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The concept of quantum complexity has far-reaching implications spanning theoretical computer sci-
ence, quantum many-body physics, and high-energy physics. The quantum complexity of a unitary
transformation or quantum state is defined as the size of the shortest quantum computation that exe-
cutes the unitary or prepares the state. It is reasonable to expect that the complexity of a quantum state
governed by a chaotic many-body Hamiltonian grows linearly with time for a time that is exponential in
the system size; however, because it is hard to rule out a shortcut that improves the efficiency of a com-
putation, it is notoriously difficult to derive lower bounds on quantum complexity for particular unitaries
or states without making additional assumptions. To go further, one may study more generic models of
complexity growth. We provide a rigorous connection between complexity growth and unitary k-designs,
ensembles that capture the randomness of the unitary group. This connection allows us to leverage existing
results about design growth to draw conclusions about the growth of complexity. We prove that local ran-
dom quantum circuits generate unitary transformations whose complexity grows linearly for a long time,
mirroring the behavior one expects in chaotic quantum systems and verifying conjectures by Brown and
Susskind. Moreover, our results apply under a strong definition of quantum complexity based on optimal
distinguishing measurements.
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I. MOTIVATION AND OVERVIEW

The complexity of a computation is a measure of the
resources needed to perform the computation. In a classical
model of computation, the complexity of a Boolean func-
tion may be defined as the minimal number of elementary
steps needed to evaluate the function. The precise number
of steps needed depends on how the model is chosen, but
this notion of complexity provides a useful way to quan-
tify the hardness of a computational problem because how
the number of steps scales with the size of the input to
the problem has only weak dependence on the choice of
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model. By broad consensus, a computational task is con-
sidered to be feasible if its complexity grows no faster than
a power of the input size, and intractable otherwise; using
this criterion, all classical models of computation agree
about which problems are (classically) “easy” and which
ones are “hard.”

Likewise, we may separate computational tasks into
those that are easy or hard for a quantum computer. The
circuit model of quantum computation provides a conve-
nient way to quantify quantum complexity—namely, the
quantum complexity of a Boolean function is the minimal
size of a quantum circuit, which computes the function
and outputs the right answer with high success probabil-
ity. Here by the size of the circuit we mean the number
of quantum gates in the circuit. These gates are chosen
from a universal set of gates, where each gate in the set
is a unitary transformation acting on a constant number of
qubits or qudits. Though there are many ways to choose the
universal gate set, any set of universal gates can simulate
another accurately and efficiently, so that circuit size pro-
vides a useful model-independent measure of complexity.
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From a physicist’s perspective, a quantum computation is a
process governed by a local time-dependent Hamiltonian,
and an intractable computation is a process that requires a
time, which grows superpolynomially with the system size.
Such intractable processes are not expected to be observed
in nature.

Furthermore, in quantum physics, in contrast to classi-
cal digital computation, there is a meaningful notion of
complexity not only for processes, but also for quantum
states. Starting from a state in which all the bits are set to
0, any string of n classical bits can be prepared by flip-
ping at most n bits. But the time needed to prepare a pure
n-qubit quantum state, starting from a product state, even
if we are permitted to use any time-dependent Hamilto-
nian, which is a sum of terms with constant weight and
bounded norm, can be exponential in n. In fact, because
the volume of the n-qubit Hilbert space is doubly expo-
nential in n, while the number of quantum circuits with T
gates is merely exponential in T, most n-qubit pure quan-
tum states have exponentially large complexity. That is, for
a typical pure state in the n-qubit Hilbert space, the time
needed to prepare the state with some small constant error
δ, starting from a product state, grows exponentially with
n. Thus, nearly all quantum states of any macroscopic sys-
tem will forever be far beyond the grasp of the quantum
engineers [1].

While the complexity of quantum circuits has long been
a foundational concept in quantum information theory [2],
appreciation that quantum state complexity is an important
concept has blossomed relatively recently. For example,
the complexity of ground-state wave functions may be
used to classify topological phases of matter at zero tem-
perature [3]. Furthermore, a chaotic quantum Hamiltonian
H can be usefully characterized by saying that evolution
governed by H over a long time period generates highly
complex states. A particularly intriguing proposal is that,
in the context of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence, the complexity of a quantum
state of the boundary theory corresponds to the volume
in the bulk geometry, which is hidden behind the event
horizon of a black hole [4–7].

When we say a quantum state is highly complex, we
mean there is no easy way to prepare the state, but how can
we be sure? Perhaps we were not clever enough to think of
an ingenious shortcut that prepares the state efficiently. It
is not possible in practice to enumerate all the quantum
circuits that approximate a specified state to find one of
minimal size. For that reason, it is quite difficult to obtain
a useful lower bound on the complexity of the quantum
state prepared by a specified many-body Hamiltonian in a
specified time. It is reasonable to expect that, for a chaotic
Hamiltonian H and an unentangled initial state, the com-
plexity grows linearly in time for an exponentially long
time, but we do not have the tools to prove it from first
principles for any particular H .
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FIG. 1. Expected complexity growth in random circuits. Con-
jecture 1 states that, for random quantum circuits acting on n
qubits, the circuit complexity grows linearly with circuit size
(time) until it saturates at a value exponentially large in n.
Our work provides rigorous evidence supporting this picture for
quantum systems with sufficiently large local dimension; see
Corollary 5.

One possible approach is to rely on highly plausi-
ble complexity theory assumptions to derive nontrivial
conclusions about the complexity of states generated by
particular circuits or Hamiltonians [8–10]. Another is to
consider ensembles of circuits, and to derive lower bounds
on complexity, which hold with high probability when
samples are selected from these ensembles. We follow
the latter approach here, drawing inspiration from recent
work by Susskind [8] and Brown and Susskind [7]. These
authors state a conjecture about the complexity growth of
geometrically local random quantum circuits (see Fig. 1).

Conjecture 1 (Brown and Susskind [7]; Susskind [8]):
Most local random circuits of size T have a complexity that
scales linearly in T for an exponentially long time.

Our goal is to strengthen the evidence supporting this
conjecture.

Brown and Susskind provided evidence for this scal-
ing law by means of a simple counting argument; see
also Ref. [11]. For a fixed finite set of universal quan-
tum gates, consider the ensemble of all circuits with size
T. By definition, this ensemble accurately approximates
(to within a specified error δ) all unitary transformations
with complexity T or less. Furthermore, the number of
circuits increases exponentially with T, and, because the
unitary group has a very large volume, it seems reason-
able to assume that “collisions” between circuits are rare
unless T is very large; that is, that the number of distinct
unitary transformations realized by this ensemble (where
“distinct” means more than distance δ apart) is comparable
to the number of circuits. This means that the number of
circuits with size T′ is too small to account for more than
a small fraction of the unitary transformations realized by
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circuits of size T if T′ is much smaller than T. In other
words, most random circuits with size T have complexity
at least T′, where T′ is comparable to T.

This argument hinges on a crucial assumption, which
sounds plausible but is hard to prove: collisions between
circuits of subexponential size are rare. Collisions cer-
tainly occur for any circuit size T, and necessarily become
common for circuits of exponential size, where T is compa-
rable to the Hilbert-space dimension so that the exponen-
tial of T is comparable to the Hilbert-space volume. Thus
an analytic treatment of complexity growth seems like a
daunting combinatorial task.

The work [12] provides some rigorous support for Con-
jecture 1. There, the authors show that local random cir-
cuits can “fool” short-measurement procedures. That is,
a typical quantum state prepared by a local random cir-
cuit of size polynomial in n, acting on an initial product
state, cannot be distinguished from a maximally mixed
state by any procedure that is much simpler than running
the circuit backwards and verifying that the initial product
state is recovered. Although not stated in this fashion, the
results from Ref. [12] imply that, with high probability, a
local random circuit of size T has complexity �(T1/11).
While this argument rigorously proves a weakened ver-
sion of Conjecture 1, there are still issues we wish to
address:

(i) Restricted notion of complexity: The authors implic-
itly define complexity as the capability of fool-
ing short-measurement protocols. While this oper-
ational notion of complexity is well motivated,
the actual measurement procedures considered are
quite restrictive. In particular, they do not take into
account ancilla-assisted measurements—a mainstay
of modern quantum information.

(ii) Collisions are not treated explicitly: The ensem-
ble of local random circuits of size T defines a
probability distribution on the n-qubit unitaries. If
we are only interested in specifying unitary trans-
formations up to some specified error δ, collisions
occur, so that some unitaries are more likely than
others. The arguments in Ref. [12] show that the uni-
taries sampled from this distribution typically have
complexity �(T1/11), but do not rule out the pos-
sibility that the distribution is highly nonuniform.
It is at least a logical possibility, compatible with
the findings of Ref. [12], that the ensemble con-
tains only a small number of unitaries, which have
high complexity, all of which occur with relatively
high probability. To conclude that the ensemble con-
tains many high-complexity unitaries, we need to
know more about the properties of the probability
distribution governing the ensemble.

(iii) Polynomial relation between circuit size and com-
plexity: The relation between circuit size T and

expected minimal complexity T1/11 is polynomial,
not (yet) linear as required by Conjecture 1.

In this work we make progress toward a rigorous proof
of Conjecture 1 by developing a general framework that
addresses some of the shortcomings of the previously
known rigorous evidence in favor of the conjecture [12].
In particular, we define and use a strong notion of com-
plexity, which captures the difficulty of distinguishing
a given circuit from the most useless possible quan-
tum channel: the completely depolarizing channel D(ρ) =
[Tr(ρ)/d]I that maps any state to the maximally mixed
state.

Definition 1 (Strong complexity: Informal definition):
The complexity of a quantum circuit U is the minimal
circuit size required to implement an ancilla-assisted mea-
surement that is capable of distinguishing ρ �→ UρU†

from the completely depolarizing channel ρ �→ (1/d)I.

We refer to Sec. II A for a more detailed motivation
and a precise statement of this definition. For now, we
emphasize that this strong definition of complexity implies
other (weaker) definitions, such as the minimal circuit size
required to approximate U.

Our first main contribution is a rigorous connection
between complexity growth and the notion of approximate
unitary k-designs [13,14]. We use the notation {pi, Ui}
for an ensemble of unitary transformations in which the
unitary Ui occurs with probability pi. A unitary k-design
is an ensemble with strong pseudorandom properties; an
approximate k-design accurately approximates the first k-
moments of the Haar measure on the unitary group. Hence
a k-design with large k behaves essentially like a Haar-
random ensemble of unitaries, while a small-k-design can
be highly structured. For instance, the n-qubit Pauli group
forms a 1-design, while the n-qubit Clifford group is a
3-design [15–17]. The design order k allows us to interpo-
late between these two very different regimes. Intuitively,
we would expect that the complexity of a k-design grows
with k. Our first technical contribution makes this intuition
precise: a linear growth in design implies a linear growth
in (strong) complexity.

Theorem 2 (Informal statement): Let {pi, Ui} be an
approximate unitary k-design. Then, a randomly selected
(according to the weights) element is very likely to have
strong circuit complexity approximately equal to k.

We refer to Theorem 9 for a more detailed, quantita-
tive statement. This result strengthens the assertions in
Ref. [12] by allowing ancilla-assisted measurement proce-
dures. To do so we prove novel bounds on Haar moments,
see Sec. II D for details. Our second technical contribution
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shows that the k-design property alone severely limits the
likelihood of collisions.

Lemma 3: Let {pi, Ui} be an approximate k-design. Then,
the associated weight distribution cannot be too spiky:
maxi pi � k!d−2k.

This result formalizes the intuitive idea that giving
unusually high weight to some unitaries cannot be com-
patible with the k-design property, but we are not aware of
any precise statements along these lines in the existing lit-
erature. Importantly, because Lemma 3 establishes that the
distribution is nearly flat, knowing that sampling from a
k-design yields a high-complexity unitary with high prob-
ability (as stated in Theorem 2) allows us to infer that there
must be many distinct high-complexity unitaries in the
ensemble. Here our reasoning is based on an approximate
version of Laplace’s definition of probability: if events
are assigned nearly equal probabilities, then the probabil-
ity of property X is approximately the number of events
with property X divided by the total number of events.
Together, Theorem 2 and Lemma 3 imply the following
corollary.

Corollary 4: Any approximate k-design contains expo-
nentially many (in k) unitaries that have circuit complexity
�(k).

While Corollary 4 does not by itself strongly con-
strain how these high-complexity unitary transformations
are distributed geometrically within the n-qudit unitary
group, we are also able to prove a stronger result: An
approximate k-design contains exponentially many (in k)
high-complexity unitaries whose pairwise distance (i.e.,
the distance between any pair of unitaries) is almost maxi-
mal in the diamond norm. This stronger statement rules out
the possibility that most of the high-complexity unitaries
reside inside a few tightly packed clusters within U(d).

Approximate unitary k-designs are a central concept in
quantum information, where their pseudorandom proper-
ties have found extensive application across subfields, e.g.,
state distinguishability [18], decoupling [19], state tomog-
raphy [20,21], randomized benchmarking [22], equilibra-
tion [12] (and references therein), information scrambling
[11,23], and many more. As a result, several probabilistic
constructions are known. Applying Corollary 4 to any of
these constructions establishes a rigorous model for quan-
tum complexity growth. In particular, the following.

(a) Local random quantum circuits with polynomial
design growth: Ref. [12] proves that the set
of all geometrically local circuits of size T =
O(n2k11) forms an approximate unitary k-design
[24]. Corollary 4 therefore implies that local circuits

of size T contain at least exp[�(T1/11)] elements
with strong complexity �(T1/11).

(b) Stochastic quantum Hamiltonians with polynomial
design growth: One can study the growth of
complexity in continuous-time models of chaotic
dynamics, rather than the discrete-time dynamics
embodied by random circuits [25–27]. Stochastic
Hamiltonian dynamics, in which a local Hamil-
tonian fluctuates as a function of time, has been
shown to realize approximate k-designs [26] with
a relationship between k and the evolution time
similar to what was established in Ref. [12] for
local random circuits. Further progress achieved
in Ref. [27] shows that, for a particular class of
stochastic Hamiltonians, evolution time linear in k
suffices to generate approximate k-designs for k =
o(
√

n). Corollary 4 therefore implies that with high
probability the complexity grows linearly in time, at
least for a while.

(c) Local random circuits with linear design growth:
Recently, the results of Ref. [12] were improved
using an exact mapping from random circuits to
the statistical mechanics of a lattice model [28],
showing that local circuits of size T = O(n2k)
form approximate k-designs in the limit of large
local dimension (Hilbert space dimension d = qn

with q large). The q dependence was subsequently
improved in Ref. [29] by studying the spectral gap
of the moment operator for random quantum cir-
cuits. Combined with Corollary 4 this establishes
a linear relation between circuit size and complex-
ity. Thus we can prove the following statement
analogous to Conjecture 1.

Corollary 5: The set of all local circuits of size T contains
at least exp[�(T)] elements with strong complexity �(T),
provided that the local dimension is sufficiently large: q ≥
�(k2).

More precise statements of our main results, and a more
detailed comparison to previous work, can be found in
Sec. II.

II. QUANTUM COMPLEXITY AND UNITARY
DESIGNS

A. Operational definitions of complexity

1. State complexity

We consider systems comprised of n qudits with local
dimension q: d = qn. Existing works on complexity typi-
cally start with identifying a class of states that are useful
starting states for quantum computations. In this work we
take a reverse approach and start with identifying a useless
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state. The maximally mixed state

ρ0 = I

d
, (1)

is unique in the sense that it is invariant under arbitrary uni-
tary evolutions, including any quantum circuit. Intuitively,
useful starting states should be as far away from this use-
less state as possible. If we use trace distance, this intuition
is true to some extent. Any pure state |ψ〉〈ψ | obeys

1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
. (2)

But this is clearly too coarse for distinguishing the use-
fulness of different pure states. In order to achieve such a
task, we recall the operational interpretation of the trace
distance. It corresponds the optimal bias achievable in
distinguishing the state |ψ〉〈ψ | from ρ0 using a single mea-
surement [30,31]. We refer to Appendix B 1b for a more
detailed exposition. The optimal measurement achieving
this bias is M = |ψ〉〈ψ | and does depend on the state
in question. Such a measurement may be challenging to
implement for states that we would intuitively assign a
high complexity to (such as random states) and very easy
for states that we consider useful (such as computational
basis states). We can interpolate between these extreme
cases by limiting the resources available to implement dis-
tinguishing measurements. Let Hd denote the space of
d × d Hermitian matrices. For fixed r ∈ N, we consider
the class of measurements Mr(d) ⊂ Hd that can be imple-
mented by combining (at most) r 2-local gates from a fixed,
universal gate set G ⊂ U(4). We refer to Appendix B 2 for
further details and justification. The maximal bias achiev-
able for quantum states (QS) with such a restricted set of
measurements is the solution to the following optimization
problem:

β
�

QS (r, |ψ〉) =maximize |Tr [M (|ψ〉〈ψ | − ρ0)]|
subject to M ∈ Mr(d).

(3)

We may decompose the true optimal measurement as
|ψ〉〈ψ | = U|0〉〈0|U† for some U ∈ U(d). The unitary U
may be approximated to arbitrary precision by 2-local
circuits chosen from a universal gate set [32]. This ensures

β
�

QS(r, |ψ〉)→ 1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
as r → ∞.

(4)

For simple states, like computational basis states, this
convergence happens rapidly, while generic states require
exponentially large circuit sizes. This observation is the
motivation for the following definition of complexity.

r

FIG. 2. Pictographic illustration of strong state complexity
(Definition 2). A blackbox either outputs a (known) pure state
ρ = |ψ〉〈ψ |, or the maximally mixed state ρ0 = (1/d)I. The
task is to correctly guess which one it produced by applying a
preprocessing circuit V (blue line pattern) of limited size r and
performing a simple measurement (right). We say that |ψ〉 has
strong state complexity less than r if the probability of correctly
distinguishing both possibilities is close to optimal.

Definition 2 (Strong state complexity): Fix r ∈ N and
δ ∈ (0, 1). We say that a pure state |ψ〉 has strong δ-state
complexity at most r if and only if

β
�

QS(r, |ψ〉) ≥ 1 − 1
d
− δ, (5)

which we denote as Cδ(|ψ〉) ≤ r.

This definition has a ready operational interpretation that
is illustrated in Fig. 2. The following result relates it to
more traditional definitions.

Lemma 6: Suppose that |ψ〉 ∈ C
d obeys Cδ(|ψ〉) ≥ r + 1

for some δ ∈ (0, 1) and r ∈ N. Then,

min
size(V)≤r

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 >
√
δ, (6)

i.e., it is impossible to accurately produce |ψ〉 with fewer
than r elementary gates.

The converse is false in general. To see this, select a
generic state |ψ̃〉 on (n − 1) qudits and set |ψ〉 = |0〉 ⊗
|ψ̃〉. Then, the quantity in Eq. (6) is dominated by the
(traditional) complexity of |ψ̃〉, which may be very high.
Nonetheless, the simple distinguishing measurement M =
|0〉〈0| ⊗ I (ignore everything but the first qudit) achieves

Tr [M (|ψ〉〈ψ | − ρ0)] = Tr
[
|0〉〈0|
(
|0〉〈0| − 1

q
I

)]

= 1 − 1
q

, (7)

which is high, especially for large local dimension q.
This example highlights that Definition 2 is indeed more
stringent than traditional definitions of state complexity.

