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We introduce a theoretical framework for resource-efficient characterization and control of non-
Markovian open quantum systems, which naturally allows for the integration of given, experimentally
motivated, control capabilities and constraints. This is achieved by developing a transfer filter-function
formalism based on the general notion of a frame and by appropriately tying the choice of frame to the
available control. While recovering the standard frequency-based filter-function formalism as a special
instance, this control-adapted generalization affords intrinsic flexibility and, crucially, it permits an effi-
cient representation of the relevant control matrix elements and dynamical integrals if an appropriate
finite-size frame condition is obeyed. Our frame-based formulation overcomes important limitations of
existing approaches. In particular, we show how to implement quantum noise spectroscopy in the pres-
ence of nonstationary noise sources, and how to effectively achieve control-driven model reduction for
noise-optimized prediction and quantum gate design.
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I. INTRODUCTION

Accurate characterization and control (C&C) of open
quantum systems coupled to realistic—temporally corre-
lated (“non-Markovian”)—noise environments are vital
for exploiting the full potential of quantum technolo-
gies. Open-loop control-engineering methods, based on
tailored time-dependent modification of the open-system
dynamics, offer a versatile and experimentally accessi-
ble approach to tackle this challenge. While techniques
employing dynamical decoupling or dynamically cor-
rected gates [1–3] are beneficial under minimal knowl-
edge about the noise-inducing degrees of freedom, extra
knowledge is instrumental for optimizing their perfor-
mance and efficiency in specific noise environments [4,5].
Numerical quantum optimal control algorithms [6–8]
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represent an extreme example: although they can in prin-
ciple deliver exceptionally high fidelities, their viability
in non-Markovian settings requires detailed knowledge
of the time-domain noise correlation functions (or the
corresponding frequency-domain spectra) [9]. In addition
to permitting noise-optimized quantum storage and gate
design, accurate noise characterization is key to counter
the effect of non-Markovian noise in quantum sensing and
metrology applications [10,11].

This has motivated the development of “quantum noise
spectroscopy” (QNS) protocols, in which noise spectral
information is inferred from the system-only reduced
dynamics, under the effects of the noise and user-defined
control. Despite considerable progress [12–26], existing
QNS protocols suffer from several disadvantages. First,
they are not applicable to important types of noise that
occur in practice—notably, nonstationary noise, for which
a frequency-domain description need not be viable [27,
28]. Second, they do not easily lend themselves to the
identification of simplified noise models that, while pro-
viding all the required detail for optimal control to be
feasible, may permit C&C procedures to be extensible
to increasingly larger qubit networks. Finally, to the best
of our knowledge, no formal analysis of the “universal-
ity” of QNS-inferred information for control purposes has
been attempted, aimed at clarifying the extent to which

2691-3399/21/2(3)/030315(27) 030315-1 Published by the American Physical Society

https://orcid.org/0000-0003-4258-3139
https://orcid.org/0000-0001-7340-5971
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.030315&domain=pdf&date_stamp=2021-07-27
http://dx.doi.org/10.1103/PRXQuantum.2.030315
https://creativecommons.org/licenses/by/4.0/


TEERAWAT CHALERMPUSITARAK et al. PRX QUANTUM 2, 030315 (2021)

such information may suffice to faithfully predict the
dynamics of the system under an arbitrary control mod-
ulation, beyond what is used in the QNS protocol itself.

In this paper, we overcome the above limitations by
demonstrating how a “model-reduced” representation of
the noisy dynamics of interest may be tied to the available,
finite control resources. We achieve this by integrating the
language of frames [29–33]—already a mainstay in sig-
nal processing—with the theory of open quantum systems.
This leads to a novel transfer filter-function (FF) formal-
ism [34–36], in which control capabilities and constraints
(dubbed C henceforth) play the defining role. Crucially,
our framework allows the identification of the noise com-
ponents relative to C that are, at once, accessible to
estimation by a QNS protocol and sufficient to optimally
predict the behavior of the system. Moreover, it provides
a rigorous way to determine (and quantify) if the informa-
tion inferred via QNS is useful to predict the behavior of
the system under a given control sequence.

The content is organized as follows. In Sec. II, we intro-
duce the relevant setting for controlled non-Markovian
quantum dynamics, with special emphasis on highlighting
the structure of the perturbative overlap integrals that enter
any C&C protocol. Section III provides the conceptual
foundation of our approach: after providing the essential
mathematical background on frames, we show how the
relationship between a frame F and its canonical dual F̃
naturally suggests two complementary ways for separat-
ing the dynamical overlap integrals into control-dependent
and noise-dependent contributions, resulting in what we
call the standard picture versus the control-adapted pic-
ture, relative to a chosen (F , F̃ ) pair. In particular, we
recover the usual frequency-domain FF formalism as a spe-
cial instance associated with the use of a Fourier frame
in Sec. III B, whereas in Sec. III C we make precise the
sense in which control-driven model reduction may be
achieved, provided that a suitable finite-size frame condi-
tion is obeyed. In essence, the latter ensures that arbitrary
control sequences built out of C may be well approximated
by finite expansions over elements of F .

We then proceed to showcase the added generality and
flexibility of our approach by focusing, in Sec. IV, on mul-
tiqubit dynamics under simultaneous additive decoherence
and multiplicative control noise. After providing a gen-
eral frame construction for this setting, we specialize to
the simplest paradigmatic case of single-qubit dynamics.
In particular, in Sec. IV B we demonstrate how control-
adapted QNS techniques that are designed to work directly
in the time domain provide new capabilities over existing
protocols, by allowing the characterization of nonstation-
ary noise environments of both classical and genuinely
quantum nature. A complete frame-based C&C protocol
is exemplified in Sec. IV C, where the information about
the noise correlations acquired through a first stage of

control-adapted QNS is subsequently incorporated in the
optimal-control search for various target unitary gates.
By comparing to the optimal-control solutions obtained
under access to the full dynamics, we establish that our
model-reduced representation incurs no significant loss of
predictive power, insofar as arbitrary controlled evolu-
tions built out of C are considered. Finally, we present in
Sec. IV D some important remarks on the extent to which
QNS-inferred information may be universal for prediction
and control, before concluding. Further technical detail is
included in five separate appendices, in order to make the
presentation as self-contained as possible.

II. CONTROLLED OPEN QUANTUM DYNAMICS

We consider a controlled d-dimensional open quantum
system S evolving in the presence of an inaccessible envi-
ronment (bath) B. In the interaction picture associated with
the free bath evolution, the joint system-bath dynamics
is governed by a Hamiltonian of the form H(t) = HS +
HSB(t)+ Hctrl(t), where the Hamiltonian HS determines the
free evolution of S, HSB(t) couples S and B, and Hctrl(t)
describes open-loop control modulation acting on S only.
Let {�0 ≡ IS,�u} denote a generalized (Hermitian) Pauli
basis for the operator space on S, with Tr(�u�v) = δuv .
We consider a broad class of Hamiltonians that simul-
taneously account for additive (control-independent) and
multiplicative (control-dependent) noise, according to

H(t) =
∑

u�=0

�u ⊗ B(a)u (t)+
∑

v �=0

hv(t)[1 + β(m)v (t)]�v . (1)

Here, the B(a)u (t) ≡ B̃(a)u (t)+ β(a)u (t) IB describe the always-
on additive (a) noise from quantum and classical sources,
respectively, with B̃(a)u (t) being bath operators (not neces-
sarily traceless in order to account for evolution due to HS)
and β(a)u (t) stochastic processes. Control is introduced via
user-defined control profiles {hv(t)} that, subject to system-
dependent constraints (e.g., maximum amplitude, finite
time-bandwidth product), determine the control capabili-
ties C in the error-free scenario. More precisely, we define
the control capabilities C as the set of control Hamilto-
nians {hv(t)�v}v �=0 that can be implemented in a given
experiment. There are two aspects to this: the allowed
control “directions” �v and the “control profiles” hv(t),
usually parametrically defined by a pulse shape and a range
for the specifying parameters, e.g., hv(t) ∼ θe−t2/2σ 2

for
θ ∈ [θmin, θmax] and σ ∈ [σmin, σmax]. Furthermore, multi-
plicative (m) control noise, which often arises in realistic
settings [16,20,37], is captured by the stochastic processes
β(m)v (t).

Our main objects of interest are the time-dependent
expectation values of system observables O = O†, given
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by

E[O(T)]ρSB = 〈TrS,B[U(T)ρSBU†(T)(O ⊗ IB)]〉c, (2)

where ρSB is the initial state of the joint system and
bath. To obtain useful expressions for them we proceed
as follows. The unitary propagator for the evolution gen-
erated by H(t) is given (in units � = 1) by the time-
ordered exponential U(t) = T+e−i

∫ t
0 dsH(s), and 〈·〉c denotes

the average over realizations of the stochastic processes.
We may write H(t) ≡ H0(t)+ He(t) with H0(t) represent-
ing the intended, error-free controlled dynamics and the
error component He(t) accounting for unwanted evolution
due to environmental and control noise, as well as possibly
HS [e.g., H0(t) = Hctrl(t) if HS = 0 and no control noise is
present, β(m)v (t) = 0]. The evolution due to He(t) can then
be isolated by moving to the interaction (toggling) frame
associated with the error-free component H0(t). That is, we
let U(t) = U0(t)Ũ(t), where

U0(t) = T+e−i
∫ t

0 dsH0(s), Ũ(t) = T+e−i
∫ t

0 dsH̃(s),

and H̃(t) ≡ U†
0(t)He(t)U0(t) is the toggling-frame Hamil-

tonian. By construction, such a Hamiltonian vanishes in
the absence of noise, and can be compactly written as

H̃(t) ≡
∑

α=a,m

∑

u,v

y(α)u,v (t)�v ⊗ B(α)u (t), (3)

where we have defined B(m)u (t) ≡ β(m)u (t)IB and the ele-
ments y(α)u,v (t) of the control matrix Y (α)(t) capture the
effect of the control modulation on the noise terms in He(t).
Explicitly, we have

y(a)u,v (t) = TrS[U†
0(t)�uU0(t)�v]/d,

y(m)u,v (t) = hu(t)y(a)u,v (t).

Finally, assuming that ρSB = ρS⊗ρB (see Ref. [38] for
a more general treatment) and that O is invertible,
with Õ(T) ≡ U†

0(T)OU0(T), we write the desired time-
dependent expectation value, Eq. (2), as

E[O(T)]ρS⊗ρB = TrS[VO(T)ρSÕ(T)], (4)

where the system operator

VO(T) ≡ 〈TrB[Õ−1(T)Ũ†(T)Õ(T)Ũ(T)ρB]〉c (5)

contains all the unwanted effects due to He(t) up to time T;
that is, VO(T) = IS represents ideal, noise-free dynamics.

The operator VO(T)may be computed perturbatively, for
instance through a Dyson or cumulant expansion [24,39].
Regardless of what technique is chosen it can be shown
that, due to time ordering, the dynamics depends only on

certain linear combinations, say L	v(	t), of the multitime
noise correlation functions {〈B(α1)

v1 (tμ(1)) · · · B(αk)
vk (tμ(k))〉}

with respect to the combined quantum and classical aver-
ages, 〈·〉 ≡ 〈TrB[·ρB]〉c, with αj ∈ {a, m} and μ being an
arbitrary permutation of k elements, k ∈ N. While the
specifics of the linear combinations that enter the expec-
tations in Eq. (4) depend on both O and the details
of the system and control setting, the possible contribu-
tions are determined by overlap integrals of the form (see
Appendix A)

I(k)	α;	u,	v(T) =
∫ T

0
d>	t[k]

[ k∏

j =1

y
(αj )
uj ,vj (tj )

]
L	α;	v(	t) (6)

with
∫ T

0 d>	t[k] ≡ ∫ T
0 dt1

∫ t1
0 dt2 · · · ∫ tk−1

0 dtk.
These integrals are key to understanding the effect of

the noise on the system. The conventional approach to
their analysis involves rewriting them as multidimensional
overlap integrals in frequency space via an appropriate
Fourier transform. This leads to the standard FF formal-
ism [34–36], where frequency-domain FFs and, for general
non-Gaussian noise, higher-order (poly)spectra capture the
effect of the control and noise, respectively. On the one
hand, one expects that, by (experimentally) obtaining the
value of any such integral for various FFs, it may be in
principle possible to deconvolve it, and thus infer rele-
vant information about the noise correlation functions (or
their Fourier transform). This is indeed how QNS proto-
cols work. On the other hand, one also sees that mitigating
the effect of the noise is akin to minimizing the value
of such integrals, which is the working principle behind
existing decoherence suppression and optimal control pro-
tocols. The frequency- (or time-)domain representations,
however, are agnostic to the control capabilities or con-
straints C , which are unavoidable in any realistic setting,
since the {hv(t)} cannot be arbitrarily chosen. Indeed, these
constraints translate into limitations to the information
that can be inferred about the noise (e.g., in comb-based
QNS protocols the frequency-domain spectra are sampled
via a discrete grid), or superfluous information used for
synthesizing optimal control (e.g., rather than full knowl-
edge of the noise correlation functions, only knowledge
of the overlap between noise and the admissible con-
trols should be necessary). This motivates the search for
a space—or a mathematical language—in which the rele-
vant overlap integrals can be more efficiently represented
by incorporating information about C from the outset.

