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Recent years have enjoyed an overwhelming interest in quantum thermodynamics, a field of research
aimed at understanding thermodynamic tasks performed in the quantum regime. Further progress, how-
ever, seems to be obstructed by the lack of experimental implementations of thermal machines in which
quantum effects play a decisive role. In this work, we introduce a blueprint of quantum field machines,
which—once experimentally realized—would fill this gap. Even though the concept of the QFM presented
here is very general and can be implemented in any many-body quantum system that can be described by
a quantum field theory. We provide here a detailed proposal of how to realize a quantum machine in one-
dimensional ultracold atomic gases, which consists of a set of modular operations giving rise to a piston.
These can then be coupled sequentially to thermal baths, with the innovation that a quantum field takes up
the role of the working fluid. In particular, we propose models for compression on the system to use it as
a piston, and coupling to a bath that gives rise to a valve controlling heat flow. These models are derived
within Bogoliubov theory, which allows us to study the operational primitives numerically in an efficient
way. By composing the numerically modeled operational primitives we design complete quantum ther-
modynamic cycles that are shown to enable cooling and hence giving rise to a quantum field refrigerator.
The active cooling achieved in this way can operate in regimes where existing cooling methods become
ineffective. We describe the consequences of operating the machine at the quantum level and give an out-
look of how this work serves as a road map to explore open questions in quantum information, quantum

thermodynamic, and the study of non-Markovian quantum dynamics.

DOI: 10.1103/PRXQuantum.2.030310

I. INTRODUCTION

As elevated and set in stone as the basic principles
of thermodynamics may appear, there is a development
emerging that could not have been anticipated when this
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theory was being conceived. Indeed, the basic laws were
formulated in an effort to understand the functioning of
macroscopic machines that can be described by classi-
cal physics. However, due to advances in quantum tech-
nologies the question that currently begs for an answer
is what happens if we consider heat engines for which
quantum laws and effects are expected to play an impor-
tant role. Indeed, there has been a significantly increased
recent interest in exploring thermodynamic notions in the
quantum regime [1-T7].

One of the most notable insights that has been achieved
in this context is, on the one hand, the increased role of
knowledge and control giving rise to potentially superior
performance of quantum machines. On the other hand,
inevitable fluctuations of energy pose novel conceptual

Published by the American Physical Society
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challenges in defining thermodynamic quantities at the
quantum scale. Additionally, in the quantum regime ther-
mal and quantum correlations may range over substantial
portions of the elements of the machine, possibly influ-
encing its dynamics. These fundamental questions have
stimulated interesting experimental developments, e.g.,
fully controlling a quantum system such as a trapped ion
[8—10], a single impurity electron spin in a silicon tun-
nel field-effect transistor [11] or an electronic circuit [12]
to engineer behavior reminiscent of thermal machines. In
ensembles of nitrogen-vacancy centers in diamond, the
first quantum signatures have just been observed [13].

There is a caveat, however, constituting a serious road
block in this avenue of research. It arguably turns out to be
excessively difficult to experimentally realize a machine
that works in the thermodynamics regime and at the same
time shows genuinely quantum effects: this would be a
physical system for which

(i) quantum mechanics is required to derive an appropri-
ate effective physical model describing its dynamics, with
genuine quantum correlations potentially playing a major
role and

(ii) it is infeasible to control its every single degree of
freedom.

Thus, ideally such a machine would consist of a quan-
tum many-body system. The genuinely quantum behavior
of such machines can in principle be witnessed by irreg-
ularities of the system going against the natural direction
of entropy increase. Such irregularities are, however, gen-
erally difficult to observe due to the time scales of their
occurrence being long, and therefore easily dampened
by external dissipation. That this is nevertheless possi-
ble has been demonstrated in the recent observations of
many-body recurrences [14,15].

Despite having the potential to play a similar role for
the development of quantum thermodynamics as the steam
engine did for the classical theory of thermodynamics, at
the present stage, such machines have yet to be devised.
This state of affairs seems a grave omission in particular
in the light of the observation that it has been the study of
the performance of machines that led to the development
of classical thermodynamics in the first place.

In this work, we propose a blueprint for a quantum field
machine (QFM) first conceived in Ref. [16] that would,
once experimentally realized, qualify as being a genuine
quantum thermal machine in this sense. One of the cen-
tral challenges here is a trade-off between a sufficient
size of the machine to meaningfully allow for thermody-
namic considerations—after all, one has to make reference
to thermal baths—and sufficient control of the dynamics.
Only if suitable levels of control can be reached, one can
hope to transcend features of classical statistical mechan-
ics and reveal genuine quantum behavior of machines.
Furthermore, elucidating quantum thermodynamic behav-
ior will be even more important whenever the envisioned

machine actually manages to perform a task that would
otherwise be impossible to achieve by other means. A
prominent example of such a potential task is refrigeration.

On the one hand, current cooling techniques applied to
quantum systems (e.g., laser cooling, evaporative cooling)
seem to have hit the ultimate (semi)classically possible
limit; on the other hand, it is conceivable that quantum con-
trol over the cooling mechanism could serve to go beyond
such a limit. In this sense, a genuine quantum machine
could have revolutionary practical implications, very anal-
ogous to the steam engine example mentioned above. The
QFM that we propose here intends precisely to address
all of the aforementioned challenges posed when building
genuine quantum machines:

(i) It is a genuine complex quantum many-body system,
describable by means of effective quantum field theories
that capture emergent degrees of freedom using different
scales of refinement in the field theory model. In this par-
ticular work we focus on a QFM tuned on a Gaussian
regime which is efficiently simulable numerically [17] and
also a very good approximation for moderately short time
scales. We, however, note that it can be implemented in a
strongly correlated regime where a Gaussian treatment or
even a perturbative treatment is not possible [18-20].

(ii) It offers potential new tools for quantum liquids and
gases, e.g., by providing an additional stage of cooling,
which does not involve diluting the system and can be
applied after the use of existing techniques.

(iii) The available degrees of controllability makes it
possible to exploit strong correlations and coherences for
probing quantum effects. This is achieved by steering the
functioning of the machine by our understanding of the
physics of the system, instead of controlling individual
degrees of freedom.

This anticipated device derives from ultracold atoms
that in a tuneable fashion realize the full range from non-
interacting to strongly correlated phononic quantum fields
[18,19,21-23], as can be implemented on an atom hip
[24-26]. The feature that renders it a machine is the pres-
ence of programmable time-dependent potentials allowing
manipulation of the quantum fields. Such time-dependent
potentials have been implemented in a one-dimensional
(1D) experiment on an atom chip by means of a digital
micromirror device (DMD) [27]. That is to say, the DMD
devices take the role of “control knobs” of the machine, in
particular also being responsible for the input of work. At
the same time this field machine will operate at finite tem-
peratures (in contrast to the majority of theoretical studies
on quantum fields done with respect to the ground state),
thus all these features come together when considering a
QFM.

We shall start our investigation by laying out in
Sec. II the concept of a QFM and describing its build-
ing blocks. In Sec. III we give a detailed introduc-
tion on how to implement a quantum field machine
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using one-dimensional quasicondensates manipulated on
an atom chip with optical fields. In Sec. IV, we present
a numerical study of each primitive operation described in
the introduction and in Sec. V show how to compose them
together to make a quantum field refrigerator and compare
how it performs compared to state-of-the-art cooling tech-
niques used in cold-atom experiments. Besides that, we
discuss the phenomena of anomalous heat flow between
two gases correlated by one of the primitives Finally, in
Sec. VI we complete the roadmap towards building a quan-
tum field thermal machine by highlighting the near future
directions of research that we will explore.

II. THE QUANTUM FIELD MACHINE

Thermodynamics is a versatile framework allowing the
description of a large variety of machines. Any of these
ordinary thermal machines can be explored in the quan-
tum regime if one considers operating it under conditions
where quantum effects prominently play a role. This is the
pathway we take in this work, by considering the working
fluid to be a Bose-Einstein condensate (BEC) and in the
one-dimensional regime more precisely we consider qua-
sicondensates [28]. In order to investigate the influence of
quantum effects on the machine, it is a necessity to consider
an appropriate quantum model that describes the system.
At the same time, it is also crucial to understand how the
quantum evolution of a system can be used to implement
certain abstract but well-defined thermodynamic transfor-
mations, general enough to be independent of whether
quantum effects are significantly involved or not.

A quantum thermal machine can be constructed by
choosing a few suitable building blocks and applying some
operations on them in a cyclic fashion, forming a thermo-
dynamic cycle. For instance, as illustrated in Fig. 1 it is
instructive to consider a quantum thermal machine con-
sisting of three elements, of which two are thermal baths,
while the third is a piston shuttling between them. The
relevant degrees of freedom in our machine are phonons,
which we describe with an effective quantum field theory.
With these ingredients it is, e.g., possible to run a heat
engine, by allowing heat transfer from the hot bath to the
cold one, while work can be extracted from the piston. If
quantum fluctuations play a significant role, their contribu-
tion would have to be taken into account for such a process.
Moreover, since the individual components of the machine
are small and they feature relatively large energy fluctua-
tions, the systems may exhibit complex out-of-equilibrium
dynamics during the operation of the cycle. In this work,
we demonstrate the reverse process: in particular, we oper-
ate the machine as a quantum field refrigerator, using the
piston to extract heat from one part of the machine and
disposing it into another part. We show that with such an
active cooling mechanism it is theoretically possible to
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FIG. 1. Quantum field refrigerator: similar to canonical ideas
employed in ordinary thermal machines, we consider for a quan-
tum many-body system a cycle consisting of a small set of
control operations on quantum working fluids, concatenated in
order to cool down a part of the machine (referred to here as the
“system”). This is achieved through a protocol consisting of four
steps: (1) Initialization of the system, the piston and the bath at
equal temperatures. (2) Compression of the piston and coupling
to the bath which receives energy, and decoupling after the heat
transfer. (3) Decompression of the piston, therefore decreasing
its energy, then coupling to the system thus enabling heat transfer
from the system to the piston. (4) Decoupling of the piston from
the system and compression to initial size. Through steps (1)+4),
we expect to achieve a decrease in the system’s energy, while the
energy of the piston and bath should increase. This increase in
energy happens in such a way that the piston and bath can be
reused for multiple cycles before they saturate. All these opera-
tions can be implemented experimentally in an ultracold atomic
gas, by shaping light fields that control the atoms.

cool down a system of ultracold atoms to a temperature
regime in which other cooling methods are ineffective.

In order to implement such quantum field machines, we
identify two basic operations, which we call quantum ther-
modynamic primitives (QTPs): a valve and a piston. The
first allows control of the energy flow between elements of
the machine. The second allows control of thermodynamic
parameters during a stroke: by changing the volume, we
modify pressure or temperature via the equation of state
[21]. These basic ingredients of our thermodynamic pro-
tocols can be concatenated in a modular fashion to build
up the complex range of potential applications for such
a machine of interest. In what follows, we put particular
emphasis on providing details about the functioning of a
quantum field refrigerator as illustrated in Fig. 1.

A. Coupling and decoupling two quasicondensates: a
valve

As depicted in Fig. 1, one of the essential ingredients for
operating a quantum field machine is coupling its elements.
This will be in general realized by allowing excitations
to tunnel through a barrier, which controls energy flow
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between two parts, like in a valve. When considering such
a valve in the quantum regime, we see some important dif-
ferences compared to a similar operation in an ordinary
thermal machine. Specifically, the following.

(i) In classical physics, merging of systems with iden-
tical density is largely featureless. In sharp contrast, with
two quasicondensates, even if initially uncorrelated, due
to phase gradients at the interface of the two systems,
excitations of non-negligible magnitude are unavoidably
created, and this consequently leads to an overall energy
and entropy increase. Such quantum phase diffusion
effects [29—32] can, however, be countered by enabling
yet another quantum effect, which is coherent tunneling
through a barrier, leading to phase locking [23,33-35].

(i) Conversely, splitting two quasicondensates after
they have established phase coherence may introduce
quantum noise [36,37] related to the dynamical Casimir
effect [38,39]. The production of excitations in this pro-
cess, especially in a finite system would add an even larger
amount of energy.

(iii) The individual elements are systems that feature
correlations extending over sizeable lengths and times
compared to the size and operation time scales of the
machine, unlike in ordinary thermal machines. Notably,
even at thermal equilibrium a single quasicondensate has
a finite thermal coherence length Ar # 0 [20,34], which
would not be true if one were to simply set the reduced
Planck constant to zero i — 0 entirely disregarding quan-
tum effects.

(iv) Operating a valve in the quantum regime features
recurrences during the evolution, an effect that has been
also experimentally observed in Ref. [33], and is one of the
signatures of non-Markovianity. This, among other con-
sequences, implies that the concatenation of cycles of the
QFM depends on the very precise timing of the individual
elementary operations (i.e., the QTPs).

B. Compressing and decompressing: a piston

The defining feature of a piston is that its size can be
changed, which, via the equation of state [21,40,41], leads
to a change of internal energy. Because of this, the main
role of the piston is that even if all the parts of the quantum
field machine are in thermal equilibrium, one can introduce
temperature differences by performing work upon the pis-
ton. This, in combination with the valve, enables heat flow
in the desired direction. Again, if the physics of the piston
involves quantum effects one can expect certain differences
to ordinary thermal machines. For example, the following.

(i) While the energy is changing due to compression or
decompression the piston may go out of thermal equilib-
rium, e.g., due to squeezing of internal modes [17,39].

(ii) Internal dynamics in the QFM elements occur within
time scales comparable to timings of individual steps of
the cycles considered. In contrast, in classical thermal

machines concrete time scales are not comparable and
hence usually discarded.

(iii) The piston essentially consists of a moving bound-
ary, which is closely related to the dynamical Casimir
effect [39].

To conclude this section, let us emphasize that these
effects are particularly relevant also for practical applica-
tions. For example, while the amount of energy injected
in a local operation is intensive, its effects are substantial.
All of these effects jointly influence the quantitative perfor-
mance of the quantum field machine, as we also observe in
the numerical study that follows. In particular, regarding a
general discussion about the efficiency of a quantum field
machine see also Sec. VI B.

1. IMPLEMENTING QUANTUM FIELD
MACHINES IN 1D BOSE-EINSTEIN
QUASICONDENSATES

This section discusses the basics for implementing
a quantum field machine on ultracold one-dimensional
gases. In Sec. III A we describe the microscopic model
and the related effective Hamiltonian defining the energy
of phononic fields. Section III B describes concisely the
role of the DMD in engineering the desired QTPs, closely
matching the experimental state of the art [27]. Finally, we
discuss various diagnostic methods in Sec. 111 C.

A. Effective quantum field theory description of 1D
cold atoms

Cold atomic gases at low temperatures and with a fixed
average number of atoms are effectively one dimensional
if the trap anisotropies are sufficiently large to constrain
the dynamics in two (transversal) dimensions such that the
dynamics effectively takes place in the remaining (longitu-
dinal) direction [19,28]. In this regime, the system is well
described by the Lieb-Liniger Hamiltonian, which reads

N |09

. o [—h2 o] s
HLL:/dzqﬂ |:2—822+V(z,t)—u+ qﬁw] v,
m

()

Here W(z) is the atomic annihilation operator at spa-
tial position z, which satisfies bosonic exchange statistics
[\if(z), liﬁ(z’)] = 8(z — Z’). The atomic mass is denoted by
m and h is the reduced Planck constant. The external poten-
tial V(z,t) is responsible for longitudinal trapping of the
gas but can be also used as a means of implementing the
necessary control operations for the machine. The quar-
tic interaction has strength g/2, which is proportional to
the scattering length of the atoms, and also depends on
other characteristics of the trap, specific of the experi-
mental implementation [33]. Finally, w is the chemical
potential that can be fixed, e.g., by constraining the average
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number of atoms Nyms. In @ semiclassical theory of such
gases, the study of its evolution is constrained to the set
of coherent states, thereby approximating the field opera-
tors by a classical wave function, that obeys the so-called
Gross-Pitaevskii (GP) equation.