Proof of Lemma 6. By contraposition. Let Gr ⊂ U(d)
denote the class of unitary circuits that are comprised
of at most r 2-local gates chosen from a universal gate
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set G. Suppose there exists a size-r circuit V ∈ Gr such
that 1

2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 ≤ √
δ. The state difference

in question has rank two, which allows for explicitly
computing the trace distance: 1

2‖|ψ〉〈ψ | − V|0〉〈0|V†‖1 =√
1 − |〈0|V†|ψ〉|2. The assumption is therefore equivalent

to |〈0|V†|ψ〉|2 ≥ 1 − δ and we conclude

β
�

QS(r, |ψ〉) ≥ Tr
[
V|0〉〈0|V†(|ψ〉〈ψ | − ρ0)

]

= |〈0|V†|ψ〉|2 − 1
d
≥ 1 − 1

d
− δ, (8)

because V|0〉〈0|V† ∈ Mr. This in turn implies Cδ(|ψ〉) ≤ r
and the claim follows. �

2. Unitary complexity

We define the complexity of unitary channels U(ρ) =
UρU† in a fashion similar to state complexity. We start
with identifying the completely depolarizing channel as the
most useless channel conceivable:

D(ρ) = ρ0 = I

d
for all states ρ. (9)

The diamond distance between D and any unitary channel
is close to maximal:

1
2
‖U −D‖� =1 − 1

d2 . (10)

As detailed in Appendix B 1c, the diamond distance also
has an appealing operational definition [33]. It corresponds
to the maximal bias achievable for the task of distinguish-
ing U from D with a single channel use. The optimal
strategy may involve a quantum memory. Choose a state
in the doubled Hilbert space |φ〉〈φ|, with |φ〉 ∈ C

d ⊗ C
d

and input one half into the unknown channel, while the
other half remains unchanged in the quantum memory.
Subsequently, perform a two-outcome measurement on the
output state to distinguish both channels.

An optimal strategy for distinguishing U from D
corresponds to choosing a maximally entangled (Bell)
state |�〉 ∈ C

d ⊗ C
d as input and measuring M = (U ⊗

I)|�〉〈�|(U† ⊗ I). Equivalently, choose (U† ⊗ I)|�〉 as
input and measure M = |�〉〈�| on the output. Similar to
the state complexity argument, the optimal input state, or
the optimal outcome measurement (or both) depend on the
unitary U ∈ U(d) describing the channel U . This may be
challenging to implement, especially if U corresponds to a
complicated circuit. We restrict apparatus power by bound-
ing the total circuit sizes that are allowed to implement
such a measurement procedure. Let Gr′ ⊂ U(d2) be the set
of all unitary circuits on 2n qudits (register+memory) that
are comprised of at most r′ elementary gates. Likewise, let
Mr′′ ⊂ H

⊗2
d denote the class of all two-outcome measure-

ments on 2n qudits that require circuit size at most r′′ to

implement. The optimal bias for quantum channels (QC)
achievable under such restrictions is

β
�

QC(r, U) = maximize
∣∣Tr
{
M
[
(U ⊗ I)(|φ〉〈φ|)

− (D ⊗ I)(|φ〉〈φ|)]}

subject to M ∈ Mr′ , |φ〉 = V|0〉,
V ∈ Gr′′ , r = r′ + r′′,

(11)

where the identity channel I : Hd → Hd indicates that the
memory is left unchanged. As r increases, more compli-
cated measurements and state preparations become pos-
sible. At some point this will include ever more precise
approximations of the optimal measurement [32]:

β
�

QC(r, U) −→ 1
2
‖U −D‖�=1 − 1

d2 as r → +∞.

(12)

Similar to the state case, the rate of convergence does
depend on the complexity of the unknown unitary U.
This is the basis for our operational definition of unitary
complexity.

Definition 3 (Strong unitary complexity): Fix r ∈ N and
δ ∈ (0, 1). We say that a unitary U ∈ U(d) has strong δ-
unitary complexity at most r if and only if

β
�

QC(r, U) ≥ 1 − 1
d2 − δ, (13)

which we denote as Cδ(U) ≤ r.

The operational motivation for this definition is sketched
in Fig. 3. Strong unitary complexity (Definition 3) is more
stringent than traditional definitions that use approxima-
tion errors in some norm. But the comparison between
the two is not quite as straightforward as in the state
complexity case. This is because, the optimal strategy
for distinguishing U from D involves a maximally entan-
gled (Bell) input state |�〉〈�|, as well as a corresponding
two-outcome measurement. In the following statement, we
explicitly allow such input states and measurements in
the distinguishability protocol. Although mild—relatively
short circuits allow for transforming computational basis
states into Bell states [34]—this assumption does further
increase the power of the measurements we are allowed to
make. Our main technical results, most notably Theorem 9,
do take this into account and apply to this slightly stronger
notion of strong unitary complexity.

Lemma 7: Consider a setup that contains maximally
entangled inputs and measurements and suppose that
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r′ r′′

|φ0〉

|φ0〉

FIG. 3. Pictographic illustration of strong unitary complex-
ity (Definition 3). A blackbox (center) takes quantum states as
inputs and applies either a unitary channel U(ρ) = UρU†, or the
depolarizing channel D(ρ) = ρ0 = I/d. The task is to correctly
guess which evolution occurred. The rules of the game allow
short pre- and postprocessing circuits (blue line patterns) that
may involve a quantum memory. The final guess must be based
on a simple measurement (right). We say that U has complexity
less than r = r′ + r′′ if the probability of correctly distinguishing
both options is close to optimal.

U ∈ U(d) obeys Cδ(U) ≥ r + 1 for some δ ∈ (0, 1), r ∈ N.
Then,

min
size(V)≤r

1
2
‖U − V‖�>

√
δ, (14)

i.e., it is impossible to accurately approximate U by cir-
cuits comprised of fewer than r elementary gates.

Again, the converse relation is false in general.

Proof of Lemma 7. By contraposition. Assume there exists
V ∈ U(d) with size(V) ≤ r such that 1

2 ‖U − V‖� ≤ √
δ.

Then,

√
δ ≥ 1

2
‖U − V‖� ≥ 1

2

∥∥(U⊗ I)|�〉〈�|(U†⊗ I)

− (V ⊗ I)|�〉〈�|(V† ⊗ I)
∥∥

1

=
√

1 − |〈�|V†U ⊗ I|�〉|2, (15)

as the second expression involves a trace distance of
two pure states, which can be computed explicitly. Next,
note that M = (V ⊗ I)|�〉〈�|(V† ⊗ I) is a legitimate dis-
tinguishing measurement, because size(V) ≤ r and we
explicitly include the Bell measurement. Likewise, the
input state |�〉〈�| is also allowed and produces a max-
imally mixed state when completely depolarized: D ⊗
I(|�〉〈�|) = ρ⊗2

0 (this is why we need Bell states) ensures

β
�

QC(r, U) ≥ Tr
{
(V ⊗ I)|�〉〈�|(V† ⊗ I)

× [(U ⊗ I)|�〉〈�|(U† ⊗ I)− ρ⊗2
0

]}

= ∣∣〈�|V†U ⊗ I|�〉∣∣2 − 〈�|V†ρ0V ⊗ ρ0|�〉

≥ 1 − δ2 − 1
d2 . (16)

�

B. Approximate unitary designs

The concept of unitary k-designs [13,14] provides an
interpolation between two extreme cases: (i) small col-
lections of highly structured unitaries that form the basic
building blocks of quantum-computing devices (e.g., local
Pauli gates, or elements of the Clifford group). (ii) generic
(Haar random) unitaries that lack any sort of structure and
require circuits of exponential size to approximate.

Roughly speaking, an ensemble E = {pi, Ui} of unitaries
is a unitary k-design if it exactly reproduces the first k
moments of the Haar measure over the unitary group.
More precisely, given the twirling channels T (k)

U (X ) =∫
dUU⊗kX (U†)⊗k and T (k)

E (X ) =∑i piU⊗k
i X (U†

i )
⊗k, an

ensemble E is a unitary design with order k if

T (k)
E (X ) = T (k)

U (X ), (17)

for all X in the k-fold tensor product. Although seemingly
abstract, this notion captures important physical concepts.
1-designs are in one-to-one correspondence with unitary
operator frames, while 2-designs sufficiently capture the
notion of scrambling [11,23].

Unitary k-designs are known to exist for any dimension
d and any order k. Nevertheless, explicit constructions are
notoriously difficult to find. This challenge can be over-
come by relaxing the notion of a k-design. Indeed, for
most applications it is sufficient to ensure that Eq. (17) is
only approximately true, see Definition 4 in the Appendix
for a precise statement. Several conventions for choosing
an appropriate distance measure ‖ · ‖ have been put forth,
but here we opt for the diamond distance ‖ · ‖�, which
quantifies the distinguishability of two ensembles.

In contrast to exact k-designs, several explicit construc-
tions for approximate k-designs have been established [12,
26–28,35,36], including local random circuits and various
Brownian circuits and stochastic quantum Hamiltonians.
These constructions allow us to relate abstract insights
about complexity growth in designs to concrete random
circuit models.

C. Complexity by design

This section presents our main technical contributions.

1. State complexity growth

Theorem 8: Consider the set of (pure) states in d = qn

dimensions that results from applying all unitaries asso-
ciated with an ε-approximate 2k-design to a fixed (but
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arbitrary) starting state |ψ0〉. Then, this set contains at
least
(

d + k − 1
k

)[
1

1 + ε − 2d(n + 1)r|G|r
(

16k2

d(1 − δ)2
)k
]

,

distinct states that obey Cδ(|ψ〉) ≥ r + 1 each. Qualita-
tively, this number is of order (d/k)k as long as r obeys

r � k[n − 2 log(k)]
log(n)

.

Because of collisions, the emphasis on distinct is justi-
fied; two or more distinct unitaries can lead to the same
final state.

2. Unitary complexity growth

Theorem 9: A discrete approximate 2k-design in d = qn

dimensions contains at least

d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

,

distinct unitaries that obey Cδ(U) ≥ r + 1 each. Quali-
tatively, this number is of order (d2/k)k as long as r
obeys

r � k[n − 4 log(k)]
log(n)

.

D. Moment bounds

Both Theorems 8 and 9 follow from an initial prob-
abilistic statement combined with relatively straightfor-
ward counting arguments. These probabilistic statements
highlight that it is very unlikely to distinguish random
k-design elements from their average with a fixed mea-
surement procedure. Markov’s inequality—Pr [S ≥ τ ] =
Pr
[
Sk ≥ τ k

] ≤ E[Sk]/τ k for non-negative random vari-
ables S—reduces this probabilistic assertion to a ques-
tion about moment growth. The larger the moments we
can control, the stronger this assertion becomes. Designs
appropriately capture this feature: a k-design accurately
approximates Haar-random moments up to order k. This is
why designs with growing k become increasingly complex.

For state complexity, the associated Haar-moment com-
putation is relatively straightforward:

E|ψ〉

({
Tr(M |ψ〉〈ψ |)−E|ψ〉

[
Tr(M |ψ〉〈ψ |)]

}k
)

≤
(

k2

d

)k/2

,

(18)

for any fixed measurement M , see e.g., Corollary 24 below.
However, such simple moments do not cover strong uni-

tary complexity. Quantum channels allow for more sophis-
ticated measurement procedures that render the associated

Haar-moment computations nontrivial. Our main technical
contribution is a novel bound that addresses this setting.

Theorem 10: Fix a bipartite input state |φ〉 ∈ C
d ⊗ C

d

and measurement M of compatible dimension. For U
chosen uniformly from the Haar measure, we have

EU

[(
Tr
[
M
(
U ⊗ I
)|φ〉〈φ|(U† ⊗ I

)]

− EU

{
Tr
[
M
(
U ⊗ I
)|φ〉〈φ|(U† ⊗ I

)]})k]
≤ Ck(k!)2

dk/2 ,

where Ck = [1/(k + 1)]
(

2k
k

)
< 4k/k denotes the kth

Catalan number.

This bound is considerably more general than exist-
ing ones in the literature. Reference [12], for instance,
utilizes Eq. (18) only. We establish this result by combin-
ing Schur-Weyl duality [37,38] with Weingarten calculus
[39,40] and auxiliary arguments from tensor network the-
ory [41,42] and convex optimization [43,44]. We believe
that the dimensional scaling in the final bound is tight, but
there may be room for further improving the k-dependent
constants. In particular, we do not know if the Catalan
number is necessary, or merely an artifact of our proof
technique.

E. Relation to previous work

Quantum complexity has recently become a popular
subject in high-energy physics. A considerable amount of
attention has been devoted to understanding the complex-
ity accumulated after an exponentially long time. Works by
Susskind and Aaronson [4,8,9] point to an intriguing con-
nection to theoretical computer science: unless PSPACE ⊆
BQP/poly (a hypothetical relation between different com-
putational complexity classes that is widely believed to
be false), the circuit complexity of certain Hamiltonian
evolutions U = exp(−iHt) achieves superpolynomial val-
ues for exponentially long time scales t. In a similar
vein, Bohdanowicz and Brandão [10] constructed a family
of Hamiltonians that provably achieves superpolynomial
complexity in exponential time, unless PSPACE = BQP.

These arguments address late-time complexity and
therefore do not yield insights regarding early-time com-
plexity growth. In this regard, relations between complex-
ity growth and approximate k-designs have recently been
pointed out in Refs. [11,45]. Specifically, Ref. [11] defined
a notion of the complexity of generating an ensemble of
unitaries and gave a lower bound on the ensemble com-
plexity in terms of the distance to forming a unitary design.
They also argued that the lower bound of the complexity
of a k-design is linear in k. Our arguments and results may
be regarded as a substantial refinement of these ideas.
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The notion of strong complexity put forward in our work
has its conceptual roots in quantum information. Encom-
passing this mindset is the statement from Ref. [46]: “most
states are too entangled to be useful as computational
resources.” At the core of this argument is the follow-
ing observation. Haar-random pure states are so highly
entangled that local measurements yield almost uniformly
random outcomes. In turn, any quantum device that relies
on local measurements and uses known, but Haar-random,
states could be efficiently simulated by tossing classical
coins! This prevents any genuine quantum advantage for
computation.

Strong state complexity (Definition 2) may be thought
as a formal version of this observation. Measuring the
maximally mixed state ρ0 always results in a uniform out-
come distribution. Moreover, Ref. [46] makes essential use
of the fact that the measurements are constrained to be
“simple” (in their case: local measurements augmented by
classical postprocessing). The core of their argument may
be summarized as follows: low complexity measurements
do not allow for distinguishing a Haar-random state from
the maximally mixed state. We present a variant of this
argument in Appendix A 1 below.

While Ref. [46] considers only Haar-random pure states,
similar arguments have been established for states that are
less generic, see e.g., Ref. [12, Section 3]. Although not
stated at this level of generality, Ref. [12, Corollary 10]
effectively points out that states generated by approximate
k-designs fool short quantum circuits: with high probabil-
ity they cannot be distinguished from the maximally mixed
state by means of any measurement with small circuit size.
They also extend this result to circuits [12, Corollary 11].
With high probability, a randomly selected (according to
the weights) k-design element cannot be approximated by
any short-sized circuit V in the sense that ‖U − V‖∞ is
small.

The second main result of our work, Theorem 9,
improves upon this result in two ways. Firstly, the strong
unitary complexity (Definition 3) is more stringent than
their more traditional definition. While Theorem 9 does
imply [12, Corollary 11], the converse is not necessarily
true.

Secondly, and more importantly, both Corollaries 10 and
11 in Ref. [12] are probabilistic. While this is enough to
deduce average-case behavior, a strong quantitative state-
ment about the number of k-design elements with high cir-
cuit complexity remains beyond the scope of these asser-
tions. A worst-case caricature may help to illustrate this
subtlety. Suppose that the weights accompanying a unitary
k-design are extremely spiky. A single high-complexity
unitary, say U1 ∈ U(d) is accompanied by an exceedingly
large weight p1 � 1, while all other design unitaries Ui
have low complexity and almost vanishing weights pi � 0.
Such a weight distribution would not contradict the asser-
tion of Ref. [12, Corollary 11]. The single high-complexity

circuit occurs with high probability (over the weights).
Nonetheless, the hypothetical k-design contains only a
single high-complexity element.

Here we overcome this issue by explicitly ruling out
the possibility of such extreme cases ever occurring. The
definition of an approximate k-design alone implies that
the weights cannot be too spiky, see Lemma 3. This bound
on the weights allows us to convert probabilistic (average
case) statements into quantitative ones. Not only does the
average circuit complexity grow linearly with the order
k of an approximate design, the absolute number of dis-
tinct circuits that have high complexity must also grow
exponentially with k.

Interest in state complexity has been stimulated by its
potential role in quantum gravity and the AdS/CFT corre-
spondence; see Sec. IV for further discussion. Recently, the
relevance to holographic duality of computational pseudo-
randomness has been emphasized. Specifically, the authors
of Ref. [47] argue that one can construct two mixed quan-
tum states on the boundary (A and B) such that both A and
B can be efficiently prepared, yet A and B cannot be distin-
guished from maximally mixed states by polynomial-size
quantum circuits. Furthermore, the corresponding bulk
states (A′ and B′) can be distinguished efficiently from one
another. This observation indicates that the holographic
dictionary, which relates bulk and boundary states must
have high computational complexity.

We stress that this concept of pseudorandom quantum
states, which can be efficiently prepared yet cannot be
distinguished from random by computationally bounded
observers, is applicable to mixed states, or ensembles of
pure states, but not to individual pure quantum states. If
a particular pure state can be prepared efficiently by a
quantum circuit, that state can always be distinguished effi-
ciently from a maximally mixed state by running the circuit
backwards. An ensemble of pure states can be pseudo-
random only if it contains superpolynomially many pure
states, where the observer who draws a sample from the
ensemble and attempts to distinguish this sampled state
from a maximally mixed state has no information about
which sample was chosen. In contrast, in our definition
of complexity for pure states, the observer is permitted
to use a different distinguishing circuit for each possible
pure state. On the other hand, the existence of pseudoran-
dom quantum states [48] indicates that, for mixed states,
our definition of state complexity, namely the computa-
tional cost of distinguishing the state from a maximally
mixed state, can differ substantially from another natural
definition, the computational cost of preparing the state.

III. COMPLEXITY GROWTH IN RANDOM
CIRCUITS

The rigorous statements put forward in Theorems 8
and 9 gain additional meaning when applied to concrete
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examples. The literature contains several proofs of design
growth in random circuits. Combining these with our rig-
orous insights yields a number of concrete models for
complexity growth.

A. Local random circuits

For concreteness, we focus here on systems comprised
of n qubits, i.e., q = 2 and d = 2n. Let G ⊂ U(4) be a
(finite) universal gate set containing inverses, i.e., g−1 =
g† ∈ G whenever g ∈ G. We can generate G-local random
circuits by sequentially applying a random gate g ∈ G to
a randomly selected pair of neighboring qubits. Repeating
this procedure independently for T steps results in random
circuits of size T. We refer to the application of each gate as
a time step, such that size T circuits are of depth T and have
thus evolved to time T. Intuitively, the larger T, the more
random the circuit becomes. A seminal result by Brandão,
Harrow, and Horodecki confirms this intuition in a precise
sense.

Theorem 11 (Corollary 7 in Ref. [12]): Fix d = 2n, ε >
0, k ≤ √

d, and let G ⊂ U(4) be a universal gate set con-
taining inverses [49]. Then, the set of all G-local random
circuits of size T forms an ε-approximate k-design if

T ≥ Cn�log2(k)�2k9.5[nk + log (1/ε)
]
, (19)

where C > 0 is a (large) constant, which depends on G.

We emphasize that the weights associated with each
unitary in this ensemble are defined implicitly by this ran-
dom procedure. Several different T-sized circuits may give
rise to the same final unitary, say U1, while another one,
say U2, may exclusively be obtained from a single circuit
geometry. The weights associated with U1 and U2 take
into account this behavior, i.e., p1 ≥ 2p2 for our exam-
ple. However, the fact that the entire ensemble still forms
an approximate k-design limits potential fluctuations. This
in turn imposes lower bounds on the minimal number of
distinct unitaries and severely limits the potential for col-
lisions. It cannot be too likely that two or more different
random circuits coincide. These features were conjectured
by Brown and Susskind [7, Sec. 6.5] who, in turn, base
their counting argument that relates circuit size and com-
plexity on an extreme version of this conjecture: collisions
do not occur at all. One of the main results of this work
is rigorous proof for a weaker version of their conjec-
tured relation between circuit size and complexity. It is an
immediate consequence of Theorems 9 and 11.