III. FRAME-BASED FILTER FUNCTIONS AND
CONTROL-DRIVEN MODEL REDUCTION

In order to meet the challenge identified in the previ-
ous section, instead of moving to the frequency domain
we use the more general language of frames [29–33].
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Frames have a long tradition in signal processing, thanks
to the flexibility they afford as compared to bases (e.g.,
in generalizing time-to-frequency-domain transforms) as
well as to various properties particularly advantageous
to signal reconstruction (e.g., robustness to noise [40]).
Moreover, they are already successfully exploited in dif-
ferent quantum applications [38,41,42]. Leveraging the
frame language in our context will first and foremost afford
extra flexibility, as a frame can be chosen in a way that
matches—in a sense that will be made precise later—the
available control. In turn, aided by a change in point of
view, this will allow us to efficiently represent each of
the overlap I(k) integrals as a sum over a finite domain,
thereby achieving control-driven model reduction.

A. Basics on frames

The mathematical theory of frames is quite sophisticated
and an exhaustive review of the topic is beyond our scope.
While we refer the interested reader to the extensive litera-
ture for a more complete and rigorous account [30,31,33],
we summarize here the basic definitions needed for the
exposition of our result. We further discuss in Appendix
B illustrative examples directly relevant to the control
scenarios we analyze.

Let H be a complex (finite-dimensional or separable)
Hilbert space, consisting of functions f (t), t ∈ [0, T], with
inner product and norm respectively given by

( f , g) ≡ 1
T

∫ T

0
dtf (t)g∗(t), ‖f ‖2 ≡ ( f , f ).

A discrete frame for H is an (at most) countable sequence
F ≡ {φn}n, with φn ∈ H and n ∈ Z, satisfying the frame
condition, that is,

A‖f ‖2 ≤
∑

n

|(f ,φn)|2 ≤ B‖f ‖2 for all f ∈ H (7)

with 0 < A ≤ B < ∞ being the lower and upper frame
bounds, respectively. Of particular interest are tight
frames, for which A = B, and Parseval frames, for which,
in addition, A = B = 1. Notably, an orthonormal basis in
H is a Parseval frame, and indeed one sees that in this case
the frame condition is equivalent to Parseval’s identity.

Frames may be seen as redundant (linearly dependent)
spanning sets for H. More precisely, any f ∈ H can
be expanded as f (t) =∑n cnφn(t), t ∈ [0, T], where the
coefficients are given by the reconstruction formula

f (t) =
∑

n

(f , φ̃n) φn(t) =
∑

n

(f ,φn) φ̃n(t), (8)

and the {φ̃n}n are elements of a frame dual to F . While
a frame F may in general admit infinitely many dual

frames, there exists a canonical dual frame F̃ that is
special, in the sense that it minimizes the norm of the
expansion

∑

n

|(f , φ̃n)|2 ≤
∑

n

|cn|2

for any sequence {cn}n ∈ 
2(Z) that satisfies f =∑n cnφn,
with equality holding if and only if cn = (f , φ̃n) for all n.
Such a dual frame is determined by F̃ = {φ̃n} = {S−1φn},
in terms of the positive frame operator S : H → H, given
by

Sf ≡
∑

n

(f ,φn)φn.

Note that S is a multiple of the identity if the frame is tight
and it coincides with the identity for a basis, that is, an
orthonormal basis is self-dual. Of special relevance to this
work will be finite frames, {φn}n, n = 1, . . . , N# < ∞.

More generally, continuous frames for which the label-
ing index n �→ x ∈ X changes continuously can also be
constructed. Given a measure space (X , W ,μ), a fam-
ily F ≡ {φx}x is a continuous frame if (i) for all f ∈ H,
(f ,φx) is W measurable in X and (ii) there exist constants
0 < A ≤ B < ∞ such that

A‖f ‖2 ≤
∫

X
|(f ,φx)|2dμ(x) ≤ B‖f ‖2 for all f ∈ H.

(9)

From the above, it follows that span{(φx)}x∈X = H, and
an appropriate notion of dual frame and the reconstruc-
tion formula can be introduced by essentially replacing
sums—as in Eq. (8)—with integrals of the form

∫
X dμ(x).

In this way, the special case of a discrete frame is recov-
ered when μ is a counting measure and X = Z (or N).
Prominent examples of continuous frame expansions are
expansions into canonical and generalized coherent states
and the continuous short-time Fourier (or Gábor) trans-
form [33], whereas Fourier series are a special case of
expansions into discrete exponential (or Fourier) frames
[30,31].

B. Standard-picture versus control-adapted
filters and spectra

To apply the frame formalism to our problem, we start
by noting that there are two ways of representing any of
the time-ordered integrals of Eq. (6). On the one hand, we
can write the noise correlation function in the chosen frame
and rewrite the remaining factors as a FF associated with
that frame. We dub this the “standard picture” (SP). On the
other hand, we may expand the control matrix elements in
the frame and have the remaining factors be the equiva-
lent of a noise spectra in the frame language—resulting in
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what we dub the “control-adapted” (CA) picture. Mathe-
matically, these two approaches respectively lead to

I(k)	α;	u,	v(T) =
∑

	n
F (k)

	α;	u,	v(	n, T)S(k)	α;	v(	n) (10a)

=
∑

	n

[ k∏

j =1

F (1)
αj ;uj ,vj

(nj , T)
]

S̄(k)	α;	v(	n). (10b)

Equation (10a) represents the direct generalization to
the (discrete) frame language of the standard frequency-
domain representation: the kth-order frame-based FFs and
frame-based power spectra are respectively given by

F (k)
	α;	u,	v(	n, T) ≡

∫
d>	t[k]

∏

j

y
(αj )
uj ,vj (tj )φ̃

(αj )
nj (tj )∗, (11a)

S(k)	α;	v(	n) =
∫

d	t[k]L	α;	v(	t)
k∏

i=1

φ(αi)
ni
(ti), (11b)

where we allow for different frames F (α) for α ∈ {a, m}.
Indeed, as shown explicitly in Appendix B 1, the stan-
dard frequency-domain FF formalism [34,36] is recovered
when one uses a Fourier frame [43]. In contrast, Eq. (10b)
does not only represent a generalization to the frame lan-
guage, but, importantly for our purposes, it also provides a
change in viewpoint—a dual representation in which

F (1)
αj ;uj ,vj

(nj , T) ≡ (y
(αj )
uj ,vj , φ̃

(αj )
nj )

=
∫ T

0
dt y

(αj )
uj ,vj (t)φ̃

(αj )
nj (t)∗, (12a)

S̄(k)	α;	v(	n) =
∫

d>	t[k] L	α;	v(	t )
k∏

i=1

φ(αi)
ni
(ti), (12b)

are the frame-based fundamental FFs and the frame-based
CA spectra, respectively. Note that, in the CA representa-
tion, the time ordering is moved from the FFs to the CA
spectra, with a twofold implication. On the one hand, as in
the SP setting, the CA spectra encode all the information
about noise correlations that influence the system dynam-
ics, as we explicitly demonstrate in Sec. IV. On the other
hand, the fact that the CA FFs are all one-dimensional
integrals without any time ordering makes their use more
advantageous to both theoretical analysis and numerical
implementation of C&C.

We also note that there is a degree of arbitrariness in the
above definitions since, given a frame F = {φn} and its
dual F̃ = {φ̃n}, their corresponding complex conjugates
(say F ∗ and F̃ ∗) are also frames. In order to maintain
a certain symmetry in our expressions, in this paper we
choose to expand in F̃ ∗ and F in order to respectively
generate the SP and CA formalisms. For completeness, we
summarize the resulting expressions in Table I.

C. Frame-based control-driven model reduction

The next key step in our approach is to observe that, as
far as the effect of the noise on the system is concerned
[captured by the operator VO in Eq. (5)], what matters are
not the control inputs {hu(t)} themselves, but rather their
control matrix elements {y(α)u,v (t)}, which are related to the
{hu(t)} via conjugation under the known map U0(t). More-
over, any constraints on hu(t) (say, limited bandwidth, a
minimum time between two consecutive pulses, or a finite
time resolution) necessarily translate into limitations on the
possible form that the y(α)u,v (t) can take.

These observations, the flexibility of frames, and the
CA representation of I(k)u,v come together as follows: (i)
for given control capabilities C , the possible {y(α)u,v

(t)} are
known; (ii) it is in principle possible to tailor the choice of
frame F (α) so that it “efficiently” represents such {y(α)u,v

(t)};
(iii) this, in turn, leads to an “efficient” representation
of the integrals in I(k)u,v . More formally, we introduce the
following condition.

Definition (Finite-size frame (FSF) condition). Let C
specify fixed control capabilities, which determine a (pos-
sibly infinite) set of control matrix elements, y(α)u,v (t) ∈
L2([0, T]), α ∈ {a, m}. We say that the FSF condition
holds if one can build finite-size frames F (α)

# ≡ {φ(α)n },
n = 1, . . . , N (α)

# , and dual frame F̃ (α)

# , such that, for all
y(α)u,v (t) allowed by C ,

y(α)u,v (t) =
N (α)#∑

n=1

F (1)
α;u,v(n, t)φ(α)n (t). (13)

We say that the FSF condition is satisfied to tolerance
ε ≥ 0 over [0, T] if the above equality can be approx-
imately obeyed with error no larger than ε (in the L2

norm).

If the FSF condition holds, the {y(α)u,v
(t)} are represented

efficiently in the sense that they are well approximated by a
finite expansion over the elements of F̃ (α)

# . It then follows
that

I(k)	α;	u,	v(T) �
N
(αj )
#∑

ni=1

(∏

j

F (1)
αj ;uj ,vj

(nj )

)
S̄(k)	α;	v(	n), (14)

that is, each integral can be efficiently represented by a
finite sum up to an error that scales as O(εk). A key con-
sequence of the above is that it allows us to identify the
components of the noise that are relevant to the dynamics
allowed by C : namely, the finite set of CA spectra,

S̄ |C = {S̄(k)	α;	v(	n)}, nj ∈ [1, N
(αj )

# ] (15)

(or specific combinations thereof), that contribute to the
expectations of observables as in Eq. (4). Thus, S̄ |C
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TABLE I. Summary of the defining relationships for standard (i) versus control-adapted (ii) pictures. The corresponding frequency-
domain SP and CA representations are also included in (iii) and (iv) for comparison.

(i) SP (ii) CA

L	α,	v(	t ) =
∑

	n

(
L	α,	v(	s ),

∏

i

φ
(αj )
ni (si)

∗
)∏

j

φ̃
(αj )
nj (tj )∗

≡
∑

	n
S(k)	α;	v(	n)

∏

j

φ̃
(αj )
nj (tj )∗

∏

j

y
(αj )
uj ,vj (tj ) =

∏

j

∑

	n

(
y
(αj )
uj ,vj (sj ), φ̃

(αj )
nj ′ (sj )

)
φ
(αj )
nj ′ (tj )

≡
∏

j

∑

	n
F (1)
αj ;uj ,vj

(nj ′)φ
(αj )
nj ′ (tj )

F (k)
	α;	u,	v(	n) =

∫
d>	t[k]

∏

j

y
(αj )
uj ,vj (tj )φ̃

(αj )
nj (tj )∗ F (1)

αj ;uj ,vj
(nj ) =

∫
dt y

(αj )
uj ,vj (t)φ̃

(αj )
nj (t)∗

S(k)	α;	v(	n) =
∫

d	t[k]L	α;	v(	t )
∏

i

φ(αi)
ni
(ti) S̄(k)	α;	v(	n) =

∫
d>	t[k]L	α,	v(	t )

∏

i

φ(αi)
ni
(ti)

I(k)	α;	u,	v =
∑

	n
F (k)

	α;	u,	v(	n)S(k)	α;	v(	n) I(k)	α;	u,	v =
∑

	n

∏

j

F (1)
αj ;uj ,vj

(nj )S̄
(k)
	α;	v(	n)

(iii) Frequency domain (SP) (iv) Frequency domain (CA)

F (k)
	α;	u,	v( 	ω) =

∫ T

0
d>	t[k]

k∏

j =1

y
(αj )
uj ,vj (tj )e

i 	ω·	t F (1)
αj ;uj ,vj

(ω) =
∫ T

0
dt y

(αj )
uj ,vj (t)e

iωt

S(k)	α;	v( 	ω) =
∫ ∞

−∞
d	t[k] L	α,	v(	t )e−i 	ω·	t S̄(k)	α;	v( 	ω) =

∫ ∞

−∞
d>	t[k]L	α,	v(	t )e−i 	ω·	t

I(k)	α;	u,	v =
∫ ∞

−∞
d 	ωF (k)

	α;	u,	v( 	ω)S(k)	α;	v( 	ω) I(k)	α;	u,	v =
∫ ∞

−∞
d 	ω
(∏

j

F (1)
αj ;uj ,vj

(ωj )
)

S̄(k)	α;	v( 	ω)

represents both the information that can be extracted from
the reduced system dynamics, and what suffices to opti-
mally control it, under the resource constraints C , i.e., a
model-reduced description of the noisy dynamics. Gener-
ally, there will be a trade-off between the model-reduction
properties of the frame and the accuracy: a larger frame
will lead to a smaller ε, which however necessarily implies
that each I(k)	α;	u,	v(T) is represented by a sum over a larger
domain.