The variational ground-state atomic density calculated
from the GP equation, which we denote as py(z), has the
interpretation of the mean-density profile that can be mea-
sured by in situ density absorption [27,34] [see Eq. (A1),
Appendix A]. By expressing the field operators in the polar
decomposition,

U(2) =/ po@)1 + 86(2) €9, 2)

the GP equation translates into a system of hydrody-
namic equations of a superfluid in the density-phase
variables [42]

9:p0 + 8-(pov) =0,

| | 3)
b +vov =10, (V—pu+ LP+0),
where we define v(z, ) = hd,p(z,t)/m as the fluid veloc-
ity, and the terms P and Q are referred to as the pressure
and quantum pressure term, respectively,

2
P=gpj/2, Q=570 Vp. “

Neglecting the last term Q, one obtains a set of Euler
equations describing the flow of a nonviscous fluid with
equation of state P(pg) = g,og /2. This is a semiclassical
approximation to our system. In this approximation the
gas has, at zero temperature, energy density e(pg) = g,og /2
and chemical potential w(pg) = gpg. Such an approxi-
mation is nevertheless insufficient to capture all quantum
effects we aim at studying. Therefore, we employ a fully
quantum treatment of the (linearized) evolution.

For inhomogeneous systems, namely po(z) # const, the
model cannot be solved exactly due to the quartic term.
However, it is well known that a quadratic approximation
in the spirit of the Bogoliubov theory captures low-energy
excitations [18,21] and works very well for certain time
scales [17]. The effective model is obtained by expand-
ing the Hamiltonian up to second order in the density
30(z) and phase ¢(z) fluctuation operators, which are
again bosonic [88(z), $(z')] = i8(z — 2/)1. They represent
phononic excitations of a cold atomic gas and their energy
is given by the following effective phononic Hamiltonian

A n?
vt = [ |22 [ape) + Ese . )

m

which can be decoupled in normal phononic modes. An
important feature of this model is that wave packets

travel with a speed of sound related to the mean density
¢ = /gpo/m.

The model in Eq. (5) provides a good effective descrip-
tion for experiments performed on an isolated quasicon-
densate [20,33,43—45]. However, in our simulations the
QFM couples its initially isolated elements. Then, one has
to additionally model what happens with the phase zero
modes in the systems. A phase zero mode has the inter-
pretation of the total momentum frame of the excitations.
For an isolated system, this mode allows for phase fluc-
tuations without an energy cost [29—32]. However, when
two thermal systems, each with their individual zero mode,
are coupled, the two zero modes hybridize to form the
joint zero mode and one mode with fluctuations that cost
energy. The energy cost can be large if the original phase
zero modes are nontrivially populated, since the phase
difference of two independent systems is fully random.
Nevertheless, this is different in the physical system where
the energy changes continuously. This can be described
when considering a more refined modeling using the full
Hamiltonian (1), which would dynamically induce phase
locking between the two condensates during the process.
Via the large coupling expansion of A, or arguing phe-
nomenologically, an effective model can be derived that
reads

Alpo] = Biolpo] + 27k f T Do), (6)

where the additional term regularizes the zero modes. In
our main simulations, we make the modeling simplifi-
cation J = const, effectively gapping out the phase zero
modes across the condensate at all times. The presence of
this additional term can be interpreted as the quasiconden-
sates being merged having been already phase locked prior
to the merging. The phase-locking term effectively induces
squeezing of the modes, which can be analytically seen
in the homogeneous case. Quantitatively, in the numeri-
cal study that follows we use a small value J = 20 mHz.
Meanwhile, Appendix C3 contains a further discussion on
using a more generic J ().

B. Controlling the 1D quantum field simulator using a
DMD

To achieve the QTPs described in Sec. I, the longitu-
dinal trapping potential V(z, ¢) has to be precisely manipu-
lated. For that, it is possible to create a dipole trap (which
adds to the magnetic chip trap) by shining blue-detuned
light on the atoms, which creates a conservative repulsive
potential [46]. By spatially manipulating this light, one
would be able to nearly arbitrarily shape the trap or add
features to the existing magnetic trap.

Using a device such as the DMD for this purpose
is a standard technique for many cold-atom experiments
[47-51] (see also Ref. [52] for a review). In our specific
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platform, we use a device with 1920 x 1080 (full HD)
micromirrors that can be turned on (sending light to the
atoms) or off (sending light outside of the optical path).
The whole two-dimensional (2D) array of mirrors spans a
spatial region, which is approximately 10 times the size of
the BEC and each mirror in the DMD contributes with a
Gaussian distribution of light, with a width of 0.4 um in
the plane of the atoms. This is roughly twice the healing
length and several orders of magnitude smaller than the
phase coherence length. Moreover, the fact that the DMD
used in our platform has a refresh rate of 32 us (3 orders
of magnitude faster than the time scale of the atoms),
allows the 1D potentials to effectively vary continuously
in time. In fact, in Ref. [27], it has been demonstrated
that different 1D potential landscapes can be implemented
with a very high degree of control in this experimental
setup.

It is also worth stressing that optimal control techniques
can be used for the realization of the valve and piston QTPs
in the experiment in a way maximizing the stability of the
system. In Refs. [53,54], it has been demonstrated that, for
the case of compressing the gas in a harmonic trap, it is
possible to find shortcuts to adiabacity. In this case, a single
control parameter has been suitably optimized, which has
been the frequency of the longitudinal harmonic trapping
potential. This has allowed expansion of the gas without
introducing longitudinal breathing of the mean density,
which hints that optimal control should also be impor-
tant for implementing a piston using a DMD potential.
Similarly, for the valve it is important to switch on the cou-
pling between the two systems, without introducing stray
excitations into the system, which again can be optimized
by appropriately tailored time-dependent potentials using
the DMD. Performing optimal control of the elements of
the QFM will have to take into account that a very fast
manipulation of the cold atomic gas can enter into a super-
sonic regime, which leads to exciting physical effects that
have been explored experimentally for the expansion of
the gas [50], which is important for the piston and for local
manipulation of the gas [55—57], which is relevant for the
valve.

C. Space-and-time-resolved monitoring of
thermodynamic transformations

In order to monitor the operation of a quantum thermal
machine, observables that reveal local and global informa-
tion about the state of the system are needed. Of special
interest are for example atomic density, spectrum and
occupation of excitations, or their coherences and correla-
tions. These physical observables allow the monitoring and
understanding of the details of thermodynamic processes,
such as heat or entropy flow during the operations and
the global thermodynamic properties for the qualitative
analysis.

There are several well-established methods to probe 1D
quantum systems. These range from in situ measurements
of density fluctuations [58—62] to measuring phase fluctua-
tions in time of flight by either “density ripples” [63,64] or
interference [65,66]. Information is extracted by analyzing
the full distribution functions [67] or correlation functions
[20,34,43,44]. It will be crucial to use these measurement
methods to extract information about local properties of
the system. This detects the action of local control when
implementing the envisioned operations and resolving the
thermodynamic transformations occurring in the elements
of the QFM. Of specific interest, when probing the quan-
tum thermodynamic processes, is the (local) occupations
of excitations of the quantum fields, i.e., of the phonons.
We first observe that the energy of the phonons in the sys-
tem is defined as the expectation value of the quadratic
Hamiltonian (5). Note that the coupling coefficient in the
additional term in Eq. (6) is chosen precisely such that
its overall contribution to the energy is negligible and it
renders negligible also the contribution of the zero modes
while merging two systems. Thus, by integrating Eq. (5)
over the length of the condensate one would obtain the
total energy of the system. On the other hand, access to
the local phase-phase fluctuations

C"(z,2) = (§(2)9(2)) (7
and to the second moments of local density fluctuations
C"(z,2") = (80(2)80(2")) ()

also directly implies the knowledge of the local energy
density, which is given by

2
dE(z) _ i po(2) 321 322 CP?

& op
pa . +2C (z,2). 9

|Z] =Zp=Z
Note that the cross-correlations between phase and density
degrees of freedom

C”(z,2)) = (§(2)80(2) (10)

do not contribute to energy and vanish in thermal equi-
librium, though may be nonzero during out-of-equilibrium
dynamics. At this point, two comments are in order.

(i) The expression of the local energy, Eq. (9), needs
to be regularized due to divergences at the point z; = z,.
This is accounted for by considering a UV cutoff in the
corresponding field theory, in order for the energy in the
system to be finite.

(ii) The UV cutoff emerges naturally in the experiment.
This is due to its finite imaging resolution and effects
of “smearing” in time of flight [66]; therefore, one can
measure only a coarse-grained expectation value of the
fields averaged over a finite length scale oy, and higher
momentum modes cannot be detected.
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The gradient of the phase operator v = 9,¢ can be inter-
preted as the velocity of wave packets traveling on top of
the condensate (as per hydrodynamic description). Thus,
the first term in the Hamiltonian (5) can be thought of as
the energy content related to the speed of wave packets,
while the other term to how much distortion to the local
density they induce. It is important to note that both con-
tributions must be measured in order to have the complete
information about the energy in the system. As mentioned
earlier, on the atom-chip platform, it is possible to measure
experimentally by observing the quasicondensate in situ
transversely (from the side) by means of density absorption
[58—62]. In Appendix A, we discuss how measurements of
the local density fluctuations of the atomic gas gives access
to direct measurement of the GP profile py and the sec-
ond moments of the density fluctuations I'**. Additionally,
in Appendix A we describe a proposal for a tomographic
reconstruction method similar to Ref. [17]; based on out-
of-equilibrium data of I'*?(¢) at different times ¢, one can
recover ['%?. This then provides access to the second
moments of phase fluctuations and hence the energy in the
phase sector can be extracted.

Alternatively, one can envision interfering the sys-
tem under study with a local oscillator [a large three-
dimensional (3D) BEC] [47] or with an identical system
[43,44,66] to extract the local phase correlations C??.
From them one can tomographically reconstruct correla-
tions of density fluctuations C*? [17]. If one can assume
thermal equilibrium, then it is possible to extract the occu-
pation numbers of phonons even from C?? alone [44].
Global parameters like temperature can then be obtained
also by “density ripples” [63,64]. The temperature is typi-
cally extracted by means of an appropriate fit to the corre-
lations of the fluctuations of the atoms after a time-of-flight
expansion.

It is important to understand which thermodynamic
transformations have a substantial effect that is clearly
detectable in the experiment. The precision for measuring
the (changes) in temperature or energy in the system will
depend on the reliability of the state preparation and the
statistical sample size. We anticipate that changes of tem-
perature or energy by about 10% should be large enough to
obtain conclusive experimental results [33] (> 50) where
one can be confident about, e.g., observing heat flow or
cooling in a given system.

IV. NUMERICAL STUDIES OF QUANTUM
THERMODYNAMIC PRIMITIVES

As sketched in Fig. 1 above, the piston and the valve are
building blocks that allow construction of a refrigeration
cycle. In this section, we present results on the numer-
ical modeling of the individual quantum thermodynamic
primitives involved.

Each QTP that we propose is modeled by a Hamilto-
nian of the form Eq. (6) described in the previous section,
which allows us to simulate the dynamics of phonons and
to calculate corresponding energy changes in the system.
As the model is quadratic, our simulations are done within
the Gaussian framework and are computationally efficient.
Moreover, this description allows us to efficiently evaluate
information-theoretic entropies of such systems (e.g., rel-
ative entropy), which are relevant for thermodynamics of
finite-sized quantum systems.

Our model allows us to derive core predictions in the
framework described in Sec. III A. In our simulations we
use parameters that fit state-of-the-art experiments of 1D
quasicondensates performed on the atom-chip platform.
More generally, our proposal is embedded in the broader
framework of thermodynamics with multimode Gaussian
states, with Gaussian operations modeling the action of
external system control.

A. Coupling and decoupling two quasicondensates: a
valve

Adjusting the external potential makes it possible to split
the gas into two parts or merge at will [36]. We then
study energy and correlation changes during the merg-
ing process. A simple model is considered, where two
quasicondensates are coupled via a small buffer region.
Specifically, we consider a bipartite system, with each part
A and B initially thermal and approximately homogeneous,
the two parts being separated by a buffer region of neg-
ligible size ¢ ~ &, so that phonons cannot tunnel. The
Hamiltonian in Eq. (6) is specified by the GP profile, which
we choose with a shape according to Fig. 2(a). Lastly,
we specify Neumann boundary conditions (NBCs) at the
edges. The density profiles that we choose have precisely
the scope of smoothening further the boundary conditions
in our implementation via a discretized lattice model.

Denoting p{ and pg as GP profiles of parts 4 and B,
respectively, the initial Hamiltonian of the full system
reads

Hyp = Hlog1+ Hlpg . (11)
where the tiny separation at the interface is modeled by
the Hamiltonian H 4z having in total four NBCs, two at
the edges and two in the middle. Next, we define the joint
system to have a GP profile

A
piz) z €4,
etz =1"

12
pE() ze€B, (12

implementing the “gluing” of the profiles. Thus, in our
minimal modeling approach, we neglect the precise spatial
details of experimental control necessary to switch from
two independent systems to the coupled case as we assume
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FIG. 2. Operating a valve between two identical and independent thermal quasicondensates. (a) GP profiles. We consider two
quasicondensates, which are homogeneous in the bulk but their density falls off towards zero at their edges. At position z = 0 there is
initially the boundary condition that in our effective model at a single point implements the separation between the two systems. As
the systems become coupled the energy can tunnel between the two systems through this point. Throughout on-line plots of real-space
quantities bullets indicate the discretization lattice used in the simulation while the continuous lines are merely a guide to the eye.
(b) Dynamics of energy density. We plot dE(z) /dz defined in Eq. (9) for different times during the coupling of two quasicondensates.
Initially, the energy density in each quasicondensate is uniform, and we use that value to normalize the plotted values. During the
coupling, localized energy is injected at the interface of the two systems and travels ballistically away in the form of wave packets,

which increase the energy density by approximately equal to 15%.

that they are close and only a microscopic change is nec-
essary for removing the small buffer region. With that, we
can take the final Hamiltonian of the merged systems to be

I:IAB = fl[p{}B] = I}:IAlB + ﬁim. (13)

This joint Hamiltonian has only two NBCs, and there is an
interaction I:Iim between 4 and B. Due to this coupling, the
thermal state of 1B, 1n contrast with that of )as 418, contains
correlations between 4 and B.

Note that during this evolution the boundary condi-
tions at the interface change dynamically. We handle this
boundary condition issue by interpolating linearly between
the uncoupled Hamiltonian with four NBCs and the cou-
pled Hamiltonian with two NBCs. Thus, we model the
time-resolved dynamics of the merging protocol by the
time-dependent Hamiltonian

t

[A{A,B(t) = <1 — )ﬁIAB + I:IABa (14)

merge merge

within ¢ € [0, fnerge]. Here we model the situation that the
change in the external potential makes the density profiles
become smoothly interpolated. Note also that we perform
a lattice discretization to compute the physical quantities
of interest (see Appendix C) and in this framework mixing
boundary conditions is well defined.

Subsequently, we consider two independent thermal
quasicondensates, and adapt initial conditions that are nat-
ural for experiments, where evaporative cooling yields a
thermal distribution of phonons with temperatures 7, =
Ts = 50 nK at initial time # = 0. Thermal states are defined

with respect to a given Hamiltonian A, and the density
matrix reads

prlH] = 2 e /D, (15)

where Z = Tr(e #/*8D) is the partition function and kg
is the Boltzmann constant. We use GP profiles with peak
density p! = pf = 100 atoms/um, smoothly falling off
towards smaller values at the edges, see Fig. 2(a). These
choices reflect typical experiments realized in a box trap
of size L = 50 um with Nyoms = 5000. The falloff at the
edges according to the erf function has been chosen phe-
nomenologically—any trap that is not infinitely strong will
lead to a smooth falloff at the edges.

