 0 0 0
0 V0s1a 0 0
0 0 V1s0a 0
0 0 0 V1s1a

⎞
⎟⎠

= J sa
z S1

z S̄2
z +�saS1

z +�asS̄2
z + E0Î. (E6)

The operator coefficients are

J sa
z = (V0s0a − V0s1a − V1s0a + V1s1a)/4, (E7)

�sa = (V0s0a + V0s1a − V1s0a − V1s1a)/4, (E8)

�as = (V0s0a − V0s1a + V1s0a − V1s1a)/4, (E9)

E0 = (V0s0a + V0s1a + V1s0a + V1s1a)/4. (E10)

In Fig. 11, we plot the values of the operator coeffi-
cients as a function of distance, and their values at acirc =
12 μm are given in Table II. We tune in the condition
J ss

z = −2Jss with Ez = 0.313 V/cm and Bz = 1.39 G. We
include higher multipoles than dipole-dipole, and observe

that the quadrupole-quadrupole interaction (with a 1/R5

dependence) contributes somewhat significantly to J ss and
�sa. The main consequence of this is that the dipolar con-
dition J ss = −2J ss

z can be exactly satisfied only at a single
distance, as seen in Fig. 11(e). However, the error at the
next-nearest neighbor site is only a few hertz, which can
be expressed as an extra Jz contribution (note that this is
not included in the simulations in Figs. 6 and 7). If the
effect of this term is significant, it can be removed with a
slow local DD sequence.

Equations (6)–(8) describe the effect of interactions on
atoms in arbitrary superpositions of the two storage-state
levels and arbitrary superpositions of the two active lev-
els. They do not capture superpositions of storage and
active levels; however, these types of states should not
occur in the protocol. There are interaction terms coupling
these states that are not represented in the effective oper-
ator Hamiltonian. However, these are all of higher order
than quadrupole-quadrupole, and, as seen in Fig. 11, the
magnitude of these terms is negligible. The largest term
not included in Eqs. (6)–(8) is an exchange term between
|1s〉 and |1a〉, which has a magnitude E1s,1a = −0.9 Hz at a
12-μm separation (it arises primarily from the third-order
dipole-dipole interaction, with a 1/R9 dependence).

Lastly, we note that the separation between |ñ, n′〉 and
other eigenstates of the pair Hamiltonian is large com-
pared with the magnitude of the interactions and the driv-
ing fields, such that the system dynamics is confined to
the manifold defined by |ñ, n′〉. Furthermore, the overlap
|〈ñ, n′|n, n′〉|2 is greater than 0.99 at r = 12 μm for all

pairs of states (except
∣∣∣〈0̃a, 1a|0a, 1a〉

∣∣∣2
≈ 0.96). For sim-

plicity, we drop the notation |ñ, n′〉 in the main text, and
treat the effective spin Hamiltonian as if it acts on the states
|n, n′〉.

A similar approach is used to calculate the interactions
between the ancilla states and the circular states. The only
difference is that nonhydrogenic wave functions are used
for the low-� ancilla states, incorporating the finite value of
the quantum defect [43]. As a consequence of the Förster
resonance between |a〉 and |1a〉, the overlap between |ã, 1a〉
and |a, 1a〉 is only about 0.8. The implications of this for
the measurement process are discussed in Appendix D and
illustrated in Fig. 10.

APPENDIX F: DECOUPLING FROM ATOMIC
MOTION

To evaluate the impact of atomic motion on the fideli-
ties of the active and storage operations, we construct an
average-Hamiltonian-theory (AHT) model incorporating
the motion as a quantum degree of freedom. We begin by
considering the storage states, writing the Hamiltonian as
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r (µm) r (µm) r (µm)

r (µm) r (µm) r (µm)

r (µm) r (µm) r (µm)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Dip-dip

Oct-oct
Total

Quad-quad
Dip-quad

FIG. 11. (a),(d),(g) Magnitude of the interaction coefficients vs distance for the storage states [Eq. (6)]. The vertical lines show
the site separation in a 1D lattice with ac = 12 μm. The colors show the separate contributions from different terms in the multipole
expansion. (e) J ss

z + 2J ss as a function of distance. The B and E fields are tuned to null this quantity precisely for the nearest-neighbor
site, but the quadrupole contribution to J ss results in imperfect cancellation at more distant sites. (b),(h) Interaction coefficients for the
active states [Eq. (8)]. (c),(f),(i) Interaction coefficients between the storage and active states [Eq. (7)].