It is clear then why there is a need for a flexible lan-
guage: one must design F according to C . The frame
language provides a constructive and relatively straightfor-
ward mechanism to do so. For instance, one can choose as
frame elements a subset of the possible y(α)u,v (t), say C0, and
expand every control matrix element in terms of this sub-
set via Eq. (8). If C0 is chosen adequately, the error ε in the
reconstruction can be made small, and an accurate model
reduction is achieved. This (F = {y(t)|C0}) will be essen-
tially how we build our frames in this paper, as it greatly
simplifies the CA-QNS problem: if one chooses as con-
trol for a QNS protocol an element of C0, the sum in Eq.
(14) can reduce to a single term. Now, while a full CA-
QNS protocol is not as simplistic as that, this observation
gives a glimpse into how much the “correct” language can
simplify the task. Note that such a simplification would
not be achievable in general if one insists on considering
only expansions in orthonormal bases, as the y(α)u,v (t) are
typically not orthogonal to each other.

Clearly, our choice for F is not unique and other ways
of building a convenient frame may be possible, depending
on the task at hand. In general, this problem is related to

that of building a parsimonious model—in the language of
the model-reduction literature [44]—which in our context
characterizes the ability of the chosen frame to approxi-
mate the elements of the control matrix. We leave it to
future work to explore what frame, for fixed control capa-
bilities C , allows for maximum parsimony while retaining
sufficient predictive power. We stress, however, that the
key is tying the choice of F to the available C and the tol-
erance ε. This follows the reasoning that if C changes then
the components of the noise that affect the quantum sys-
tem also change. Indeed, given a change C �→ C ′, the first
step should be verifying that F still satisfies the FSF con-
dition to an acceptable ε. Now, the change in F can take
many forms depending on the change in C . It can be as
radical as completely changing the functional form of the
frame elements or as simple as adding more elements to the
original frame. The former is necessary when, for exam-
ple, the accessible control profiles change from hv(t) ∼
e−(t−τ)2/2σ 2 |σ∈[σmin,σmax] to h′

v(t) ∼ e−|t−τ |/2σ 2 |σ∈[σmin,σmax].
In contrast, the latter type of frame change would be suf-
ficient, for example, when the shape of the profiles hv(t)
remains the same, but the range of the defining parameters
changes, e.g., to σ ∈ [σ ′

min, σ ′
max].

IV. FRAME-BASED APPROACH TO
CHARACTERIZATION AND CONTROL

A. From noise and control assumptions to
frame construction

We are now ready to deploy our tools. To do so, we
first introduce a multiqubit system control problem and
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show that the same frame can be used irrespective of the
number of qubits, as long as the control constraints are
homogeneous. We exemplify the frame construction for
both instantaneous and noninstantaneous control settings
and use these in the two key applications we antici-
pated: QNS beyond the standard frequency domain and the
noise-tailored optimized gate design.

1. The multiqubit model system

To demonstrate the usefulness of our formalism, we
now specialize our system to N qubits and, correspond-
ingly, take {�u} ≡ {�u} to be the usual Pauli product-
operator basis, with u ∈ {0, . . . , 4N − 1} and �0 = I⊗N .
The qubits are exposed to additive noise, described as
before by B(a)u (t) = B̃(a)u (t)+ β(a)u (t)IB, along with multi-
plicative control noise that, for simplicity, we assume to
be isotropic, B(m)u (t)≡β(m)(t)IB for all u. We focus on the
paradigmatic scenario in which C comprises M nonover-
lapping pulses of duration τ≡T/M applied over [0, T],
implemented by

Hctrl(t) = [1 + β(m)(t)]
M∑

j =1

θj h(tj , t)(	n( j ) · 	�)/2, (16)

where 	� excludes �0, 	n(j ) ∈ R4N −1, ‖	n( j )‖ = 1, and
θj ∈ [0, 2π ] specifies the j th pulse, described by a
fixed (normalized) control profile h(tj , t) centered around
tj ≡( j −1/2)τ and proportional to a window function
Wj ,τ (t) defined via

Wj ,τ (t) ≡
{

1, ( j −1)τ ≤ t < j τ ,
0, otherwise.

(17)

The above form of Hctrl(t) is general enough to support
single- or multibody Hamiltonian controls, although in
a realistic system one would typically be limited to at
most two-body Hamiltonians. To simplify our calculations,
however, we demand that the possible control inputs hu(t)
are the same regardless of �u, that is, the same control
constraints apply to any of the possible Hctrl(t).

Under the above assumptions, one realizes that the form
of the frame is independent of the number of qubits, as
we will show. Mathematically, the finite support of h(tj , t)
implies that one can write U0(t) as a piecewise function
given by

U0(t) = Uj

j −1∏


=1

U
, t ∈ [(j − 1)τ , j τ ],

where

Uj = e−i(θj /2)ψ
(j )
t 	n(j )· 	� , U
 = e−i(θ
/2)	n(
)· 	� ,

with ψ
(j )
t ≡

∫ t

( j −1)τ
ds h(tj , s).

In turn, this leads to a toggling-frame Hamiltonian [Eq. (3)]
of the form

H̃(t) =
∑

u,v

[y(a)u,v (t)�v ⊗ B(a)u (t)+ y(m)v (t)β(m)(t)�v].

(18)

Here, the additive control matrix elements are given by

y(a)u,v (t) = 1
2N Tr[U0(t)†�uU0(t)�v]

= 1
2N

4
N −1∑

w=0

c(j −1)
v,w Tr[U†

j �uUj�w] (19)

for t ∈ [(j − 1)τ , j τ ], where we have used the fact that

( j −1∏


=1

U


)
�v

( j −1∏


=1

U


)†

=
∑

w

Tr
[(∏




U


)
�v

(∏
U


)†

�w

]
�w

2N

≡
∑

w

c(j −1)
v,w

�w

2N .

This ultimately leads to

y(a)u,v (t) =
4

m−1∑

w=0

c(j −1)
v,w {k(0)j ,l;u,w cos[θjψ

(j )
t pl(	n(j ))]

+ k(1)j ,l;u,w sin[θjψ
(j )
t pl(	n(j ))]

+ k(2)j ,l;u,w}, (20)

where {k(s)j ,l;u,w} and pl(	n(j )) are polynomials of the elements
of 	n(j ), whose values can be numerically calculated [from
Eq. (19)] given a fixed number of qubits N .

The multiplicative control matrix elements can be sim-
ilarly calculated, by noting that h(tj , t) is assumed to be
compactly supported in [(j − 1)τ , j τ ]. Thus,

U0(t)†[h(tj , t)	n(j ) · 	�]U0(t)

= h(tj , t)
( j −1∏


=1

U


)†

(	n(j ) · 	�)
( j −1∏


=1

U


)

for t ∈ [(j − 1)τ , j τ ], since Uj (	n(j ) · 	�) U†
j = 	n( j ) · 	�. It

follows that

y(m)v (t) =
(∑

w

n(j )w c(j −1)
v,w

)
h(tj , t)θj /2. (21)
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2. The frame

The important consequence of the above calcu-
lations is that y(a)u,v (t) is spanned by the functions
{Wj ,τ (t) sin[ηψ(j )

t ], Wj ,τ (t) cos[ηψ(j )
t ]} for some η and

Wj ,τ (t), while the y(m)u,v (t) are spanned by the h(tj , t). Given
this, it is then natural to use as frames

F (a)
# ≡ {Wj ,τ cos[ηψ(j )

t ], Wj ,τ sin[ηψ(j )
t ]},

F (m)
# ≡ {h(tj , t)},

(22)

for j ∈ [1, M ] and η = 2πk/Ñ#, k ∈ [0, Ñ#], where Ñ# is
a free parameter that determines the size of the frame and
the tolerance ε, i.e., how well the FSF condition is satis-
fied. We note that while a finite Ñ# implies a nonzero ε, the
latter decreases as Ñ# grows: if F (α)

# contains all admissi-
ble y(α)u,v (t), the FSF condition is exactly satisfied (ε = 0).
Moreover, the nonoverlapping nature of the pulses implies
that the error ε|M for an M -pulse control matrix grows only
linearly with M , i.e., ε|M ∼ O(M ε|1) for a frame with
N# = M (2Ñ# + 1) elements. A larger Ñ# can thus be cho-
sen so that ε|M is below a user-defined error tolerance as
M increases.

The remaining missing elements in our description of
the model are the control capabilities C . This is where
the frame construction shows its flexibility in dealing with
various types of control. For illustration, we consider two
scenarios.

(a) First, we address the important limiting case in
which control is enacted via perfect, instanta-
neous pulses. In this case, β(m)(t) = 0 and h(tj , t) =
δ(t − j τ), leading to piecewise-constant “switch-
ing functions” {y(a)u,v (t)}. Given this, F (a)

# reduces
to a collection of window functions {Wj ,τ }M

j =1 for
which the FSF condition holds exactly, with N# =
M . Thus, in this case, any digital basis suffices as
a finite F (a)

# , and an especially compelling choice
is provided by the Walsh functions, thanks to their
potential for minimizing sequencing complexity
[45–47].

(b) Second, we consider a windowed Gaussian control
profile, h(tj , t) = Wj ,τe−(t−tj )2/2σ 2

with σ = 1 μs,
τ = 10 μs, although other possibilities, such as
square or Slepian pulses [20], can be easily accom-
modated. With M = 1 and F (a,m)

# as above, one
finds that ε|Ñ#=2 = 2.4 × 10−5, i.e., a 1.1% rela-
tive error [48], whereas ε|Ñ#=4 = 2.8 × 10−8, i.e.,
a 0.0014% relative error. That is, a modest-size
frame ensures that the FSF condition is basically
satisfied. Exemplifying the M and Ñ# interplay, for
M = 100 pulses, a value of Ñ# = 4, i.e., an N# =
900 elements frame, ensures an overall error of
approximately 0.15%.

The above highlights the aforementioned trade-off between
model reduction and accuracy, highlighting the impor-
tance of building a (maximally) parsimonious frame—our
choice here need not be optimal as it is only meant as a
proof of principle. Moreover, we note that the dynamics of
the system generally depends on linear combinations of the
I(k)	α;	u,	v (k ≤ kmax), where the number of terms is typically a
function of the range of the values the indices {u, v,α} can
take. Accordingly, one must ensure that the error in each
I(k)	α;	u,	v and also in the relevant linear combinations is small.
Ultimately, this implies that, while the form of the frame is
the same regardless of the dimension of the system d, the
number of nonoverlapping pulses M , or the largest order
of perturbation being considered kmax, the tolerance ε must
be small enough—and thus Ñ# must be large enough—so
that the overall error is below a user-defined tolerance for
a given d, M , and kmax.

3. Case study: single-qubit reduced dynamics

The final step is to obtain the expectation values of sys-
tem’s observables, E[O(t)]ρS⊗ρB . To simplify our expres-
sions and the analysis in the illustrative applications, we
specialize in what follows to the simplest paradigmatic set-
ting of a single-qubit dephasing model. Thus, we consider
additive noise only along one direction, Bu(t) ≡ Bz(t),
whereas the multiplicative noise will be present, as in Eq.
(18), whenever the control is assumed to be imperfect. Not-
ing that in this scenario the �u reduce to the single-qubit
Pauli operators σu, u ∈ {0, x, y, z}, Eq. (20) simplifies to

y(a)u (t) ≡ y(a)z,u (t) =
∑

v

c(j −1)
u,v (k(0)j ,v cos[θjψ

(j )
t ]

+ k(1)j ,v sin[θjψ
(j )
t ] + k(2)j ,v ). (23)

Furthermore, we enforce in our model that the multi-
plicative and additive noise sources are uncorrelated, i.e.,
〈B(m)(t1)B(a)(t2)〉 = 〈B(m)(t1)〉〈B(a)(t2)〉 = 0. We do not,
however, require stationarity nor Gaussianity.