In Fig. 2(b) we show numerical results for a linear ramp
with merging time #yerge = 40 ms. This is a relatively long
time scale, chosen to demonstrate that excitations can be
reflected at the edge and start returning towards the inter-
face. Initially, energy is distributed homogeneously in 4
and B so we present the energy distribution relative to that
value. This relative measure is employed throughout, since
it allows us to disregard the cutoff-dependent shift coming
from zero-point fluctuations. In fact, our effective Hamil-
tonian is not normal ordered but instead regularized by
the healing length &, = h/(mc) of the system (note that
the cutoff Az in our numerical simulations is smaller than
the healing length). As anticipated, merging two systems
via tunnel coupling induces excitations in form of coun-
terpropagating wave packets, see Ref. [55] for a detailed
experimental and theoretical study of the dynamics of
such excitations. The wave packets travel with the respec-
tive speed of sound, which in typical experiments on the
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atom-chip platform is ¢ ~ 2 um/ms [33]. The simulation
predicts that the wave packets increase the local energy by
a sizeable amount of approximately 15%. This may cause
system dynamics to deviate from the linearized approxima-
tion. Nevertheless, the higher-order terms should have only
the effect of dispersing the wave packets. According to our
simulations, the amount of injected excitations is higher
if systems are coupled at peak density, see Appendix C2.
This is because in the lattice approximation we are adding
an off-diagonal coupling between the two edges of 4 and B
that scales o po(z = 0) with density. Therefore, merging
is “softer” if it occurs at a lower density value. Physically
speaking, it is more stable to couple two sensitive sys-
tems harboring gapless excitations through diluted regions
compared to at peak density.

It is instructive to analyze the correlations of the cou-
pled state during the merging. As shown in Fig. 3, we find
that initially there are no correlations between 4 and B and
hence we see that two independent thermal quasiconden-
sates are not thermal with respect to the joint Hamiltonian.

1 5 F T T ]
— #g ‘ —<—Full system --=--Bulk region
) \
.‘é { T9(f = 0 ms) T9(t = 0 ms) T7(t=0ms) 1o
\ N
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Q0 1 0 L \ 2 0 00 N o |
=] S
& L 5 -05 .
\; ‘\\ 40 -0 -1.0 \
o o (t = 26 ms) I9(t=26ms) .10° D[P(t=26ms) 10"
o \ 740 N
E W =20 5 2 \\\ 1
E :
\ 2 o 0 0 N o
o 5 [ L N
Q>) »@ 20 -5 2 \ 1
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Time ¢ (ms)

FIG. 3. Correlations before and after merging. The initial
covariance matrix I'(z = 0 ms) (inset top) is characterized by
phase fluctuations I'?*? = 2C?® ranging only over the individ-
ual systems, no cross-correlations between phase and density
operators I'*” = 0, and density fluctuations I'”? = 2C*” being
essentially diagonal. When heat excitations reach the edges, the
covariance matrix I'(f = 26 ms) (inset bottom) restricted to the
bulk region of the system agrees with the thermal covariance
matrix of the joint Hamiltonian: phase fluctuations I'?® become
uniform over the joint system, in the bulk of the system cross-
correlations vanish I'?? ~ 0, while density fluctuations I'*? are
diagonal. Quantitatively, we plot the relative entropy of the time-
dependent covariance matrix with respect to that of the thermal
state of the coupled Hamiltonian at 7 = 50 nK and observe that
it decreases rapidly over around 10 ms. Due to the presence of
the heat wave packets, the relative entropy for the full system
(red crosses) does not converge to zero over time, while for the
covariance matrix restricted to the bulk region (blue squares)
it essentially vanishes at around ¢ = 26 ms and then increases
again.

During merging, the parts become coupled and the estab-
lished correlations drive the state towards being close to
the joint thermal state, see Appendix C2 for more details.
Interestingly, after the first traversal time, i.e., when a
local excitation at the merging interface has traveled to the
edges, the joint system is already close to being thermal in
the bulk (cf. inset of Fig. 3).

The observation that the merged parts become jointly
thermal can be further quantified by evaluating the rel-
ative entropy, given for any two states by S(y||6) =
Tr[y (logy — log6)]. Evaluating this with respect to a
thermal state yields

SGIPAAAD = (FG) = FG D ) /) 2 0, (16)

where F(6) = Tr(H&) — kgTS(6) is the free energy of the
state relative to the ambient temperature 7 and the Hamil-
tonian A. Here S(9) = —Tr(o log d) is the von Neumann
entropy. Notably, the relative entropy is zero if and only if
the two covariance matrices are the same (see Appendix B
for further details). This makes it a strong measure of devi-
ation from thermal equilibrium. Finally, this measure can
be computed also for reduced density matrices, which then
captures how systems are similar locally.

In order to check if the merging QTP is intensive we
calculate the relative entropy of the state evolving during
merging with respect to the thermal state of the coupled
Hamiltonian at 7 = 50 nK. Initially, the relative entropy
decreases rapidly, reflecting the ongoing thermalization
around the interface of the two systems, where the cor-
relations are being established. For the whole system the
relative entropy does not reach zero and levels off to a
constant value within about 10 ms. This is due to the
wave packets being always present in the system, hence
the impossibility for the entire system to be in thermal
equilibrium. If we consider the reduced covariance matrix
describing only the bulk middle region, we see that around
20 ms the relative entropy drops essentially to zero. This
means that once the excitations leave the window of obser-
vation, the system left behind agrees in that region with
the (joint) thermal state. Finally, for longer times the wave
packets come back to the bulk and allow for detecting an
out-of-equilibrium component of the state.

We expect that features observed in this numerical study
should remain true even under perturbations to the model
and thus that temperature for locally merged systems is
an intensive generic feature of this QTP. This is because
perturbations are not expected to change the character
of low-energy excitations so the spectrum should remain
approximately linear and a local change of the Hamilto-
nian should generically create a localized surplus of energy
propagating through the system with the speed of sound.

In the case presented here, we have shown an exam-
ple where there has been no net heat flow between two
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systems. The next section shows how to enable heat flow
between two systems, by performing work from outside,
thereby creating an effective temperature difference. As
an outlook, in Sec. VIA we also present the case of
two initially different temperatures, observing that non-
Markovianity effects in this case are even more pronounced
and can potentially lead to further interesting effects, such
as anomalous heat flow.

B. Compressing and decompressing: a piston

In this subsection, we see how external control, which
compresses or expands the gas, enables a condensate
to function as a piston. The external control will effec-
tively perform work on the quasicondensate, increasing or
decreasing its energy depending on the change in volume.
This is similar to thermodynamics of an ideal gas with
the difference that we are considering a quantum many-
body system. Experimentally, operations for this QTP have
already been implemented with use of shortcuts to adiabac-
ity (see Ref. [53] where the extension of the GP profile has
been stably modified).

Here, we propose a model to describe what happens to
phonons when the confining trap (space occupied by the
gas) changes. Let the length of a uniform system change
continuously over time in the sense that a homogeneous
GP profile py with support of length L changes to py(?)
with corresponding length L(7). The operation is assumed
to preserve the atom number Nyjoms = poL so that

L(0)

po(t) = po——

o (17)

This time-dependent GP profile assumes that the change
in volume is slow so that a homogeneous system remains
homogeneous at all times. Under this assumption, the
Hamiltonian (6) parametrized by a time-dependent GP
profile py(?)

A = Hlpo()] (18)
describes the phonons during the size change. Using
Eq. (18), the integration in Eq. (6) ranges over the time-
dependent length of the system L(¢). In the lattice approxi-
mation this is implemented by discretizing the Hamiltonian
at each time considered, and identifying the respective
cells at consecutive times as they change only infinites-
imally. It is also possible to consider formulating the
procedure using a fixed representation of momentum mode

and time-dependent eigenmode wave functions [39].
In the homogeneous case by a change of the integration
variable we can write the time-dependent Hamiltonian as

. LO) 22
(= / iz [% (0.6) + Er (69" +th0¢2],
0 m 2
(i9)

where we also define a rescaled density fluctuation field
30 = 80/A(¢) in order to preserve the canonical com-
mutation relations. In other words, this way we have
[6D(2), 9(z))] = i8(z — Z'). Here we make the integration
limits explicit and change the frame so that the length
of the system is effectively constant but the Hamiltonian
density becomes time dependent due to the dimensionless
ratio

L
L)

(20)
We observe that if the system stays homogeneous, then the
time-dependent Hamiltonian (19) has the same momentum
eigenmodes at all times #, but they become squeezed. We
should hence expect that compressing introduces squeez-
ing of phase and density quadratures. See Appendix C5
for an extended discussion, including the numerical imple-
mentation of the compression model and see also Ref. [39]
for a related study.

With this model we can simulate the functioning of a
piston: in Fig. 4 we show the results of a simulation of a
single stroke. It is moreover possible to check whether the
piston remains thermal during the process. We first observe
that the energy density stays homogeneously distributed at
all times [cf. Fig. 4(a)]. Moreover, it changes in relation to
volume: as shown in Fig. 4(b), the total energy increases
and comes back to the initial value during the stroke of
the piston. Nevertheless, a more refined check involving
the relative entropy shows that the system is not at ther-
mal equilibrium at all times. In particular, at a sequence
of times during the evolution we evaluate the relative
entropy between the time-dependent state and the thermal
states corresponding to the system Hamiltonian. The ther-
mal state with the lowest relative entropy gives then the
effective fit for the temperature. It is clear that if the time-
dependent state remains thermal at all times, then there will
be a temperature for which the relative entropy vanishes.
However, we find that this value is strictly positive, which
indicates that the piston is away from thermal equilib-
rium during the compression-decompression process, and
returns to thermal equilibrium only when reaching its orig-
inal length. This effect can be naturally explained by the
presence of squeezing in the system, but we focus here
on the thermodynamic aspects of the model and refer to
Ref. [39] for a discussion of the dynamical Casimir effect.

We can now use the compression QTP in order to enable
heat flow between two systems. In Fig. 5, we show the
steps (1)+2) of the Otto cycle that are sketched in Fig. 1,
i.e., we compress the piston, couple it to the bath and
after decoupling decompress it back to its initial state. As
before, piston and bath are initially both thermal. They also
have the same overall shape of the GP profile, with the only
difference that the bath is larger than the piston. As shown
above, coupling two systems with the same temperatures
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FIG. 4. Single stroke of a piston. A condensate of length 40 um, initially thermal and homogeneous is compressed to half length
within 15 ms and then re-expanded to its initial length in the same time. (@) Energy density during compression. The piston keeps a
homogeneous energy density that increases when compressed due to increasing pressure of the gas. (b) (Non)equilibrium properties of
piston. We plot over time the total energy relative to its initial value (blue dots) and the relative entropy to the closest thermal state as
a color gradient during the compression and decompression. The piston goes out of equilibrium, as the relative entropy to the closest
thermal state increases during compression. The reverse happens when the piston decompresses—it is again fully thermal at the initial
energy and temperature at the end.

equilibrium while the valve is open. Nevertheless energy
in the piston decreases, due to heat flowing into the bath,

does not lead to heat flow. However, after the piston is
compressed its energy is higher and so is its effective tem-

perature. This creates an effective temperature difference
between piston and bath, which, using then the valve QTP,
enables heat flow from the piston to the bath. After this
heat flow is completed we close the valve and decompress
the piston to its initial length, and note from Fig. 5(a) that it
becomes colder than it has been initially. Figure 5(a) shows
the results of this protocol plotting the full spatiotempo-
ral dynamics of energy density. In Fig. 5(b) we show that
the compressed piston couples to the bath with effectively
squeezed modes, so that the two systems are not at thermal
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FIG. 5.

which is seen in Fig. 5(a) in a form of a light-color stripe
entering the bath. Finally, we find that the total energy in
the piston decreases to a lower value than initially, thus
we conclude that the piston has been overall cooled down.
At the end of the protocol the decompression undoes the
squeezing of the modes and the piston essentially comes
back approximately to thermal equilibrium, signified by a
low relative entropy to a thermal state.

Summarizing, we have performed work on the piston,
which therefore allowed us to enable heat flow between

(b) 25
60 o
>
@20 s
15} £
a =}
b5} 40 3
o o
>
£ 15 2
3 8
é 20 é
1.0
0

0 10 20 30 40 50 60 70
Time t (ms)

Heat flow between the piston and bath. We consider the piston and bath being two initially independent condensates, with

the bath being 3 times larger in size. The piston on the left is compressed to half of its original size. We then couple the piston to
the bath at # = 15 ms and start decoupling them right after. (a) Energy density over time. We plot the energy as a color gradient in
a space-time grid. The coupling between the two parts introduces the propagation of wave packets at the speed of sound, which is
higher in the piston, due to the higher density resulting from compression. (b) Energy dynamics in nonequilibrium. We plot the ratio
of average energy versus initial energy in the piston over time. We observe that it first increases strongly, while decreasing to a value
that is less than 1, just before the piston starts coupling with our system of interest. This is what will allow us to cool the system with
a full Otto cycle. We also plot the relative entropy to the best fit thermal state as a color gradient in the background and observe that
during coupling the system goes strongly out of equilibrium, while returning to be close to equilibrium at the end.
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condensates. By composing the compression QTP with
the open valve QTP, we demonstrate that is is possible to
deposit some of the piston’s energy into the bath.

V. COMPOSING QUANTUM THERMODYNAMIC
PRIMITIVES TO BUILD A QUANTUM FIELD
REFRIGERATOR

The challenge one faces studying cold atomic gases
experimentally is that all methods of cooling eventually
always reach a limit once the temperature is small enough.
In the ultracold regime the last resort is to let some of the
atoms escape the trap. Ideally one would like that (1) those
particles leaving the system to be preselected such that they
carry above-average energy, and (2) the gas left behind
rethermalizes [68]. These two ingredients make up evapo-
rative cooling. However, in one-dimensional systems they
cease to apply, due to the change in scattering properties
[69—72]. Nevertheless, in Ref. [73] the effect of letting
atoms escape by applying an additional rf field has been
explored in the 1D regime: at extremely cold temperatures
it has been demonstrated that cooling continues, and its
limits were also quantitatively mapped out.

The intensities and detuning of the applied rf field
ensures the energy-independent loss of atoms [73]. This
observation has suggested a successful modeling approach
to the process by the phononic Hamiltonian (5) whose den-
sity parameter p, decreases over time according to the
atom loss rate. Within this model the energy gets decreased
due to this change in the Hamiltonian. By assuming that
the uniform atom-loss process is sufficiently slow, the
dynamics of phononic modes has been used to theoret-
ically explain why the system is left approximately in
thermal equilibrium with a decreasing temperature [73],
see Refs. [74—76] for additional discussions.

By an analytical treatment, which assumed that (1) the
atom-loss process is adiabatically slow, (2) only phonons
rather than particlelike excitations are involved, and (3)
shot noise has a negligible contribution, this model leads
to the relation

T'/T = (py/po)*'>. 1)

In harmonic confinement, the peak density is max(py)
N.ft{,fns, which together with Eq. (21) yields qualitative
agreement with experimental observations: the coldest
temperature reached is found to depend linearly on the

number of atoms,
T x Natoms- (22)

Thus, the temperature of a condensate can be lowered
by allowing for more atom losses; however, this dilutes
the system and cannot be continued indefinitely, otherwise
quasicondensate properties will be lost [28]. Equation (21)

is also valid for a boxlike confinement, where the tem-
perature dependence on atom number is expected to be
nonlinear.