Hs = Hm + Hη + Hint, with

Hm =
∑

i

p̂2
i

2m
+ 1

2
mω2x̂i

2, (F1)

Hη =
∑

i

1
2
η′mω2x̂i

2Si
z, (F2)

Hint =
∑

ij

J ij
z f (x̂ij )Si

zS
j
z + J ij f (x̂ij )

(
Si

xSj
x + Si

ySj
y

)

+�ij f (x̂ij )Si
zn

j . (F3)

Here, Hm describes the motion of a trapped atom with
coordinates x̂i, p̂i (xi is defined relative to the trap center).
Hη describes the state-dependent potential resulting from
a nonmagic trap. If the potential for the atom in the state
Sz = −1 is U0 = 1

2 mω2x2 and the potential for the atom
when Sz = 1 is U1 = (1 + η)U0 (following Sec. III), then

ω2 = (1 + η′)ω2 with η′ = η/2. Hint describes the inter-
action of pairs of atoms in the storage states [following
Eq. (6), but with the ss superscripts removed for simplic-
ity]. The coefficients J ij

z , J ij , and �ij have an implicit

TABLE II. Computed values of the interaction coefficients at
acirc = 12 μm, with Ez = 0.313 V/cm and Bz = 1.39 G.

Term Value (2π × 103 s−1)

J ss −0.918
J ss

z +1.84
J sa

z −10.62
J aa

z 33.61
�ss −1.51
�sa 0.144
�as −6.60
�aa −6.24
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F
µ,k

F
µ,k

(a)

(b)

(c)

+1
+1

+1 –1
–1

–1

= (X – Y  – Y 2 – Y – X – X 2 – )N

FIG. 12. Pulse sequences. In each part of the figure, the top
shows the sequence in the laboratory frame [following Figs. 6(b)
and 6(c)], while the bottom shows Fμ,k in the graphical nota-
tion of Ref. [53]. The kth column gives the value of Fμ during
the kth toggling frame, with +1 (−1) entries shown in orange
(green). The very bottom gives the toggling-frame rotation axis
�βk connecting the frames. (a) Sequence 1. (b) Sequence 2. Impor-
tantly, the toggling-frame Hamiltonian is perfectly periodic: Fμ,k

has period T for all μ, |Fμ,k| has period T/4 for all μ, and �βk
has period T/2. (c) Sequence 3, which consists of sequence 2
with its inverse appended. Each half maintains the periodicity of
sequence 2.

dependence on the average separation of 1/r6
ij . In subse-

quent steps, we approximate the distance dependence of
the interaction terms to first order as f (x̂ij ) = 1 − 6x̂ij /rij
[where rij = (i − j )acirc is the average separation, and
x̂ij = x̂i − x̂j ].

This system is then acted on by a series of pulses in the
DD sequence. For simplicity, we take these pulses to be
equidistant, occurring at times tk = kτ , and let Pk denote
the unitary transformation (on the spin) realized by the kth
pulse. Following a standard AHT treatment [90], we define
a toggling-frame Hamiltonian representing the evolution
of the spin during the time interval between tk−1 and tk:

H̃k = (Pk−1 · · · P1)
†Hs(Pk−1 · · · P1). (F4)

Additionally, we go into an interaction picture Ĥk with
respect to Hm: Ĥk(t) = e−iHmtH̃keiHmt. This results in the
elimination of Hm, as well as the following substitutions
that make Ĥk(t) explicitly time dependent:

x̂i → x0

(
e−iω̄tai + eiω̄ta†

i

)
, (F5)

x̂2
i → x2

0

(
e−2iω̄ta2

i + e2iω̄t(a†
i )

2 + 2a†
i ai + 1

)
, (F6)

x̂ij → x0

(
e−iω̄taij + eiω̄ta†

ij

)
, (F7)

with aij = ai − aj . Note that ai is not time dependent.
If the resulting Hamiltonian Ĥk(t) is periodic in the sense

that it returns to itself after N pulses and a time T = Nτ
[i.e., Ĥk(t) = Ĥk+N (t + T)], then the propagator has the
property U(MT) = U(T)M for integer M . In that case, the
system dynamics at the refocusing times t = MT can be
usefully approximated with a time-independent Hamilto-
nian using the Magnus expansion [90]. Specifically, we can
approximate U(T) = eiHeffT with Heff = H̄ (0) + H̄ (1) + · · · .
The first terms are

H̄ (0) = 1
T

∫ T

0
dt1 Ĥ(t1), (F8)

H̄ (1) = − i
2T

∫ T

0
dt2

∫ t2

0
dt1 [Ĥ (t2), Ĥ(t1)]. (F9)

We analyze only H̄ (0) in the context of spin-motion cou-
pling, although we note that some of the DD sequences
presented have a significant cancellation of H̄ (1) in the
absence of motion. In fact, by virtue of its reflection sym-
metry, sequence 3 has no contribution from any odd-order
term [54].