In a suitable weak-coupling regime where, formally,
max{ti}〈B(α)(t1) · · · B(α)(tk)〉T2 � 1, Eq. (4) becomes

E[O(T)]ρS⊗ρB ≈ 〈TrS{[IS −D(2)
O (T)]ρSÕ(T)}〉,

where the second-order Dyson term D(2)
O (T) can be written

as a functional of a reduced set of CA spectra. Specifically,
the components of the spectra relevant to C are found to
be (see Appendix C for full detail)

S̄ |C = {S̄(+)α (n, n′), [S̄(−)α (n, n′)− S̄(−)α (n′, n)]}

for n ∈ [1, N#] and α ∈ {a, m}, where S̄(±)α (n, n′) are associ-
ated with the “classical” (+) and “quantum” (−) two-point
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bath correlation functions [18],

C(α)± (t1, t2)≡〈[B(α)(t1), B(α)(t2)]±〉
with [A, A′]± ≡ AA′ ± A′A. Since only FFs {F (1)

α;u(n, T)}
allowed by C can be generated, only the above noise
parameters can be inferred from the reduced dynamics
via CA QNS. Still, such finite information suffices for
the prediction—and eventual optimization—of the qubit
dynamics at time T under any of the (infinite) control
sequences allowed by C .

B. QNS beyond the frequency domain

Regardless of whether multipulse or continuous control
modulation is employed (such as, respectively, in comb-
based [19] or Slepian- [20] and spin-locking-based [15,21]
protocols), existing QNS methods largely rely on the pos-
sibility to describe the noise properties in the frequency
domain. This prevents applicability to nonstationary noise
[27,28] as well as noise with singular correlation functions
[49], which must be described in the time domain.

To illustrate how such limitations are overcome in our
frame-based approach, in this section we implement CA
QNS via instantaneous perfect pulses applied at separate
uniform intervals over a total time T. We thus specialize
the control Hamiltonian in Eqs. (16) and (17) to

Hctrl(t) =
M∑

j =1

δ(t − j τ)θj 	n(j ) · 	σ/2,

where M is now the number of intervals and τ = T/M
is the minimum separation time between pulses (that
is, each pulse is applied at a nonzero multiple of the
minimum “switching time” τ > 0 [50]). A direct spe-
cialization of Eq. (23) reveals that the control matrix
elements (i) are necessarily linear combinations of
{Wtj ,τ cos[θjψ

(j )
t ], Wtj ,τ sin[θjψ

(j )
t ]} and (ii) satisfy the

constraints y(a)u (t)∈[−1, 1]; and
∑

u |y(a)u (t)|2 = 1. As dis-
cussed in Sec. IV A, a suitable (self-dual) frame in this
case is the Walsh basis, which obeys the FSF condition
exactly (ε = 0). In our CA-QNS protocol, we chose θj ∈
{0,π/2,π} and 	n(j ) = (0, 1, 0) for all j . In contrast with
previous Walsh-based characterization methods [47], the
use of non-π pulses now makes it possible to generate con-
trol matrix elements {y(a)u (t)} that are linear combinations
of Walsh functions with M switches over the time range
[0, T]. This leads to the ability to infer the Walsh-basis
CA spectra S̄(±)α (n, n′) for all n, n′, not only generalizing
the approach of Ref. [47] beyond reconstruction of sig-
nals with a finite number of frequency components, but
allowing reconstruction of nonstationary noise.

In particular, we apply the CA-QNS protocol to two
distinct settings: (i) a classical nonstationary Wiener pro-
cess and (ii) a genuinely quantum (bosonic) nonstationary

environment. Our task will be to show that the proto-
col provides sufficient information about the correlation
functions, which in turns allows one to infer the param-
eters describing the noise model under consideration.
Full details about the sequences we used are included in
Appendix C 2.

1. Example 1. Nonstationary noise from a classical
time-dependent diffusion process

Motivated by the physical setting described in Ref. [27],
we consider noise induced by a random walk of molecules
in solution, resulting in translational diffusion in the pres-
ence of an external magnetic field—a process ubiquitously
encountered in liquid-state NMR and beyond. The relevant
dephasing Hamiltonian may be written as

H(t) = σz · �γM Gβ(t) ≡ σzB(t),

where γM = 2.67 × 108 rad s−1T−1 is the gyromagnetic
ratio of protons, G = 0.0214 T m−1 is a constant magnetic
gradient along z, and β(t) is a Gaussian stochastic pro-
cess representing the Brownian excursions of the molecule.
That is,

〈β(t)〉 = 0, C(t1, t2) ≡ 〈β(t1)β(t2)〉 = D min(t1, t2),

with D being the molecular diffusion constant. While the
nonstationary nature of the process is evident—C(t1, t2) is
not invariant under an arbitrary shift in time—we further
assume here that the diffusion constant varies periodically
in time according to D �→ D cos(νt1) cos(νt2), where ν is
an unknown angular frequency [see Fig. 1(a)]. This renders
the modified process β(t) second-order cyclostationary
[51], with

C (t1 + 2π n/ν, t2 + 2π n/ν)

= C(t1, t2) for all t1, t2, n ∈ Z.

We further assume that, for each of the control experiments
required by a QNS protocol, the system is reinitialized, i.e.,
the diffusion process is also effectively reset.

Applying the CA-QNS protocol, we estimate the CA
spectra, S̄(+)(n, n′) [note that in this case S̄(−)(n, n′) = 0],
and, from there, the digitized correlation function
〈[B(t1), B(t2)]+〉|C by using the general relation

〈[B(t1), B(t2)]±〉|C
=
∑

n,n′
[S̄(±)(n, n′)± S̄(±)(n′, n)]φ̃n(t1)φ̃n′(t2). (24)

The result of the digital reconstruction is shown in Fig. 1.
In addition, by leveraging the knowledge of the physical
origin of the noise, we infer the parameters in the model
Hamiltonian, P ≡ {D, ν} (see Table II), by following an
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FIG. 1. (a) Theoretical versus (b) digitally reconstructed ver-
sion of the nonstationary correlation function 〈β(t1)β(t2)〉 in
units of rad2s−2 for a time resolution of T/M , T = 40 ms
and M = 16. The solid magenta curve in (a) highlights where
〈β(t1)β(t2)〉 is not differentiable.

approach we outline in more detail in Example 2 below.
It should be noted that the accuracy in the estimation of
the parameters relies on the control capabilities. While in
our example the given T = 40 ms and M = 16 suffice to
achieve a good estimation, this need not be the case in
general, as we exemplify next.

2. Example 2. Nonstationary noise from a quantum
time-dependent bosonic environment

Consider now a scenario where the qubit couples to a
two-mode bosonic environment via a periodically varying
coupling operator, that is,

B(t) =
2∑


=1

g
(t)(ei�
ta†

 + H.c.), g
(t) = ḡ
 cos(w
t).

TABLE II. Actual and estimated parameters for the classical
oscillatory-diffusive model of Example 1.

D(m2s−1) ν(Hz)

Actual 2.3 × 10−9 60π ≈ 188.496
Estimated 2.3 × 10−9 188.496

Again, the time dependence in the couplings makes the
noise nonstationary, as 〈B(t1)B(t2)〉 is manifestly a func-
tion of both t1 + t2 and t1 − t2, although periodic in the
former. Also, we assume that the initial state of the bath is
thermal, ρB ∝ e−∑2


=1 β
��
a†


a
 with β
 ≡ 1/kBT
, so that

〈B(t)〉c = 0, and the symmetric and antisymmetric parts of
the correlation function can be respectively written as

〈[B(t1), B(t2)]+〉c =
∑




|ḡ
|2{cos [w
(t1 + t2)]

+ cos [w
(t1 − t2)]} cos[�
(t1 − t2)]

× coth(�β
�
/2), (25a)

〈[B(t1), B(t2)]−〉c = −i
∑




|ḡ
|2{cos [w
(t1 + t2)]

+ cos [w
(t1 − t2)]} sin[�
(t1 − t2)].
(25b)

Applying the CA-QNS protocol described earlier, one
can infer S̄(+)(n, n′) and S̄(−)(n, n′)− S̄(−)(n′, n), and, from
there, obtain a digital reconstruction [by using Eq. (24)] of
both the classical and quantum components of the corre-
lation function. While this information is also crucial for
control, in this section we focus only on the open-system
characterization aspect of our problem, i.e., leveraging
the information CA QNS provides and knowledge of the
noise model to estimate the relevant parameters. We exe-
cute the protocol for two resolutions τ = T/M , namely,
for T = 1536 ps, M = 16 and T = 16 ps, M = 16. The
resulting reconstructions are presented in Figs. 2 and 3,
respectively, which reveal the impact of the time resolu-
tion. As Fig. 2 demonstrates, the coarse resolution recon-
struction does not detect the effect of the fast oscillations.
Equipped only with this information, it is not possible to
infer the value of comparatively large frequencies with
high accuracy. In contrast, the high-resolution reconstruc-
tion—consistent with a minimum interpulse timing of 1 ps
(see Fig. 3)—can detect the fast oscillations in our model,
and allows us to accurately estimate all the model parame-
ters. By using both the low and high resolution, we infer
the physical parameters as follows. The parameters of
interest are the set

P ≡ {w1, w2,�1,�2, ḡ1, ḡ2, T1, T2}.

Assuming knowledge of the model, we estimate them by
minimizing a cost function

C$(P) ≡
∑

μ=±

N#∑

n,n′=1

[S(μ)(n, n′)|P − Ŝ(μ)(n, n′)]2, (26)

where the S(±)(n, n′)|P is calculated from the assumed
model for a given set of parameters P, and Ŝ(±)(n, n′)

030315-10



FRAME-BASED FILTER-FUNCTION FORMALISM... PRX QUANTUM 2, 030315 (2021)

–2

–1

0

1

2
(a)

–2

–1

0

1

2
(c)

–10

0

10

20

(b)

–10

0

10

20

(d)

FIG. 2. (a) Actual antisymmetric (quantum) and (b) symmetric (classical) components of the correlation function, and their
corresponding digital reconstructions [(c) and (d), respectively] in units of 1018Hz2 for T = 1536 ps and M = 16. In our numeri-
cal simulations we choose: w1 = 125π/96 GHz, w2 = 7.5w1, �2 = 60�1, �1 = 125π/128 GHz, couplings ḡ1/� = 976.56 MHz,
ḡ2/� = 345.27 MHz, and inverse temperatures �β1 = 61.44 ps, �β2 = 2.05 ps (corresponding to T1 = 0.12 K and T2 = 3.73 K). The
reconstruction with the chosen resolution is capable of capturing the slow oscillations, but not the fast oscillations.

is estimated as Ŝ(±)(n, n′) = S̄(±)(n, n′)± S̄(±)(n′, n), with
the input spectra calculated from the S̄ |C .

We perform the optimization, argminPC$(P), in two set-
tings: (i) with only the low (or coarse) resolution S̄ |C and
(ii) combining both the low- and high-resolution informa-
tion. As expected, the optimization in the first approach
only accurately estimates the parameters corresponding to
the slow frequencies, but not the high frequency generating
the fast oscillations in the correlation functions. In contrast,
in the second more powerful approach, we estimate all the
parameters of interest with high accuracy (assuming no
other source of error but the digitization of the reconstruc-
tion induced by the available control). We summarize our
estimation results in Table III. We highlight that the exam-
ple above shows that it is possible to perform “local bath
thermometry” using a single-qubit probe in a “short-time”
regime, in contrast with existing approaches for stationary
noise, which require either a steady-state regime [52] or
multiple probes [18].

C. Control-adapted noise-tailored
optimized gate design

Beyond the task of bath characterization, and per-
haps more relevant to the implementation of quantum

technologies, one can leverage the information QNS pro-
vides to achieve high-fidelity operations, by tailoring the
control to the noise affecting the qubit, via numerical opti-
mal control algorithms [8,9] or geometric techniques [53].
While the details are method dependent, and the underly-
ing non-Markovian dynamics may be modeled in different
forms (i.e., via a master equation or a Dyson expan-
sion), a common feature is that—in the absence of extra
assumptions on the bath—information about the noise cor-
relation functions {〈B(α1)

v1 (tμ(1)) · · · B(αk)
vk (tμ(k))〉} is needed

as an input.

The issue, however, is that, given limited control
capabilities C , one cannot characterize such correla-
tion functions in full, but rather only the portion of
them that is relevant to C . While the intuition rings
true, namely, one can only infer what the control
allows one to see, this is also evident from our pre-
vious developments. Take, for example, the instanta-
neous pulse case, for which ε = 0; hence, there is no
loss of information due to model reduction. Given a
minimum-switching time constraint, we showed that one
can only recover a digitized version of the true cor-
relation functions, 〈[B(t1), B(t2)]±|F̄ 〉. The key point,
however, is that, while 〈[B(t1), B(t2)]±|F̄ 〉 is only a
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FIG. 3. (a) Actual antisymmetric (quantum) component of the
correlation function and (b) its corresponding digital reconstruc-
tion in units of (109 GHz)2 for T = 16 ps and M = 16. While
the resolution is τ = 1 ps = 16 ps/16 = 1536 ps/1536, equiv-
alent to performing a digital reconstruction on a total time of
1536 ps with a 1536 × 1536 grid, note that in the reconstruction
with T = 16 ps, the slow oscillations cannot be appreciated.

“control-reduced” version of [B(t1), B(t2)], it is exactly
what is needed to predict, and eventually optimize, the
dynamics of any pulse sequence resulting from C .