References [34,73] give representative values for cool-
ing in a harmonic trap. For state-of-the-art data reached
with boxlike confinement [33], Naoms =~ 5000 confined
atoms can form an approximately homogeneous conden-
sate of about L = 50 um, and the estimated temperature
is T~ 50 nK [17,33]. Summarizing, uniform atom losses
do lead to cooling, but this does not follow the usual
mechanism of rethermalization via scattering as typically
seen in evaporative cooling. Rather, this is a direct conse-
quence of decreasing the density parameter in the phononic
Hamiltonian.

In general, the effective barrier of Eq. (22) seems hard to
overcome. The current achievable lowest temperature for
a fixed prescribed density on the system is limited by the
initial density and temperature of the gas accessible from
previous stages of cooling (laser operated); and this ini-
tial density cannot be infinitely large, given the constraint
of operating in the quasicondensate regime. Moreover,
the evaporative cooling will eventually either exhaust the
available atoms diluting the system (effectively leaving the
quasicondensate regime), or completely lose its efficiency
in the sense that the evaporation has negligible cooling
effect due to infinite thermalization time. One therefore
requires novel cooling methods to overcome this impasse.

A. Cooling by escaping atoms within QTP framework

In this section, we point out that cooling by uniform
atom losses, which is the state-of-the-art cooling tech-
nique for one-dimensional gases in the lowest temperature
regimes, can be conceptually captured in the QTP frame-
work. In particular, consider a sequential concatenation of
a dilution of the system and possibly coupling to a cold
bath. The continuous dilution that arises from atoms escap-
ing the system can be conceptually modeled by the piston
and valve QTPs. Indeed, if during cooling we have the gas
of Natoms atoms uniformly occupying the interval of length
L, then after one particle escapes the linear density will
change according to

N, atoms
L

/ Natoms - 1
—> po = T

00 = (23)

However, the same can be achieved by the system behav-
ing like a piston of size L expanding by AL, such that the
linear density changes according to

N atoms
L

Natoms

. 24
L+ AL @4

Po = Py =
To complete the description we can impose AL to be such
that p; equals p,. Additionally, we imagine placing a valve
to be positioned at x = L at the edge of the piston, so
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that when it expands to L + AL, atoms exit the valve into
vacuum, and after we close it the remaining system has
the same density p; and the length is L, exactly as in
evaporative cooling. In other words, in our modeling, the
piston lowers the density by operating at constant particle
number Nyoms and varying length L; while in evapora-
tivelike cooling, the change of density occurs at constant
length L but varying particle number N,ioms. However, on
the level of intensive thermodynamical quantities, both
are the same and this observation is implemented by the
fiducial valve shutting of the AL portion of the expanded
piston.

As a remark, the QTP framework can be also used to
capture evaporative cooling involving a rethermalization
process. When evaporative cooling is most effective in its
operation, only the atoms that individually carry above
average energy leave the system. This way of cooling is
more efficient as each escaping atom carries on average
more energy than an atom remaining in the system does.
This can be modeled in the QTP framework by opening
and closing a valve coupling the system to a cold bath. The
heat flux and timing jointly govern the exchange of energy
between the system and bath; they should be chosen such
that the lowering of the system’s energy is the same as an
evaporating atom would do.

B. Cooling by atom-number dilution with a
subsequent recompression to restore atom density

Cooling facilitated by atoms escaping the trap irre-
versibly dilutes the system. As explained above lowering
the temperature of the atoms at a given density being fixed
is the right way to compare different cooling approaches.
As anticipated in Fig. 1 running refrigeration cycles like
in a machine can be expected to lead to cooling without
changing the atom density. However, it is also true that in
a QFM as presented in Fig. 1 there are two subsystems,
acting as the piston and bath, which are constituted by a
sizeable amount of atoms. The question then arises: can
any advantage be gained when aiming to cool at prescribed
density in simply evaporating these systems?

While such a question is quite general, let us discuss
it by formulating a representative protocol whose analysis
will suggest an overall answer. First of all, if the dilution
has to have any effect on the system we must allow for
contact with the subsystem that we would like to cool at
constant density. One way to achieve that is to consider
the entire system (system, piston, and bath in Fig. 1) to be
uniform, then cool it down by dilution implemented by the
escaping atoms, and then use the piston QTP to compress
the system back again to restore the density to the initial
value. The idea here is that the evaporation of the amount
of atoms taken up by the piston and bath should lead to
cooling and after the compression the system should have
the prescribed density.

However, we can anticipate that this effect will not lead
to overall cooling. This is because the dilution cools down
the system by reducing the density via the atom number
but the compression heats the system up as should be in
a gas and has been discussed in Fig. 4. Intuitively, on the
phononic level this is seen by noticing that increasing the
density, implemented by reducing the volume of the sys-
tem, changes the Hamiltonian, which associates a larger
energetic penalty to phase fluctuations. In other words, we
first in a time-dependent fashion change the linear density
to the same value by reducing the numerator (atom num-
ber) in its definition and then increase the density back
to the initial value by decreasing the denumerator (system
length). As long as we are in the phononic regime it does
not matter which process changes the density—the model-
ing will be the same and both processes, that is cooling by
atom losses and recompression, admit the same modeling
using the phononic Hamiltonian so one should expect that
they are mutually complementary.

In Fig. 4 we show that a stroke by compression and
recompression is effectively reversible in that the overall
phononic energy returns to its initial level. In the model it
does not matter whether the density is changed by chang-
ing the atom number or the length of the system. For this
reason, we expect the reversibility of the phononic energy
change to be also valid when combining the dilution pro-
cess by uniform atom losses to cool down with the piston
QTP to restore the density. This can be verified in a future
experiment to lay the ground for implementing a quantum
field refrigerator based on the QFM involving the much
more sophisticated approach using cycles and composing
many QTPs together.

On the theoretical grounds supplemented by the empir-
ical knowledge drawn from past experiments the case for
refrigeration via the QFM seems to be clear: reducing the
entropy per particle in a subsystem of a cold-atom system
should be achieved by moving this entropy to a bath as
in a QFM. Having said that, considering other interest-
ing variants of combining processes such as atom losses
and QTPs described here for problems of interest, cooling
being one particular example, is available experimentally
and can be further explored in the future. As we show next,
if one aims to achieve cooling in a systematic way it is
advisable to run QTP cycles in a QFM as illustrated in
Fig. 1.

C. Quantum field refrigerator: QTP cycles for
sequential cooling and reduction of entropy of a
subsystem

In this section, we demonstrate how to compose the dis-
cussed primitives to perform a useful protocol, namely
cooling. By simulating the quantum field refrigeration
machine depicted in Fig. 1 at this density and tempera-
ture, we find a cooling cycle where the system temperature
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decreases, highlighting the usefulness of such a new active
cooling protocol. The cycle works as follows.

(1) The machine is initialized by setting a sys-
tem, a piston, and a bath to their respective thermal
equilibria.

(2) The first nontrivial thermodynamic transformation is
the compression of the piston with a subsequent interaction
with the bath. The work inserted to compress the piston
enables heat flow as shown above in Fig. 5.

(3) After decoupling the piston from the bath, the piston
is expanded back to its initial length. This aims to cool it
down and when it subsequently interacts with the system it
should take up some heat from it.

(4) Finally, the piston and system are decoupled again
and the cycle can be repeated.

In Fig. 6, we depict the energy changes of these three
pieces of the QFM over the duration of the Otto refrigera-
tion protocol obtained from a numerical simulation [77].
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FIG. 6. Top: quantum field refrigerator. The QFM is initialized in thermal equilibrium and equal density, i.e., the system, piston, and
bath differ only in length, which is 40, 40, 120 pwm, respectively. We run the Otto cycle by compressing the piston (15 ms), depositing
heat in the bath (40 ms), and then expanding the piston again (15 ms). The cooling begins at around 70 ms by coupling the initially
thermal system to the cooled piston. The systems exchange energy by the physical mechanism of the valve described in Sec. IV A.
After the final splitting of the system and piston, we find that the system cools down, while the quantum field refrigerator extracts
approximately 5% of the system’s initial energy. This drop in energy is large enough to be detected by existing experimental read-out
methods. In this plot, one observes that further cycles continue to contribute to cooling of the system, but only in very small amounts.
The currently used parameters are probably nonoptimal, and we anticipate improvements of the refrigeration efficiency via optimal
control. This, however, will depend on the modeling of other details in the quantum simulation of this cycle. Bottom: time-and-space-
resolved energy dynamics during the operation of the QFM. From the top we show the system, piston (which changes in size) and bath.
Whenever a valve QTP is operated, wave packets are injected and multiple reflections in each system can occur. The principal wave
packet in the bath is timed to arrive at the interface to the piston at around 160 ms when the valve is closing, so that the piston energy
is not further increased. The overall amount of energy in the bath increases, which is due to the presence of multiple wave packets. It is
noteworthy that, depending on scheduling, the larger among two coupled systems can take up two wave packets. Hence, considering
the piston to be substantially larger than the system could allow the removal of all excitations from the system. This is also why the
bath takes up most of the wave packets.
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It can be seen that the piston first increases its energy
due to compression (fcomp = 15 ms) and then lowers it
during interaction with the bath and successive expansion
(fmerge + tcomp = 35 ms). Finally, the piston increases again
its energy when interacting with the system and then resiz-
ing to its original length (again fyerge + fcomp = 35 ms).
Overall, at the end of the first cycle (fcycle = 110 ms),
the piston has slightly decreased in energy, while system
and bath have consistently decreased and increased their
energy, respectively. By performing three Otto cycles, we
obtain cooling of 9% in a total time of 330 ms, which gives
us an estimate of the cooling power of our QF M. However,
we also observe that such cooling power actually decreases
in subsequent cycles, thus raising the question of the ulti-
mate limits of cooling for this machine. We discuss this
interesting aspect further in Sec. VIB.

D. Discussion of the engine: our estimates versus other
prospects

We consider rather conservative estimations for the
parameters. Several ways to weaken the requirements can
be explored in the experiment in order to obtain a higher
cooling ratio. (i) As shown in the bottom panel of Fig. 6
the piston has been compressed to half its length, which
ultimately limits the capacity of the machine to cool down.
Performing more work and compressing the piston more
would allow for further cooling. (ii)) Modifying the barrier
height and various other aspects of our QFM model, higher
cooling ratios are possible as shown in Appendix C6.
These among others could be to reset baths, coupling at
higher density etc., which have features that depend on
the particular implementation and hence cannot be com-
pletely anticipated theoretically ahead of performing the
experiment. (iii) Let us remark that for the sake of sim-
plicity and also for analogy with the usual thermodynamic
Otto engine, the piston is the only component that changes
size during the protocol. However, one can think of more
general scenarios in which the bath is expanded while
the piston is compressed, and afterwards, the system is
compressed while the piston is expanded—after all in the
experiment it is our goal to cool down the quasiconden-
sate more than it is possible with existing methods and
an unconventional quantum thermal machine with various
elements changing their size would be helpful for this pur-
pose. Summarizing, there are a lot of important points one
can consider when devising a QFM. It is clear that once
QTPs are realized, their conceptual clarity will be advan-
tageous in order to appropriately compose them to achieve
maximal possible cooling in the experiment.

VI. DISCUSSIONS AND FURTHER SCOPE

While further developing the framework of QFMs and
during the upcoming efforts to realize a QFM experi-
mentally, numerous questions relating to the fundamental

physics of the system and technological implementation
beyond the scope of this initial Paper will have to be
further investigated. Our discussions below highlight sev-
eral aspects, which could invite expertise from fields such
as engineering and quantum control of out-of-equilibrium
quantum many-body systems to become particularly use-
ful. Thinking ahead, the program of devising a QFM
presented in this work is also expected to stimulate a range
of further theoretical investigations in the field of quantum
thermodynamics [1-7]. These will range from (experi-
mentally inspired) studies of the role of information in
quantum thermodynamics to prospects for further devel-
opment of the theory of quantum thermodynamics from a
quantum-information perspective.

A. The role of information in the QFM

If we could—fictitiously—precisely measure the many-
body eigenstates of our complete machine, we could
in principle achieve complete control about the system.
Needless to say, in a quantum many-body system this is
impractical and we have to restrict ourselves to physically
relevant, local, few-body observables and a finite set of
their correlations. Reference [20] provides an overview
on how far one can presently experimentally go in such
endeavors. These limitations will define what we can pos-
sibly know about the system and what we can hence make
elaborate use of—and what we are bound not to be able to
know and therefore need to ignore. In this section, we high-
light several important aspects of accessing information
and correlations and observing their roles in such a many-
body QFM. The manipulation of one-dimensional qua-
sicondensates via relatively simple yet highly controlled
thermodynamic processes in the deep quantum regime
seems to be an ideal test bed for such considerations.

1. Correlations and anomalous heat flow

An interesting future direction is the exploration of the
question how strongly are the elements of the QFM cor-
related, how to quantify and control these correlations,
and how to make use of them explicitly in the design of
a QFM. The coupling and decoupling of two interacting
many-body systems, i.e., the operation of the valve QTP,
is a direct way to induce correlations or even entangle the
two. The canonical example thereby is the double well, that
has a physics similar to a beam splitter in quantum optics.
When the decoupling is slower than the time scale given
by the interaction energy, the two systems will build up
quantum correlations, which persist even if they are sep-
arated [78—80]. An indication that this also works for the
excitations in a many-body system described by an effec-
tive quantum field theory is the observation of number
squeezing in the modes created by slow splitting [44].

The engineering ofa such correlations is an important
question especially in the context of work extraction [81],
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since they may produce interesting dynamics. In particu-
lar, with the exhaustion of correlations, instead of inputting
extra energy and work into the system, one can induce
a reverse in what is called the “thermodynamic arrow of
time,” referring to a reverse in the direction of heat flow
between two systems. Such a phenomenon is commonly
referred to as anomalous heat flow [82,82—86]. Proof-of-
principle experiments between qubits have been demon-
strated, which involve the particular engineering of spe-
cific unitary processes to address a fixed, two-dimensional
energy subspace [86]. There also exists experiments study-
ing thermodynamic spin currents, which are blocked by
the initial state preparation [87]. This blocking is anoma-
lous but not in the sense that the current is reversed, for
which correlations must be engineered appropriately. Thus
an anomalous reversal of heat flow with a detailed experi-
mental evaluation of the role of correlations in this process
has yet to be worked out in detail for complex many-
body systems in the quantum regime. This is an important
question as it is not clear whether global, macroscopic
operations are enough to generate (i) the right correla-
tions, and (ii) dynamics that allow the emergence of such
behavior.

Our simulations, on the other hand, predict that the
process of merging two condensates creates the desired
effect of creating correlations that will potentially lead
to anomalous heat flows (see Fig. 7). We can quantify
the amount of generated correlations by computing the
mutual information between condensates S and P, which
is defined by

1S : P) = S(ps) + S(pp) — Shsp), (25

where we recall that S(-) is the von Neumann entropy of
the quantum system. Note that nonmonotonous behavior
of the mutual information can also be used as a signature
of non-Markovianity [88,89]. For the Gaussian states in
our study, these quantities are directly computable given
the covariance matrices (see Appendix B). Furthermore,
this can also be accessed in the experiments via tomo-
graphic data. We see from our simulations that the idle
evolution of the joint many-body condensate is sufficient to
produce periodic oscillations in the mutual information, in
which a similar oscillatory behavior in the direction of heat
flow (similar to an ac current) can be observed. It remains
to verify how much of the change in mutual information
is directly responsible for the reversal of heat flow. Not
only this is a fundamentally interesting aspect to study by
itself, but its natural presence in the working of the ther-
mal machine also raises the question if one can use this
heat flow to our advantage. For example, it is known that
with correlations there is also the possibility of providing a
way of implementing the extraction of macroscopic work
probabilistically from a heat bath [90].
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FIG. 7. Two systems, 30 and 40 um long, start uncoupled with
temperatures of 50 and 60 nK, respectively. They are merged
in the first 60 ms of the evolution; after that the coupled sys-
tems evolve for 240 ms and then are decoupled during 60 ms. (a)
Energy flow between the two condensates. After merging there is
heat flowing in both directions. (b) Mutual information of the two
condensates. The mutual information increases once the two con-
densates start interacting; after that it decreases for a short time
and increases again to its maximum value, this happens when the
energy is maximum in the condensate with a hotter initial tem-
perature (and minimum for the other condensate), which shows
that the mutual information is correlated with the reversal of heat
flow.