Corollary 12 (Polynomial relation between circuit size
and circuit complexity for local random circuits): Fix
δ ∈ (0, 1), r ≤ 2n/2 and set T ≥ Cn2

[
log2(n)r/n

]11 . Then,
the set of all G-local circuits of size T contains at least

C̃nr unitaries that obey Cδ(U) > r. Here, C, C̃ > 0 are
constants that implicitly depend on δ and G.

This result establishes a polynomial relation between the
size T of G-local circuits and the strong δ-unitary complex-
ity that may be achieved in such a model [50]. The relation
T � r11 is a consequence of Theorem 11, which features a
similar relation between the degree 2k of an approximate
2k-design and the circuit size T required to implement it.
This relation between complexity and circuit size can cer-
tainly be improved, which we soon discuss, but there are
fundamental limits: a lower bound on the design depth for
random circuits is known. A converse result (Proposition 8
in Ref. [12]) states that for ε ≤ 1/4 and k ≤ d1/2, the size
of random circuits on n qudits must be at least

T ≥ 2kn log q
q4 log k

to form an ε-approximate k-design.

(20)

See Appendix C 10 for a rederivation of this claim.

B. Relating two conjectures

Fix q = 2, d = 2n (n qubits) and suppose that the afore-
mentioned lower bound were not only necessary, but also
(approximately) sufficient: G-local circuits of size T �
2nk/log2(n) generate (sufficiently accurate) approximate
2k-designs. Under this assumption, G-local random cir-
cuits of size T contain at least d2k/(k!)2 elements with
circuit complexity r � T. If we also assume k ≤ √

d
[log2(k) ≤ n/2], then this bound can be simplified further
as

d2k

(k!)2
= 22nk−2 log2(k!) � 22k[n−log2(k)]

� 2nk � 2log2(n)T ≥ 2T. (21)

This is essentially Conjecture 1: the set of all G-local cir-
cuits of size T contains an exponentially growing set of ele-
ments with complexity r � T. This observation provides
a relation between Conjecture 1 (linear growth in com-
plexity) to an existing conjecture in quantum information
[12].

Conjecture 13 (Linear growth in design): G-local cir-
cuits on n qubits of size T = O(n2k) form approximate
k-designs.

To achieve a linear growth in complexity it suffices to
have a linear growth in design.

C. Linear growth in design for local random circuits at
large local dimension

We again consider a 1d system comprised of n qudits
of local dimension q, with total dimension d = qn, and
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evolve the system by a random circuit consisting of local
2-site unitaries drawn Haar randomly from U(q2). The
results of Ref. [12] also ensure that such random circuits
form approximate k-designs when the size is O(n2k11).
Although Conjecture 13, a linear design growth in G-local
random circuits with local qubits, is currently out of reach,
progress was made recently in Ref. [28], improving the
k dependence for Haar-local random circuits in the limit
of large local dimension and giving a linear growth in the
circuit size to form a unitary k-design.

Theorem 14 ([28]): Random quantum circuits on n qudits
of local dimension q form approximate unitary k-designs
when the circuit size is T = O(n2k) for some q > q0, where
q0 depends on the size of the circuit [51].

The approach of Ref. [28] was to consider the frame
potential, capturing the 2-norm distance to forming an
approximate design, and make use of an exact statistical
mechanical mapping [52,53] in order to write the frame
potential as the partition function of a triangular lattice
model. The contributions to the partition function can be
interpreted as domain walls in the lattice model. In the
limit of large q, Ref. [28] showed that only a simple sec-
tor of domain walls contribute, allowing for the calculation
of the k-design circuit size. More precisely, by computing
the single domain-wall terms and showing that the mul-
tidomain wall terms contribute at subleading order in 1/q,
it was proved that local random circuits exhibit a linear
growth in design for some q > q0, where q0 depends on
the circuit size T and moment k.

Theorem 14 and Corollary 12 allow us to establish Con-
jecture 1 for local random circuits with Haar-random 2-site
unitaries in the limit of large q.

Corollary 15 (Linear complexity growth): Given the set
of local random circuits of size T at large q, most circuits
have strong complexity �(T), i.e., growing linearly in T
for a long time.

Although Theorem 9 still applies for local Haar random
quantum circuits, giving a lower bound on the number
of distinct unitaries with high complexity, its meaning
becomes less clear when we have a continuous ensem-
ble. We can consider an ensemble of finite cardinality
by constructing an ε-covering of the set of random cir-
cuits. We review the notion of an ε-covering in Appendix
C 10 and give a bound on the cardinality of a covering
for local random circuits. Constructing a coarse net then
shows that exponentially many random quantum circuits,
with Haar-random 2-site unitaries, have high complexity.

Recently, an improvement was made in the q depen-
dence of Theorem 14. By studying the spectral gap of the
moment operator for random quantum circuits, and using
Knabe bounds to bound the spectral gap, it was proven

in Ref. [29] that one requires only the local dimension to
be q ≥ �(k2) to form unitary designs. While that work
explicitly studied circuits with Haar-random 2-local gates,
the seminal result in Ref. [54] that the spectral gap is k
independent for any set of universal gates G (containing
inverses and comprised of algebraic entries), guarantees
that the circuit size required to form a k-design for G-
local circuits changes only by a constant. This allows us
to extend the result to random quantum circuits instead
comprised of 2-local gates randomly chosen from G.

Theorem 16 ([29]): G-local random quantum circuits on
n qudits of local dimension q form approximate unitary
k-designs for T ≥ O(n2k) when q ≥ 6k2.

Therefore, Theorem 16 and Corollary 12 immediately
establish Conjecture 1 for G-local random quantum cir-
cuits for q ≥ 6k2.

Lastly, we emphasize that we do not prove linear com-
plexity growth up to time scales of order d. While taking a
large enough q will ensure linear design growth for times
exponential in n, such a limit still pushes the true expo-
nential time scales of interest, t ∼ d = qn, out of reach.
Proving an optimal design growth for local random circuits
away from the large q limit would allow us to better probe
late-time complexity.

D. Stochastic quantum Hamiltonians

There also exist continuous-time models of chaotic
dynamics, analogous to random circuits, which scramble in
O(log n) time [25]. In a similar spirit to models of random
walks on the unitary group, one can define a one-parameter
family of Hamiltonians, which generate a time-dependent
unitary evolution. The Hamiltonian on n qubits at a time
step s is given by a sum of random all-to-all 2-body inter-
actions, meaning we sum over all possible 1- and 2-local
interactions with independently chosen Gaussian random
couplings

Hs =
∑

i<j

∑

α,β

Js,i,j ,α,βSαi Sβj , (22)

where Sαi is a Pauli operator acting on site i with α =
{0, 1, 2, 3}. The couplings are each drawn independently
from a Gaussian distribution with zero mean and variance
σ 2. Not only are the couplings random in space, but are
further chosen randomly at each time step s. The time
evolution to time t is then given by

Ut =
t∏

s=1

e−iHsδt, (23)

where we consider the continuum limit δt → 0 with the
variance of the couplings scaling as σ 2 = J/δt so that the
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interactions strength increases proportionally to the inverse
time step and where J is a constant.

It was shown in Ref. [26], using similar techniques to
Ref. [12], that these stochastic quantum Hamiltonians (also
called Brownian circuits) form k-designs in polynomial
time.

Theorem 17 (Corollary 10 in Ref. [26]): For d = 2n

and ε > 0, the ensemble of time evolutions by stochas-
tic Hamiltonians in Eq. (22), forms an ε-approximate
k-design for times

t ≥ C�log2(k)�2k9.5[nk + log(1/ε)], (24)

where C > 0 is a constant.

For the Brownian circuit models, the constant prefactor
C depends on the local dimension, here chosen to be 2,
but also on the interaction strength of the couplings J , C ∼
1/J , meaning if the interactions are stronger then the depth
required to form a design decreases accordingly.

We can again use the polynomial relation between com-
plexity and design to discuss complexity growth. Theo-
rems 9 and 17 together give that Brownian circuits have
a complexity growing polynomially in time as �(t1/11).

E. Nearly time-independent Hamiltonian dynamics

There is another random quantum circuitlike con-
struction of a time-dependent Hamiltonian with varying
couplings over discrete time steps. This “nearly time-
independent” model of Ref. [27] forms k-designs in a
circuit size O(n2k), for moments up to k = o(

√
n), achiev-

ing the nearly optimal lower bound with a linear growth in
design for a short time.

Consider a 1d system of n qudits, with d = qn, and
define a time-dependent set of random couplings

J (t, g) =
{
λ/(�t/2� + 1), λ ∈ [−g/2, g/2]

}
, (25)

where λ is drawn uniformly at random from the inter-
val. We now generate two ensembles of Hamiltonians with
time-dependent couplings

EZ(t) =
{
−
∑

j<k

hjkZj Zk −
∑

j

bj Zj

}
,

EX (t) =
{
−
∑

j<k

hjkXj Xk −
∑

j

bj Xj

}
,

(26)

with hjk ∈ J (t, h) and bj ∈ J (t, b), and where h =
�t/2�/2 and b = �t/2� + 1/2. We then define the time

evolution of our system: we evolve by an X -type Hamilto-
nian HX ∼ EX at even time steps and a Z-type Hamiltonian
HZ ∼ EZ at odd time steps. Then the unitary time evolu-
tions form an ε-approximate k-design for k = o(n1/2), after
T time steps, where

T ≥ [k + 1/2 + (1/n) log2(1/ε)], (27)

where each time step involves O(n2) gates.
This construction forms unitary k-designs almost lin-

early in time, with the caveat that the time scale is limited
to approximately

√
n. Thus we get a linear growth in

design at early times, but not exponentially in n. Conse-
quently, this implies a linear growth in complexity at (very)
early times.

F. Comment on time-independence

We discuss a few explicit models of complexity growth
in systems that are random in both space and time. As
we emphasize, one of our results is that a polynomial
growth in design implies a polynomial growth in com-
plexity (Corollary 4). Thus, the random circuit and Brow-
nian circuit models, which form approximate k-designs in
poly(k) depth, are also explicit examples of systems with a
long-time polynomial growth in complexity.

But for an ensemble of time evolutions to form a k-
design, randomness in time is likely essential. For instance,
consider an ensemble of time evolutions generated by an
ensemble of Hamiltonians, Et = {e−iHt, H ∈ EH }, where
EH could be a disordered spin system or any ensem-
ble of random Hermitian matrices. The rigid structure of
eigenvalues then prohibits the late-time Haar randomness.

Interestingly, the Gaussian unitary ensemble (GUE),
an ensemble of d × d random Hermitian matrices with a
unitarily-invariant measure, does come close to an approx-
imate k-design in 2-norm for moments k � d at a specific
time scale t ∼ √

d [45]. But at later times, the 2-norm dis-
tance between the ensemble of unitaries generated by GUE
Hamiltonians and the Haar ensemble becomes large. More
generally, one expects that any ensemble of unitary evo-
lutions generated by time-independent Hamiltonians will
not form a k-design at late times. A general argument for
this is as follows [11], under the exponential map λ→ eiλt,
the eigenvalues of a Hamiltonian are distributed as time-
evolving phases on the unit circle. In the limit t → ∞,
the phases become uncorrelated and uniformly distributed,
unlike the correlated and logarithmically repelling eigen-
values of Haar-random unitaries. Thus, to understand the
complexity growth of (ensembles of) time-independent
Hamiltonian evolution, we would need to look beyond
their design properties for an alternative approach, for
instance, by studying the approximate invariance of the
ensemble [45,55].
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IV. COMPLEXITY IN HOLOGRAPHIC SYSTEMS

Much of the recent interest in quantum complexity in the
high-energy literature has centered on the conjectured rela-
tion between complexity growth and the long-time growth
of black-hole interiors [4,5,56]. More specifically in the
context of the AdS/CFT correspondence, the region behind
the horizon of an eternal AdS-Schwarzschild black hole
grows linearly in time for an exponential time (t ∼ en). The
holographic picture is a two-sided geometry connected by
a wormhole, where the throat of the wormhole is grow-
ing in time. The claim is that the quantum complexity
of the dual CFT state is the long-time linearly increasing
quantity, which captures the wormhole growth. There have
been a number of proposals for what bulk quantity actually
computes the complexity, including the volume and action
of the AdS wormhole. The complexity/volume conjecture
states that the computational complexity of the boundary
state is equal to the volume of the wormhole. More pre-
cisely, the complexity of time-evolved thermofield double
state of the two boundary CFTs is equal to spatial vol-
ume behind the horizon of the two-sided geometry on a
maximal time slice [5]. The “complexity equals action”
conjecture posits that the action computed on a certain
region of the bulk geometry, which extends behind the
horizon (the Wheeler-DeWitt patch), is the quantity, which
is dual to the complexity [6,57]. A lot of progress has been
made checking these conjectures and studying complexity
growth in holographic systems, see, for instance, [58–64].

In this work we rigorously compute the complexity
growth in a number of random circuit models, by relat-
ing the growth in design to the growth of complexity,
and are able to prove a linear growth in complexity for
local random circuits in the limit of large local dimension
(albeit, not for an exponentially long time). As we men-
tion, the connection between unitary designs and quantum
complexity will likely not inform complexity growth in
holography as evolution by time-independent Hamiltoni-
ans will not converge to approximate designs. Thus, to
study complexity growth in holography we need to explore
properties beyond the Haar randomness of the evolution.

A. Strong complexity in the bulk

We briefly discuss why we believe our proposed strong
definition of complexity (in terms of a distinguishing mea-
surement), is congruent with expectations from the bulk
and might be more suited for holography than the standard
definition in terms of the circuit complexity.

One feature we expect complexity growth will exhibit
in holography, and fast scrambling systems more gener-
ally, is the switchback effect [5]. Consider a time-evolved
local operator O(t) = e−iHtOeiHt (sometimes called a pre-
cursor), where O might be a single-site Pauli. For such
an operator, we anticipate a delay in the onset of the lin-
ear complexity growth. For the traditional definition of

complexity, consider the minimal circuit approximating
the evolution operator e−iHt. The reason for this delay is
the exact cancellation of gates outside the lightcone of the
spreading operator. Once the operator grows to be the size
of the system (more precisely, to have support on weight
n Pauli operators) after a time scale called the scrambling
time, we expect the complexity of O(t) to begin its long
time linear growth. Such an effect is also present in the bulk
for both complexity-volume and action conjectures. This
feature is also present in complexity growth of O(t) under
the strong definition of complexity in Definition 2. To be
concrete, consider a system of n qubits and the evolved
state e−iHtOeiHt|ψ0〉, where H is a chaotic but local Hamil-
tonian and we take |ψ0〉 to be an unentangled product
state. Prior to the scrambling time, the optimal measure-
ment to distinguish the evolving state from the maximally
mixed state is a simple measurement of a qubit outside
the lightcone of the evolving operator. It is not until the
scrambling time, when operator has grown to have sup-
port on all sites, that the complexity of the distinguishing
measurement begins to grow.

Another interesting expectation from holographic sys-
tems, where the strong and weak definitions of complexity
differ, is that of one-clean qubit. This is essentially the
argument given in Lemma 6, to prove that measurement
complexity is a stronger definition than standard circuit
complexity. Consider a simple initial state |ψ0〉, which has
been evolved for an exponential time such that |ψ(t)〉 is
maximally complex. If we add a single unentangled qubit
to the state |ψ(t)〉 ⊗ |0〉, then the minimal circuit complex-
ity will be unchanged, but maximal potential complexity
increases and the complexity of the state can continue to
grow for a long time until it saturates at the new maximal
value. For the complexity of a distinguishing measure-
ment, adding a single clean qubit resets the complexity to
an order-one value, as the optimal measurement is simply
the projection onto the clean qubit. Reference [7] pro-
posed the notion of uncomplexity as the difference of the
complexity of a state or unitary from its maximal com-
plexity and suggested an interpretation in the bulk as the
total spacetime volume accessible to an infalling observer.
Uncomplexity can be thought of as a resource to do useful
computation. As we describe, our strong definition of com-
plexity directly encodes this potential for useful quantum
computation.

B. Entanglement growth by design

The suggestion that complexity be the dual of the long-
time geometric growth in the bulk was motivated by the
observation that the wormhole grows long past the times
cales at which entropic quantities saturate. Given that we
discuss long-time growth in complexity from a long-time
growth in design, it is worth commenting on the saturation
of entropies after a short growth in design order.
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The entanglement entropies for k-designs were stud-
ied in Ref. [65]. Specifically, they looked at the
Rényi-α entropies of a density matrix ρ: S(α)(ρ) =
[1/(1 − α)] log [Tr(ρα)]. For any state, the Rényis are
bounded above and below by the min-entropy Smin(ρ) :=
limα→∞ S(α)(ρ) = − log(‖ρ‖∞) [66]. For an n-qubit sys-
tem, consider the reduced density matrix ρA = TrĀ|ψ〉〈ψ |
on a subsystem A consisting of half the qubits, so that dA =
dĀ. Reference [65] showed that for states |ψ〉 drawn from
a (k > log d) design, the min-entropy of ρA is nearly max-
imal. Therefore, all entropies are nearly maximal once the
design order is k ≈ n. Considering then the time-evolved
states of a fast-scrambling system, which forms unitary
designs linearly in time, all entropies will saturate at a time
of order n. Our arguments ensure complexity growth of
approximate k-designs well beyond this entropy saturation
threshold.

V. DISCUSSION

We rigorously establish a growth of the quantum com-
plexity in the time evolution of a number of models. We
prove that with overwhelming probability, an element sam-
pled from an approximate unitary k-design has a strong
complexity that scales at least linearly in k. Moreover, we
can count the elements of a design of a given complex-
ity and show that there are at least an exponential number
(in k) of distinct unitaries with this complexity. Using the
known relations between the evolution time and the design
order k thereby establishes a lower bound on the growth
of quantum complexity. Specifically, for random quantum
circuits we make substantial progress on conjectures by
Brown and Susskind and, using a recently established lin-
ear relation between the circuit size and design order, prove
a linear growth of quantum complexity.

A number of open questions remain. For one, the results
in Refs. [28,29] required taking the local dimension q
to be large in a k-dependent manner. For local qubits,
T = O(n2k11) is still the best known design depth. A proof
of a linear design growth for random quantum circuits on
qubits up to exponentially high moments would prove a
linear growth of complexity for exponentially long times.
In this work we largely focus on time-dependent evo-
lution, but the original discussion of a long-time linear
complexity growth in holographic systems was focused
on time-independent Hamiltonian evolution. It remains to
be seen if one can prove anything about the complexity
Cδ(e−iHt) for a specific many-body Hamiltonian H . Lastly,
we largely focus on the growth regime for complexity.
Nevertheless, there are a number of interesting questions
at exponentially late times, when t ≥ d2 and complexity
saturates at its maximal value.

As we emphasize, our results hold for a new and
stronger notion of quantum complexity, defined in terms of
optimal distinguishing measurements. We believe strong

complexity to be more aptly suited for complexity in
holography than circuit complexity, mirroring expectations
from the bulk. More broadly, it would be interesting to
explore the implications of our strong definition of com-
plexity for quantum error correction and topological order.
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APPENDIX A: PROOF OF THE MAIN RESULTS

1. Motivating example computations for Haar-random
states

In this section, we provide valuable intuition by analyz-
ing the complexity of Haar-random states using concen-
tration of measure (Levy’s lemma). The results presented
in the main text will follow by replacing Haar-random
states and unitaries with approximate k-designs and mea-
sure concentration with moment bounds. Moment bounds,
however, are considerably weaker than measure concen-
tration. This, in particular, affects constants and subleading
contributions.

a. Most states have high complexity

The Hilbert space of n qudits is enormous, d = qn.
Nonetheless, only a tiny fraction of all possible (pure)
quantum states seems to be useful for quantum com-
putation, see, e.g., Ref. [46]. Strong state complexity
(Definition 2) captures this curious aspect. In order to
get a quantitative handle on the set of all pure states we
endow it with the uniform measure dψ that is induced by
the Haar measure on the unitary group U(d). Then, ran-
dom pure states |ψ〉〈ψ | behave like the maximally mixed
state ρ0 = I/d in expectation. This behavior extends to the

030316-14



MODELS OF QUANTUM COMPLEXITY GROWTH PRX QUANTUM 2, 030316 (2021)

outcome statistics of arbitrary (fixed) measurements:

E|ψ〉 [Tr (M |ψ〉〈ψ |)] =Tr
(
ME|ψ〉 [|ψ〉〈ψ |]) =Tr (Mρ0).