This periodicity in Ĥk(t) imposes two conditions: that
the pulses transform the spin operators back to them-
selves after N pulses, and that the frequency of the atomic
motion ω̄ satisfies ω̄T = 2πn for some integer n. Since the
frequency of the atomic motion is known, the second con-
dition can always be accomplished by varying the pulse
spacing τ .

Following the notation in Ref. [53], we represent the
action of the driving pulses on the spin operators in Ĥk
using a matrix Fμ,k that represents the transformation of
the operator Sz after the kth pulse (a graphical depiction of
Fμ,k is given in Fig. 12):

Si
z →

∑
μ

Fμ,kSi
μ, (F10)

Si
zS

j
z →

∑
μ

F2
μ,kSi

μSj
μ, (F11)

(Si
xSj

x + Si
ySj

y) →
∑
μ

(1 − F2
μ,k)S

i
μSj

μ. (F12)

We now examine the contributions to H̄ (0) from each
term in Hs. The conditions to cancel their contributions are
derived and summarized in Table III.
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1. Disorder terms

We now consider the zeroth-order AHT for the terms in
Hs that depend only on Si

z, which we call H̄ (0)
dis since they act

as disorder in the local field at each site. First, let us write
the toggling-frame interaction-picture Hamiltonian Ĥk,dis:

Ĥk,dis(t) =
∑
i,μ

1
2
η′mω2x̂2

i (t)Fμ,kSi
μ

+
∑
i,j ,μ

�ij [
1 − αx̂ij (t)

]
Fμ,kSi

μnj , (F13)

with α = 6/rij . Then,

H̄ (0)
dis = 1

T

∑
k

∫ kτ

(k−1)τ
dtĤk,dis(t) =

∑
i,j

∑
k,μ

H i,j
k,μ, (F14)

with

H i,j
k,μ = �ij Fμ,kSi

μnj + 1
2
η′mω2(2a†

i ai + 1)Fμ,kSi
μ

− i
αx0

ω̄T
�ij [

(1 − eiω̄τ )e−iω̄kτFμ,kaij − h.c.
]

Si
μnj

+ i
η′mω2x2

0

4ω̄T
�ij [

(1−e2iω̄τ )e−2iω̄kτFμ,ka2
i −h.c.

]
Si
μ.

(F15)

The first term in Eq. (F15) vanishes after the summa-
tion in Eq. (F14) is performed if

∑
k Fμ,k = 0 for each μ

in {x, y, z}, which is the standard condition to decouple
from static disorder (Ref. [53] and condition 1 in Table
III). The second term reflects the average energy shift in
the nonmagic trap, and vanishes under the same condition.
The third term can vanish under two distinct circum-
stances. The first is ω̄τ = 2πn (i.e., one pulse per motional
period is applied). In this case, the position-dependent spin
terms average to zero in between each pulse. The second

possibility is

N∑
k=1

eikω̄τFμ,k = 0, ∀μ. (F16)

In this case, the position-dependent spin terms do not aver-
age to zero between every pulse, but instead average to
zero over the sequence of N pulses (condition 4 in Table
III). The fourth term in Eq. (F15) vanishes under the same
conditions as for the third, but with ω̄ → 2ω̄ (condition 5
in Table III).

2. Interaction terms

Now we can repeat the same calculation for the terms
in Hs with two spin operators, which we call H̄ (0)

int . The
toggling-frame Hamiltonian is

Ĥk,int(t) =
∑

i,j

∑
μ

J ij
z

[
1 − αzx̂ij (t)

]
F2
μ,kSi

μSi
μ

+ J ij [
1 − αJ x̂ij (t)

]
(1 − F2

μ,k)S
i
μSi

μ. (F17)

Proceeding as before, we arrive at

H̄ (0)
int =

∑
i,j

∑
μ,k

[
J ij

z F2
μ,k + J ij (1 − F2

μ,k)
]

Si
μSj

μ

− i
x0

ω̄T

∑
i,j

∑
μ,k

[
J ijαJ (1 − eiω̄τ )e−iωkτaij

+(J ij
z αz − J ijαJ )(1 − eiω̄τ )e−iω̄kτF2

μ,kaij − h.c.
]

× Si
μSj

μ. (F18)

The first sum describes the motion-independent inter-
actions. When

∑
k F2

μ,k = N/3 for all μ, then the sum is
proportional to (Jz + 2J ) and vanishes when the dipolar
condition Jz = −2J is met (condition 2 in Table III). The
first term in the second sum is independent of Fμ,k and
vanishes if τ ω̄ = 2π/n, which is guaranteed by the peri-
odicity of Ĥ . The final term can vanish under two separate