In this light, it would be interesting, also in relation to
earlier experimental works on cooling cold atomic gases
with sequential operations [91], to reveal such quantum
aspects of protocols of this type in near-future atom-chip
experiments. References [37,44] have uncovered signa-
tures of quantum noise and squeezing during longitudinal
splitting of the quasicondensates. This is an exciting indi-
cation that it can be possible to reveal (with statistical
significance) the presence of entanglement under simi-
lar conditions, e.g., quantum correlations between eigen-
modes reflecting the effect of various perturbations that
can be applied. The detailed study and controlled usage of
these phenomena is therefore one of the future directions
of immediate interest, which our platform of interest has a
natural advantage of studying.
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For the simulations of the full quantum fridge (Fig. 6)
we currently assume that dephasing occurs after we split
systems, i.e., the correlations between the elements of
the QFM are modeled to be lost every time splitting is
completed. This should be understood as establishing a ref-
erence, first-case study where temperature fluctuations and
dephasing due to long cycle times render the effect of cor-
relations on the QFM operation to be small. This should
then be compared with experiments, in order to under-
stand the extent of how correlations influence the machine
performance. Moreover, further lowering the currently
accessible temperatures will allow the few phonon regime
to be entered in which quantum vacuum fluctuations will
certainly become manifest. These features are closely con-
nected to entanglement in real space [92,93] because the
phononic vacuum is entangled in real space as it can
be understood via arguments from conformal field theory
[94]. In this regime, the thermal coherence length Ay will
be comparable to the system size and phase correlations
will decay polynomially instead of exponentially.

2. Non-Markovian effects

Besides anomalous heat flow, there are more generic
non-Markovian effects, which our system can be used as
a observational test bed [88,89,95,96] on thermodynamic
operations. Such dynamics originate from the intermediate
size of the bath so that a backflow of information occurs.
The presumably principal source of non-Markovianity is
hinted at in Fig. 6, where we see that the wave pack-
ets injected by operating the valve get reflected from the
boundaries of the system and come back to the position of
their origin in finite time, in fierce violation of any mean-
ingful Markov approximation. Notably, this effect should
be expected to hold also in the presence of weak non-
Gaussian perturbations as various atom-chip experiments
have already experimentally demonstrated that these fea-
tures remain intact in close to integrable situations, also in
the presence of nontrivial trap geometries.

In most works on quantum thermodynamics [97,98], an
infinite bath is considered, but it is unclear under which
conditions these modeling assumptions would be valid for
the intermediate-sized baths in a QFM experiment. The
studies of local recurrences can be seen as entry points to
interesting theoretical studies of the possible repercussions
of wave packets returning back to their origin in finite time.

Loss of information ultimately proceeds through
dephasing of collective excitations. For quasicondensates
these are phonons [37,99,100], the dephased state emerges
in a light-cone fashion [43], and is described by a gener-
alized Gibbs ensemble [44], i.e., different modes can have
effectively different temperatures determined by the state
preparation. The long time behavior depends on the spec-
trum of these collective modes. If the atoms are confined
to a box-shaped trap, then the phonon frequencies become

commensurate, i.e., wy = wck/L, with k = 1,2,... being
the mode index, and recurrences are observable at short
times [33,101]. This effect is a distinct source of non-
Markovianity from the localized wave packets returning
to their origin in finite time and can occur even in a
homogeneous system. As detailed in Ref. [17] the recur-
rence is a recurrence of the squeezed (momentum) modes,
where each mode & is represented by an ellipse in phase
space rotating around the origin with frequency wy and all
ellipses realign their axes as soon as the slowest k£ = 1
mode rotates by a full angle. In that moment the k£ = 2
mode will have made additionally one more full turn,
and similarly higher modes too. In other words, due to
the linear spectrum all modes realign. This pertains to
eigenmode populations and the state in real-space can be
homogeneous during the dynamics. This, however, does
not occur in a harmonic longitudinal confinement with trap
frequency o), where the eigenfrequencies are nonlinear
wy = w4/k(k + 1)/2 [28] and are incommensurate. Still,
when the entire system is engineered to be captured by few
collective commensurate modes, non-Markovian behavior
and significant memory effects can dominate the system
dynamics.

Let us illustrate that with an example: the role of the
reservoir in a thermal machine cycle will strongly depend
on the design of the mode spectrum and on when the
“contacts” take place. In other words, the timing of the
valve QTPs will matter. If the recoupling is in between
recurrences, the reservoir will appear dephased and with
seemingly no memory of what happened during the previ-
ous cycle. However, the system is coherent: by changing
the timing the valve coupling can occur at the time of the
recurrence and the reservoir can appear to have memory
of what happened during a previous cycle, and hence be a
non-Markovian bath. Designing the longitudinal confine-
ment in each part of the thermal machine will allow us
to have in principle (nearly) full control of the memory
of selected states in the thermal machine at later times.
This will allow us to design and probe a large variety
of interesting Markovian and non-Markovian situations
[102—-106].

3. Finite-size effects due to energy fluctuations

Individual realizations of the experiment are subjected
to non-negligible thermal fluctuations. A particularly inter-
esting question lies in observing the predictions related to
finite-size effects derived in various theoretical frameworks
of quantum thermodynamics. Our systems are small, and
therefore can be heavily influenced by fluctuations in
energy. Moreover, we are interested in a single-shot pro-
cess of cooling, namely to run the machine for at most
a few cycles for a single initial preparation; as opposed
to preparing a large amount of identical condensates and
seeking to cool them only on average. The performance of
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machines in such a single-shot setting has typically been
captured by additional “thermodynamic laws,” which are
distinct from the standard laws that are valid in the ther-
modynamic limit. Such “laws” are essentially constraints,
which have been phrased in terms of (i) generalized free
energies in the context of a resource-theoretic language of
quantum thermodynamics [107], (7i) fine-grained Jarzyn-
ski equalities [108], or (iii) other measures specifically
tailored for Gaussian systems [109]. These are intricate
and important theoretical descriptions. But make-or-break
questions for the significance of such pictures presumably
are the following ones: can we observe their predictions?
Specifically, how relevant are they to characterize the
potentials and limits of practical thermodynamic protocols
such as the cooling scheme proposed in this work? Much
remains to be explored in this direction for quantum many-
body systems in contrast to other physical settings where
specific ideas have been proposed [110].

B. Efficiency of quantum machines: notions of work
and performance versus theoretical limits

Turning our attention to the notion of efficiency of quan-
tum machines, we would like to connect the expected
performance of our proposal to limits set in the litera-
ture. A couple of comments are in order before we begin
this discussion. First of all, there are different notions of
efficiency that one could discuss: on the one hand, the
quantum efficiency would compare how much work is
drawn from the quantum system in order to implement the
machine operation. For a fridge that would be the coeffi-
cient of performance, simply given by the quotient of the
heat removed from the target system and the work per-
formed by the piston. On the other hand, the complete
efficiency would be the quotient of heat removed by total
work invested in keeping the machine running, i.e., includ-
ing the power drawn by the computers, DMD, and other
physical machinery that is needed to keep the system run-
ning as a whole. As the cost of control is generically orders
of magnitude above the energy scale of the system, any
complete evaluation of efficiency of a controlled quantum
engine (such as we propose) would not be very meaning-
ful, since running this machine as an engine to generate
work would be futile: much more work would have to be
put into the control as one could possibly expect to gain.
The quantum efficiency on the other hand, does not have a
great operational meaning unless supplemented by further
context: from a pragmatic perspective, it is unclear why
one should care only about the work that is specifically
done by the piston and ignore all the work that went into
generating the field defining the piston in the first place.

The main goal of the machine is to cool down a target
system in ways that transcend the possibilities of purely
classical refrigeration processes. Here, an exciting direc-
tion is to instead explore experimentally the fundamental

limits of cooling, as they are usually captured in readings of
the third law(s) of (quantum) thermodynamics. Adapting
the terminology from recent works [111,112], the QTP
toolbox can be seen as coherent building blocks for a ther-
mal machine, whereas resource-theoretic operations are
energy incoherent. Nevertheless, coherent operations (i.e.,
time-dependent Hamiltonian control operations) and inco-
herent operations (i.e., resource-theoretic operations), if
both given the same amount of complexity, can achieve
similar performance (final energy) in terms of cooling of
qubit systems [111]. Therefore, the fundamental bounds
obtained from resource-theoretic frameworks in machine
performance [107,113,114], especially such as the third
law derivations [114,115], may be a valuable benchmark.

In all thermodynamical processes considered for our
QFM in the future, an important issue is the notion of work
itself. Indeed, quantifying work extraction in the quantum
regime can be treated by various theoretical frameworks of
quantum thermodynamics and might yield different results
depending on the definition used [116]. For the refrigera-
tion cycle that we propose here, however, the useful output
of'the QFM is easy to assess, as shown in Fig. 6. This, how-
ever, is not as straightforward in general for other tasks
that may be implemented with the QTPs that we have
presented. In that case, additional ideas for quantifying
quantum work will have to be developed in accordance
with our modeling involving exclusively unitary processes
induced by time-dependent Hamiltonians. For example,
since we always initialize the quasicondensates in a ther-
mal state, this process is similar to the standard setting
of fluctuation relations [117]. However, the statements of
work extraction provided by fluctuation relations involve
initial and final projective energy measurements on the sys-
tem, which is not directly measurable in experiments with
quantum many-body systems.

QTPs can be used to perform work on systems and in
the process we saw that this brings them out of equilib-
rium. Therefore, in the resource-theoretic framework of
quantum thermodynamics [107,118] they should be inter-
preted as being resourceful and hence stand in contrast to
free operations and states, which are usually studied in this
formalism. This highlights the gap between this powerful,
but abstract, framework with what is meaningfully achiev-
able in experimental setups. So far, the energetic worth of
nonthermal resource states has been studied in the context
of distillation rates [119,120]. Our platform will provide a
test bed for quantifications on the level of operations rather
than states and might be potentially useful for practical
settings.

C. Experimental realization of a QFM

The first type of energy referring to known properties
can in the widest sense be related to work, the latter to heat
and entropy. Ultimately, it is the amount of information
one has about the energy present in the system that decides
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whether it should be interpreted as heat or work [1,113,
121-125]. Aside from the conceptual issue of separating
work and heat, much progress has also been made in the-
oretical quantum thermodynamics, in terms of predictions
of how energy exchange in finite-sized quantum systems
would occur.

In the present Paper, we deliberately focus on a simple
and straightforward way of implementing a QFM in the
form of a one-dimensional bosonic quantum gas, which
can be described with a Gaussian effective model. Having
said that, there are many interesting directions that can be
explored in order to extend our proposal.

1. Non-Gaussian QF Ms

We have left it open to what extent higher-order, non-
Gaussian contributions will play a substantial role in the
operation of the QFM in the experiment. One example
where these could potentially matter is when running the
QFM with a long cycle time. This is because of dephas-
ing or damping effects, which are not present in the TLL
model can occur in real experiments already around 50 ms
[17,33]. We currently take into account effects of dephas-
ing only whenever two systems are split, which is con-
sistent with this time scale since the merge-split protocol
considered in our simulation is 40 ms. A key aspect of
future investigations will be to comprehensively explore
weak non-Gaussian effects arising from such effects. We
expect many-body dephasing to primarily have the effect
of thermalizing the bath, but otherwise not obstructing
the heat flow, which occurs faster than the onset of any
dephasing observed so far. Nevertheless, a detailed study
will provide more substantial insights into this important
aspect.

The second interesting case is to notice that during the
splitting and recombination, the mean density at the inter-
face is low and there the linearized phononic description
might break down. This may lead higher-order interactions
to become substantial and induce scattering of phonons
around the interface. In the experimental implementation,
one can extract higher-order correlations and study non-
Gaussian correlations [20]. If present, they can be studied
by numerical field theoretic calculations [126] or com-
pared with predictions based on fundamental relations in
quantum thermodynamics [127].

Finally, the existing atom-chip platform allows one
to controllably add sine-Gordon interactions [20,23] and
hence also non-Gaussian QFMs can be explored experi-
mentally. The sine-Gordon model is paradigmatic for our
understanding of quantum field theory [128—131] thanks
to its rich physics, e.g., excitations of finite mass and
nontrivial topological properties. The experimental imple-
mentation [20] following the quantum simulation proposal
from Ref. [23] has been realized using two longitudinally
tunnel-coupled one-dimensional quasicondensates. In this

case, the system should be described by relative degrees
of freedom, the relative phase @r1(z) and density 801 (2)
fluctuation fields. These fields are obtained by considering
the difference of the respective fields of each of the con-
densates, see, e.g., Ref. [33] for a detailed discussion in
relation to a recent experiment. Using interferometric mea-
surements [20,33,34,65,66] correlation functions of the
relative phase can be measured, which allowed substantia-
tion of the fact that the physical system has been correctly
described by the effective sine-Gordon Hamiltonian for
two adjacent quasicondensates
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with effective field operators now capturing the relative
phonon modes and interacting with a non-Gaussian cosine
term. Tuning of the tunnel coupling J is possible exper-
imentally, which would allow building QFMs in various
interaction regimes, ranging from a system of noninteract-
ing modes to a strongly correlated quantum system with
topological excitations. See Ref. [16] for further details in
the context of thermal machines and Ref. [20] for a detailed
experimental study of the many-body aspects of the model.

Summarizing, the two coupled one-dimensional qua-
sicondensates will allow us to build and study strongly
correlated QFMs, where the degree of correlations (that
is, the degree of higher-order correlation functions that
are relevant) can be experimentally tuned. It is known
that the time evolution of interacting local quantum sys-
tems is computationally hard (technically speaking, it is
bounded-error quantum polynomial time (BQP) complete
in worst-case complexity), and in practice computationally
demanding for classical computers for physically relevant
problems. This applies as well to the equilibrium processes
involved in the operation of the QFM. While numeri-
cal studies may prove inefficient, the properties of these
strongly correlated QFMs can be probed experimentally
in detail by measurements of (higher-order) correlation
functions [20,132].

2. Matter-wave interferometry of parallel QF Ms

An intriguing idea is to run machines in parallel. This
opens up the possibility to compare the operation of two
identical machines by direct observation of matter-wave
interferometry [133]. On the atom chip it is possible to
conceive of two machines positioned side by side, paral-
lel to each other (Fig. 1 would then be the side view of
two machines) and they would be identical in the sense
of having the same initial state preparations and subse-
quent control operations implementing QTPs making up
the Otto cycle. This can be done using well-established
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protocols of manipulating the gas using a longitudinal dou-
ble well and interference has been observed in this case
in various situations [15,20,33,37,65,132]. Interferometry
by its nature looks at relative fluctuations and hence dis-
regards classical disturbances in the operation, which are
identical for both systems and directly measures quantum
fluctuations. Their appearance should be studied interfer-
ometrically for various initial states of the two systems
including the following.

(i) Two independent systems created by cooling two
cold atomic clouds separately. This provides the base case
to be compared to when studying more interesting initial
states.

(ii) Two systems that are dephased in a prethermalized
state [37]. In this case the temperature of relative degrees
of freedom has been found not to be fully determined by
the cooling process but rather to be related to the tunnel
coupling J in Eq. (26) present during state preparation.