To demonstrate this, we consider the task of execut-
ing a target quantum gate G with the highest possible
fidelity. Importantly, we assume no a priori knowledge of
the noise correlation functions and, in contrast to the pre-
vious subsection, we consider the realistic setting of noisy
bounded-strength (noninstantaneous) control. Specifically,
we restrict our control capabilities C to the scenario
where hu(t) in each of the M = 2 pulses has a Gaus-
sian shape, and a total execution time T = 10 μs. In the
non-Markovian setting, achieving a high-quality operation
implies minimizing an appropriate cost function, which is
a functional of the overlap integrals I(k)	α;	u,	v(T) and whose

explicit form depends on the perturbative expansion of
choice. While many choices are possible, we define ours as
follows. Noting that a single-qubit gate G can be specified
by the expectations

E[σu]σv = TrS[GσvG†σu] ≡ Eu,v;G, u, v ∈ {0, x, y, z},

we define the cost function for executing G over time T as

E G
$ (P; T)≡

∑

u,v

|Eu,v;G − eu,v(P; T)|2, (27)

where eu,v(P; T) is a fixed-order (here, k = 2) perturba-
tive expansion of E[σu(T)]σv⊗ρB corresponding to a control
parameter set P = {θi, 	n(i)}, calculated using full knowl-
edge of 〈[B(t1), B(t2)]+〉 (as would be the case in numerical
optimal control routines). In contrast, when we specialize
our equations to the model-reduced representation associ-
ated with F of the integrals I(k)	α;	u,	v(T) [such as, e.g., Eq.
(14)], we write the cost function as

E G
$ (P; T)|F ≡

∑

u,v

|Eu,v;G − eu,v(P; T)|F |2. (28)

In each case the optimization, given C , consists in find-
ing the set P such that the corresponding cost function is
minimized. Our objective will be to show that the model-
reduced and full-knowledge optimal solutions, namely,

P∗|F ≡ argminP E G
$ (P; T)|F versus

P∗ ≡ argminP E G
$ (P; T),

yield similar performances, in the sense that E G
$ (P

∗|F ; T)
≈ E G

$ (P
∗; T). If this indeed happens, it follows that there

is no significant loss of information and effective model
reduction has been achieved, and we show in the case
below.

1. Noise characterization

Since we stipulated that no knowledge of the noise
correlation functions is available, we first need to charac-
terize the open quantum system to the best of our ability,
i.e., within the limits allowed by C . As in Sec. IV A 3,
we assume that the qubit is evolving in the presence
of uncorrelated additive and multiplicative noise sources

TABLE III. Actual and estimated physical parameters in the two-mode bosonic model described by Eqs. (25a) and (25b). The second
row shows the actual parameters of the model. The third and the forth rows show the estimated parameter using CA spectra from coarse
reconstruction only and both coarse and fine reconstruction, respectively.

ḡ1/� (MHz) ḡ2/� (MHz) �1(GHz) �2(GHz) w1(GHz) w2(GHz) �/(kBT1)(ps) �/(kBT2)(ps)

Actual 976.56 345.27 3.07 184.08 4.09 30.68 61.44 2.05
Coarse 976.55 317.80 3.07 179.63 4.09 25.93 61.44 2.03
Coarse and fine 976.56 345.27 3.07 184.08 4.09 30.68 61.44 2.05
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FIG. 4. The model assumes a correlation function (upper left) C(a)+ (t1 − t2) = 〈[B(a)(t1), B(a)(t2)]+〉 unknown to the experimenter.
Given C (hence F ), one can calculate the ideal frame projection S̄+

a (n1, n2) (bottom middle) and the corresponding time-domain

representation [B(a)(t1), B(a)(t2)]+|F (top middle). A CA-QNS protocol provides an accurate estimate ˆ̄S+
a (n1, n2)/�

2 (bottom right)

of S̄+
a (n1, n2)/�

2, with a maximum absolute error of 5.38 × 10−4. For multiplicative noise, our estimates are ˆ̄S+
m (1, 1)/�2 = 1.125 ×

10−3 Hz2 and ˆ̄S+
m (2, 1)/�2 = 2.251 × 10−3 Hz2, with relative errors less than 0.001%. The magnitude of these errors depends on

a nonzero ε. The distance E (P; T) between the actual dynamics—calculated using [B(α)(t1), B(α)(t2)]+—and the predicted dynam-
ics—using ˆ̄S+

α (n1, n2)—at the time T is small. We showcase the prediction error by randomly selecting pulse directions [here we use
	n(1) = (0.658, 0.751, −0.052) and 	n(2) = (−0.411, 0.000, 0.912)] and sweeping over all pulse angles allowed by C (bottom left). All
figures are given in units of kHz2.

(both zero mean), which we take here to be stationary and
characterized by correlation functions C(α)+ (t1−t2),
α = a, m. While unknown to the experimenter, for demon-
stration, we choose the latter to be the inverse Fourier
transforms of

S(a)(ω) = b(a)0

1 + c(a)0 ω
2

+ b(a)1

1 + c(a)1 (ω − ω
(a)
1 )2

,

S(m)(ω) = b(m)0 e−(ω−ω(m)0 )2/2c(m)0
2

,

with parameters b(a)0 /� = 400 kHz, c(a)0 = 0.004 ms2,
b(a)1 /� = 106 kHz, c(a)1 = 0.64 s2, ω

(a)
1 = 600 kHz,

b(m)0 /� = 2 mHz, c(m)0 /� = 5
√

2π Hz, and ω(m)0 = 50 Hz.
The total time T is chosen so that the weak-coupling
approximation is valid, allowing the cumulant or Dyson
expansion to be truncated at order two. We also assume
that we can prepare any Pauli eigenstate at t = 0 and
measure any Pauli observable at times t = T/2 and t = T.

Recalling our declared C , i.e., M = 2 pulses and Ñ# =
2, we start by building the relevant frames. Namely,

F (a)
# = {φ(a)n } ≡ {W1,T/2, W2,T/2,

W1,T/2 cos[πψ(1)
t ], W1,T/2 sin[πψ(1)

t ],

W2,T/2 cos[πψ(2)
t ], W2,T/2 sin[πψ(2)

t ],

W1,T/2 cos[2πψ(1)
t ], W1,T/2 sin[2πψ(1)

t ],

W2,T/2 cos[2πψ(2)
t ], W2,T/2 sin[2πψ(2)

t ]}

(see also Fig. 8 in Appendix D) and

F (m)
# = {φ(m)n } ≡ {h(t1, t), h(t2, t)},

where Wj ,τ is given in Eq. (17) and h(tj , t) is a Gaussian
profile centered at tj . The canonical dual frames F̃ (a,m)

# are
built as described in Appendix B 3, and are essentially the
two-pulse extension of the dual frame shown in Fig. 7(a)
therein.
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We then perform CA QNS via control sequences obta-
ined from Eq. (16) in the single-qubit case, with pulse dire-
ctions and angles respectively given by 	n(1) = 	n(2) ≡ 	n,

	n ∈
{
(0, 1, 0),

(
1√
2

,
1√
2

, 0
)

,
(

1√
2

, 0,
1√
2

)
,
(

0,
1√
3

,

√
2√
3

)}
,

θ1, θ2 ∈
{

0,π ,
64π
35

,
17π
10

, 2π
}

.

While in principle any “sufficiently large” set of direc-
tions and angles works for our purposes, the above set is
sufficient to estimate all the necessary CA-spectra compo-
nents while leading to a well-defined and stable estimation
problem. Note that, in principle, one would need to infer
the 10 × 10 + 2 × 2 = 104 parameters describing S̄ |C .
However, given a chosen frame, there are necessarily
symmetries in the CA spectra. To account for them, we
systematically classify these symmetries by a kernel analy-
sis method, as detailed in Appendix D. In our example, this
implies that the total number of parameters to infer reduces
to 30 + 2 = 32. Our estimation of these parameters, i.e., of
S̄ |C , is summarized in Fig. 4 (right panels).

2. Prediction and optimization

In order to test the ability of our model-reduced repre-
sentation to predict the dynamics of the system at time T,
we calculate the distance

E (P; T) ≡
∑

u,v

|eu,v(P; T)− eu,v(P; T)|F |2

between the model-reduced and full-knowledge predic-
tions for 1000 randomly chosen configurations P =
{θ1, θ2, 	n(1), 	n(2)}. We find that the average E (P; T)avg =
1.18 × 10−9, with a worst case E (P; T)worst = 8.17
× 10−8. Furthermore, choosing a pair of random pulse
directions {	n(1), 	n(2)}, we evaluate E (P; T) for {θ1, θ2} in
[0, 2π ]. The results are shown in Fig. 4 (bottom left).

Prediction is the precursor to optimization, and we can
thus demonstrate the benefits that our model-reduced rep-
resentation brings to the problem of optimally executing
a desired gate G given C . Using standard Nelder-Mead
numerical routines, for several representative choices of
G, we search for the optimal parameters P∗ = {θ∗

i , 	n(i)∗}
that minimize: (i) the cost function E G

$ (P; T)|F , by using
the information S̄ |C inferred in the above characteriza-
tion stage; or (ii) the cost function E G

$ (P; T), by assuming
full knowledge of the noise model, with access to the full-
model time-domain equations. Scenario (ii) is a drastic
idealization as such knowledge is never available in prac-
tice, and no QNS protocol can provide such information
unless one assumes arbitrary control capabilities. Never-
theless, it is a useful benchmark, as our objective is to
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show that our model-reduced representation of the dynam-
ics captures all the relevant information, as dictated by C ,
to a very good approximation.

The results are presented in Table IV. They demon-
strate the model reduction capabilities of the formalism,
as there is little to no predictive power lost. Note that
E G

$ (P
∗|F ; T) ∼ E G

$ (P
∗; T), as desired. Finally, for com-

pleteness and to highlight the benefits of control, we calcu-
late the value of the cost function E G

$ (P0 = {θi = 0}; t)
for G = I using full information and in the absence of con-
trol, i.e., the effect of the natural decoherence of the system.
One finds that in the absence of control E I

$ (P0; T/2) =
9.77 × 10−3 and E I

$ (P0; T) = 9.09 × 10−2, which should
be contrasted, for example, with the optimal control solu-
tion over time T, namely E I

$ (P
∗; T) = 11.1 × 10−3.

D. On the universality of QNS-inferred information
for control purposes

Fundamental to the paradigm of C&C of open quantum
systems is the assumption that QNS-inferred information
is sufficient to implement high-accuracy operations. This,
however, is not guaranteed. QNS protocols infer infor-
mation about the noise by measuring the response of the
system to a fixed set of control sequences, say C0 ⊆ C , so,
by design, the information they access is only that which
these sequences can sense, namely, S |C0 . The question is
whether this information is universal, that is, whether it can
be used to accurately predict the dynamics of the system
under a sequence not in C0.

To gain a concrete feeling about this problem, note
that standard comb-based QNS protocols [19], but also
Slepian-based [20] or spin-locking [15] protocols, sample
the leading noise power spectra in the frequency domain
at a finite set of points. For control purposes, however,
one is interested in overlap integrals of the form given
in Table I (panel (iii)); hence, the information provided
by the sampling is necessarily incomplete. Therefore, it
is necessary to complement it with additional assump-
tions, by interpolating between the sampled points. The
assumptions that are more or less implicitly made in this
completion step—e.g., in choosing a particular interpola-
tion method—can be highly arbitrary and user defined, and
yet they can decisively influence our ability to predict the
dynamics accurately. For instance, given a sampling set,
there are in principle infinitely many possible interpola-
tions consistent with it, and it is easy to build a control
sequence for which the details of the interpolation are cru-
cial: a simple example demonstrating how the latter can
directly impact observable expectation values is given in
Fig. 5. That is, S |C0 is not universal in general. Conse-
quently, obtaining rigorous criteria to characterize the con-
trol sequences whose effect on the system can be accurately
predicted given such information is not only desirable but

Spectrum points from an experiment
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FIG. 5. Illustrative example of the possible issues from
incompatibility between a control sequence of interest and
QNS-inferred information. Red dots represent sampled points
from comb-based SP QNS for a representative Gaussian power
spectrum, S(ω) = exp [−ω2/(3 × 1011)]/7042. Shown are also
three possible interpolations S(i)inter(ω) consistent with them.
Namely, (i) S(1)inter(ω) = S(ω) (blue line), (ii) S(2)inter(ω) = S(ω)
(1 + sin4[ 1

2πω × 10−5]) (brown dashed line), and (iii)
S(3)inter(ω) = S(ω)(1 − sin4[ 1

2πω × 10−5]) (green dash-dot line).
Given in the legend are the predicted expectation values of
σx, obtained by using the initial state ρS = (σ0 + σx)/2 and
the expression E[σx(T)]ρS = exp[− ∫ dω|F (1)(ω, T)|2S(i)inter(ω)].
The predicted value can vary significantly depending on the
interpolation being considered if the control sequence being
studied is not “of the form” of those used in the QNS protocol.
In this case, this means ensuring that |F (1)(ω, T)|2 (in gray) has
peaks out of phase with the interpolation points. An example
of such a filter [12] can be generated by M � 1 repetitions of
a π -pulse sequence with cycle time Tc = (20π)/3 μs. Shown
here is the filter for M = 10 repetitions of a Hahn-echo sequence
given by [Tc/2 − σx − Tc/2 − σx].

also imperative. Of course, this is not a problem exclu-
sive to spectral estimation in either the classical [54–56]
or quantum settings, and indeed the task of picking a good
interpolation given sampled data is a mainstay in applied
mathematics, with various possible criteria available [57].