TABLE III. Conditions for decoupling from static Hamiltonian terms (1, 2, 3) and spin-motion coupling (4–8). Each condition must
be satisfied for all μ ∈ {x, y, z}.
No. Condition Description

1
∑

k Fμ,k = 0 Decouples static Si
z terms [53]

2
∑

k |Fμ,k| = N/3 Decouples dipolar interactions if Jz = −2J [53]
3

∑
k βμ,k = 0 Decouples static rotation-angle errors [53]

4
∑

k e−ikω̄τFμ,k = 0 or ω̄τ = 2πn Decouples spin-motion term Si
zxi(t) (i.e., �)

5
∑

k e−2ikω̄τFμ,k = 0 or ω̄τ = πn Decouples spin-motion term Si
zx

2
i (t) (i.e., η′)

6
∑

k e−ikω̄τ |Fμ,k| = 0 or ω̄τ = 2πn Decouples spin-motion terms Si
μSj

μxi(t) (i.e., J , Jz)
7

∑
k e−ikω̄τ βμ,k = 0 Decouples rotation-angle errors proportional to xi(t)

8
∑

k e−2ikω̄τ βμ,k = 0 Decouples rotation-angle errors proportional to x2
i (t)

030322-21



SAM R. COHEN and JEFF D. THOMPSON PRX QUANTUM 2, 030322 (2021)

conditions, as in the case of H̄ (0)
dis : if τ ω̄ = 2πn, or if

N∑
k=1

e−iω̄kτF2
μ,k = 0, ∀μ. (F19)

This is condition 6 in Table III.

3. Pulse errors

Lastly, we consider the effects of pulse-angle errors
resulting from the atomic motion. While these are negli-
gible for microwave-driven transitions, they would arise if
the DD sequence was executed using focused LG modes,
and we include this section for completeness. The kth pulse
is generated by a Hamiltonian

Ĥd,k =
∑
i,μ

�
[
1 + εi + β1x̂i(t)+ β2x̂2

i (t)
]
βμ,kSi

μ. (F20)

Here, �βk = �Fk+1 × �Fk represents the rotation axis in the kth
toggling frame. The linear term β1 arises from misalign-
ment between the trap center and the addressing beam,
while the quadratic term β2 results from the finite extent
(curvature) of the addressing beam. The term εi reflects a
static rotation-angle error, arising from a gradient in the
microwave field strength across the array.

Assuming that the pulse duration tp = π/(4�) is much
less than τ and ω̄, the leading pulse error is described
by the following contribution to the lowest-order average
Hamiltonian [53]:

H̄ (0)
dr = 1

T

∑
i,μ,k

[
εi + β1e−iω̄kτai + β2e−2iω̄kτa2

i + h.c.
]

× βμ,kSi
μ. (F21)

The static error term, ε, vanishes if
∑

k βμ,k = 0 for all
μ, which is condition 3 in Table III [53]. The term pro-
portional to β1 vanishes if

∑
k e−ikω̄τ βμ,k = 0 for all μ.

The term proportional to β2 vanishes under the same con-
dition, but with ω̄ → 2ω̄. These are conditions 7 and 8,
respectively, in Table III.

4. Sequence to decouple all motional errors

In Table III, we summarize the conditions for the DD
sequence to decouple the effect of atomic motion on var-
ious terms. We also include certain conditions from Ref.
[53] that must be satisfied to decouple from (static) dis-
order and interactions and from rotation-angle error. The
motion-dependent conditions are appended as conditions
4–8.

In Fig. 12, we present diagrams representing Fμ,k and �βk
for sequences 1–3 discussed in the main text. The graph-
ical representation follows Ref. [53], where sequence 1 is

also presented. Reference [53] also presents a sequence,
“sequence G,” which is conjectured to be the minimum-
length sequence that satisfies conditions 1–3 (plus an
additional condition relating to errors from finite pulse
duration, which we do not rederive here) with only π/2
pulses. Our sequence 2 is slightly modified from “sequence
G” by permuting several of the pulses to retain these
characteristics while also making it periodic in all com-
ponents of Fμ,k, |Fμ,k|, and �βk, which allows the additional
conditions to be satisfied as well.