(iii) Two systems with (nearly) identical phonon modes
with strongly suppressed quantum noise in the relative
degrees of freedom. Such states have been achieved exper-
imentally [44,80] and can be further improved by optimal
control of the splitting process [134].

Each of these approaches would prepare machines that
would have distinct initial conditions and an experimen-
tal study would allow insights to be gained on how these
influence the operation of the QFMs. Observing features
where cases (ii)—(iii) would differ from the simple case of
independent machines (i) would then most likely require a
nonclassical explanation.

3. Necessity of optimal control for operations of the
OFM

In our present study we have involved only very sim-
ple protocols to operate the different primitives building
a QFM. In a real-world implementation, one would natu-
rally like to speed up and optimize the different steps of
a QFM. This should be in fact expected to be a crucial
matter. This can be done by implementing optimal control
methods [135—138], such as those reported for splitting a
double well in Ref. [134] or for the excitation process in
Ref. [139]. Notably, some of the control theory is already
established for the piston QTP and has been successfully
implemented [53]. There, a harmonic trapping potential
has been considered and the extension of the GP profile has
stably been modified. This involved the fact that modify-
ing a harmonic trapping potential acts essentially as a lens
for the individual atoms making up the system, so not only
one can compress them appropriately but also accurately
decelerate them when needed.

4. Diagnostic tools for QF Ms

Finally, a particularly important direction to study is
the development of further diagnostic techniques for the

system along the lines of recent developments [17,20,34,
47,58-66,140—-142]. We have discussed in Sec. III C and
Appendix A the current experimental read-out capabilities
and have proposed how to enhance them by novel variants
of tomographic data analysis [17]. Detailed monitoring of
the QFM will be crucial and novel hardware solutions can
aid that goal.

A particularly interesting possibility is to trap a three-
dimensional condensate close to the one-dimensional
QFM and use it as a sensing device. Matter-wave inter-
ference between two systems of different dimensionality
seems to be interesting in its own right offering to study a
wealth of various physical phenomena [66,141]. In addi-
tion, it could be expected to provide additional read-out
resources with the goal of circumventing the current imag-
ing resolution limitations that are difficult to improve oth-
erwise. The implementation of this scheme would have
the advantage of providing a direct measurement of the
phase along of a single quasicondensate in contrast of the
indirect tomographic approach. See Ref. [47] for related
work in this direction and additionally Refs. [7,143] for a
discussion of possibilities for immersion cooling.

Finally, let us remark about the possibility of perform-
ing nondestructive measurements, which are essential,
e.g., for an analysis of a thermodynamical process using
fluctuation relation theorems, which involves a two-step
measurement process on the same system. Currently the
measurements performed in experiments using the atom
chip are destructive, see, e.g., Ref. [66] for a discussion of
measurements following a time-of-flight expansion. When
experimenting with 1D systems destructive measurements
are experimentally easier because of the small atom num-
ber. In that case one can illuminate the complete system
for readout and every atom scatters many photons. Mea-
suring in time of flight has the additional advantage that
the atomic cloud, which is initially only a few 100 nm
in transverse size, can expand transversely to a size that
is above the resolution limit of the imaging optics (as
used in Refs. [144,145]). For a long time of flight, the
atoms have moved away from the atom-chip elements
that were being used for the control in the experiment,
thus reducing spurious light scattering that can contam-
inate the pictures. Such a measurement is destructive in
two ways: (1) the gas is released from the trap, (2) as
the atoms are heated up so much by the light scattering
that the low-energy quasicondensate description for the
atomic cloud is not valid anymore: the BEC evaporates
unless the system is large [146—151]. Thus, nondestructive
measurements in our system can not be performed by illu-
minating the atoms for readout multiple times but rather
in a less disruptive way, e.g., by out coupling of atoms
[147]. Here, one would like to remove selectively atoms
from a portion of the system and measure these projec-
tively away from the system. This has the advantage that
the system will not be destroyed and the measurement can
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be repeated. Additionally, imaging individual out-coupled
atoms allows consideration of quantum-limited measure-
ments [152,153]. However, the mechanical effects of even
the second-order Zeeman effect in the strong magnetic
field gradients of the chip traps, which are still on to keep
the remaining system running, make these measurements
more difficult. Still, these engineering challenges could be
overcome in near term.

For applications in quantum thermodynamics and fluc-
tuation relation theorems, it should be noted that these
measurements would be local in space (product measure-
ments of commuting observables). This is in contrast to
many protocols assuming projective measurements in the
entangled and nonlocal energy eigenbasis—in general it is
not clear how to achieve these experimentally demanding
requirements in quantum many-body systems.

As a final outlook, let us remark that measurements
using outcoupled atoms could potentially allow for imple-
menting error mitigation for the refrigeration QFM: when
merging two systems, the number of excitations will be
influenced by phase diffusion of the phase zero mode and
the measurement of the relative phase between the outcou-
pled atoms could allow selection of the experimental runs
that happen to have fewer excitations than the average real-
ization. Assessing the back action on the system and the
influence on the performance of the QFM in such a scheme
is an interesting question for future study.

5. Relation of our proposal to other platforms

At the heart of this work stands the design of a spe-
cific QFM based on continuous cold atomic programmable
potentials, for good reason, as this is a blueprint for a quan-
tum thermal machine following the desiderata that we have
laid out. In this sense, we see this specific choice rather as
a strength of this proposal and not a weakness.

Having said that, it should be clear that ideas of cre-
ating a toolbox of thermodynamic primitives as macro-
scopic operations over quasicondensates, reminiscent of
operations acting on bulk systems in conventional ther-
modynamics, may well carry over to other cold atomic
platforms, stressing the generality of the approach taken.
Specifically, for systems of cold atoms in optical lattices,
digital mirror devices have been used to implement pro-
grammable potentials [154,155]. In such settings, giving
rise to programmable Bose-Hubbard dynamics, a coupling
and decoupling giving rise to a valve and the compress-
ing and decompressing realizing a piston could be realized,
following the general prescription of this work.

On a related but different note, we mention the relation-
ship of the present proposal to other proposals of quantum
thermal machines or refrigerators that have been put for-
ward. Indeed, cold atomic quantum thermal machines have
been considered [7], investigating the refrigeration of an
atomic cloud, but not following the mindset of operational

primitives laid out here. There, the use of two atomic
species has been suggested, in which one atomic species
implements the working medium and the other implements
two baths that are hot and cold, respectively. Our proposed
system is simpler and therefore presumably more robust
against experimental uncertainties and imperfections than
that of Ref. [7], which requires a very high level of control
over the system and very precise fine tuning of experi-
mental parameters. The recent work Ref. [156] starts with
a gas of rubidium atoms cooled down to low tempera-
tures, where the thermal machine, however, consists of
individual cesium atoms and does not operate in the quan-
tum many-body regime. Work already mentioned above
demonstrates thermoelectricity in a fermionic ultracold
atoms channel, connected to two reservoirs [91].

Further away still from the setting we consider here
are proposed refrigeration schemes based on a phonon-
pumping mechanism in nanomechanical systems [157,
158]. These schemes also aim at achieving cooling of
a quantum system, albeit in a quite different way from
the setting considered here. In that work, noninteracting
phonons are suggested to provide the work fluid, in con-
trast to massive atoms that are in the focus of attention
in the present work. The phonon number is not pre-
served and a nanomechanical system is expected to be
open. This observation—together with the fact that the
piston is anticipated to be realized as a traveling lat-
tice perturbation acting as a semireflective barrier—seems
to come along with substantial experimental challenges.
There are also similarities, in that cycles involving three
subsystems are being considered. In the present work,
the cycles are composed of operational primitives involv-
ing massive and potentially interacting atomic quantum
systems.

The most significant contribution of the present work is
to carefully introduce and discuss these basic operations
at hand of numerical results based on an accurate micro-
scopic model, for which the cyclic processes in quantum
thermodynamics devised are more an example than an aim
in its own right.

VII. CONCLUSIONS

In this work, we have set out to devise a blueprint for
a genuine quantum thermal machine in one-dimensional
ultracold atomic gases, a platform that we propose to real-
ize complex thermodynamic tasks. We have proposed a
quantum field machine (QFM) involving phononic degrees
of freedom described by an effective quantum field the-
ory. When devising this blueprint, resorting to a quantum
mechanical description has been crucial to reduce the
physical description of the system to a point where the
functioning of the machine can be easily grasped. In order
to provide guidance towards constructing thermal field
machines, we characterize a toolbox of thermodynamic
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primitives, which are macroscopic operations over quasi-
condensates, reminiscent of operations acting on bulk sys-
tems in conventional thermodynamics. Our proposal puts
forward a scheme for a refrigeration QFM that involves a
system featuring quantum effects, a cold atomic gas, and
the machine performs a useful task—cooling of phononic
quantum fields. In contrast to previous realizations of
quantum engines this cannot be practically achieved by
controlling every single degree of freedom of the sys-
tem as there are just too many. It goes without saying
that this task is useful and we hence fully accommodated
the three requirements that we have set in the outset of
this work for a thermal machine to be a genuine quan-
tum machine. We found that quantum effects present in
our QFM are currently detrimental to its cause: operat-
ing the valve of the QFM induces inevitable excitations
adding thermal noise of reservoirs. This is rooted in the
quantum effect of phase diffusion of phase zero modes and
in the dynamical Casimir effect and features a detailed
temporal structure thus far ignored. Remarkably, even
after accounting for realistic “imperfections” expected in
the experiment we predict notable cooling. As detailed,
exploring further quantum features is possible, including
(i) at sufficiently low temperatures entanglement or zero-
point fluctuations leading to sub-Poissonian noise when
operating the valve [37], (ii)) non-Gaussian QFMs [20],
(iii) non-Markovian QFMs [33], (iv) parallel machines
amenable to measurements using matter-wave interferom-
etry [20,33,37,44,159], (v) quantum phase diffusion and
phase-locking via Josephson oscillations [159], (vi) few
phonon regime similar to quantum optics in the few photon
regime where the quantized nature of the energy spectrum
becomes manifest and individual runs of the QFM will
unavoidably fluctuate.

It is clear that this work constitutes only a commencing
study of a research program of a larger scope. We perform
classically efficient numerical simulations, but calculations
for a non-Gaussian QFM are expected to hit the compu-
tational complexity barrier: it is key to our work that the
blueprint for a QFM devised here resorts to a quantum
many-body regime, in contrast to work that aims at under-
standing single-atom heat machines [160]. Even though
our operational principles and cycles are reminiscent of
those of classical heat engines, i.e., canonical thermody-
namical transformations, we highlighted some interesting
issues obstructing understanding the functioning of our
QFM using resource theories. We have encountered quan-
tum features which in the future should, to the contrary of
our current observations, be seen not as a burden but as
a potential advantage: they should be used to improve the
performance of the thermal machine in the deep quantum
regime.

Our theoretical model for a Gaussian QFM is expected
to largely capture the qualitative operation of the QFM.
The quantitative features may change and there is a rich

number of entry points for non-Gaussian behavior to set
in. We expect their effect to be small and to not overhaul
our predictions. Ultimately, whether this will play out to
be true in reality can only be decided by performing an
experiment.

We firmly believe that such a machine can and should
be built, which will deepen our understanding of ther-
modynamics in the quantum regime. Further progress in
the research field of quantum thermodynamics necessitates
the development of useful quantum machines to drive,
motivate, and guide the theoretical development of the
corresponding laws, just as the advent of steam engines
propelled the development of thermodynamics in the 19th
century. It is our hope that the roadmap laid out in this work
will serve this cause well.
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APPENDIX

This appendix provides sections accompanying the dis-
cussion presented in the main text as follows. We begin
by giving in Appendix A more details about the precise
quantities that can be measured in experiments on the
atom chip and discuss how to connect these to thermo-
dynamical quantities. Next, in Appendix B we summarize
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the essential ingredients of the bosonic Gaussian formal-
ism, which is the analytical base for the numerical code
that produced our results. Finally, Appendix C provides an
extended discussion on simulation details, including pre-
cise formulation of the lattice approximation employed in
the code, extended description of the valve QTP [includ-
ing how to compute the energy density or compare to the
continuum limit in the scenario of sudden (quench) merg-
ing], of the piston QTP (including additional discussion
of the model, compression dynamics and details of cou-
pling inhomogenous QFTs after compression) and finally
we discuss different relaxations of parameter constraints
that have yielded an almost 30% cooling ratio.

APPENDIX A: EXPERIMENTALLY MONITORING
THERMODYNAMIC TRANSFORMATIONS IN
PHONONIC QUANTUM SIMULATORS

Let us begin by discussing which quantities, if measured
experimentally, would reveal insights about the thermo-
dynamic transformations in the system. We then proceed
by explaining what are the direct experimental observ-
ables and how to connect to the desirable thermodynamical
observables. In experiments, one should distinguish the
cases of having a single quasicondensates and two which
are adjacent. First let us discuss the former case where
we have access to measurements of the atom numbers
locally by transversal density absorption imaging (from the
side). These numbers will be ultimately binned together
due to finite resolution. The recovered atom number per bin
N;(z;, t) will fluctuate randomly between realizations i and
will give spatially resolved data where z; can be measured
in steps of about Az,.s = 2 wm on the atom chip. The quan-
tities obtained for this lattice can be compared to theory by
convoluting the continuum quantities by a Gaussian func-
tion with oes = 3 wm and evaluating [17,34]. After taking
this data at a given time ¢ one can obtain the density fluc-
tuations as follows. The empirical mean of the observable
random variable N;(z;, ) gives access to the GP profile

M
1
po(zj, 1) ~ MZNi(zj’f)' (A1)
i=1

After subtracting these values from the individual realiza-
tions and squaring the shifted random variable we obtain
the estimator

1 M
T (g2, t) ~ — > [Nilz 1) — po(@)]

M <
i=1

x [N - @] a2

Indeed, what we obtain by this is nothing else than the
estimate the second moments of density fluctuations away

from the mean density of the quasicondensates. The on-site
correlation gives information about the energy of phonons.
As discussed in Sec. III in the main text, the total energy
in the system can be obtained by considering the formal
expression for expectation value of the Hamiltonian

N h?
(Flpo]) = / d{ §°(z)<[8 o] + §<6@<z>2>}.
(A3)

Of course in the experiment one can measure only at
discrete positions but what we can do is try to obtain
this quantity via a finite Riemann sum, specifically in the
density sector we find

~ &

E,() = /dZ(SQ(Z) EZC (Zj:Zjal)AZI‘eS

(A4)

By considering the summand in this expression we get
access to the energy density for the density fluctuations.
Studying how it changes in time between different pixel
positions z; will then give information about the dynamics
of the energy of density fluctuations in the system.

For the single quasicondensate, as explained in the main
text, it is not possible to measure directly the phase fluc-
tuations. This is important, however, in order to assess the
energy contribution coming from the gradient of the phase
operator. This information can be obtained via a tomo-
graphic approach by studying the velocities of wave pack-
ets going through the system, as demonstrated recently
[17]. The basic idea is that the phononic Hamiltonian can
be put to a normal form

=yt

~ ~ g A
(@ + 88} + 580,
k>0

(A5)

using the eigenmode operators ¢y, 30, that depend on the
GP profile arising from cosine eigenfunctions in the homo-
geneous case. We then find that the dynamics of the density
fluctuation operator reveals information about the phase
operator by means of the relation

30, (t) = cos(wif)80; + sin(wyt) P (A6)
Exploiting this expression to relate observables at different
times and using the analysis and reconstruction methods
developed in Ref. [17] should then give access to the
second moments of the phase fluctuations. Specifically,
one would reconstruct the second moments Cfﬁ, = (e Pr')
of eigenmodes k, k" and we can obtain the total energy
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contained in the phase sector by simply summing

1
Ey(t) = 3 > " hanC (). (A7)

k>0

Additionally, one can translate the second moments of
the eigenmodes to real space after performing the deriva-
tive on the eigenfunctions, which should give the local
information about the energy.