(A1)

Concentration of measure (Levy’s lemma) ensures that
deviations from this average case behavior are exponen-
tially suppressed in concrete instances:

Pr{|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ τ }

≤ 2 exp
(
− dτ 2

9π3

)
for any τ ≥ 0. (A2)

We refer to Proposition 29 in Appendix D below for a
proof of this well-known result. We can combine this asser-
tion with a union bound (Boole’s inequality) to conclude
for any r ∈ N and δ ∈ (0, 1)

Pr [Cδ(|ψ〉) ≤ r]

= Pr
{

max
M∈Mr

|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ 1 − d−1 − δ
}

≤ 2|Mr| exp
(
−d(1 − d−1 − δ)2

9π3

)

≤ 2.0072|Mr| exp
(
−d(1 − δ)2

9π3

)
. (A3)

Suppose that Mr arises from combining at most r ele-
ments of a fixed universal gate set G ⊂ U(q2). A naive
counting argument reveals |Mr| ≤ 2d(n + 1)r|G|r and we
refer to Appendix B 2 below for details. We conclude that
the Pr [Cδ(|ψ〉) ≤ r] remains exponentially suppressed (in
d = qn) until

r � qn

log(n)
. (A4)

To summarize, a random state is exceedingly likely to have
an exponentially large strong δ-state complexity.

The Haar measure has another desirable property. It is
fair in the sense that it assigns the same (infinitesimal)
weight to each pure state. Such perfectly flat probability
distributions allow for turning the probabilistic statement,
Eq. (A3), into a quantitative one. From the definition
of probability, Pr [Cδ(|ψ〉) ≤ r] corresponds to the ratio
of low-complexity states over all states. Thus, Eq. (A3)
ensures that the fraction of low-complexity states remains
exponentially tiny until r � qn/ log(n). In other words,
most pure states have exponentially large complexity.

b. Most high-complexity states are far apart

In the previous subsection, we saw that concentration
of measure, Eq. (A2), allows us to conclude that most

quantum states have exponentially high state complexity.
This argument, however, does not (yet) tell us anything
about the geometric separation between high-complexity
states. In principle, a large fraction of high-complexity
states could result from tiny perturbations of only a few
well-separated core states that have high complexity each.
In other words, high-complexity states could come in few
tightly packed clusters, in which case the effective number
of high-complexity regions could still be comparatively
small.

The probabilistic method [67] allows us to prove that
extreme clustering cannot occur: there are exponentially
many high-complexity states whose pairwise distance is
almost maximal.

We show this statement by induction based on two fea-
tures of Haar-random states. Firstly, we use the main result
from the previous subsection. Choose r � qn/ log(n) such
that Eq. (A3) ensures

Pr [Cδ(|ψ〉) ≤ r] ≤ 2.0072|Mr| exp
(
−d(1 − δ)2

9π3

)
<

1
2

.

(A5)

The parameter r is chosen such that Haar-random states
exceed this complexity with probability (at least) 1/2.
Concentration of measure also implies that a Haar-random
state is very likely to be far away from any fixed state
|φ〉〈φ|. For any � ∈ (0, 1),

Pr
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

= Pr
[|〈ψ |φ〉|2 ≥ �2] ≤ 3 exp

(
−�

2d
9π3

)
. (A6)

This bound readily follows from Eq. (A2) (set M = |φ〉〈φ|
and perform elementary modifications).

The first step in our inductive argument is simple.
Equation (A5) asserts that the probability of Haar ran-
domly sampling a low complexity (at most r) state is
smaller than 1/2. This is equivalent to stating that the
probability of Haar randomly sampling a high complex-
ity (larger than r) is at least 1/2. Importantly, this assertion
implies that such a state exists, because the probability of
sampling one is strictly positive. Choose one such state
|φ1〉 as the first state in our list.

To construct the second state in our list, we refine this
probabilistic existence argument. The probability of Haar
randomly sampling a low-complexity state or a state that
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is too close to |φ1〉 is bounded by

Pr
[
Cδ(|ψ〉) ≤ r ∪ 1

2
‖|ψ〉〈ψ | − |φ1〉〈φ1|‖1 ≤ 1 −�

]

≤ Pr [Cδ(|ψ〉) ≤ r] + Pr

×
[

1
2
‖|ψ〉〈ψ | − |φ1〉〈φ|‖1 ≤ 1 −�

]

<
1
2
+ 3 exp

(
−�

2d
9π3

)
. (A7)

By contraposition, the probability of sampling a state that
has high complexity and is simultaneously far away from
|φ1〉 is at least 1

2 − 3 exp[−(�2d/9π3)] > 0. This implies
the existence of such a state. Choose one such state |φ2〉
and append it to the list: {|φ1〉, |φ2〉}.

We can now inductively repeat this probabilistic exis-
tence argument and iteratively append distant high-
complexity states to the list {|φ1〉, . . . , |φN 〉}. This con-
struction only breaks down once the list cardinal-
ity N counterbalances exponential suppression: 1

2 −
3N exp[−(�2d/9π3)] ≤ 0, or equivalently N ≥ 1

6 exp
[(�2d/9π3)]. Beyond this threshold, we cannot use simple
union bounds and concentration of measure to ensure exis-
tence of another list element. Such a threshold, however,
scales exponentially in the Hilbert-space dimension: the
list {|φ1〉, . . . , |φN 〉} contains N = 1

6 exp[(�2d/9π3)] high-
complexity states whose pairwise trace distance is at least
1 −�.

We conclude this subsection with providing a bit of
context. Existence proofs based on strictly positive prob-
abilities date back to Erdős who developed them to solve
several important problems in graph theory. Today, this
technique is known as the probabilistic method and does
constitute an important tool in applied math, combina-
torics, and theoretical computer science [67].

2. Proof of Theorem 8

Haar-random states result from applying a Haar-random
unitary U ∈ U(d) to an arbitrary starting state, say |ψ0〉.
Now suppose that this unitary U is not chosen from
the Haar measure, but from an approximate 2k-design.
By definition, this ensures that the first 2k moments of
|ψ〉〈ψ | = U|ψ0〉〈ψ0|U† accurately approximate the corre-
sponding Haar moments. While this is too coarse to deduce
exponential concentration, Eq. (A2), (this would require
matching behavior for all moments), polynomial concen-
tration arguments do apply. Fix a measurement M ∈ Hd
and let M̄ = M − [Tr(M )/d]I denote its traceless part.
Markov’s inequality then implies that for any τ > 0

Pr{∣∣Tr
[
M (|ψ〉〈ψ | − ρ0)

]∣∣ ≥ τ }
= Pr{[Tr

(
M̄ |ψ〉〈ψ |)]2k ≥ τ 2k}

≤ τ−2k
E

[
Tr
(
M̄ |ψ〉〈ψ |)2k

]
. (A8)

The final expectation value corresponds to a moment of
order 2k. This is the largest moment that still approx-
imately exhibits Haar-random behavior. Explicit bounds
can be derived by exploiting this similarity and we refer
to Corollary 24 below for a technical derivation:

Pr{|Tr [M (|ψ〉〈ψ | − ρ0)]| ≥ τ } ≤ (1 + ε)
(

2k

τ
√

d

)2k

.

(A9)

Qualitatively, this deviation bound is proportional to d−k

and becomes ever more stringent as the design order 2k
increases. We can now combine this tail bound with a
union bound and a counting argument for the measurement
set Mr in a fashion analogous to the Haar-random case. For
any r ∈ N and any δ ∈ (0, 1) this yields

Pr [Cδ(|ψ〉) ≤ r] ≤ |Mr|(1 + ε)
(

2k√
d
(
1 − d−1 − δ)

)2k

≤ 2(1 + ε)d(n + 1)r|G|r
(

16k2

d(1 − δ)2
)k

, (A10)

where we tacitly assume (1 − δ) ≥ 2d−1 in the last step.
Qualitatively, this probability remains tiny until

r � (k − 1)n − 2k log(k)
log(n)+ log(|G|) � k[n − 2 log(k)]

log(n)
, (A11)

provided that n ≥ |G| and k < d/2. We can compare this
to the complexity of Haar-random states in Eq. (A4). Note
that the two coincide when we consider designs of expo-
nentially large degree. So far, this is a purely probabilistic
statement. In contrast to the Haar-uniform case it is a priori
not clear whether it is possible to transform it into a quan-
titative one. The reason for this is twofold: (i) the weights
pj associated with different elements from an approximate
2k-design are typically not uniform. This nonuniformity
extends to the distribution over the different states |ψi〉; (ii)
collisions in the state generation: two (or more) distinct
design unitaries can produce the same state.

Fortunately, the defining properties of designs ensure
that these deviations cannot be too radical: the weights
associated with distinct states |ψi〉 must obey qj ≤ (1 +
ε)
(

d+k−1
k

)−1—see Lemma 21 in Appendix C 6 below (or,
equivalently, Lemma 3 in the main text). This extra con-
dition does allow for drawing quantitative conclusions.
Recall that the probability of an event E is the expected
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value of its indicator function 1 {E}. Therefore,

Pr [Cδ(|ψ〉) > r] =
∑

j

qj1 {Cδ(|ψ〉) > r}

≤ (1 + ε)
(

d + k − 1
k

)−1∑

j

1 {Cδ(|ψ〉) > r} .

(A12)

The sum on the rhs is simply the cardinality N of the set of
states |ψ〉 with δ-state complexity greater than r and the lhs
is 1 − Pr [Cδ(|ψ〉) ≤ r]. Substituting the bound, Eq. (A10),
into this expression establishes the claim:

N ≥
(

d + k − 1
k

)

×
[

1
1 + ε − 2d(n + 1)r|G|r

(
16k2

d(1 − δ)2
)k
]

.

(A13)

3. Proof of Theorem 9

The proof is largely analogous to the proof of
Theorem 8. Fix a measurement M ∈ Hd ⊗ Hd and an
input state |φ〉 ∈ C

d ⊗ C
d. Recall that the bias of dis-

tinguishing a unitary channel U : Hd → Hd from the
depolarizing channel D via this measurement procedure
is Tr [M (U ⊗ I −D ⊗ I) (|φ〉〈φ|)]. Moreover, the depo-
larizing channel corresponds to the Haar average over
all unitary channels: EU(U) = D, see, e.g., Lemma 26
in Appendix C 9 below. Now suppose that the corre-
sponding unitary U ∈ U(d) is chosen randomly from an
ε-approximate 2k-design. Markov’s inequality yields

Pr{|Tr [MU ⊗ I(|φ〉〈φ|)] − Tr [MD ⊗ I(|φ〉〈φ|)] | ≥ τ }
≤ τ−2k

E

(
{Tr [MU ⊗ I(|φ〉〈φ|)]

− Tr [MD ⊗ I(|φ〉〈φ|)]}2k
)

. (A14)

The final expectation value corresponds to the highest
2k-design moment that still approximates Haar-random
behavior. Our main technical contribution in Theorem 10
establishes tight bounds on such Haar-random moments.
These generalize approximate 2k-design ensembles E in a
relatively straightforward fashion:

EE
(
{Tr [MU ⊗ I(|φ〉〈φ|)] − Tr [MD ⊗ I(|φ〉〈φ|)]}2k

)

≤ [(2k)!]2

dk

(
C2k + ε

(2k)!d3k

)
. (A15)

See Corollary 23 in Appendix C 8 below for a precise
statement and proof. Next, we emphasize that the crude

bound |Mr| ≤ (2d2 + 1)n2r|G|r applies to circuit measure-
ments. Combining the above concentration inequality with
a union bound over all measurements M ∈ Mr ensures

Pr [Cδ(U) ≤ r]

≤ 3
(

C2k + ε

(2k)!d3k

)
d2n2r|G|r

(
64k4

d(1 − δ)2
)k

,

(A16)

where we tacitly assume (1 − δ) ≥ 2d−1. Qualitatively,
this probability remains tiny until

r � (k − 2)[n − 4k log(k)]
log(n)+ log |G| � k[n − 4 log(k)]

log(n)
, (A17)

provided that n ≥ |G| and k ≤ d/2. The definition of an
approximate 2k-design also imposes constraints on the
weight fluctuations. Lemma 3 asserts that weights associ-
ated with distinct ensemble unitaries must obey pj ≤ (1 +
ε)(k!/d2k). This approximate flatness allows us to turn the
probabilistic statement from above into a quantitative one:

Pr [Cδ(U) > r] =
∑

j

pj1 {Cδ(U) > r}

≤ (1 + ε) k!
d2k

∑

j

1 {Cδ(U) > r} . (A18)

The sum on the right counts the cardinality N of distinct
unitaries with δ-unitary complexity at least r + 1, while the
lhs may be lower bounded by Eq. (A16):

N ≥ d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

. (A19)

4. Distant and distinct design elements

We show that unitary and state designs contain an
exponential number [�(dk)] of distinct high-complexity
elements. But to really capture the ergodic nature of
chaotic evolution over the unitary group, these distinct
high-complexity elements should be pairwise far apart.
Here we address this subtlety and show that unitary and
state designs contain an exponential number of distant
high-complexity unitaries or states.

a. Distant and distinct state design elements

Consider an element drawn at random from an ε-
approximate spherical k-design |ψ〉. Equation (A10) gives
that the probability the state has δ-state complexity less
than r, Cδ(|ψ〉) ≤ r, is bounded to be O(d−k) when r � kn.
We can also show that the probability an element drawn at
random from an ε-approximate spherical k-design is close
to a fixed reference state |φ〉 is polynomially suppressed in

030316-17



FERNANDO G. S. L. BRANDÃO et al. PRX QUANTUM 2, 030316 (2021)

k. Choose � ∈ (0, 1) and combine 1
2‖|ψ〉〈ψ | − |φ〉〈φ|‖1 =√

1 − |〈ψ ,φ〉|2 with Markov’s inequality to conclude

Pr
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

= Pr
[|〈ψ ,φ〉|2 ≥ �2] = Pr

[|〈ψ ,φ〉|2k ≥ �2k]

≤ �−2k
E|ψ〉
[|〈ψ ,φ〉|2k] ≤ 1 + ε

�2k

(
d + k − 1

k

)−1

.

(A20)

The last inequality follows from a k-design moment bound
similar to Eq. (18). We refer to the proof of Lemma 21
in Appendix C 6 below for a detailed derivation. Qualita-
tively, this bound is of order O(d−k). We can now use a
union bound to limit the probability of a random k-design
state to have either low complexity or to be close to the
reference state,

Pr
[
Cδ(|ψ〉) ≤ r ∪ 1

2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�]

≤ Pr [Cδ(|ψ〉) ≤ r] + Pr

×
[

1
2
‖|ψ〉〈ψ | − |φ〉〈φ|‖1 ≤ 1 −�

]

≤ 2(1 + ε)dnr|G|r
(

16k2

d(1 − δ)2
)k

+ 1 + ε
�2k

(
d + k − 1

k

)−1

. (A21)

As long as r � nk, this bound is also of order O(d−k) and,
in turn, strictly smaller than one. We know that if the prob-
ability of the state having low complexity or being close to
our fixed state is strictly less than 1, then there is a nonzero
probability of a design element that is of high complex-
ity and is far away from the fixed state. Simply stated, if
Pr[A ∪ B] < 1 then Pr[Ā ∩ B̄] > 0.

We can iterate this procedure to construct a set of high-
complexity states that are pairwise separated. As long as
the probability that the design element is of low complexity
or is close to all elements of the set is less than one, then
there exists a design element, which is of high complexity
and far away from all other design elements in the set. To
construct the set {|ψ1〉, . . . , |ψN 〉}, we simply need that

Pr

[

Cδ(|ψN 〉 ≤ r
N−1⋃

i=1

1
2
‖|ψN 〉〈ψN | − |ψi〉〈ψi|‖1 ≤ 1 −�

]

< 1. (A22)

A union bound then converts this requirement into the
following sufficient condition on the set cardinality N :

N < �2k
(

d + k − 1
k

)[
1

1 + ε − 2dnr|G|r
(

16k2

d(1 − δ)2
)k
]

.

(A23)

For constant � ∈ (0, 1), this threshold is exponential as
long as the complexity obeys r � k,

N ≈ O(dk) for Cδ(|ψ〉) ≤ r ≈ k. (A24)

We note the similarity of this bound to the bound derived
for the number of distinct design elements.

a. Distant and distinct unitary design elements

Now we consider a unitary U drawn from an ε-
approximate unitary k-design E . Equation (A16) bounds
the probability of the unitary having δ-unitary complexity
less than r, Cδ(U) ≤ r, to be O(d−2k) when the complexity
is roughly r � nk.

Randomly chosen k-design elements also tend to land
far away from any fixed unitary. For some V ∈ U(d) and
� ∈ (0, 1), Markov’s inequality implies

Pr
[|Tr(U†V)|2 ≥ d2�2] = Pr

[|Tr(U†V)|2k ≥ d2k�2k]

≤ EE
[|Tr(U†V)|2k

]

d2k�2k ≤ 1 + ε
�2k

k!
d2k ,

(A25)

where the last inequality follows from a k-design moment
bound. We refer to the proof of Lemma 20 in Appendix
C 6 below for a detailed derivation. Next, we apply a trick
from the proof of Lemma 7 in the main text: |Tr(U†V)|2 ≥
d2�2 is a necessary condition for ‖U − V‖� < 1 −�.
This allows us to conclude

Pr
[‖U − V‖�≤1 −�] ≤ (1 + ε) k!

d2k

1
�2k . (A26)

Qualitatively, this is of order O(d−2k).
We now have all the ingredients in place to repeat the

argument from the state case. The probability of sampling
a unitary that has either low complexity or is close to any
reference unitary V is

Pr [Cδ(U) ≤ r ∪ ‖U − V‖�≤1 −�]

≤ 3(1 + ε)d2n2r|G|r
(

1024k4

d(1 − δ)2
)k

+ 1 + ε
�2k

k!
d2k ,

(A27)

according to a union bound. This is on the order of
O(d−2k) < 1 as long as the complexity r � nk. By contra-
position, this ensures that there exists a design element U1
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that has both high complexity and is far away from V. We
can use this insight to iteratively construct a set of N high-
complexity design unitaries with large pairwise distances.
Explicitly, to construct a set of unitaries {U1, . . . , UN }, we
need that

Pr

[

Cδ(UN ) ≤ r
N−1⋃

i=1

‖UN − Ui‖�≤1 −�
]

< 1. (A28)

A union bound relates this condition to a sufficient upper
bound on the set cardinality N :

N < �2k d2k

k!

[
1

1 + ε − 3d2n2r|G|r
(

1024k4

d(1 − δ)2
)k
]

.