The frame-based approach we proposed in Sec. III and
demonstrated in Sec. IV provides a way around the above
problem. On the one hand, by construction, if the finite
frame F# exists, the FSF condition guarantees that, for
an appropriately chosen C0, i.e., a well-designed QNS-
protocol, we have S |C0 = S̄ |C . Accordingly, the finite
frame provides a space in which the (finite) sampling is
precisely what is needed to accurately (up to an error scal-
ing with ε) predict the behavior of the system under an
arbitrary control modulation allowed by C . This naturally
obviates the need to complement the sampled noise infor-
mation, for instance, via interpolation. In the SP frequency-
domain example shown in Fig. 5, this would be akin to
demanding that all the sequences we are interested in were

such that
√∫

dω|F(ω, T)−∑k F(ω, T)δ(ω − kω0)|2 ≤ ε,
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withω0 = 2π/Tc. Clearly, such a condition would severely
constraint the control sequences we can accurately predict
the behavior of. The frame-based approach can achieve
the desired effect while overcoming this limitation. Like-
wise, given an arbitrary control sequence (not necessarily
in C ), one can estimate the prediction error one would
incur by using QNS-inferred information S̄ |C . Namely,
by calculating the distance between the control matrix ele-
ments associated with such a sequence and their projection
on the frame F# associated with the QNS protocol, one
essentially obtains an effective ε, and it is then up to the
user to determine if such an error is acceptable.

In closing, we note that the question of universality is
vital when model-reduced representations of complex sys-
tems are introduced (not necessarily related to control). For
example, recent work [58] has addressed similar questions,
but related to the “objectivity” of classical noise represen-
tations of quantum baths. In our setting, if one thinks of
the context [58] to be defined by C then universality of
the QNS-inferred information based on C0 may be taken
to signify a degree of objectivity of the noise represen-
tation for control purposes. Moving forward, it would be
interesting to better understand how different model sim-
plifications interact and can lead to more comprehensive
model-reduced representations (relative to the combined
contexts for example).

V. CONCLUSION AND OUTLOOK

We have introduced a framework for constructing a
model-reduced representation of open quantum dynamics
relative to given control capabilities, which both mathe-
matically formalizes and substantially simplifies the prob-
lem of C&C for general non-Markovian noise environ-
ments. While we have exemplified our analysis in two
paradigmatic applications—QNS of nonstationary noise
and model-reduced C&C of a single qubit—our results
also formally justify the success of the machine-learning
enhanced approach for noise discrimination proposed in
Ref. [59].

Our framework lends itself to several generalizations.
On the one hand, a natural and important next step is to
develop explicit frame-based protocols applicable to mul-
tiqubit C&C tasks in the presence of more general noise
models, including multiaxis and non-Gaussian noise. As
we mentioned, of special significance in this context will
be to understand how, for fixed control capabilities C , a
model-reduced description with maximum parsimony may
be obtained without sacrificing accuracy [44]. On the other
hand, the use of frame-based optimization need not be
restricted to the synthesis of unitary target gates; one could
imagine leveraging the natural decoherence of the system
in the presence of applied control to optimally implement
a reachable completely positive trace-preserving map, pos-
sibly in connection with ideas from Ref. [60]. Ultimately,

we believe that the use of frames will ease the inte-
gration of signal processing tools into quantum control
and prove instrumental to develop efficient model-reduced
approaches to C&C of realistic open quantum systems
of growing complexity, as needed by both realistic noisy
intermediate-scale quantum era devices and full-fledged
fault-tolerant architectures.
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APPENDIX A: TIME-DEPENDENT
EXPECTATION VALUES

As discussed in the main text, in order to capture the
system dynamics under the simultaneous effect of the
noise and the applied time-dependent, open-loop con-
trol, we consider the expectation value of a system-only
(invertible) observable O, given in the physical frame by
E[O(T)]ρS⊗ρB = 〈Tr[U(T)(ρS ⊗ ρB)U†(T)O]〉c. The latter
may be rewritten in the form

E[O(T)]ρS⊗ρB = 〈Tr[Ũ(T)(ρS ⊗ ρB)Ũ†(T)Õ(T)]〉c

= TrS[〈Õ(T)−1Ũ†(T)Õ(T)Ũ(T)〉ρSÕ(T)],

≡ Tr[VO(T)ρsÕ(T)],

where 〈·〉c represents averaging over realizations of the
stochastic process, 〈·〉 = 〈TrB[·ρB]〉c is the joint classical-
quantum average, and Õ(T) = U†

0(T)OU0(T). Following a
similar line of reasoning as in Ref. [18], we write VO(T)
as a time-ordered exponential, VO(T) = 〈T+e−i

∫ T
−T dsHO(s)〉

with

HO(t) =
{

H(T − t), t ∈ [0, T],
H̃(T + t), t ∈ [−T, 0],

(A1)

H(t) ≡ −Õ(T)−1H̃(t)Õ(T), and H̃(t) being the toggling-
frame Hamiltonian given in Eq. (3) of the main text. In
turn, this allows us to expand VO(T) via a cumulant or
Dyson expansion,

〈T+e−i
∫ T
−T HO(t)dt〉 = e

∑∞
k=1(−i)kC(k)O (T)/k!

= 1 +
∞∑

k=1

D(k)
O (T)
k!

,
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where C(k)O is the generalized cumulant defined implicitly
as a function of the Dyson-like terms

D(k)
O (T)
k!

= (−i)k
∫ T

−T
d>	t[k]〈HO(t1) · · · HO(tk)〉

= (−i)k
k∑


=0

∑

π∈�
;k

∫ T

0
d>	t[k]C
;k, (A2)

with correlators

C
;k ≡
〈 
∏

j =1

H(tπ(j ))
k∏

j ′=
+1

H̃(tπ(j ′))

〉
,

where d>	t[k] represents time-ordered integration, i.e., such
that t1 ≥ · · · ≥ tk. In Eq. (A2), we have performed a
change of variables, allowing us to change the integra-

tion domain, which leads to the sum over the set �
;k,
containing the permutations of {1, . . . , k} such that tπ(1) ≤
· · · ≤ tπ(
) and tπ(
+1) ≥ · · · ≥ tπ(k). Expanding each of the
correlators, we find that

C
;k = (−1)

∑

	α,	u,	v
f O
	v|


〈 k∏

j =1

y
(αj )
uj ,vj (tπ(j ))�vj ⊗ B

(αj )
uj (tπ(j ))

〉

= (−1)

∑

	α,	u,	v
f O
	v|
κ	v�̂	v

k∏

j =1

y
(αj )
uj ,vj (tπ(j ))

〈 k∏

j =1

B
(αj )
uj (tπ(j ))

〉
,

where f O
	v|
 ≡ (1/d)Tr[O−1�v1 · · ·�v
O(�v1 · · ·�v
)

−1�̂	v]
and we have assumed for simplicity that the chosen opera-
tor basis is such that

∏k
j =1�vj ≡ κ	v�̂	v for κ	v ∈ C and �̂	v

invariant under permutations of 	v. Finally, this implies that
we can write

D(k)
O (T) = k! (−i)k

∑




∑

π

∑

	α,	u,	v
(−1)
f O

	v|
κ	v�̂	v
∫ T

0
d>	t[k]

k∏

j =1

y
(αj )
uj ,vj (tπ(j ))〈B̂(	α)	u [π(	t)]〉

= k! (−i)k
∑




(−1)

∑

π

∑

	α,	u,	v
κ	v�̂	v

∫ T

0
d>	t[k]

k∏

j =1

y
(α
π−1(j ))

u
π−1(j ),vπ−1(j )

(tj ){f O
	v|
〈B̂

(	α)
	u [π(	t)]〉}

= k! (−i)k
∑




(−1)

∑

π

∑

	α,	u,	v
�̂	v
∫ T

0
d>	t[k]

k∏

j =1

y
(αj )
uj ,vj (tj ){κπ(	v)f O

π(	v)|
〈B̂
(π(	α))
π(	u) [π(	t)]〉}. (A3)

From Eq. (A3), obtained by an adequate relabeling
of the indices and observing that the sum is over all
	u, 	v, 	α, one deduces that, for each configuration of αj , uj , vj

in {x, y, z}, the term �̂	v
∏

y
(αj )
uj vj (tj ) appears modulat-

ing a linear combination of bath correlation functions,
〈B̂(π(	α))
π(	u) [π(	t)]〉, i.e., a linear combination L	α;	v(	t). That is,

each of the relevant overlap integrals I(k)	α;	u,	v(T) appearing
in the sum have the structure claimed in Eq. (6) of the
main text. We also highlight that any other perturbative
expansion, e.g., a cumulant expansion, can be written in
terms of structurally similar overlap integrals. Moreover,
any function of the reduced dynamics, e.g., the fidelity, can
be expanded in terms of the above integrals and resulting
filter function representation. Which function is chosen is
then a matter of convenience given the task at hand.

APPENDIX B: ILLUSTRATIVE FRAME
EXAMPLES

1. Fourier frames and frequency-domain FFs revisited

The frame formalism encompasses both the Fourier
series and the short-time Fourier transform, by

respectively relating them to expansions in terms of appro-
priate discrete Fourier frames [43] or discrete and con-
tinuous Gabor frames [33,61]. Specifically, the frame of
complex exponentials,

FFS ≡ {φn(t) = e−in2π t/|�|, n ∈ Z},

is a discrete, self-dual frame for functions f ∈ L2(�),
where� is a closed interval on R (e.g.,� = [0, 1]) and the
inner product (a, b) = ∫

�
dt a(t)b(t)∗/|�|. The resulting

frame expansion corresponds to the usual Fourier series on
�, namely, f (t) =∑n(f ,φn)e−in2π t/|�| for t ∈ �.

Likewise, given f ∈ L2(R), recall that the short-time
Fourier transform (STFT, also known as the “windowed”
FT or the Weyl-Heisenberg transform) with respect to a
window function g ∈ L2(R) is given by

Fg(ω, τ) ≡
∫ ∞

−∞
dtf (t)φ∗

ω,τ (t), φω,τ (t) = g(t − τ)e−iω·t,

where φω,τ (t), ω, τ ∈ R, are elements of a (continuous)
Gabor frame [61,62]. That is, a two-dimensional repre-
sentation of the signal is obtained by taking the FT of
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f as the window function (e.g., a Gaussian or Hanh
function centered around zero) is slid along the time
axis. Conversely, the inverse STFT is given by f (t) =∫∞
−∞ dωFg(ω, τ)φ̃∗

ω,τ (t), where the functions {φ̃ω,τ (t)} are
dual to {φω,τ (t)}.

Given the above formalism, one can now see how the
standard frequency-domain FF formalism [34,36] consti-
tutes a particular limit of our construction. At an intu-
itive level, this is possible by considering the FT as an
appropriate limit of the Fourier series, in the context of
eigenfunction expansions (see, e.g., Sec. 5.7 of Ref. [63]).
More formally in our context, the key observation is that
any function corresponding to a physically admissible con-
trol (including free evolution) is necessarily time limited,
i.e., ti ≤ T̄ for some finite T̄ in our overlap integrals.
Furthermore, for the SP, one has

I(k)	α;	u,	v =
∫ ∞

−∞
d	τ[k]

∫ ∞

−∞
d 	ω[k] F (k)

	α;	u,	v( 	ω)S(k)	α;	v( 	ω, 	τ),

where S(k)	α;	v( 	ω, 	τ) = ∫∞
−∞ d	t[k] L	α,	v(	t )g(	t − 	τ)e−i 	ω·	t is the

FTFT associated with a sliding-window function g(	t) [61].
By noting that, for any T̄, there is a τ̄ such that g(	t − 	τ)
and

∏k
j =1 y

(αj )
uj ,vj (tj ) have negligible overlap when |	τ | > τ̄ ,

one finds that

I(k)	α;	u,	v �
∫

|	τ |≤τ̄
d	τ[k]

∫ ∞

−∞
d 	ω[k]F

(k)
	α;	u,	v( 	ω)S(k)	α;	v( 	ω, 	τ).

In other words, the standard frequency FF formalism is
effectively an expansion on the frame given by {φ 	ω,	τ } for
|	τ | < τ̄ . A similar reasoning can be applied to the CA
representation. The two representations are summarized in
Table I(iii)–(iv) of the main text.