When considering two condensates one has access to
interferometric measurements of the relative phase fluctu-
ations @r| = @1 — @, between two quasicondensates and
based on nonequilibrium variations of that observable,
relative density fluctuations 80 = 801 — 80, were recon-
structed in Ref. [17]. Density absorption is still available
to measure density fluctuations of the common degrees of
freedom 80com = 801 + 80, but is usually less revealing.

APPENDIX B: GAUSSIAN MODELS IN THE
SIMULATIONS OF QTPS

The continuous Hamiltonian given in Eq. (5) can
be appropriately discretized, which we explain in
Appendix C1. The system can then be described in terms
of quadrature operators, in particular, one can describe the
quantum states and dynamics with the Gaussian frame-
work of covariance matrices and symplectic transforma-
tions. In this section, we present a short summary of the
formalism of Gaussian quantum information, see, e.g.,
Refs. [161,162] for more complete reviews on the subject.

We consider bosonic systems of N bosonic modes,
associated with quadratures

X = (41,42, - qusP1oP2s PN (B1)
that can be seen as the N position and momentum oper-
ators, respectively. The canonical commutation relations
can be captured as [)A(I,)A(m] =i, for Im=1,...,N,
giving rise to the symplectic form

0 1
o= (% 1),
Given a density matrix y, we define the vector of mean
values X := (X); = Tr(yX): these are the first moments
of the set of quadrature operators X corresponding to the

quantum state. The second moments can be collected in the
covariance matrix with entries

(B2)

Ty = (XX + XX, —2(X0),(X);.  (B3)

For a single mode, namely N = 1, the diagonal elements of
I" are simply the two variances I'; | = Z(Aél)i and Iy =

2(Ap l)f;. The single constraint for the real-valued matrix

to correspond to a physical state is given by the Heisenberg
uncertainty relation, which can be concisely written as a
semidefinite constraint as

'+iQ2>0. (B4)
Of key importance in this work are bosonic Gaussian
states. A general Gaussian state of N modes is fully
described by the vector of mean values and the covari-
ance matrix corresponding to all modes. Gaussian states
are ubiquitous in physical systems. For example, thermal
states )7/3[1:1] = exp(—ﬁI:I)/Tr[exp(—,BI:I)] are Gaussian
whenever the Hamiltonian A is quadratic in the field
operators, which again is a very common situation in
many physical settings. In condensed-matter physics and
in quantum field theory, such a situation would be referred
to as being noninteracting. Generally, every Gaussian state
with full support [163] can be written in a form resem-
bling thermal states of quadratic Hamiltonians, namely
there exists a H such that

N 1 1 A _ n _
VIH] = Zexp (—5<x -X)'HX - X)) :

H, H,
H = (1 qp) ,
(Hpq Hpp
where H is a real positive semidefinite 2N x 2N matrix
written in block form for clarity and

(BS)

Z=Tr [exp (—%(}A( -X)HX - X))]
= V/det[(T +i©)/2]

is the normalization, which can be fully determined by the
covariance matrix of the Gaussian state . The relation
between I' and the matrix H appearing in the expression
above is

(B6)

H = 2iQ arcoth(iT'Q), I =iQcoth(iQH/2). (B7)
In turn, any generic quadratic (Hermitian) Hamiltonian can
be written similarly as above, i.e., with H being a real
positive-semidefinite 2N x 2N matrix. Thus, as a differ-
ence with respect to the above matrix appearing in the
expression for faithful Gaussian states, a generic quadratic
Hamiltonian can also contain zero eigenvalues (and need
not to be diagonalizable).

The (Gaussian) unitary evolution corresponding to the
time-independent quadratic Hamiltonian translates into the
symplectic transformation acting on the covariance matrix,
given by

G(t) = exp(QHY), (BY)
such that the evolved covariance matrix is I'(f) =
G(OT(0)G(H)T. A similar relation holds for the evolution
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with time-dependent Hamiltonians, see, for example, the
discussion on the QTP primitives in Appendix C. Thus,
in the framework of Gaussian states and operations one
can work directly with just the mean vector and the covari-
ance matrix, since they jointly contain all the information
that characterizes the Gaussian state. In particular, given
a quadratic Hamiltonian H= > ,Hk,l)A(k)A(l, the average
energy of a state y can be easily co’mputed as

E, =Tr(Hy) =Y HyTr(pXiX)
kI

= 3 Hiy (3T + 00, (Xay )
k.l

(B9)

The covariance matrix and the Hamiltonian matrix can be
put into normal form by symplectic transformations, which
read

r=Mm (@yk]12> M, H=M (@wk]lz) M7,

k k
(B10)

where M is a symplectic matrix and the {y;} (respectively
{wy}) are the symplectic eigenvalues and are the eigenval-
ues of [iQI'| (respectively |i2H]). Clearly, the symplectic
eigenvalues of I and H are related to each other in the
same relation as Eq. (B7), e.g., for a thermal covariance
matrix at inverse temperature 8! = kzT, we have
dy = coth(Bwy/2), (B11)
which is the usual relation between the normal-mode fre-
quencies wy of a harmonic oscillator Hamiltonian and the
normal covariances of its thermal state. Note that by iden-
tifying yx = 2(ny) + 1, this agrees with the Bose-Einstein
number distribution formula
() = e P ) (1 — e Por). (B12)
The von Neumann entropy of a quantum state p can be
also directly computed from its covariance matrix I, and
in particular just from its symplectic eigenvalues (as is true
for every unitarily invariant quantity). In fact, recall the
definition
S(y) = —Tr(y logy), (B13)
and that it is invariant under unitaries. By considering the
density matrix expressed as in Eq. (B5), we notice that
we can first apply local unitaries (namely displacement

operators) so to put X, = 0. Then, by taking the matrix
logarithm, we find the expression for the von Neumann

entropy of a (faithful) Gaussian state to be

S(yY[H)] = %logdet(F +iQ>

1
) ; arcoth(iC Q) iQT) 1k, (B14)

and in terms the symplectic eigenvalues of the covariance
matrix it reads

Norid, +1 dp +1
s - S5 (45)
k=1

dp — 1 i dp — 1
— 0 .
2 8\ 2
For a thermal covariance matrix with 8 > 0, we can

rewrite this expression in terms of normal mode frequen-
cies:

(B15)

— B wge P —Bwy
S(B) = Xk: [m —log (1 —eP)|. (BI16)
Recall that F(-) = Tr(H-) — S(-)/B is the nonequilibrium
free energy of the state relative to its surrounding ambient
temperature S~ and its corresponding Hamiltonian H. In
the case of thermal states, the free energy is given as

F(B) = Tr(lp g[H]) — B7'S(B)

=B7") log(l —e7F¥). (B17)
k

Given two faithful Gaussian states y and &, each on N
bosonic modes, described by covariance matrices I' and
T, respectively, it is also easy to compute their relative
entropy according to

S(1I6) = —S(7) — Te(y logd) = Tr [P (log p — log )],
(B18)

essentially because again it is easy to compute the log-
arithm of such states. Since the first term is nothing but
the negative von Neumann entropy that can be computed
according to Eq. (B15), we can see this by just consider-
ing the second term. By considering the form, Eq. (B5), of
faithful Gaussian states, we obtain

Tr(y loga)

=—logZ, +Tr [;7 <—%(f< —X,)TH, (X — X_a))] s
(B19)
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where we simply use the fact that the logarithm and exponential of a matrix are inverse functions. We can also simplify
further the above expression and write it just in terms of (combinations of) covariance matrices elements as

1 , 1 1 L
—Tr(7 log6) = 7 logdet[(Y +i®)/2] + 7 D Yka(Ho s + 7 Xo = X, H,( X, — X)), (B20)
k.l
which leads to
i A 1 det[ (Y + i2)/2] 1 _ - 7 _ _
S =—|log| ———2= -y Tw(H, — H X, - X)H,X, -X,) |, B21
(7I6) = | lo ( T D)2 +2; i it + ( )T H,( ) (B21)

where we also use the expression (B14) for the von Neu-
mann entropy. Note once more that the matrices H, and
H, can be also directly obtained from I' and Y, respec-
tively, through Eq. (B7). Another useful expression can be
written down, containing explicitly the symplectic eigen-
values of the two covariance matrices. For that we notice
that the logarithm of the partition function Z, can also be
expressed as

1
logZ, = 5 Xk:log [(w? - 1)/2], (B22)

where {u} are the symplectic eigenvalues of Y. Thus, we
can write

S(P16) =—=S@) + ) _log[(vf — 1)/2]
k
1
+7 ; Tii(Ho )i

1 - - - -

+ E(XO’ - X,O)THU (Xcr - Xp)v (B23)
where we can also use the expression (B15) for S(p).
Finally, note that if ¢ is a true thermal state of a Hamil-
tonian H at inverse temperature 8 > 0, then for any state
p, we have

S(yllo) = BIF () — F(6)]. (B24)
APPENDIX C: DETAILS OF THE QTP

SIMULATIONS

1. Lattice discretization scheme

Here we define a lattice version of the phononic Hamil-
tonian, obtained by discretizing the interval [—L, L] into
N pixels, each of size Az = 2L/N [21,164]. This is par-
ticularly important to make numerical calculations, espe-
cially for the case of nonhomogeneous external poten-
tials. Fixing N, for i=1,...,N + 1 the coordinates of

the discretization lattice read z; = —L + 2L%, and we

(

define discretization pixels, which are the closed inter-
vals p; = [z;,zi+1] fori = 1,..., N. We then introduce the
discretized version of density and phase operators as the
integration of the field operators via

1 1
oM = — | dz¢z), 80" = —/ dz 80(z), (C1)
Az Jp, Az Jp,

with |p;| = Az = 2L/N. These discretized operators yields
a vector of canonical coordinates

~ R R R . T
xz(5Q§N>...ag,(vm,(pfm,...(p;vm) . (C2)

satisfying (rescaled) bosonic canonical commutation rela-
tions

(X, Xi] = i 4/ Az, (C3)

where 2 is defined in Eq. (B2). As explained in Ref. [17],
in the continuum limit N — oo, the right-hand side will
yield a Dirac delta because 1/Az.

To discretize the model, we follow Ref. [21] and con-
sider the geometric mean

ni = +/ po(zi)po(zit1)

fori=1,...,N. The discretization of the effective model
will be a quadratic operator in the discretized modes (ZJI-(N)

fN). At the lowest-order approximation, one obtains

and 8§9;
N-1 AN) AN ]2
b~ Az 2 |:90i - ‘Pi+1i|

(C4)

Az

N
gﬂ (5@(1\[))2 = [A‘IN_

1

(C5)

Note that so far in the main text, we have suppressed for
simplicity the possible spatial dependence of the coupling
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constant g, which is true for a homogeneous quasicon-
densate and in general has little influence. In general, g
depends on the GP profile,

2(2) = hw 4,2 + 3a;00(2)]/[1 + 24500 (D)2, (C6)

where w, is the radial trapping frequency and a, is the
scattering length [33,165]. This dependency on the spatial
coordinate z has been included in our numerical simula-
tions. From this, we obtain the matrix representation of the
above Hamiltonian

1 .7 ~
H =2 X (Hpylg, Az]© Hyglpo, Az]) X, (C7)
H,p[Az] = Az - diag[g(z1),g(22), - - ., g(@n,)] , (CB)
m —m
, | m o mtn —m
Hyglpo, Az] = ' +2h diag[J (zi)n(z1),...,J (ev)n(zy)],
mAz
—NN—2 NON—2+NN-1 —NN-1
—NN-1 NN—-1

where we have used the functional notation Hye[ 09, Az] to
emphasize that these couplings depend on the mean-field
density profile and the size of the pixels. We additionally
added a small term oc J, which is meant to regularize the
zero mode. This way, all computations are made with fully
supported Gaussian states so that numerical instabilities
do not occur. Physically, it can be interpreted as adding
a small mass term of the type A, = hJ [ dzpo(2)@(2)* and
we have checked that, as long as the coupling is chosen
to be around J ~ 0.01 the dynamics is not affected in the
times scales of 300 ms that we have in mind. See also
Appendix C3 below for a more extended discussion.

Starting from a set of canonical coordinates X, then for
a symplectic M € R*V>2N i e, fulfilling

MQMT=Q, (C10)

we have that = MX will again denote a vector of canoni-
cally commuting operators, which can be seen by explicitly
checking that 7 again fulfills [7;, 7] = i€ x/Az.

We can then diagonalize our Hamiltonian as follows:
first, we use the symplectic matrix

/-1

M1:< Hop 0 ):M{, (C11)
0 VHpp

since H,, is diagonal. Then, we have

MITHMl = ]]-N D (1/H/;/)1H¢¢‘/HPP> =. ]lN @H¢¢,

(C12)

(C9)

(

where H,, is the matrix of the phase couplings in the new
coordinates, which is real and symmetric, and therefore can
be diagonalized by an orthogonal transformation O with
H, = OX0". Here, T is diagonal and we assume that all
zero eigenvalues are sorted to the first N° > 0 positions,
i, X =0y ® X with £ > 0 diagonal and we define the

eigenfrequencies w via »12 = diag(wyoyy, - - .,wy). With
the diagonal matrix Xy = 10 @ % and the transformation

ox!\/* 0
M, = ¢ C13
2 < 0 02;1/4) (C13)

we obtain
MIMIHM M, = (10 ® %) @ (040 @ £'2). (C14)

That is, in the canonical coordinates r = (Ql, R QN,
Pi,...,Py) = v/ Az(M;M,)"'X we have that the Hamil-
tonian in Eq. (C7) takes the form

NO N
> o B+ 0p.

Jj=1 Jj=NO+1

(C15)

Finally, we can define creation and annihilation operators
(E;, ¢;) for each normal mode from the relation
D2 | A2 At f
P+ 0O =2¢¢ + 1. (C16)

Note that the new coordinates satisfy true canonical com-
mutation relations [Oy, P;] = id;; and consequently we
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also have

[(A?k,f?}] = Sk (C17)
for all &, /. However, our original discretized field operators
satisfy rescaled commutation relations. This means that the
symplectic matrix corresponding to the evolution with Hy
in the original coordinates is given by Eq. (B8), where the
symplectic form is rescaled, namely Q — (Az)~'Q.

Thermal states of the above Hamiltonian have covari-
ance matrices of the form I' = I, ® I'44, and can also be
explicitly computed from the normal modes and the cor-
responding symplectic transformation, namely Egs. (B10)
and (B11). The expression is somewhat complicated for
the general case, but for the special case of homoge-
neous systems (which we are interested in) H,, = «1 with
Kk = Azg, we get

L ip i 1 —12
Tp= ﬁHw ® ViHyy'™ + ﬁ(Hw D) & Vi (Hy,'T),
(C18)
where
-1
T:=2 (exp(zﬁﬁHd{éz) - ]1) (C19)

As discussed in the previous Appendix B, diagonalizing
the Hamiltonian in terms of normal modes, the covariance
matrix becomes also diagonal with symplectic eigenval-
ues given by Eq. (B11). From these symplectic eigenvalues
one can also write down the (von Neumann) entropy and
the free energy as in Egs. (B16) and (B17).