(A29)

This threshold is exponential as long as the complexity
obeys r � k:

N ≈ O(d2k) for Cδ(|ψ〉) ≤ r ≈ k. (A30)

APPENDIX B: CONCEPTUAL BACKGROUND
AND CONTRIBUTIONS

1. Distinguishing states and channels

This conceptual section will review one fundamental
question in probability theory, as well as two quantum
generalizations. We refer to Refs. [33,68] for details. The
underlying question is the following: what is the best strat-
egy to distinguish two (biased) coins based on a single
toss? More precisely, we consider the following game:
there are two identically looking coins with different biases
towards coming up heads when being tossed. These biases
are known to the player. A referee then picks one of these
coins uniformly at random and hands it to the player. The
player is allowed to perform a single toss. Based on the
result she must guess which coin she obtained and wins if
this guess was correct.

a. Distinguishing classical probability distributions

Consider two (discrete) d-variate random variables.
Then, we may represent the associated probability dis-
tributions by d-dimensional vectors p , q ∈ R

d, which are
entrywise positive (pi, qi ≥ 0) and whose entries sum up
to one. Likewise, a collection of events E1, . . . , Em can
be also represented by vectors e1, . . . , em ∈ R

d that are
entrywise non-negative and obey the following normaliza-
tion condition:

∑m
i=1 ei = �1. Here, �1 = (1, . . . , 1)T ∈ R

d

denotes the all-ones vector. The probability of observing
the event associated with index i is

Pr [i] = 〈ei, p〉. (B1)

The properties of probability and event vectors then assure
Pr [i] ≥ 0 and

∑m
i=1 Pr [i] = 1. Let us now return to the

motivating question: what is the best strategy to distinguish
two random variables, characterized by known probability
vectors p and q in the single-shot limit? This is a binary
question and without loss of generality we can restrict our
attention to binary events. Let e1 denote the event that
leads us to guess that we observe the first random vari-
able. The complementary event e2 = �1 − e1 is then fully
characterized as well. Under the additional assumption that
either random variable is handed to us with equal prior
probability, the probability of success becomes

pcl = 1
2

Pr [1|p] + 1
2

Pr [2|q] = 1
2
(〈e1, p〉 + 〈e2, q〉)

= 1
2

(
〈e1, p − q〉 + 〈�1, q〉

)
= 1

2
+ 1

2
〈e1, p − q〉.

(B2)

This expression may now be optimized over all possible
events e1 in order to determine the optimal guessing strat-
egy. The only constraints on e1 are non-negativity and
normalization. Together, they demand 0 ≤ e1 ≤ �1, where
the inequality signs are to be understood componentwise.
The resulting optimization problem is a linear program
[44,69]

maximize
1
2
+ 〈e1, p − q〉

subject to �1 ≥ e1 ≥ 0,
(B3)

and can be solved in a computationally tractable way. In
fact, this problem is simple enough to solve analytically.
The optimal e1 is the indicator function for pi ≥ qi, i.e.,
ei = 1 {pi ≥ qi}. This is the maximum-likelihood estimator
from statistics. Opt for the distribution that is most likely to
produce the outcome that has been observed. This choice
achieves an optimal success probability of

p�cl =
1
2
+ 1

4
‖p − q‖�1 . (B4)

Note that a success probability of 1/2 can be trivially
achieved by mere guessing. The remaining factor (multi-
plied by 2)

β
�

cl =
1
2
‖p − q‖�1 = 1

2

d∑

i=1

|pi − qi| , (B5)

is called the bias and corresponds to the total variational
distance between p and q.

b. Distinguishing quantum states

It is useful to think of quantum states ρ as matrix
generalizations of probability vectors. Similarly, positive
operator-valued measurements (POVM) with m outcomes
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are characterized by a collection of positive semidefinite
(PSD) matrices {Mi}m

i=1 ∈ Hd that sum up to the iden-
tity matrix I. Born’s rule states that the probability of
observing certain outcomes is

Pr [i] = Tr (Miρ) for all 1 ≤ i ≤ m. (B6)

This may be viewed as a noncommutative analog of the
classical probability rule in Eq. (B1). One may also adapt
the distinguishability game to the quantum setting: what
is the probability of correctly distinguishing two quantum
states ρ, σ by performing a single measurement? Once
more, this is a binary question. We can without loss restrict
attention to two-outcome measurements: M1 and M2 =
I − M1. We associate the first outcome with opting for ρ
while the second outcome flags σ . Similar to the classical
case, the probability of success is

pQS = 1
2
+ 1

2
(M1, ρ − σ) , (B7)

which corresponds to a bias of βQS = (M1, ρ − σ). We
may now optimize over all possible measurements M1 to
obtain the best bias possible:

β
�

QS =maximize (M1, ρ − σ)
subject to I � M1 � 0.

(B8)

The constraint denotes the positive semidefinite order (A �
B if and only if A − B is positive semidefinite). This is
a semidefinite program [44,69] that is simple enough to
solve analytically. The optimal measurement M1 corre-
sponds to the orthogonal projection onto the positive range
of ρ − σ . The associated optimal bias is

β
�

QS = 1
2
‖ρ − σ‖1, (B9)

which is the trace distance of the density matrices ρ and
σ . This result is known as the Holevo-Helstrom theorem
[30,31].

Example 1: Choose ρ = |ψ〉〈ψ | and σ = ρ0 = (1/d)I.
Then, the (unique) optimal measurement is M1 = |ψ〉〈ψ |
and achieves a bias of

β
�

QS = 1
2
‖|ψ〉〈ψ | − ρ0‖1 = 1 − 1

d
. (B10)

c. Distinguishing quantum channels

Quantum channels describe evolutions of quantum-
mechanical systems. They are linear maps A : Hd → Hd′
that map density operators to density operators of poten-
tially different dimension d′.

Suppose that we wish to distinguish two channels, say A
and B based on a single channel use. For instance, input a
concrete quantum state and perform a measurement on the
outcome state. This indicates more freedom to maximize
the probability of correct distinction by optimizing over
potential input states and measurements of the channel
output. The laws of quantum mechanics allow for further
improving this strategy. It is possible to entangle the input
state with a quantum memory: ρin ∈ Hd ⊗ Hd. We then
apply the channel to the first quantum system, while the
second one is left unchanged in the memory. A final two-
outcome measurement M1 ∈ Hd′ ⊗ Hd on both output and
memory state potentially reveals additional information.
The outcome state depends on the channel in question. A
priori there are two possibilities. Either ρout = A⊗ I(ρin),
or ρout = B ⊗ I(ρin). Here, I(X ) = X denotes the iden-
tity channel acting trivially on the memory. The proba-
bility of correctly distinguishing these states—and thus
the underlying channels—with a single measurement M1 ∈
Hd′ ⊗ Hd becomes

pQC = 1
2
+ Tr
{
M1 [A⊗ I(ρin)− B ⊗ I(ρin)]

}
. (B11)

We may now optimize over all degrees of freedom to max-
imize the value of pQC. Optimizing the measurement M1
results in a bias that is proportional to the trace distance
of the outcome states. Because of convexity, optimization
over potential input states can without loss of generality be
restricted to pure states:

β
�

QC = 1
2

max
|ψ〉〈ψ |
∥∥A⊗ I(|ψ〉〈ψ |)− B ⊗ I(|ψ〉〈ψ |)∥∥1.

(B12)

This optimal bias is called the diamond distance between
channels A and B [70].

It defines a distance measure between quantum chan-
nels that is more complicated than the trace distance
between quantum states and the total variational distance
between classical probability distributions, respectively. It
can be difficult to compute it analytically, but does admit a
computationally tractable reformulation (as a semidefinite
program) [71–73].

Example 2: Consider a unitary channel U(ρ) = UρU† ∈
Hd and the completely depolarizing channel D(ρ) =
[Tr(ρ)/d]I ∈ Hd. Then,

1
2
‖U −D‖� =1 − 1

d2 , (B13)

and optimal strategies are based on maximally entangling
the input with the memory: Let |�〉 = (1/

√
d)
∑d

i=1 |i〉 ⊗|i〉 ∈ C
d ⊗ C

d be the maximally entangled (Bell) state. Set
ρin = |�〉〈�| and measure M1 = (U† ⊗ I)|�〉〈�|(U ⊗ I).

030316-20



MODELS OF QUANTUM COMPLEXITY GROWTH PRX QUANTUM 2, 030316 (2021)

It is easy to check that this strategy achieves the dia-
mond distance in Eq. (B13). Proving optimality is less
trivial. For instance, this claim follows from relating the
diamond distance to another norm that is easier to com-
pute. We refer to Ref. [74, Theorem 7] and Ref. [75] for
details.

2. Conceptual contributions

a. Cornering “easy” unitary transformations

Fix d = qn. The evolution of a closed, d-dimensional
quantum-mechanical system is unitary: U(ρ) = UρU†

with U ∈ U(d). While evolutions may represent natural
processes, they can also be engineered to perform certain
tasks, such as quantum computing. Scalability of quan-
tum computing hinges on the important observation that
complicated evolutions (quantum gate architectures) can
be decomposed into sequences of simple building blocks.
A universal gate set G ⊂ U(q2) acting on two (neighbor-
ing) qudits forms such a basic set of building blocks. For
technical reasons, we assume that G contains the identity
(doing nothing), as well as inverses: g ∈ G implies g† ∈ G.

Universality then means that any unitary U ∈ U(d) may
be accurately approximated by a finite sequence of r uni-
taries chosen from G. We refer to Fig. 4 for an illustrative
example. Such decompositions into sequences of elemen-
tary gates provide us with a notion of simplicity. Intu-
itively, a quantum cicuit V is simple if it may be generated
by a G-local circuit of short size. In contrast to depth, size
counts the total number of elementary gates in a circuit.
For r ∈ N we define

Gr := {V ∈ U(d) : V is generated by a

× G-local circuit of size ≤ r
}

. (B14)

We set G0 = {I} and the following inclusion relation
follows from I ∈ G:

G0 ⊆ G1 ⊆ · · · ⊆ Gr. (B15)

The cardinality of Gr may be bounded by a simple count-
ing argument:

∣∣Gr
∣∣ ≤ (n|G|)r = logq(d)

r|G|r. (B16)

The fact that G is a universal gate set ensures that Gr
becomes dense in U(d) provided that r → ∞. A priori
Gr depends on the particular choice of universal gate set
G. However, the Solayev-Kitaev theorem also asserts that
other universal gate sets can be accurately compiled at the
cost of a constant overhead only [32].

b. Cornering “easy” measurements

The conceptual question underlying our definition of
complexity is binary. Are we facing a pure state (unitary
channel), or a maximally mixed state (depolarizing chan-
nel)? This allows us to restrict attention to two-outcome
measurements, where we associate one outcome with each
possibility.

Two-outcome measurements always assume the fol-
lowing form: (M , I − M ), where M obeys I � M � 0.
Measuring a quantum state ρ ∈ Hd results in two poten-
tial outcomes, say “yes” and “no.” The probability of
observing either is characterized by Born’s rule (B6):

Pr [“yes”] = Tr (Mρ) and Pr [“no”]

= Tr [(I − M )ρ] = 1 − Pr [“yes”] . (B17)

A projective two-outcome measurement is one for which
M is an orthogonal projection:

M = VPlV†, with Pl =
l∑

i=1

|i〉〈i| and V ∈ U(d). (B18)

Here l ∈ [d] characterizes the rank of the measurement
M and V is a unitary basis change to the eigenbasis of
M . Naimark’s theorem, see, e.g., Refs. [33,76], provides a
powerful connection between arbitrary two-outcome mea-
surements M and projective measurements of the form
Eq. (B18). Every two-outcome measurement on ρ ∈ Hd
corresponds to a projective measurement on ρ ⊗ |a〉〈a| ∈
Hd ⊗ H2, where |a〉〈a| ∈ H2 is an ancilla system prepared
in a pure state |a〉 ∈ C

2. Pictorially (see Appendix C 3 for
an introduction of wiring diagrams),

M =
Pla a (B19)

V =

FIG. 4. Illustration of elementary gate decompositions. A unitary V on n = 10 qudits is comprised of 12 geometrically local 2-qudit
gates at random positions, i.e., size(V) = 12.
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Based on this reformulation of general two-outcome mea-
surements, we model limited resources in the following
way:

1. The ancilla state |a〉 ∈ C
2 corresponds to a (fixed)

simple state, e.g., |a〉 = |0〉.
2. The unitary V ∈ U(2d) must be feasible to imple-

ment. More concretely we assume that it is com-
prised of at most r 2-qudit gates chosen from a
(fixed) universal gate set G ⊂ U(q2).

3. The projective measurement Pl =
∑l

i=1 |i〉〈i| is
diagonal in the computational basis.

For fixed r ∈ N (circuit size for V), this framework defines
the following class of measurements:

Mr =
{
Tr2
(
I ⊗ |a〉〈a|VPl′V†) : V ∈ Gr, l′ ∈ [2d]

} ⊂ Hd.
(B20)

Here, Tr2 : Hd ⊗ H2 → Hd denotes the partial trace. By
construction, this set is finite and obeys

|Mr| ≤ 2d
∣∣Gr
∣∣ ≤ 2d

[
logq(d)+ 1

]r |G|r = 2d(n+ 1)r|G|r.
(B21)

The last equality is contingent on d = qn (n qudits). The
set Mr captures all two-outcome measurements in Hilbert-
space dimension d that can be implemented by using a
single ancilla qubit, as well as circuits of size at most r.

We can readily extend this family of two-outcome mea-
surements to quantum channel discrimination. But there
we need to take into account an additional quantum
memory whose dimension is also d (see, e.g., Fig. 3).
So, the two-outcome measurement must act on a com-
posite system with dimension dim

(
C

d ⊗ C
d
) = d2. For

technical reasons, we also include a single Bell mea-
surement (|�〉〈�|, I −�〉〈�|) ⊂ H

⊗2
d � Hd2 with |�〉 =

(1/
√

d)
∑d

i=1 |i〉 ⊗ |i〉 in the definition. This implies that
the total number of elementary projective measurements is
2d2 + 1 and we conclude

Mr =
{
Tr2
(
I ⊗ |a〉〈a|VPl′V†) : V ∈ Gr, l′ ∈ [2d2]}

∪ {V|�〉〈�|V† : V ∈ Gr
} ⊂ H

⊗2
d . (B22)

This modification simplifies the proof of Lemma 7 and
is comparatively benign. Assuming d = qn (n qudits), a
simple counting argument reveals

|Mr| ≤ (2d2 + 1)|Gr| ≤ (2d2 + 1)(2n + 1)r|G|r. (B23)

APPENDIX C: TECHNICAL BACKGROUND AND
CONTRIBUTIONS

1. Notation and basic facts from matrix analysis

Endow the vector space C
d with the standard inner

product 〈x|y〉. A pure quantum state is a vector ψ ∈ C
d

normalized to (Euclidean) unit length, i.e., 〈ψ ,ψ〉 = 1. We
succinctly denote this by identifying normalized vectors
with kets:

|ψ〉 denotes ψ ∈ C
d with 〈ψ |ψ〉 = 1. (C1)

Let Hd denote the space of Hermitian d × d matrices. This
is a real-valued subspace of the space of all (complex-
valued) d × d matrices Md. Fix an orthonormal basis
|1〉, . . . , |d〉 of C

d. Then, the trace of a matrix X is Tr(X ) =∑d
i=1〈i|X |i〉. The trace is cyclic, i.e., Tr(XY) = Tr(YX )

and forms the basis for defining the Schatten p-norms. In
particular,

‖X ‖1 = Tr(|X |), |X | =
√

X 2 (trace norm),

‖X ‖2 =
√

Tr(X 2) (Frobenius norm),

‖X ‖∞ = max
|y〉

|〈y|X |y〉| (operator norm).

(C2)

Schatten-norms obey the following order relations:

‖X ‖∞ ≤ ‖X ‖2 ≤ ‖X ‖1 and ‖X ‖1 ≤
√

d‖X ‖2

≤ d‖X ‖∞ for all X ∈ Hd. (C3)

A variant of Hölder’s inequality applies to traces of inner
products, see, e.g., Ref. [77, Ex. IV.2.12]:

|Tr(XY)| ≤ ‖X ‖1‖Y‖∞ for all X , Y ∈ Hd. (C4)

The trace corresponds to a full index contraction. Partial
contractions are possible for tensor products and partial
traces are concrete examples. For X , Y ∈ Hd define

Tr1 (X ⊗ Y) = Tr(X )Y and Tr2 (X ⊗ Y) = Tr(Y)X ,
(C5)

and extend this definition linearly to the tensor prod-
uct H

⊗2
d � Hd2 . This definition naturally extends to ten-

sor products of higher order. The following tight bound
connects partial traces and operator norms:

max {‖Tr1(X )‖∞ , ‖Tr2(X )‖∞}
≤ d‖X ‖∞ for all X ∈ H

⊗2
d . (C6)

A matrix X ∈ Hd is PSD if 〈y|X |y〉 ≥ 0 for all y ∈ C
d. We

denote this feature by X � 0. Positive semidefiniteness is
preserved under partial traces:

X ∈ H
⊗2
d , X � 0 implies Tr1(X ) � 0, Tr2(X ) � 0.

(C7)

The trace norm of PSD matrices is particularly simple:
‖X ‖1 = Tr(X ) whenever X � 0.
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2. Convex geometry and optimization

The main technical contributions of this paper are based
on bounds that follow from a fundamental argument in
convex optimization. Comprehensive references for con-
vex geometry and optimization include Refs. [43,44]. A
function f : Hd → R is convex if

f [τX + (1 − τ)Y]

≤ τ f (X )+ (1 − τ)f (Y) for all X , Y ∈ Hd, τ ∈ [0, 1] .
(C8)

Linear transformations in the argument preserve this fea-
ture. Similarly, a set K ⊆ Hd is convex if

X , Y ∈ K imply τX + (1 − τ)Y ∈ K for all τ ∈ [0, 1] .
(C9)

Let K ⊆ Hd be a convex set. A point X ∈ K is an extreme
point if Y, Z ∈ K and X = τY + (1 − τ)Z for some τ ∈
(0, 1) necessarily imply Y = Z = X . Extreme points form
the boundary of a convex set.

Example 3: The set of all quantum states in Hd is the con-
vex hull (i.e., the set of all convex combinations) of pure
states:

{ρ ∈ Hd : Tr(ρ) = 1, ρ � 0} = conv
{|ψ〉〈: |ψ〉 ∈ C

d} .
(C10)

All extreme points are pure states.

Fact 18 (Convex functions achieve their maximum at
an extreme point): Let K ⊆ Hd be a convex set and let
f : K → R be a convex function. Then, there exists an
extreme point X� of K such that

max
X ∈K

f (X ) ≤ f (X�). (C11)

This result justifies the presentation of the dia-
mond distance in Eq. (B12). The function X �→
‖A⊗ I(X )− B ⊗ I(X )‖1 is convex (norms are convex
and the channel acts like a linear transformation of the
argument) and pure states are the extreme points of the set
of all quantum states. Hence,

max
ρ

‖A⊗ I(ρ)− B ⊗ I(ρ)‖1

= max
|ψ〉〈ψ |

‖A⊗ I(|ψ〉〈ψ |)− B ⊗ I(|ψ〉〈ψ |)‖1 . (C12)

The following technical result will prove highly valuable
for establishing bounds on very general Haar moments.

Lemma 19: Fix A ∈ Hd PSD (A � 0). Then, the func-
tion h(X ) = Tr (XAXA) is non-negative and convex for all
X ∈ Hd.

Proof. Apply an eigenvalue decomposition: A = U(
∑d

i=1
αi|i〉〈i|)U†. The assumption that A is PSD ensures
α1, . . . ,αd ≥ 0. Next, fix X ∈ Hd arbitrary, set X̃ = U†XU
and compute

Tr(XAXA) =
d∑

i,j=1

αiαj
∣∣〈i|X̃ |j 〉∣∣2 ≥ 0. (C13)

This establishes non-negativity of h(X ). For convexity,
fix X , Y ∈ Hd and τ ∈ [0, 1]. Set τ̄ = 1 − τ and note
that τ τ̄ = τ − τ 2 = τ̄ − τ̄ 2 ≥ 0. Non-negativity moreover
implies h(X − Y) ≥ 0 and we can readily deduce convex-
ity:

h(τX + τ̄Y)

= τ 2Tr(XAXA)+ 2τ τ̄Tr(XAYA)+ τ̄ 2Tr(YAYA)

= τh(X )− τ τ̄ [Tr(XAXA)− 2Tr(XAYA)

+ Tr(YAYA)] + τ̄h(Y)

= τh(X )− τ τ̄h(X − Y)+ τ̄h(Y) ≤ τh(X )+ τ̄h(Y).
(C14)

�
3. Wiring calculus

Wiring diagrams, sometimes also known as tensor net-
work diagrams, provide a graphical way for computing
contractions between tensors. Here we provide only a brief
overview and refer to the recent survey [41] and lecture
notes [68] for a detailed introduction. The wiring formal-
ism associates a box with every tensor and a line emanating
from the box with every index. Connected lines represent
contracted indices. More precisely, we place contravariant
indices of a tensor on the left of the box and covariant
ones on the right. Table I contains all the essential rules
necessary for the scope of this work.