Let us examine sequence 2 in more detail. Fμ,k has one
period per sequence repetition for each μ, such that con-
dition 4 can be satisfied if there are an even number of
motional periods over the sequence, i.e., ω̄T = 2πn with
n = 2, 4, or 6 (since there are 12 pulses in the sequence,
n > 6 is equivalent to 12 − n). Similarly, condition 5 can
be satisfied if there are an even number of periods of 2ω̄
over the sequence, which is the case for any integer n.
|Fμ,k| has four periods over the sequence, so condition 6
is satisfied for any number of motional periods other than
n = 4. Lastly, βμ,k has two periods over the sequence for
each μ. Condition 7 is satisfied for n = 1, 3, 4, or 5, and
condition 8 is satisfied for n = 2, 4, 6.

Taken together, there is not a choice of n that satisfies all
conditions over one repetition of the sequence. However,
if we neglect the variation in the rotation angle (assum-
ing microwaves are used to drive the DD sequence), then
conditions 4–6 can be met at n = 2 (this also satisfies con-
dition 8, and would suppress the variation in� if there was
no misalignment of the addressing beams with the trap cen-
ter). The performance of this sequence is shown in Fig. 8
for various temperatures. Note that this simulation treats
the atomic motion as a classical periodic variation in the
Hamiltonian parameters.

If it is necessary to satisfy conditions 7 and 8, the simu-
lation results in Fig. 8(d) suggest that condition 6 could be
dropped, since the magnitude of the error resulting from
variations in J , Jz is considerably smaller than the other
errors. In this case, n = 4 satisfies conditions 4, 5, 7, and
8. Alternatively, choosing n = 12 (one pulse per period)
satisfies conditions 4–6, and also 7 and 8 if condition 3 is
also met.

5. Higher-order AHT terms

The framework above can be extended to compute
higher-order terms in the Magnus expansion. While the
numerical calculations presented in Fig. 8 capture the influ-
ence of terms beyond H̄ (0) for the spin Hamiltonian, they
do not incorporate higher-order terms in the spin-motion
coupling, because the motion is treated classically. In fact,
conditions 4–8 in Table III can also be derived from the
perspective of constructing a filter function [61,62] to
decouple from classical noise. There are no higher-order
terms arising from the motion by itself: the lowest-order
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average Hamiltonian for the harmonic oscillator is exact in
the interaction picture. Therefore, the unexplored terms are
those arising from spin-motion coupling at higher orders.
While these terms can sometimes be important, for exam-
ple giving rise to geometric phases in trapped-ion gates
[91], we believe that they are not significant compared
with the higher-order terms from the pure spin Hamiltonian
that dominate the errors in Fig. 8, because the magnitude
of the spin-motion coupling is small. However, a detailed
exploration is left to future work.

6. Active-state gates

Lastly, we consider the active-state gates, which include
contributions from Hsa and Haa. Since the DD sequence is
applied only to the storage states, the S̄ operators describ-
ing the active states do not change with k. The toggling-
frame Hamiltonian for a pair of atoms in the active states
surrounded by an array of atoms in the storage states is

Ĥk,act(t) =
∑

i∈{1,2}

1
2
η′

amω2x̂2
i (t)S̄

i
z + J aa

z [1 − αaa
z x̂12(t)]S̄1

z S̄2
z +�aa[1 − αaa

� x̂12(t)]

+
∑

i∈{1,2}

∑
j

[
�sa[1 − αsa

� x̂ij (t)] + J sa
z [1 − αsa

z x̂ij (t)]
∑
μ

Fμ,kSj
μ

]
S̄i

znj . (F22)

Here, the index i runs over the pair of sites in the active
states, numbered 1 and 2, and j sums over the surrounding
sites in the storage states.

Following the discussion above, it is clear that if the
period T of the DD sequence is a multiple of 2π/ω̄,
the time-dependent terms with coefficients η′

a, αaa
z , αaa

� ,
and αsa

� vanish. Furthermore, the final J sa
z term vanishes

entirely if the conditions
∑

k Fμ,k = 0 and
∑

k eikω̄τFμ,k =
0 are met for all μ (conditions 1 and 4 in Table III). In that
case, the remaining terms are

H̄ (0)
act =

∑
i

1
2
η′

amω2(2a†
i ai + 1)S̄i

z + J aa
z S̄1

z S̄2
z

+
∑

ij

(�aan̄j +�sanj )S̄i
z. (F23)

If we additionally choose J aa
z such that a nonlinear phase

of π/2 is accumulated during T, we can return the atoms to
the storage states, apply a π pulse swapping |0s〉 and |1s〉,
and return to the active states again to realize the same evo-
lution but with S̄i

z → −S̄i
z. The first and third terms cancel

between the two evolution times, but not the second, which
leaves the desired interaction. We note that it is not strictly
necessary to cancel the third term: its value is known, so it
could also be incorporated as a single-qubit phase.
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