2. Digital frames for instantaneous pulses

Beyond Fourier and Gabor frames, the frame formalism
allows for considerable flexibility. Consider the scenario
in which the control matrix elements yu,v(t) are piece-
wise constant in time. As we show in Appendix C, this
is relevant, for instance, when one considers M (equidis-
tant) instantaneous pulses over a time T, implemented by
control profiles h(tj , t) = δ[t − (tj + τ/2)] for j ∈ [1, M ]
and τ = T/M . Such control matrix elements are naturally
spanned by the sequence FW = {Wj ,τ }, where the window
function Wj ,τ is defined in Eq. (17) in the main text. As it
turns out, FW is not only a frame but also a basis, and for
the above scenario, the FSF condition is exactly satisfied
(ε = 0). What is more, any digital basis suffices, among
which the Walsh functions provide a compelling choice
[46,47].

Walsh functions [45] wn(t) are a complete set of orthog-
onal functions in an interval [0, T] with the inner product
(a, b) = ∫ T

0 dt a(t)b(t)∗/T, which form a basis for piece-
wise constant functions in [0, T] with 2N intervals (N ∈

N). They are digital, taking values in {−1, 1}, and can
be defined via the rows of the Hadamard matrix H2N .
We choose the so-called sequency ordering [45–47] for
their labeling for convenience, such that the sequence
FWalshN = {wj (t)}2N

j =1 is a basis for 2N -interval piecewise
constant functions. The first eight Walsh functions are
illustrated in Fig. 6.

3. Custom-built frames for arbitrary pulse profiles

For general noninstantaneous pulses, corresponding to
arbitrary control profiles, one often encounters the situa-
tion where the allowed control matrix Y has a particular
structure, e.g., its components are linear combinations of
specific functions of the available control profile, and its
elements belong to a particular Hilbert space H. Two
notable examples, typical of the unitary control scenario
resulting from M nonoverlapping pulses in time T we
describe in the main text (and in detail in Appendix C),
are

Y (a) ∈ HY (a) = span{Wj ,τ cos[θjψ
(j )
t ], Wj ,τ sin[θjψ

(j )
t }
(B1)

with ψ(j )
t = ∫ t

(j −1)τ h(tj , s)ds,

Y (m) ∈ HY (m) = span{θj h(tj , t)}. (B2)

Consider a generic case where

H = span
C
{f
({θj }, {bj (t)}) | 
 ∈ [1, L], j ∈ [1, M ]}

for some set of functions {bj (t)}, e.g., bj (t) = h(tj , t) as
above or where each bj (t) is an element of a conve-
nient (truncated) basis in which control profiles can be
expanded. One can build a frame-dual frame pair as fol-
lows. Imagine that each θj ∈ [0, 2π ] takes values among
integer multiples of 2π/Nctrl for certain Nctrl ∈ Z. Then,
the N# = N#(L, M , Ñ#)-element sequence

F# = {φn} ≡ {f
({ηj }, {bj (t)})}, 
 ∈ [1, L], j ∈ [1, M ],

with ηi = 2πki/Ñ#, ki ∈ [0, Ñ#], spans H when Ñ# = Nctrl,
and is indeed (trivially) a frame. For a different choice of
parameter Ñ#, e.g., if Ñ# < Nctrl, the frame property is lost
as F# no longer spans H. One can nevertheless proceed
to build a dual sequence F̃# = {φ̃n(t)}N#

n=1 via the Moore-
Penrose pseudoinverse method (see below), such that, by
construction, the orthogonality condition (φn, φ̃n′) = δn,n′
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FIG. 6. Left: the first eight Walsh functions in sequency ordering. The gray solid lines represent zero for each function. The names
of the traditional π -pulse sequences [46,47] are written next to the plot. Right: each Walsh function is represented with its values in
intervals.

is satisfied. With this, one can write

ỹ(t) =
N#∑

n=1

(y, φ̃n) φn(t) (B3)

and calculate the error bound

max
y(t)

‖y(t)− ỹ(t)‖2 = max
y(t)

√∫ T

0
|y(t)− ỹ(t)|2dt ≤ ε

for the candidate F# and F̃#, as necessary to verify the
FSF condition. That is, one can assess the ability of a can-
didate frame-dual frame pair to approximate every y(t) ∈
H via Eq. (B3), thereby verifying the parsimony of F#.

a. Single-qubit additive and multiplicative noise

For the additive dephasing noise, we study in the main
text (see also Appendix C), the five dual frame functions
built for Ñ# = 2 and M = 1 are depicted in Fig. 7(a).
Here, the associated frame is given by F (a)

# = {φ(a)n (t)} =
{1, cos[πψ(1)

t ], cos[2πψ(1)
t ], sin[πψ(1)

t ], sin[2πψ(1)
t ]}, and

its dual can be calculated as outlined below. It is worth
highlighting that, when the bj (t) are nonoverlapping,
as in the bj (t) = h(tj , t) case considered here, one has
N# = ML(Ñ# + 1), that is, the size of the frame grows
linearly with the number of pulses M (note that the
φ
(a)
0 = sin[0ψ(1)

t ] = 0 is trivial and thus excluded from
the frame definition, leading to N# = 5). For any y(t),
one can calculate an upper bound ε to the L2 distance
‖y(t)− ỹ(t)‖2 by evaluating these quantities for any θ1 =
k2π/100 for k∈ [0, 100]. We find that ε|Ñ#=2 = 2.4 × 10−5

and ε|Ñ#=4 = 2.8 × 10−8. In Fig. 7(b), we plot seven such
y(t) (for random θ1) and their approximated frame repre-
sentation functions (B3) for illustration purposes.

For the case of multiplicative noise, note that HY (m) =
span{h(tj , t)}, so we may simply take F (m)

# ≡{h(tj , t)} with
j ∈ [1, M ], and trivially satisfy the FSF condition in this
way. Also, F̃ (m)

# = F (m)
# /Zm, where Zm is a normalization

factor ensuring that
∫ T

0 dt φ(m)j (t)φ(m)j ′ (t)/Zm = δj ,j ′ .

b. Building a dual sequence via the
Moore-Penrose pseudoinverse

In practice, given a sequence, one can build a canoni-
cal dual one via a standard Moore-Penrose pseudoinverse
construction. When the sequence under consideration is a
frame, then its dual is also a frame. The starting point is
a reference orthonormal basis. We first note that F# =
{φn(t)}n=1,...,N# spans a Hilbert space H# with the usual
L2 inner product. An orthonormal basis for H#, which we
denote by G# = {gm}m=1,...,M# with M# ≤ N#, is then built
by applying a Gram-Schmidt process to F#. In turn, this
means that one can write φn =∑m(φn, gm)gm, which is
represented in matrix language as 	φ = T	g, with T gener-
ally a nonsquare matrix. The dual frame can then be built
via the Moore-Penrose pseudoinverse. One then has

φn =
∑

m

(φn, gm) gm =
∑

n′
(φn,φn′) φ̃n′

=
∑

n′,m′,m,j ′
(φn, gm)(φn′ , gm)(φ̃n′ , gm′)gm′ ,
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FIG. 7. (a) The five functions in the dual frame F̃ (a), obtained via the Moore-Penrose pseudoinverse. (b) Seven examples (orange
thick) of cos(θ1ψ

(1)
t ) and sin(θ1ψ

(1)
t ) with randomly generated θ1 and their approximated frame representation (black dashed) with

Ñ# = 2.

where we have used the facts that φ̃j =∑j ′(φ̃j , gj ′)gj ′ ,

or, equivalently, 	̃
φ = T̃	g, and that the {gj ′ } are a basis.

The above implies that T�T̃ = I , which, noting that T�T
is invertible, has the solution T̃ = T(T�T)−1. Thus, the
elements of F̃# are given by

	̃
φ = T(T�T)−1	g.

APPENDIX C: SINGLE-QUBIT FRAME-BASED
PROTOCOLS

1. Single-qubit reduced dynamics and
determination of S̄ |C

We are interested in obtaining explicit expressions for
expectation values of an invertible observable O at a time
T. As mentioned in the text, this can be accomplished in
a weak-coupling regime via a truncated Dyson expansion

given by

E[O(T)]ρS⊗ρB ≈ 〈Tr{[IS − D(2)
O (T)]ρSÕ(T)}〉

= Tr[ρSÕ(T)] − 〈Tr[D(2)
O (T)ρSÕ(T)]〉,

(C1)

where the Dyson term is given by [see Eq. (A3)]

D(2)
O (T) = 2!

∫ T

0
d>	t[2]〈H̃(t1)H̃(t2)− H(t2)H̃(t1)

− H(t1)H̃(t2)+ H(t2)H(t1)〉c

and H(t) ≡∑u y(α)u (t)
∑

c f u
c σc ⊗ B(α)(t) with f u

c = 1
2

Tr[Õ†(T)σuÕ(T)σc]. Assuming that there are no corre-
lations between additive and multiplicative noise, i.e.,
〈B(a)(t1)B(m)(t2)〉 = 0 for all t1, t2, we have

030315-20



FRAME-BASED FILTER-FUNCTION FORMALISM... PRX QUANTUM 2, 030315 (2021)

D(2)
O (T)
2

=
∑

α;u,v

∫ T

0
d>	t[2]

[
y(α)u (t1)y(α)v (t2)σuσv〈B(α)(t1)B(α)(t2)〉c

− y(α)u (t1)y(α)v (t2)
(∑

c

f u
c σc

)
σv〈B(α)(t1)B(α)(t2)〉c

− y(α)u (t1)y(α)v (t2)
(∑

c′
f vc′ σc′

)
σu〈B(α)(t2)B(α)(t1)〉c

+ y(α)u (t1)y(α)v (t2)
∑

c,c′
f u
c f vc′ σc′σc〈B(α)(t2)B(α)(t1)〉c

]
, (C2)

which, in the frame language, reads

D(2)
O (T)
2

= σ0

4

∑

α;u;n,n′;μ=±
S̄(μ)α (n, n′)F (1,−)

α;u (n, T)F (1,−μ)
α;u (n′, T)

+
∑

α;u�=v;n,n′;μ=±

σuσv

4
S̄(μ)α (n, n′)F (1,−)

α;u (n, T)F (1,μ)
α;v (n′, T).

The last equation follows after the change of variables c ↔ u, c′ ↔ v and using F (1,±)
α;u (n, T) to denote the frame F (α)

representation of Y(±)α;u (t) ≡ y(α)u (t)±∑c f u
c y(α)c (t), with the definition for S̄(±)α (n, n′) used in the main text. Therefore, the

second term in Eq. (C1) contains the effect of the noise that we are interested in. In the following, we isolate the quantities
Tr[D(2)

O (T)σl], l ∈ {x, y, z}, for a given control sequence, initial system state, and measured observable, so that we can
build our CA-QNS protocol by cycling over a sufficiently large set of controls and observables. First we note that

E[O(T)](IS+σk)/2⊗ρB + E[O(T)](IS−σk)/2⊗ρB = −〈Tr[D(2)
O (T)Õ(T)]〉, (C3a)

E[O(T)](IS+σk)/2⊗ρB − E[O(T)](IS−σk)/2⊗ρB = Tr[σkÕ(T)] − 〈Tr[D(2)
O (T)σkÕ(T)]〉, (C3b)

which implies that from the (measured) expectation values we can infer the value of 〈Tr[D(2)
O (T)σrÕ(T)]〉c for

r ∈ {0, x, y, z}. Then, we note that, for a choice of control and observable, the operator Õ(T) =∑k
1
2 Tr[Õ(T)σk]σk ≡∑

k okσk is known and fixed, which allows us to write the system of equations
{

Tr[D(2)
O (T)σrÕ(T)] =

∑

l=0,x,y,z

∑

k=x,y,z

Tr[D(2)
O (T)σl]ok

Tr[σlσrσk]
2

}

r∈{0,x,y,z}
, (C4)

from which the {Tr[D(2)
O (T)σl]} can be inferred, as desired.

We then combine these values—for a fixed U0(T)—to construct Tr[D(2)
O (T)σrÕ(T)] for Õ(T) = σγ and all r, γ , which

simplifies the Õ(T)-dependent expression for F (1,±)
α,u (n, T). A direct calculation for r = 0 shows that

〈Tr[D(2)
O (T)σ0σγ ]〉c =

∑

α;n,n′

∑

u�=v �=γ

∑

μ=±
iεuvγ S̄(μ)α (n, n′)F (1,−)

α;u (n, T)F (1,μ)
α;v (n′, T)

=
∑

α;n,n′

∑

u�=v �=γ

∑

μ=±
iεuvγ (1 + μgγv )(1 − gγu )F

(1)
α;u(n, T)F (1)

α;v(n
′, T)S̄(μ)α (n, n′)

= 4i
∑

α;n,n′

∑

u�=v �=γ
εuvγF (1)

α;u(n, T)F (1)
α;v(n

′, T)S̄(−)α (n, n′)

= 4i
∑

α;u<v �=γ
εuvγI

(2,−)
α;u,v (T),
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where εuvγ is the Levi-Civita symbol, gvu = 1
2 Tr[σuσvσuσv], and

I(2,−)
α;u,v (T) ≡

∑

n,n′
[S̄(−)α (n, n′)− S̄(−)α (n′, n)]F (1)

α;u(n, T)F (1)
α;v(n

′, T).