Importantly lines can be bent at will without chang-
ing the value of an equation [78]. For instance, let ρ =
|ψ〉〈ψ | ∈ Hd be a pure quantum state and suppose that
M ∈ Hd is measurement. We can then represent Born’s
rule pictographically as

Tr (Mρ) = M ρ = M ψ ψ = M ψψ = 〈ψ|M |ψ〉 .
(C15)
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TABLE I. Basic building blocks of wiring calculus.

ket vector |ψ〉 ∈ C
d

ψ

bra vector 〈φ| ∈ (Cd
)∗ � C

d
φ

inner product (contraction) 〈φ|ψ〉 φ ψ

matrix A ∈ Md
A

matrix product of A, B ∈ Md AB ∈ Md
A B

matrix trace (contraction) Tr(A) ∈ C
A

tensor product (vectors) |ψ〉 ⊗ |φ〉 ∈ (Cd)⊗2

ψ

φ

tensor product (matrices) A ⊗ B ∈ H
⊗2
d

A

B

Partial traces also assume a simple form. For X ∈ Hd ⊗
Hd

Tr1(X) = X and Tr2(X) = X .

(C16)

Wiring calculus is exceptionally well suited to keep track
of flip operators. Define F|i〉| ⊗ |j 〉 = |j 〉 ⊗ |i〉 via its
action on computational basis elements and extend this
definition linearly to C

d ⊗ C
d. Then,

F = .
(C17)

Vectorization is a linear map vec: Md → C
d ⊗ C

d defined
by its action on computational basis elements

|vec (|i〉〈j |)〉 := |i〉 ⊗ |j 〉, (C18)

and linearly extended to all of Md. In wiring calculus,
|φ〉 = |vec(�)〉 corresponds to bending the right (covari-
ant) index of a matrix A to the left (into a contravariant
one):

φ =
Φ

and φ =
Φ† .

(C19)

It is easy to see that vectorization is an isometry:

〈φ|φ〉 = φ φ =
Φ† Φ

= Tr Φ†Φ
)

= ‖Φ‖2
2 .

(C20)

4. Random unitaries and k-designs

Here we introduce a few essential concepts from quan-
tum information theory, including a discussion of random
unitaries and the notion of a design. First, recall that the
Haar measure is the unique left and right invariant mea-
sure on the unitary group U(d). We are often interested in
moments of the Haar ensemble. Consider an operator X
acting on the k-fold Hilbert space (Cd)⊗k, the k-fold chan-
nel, or k-fold twirl, of the operator with respect to the Haar
measure on the unitary group is

T (k)
U (X ) =

∫
dU U⊗k(X )U†⊗k. (C21)

Similarly, we can average an operator over an ensemble of
unitaries E = {pi, Ui}, a weighted subset of the full unitary
group. The k-fold channel with respect to E is

T (k)
E (X ) =

∑

i

piU⊗k
i (X )U†⊗k

i , (C22)

here written for a discrete ensemble, but such an ensemble
might be discrete or continuous.

Unitary k-designs. We are often interested in how well
an average over an ensemble captures an average over the
full unitary group, i.e., how random the ensemble is with
respect to the Haar measure on U(d). A unitary k-design is
an ensemble of unitaries E = {pi, Ui}, for which the k-fold
twirl equals its Haar-random counterpart:

T (k)
E (X ) = T (k)

U (X ) for all X ∈ H
⊗k
d . (C23)

This means that the ensemble E exactly captures the first
k moments of the Haar ensemble. Unitary operator bases,
such as the n-qubit Pauli group, form an exact 1-design.
But very little is known about the construction of exact
designs for higher k, with the notable exception of k = 3
and the n-qubit Clifford group [15–17]. We return to this
point when discussing approximate designs.

Schur-Weyl duality. Many of the important analytic
expressions for Haar averages rely on Schur-Weyl duality
[37,38], a deep connection between irreducible represen-
tations (irreps) of the unitary group U(d) and the sym-
metric group Sk. First, when thinking about k-fold Hilbert
spaces, there is a useful set of operators that acts on this
space, namely permutations of the k copies. A permutation
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operator Pσ acts on the computational basis of (Cd)⊗k as

Pσ |i1, . . . , ik〉 = |iσ−1(1), . . . , iσ−1(k)〉. (C24)

This action can be extended linearly to all of (Cd)⊗k.
Schur-Weyl duality is the statement that an operator acting
on (Cd)⊗k commutes with all k-fold unitaries U⊗k if and
only if it is a linear combination of permutation operators

U⊗kXU†⊗k = X ←→ X =
∑

σ∈Sk

cσPσ . (C25)

Many of the exact expressions for Haar moments and ran-
dom unitary averages in the following subsection follow
directly from this powerful result.

5. Haar integration over the unitary group

We now introduce the general formalism for integrating
arbitrary moments of random unitaries over the full unitary
group with respect to the Haar measure, often referred to as
Weingarten calculus. Note that the k-fold twirl in Eq. (C21)
describes a linear operator on the tensor product space
H

⊗k
d . The associated matrix representation is called the

kth moment operator, written as O(k)
U = ∫ dU U⊗k ⊗ Ū⊗k,

where Ū denotes the complex conjugate. Weingarten cal-
culus [40,79] provides exact expressions for individual

matrix elements of the moment operator:
∫

dU Ui1j1 . . .Uikjk Ū�1m1 . . . Ū�kmk

=
∑

σ ,τ∈Sk

δσ (�ı |��)δτ ( �j | �m)Wg(σ−1τ , d), (C26)

where we sum over elements of the permutation group
Sk and define a contraction of indices with respect to a
permutation σ ∈ Sk as

δσ (�ı | �j) :=
k∏

s=1

δisjσ(s) = δi1jσ(1) . . . δik jσ(k) . (C27)

Mixed moments of U and Ū, i.e., averages of U⊗k ⊗ Ū⊗k′

with k  = k′, vanish identically.
It is often convenient to interpret the index contraction

δσ (�ı | �j) as a permutation operator acting on the computa-
tional basis of the k-fold space,

δσ (�ı | �j) = Pσ . (C28)

For instance, two examples of contractions for k = 4 are

δ{2,1,4,3}(�ı |�j ) =

i1

i2

i3

i4

j1

j2

j3

j4

and δ{2,3,4,1}(�ı |�j ) =

i1

i2

i3

i4

j1

j2

j3

j4

.

(C29)

The weight associated to a given contraction is called the
Weingarten function, Wg(σ , d). It is a function on ele-
ments of Sk and admits an expansion in terms of characters
of the symmetric group

Wg(σ , d) = 1
k!

∑

λ!k

fλχλ(σ )
cλ(d)

, (C30)

where we sum over the integer partitions of k that label
the irreps of Sk; χλ(σ ) is an irreducible character of λ, and
fλ is the dimension of the irrep λ. The polynomial in the
denominator is defined as

cλ(d) =
∏

(i,j )∈λ
(d + j − 1), (C31)

where we take a product over the coordinates (i, j ) of the
Young diagram of λ. Writing λ as an integer partition of

k, with elements λi, the product is taken over i from 1
to �(λ), the length of the partition, and j from 1 to λi.
The expression for the Weingarten function in Eq. (C30),
is valid for k ≥ d by restricting the sum over partitions
of length �(λ) ≤ d [such that the polynomial cλ(d) in the
denominator is free of zeroes].

The Weingarten functions depend only on the cycle type
of the permutation, where the cycle type of σ ∈ Sk is an
integer partition of k. We end this brief exposition by list-
ing the first few unitary Weingarten functions, labeled by
cycle type. For k = 1, Wg[(1), d] = (1/d), and for k = 2,
we have

Wg[(1, 1), d] = 1
d2 − 1

, and

Wg[(2), d] = − 1
d(d2 − 1)

. (C32)
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k-fold twirl over U(d). The k-fold twirl, Eq. (C21), of
an operator over the unitary group can be written using
Eq. (C26) as

T (k)
U (X ) = EU

[
U⊗k(X )U†⊗k]

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)PσTr(XPτ ). (C33)

This expression equivalently follows from noting that, by
the invariance of the Haar measure, the k-fold twirl T (k)

U is
invariant both under k-fold unitary conjugation and under
k-fold conjugation of X .

We also note that the k-fold twirl of a permuta-
tion operator is T (k)

U (Pρ) = Pρ . Equation (C33), then
gives that Wg(σ−1τ , d)Tr(PτPρ) = δσ ,ρ . Viewed as a
matrix equation, the matrix of Weingarten functions
Wg(k) is the pseudoinverse of the k! × k! matrix G(k) of
inner products of permutation operators Pσ (the Gram
matrix of Pσ ’s). The elements of G(k) are the inner

products between permutation operators, Tr(PσPτ ) =
d�(σ

−1τ), where �(σ−1τ) simply counts the number of
closed cycles in the permutation product (equivalently, the
length of the cycle type of the product):

Wg(k) = G−1
(k) with Wg(k) =

[
Wg(σ−1τ , d)

]
σ ,τ∈Sk

and

G(k) =
[
Tr(PσPτ )

]
σ ,τ∈Sk

. (C34)

For more discussion on this, see Refs. [11,79]. The matrix
inverse exists for k ≤ d. Although elegant, this derivation
of the Weingarten functions quickly becomes intractable
as we need to invert a k! × k! matrix. The representation
theoretic definition in Eq. (C30) is straightforward to use
in computing high moments.

Wiring diagrams for the first few Haar moments. To set
up the calculations that will follow in the next section, we
explicitly write out the wiring diagrams in the first two
moments, detailing the index contractions one must take.
For k = 1, we simply have

EU

[
U U†

]
=

∑
σ,τ∈S1

Wg(σ−1τ, d)
Pσ

Pτ

=
1
d

(C35)

For k = 2, we sum over elements of S2, separately permuting the internal and external indices as

EU

⎡
⎢⎢⎢⎣ U U†

U U†
⎤
⎥⎥⎥⎦ =

∑
σ,τ∈S2

Wg(σ−1τ, d)

Pσ

Pτ

=
1

d2 − 1

⎛
⎜⎜⎝ + − 1

d
− 1

d

⎞
⎟⎟⎠

=
1

d2 − 1

⎛
⎜⎜⎝ + − 1

d
− 1

d

⎞
⎟⎟⎠ .

(C36)

Moments of traces. We can use the formalism introduced above to compute a few simple expressions averaged over
the unitary group, which will be of use in later sections. Consider the 2kth moment of the trace of a random unitary,
|Tr(U)|2k, which we integrate over the unitary group as

EU
[|Tr(U)|2k] =

∑

σ ,τ∈Sk

Wg(σ−1τ , d)Tr(PσPτ ), (C37)
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with Tr(PσPτ ) = d�(στ). View this as a matrix equation,
and recall that for k ≤ d the Weingarten functions are the
inverse of the inner products Eq. (C34). Then, we simply
have the trace of the identity matrix, a sum over Sk:

EU
[|Tr(U)|2k] = k!. (C38)

This quantity is essentially the same as the frame potential
[14], a quantity that quantifies the 2-norm distance between
an ensemble of unitaries E and the Haar ensemble. The
frame potential for any ensemble is lower bounded by this
Haar value.

Averages of pure states. Consider a Haar random state
|ψ〉 = U|0〉, with |0〉 ∈ C

d and U ∈ U(d), and take the k-
fold average with respect to the unitary group. Then,

T (k)
U (|ψ〉〈ψ |⊗k) =

∑

σ ,τ∈Sk

Wg(σ−1τ , d)PσTr(Pτ |ψ〉〈ψ |⊗k)

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)Pσ , (C39)

as permuting and contracting the pure state moments is
the same for any permutation. This also follows from
Schur-Weyl duality by noting that the k-fold average is
invariant under k-fold unitary conjugation and may thus be
expressed as a sum of permutations. Fixing σ above, the
sum over τ just gives the sum over Weingarten functions,
which is

∑

τ∈Sk

Wg(τ , d) = 1
k!

(
k + d − 1

k

)−1

. (C40)

Equivalently, we can fix this coefficient by taking the trace
of Eq. (C39). Thus we find that the k-fold average of a pure
state is

T (k)
U (|ψ〉〈ψ |⊗k) =

(
k + d − 1

k

)−1

�sym, (C41)

where �sym = (1/k!)
∑

σ∈Sk
Pσ is the projector onto the

symmetric subspace and
(

k + d − 1
k

)
is the corresponding

dimension.
A similar calculation is to consider the moments of the

expectation value of a conjugated operator 〈ψ |U†MU|ψ〉,
where |ψ〉 ∈ C

d and a Hermitian operator M ∈ Hd. We
find

EU
[|〈ψ |U†MU|ψ〉|k]

=
∑

σ ,τ∈Sk

Wg(σ−1τ , d)Tr(Pσ |ψ〉〈ψ |)Tr(PτM⊗k).

(C42)

Again, as permuting and contracting tensor products of a
pure state just gives one, for any τ the σ sum is just a sum

over Weingarten functions. Using Eq. (C40) and recalling
the definition of the projector onto the symmetric subspace,
we conclude

EU
[〈ψ |U†MU|ψ〉k] =

(
d + k − 1

k

)−1

Tr
(
�symM⊗k) .

(C43)

6. Approximate k-designs and bounds on weight
distributions

Weingarten calculus is a powerful tool. It character-
izes twirls over the diagonal representation of the unitary
group for arbitrary tensor powers k ∈ N. In turn, this for-
mula allows for computing moments of random variables
that involve Haar random unitaries. These then can be
used to establish generic features, such as concentration
of measure. However, full control of all moments comes
at a price. It is excessively difficult to sample unitaries
directly from the Haar measure. Simple dimension count-
ing highlights that circuits of exponential size are required
to implement a Haar-random unitary circuit on n qudits.

The notion of k-designs introduced in Appendix C 4
addresses this issue by allowing one to interpolate between
Haar-random (k = ∞) and highly structured (k = 1)
ensembles. Unfortunately, very few explicit constructions
of k-designs are known. This lack of efficient construc-
tions can be overcome by relaxing the defining property
of a k-design.

Definition 4 (Approximate k-design): Fix k ∈ N and ε >
0. A unitary ensemble E = {pi, Ui}N

i=1 is an ε-approximate
(unitary) k-design if the associated twirling channel
T (k)
E (X ) =∑n

i=1 piU⊗k
i X (U†

i )
⊗k obeys

∥∥∥T (k)
E − T (k)

U

∥∥∥
�
≤ k!

d2k ε. (C44)

Here, T (k)
U denotes the twirl over the full unitary group

(C33) (with respect to the Haar measure).

This definition readily extends to ensembles of infinite
cardinality. Several different definitions of approximate
k-designs can be found in the literature. By and large
these differ in terms of the metric that is used to quantify
closeness. We define an approximate design up to addi-
tive error, but choose ε to scale with d in a manner that
mimics relative error, similar to the strong definition of a
design used in Ref. [12]. This will also simplify exposition
considerably.

The approximate k-design property imposes severe
restrictions on associated distribution of weights and the
ensemble size.
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Lemma 20 (Restatement of Lemma 3): Let E =
{pi, Ui}N

i=1 be an ε-approximate k-design for U(d). Then,

max
1≤j≤N

pj ≤ (1 + ε) k!
d2k and N ≥ d2k

(1 + ε)k!
. (C45)

Lower bounds on approximate k-design cardinality are
known, see, e.g., Ref. [12, Lemma 26] for a similar result.
We are not aware of any weight bounds in the literature.

We also consider orbits of approximate k-designs E =
{pi, Ui}N

i=1. Fix |x〉 ∈ C
d arbitrary and define |yi〉 = Ui|x〉

for i ∈ [N ]. Doing so results in a weighted set of unit vec-
tors. These sets are called approximate complex-projective
k-designs [18,80]. They approximately reproduce the first
k moments of the uniform distribution on the complex unit
sphere. Lower bounds on the cardinality of exact spherical
k-designs are known, see, e.g., Ref. [20], but we are not
aware of any statement that bounds the associated weights.

Lemma 21: Let {qi, |yi〉}N ′
i=1 ⊂ C

d be the weighted set of
distinct states contained in an orbit of an ε-approximate
k-design. Then,

max
j∈[N ′]

qj ≤ (1 + ε)
(

d + k − 1
k

)−1

and

N ′ ≥ 1
1 + ε

(
d + k − 1

k

)
. (C46)

The emphasis on distinct states is justified. Two or more
distinct unitaries can give rise to the same state.

Proof of Lemma 20. Fix j ∈ [N ] = {1, . . . , N } and use
Eq. (C38) to conclude

N∑

i=1

pi

∣∣∣Tr(U†
j Ui)

∣∣∣
2k

= EE
[
|Tr(U†

j U)|2k
]
≤ k!

+ EE
[
|Tr(U†

j U)|2k
]
− EU

[
|Tr(U†

j U)|2k
]

︸ ︷︷ ︸
�

. (C47)

The approximate k-design property implies that the mis-
match on the rhs remains small. Let |�〉 = (1/

√
d)
∑d

i=1 |i〉⊗ |i〉 denote the maximally entangled state. Then, Tr(U) =
d〈�|U ⊗ I|�〉 and we apply Definition 4 to bound

� = EE
[
|Tr(U†

j U)|2k
]
− EU

[
|Tr(U†

j U)|2k
]

= d2k〈�|⊗k
(

EE

{ [
(U ⊗ I)|�〉〈�|(U ⊗ I)†

]⊗k
}

− EU

{ [
(U ⊗ I)|�〉〈�|(U ⊗ I)†

]⊗k
})

|�〉⊗k

≤ d2k
∥∥∥∥EE

{
[U ⊗ I(|�〉〈�|)]⊗k

}

− EU

{
[U ⊗ I(|�〉〈�|)]⊗k

}∥∥∥∥
∞

≤ d2k
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤εk!. (C48)

Combining both arguments implies
∑N

i=1 pi

∣∣∣Tr(U†
j Ui)

∣∣∣
2k

≤ (1 + ε)k!. This allows us to conclude

(1 + ε)k! ≥
N∑

i=1

pi

∣∣∣Tr
(

U†
j Ui

)∣∣∣
2k

=
∑

i =j

pi

∣∣∣Tr
(

U†
j Ui

)∣∣∣
2k
+ pj

∣∣∣Tr
(

U†
j Uj

)∣∣∣
2k

≥ pj d2k,

(C49)

for j ∈ [N ] arbitrary. The lower bound on the cardinality
N is an immediate consequence of this weight restriction:

1 =
N∑

i=1

pi ≤
N∑

i=1

(1 + ε) k!
d2k = N (1 + ε) k!

d2k . (C50)

�

Proof of Lemma 21. The argument is very similar to the
proof of Lemma 20. Fix j ∈ [N ′], set M = |yj 〉〈yj | and use
Eq. (C43) to conclude

N ′∑

i=1

qi
∣∣〈yj , yi〉

∣∣2k

=
N∑

i=1

pi
∣∣〈yj |Ui|x〉

∣∣2 = EE
[〈x|UMU†|x〉]

=
(

d + k − 1
k

)−1

Tr
(
�symM⊗k)

+Tr
(
M⊗k{EE

[
(U|x〉〈x|U†)⊗k]−EU

[
(U|x〉〈x|U†)⊗k]})

︸ ︷︷ ︸
�

.