Similarly, for r �= 0, we find that

〈Tr[D(2)
O (T)σrσγ ]〉c

=
∑

α;n,n′

∑

u

∑

μ=±
δu,γ (1 − gγu )(1 − μgγu )F

(1)
α;u(n, T)F (1)

α;u(n
′, T)S̄(μ)α (n, n′)

+
∑

α;n,n′

∑

u�=v

∑

μ=±
(δr,vδγ ,u − δr,uδγ ,v)(1 − gγu )(1 + μgγv )F

(1)
α;u(n, T)F (1)

α;v(n
′, T)S̄(μ)α (n, n′)

= 4
∑

α;n,n′

∑

u�=γ
[δr,γF (1)

α;u(n, T)F (1)
α;u(n

′, T)S̄(+)α (n, n′)− δr,uF (1)
α;u(n, T)F (1)

α;γ (n
′, T)S̄(+)α (n, n′)]

= 4
∑

α;u�=γ
[δr,γI(2,+)

α;u,u (T)− δr,uI(2,+)
α;u,γ (T)],

where the index structure forbids the contribution from S̄(−)α (n, n′), and we have defined

I(2,+)
α;u,v (T) ≡

∑

n,n′
S̄(+)α (n, n′)F (1)

α;u(n, T)F (1)
α;v(n

′, T).

Therefore, from the possible r, γ configurations, and

〈Tr[D(2)
O (T)σrσγ ]〉c =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4
∑

α;u<v �=γ
iεuvγ I

(2,−)
α;u,v (T), r = 0,

4
∑

α;u�=γ
I(2,+)
α;u,u , r = γ ,

−4
∑

α;u�=γ
δu,r I(2,+)

α;u,γ , r �= γ , r �= 0,

we conclude that only the integrals I(2,+)
α;u,v for all u, v and

I(2,−)
α;u,v for all u �= v influence the reduced qubit dynam-

ics. In turn, this implies that only the quantities S̄ |C =
{S̄(+)α (n, n′), S̄(−)α (n, n′)− S̄(−)α (n′, n)} are relevant to the
dynamics given C . The objective of QNS is to precisely
extract all the spectra in S̄ |C .

2. Control-adapted QNS protocol with
instantaneous control

In the case of instantaneous control, note that each
switching function is exactly expanded by an appropri-
ate digital basis, as mentioned in Sec. IV A 2. We thus
use Walsh functions (see Appendix B 2) as our frame. To
perform CA QNS for such a frame, it is enough to use rota-
tions around the y axis. In this situation, the toggling-frame

Hamiltonian specializes to

H̃(t) = yz,z(t)σz ⊗ B(t)+ yz,x(t)σx ⊗ B(t),

where the control matrix elements are such that in the j th
time interval they are given by

yz,z(t) = cos(θ̃j )

= 1
2 Tr[eiθ̃j σy/2σze−iθ̃j σy/2σz], (j − 1)τ ≤ t < τ ,

yz,x(t) = − sin(θ̃j )

= 1
2 Tr[eiθ̃j σy/2σze−iθ̃j σy/2σx], (j − 1)τ ≤ t < τ ,

with the relation between the θ̃j and θj set by the equations

0 = θ̃1, θk = θ̃k+1 − θ̃k, 1 ≤ k ≤ M − 1, θM = −θ̃M .
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The above considerations suggest the following. First,
using only θ̃ = π pulses, one can ensure that yz(t) and
yx(t) take values in {−1, 1}, and equal (up to a sign) to any
desired Walsh function wn(t) for t ∈ [0, T] and n ∈ [1, M ].
This implies, for example, that

F (1)
z (n, T) =

∫ T

0
dt wm(t)wn(t) = Tδmn,

and, thus,

I(+)z,z (T) ≡ I(2,+)
a;z,z (T)

= T2
∑

n,n′
S̄(+)(n, n′)δnmδn′m

= T2S̄(+)(m, m). (C5)

That is, we can directly sample diagonal elements
S̄(+)(m, m).

Second, using θ̃ ∈{π ,π/2}, we ensure that yz(t) and
yx(t) take values in {−1, 0, 1}, with the constraint |yz(t)|2 +
|yx(t)|2 = 1. In particular, one can choose angles such that
yz(t) = wm(t)+ wm′(t), while yx(t) = wm(t)− wm′(t) and,
thus,

F (1)
z (n, T) =

∫ T

0
dt

1
2

[wm(t)+ wm′(t)]wn(t)

= T
2
(δnm + δnm′),

F (1)
x (n, T) =

∫ T

0
dt

1
2

[wm(t)− wm′(t)]wn(t)

= T
2
(δnm − δnm′).

When applied to our dynamical equations, the above
implies that

I(+)z,z (T) = T2

4
[S̄(+)(m, m)+ S̄(+)(m, m′)

+ S̄(+)(m′, m)+ S̄(+)(m′, m′)], (C6a)

I(+)z,x (T) = T2

4
[S̄(+)(m, m)− S̄(+)(m, m′)

+ S̄(+)(m′, m)− S̄(+)(m′, m′)], (C6b)

I(−)z,x (T) = −T2

2
[S̄(−)(m, m′)− S̄(−)(m′, m)], (C6c)

and we can thus infer the elements S̄(+)(n, n′) and
S̄(−)(n, n′)− S̄(−)(n′, n), as desired.

Given access to the corresponding S̄ |C and noting that
the SP and the CA pictures are related via S(±)(n, n′) =

S̄(±)(n, n′)± S̄(±)(n′, n), one can then obtain Walsh recon-
structions Ĉ(a)± (t1, t2) of C(a)± (t1, t2) given by

Ĉ(a)± (t1, t2) =
N#∑

n,n′=1

[S̄(±)(n, n′)± S̄(±)(n′, n)]wn(t1)wn′(t2).

The reconstruction resolution will depend on the free
parameters in the above protocol, namely, the total time T
and the minimum switching time τ , which upper bounds
the value of N#. In general, a smaller τ leads to higher
resolution.

APPENDIX D: SYMMETRY ANALYSIS FOR
CONTROL-ADAPTED SPECTRA

Given the frame of choice as plotted in Fig. 8, there are
symmetries in the CA spectra. We systematically classify
any symmetries present in S̄+

a (n, n′) by a kernel analysis
method (which also works for more general noise models)
as follows.

(1) The relevant set of parameters, S̄+
a (n, n′), are not

linearly independent. To probe this, we decompose
each of them by dividing the integration region 0 ≤
t2 ≤ t1 ≤ T into three distinct subregions, namely
I1 ≡{0 ≤ t2 ≤ t1 ≤ T/2}, I2 ≡{T/2 ≤ t2 ≤ t1 ≤ T},
and I3 ≡ {0 ≤ t2 ≤ T/2, T/2 ≤ t1 ≤ T}, and, thus,
letting S̄+

a (n, n′)|i be the component of S̄+
a (n, n′) in

the Ii integration subregion, such that

S̄+
a (n, n′) = S̄+

a (n, n′)|1 + S̄+
a (n, n′)|2 + S̄+

a (n, n′)|3.

The key point is that this division allows the sys-
tematic study of the symmetries in the frame ele-
ments within each as well as between different
integration subregions, e,g., the stationary assump-
tion implies that S̄+

a (n, n′)|1 = S̄+
a (m, m′)|2 when

φ(a)n (t1 − T/2) = φ(a)m (t1) and φ(a)n′ (t2 − T/2) = φ
(a)
m′

(t2). Moreover, parity symmetries lead to further
reduction in the free parameters, e.g., S̄+

a (n, n′)|1 =
−S̄+

a (n
′, n)|1 when φ(a)n (t1) is an odd function in

0 ≤ t1 ≤ T/2 (antisymmetric about t1 = T/4) and
φ
(a)
n′ (t2) is an even function in 0 ≤ t2 ≤ T/2 (sym-

metric about t2 = T/4). We then associate a vector
s(n, n′) to each S̄+

a (n, n′) such that the lth entry,
s(n, n′)l, is nonzero if S̄+

a (n, n′) has a nonzero pro-
jection on the lth element of the set of indepen-
dent elements {S̄+

a (n, n′)|i} (after considering all the
symmetries above), and zero otherwise. Further-
more, we use all elements of the vectors s(n, n′) to
construct the matrix

SK ≡

⎛

⎜⎝
s(1, 1)1 s(1, 2)1 · · ·
s(1, 1)2 s(1, 2)2 · · ·

...
...

⎞

⎟⎠ .
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TABLE V. Symmetry equation list. Numbers 1 to 45 list all
the combinations of (j1, k1) and (j2, k2) such that S̄+

a (j1, k1)±
S̄+

a (j2, k2) = 0. Numbers 46 to 70 list all the (j3, k3) such that
S̄+

a (j3, k3) = 0.

1 (1, 1)− (6, 6) 36 (6, 2)+ (7, 1)
2 (1, 2)+ (7, 6) 37 (6, 3)− (8, 1)
3 (1, 3)− (8, 6) 38 (6, 4)− (9, 1)
4 (1, 4)− (9, 6) 39 (6, 5)+ (10, 1)
5 (1, 5)+ (10, 6) 40 (7, 3)+ (8, 2)
6 (6, 7)+ (7, 6) 41 (7, 4)+ (9, 2)
7 (6, 8)− (8, 6) 42 (7, 5)− (10, 2)
8 (6, 9)− (9, 6) 43 (8, 4)− (9, 3)
9 (6, 10)+ (10, 6) 44 (8, 5)+ (10, 3)

10 (2, 1)− (7, 6) 45 (9, 5)+ (10, 4)
11 (2, 2)− (7, 7) 46 (1, 6)
12 (2, 3)+ (8, 7) 47 (1, 7)
13 (2, 4)+ (9, 7) 48 (1, 8)
14 (2, 5)− (10, 7) 49 (1, 9)
15 (7, 8)+ (8, 7) 50 (1, 10)
16 (7, 9)+ (9, 7) 51 (2, 6)
17 (7, 10)− (10, 7) 52 (2, 7)
18 (3, 1)− (8, 6) 53 (2, 8)
19 (3, 2)− (8, 7) 54 (2, 9)
20 (3, 3)− (8, 8) 55 (2, 10)
21 (3, 4)− (9, 8) 56 (3, 6)
22 (3, 5)+ (10, 8) 57 (3, 7)
23 (8, 9)− (9, 8) 58 (3, 8)
24 (8, 10)+ (10, 8) 59 (3, 9)
25 (4, 1)− (9, 6) 60 (3, 10)
26 (4, 2)− (9, 7) 61 (4, 6)
27 (4, 3)− (9, 8) 62 (4, 7)
28 (4, 4)− (9, 9) 63 (4, 8)
29 (4, 5)+ (10, 9) 64 (4, 9)
30 (9, 10)+ (10, 9) 65 (4, 10)
31 (5, 1)− (10, 6) 66 (5, 6)
32 (5, 2)− (10, 7) 67 (5, 7)
33 (5, 3)− (10, 8) 68 (5, 8)
34 (5, 4)− (10, 9) 69 (5, 9)
35 (5, 5)− (10, 10) 70 (5, 10)

Since the kernel of SK represents the vanishing
linear combinations of its columns, calculating it
provides exactly the linear dependencies among
{S̄+

a (n, n′)} we seek. For our choice of frame, we
find 70 such symmetries (see Table V), and thus
the number of free parameters—which describe the
additive noise—is now reduced from 100 to 30.

(2) Recalling that, for multiplicative noise, the j th
frame element is supported on the j th interval, one
then has S̄+

m (j , j ′) = 0 for j < j ′ and S̄+
m (j , j ) =

S̄+
m (j

′, j ′).
(3) Finally, we point out that the additive and mul-

tiplicative noise components can be separately
inferred by first fixing {θi} and cycling over a suf-
ficiently large set of directions 	n, and then repeating
these steps for several choices of {θi}.
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FIG. 8. Frame elements in F (a)
# for M = 2 and Ñ# = 2. Hori-

zontal axes are time, t(μs).

APPENDIX E: FASTER GATES NEED NOT BE
MORE ACCURATE

Here we showcase another noise example where two-
interval control can, somewhat surprisingly, lead to better
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performance in some gate design tasks than single-interval
control. This noise model is the same as that of Sec. IV C 1,
except that the parameter values are changed as b(a)0 /� =
2000 kHz, c(a)0 = 0.08 ms2, b(a)1 /� = 5 × 104 kHz, c(a)1 =
0.64 s2, ω(a)1 = 400 kHz, b(m)0 /� = 0.1 mHz, c(m)0 /� =
6
√

2π Hz, and ω
(m)
0 = 60 Hz. The optimal gate design

results are summarized in Table VI. In comparison, the
shortest implementation of the π/8 gate around X allowed
by C yields the larger error E G

$ ({π/4}; T/2) = 7.75 ×
10−3. As in dynamically corrected gates [2] and composite
pulses [3], multiple segments of evolution may be cru-
cial to enable error cancelation, despite the gate taking
longer.
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