(C51)

Next, observe that the Haar average obeys Tr
(
�symM⊗k

)

= Tr
(
�sym|yj 〉〈⊗k

) = 1. The approximate k-design prop-
erty in addition implies that the deviation from this ideal
value remains small. The matrix Hoelder inequality asserts
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� = Tr
(
M⊗k{EE

[
(U|x〉〈x|U†)⊗k]− EU

[
(U|x〉〈U†)⊗k]})

≤ ‖M⊗k‖∞
∥∥∥T (k)

E
[
(|x〉〈x|)⊗k]− T (k)

U

[
(|x〉〈x|)⊗k]

∥∥∥
1

≤ ‖M‖k
∞
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤ε k!

d2k ≤
(

d + k − 1
k

)−1

ε, (C52)

because ‖M‖∞ = ‖|yj 〉〈‖∞ = 1. This allows us to conclude

(1 + ε)
(

d + k − 1
k

)−1

≥
N ′∑

i=1

qi
∣∣〈yj , yi〉

∣∣2k = qj |〈yj , yj r〉|2k +
∑

i =j

qj |〈yj , yi〉|2k ≥ qj , (C53)

for any j ∈ [N ′]. Both weight and cardinality bound readily follow from this assertion. �

7. A general moment bound for Haar-random unitaries

Theorem 22 (Detailed restatement of Theorem 10): Fix |φ〉 ∈ (Cd)⊗2 and M ∈ H
⊗2
d such that I � M � 0. Set

SU (M,φ) := Tr MU ⊗ I(|φ〉〈φ|)) = M
U† U

φ φ ,

(C54)

where U ∈ U(d) is chosen uniformly from the Haar measure. Then,

μ(M,φ) := EU [SU (M,φ)] =
1
d Mφφ = Tr (MD ⊗ I(|φ〉〈φ|)) ,

(C55)

where D(X ) = [Tr(X )/d]I is the depolarizing channel. Moreover, the following bounds apply to all centered moments of
order k = 1, . . . , d2/3:

EU

{
[SU(M ,φ)− μ(M ,φ)]k

}
≤ Ck(k!)2

dk/2 . (C56)

Here, Ck = [1/(k + 1)]
(

2k
k

)
is the kth Catalan number.

8. Moment bounds for approximate designs

Corollary 23: With the same assumptions in Theorem 22, but suppose that U ∈ U(d) is chosen from an ε-approximate
unitary k-design E . Then,

EE

⎡
⎣(

M
U† U

φ φ︸ ︷︷ ︸
SU (M,φ)

− 1
d

Mφφ

︸ ︷︷ ︸
μ(M,φ)

)k
⎤
⎦ ≤ (k!)2

dk/2

(
Ck +

ε

k!d3k/2

)
.

(C57)

Proof. We can rewrite random variable and (Haar) expectation as

SU(M ,φ) = Tr
[
MU ⊗ I(|φ〉〈φ|)] and μ(M ,φ) = Tr

[
I

d
⊗ Tr1(M )U ⊗ I(|φ〉〈φ|)

]
. (C58)
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Combine them to obtain

S̄U(M ,φ) = SU(M ,φ)− μ(M ,φ) = Tr
[
M̃U ⊗ I(|φ〉〈)] , (C59)

where M̃ = M − (1/d)I ⊗ Tr1(M ) ∈ Hd ⊗ Hd is a traceless difference of two PSD matrices. Next, fix k ∈ N and compare
the kth centered moment to its Haar-averaged counterpart:

EE
[
S̄U(M ,φ)k

] ≤ EU
[
S̄U(M ,φ)k

]+ {EE
[
S̄U(M ,φ)k

]− EU
[
S̄U(M ,φ)k

]}
︸ ︷︷ ︸

�

. (C60)

The first contribution is bounded by Theorem 22 and the approximate k-design property (Definition 4) ensures that the
mismatch � remains controlled:

� = Tr
(

M̃⊗k
{
EE
[
(U ⊗ I)⊗k]− EU

[
(U ⊗ I)⊗k]

} [
(|φ〉〈φ|)⊗k]

)

≤ ‖M̃⊗k‖∞
∥∥(EE
[
U⊗k ⊗ I

]− EU
[
U⊗k ⊗ I

]) [
(|φ〉〈φ|)⊗k]∥∥

1

≤ ‖M̃‖k
∞
∥∥EE
[
U⊗k]− EU

[
U⊗k]∥∥

� =‖M̃‖k
∞
∥∥∥T (k)

E − T (k)
U

∥∥∥
�
≤‖M̃‖k

∞
k!
d2k ε. (C61)

Finally, use the fact that M̃ is the difference of two PSD
matrices to conclude

‖M̃‖∞ ≤ max
{
‖M‖∞, ‖1

d
I ⊗ Tr1(M )‖∞

}

= max
{
‖M‖∞,

1
d
‖Tr1(M )‖∞

}
≤ 1, (C62)

where we also use Eq. (C6). �

Corollary 24 (Moments of k-design orbits): For |x〉 ∈
C

d and a measurement M ∈ Hd (I � M � 0) define

Q̄U(M , x) = 〈x|U†MU|x〉 − Tr(M )

d
, (C63)

where U is sampled from an ε-approximate k-design.
Then,

EE
[
Q̄U(M , x)k

] ≤
(

d + k − 1
k

)−1 (
dk/2 + ε)

≤ (1 + ε)
(

k2

d

)k/2

. (C64)

Proof. Let M̄ = M − [Tr(M )/d]I denote the traceless part
of M and note that this reformulation cannot increase the

operator norm:‖M̄‖∞ ≤ ‖M‖∞ ≤ 1. Moreover,

EE
[
Q̄U(M , x)k

] ≤ EU
[
Q̄U(M , x)k

]

+ EE
[
Q̄U(M , x)k

]− EU
[
Q̄U(M , x)k

]
︸ ︷︷ ︸

�

,

(C65)

and� ≤ ‖M̄‖k
∞

(
d + k − 1

k

)−1

ε follows from arguments

that are analogous to the ones presented in the proof of
Lemma 21. Next, apply Eq. (C43) to the remaining Haar
expectation:

EU
[
Q̄U(M̄ , x)

] = EU
[〈x|U†MU|x〉k]

=
(

d + k − 1
k

)−1

Tr
(
�symM̄⊗k) .

(C66)

This trace can be bounded using tr(M̄ ) = 0, tr(M̄ l) ≤
tr(M̄ 2)l/2 for l ≥ 2 and tr(M̄ 2) = ‖M̄‖2

2 ≤ ‖M‖2
2, see, e.g.,

Ref. [21, Lemma 17]:

Tr
(
�symM̄⊗k) ≤ ‖M̄‖k

2 ≤ ‖M‖k
2 ≤ dk/2‖M‖k

∞ ≤ dk/2.
(C67)

�

9. Proof of the general moment bound

This section is devoted to proving the general moment
bound presented in Theorem 22 in Appendix C 7.
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a. Reformulation and basic norm bounds

Fix M ∈ Hd ⊗ Hd PSD with ‖M‖∞ ≤ 1 and a state |φ〉 ∈ C
d ⊗ C

d. Use the vectorization correspondence |φ〉 =
vec(�) with � ∈ Md×d to rewrite the random variable defined in Theorem 22:

SU (M, φ) = M
U† U

φ φ = M
U†

Φ†
U

Φ
= MΦ

U† U
.

(C68)

Here, we implicitly define M� := (I ⊗�†)M (I ⊗�). Also, recall that vectorization is an isometry, i.e., ‖�‖2 = 〈φ|φ〉 =
1. The following auxiliary result bounds the 2-norm of M� and its partial contractions.

Lemma 25: Fix a PSD matrix M ∈ H
⊗2
d with ‖M‖∞ ≤ 1 and a matrix � ∈ Md obeying ‖�‖2 = 1. Then, M� = (I ⊗

�†)M (I ⊗�) ∈ H
⊗2
d obeys

‖Tr1(M�)‖2 ≤ d and ‖M�‖2 ≤
√

d, as well as ‖Tr2(M�)‖2 ≤
√

d. (C69)

Proof. Observe

‖Tr1(MΦ)‖2
2 =

Φ† Φ
M M

Φ Φ†
= Tr Φ†ΦTr1(M)Φ†ΦTr1(M)

)
=: h1(Φ†Φ) .

(C70)

The function X �→ h1(X ) is convex, according to Lemma 19 in Appendix C 2 above [M � 0 implies Tr1(M ) � 0]. More-
over, ρ = �†� ∈ Hd is guaranteed to be a quantum state: ρ = �†� � 0 and Tr(ρ) = ‖�‖2

2 = 1. The extreme points
of the convex set of all quantum states are pure states. The convex function h1 achieves its maximum value at such an
extreme point (Fact 18 in Appendix C 2) and we infer

h1(�
†�) ≤ max

ρ state
h1(ρ) = max

|ψ〉
h1(|ψ〉〈ψ |) = max

|ψ〉
〈ψ |Tr1(M )|ψ〉2 = ‖Tr1(M )‖2

∞. (C71)

Apply Eq. (C6) to conclude the first estimate: ‖Tr1(M )‖2
∞ ≤ d2‖M‖∞ ≤ d2. The second bound can be derived in a similar

fashion. Observe,

‖MΦ‖2
2 =

Φ† Φ
M M

Φ Φ†
= Tr Φ†Φ ⊗ IMI ⊗ Φ†ΦM

)
= h2(Φ†Φ) .

(C72)

The function h2(X ) is again convex, because X �→ I ⊗ X is a linear transformation and M � 0. Moreover, ρ = �†� is
again a quantum state. We infer

h2(�
†�) ≤ max

ρ state
h2(ρ) = max

|ψ〉
h2(|ψ〉〈ψ |) = max

|ψ〉
‖Tr2 (I ⊗ |ψ〉〈ψ |M )‖2

2 , (C73)

because convex functions achieve their maximum at the boundary of convex sets (Fact 18). Applying the relation ‖X ‖2 ≤√
d‖X ‖∞ for Schatten norms in Hd, we conclude

‖M�‖2
2 ≤ d max

|ψ〉
‖Tr2 (I ⊗ |ψ〉〈ψ |M ) ‖2

∞ = d
(

max
|ψ〉,|x〉

(〈x| ⊗ 〈ψ |)M (|x〉 ⊗ |ψ〉)
)2

≤ d‖M‖2
∞. (C74)

The final bound can be established directly. Set ρ = �†� and observe

‖Tr2(MΦ)‖2
2 = M M

ΦΦ† Φ† Φ
= ‖Tr2 (I ⊗ ρM)‖2

2 .

(C75)
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Apply ‖X ‖2 ≤ √
d‖X ‖∞ to simplify further

‖Tr2(I ⊗ ρM )‖2 ≤
√

d‖Tr2(I ⊗ ρM )‖∞ ≤
√

d max
|x〉
∣∣〈x|Tr2(I ⊗ ρM )|x〉∣∣

=
√

d max
|x〉
∣∣Tr (|x〉〈x| ⊗ ρM )

∣∣. (C76)

Finally, use matrix Hoelder (C4) to infer the advertised bound:
√

d max
|x〉

|Tr (|x〉〈x| ⊗ ρM )| ≤
√

d max
|x〉

‖|x〉〈x| ⊗ ρ‖1‖M‖∞ =
√

d‖M‖∞. (C77)

�

b. Expectation value and centering

The following result is well known in the literature, see, e.g., Ref. [22]. We include a self-contained derivation based
on wiring diagrams for the sake of completeness.

Lemma 26 (Averaging unitary channels produces the depolarizing channel): Fix a PSD matrix M ∈ H
⊗2
d and |φ〉 ∈

C
d ⊗ C

d. Let U(X ) = UXU† be a Haar-random unitary channel. Then,

EU{Tr [MU ⊗ I(|φ〉〈φ|)]} = Tr [MD ⊗ I(|φ〉〈φ|)] with D(ρ) = Tr(ρ)
d

I. (C78)

Proof. Averaging over a single unitary U and its adjoint decouples the register in question. Combine this with the
reformulation from the previous subsection to conclude

EU [Tr (MU ⊗ I(|φ〉〈φ|))] = E

[
M

U† U
φ φ

]
= E

[
MΦ

U† U
]

=
1
d

MΦ =
1
d

M
Φ†Φ

=
1
d

Mφφ .

(C79)

The connection to the depolarizing channel readily follows from D ⊗ I(|φ〉〈φ|) = (I/d)⊗ Tr2(|φ〉〈φ|). �

Corollary 27 (Reformulation of the centered random variable): Fix |φ〉 ∈ C
d ⊗ C

d (state) and M ∈ H
⊗2
d such that

I � M � 0 (measurement). For channels U(X ) = UXU† and D(X ) = [Tr(X )/d]I define

SU(M ,φ) = Tr [MU ⊗ I(|φ〉〈φ|)] , as well as μ(M ,φ) = Tr [MD ⊗ I(|φ〉〈φ|)] .

Then, we may rewrite the difference of these variables as

S̄U (M,φ) = SU (M,φ) − μ(M,Φ) = M̄Φ
U† U

,
(C80)

where M̄� = M� − [Tr(M�)/d]I ∈ H
⊗2
d is the traceless part of M� [i.e., Tr(M̄�) = 0].

This reformulation immediately follows from the proof of Lemma 26, provided that we rewrite

μ(M,φ) =
1
d
Tr(MΦ) =

Tr(MΦ)
d2

U† U
.

(C81)
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c. Bounds on centered moments

Lemma 28: With the same assumptions and notation as in Corollary 27, suppose that U ∈ U(d) is chosen uniformly from
the Haar measure. Then, for any k ≤ d2/3

EU
[
S̄U(M ,φ)k

] ≤ Ck
(k!)2

dk/2 , (C82)

where Ck = [1/(k − 1)]
(

2k
k

)
is the kth Catalan number.

Proof. It is instructive to first analyze and understand the second moment:

EU

[
S̄U (M, φ)2

]
= EU

⎡
⎢⎢⎢⎢⎣

M̄Φ
U† U

M̄Φ
U† U

⎤
⎥⎥⎥⎥⎦ = EU

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣ U U†

U U†
M̄Φ

M̄Φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C83)

For k = 2 there are two permutations: the identity permutation I = {1, 2} and swap (or flip) S = {2, 1}. This results in
(k!)2 = 4 different contributions to the formula: (I, I), (S, S), (S, I), and (I, S) contribute each. The associated Weingarten
functions are Wg[(1), d] = 1/(d2 − 1) and Wg[(2), d] = −[1/d(d2 − 1)]. Ignoring the common factor 1/(d2 − 1), the
individual contributions become

M̄Φ

M̄Φ

+
M̄Φ

M̄Φ

− 1
d

M̄Φ

M̄Φ

− 1
d

M̄Φ

M̄Φ

= M̄Φ M̄Φ + M̄Φ M̄Φ − 1
d

M̄Φ M̄Φ − 1
d

M̄Φ M̄Φ

(C84)

Each term is a full contraction that is also called a tensor network [41,42]. There are three possible constituents for
each tensor network: M̄�, Tr2(M̄�), and Tr1(M̄�). Importantly, no full self-contractions can contribute to the overall
sum, because M̄φ is traceless. This ensures that networks with self-contractions—like the first term—evaluate to zero.
Moreover, Lemma 25 bounds the 2-norm of each elementary constituent:

M̄Φ

2

≤
√

d , M̄Φ

2

≤
√

d , M̄Φ

2

≤ d .

(C85)

The final bound is considerably larger than the rest. However, the corresponding contribution in the sum (C84) is also
suppressed by an additional dimension factor. This is not a coincidence: term 3 can arise only if the cycle classes of (σ ,τ )
differ from each other. This feature reflects itself in the Weingarten function. For the second moment, we thus obtain the
following simple bound (ignoring signs):

EU
[
S̄(M ,φ)2

] ≤ 0 + d + d/d + d2/d
d2 − 1

= 2d + 1
d2 ≤ 4d−1. (C86)

It immediately follows from upper bounding individual terms using Eq. (C85).
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This general strategy also applies to higher moments.
Fix k ≥ 3 arbitrary. Then, Weingarten calculus implies

EU
[
S̄U(M ,φ)k

] =
∑

σ ,τ∈Sk

Wgd(σ , τ)Nσ ,τ

× [M̄�, Tr2(M̄�), Tr1(M̄�)
]

. (C87)

Here, each Nσ ,τ (·) indicates a tensor network diagram
that combines (at most) three elementary building blocks
according to rules that are dictated by the permutations τ
and σ :

Nσ,τ = M̄⊗k
Φ

σ

τ
.

(C88)

We can without loss restrict summation to tensor networks
without self-contractions, because Tr(M̄�) = 0 ensures
that such contributions vanish identically. Next, we apply
a powerful general bound to individual tensor networks.
Reference [42, Proposition 18] states that the value of a
tensor network (without self-contractions) is bounded by
the product of 2-norms of the individual constituents. For
any σ , τ this implies

|Nσ ,τ | =
∣∣Nσ ,τ
[
M̄�, Tr2(M̄�), Tr1(M̄�)

]∣∣

≤ ‖M̄�‖ν1
2 ‖Tr2(M̄�)‖ν2

2 ‖Tr1(M̄�)‖ν3
2 , (C89)

where ν1, ν2, ν3 ∈ [k] denote the number of times each
basic building block occurred in the network. Clearly,
ν1 + ν2 + ν3 = k and we can combine this with Eq. (C85)
to conclude

|Nσ ,τ | ≤ dν1/2dν2/2dν3 = dk/2+ν3/2. (C90)

The final contribution dν3/2 is always counterbalanced by
the Weingarten function, i.e., the dangerous terms are
always suppressed by powers of 1/d. As we discuss, the
Weingarten functions Wg(σ , d) depend only on the cycle
type of the permutation σ . The asymptotic behavior is
Wg(σ , d) ∼ 1/d2k−�(σ ), where � is the length of the cycle
type, i.e., the number of cycles in the permutation. The
leading-order terms are those for which the cycle type is
(1, 1, . . . , 1), the partition of 2k into 1’s. For Wg(σ−1τ , d)
this corresponds to terms with σ = τ . Returning to the
problem at hand, we contract the upper indices of the k
copies of M̄� with respect to σ and the lower indices with
τ , as shown in Eq. (C88). The leading-order terms are
those in which we act similarly on upper and lower indices.
In order to generate terms in the tensor-network contrac-
tion of M ’s containing a dangerous contribution, Tr1(M̄�),
the lengths of the cycle types of the two permutations must

differ by at least one in order to generate a contraction, a
length one cycle, in the σ indices:

EU
[
S̄U(M ,φ)k

] ≤
∑

τ ,σ∈Sk

|Wg(σ−1τ , d)|Nσ ,τ

≤
∑

σ∈Sk

Wg[(1, . . . , 1), d]dk/2

+
∑

τ  =σ∈Sk

Wg(σ−1τ , d)dk/2+ν3/2.

(C91)

Although, the Tr1(M̄�) terms will only contribute at sub-
leading order, they appear with a larger contribution in
powers of d. Thus, to rigorously upper bound the expres-
sion, we need bounds on the Weingarten functions as well
as on the number of terms ν3 which appear in a given tensor
network Nσ ,τ .

Precise upper bounds on the Weingarten functions are
known [40,81]. For our purposes, it will be convenient to
use the (slightly weaker) bound in Ref. [82], which states
that for k ≤ d2/3

|Wg(σ , d)| ≤ 3
2

Ck−1

d2k−�(σ ) , (C92)

where Ck is the kth Catalan number.
Now we establish that ν3(σ , τ), the number of danger-

ous terms Tr1(M̄�) terms in a given Nσ ,τ , is bounded by the
distance between the permutations σ and τ as ν3(σ , τ) ≤
2d(σ , τ). First we note a few facts about the symmetric
group. d(σ , τ) is defined as the minimal number of trans-
positions needed to take σ to τ , and defines a distance
between the permutations. Specifically, d(σ , τ) is a metric
on the Cayley graph of the symmetric group with the gen-
erating set of transpositions. The length of the cycle type of
a permutation σ ∈ Sk is related to the number of transpo-
sitions needed to build σ from the identity permutation as
�(σ ) = k − d(σ , I). Furthermore, a transposition changes
the number of cycles in a permutation by exactly one.

Recalling Eq. (C88), the terms Tr1(M̄�) appear only in
a given tensor-network diagram when the permutation σ
has a fixed point where τ does not, i.e., there is a self-
contraction in the σ indices of M̄⊗k

� and not the τ indices.
This implies that σ has a length one cycle at a point where
τ does not. As d(σ , τ) is the minimal number of transposi-
tions required to take σ to τ , and a transposition can only
change the number of cycles by exactly 1, then for every
two dangerous terms the distance between the permuta-
tions σ and τ must increase by at least one. This shows
that ν3(σ , τ) is bounded as

ν3(σ , τ) ≤ 2d(σ , τ) = 2[k − �(σ−1τ)]. (C93)

Returning to the general moment bound, we can apply the
bound on Weingarten functions in Eq. (C92) and the bound
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on ν3 to show that

EU
[
S̄U(M ,φ)k

]

≤
∑

τ ,σ∈Sk

|Wg(σ−1τ , d)|Nσ ,τ

≤
∑

τ ,σ∈Sk

3
2

Ck−1d�(σ
−1τ)−2k+k/2+ν3/2

≤
∑

τ ,σ∈Sk

3
2

Ck−1d−k/2 ≤ Ck(k!)2d−k/2, (C94)

which establishes the claim. �

10. ε-coverings of local random circuits

We want to extend our results in Sec. III A on complex-
ity growth to local random circuits, where the gates are
chosen Haar randomly from U(q2). Obviously, the ensem-
ble of size T circuits is continuous and statements about
the number of states of a certain complexity become less
meaningful. Nevertheless, we can consider an ε-covering
of the ensemble of local random quantum circuits (RQCs)
in order to make concrete statements about complexity
growth.

We say that a set of unitaries V is an ε-covering of a set
of unitaries U if for all U ∈ U there is some V ∈ V such
that ‖U(·)U† − V(·)V†‖� ≤ ε.

Consider the set of local random circuits of size T, where
again we act on n local qudits with local dimension q
and with local gates chosen Haar randomly from U(q2).
Following Lemma 27 from Ref. [12], we can bound the
size of an ε-covering of the set ERQC size T local RQCs.
Approximating each local gate to accuracy ε/T, we con-
struct a covering in diamond norm of each gate with size

≤ (10T/ε
)q4

. For the nT choices of gates in the circuit,
we conclude that there exists an ε-covering ẼRQC of size
T RQCs with cardinality

|ẼRQC| ≤ nT
(10T
ε

)Tq4

. (C95)

Furthermore, if an ensemble E forms an ε-approximate
unitary k-design, then the ε-covering of E will form an
ε′-approximate unitary design with ε′ = ε + 2d2kε (from
Proposition 8 in Ref. [12]). Using the lower bound on the
cardinality of an approximate design in Lemma 20 and the
upper bound on the cardinality of an ε-covering of size T
local random circuits in Eq. (C95), means that for ẼRQC to
form an approximate design, we must have

1
1 + ε′

d2k

k!
≤ |ẼRQC| ≤ nT

(10T
ε

)Tq4

. (C96)

This gives a lower bound on the size for local random
circuits to form k-designs

T ≥ 2kn log q
q4 log k

. (C97)

Therefore, an optimal random circuit implementation of
a unitary design will have at least an essentially linear
scaling in both n and k.

APPENDIX D: CONCENTRATION OF MEASURE
FOR HAAR-UNIFORM VECTORS

Proposition 29: Fix M ∈ Hd with ‖M‖∞ ≤ 1 and sup-
pose that |ψ〉 ∈ C

d is chosen uniformly from the complex
unit sphere. Then,

Pr [|〈ψ |M |ψ〉 − E (〈ψ |M |ψ〉)| ≥ τ ]

≤ 2 exp
(
− dτ 2

9π3

)
for any τ ≥ 0. (D1)

The proof is standard and we include it in this Appendix
for completion. It is based on Levy’s lemma, i.e., concen-
tration of measure on the real-unit sphere S

2d−1 ⊂ R
2d. A

function f : S
2d−1 → R is L-Lipschitz (with respect to the

Euclidean norm ‖ · ‖�2 on R
2d) if

|f (x)− f (y)| ≤ L‖x − y‖�2 for all x, y ∈ S
2d−1. (D2)

Theorem 30 (Levy’s lemma): Let f : S
2d−1 → R be a L-

Lipschitz function on the unit sphere. Then, the following
relation is true if x is chosen uniformly from S

2d−1:

Pr{|f (x)− E [f (x)]| ≥ τ } ≤ 2 exp
(
− 4dτ 2

9π3L2

)
. (D3)

Proof of Proposition 29. The complex unit sphere in d
dimensions admits an isometric embedding—with respect
to the Euclidean norm—onto the real-valued unit sphere
S

2d−1 ⊆ R
2d:

|ψ〉 �→ |x〉 = Re(|ψ〉)〉 ⊕ Im(|ψ〉) ∈ S
2d−1. (D4)

This embedding maps the uniform distribution on the com-
plex unit sphere in C

d to the uniform distribution on the
real-valued unit sphere in R

2d. Under this embedding, the
function of interest 〈ψ |M |ψ〉 becomes

〈ψ |M |ψ〉 = 〈Re(ψ)|M |Re(ψ)〉
+ 〈Im(ψ)|M |Im(ψ)〉 = 〈x|M ⊕ M |x〉,

(D5)

because M is Hermitian. Its expectation is also preserved
and Lemma 31 immediately below states that this function
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is Lipschitz with constant 2‖M‖∞ ≤ 2. The claim then
readily follows from Levy’s lemma (Theorem 30). �

Lemma 31: Fix M ∈ Hd. Then, the following relation is
true for any pair of unit-norm vectors x, y ∈ S

2d−1 ⊂ R
2d

|〈x|M ⊕ M |x〉 − 〈y|M ⊕ M |y〉| ≤ 2‖M‖∞‖x − y‖�2 .
(D6)

Proof. Fix x, y ∈ S
2d−1 and apply Hoelder’s inequality:

|〈x|M ⊕ M |x〉 − 〈y|M ⊕ M |y〉|2

= Tr [M ⊕ M (|x〉〈x| − |y〉〈y|)]2

≤ ‖M ⊕ M‖2
∞‖|x〉〈x| − |y〉〈‖2

1. (D7)

The block structure of M ⊕ M ensures ‖M ⊕ M‖∞ =
‖M‖∞, while the remaining term is the trace norm of a
difference of pure states. This can be computed analytically
and we obtain

‖|x〉〈x| − |y〉〈y|‖2
1

= 4
(
1 − 〈x, y〉2) = 4 (1 + 〈x, y〉) (1 − 〈x, y〉)

≤ 4 (2 − 2|〈x, y〉|) , (D8)

because 〈x, y〉 ≤ ‖x‖�2‖y‖�2 ≤ 1 Finally,

2 − 2〈x, y〉 = 〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉
= 〈x − y, x − y〉 = ‖x − y‖2

�2
, (D9)

and the claim follows. �

APPENDIX E: DESIGNS AND THE TRADITIONAL
DEFINITION OF COMPLEXITY

In the bulk of the paper we focus on a stronger notion
of complexity than the standard definition, an operational
definition involving the complexity of the distinguishing
measurement to differentiate the state from the maximally
mixed state. A more traditional definition is often consid-
ered in the literature, which involves building a quantum
circuit that approximates the state when evolved from an
initial state. This intuitive notion of complexity is related
to the minimal size of such a circuit.

In this Appendix, we work through the counting argu-
ments in Appendix A for the complexity of elements
of a k-design using the more traditional (albeit weaker)
definition of complexity. We refer to this as the weak
complexity of a state or unitary to distinguish it from the
operational definitions presented in Sec. II A.

Consider a system of n qudits with local dimension q,
such that the total dimension is d = qn. Let G ⊂ U(q2)

denote a universal gate set of elementary 2-local gates, and
let Gr be the set of circuits of size r built from our gate set
G.

Definition 5 (Weak δ-state complexity): For δ ∈ [0, 1],
we say that a state |ψ〉 has δ-state complexity of at most r
if there exists a unitary circuit V ∈ Gr such that

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 ≤ δ, which we denote as

× C ′
δ(|ψ〉) ≤ r.

We want to be able to make precise statements about
the complexity of sets of states. More specifically, if we
consider a complex projective design, the requirement that
they form a k-design is sufficiently restrictive to deduce
a quantitative statement about the complexity of the con-
stituent states.

Theorem 32 (Weak complexity of state designs): Con-
sider an ε-approximate complex projective k-design E =
{pi, |ψi〉}N

i=1. Then there are at least

dk

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E1)

states with weak δ-state complexity C ′
δ(|ψi〉) > r.

The number of high complexity states is exponentially
large in k for complexity

r � k(n − log k)
log n

. (E2)

Turning now to the complexity of unitaries, the traditional
definition of complexity is the minimal size of a circuit,
built from our gate set, which approximates that unitary.

Definition 6 (Weak δ-unitary complexity): For δ ∈
[0, 1], we say that a unitary U has δ-unitary complexity
of at most r if there exists a circuit V ∈ Gr such that

1
2

∥∥U − V
∥∥
�≤δ, which we denote as C ′

δ(U) ≤ r,

where U(ρ) = UρU† and V(ρ) = VρV†.

Again, we ask if the structure of a unitary k-design
allows us to conclude anything about the complexity
of unitaries. Once more, we find that we can turn the
statement that k-design elements have a certain expected
complexity into a quantitative one.
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Theorem 33 (Weak complexity of unitary designs):
Consider an ε-approximate unitary k-design E = {pi, Ui}N

i=1.
Then there are at least

d2k

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E3)

unitaries in E with weak δ-unitary complexity C ′
δ(Ui) > r.

The number of high-complexity unitaries is again expo-
nentially large in k for complexity less than

r � k(2n − log k)
log n

. (E4)

We now provide details and proofs of the above statements
about the complexity of spherical and unitary designs.

1. Weak state complexity for spherical designs

Proof of Theorem 32. First, as stated in Lemma 6, we note
that the definition of weak δ-state complexity in Definition
5 is equivalently written as

|〈ψ |V|0〉|2 ≥ 1 − δ2. (E5)

We can show this by first noting that X := |ψ〉〈ψ | −
V|0〉〈0|V† has rank at most two. Directly computing the
eigenvalues of X from

Tr(X ) = λ1 + λ2 = 0 and

Tr(X 2) = λ2
1 + λ2

2 = 2 − 2|〈ψ |V|0〉|2, (E6)

we find λ1,2 = ±
√

1 − |〈ψ |V|0〉|2. Then as ‖X ‖1 = |λ1| +
|λ2| we have that

1
2

∥∥|ψ〉〈ψ | − V|0〉〈0|V†
∥∥

1 =
√

1 − |〈ψ |V|0〉|2, (E7)

from which the claim follows.
We want to ask, given some state |ψ〉 chosen uni-

formly from an ε-approximate spherical k-design, what is
the probability that the state has δ complexity at most r:
C ′
δ(|ψ〉) ≤ r? We know that the state will have δ complex-

ity r if there exists a V ∈ Gr such that Eq. (E5) holds. A
union bound then gives that

Pr
[
C ′
δ(|ψ〉) ≤ r

] = Pr

⎡

⎣
⋃

V∈Gr

{|〈ψ |V|0〉|2 ≥ 1 − δ2}
⎤

⎦

≤
∑

V∈Gr

Pr
[
|〈ψ |V|0〉|2 ≥ 1 − δ2

]
. (E8)

We can bound the probability that a state drawn from a
spherical k-design satisfies Eq. (E5) as a straightforward

consequence of Markov’s inequality:

Pr
[
|〈ψ |V|0〉|2 ≥ 1 − δ2

]

= Pr
[
|〈ψ |V|0〉|2k ≥ (1 − δ2)k

]

≤ E|ψ〉
[|〈ψ |V|0〉|2k

]

(1 − δ2)k
≤
(1 + ε)

(
d + k − 1

k

)−1

(1 − δ2)k
.

(E9)

In the last step here, we use Eq. (C43) and proceeding
similarly as in the proof of Lemma 21 in Appendix C 6,
noting that for a fixed state |φ〉 and |ψ〉 averaged over an
ε-approximate spherical k-design, we have

E|ψ〉
[|〈ψ |φ〉|2k] ≤ (1 + ε)

(
d + k − 1

k

)−1

. (E10)

This claim readily follows from an argument similar to the
proof of Lemma 21. Returning to Eq. (E8), we find that the
probability that a state in a spherical design has complexity
of at most r is

Pr
[
C ′
δ(|ψ〉) ≤ r

] ≤ (1 + ε)
(

d + k − 1
k

)−1 nr|G|r
(1 − δ2)k

,

(E11)

using the bound on the expectation and a bound on the
cardinality of Gr.

We now turn to proving the primary claim. Negating the
above assertion implies that

Pr
[
C ′
δ(|ψ〉) > r

] ≥ 1 − (1 + ε)
(

d + k − 1
k

)−1 nr|G|r
(1 − δ2)k

.

(E12)

Furthermore, we may also write this probability as the
expectation of the associated event, which yields

Pr
[
C ′
δ(|ψ〉) > r

] = E|ψ〉
[
1
{
C ′
δ(|ψ〉) > r

}]

=
∑

i

pi 1
{
C ′
δ(|ψi〉) > r

}

≤ (1 + ε)
(

d + k − 1
k

)−1

N , (E13)

where 1 is the indicator function, and in the last step we use
the bound on the weights of an ε-approximate spherical k-
design in Lemma 21. N denotes the number of states in the
spherical design |ψi〉 with weak δ complexity greater than
r. Combining the previous two equations, we find that

N ≥ dk

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E14)

which completes the proof. �
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2. Weak unitary complexity for unitary designs

Proof of Theorem 33. We start by noting an equivalent
definition of weak δ-unitary complexity as shown in the
proof of Lemma 7. A necessary, but in general not suffi-
cient, condition for weak unitary complexity in Definition
6 is

∣∣Tr(V†U)
∣∣2 ≥ d2(1 − δ2). (E15)

Now we again ask, given some unitary U chosen uniformly
from an ε-approximate unitary k-design, what is the proba-
bility that it has δ-unitary complexity at most r: C ′

δ(U) ≤ r?
As this holds if there exists a V ∈ Gr such that the channels
are close in diamond distance, a union bound then gives
that

Pr
[
C ′
δ(U) ≤ r

] = Pr

⎡

⎣
⋃

V∈Gr

{
1
2

∥∥U − V
∥∥
�≤δ
}⎤

⎦

≤
∑

V∈Gr

Pr
[∣∣Tr(V†U)

∣∣2 ≥ d2(1 − δ2)
]
,

(E16)

using the reformulation above. We can bound the proba-
bility that a unitary drawn from a k-design satisfies this
condition again by using Markov’s inequality:

Pr
[∣∣Tr(V†U)

∣∣2 ≥ d2(1 − δ2)
]

= Pr
[∣∣Tr(V†U)

∣∣2k ≥ d2k(1 − δ2)k
]

≤ EE
[∣∣Tr(V†U)

∣∣2k

d2k(1 − δ2)k
≤ (1 + ε)k!

d2k(1 − δ2)k
, (E17)

where in the last step, we use the moments of traces for
unitary designs and as in Lemma 20 in Appendix C 6 above
find that for a fixed unitary V and a unitary U averaged over
an ε-approximate unitary k-design, we have

EE
[
Tr(V†U)

∣∣2k] ≤ (1 + ε)k!. (E18)

Returning to the expression above in Eq. (E16), we find
that the probability C ′

δ(U) ≤ r is

Pr
[
C ′
δ(U) ≤ r

] ≤ (1 + ε) k!
d2k

nr|G|r
(1 − δ2)k

, (E19)

using the bound on the expectation and a bound on the
cardinality of Gr. Negating the expression gives a lower
bound on the probability that a unitary in a k-design has
complexity greater than r. Furthermore, we may also write

this probability as the expectation

Pr
[
C ′
δ(U) > r

] =
∑

i

pi 1
{
C ′
δ(Ui) > r

} ≤ (1 + ε) k!
d2k N ,

(E20)

where we use the bound on the unitary design weights
in Lemma 20. N denotes the number of untiaries in a k-
design with weak δ complexity greater than r. Combining
the previous two equations, we find that

N ≥ d2k

k!
1

1 + ε − nr|G|r
(1 − δ2)k

, (E21)

which completes the proof. �

[1] D. Poulin, A. Qarry, R. Somma, and F. Verstraete, Quan-
tum Simulation of Time-Dependent Hamiltonians and the
Convenient Illusion of Hilbert Space, Phys. Rev. Lett. 106,
170501 (2011).

[2] E. Bernstein and U. Vazirani, Quantum complexity theory,
SIAM J. Comput. 26, 1411 (1997).

[3] X. Chen, Z. C. Gu, and X. G. Wen, Local unitary transfor-
mation, long-range quantum entanglement, wave function
renormalization, and topological order, Phys. Rev. B82,
155138 (2010).

[4] L. Susskind, Computational complexity and black hole
horizons, Fortsch. Phys. 64, 44 (2016), [Fortsch. Phys. 64,
24 (2016)].

[5] D. Stanford and L. Susskind, Complexity and shock wave
geometries, Phys. Rev. D90, 126007 (2014).

[6] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle, and
Y. Zhao, Complexity, action, and black holes, Phys. Rev.
D93, 086006 (2016).

[7] A. R. Brown and L. Susskind, Second law of quantum
complexity, Phys. Rev. D97, 086015 (2018).

[8] L. Susskind, Black holes and complexity classes, ArXiv:18
02.02175.

[9] S. Aaronson, The complexity of quantum states and
transformations: From quantum money to black holes,
ArXiv:1607.05256.

[10] T. C. Bohdanowicz and F. G. S. L. Brandão, Uni-
versal Hamiltonians for exponentially long simulation,
ArXiv:1710.02625.

[11] D. A. Roberts and B. Yoshida, Chaos and complexity by
design, JHEP 04, 121 (2017).

[12] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki,
Local random quantum circuits are approximate polynomial-
designs, Commun. Math. Phys. 346, 397 (2016).

[13] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact
and approximate unitary 2-designs and their application to
fidelity estimation, Phys. Rev. A80, 012304 (2009).

[14] D. Gross, K. Audenaert, and J. Eisert, Evenly distributed
unitaries: On the structure of unitary designs, J. Math. Phys.
48, 052104 (2007).

[15] Z. Webb, The clifford group forms a unitary 3-design,
Quantum Info. Comput. 16, 1379 (2016).

030316-38

https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.93.086006
https://doi.org/10.1103/PhysRevD.97.086015
https://arxiv.org/abs/1802.02175
https://arxiv.org/abs/1607.05256
https://arxiv.org/abs/1710.02625
https://doi.org/10.1007/JHEP04(2017)121
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1063/1.2716992


MODELS OF QUANTUM COMPLEXITY GROWTH PRX QUANTUM 2, 030316 (2021)

[16] H. Zhu, Multiqubit clifford groups are unitary 3-designs,
Phys. Rev. A 96, 062336 (2017).

[17] R. Kueng and D. Gross, Qubit stabilizer states are complex
projective 3-designs, ArXiv:1510.02767.

[18] A. Ambainis and J. Emerson, in Twenty-Second Annual
IEEE Conference on Computational Complexity (CCC’07)
(2007), p. 129.

[19] O. Szehr, F. Dupuis, M. Tomamichel, and R. Renner,
Decoupling with unitary approximate two-designs, New J.
Phys. 15, 053022 (2013).

[20] A. J. Scott, Tight informationally complete quantum mea-
surements, J. Phys. A: Math. Gen. 39, 13507 (2006).

[21] R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix
recovery from rank one measurements, Appl. Comput.
Harmon. Anal. 42, 88 (2017).

[22] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise
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