2. Details of merging and splitting

In this section, we provide an extended discussion of
the merge and split primitive. This is a three-step process,
involving two condensates 4 and B with lengths L4 and Lg
and densities p{ and pg, and consisting in the following:

(a) merging the two initially independent condensates
during a time #perge;

(b) letting them evolve with the fully merged Hamilto-
nian for a time feyolve; and

(c) splitting the joint condensate back into two parts 4
and B, with the same lengths as the initials, during a
time Lsplit-

a. Merging

For the merging process, we encounter a time-dependent
Hamiltonian H,_g(¢) such that

Hy—50) = Hya[ 0]+ Hys[ o], (C20)

where our Hamiltonians are given by the lattice model in
Eq. (C5) and (keeping constant the small distance cutoff

Az) are functionals of the initial mean-field density pro-
files of the two condensates. Note that since we would
like to couple the two systems, we require them to have a
consistent momentum cutoff (Az)4 = (Az)® = Az (so that
waves traveling across quasicondensates with same atom
density in the simulation should not change in speed due
to the different discretization), and consequently their num-
ber of pixels will be in the same proportion as their lengths,
ie.,

NA=L,Az=NBL,/Ls. (C21)
The coupling matrix of the uncoupled Hamiltonian in
Eq. (C20) is by

Hpyp a8 = Hppa ® Hopp, Hppap = Hppa ® Hpp .
(C22)

To merge the condensates, an interaction Hamiltonian is

switched on, so that the joint Hamiltonian as in Eq. (C7)
has a matrix representation given by

Hypap = Hppa @ Hpp 3,

Hyp ap = Hpp 4 © Hyppp + Hin, (C23)

merge
where the interaction matrix is given by

2
Hin)ij = g A (3NA,i5NA,/ + Onap1iOnatr

- SNA,I"SNAHJ - 5NA+1,1'5NAJ), (C24)

with ny4 := /pA(N4) - pB(1). Note that this interaction
contains also the local terms in the boundary region
[N4,N“ + 1]. We hence see that the couplings during the
merging are given by

t

Hy_p() = (1 - )HAB + Hyp. (C25)

merge merge

For the numerical implementation, we also discretize the
time evolution so that we divide the [0, fierge] time inter-
val into N; steps of duration Af = fierge/N;. Then, the
symplectic evolution matrix reads

Nt

Gmerge (lmerge) = l_[ eXp [QHAfB (t])/AZ] s
j=1

(C26)

where Hy_p(f) = Hy4 + Hys + (j /N,)Hipr. Examples of
eigenmodes for the time-dependent Hamiltonian are plot-
ted in Figs. 8 and 9 for a homogeneous GP profile with
or without a trapezelike buffer region. We find that mode
functions that are odd in z hybridize via a jump, which
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FIG. 8.
steps #/tmerge during merging for a fully homogeneous profile.

gets smoothened during the merging while, mode func-
tions, which are even in z get glued automatically. We see
also that all modes have a local extremum at the boundary,
which means we have Neumann boundary conditions.

In the main text we have shown the results for a model
of the quasicondensates where the GP profile falls off
smoothly from its peak value in the bulk to a lower value
on the edges. In principle, it is possible to consider the
effective model to be constant everywhere, whereas the
edge of the condensate (where excitations get reflected)
can be modeled by the boundary conditions. However,
this abstraction turns out to be too simplistic. Figure 10
provides a demonstration of what occurs in such a sce-
nario. Since the process is simulated via the merging of
the boundary conditions of the two condensates, in partic-
ular occurring at a single pixel, it is hence independent of
the momentum cutoff. As a result, momenta at all scales
are populated, however, this does not faithfully capture
the physics of the continuum model, since the dispersion
relation is not linear. In order to avoid this, it is therefore
necessary for the model to resolve details of the coupling

Position z (pum)

Snapshots of the phase and density eigenmode functions for the first and second lowest modes, taken at different Trotter

b. Idle evolution

In between merging and splitting, one can allow some
idle evolution time Zyove in Which the joint system evolves
with the fully coupled Hamiltonian. This can be applied
with a single symplectic matrix, since the Hamiltonian is
time independent. Wave packets injected during the pre-
vious merging process will travel ballistically through the
entire joint system (as long as we have taken care to remain
in the regime where high-momentum modes are negligible
and the linear dispersive relation holds).

c. Splitting
Finally, we implement the splitting procedure by a time-
dependent Hamiltonian reversing the linear interpolation
that has been discussed for merging. In the numerical
simulation the covariance matrix of the 4 and B quasicon-
densates after merging, idle evolution, and splitting would
have the form

T T T
1_‘A -B (ttot) = Gsplit Gevolve Gmerge 1_‘A -B (0) Gmerge Gevolve Gsplit .

(C27)
zone.
(@) .10 Phase eigenmodes (b) Density eigenmodes (c)
200
1 — 100
Baogan, k g
' 100 [ o = 80
< 60
0 -
0 5 40
—
a
20
-100 &
p 0 . . . .
0 20 40 60 80 100
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0 20 40 60 80 100 0 20 40 60 80 100

Position z (pum)

FIG. 9.

Position z (um)

+t/tmeTge =0.0 t/tmerge =0.5
+1‘L/tmerge =0.1 +t/tmerge =1.0

Snapshots of the phase and density eigenmode functions for the two lowest-lying modes taken at different Trotter steps

t/tmerge during merging for a homogeneous profile with a trapezelike buffer region. (a) The odd modes during the coupling have a
discontinuity of varying strength, which diminishes as the merging proceeds. In contrast, there is little influence of the merging on the
even modes as they can be obtained by connecting the odd modes of the individual uncoupled systems. (b) The discontinuity is sharp,
changing suddenly from one pixel to another.
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FIG. 10. The presence of high-momentum modes in a merging model with a nonextensive buffer region between condensates. (a)
We show the merging scenario similar to the figure in the main text with the difference that the coupling zone is much smaller and
ends more abruptly at 90% of the peak value. (b) We now find that the transport of the excitations is dispersive, which can be seen
by the peaks of wave packets falling down as their propagation. As the dynamics is modeled to be unitary and the Hamiltonian does
not change in the bulk this means that the energy the wave packets carry stays constant while being broadened. In lattice theories,
dispersion can be proven analytically if short wavelengths are present in the state [166].

For reasons discussed in the main text, whenever we sim-
ulate the Otto cycle, we neglect the correlations between
the two parts of the split condensate at the end of the pro-
cess. In other words, we project the final covariance matrix
into the direct sum of the two local covariance matrices
for systems A4 and B, i.e., at the end of the full protocol,
t = tiot = Imerge 1 Levolve 1 split» by setting

T g (tior) = Ta(tior) ® Tpltior), (C28)

where "4 (for) 1s the submatrix of I'4_g () corresponding
to the subsystem A and I'z(#,t) corresponds to B.

d. Energy density injected during merging QTP

Given the quadratic Hamiltonian over time Hy p (1) we
would like to study also the spatial distribution of the
energy. In the discretized models, it is natural to study the
energy per pixel z, namely

E(z 0 =E.()Az = % [(H4-pOT4-p(D)],, Az, (C29)
where the notation (-),, refers to the diagonal matrix ele-
ment at pixel z. Note that if Az is constant, this amounts
to just computing the quantities E.(¢). Plotting E, over
pixel positions is then a way of visualizing which regions
in space have more energy than others. Doing this over
varying times can show us how energy flows over time
from one part of the system to the other. For example, in
Fig. 10, we observe that merging the two systems amounts
to inserting energy at their boundary continuously over the
merging time (or in discrete bits at each Trotter time step).
This energy then flows through the system at speed of
sound velocity (which is ¢ = /gpo/m o \/po), reaching
the external boundaries and then bouncing back toward the
center. Thus, in particular, if the ratio between the coupling

time #merge and the length of a system (say 4) is chosen such
that

¢ = LA/tmergea (C30)

then the energy perturbation precisely reaches the exter-
nal boundary of system A. Similarly for system B. Clearly,
then, when the two lengths L4 and Lg are not equal the
energy flow cannot be synchronized so that the perturba-
tion wave bounces back to the interface from both external
walls at the same time. During the idle evolution time
fevolve MO additional energy is injected, but the energy
flow continues. Finally, during the splitting process some
energy is taken away from the system, again continuously
over the splitting time and at the interface between the two
parts. However, the total amount of energy taken back dur-
ing the splitting is in general lower than the one inserted
during merging. Hence, the total energy inserted during the
entire protocol is always non-negative, and the amount is
smaller given a protocol with longer time.

As a last comment, we note that the fact that our sim-
ulations use discretized space and time also implies that,
besides the fact that energy is injected and ejected at
the interface in discretized bits over fmerge and fgpii, the
energy flow also takes places in pixels over time steps.
In particular, all of this imposes us once more for consis-
tency to make sure that the two coupled systems have the
same small distance cutoff Az, which also ensures that the
lengths in the two systems are in the same ratios between
their number of pixels. This issue becomes particularly
important when a compression and expansion QTP takes
place before merging since in that case, as we are going
to discuss in detail in the next subsection, the cutoff Az
changes in time.
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3. Regularization of the zero mode: phase locking via
excitation tunneling

Here we discuss more in detail the additional complica-
tions arising from the zero modes of the phononic model
and how to regularize them, in order to avoid instabilities
during coupling. The mode expansion of Eq. (5) reads

2 Wk ~> A2 8.2
Hplpo] = Y h—(@; + 809 + o7 (C31)
k>0 2 2

where w; are the eigenfrequencies of the phase and
momentum eigenmodes ¢, 50, and there is a special
mode, called the zero mode, 80z o [ dz80(z), which is
different from k£ > 0 eigenmodes as the canonically con-
jugate quantity ¢zu o [ dz@(z) does not appear in the
Hamiltonian, i.e., it does not cost energy. The zero mode
has the interpretation of total momentum frame of the
excitations [29-32].

This mode expansion can be found in the continuum
limit by solving the set of partial differential equation
associated to the Heisenberg equations of motion, namely

8600z, 1) = L9, [p0(2)d.0(z, )]
B9, 1) = —£80(z,1)

= o0 = 2o [w@op@].  (C32)
and, as usual, for the £ > 0 modes we can look for solu-
tions of the type ¢i(z,?) = @i(z)e™*, so that Eq. (C32)
becomes a Sturm-Liouville problem
i) = -2o. [mE@oe@],  (C33)
and similarly for §o(z,7). We can then find solutions
that form an orthonormal basis with respect to the scalar
product
1.0 = [ @ @, (C34)
i.e., we have (@i (2), pi(2)) = (80k(2),801(2)) = &y, Where
8k, is the Kronecker delta.
However, besides those, one can also find a solution
with w; = 0, which gives rise to the zero mode with
quadrature operators denoted by (80zv and ¢zy). These

are necessary for the set of eigenmode functions to be
complete and we can expand the field operators as

R R ha gt At | —iagtn
80(z,1) = 80zm + Z 50k (€] + e ay),
k>0

R R g .. . g
0 =G — 180 — iy |
©(z,1) = gzm 7 100zm lk>0 ha)k(pk(z)

X (eiwktaz _ efiwkt&k),

(C35)

and we define eigenmode operators at t = 0 (with £ > 0)
from the relations

R hor .+ . . g .
dok = ,/ —(aZ +ap), @ = —l‘/—(az — ai),
g hay

(C36)

such that they obey canonical commutation relations
[8,(:)1(, @1] = l'5k’] for all k, L

Let us now consider the time evolution when coupling
two systems governed by the Hamiltonian

t A
Hyp (C37)

Hy p(1) = <1 - )[:IAB +

merge merge

for ¢ € [0, fmerge]. Note that now at each instant ¢ this
Hamiltonian has implicitly different boundary conditions
at the interface z = 0. See also Figs. 8 and 9 where the
eigenmode functions of this time-dependent Hamiltonian
are shown at different times #/fmerge for the discretized
model.

Thus, we see that, while coupling, the zero modes of
the two systems will hybridize to form the joint zero mode
and one mode that costs energy. However, this energy cost
will cause the coupled system to have enormous energy
if the original phase zero modes were non-trivially pop-
ulated, which leads to an unstable time evolution. In this
situation the lowest order phononic model is not anymore
a good approximation to the Lieb-Liniger model (1) as the
density fluctuations may no longer be small.

Nevertheless, one can refine the model considered here
to reflect more accurately the corresponding physical pro-
cess: energy will change continuously, since when we cou-
ple the systems by ramping down the separation barrier,
there will be an additional term in the Hamiltonian, rep-
resenting tunneling between the condensates. The density
phase expansion of this term will additionally give rise to a
term of the type AJ cos(A¢@) penalizing phase fluctuations
A@ = ¢; — @g ranging over the interface. The action of
this term is to induce phase locking between the two con-
densates being merged together, see Refs. [33,34,159,167]
for experimental discussions and references therein for
the theoretical overview. The large coupling expansion of
this term motivates the effective model we used in the
numerical simulations

lpo] = Flelpo] + b / T Op@PE.  (C38)

a. Analytical derivation of gapping out the zero mode
in the homogeneous phase-locking model

In the experiment the phase-locking term will be acting
around the interface. For the case of large extension of this
coupling (or two sideways coupled systems [33,168]) it is
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instructive to consider J = const throughout the conden-
sates. In this case additionally taking py = const we can
analytically see that this term effectively gaps out the phase
zero mode. One way to see this it by noticing that this term
amounts to add a (small) “mass” term to Eq. (C32), leading
to the modified Sturm-Liouville problem

Wi (z) = _’%az [00(2)0:01(2)] + 2T p(2) i (2), (C39)

which effectively removes the zero mode.

Let us show this specifically in the case when all cou-
pling constants do not vary over the condensate of length L,
i.e., g(z) = g, po(z) = po and J(z) = J. The Hamiltonian
then reads

L 2
i = / dz{ th 106 + £86()* + 711,00@(2)2},
0 m 2
(C40)

and has no zero modes unless J = 0. In this case the
eigenfrequencies read

wck
wp = —

7 (C41)

with the speed of sound given by /gpo/m. To bring the
Hamiltonian to the normal form, we define the squeezing

constants
hwk
ap= | —+ 5/@0
g

(C42)
from which we define for k£ > 0
2 L
30r =oek\/;/ dz cos(wkz/L)80(z) and
0
2 L
O = a,;l\/; / dz cos(mkz/L)§(z) (C43)
0
and
/1 (f [1 [t
800 := ﬁ/o dz80(z) and @ := i/o dz¢(z),
(C44)

which stand out by having different normalization con-
stants and would be the zero-mode operators for J = 0.

Using standard trigonometric integrals we find

L oo L
/ dz80(z)* = ) ;80 and / dz[0.¢(2)?
0 k=0 0

R L
= ——¢; and / dz§(z)*
Z L2(x]% k 0

(C45)

~ = heg 1.2 ") 8.2
H = Z |:8Qk + (Pk] + ESQO
o0

+ IJ po Z%f@i + i po@;.
k=1

(C46)

Further defining

G = 4gJ po
ke hzw%

(C47)

for k > 0 we obtain the form

s

5 @3 + ﬁfpofﬁ(zr

N . ho . .
fr =Y "2 o0k + 1+ cod | +
k=1
(C48)

Thus, the £ = 0 eigenmode of H has the eigenfrequency
wi=0 = h/gJpy and is not a zero mode when J # 0.
We also see that there is additionally a squeezing inter-
action, which decays for £ — oo. Figure 11 shows plots
of merging for different values of J when assuming that
the phase-locking term acts homogeneously in space.
Figure 12 shows merging obtained by artificially remov-
ing the zero mode, in order to highlight its contribution to
the excitations present during the merging.

b. Justification of the phase-locking model

Finally we provide a justification for the phenomenolog-
ical model above. The argument is based on the theoretical
observation from Ref. [35] that a potential barrier is effec-
tively transparent for low-frequency excitations. This hints
that we can phase-lock systems in order to reduce the
impact of excitations coming from zero-mode coupling
and once this is done one can reduce the barrier further
to increase heat transmission.

We consider a quasicondensate of mean density pg in
a box of length 2L > 2a (below we set L — oo for sim-
plicity) with a barrier extending from z = —a to z =a
and having a finite height, which exceeds the chemical
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Coupling of two quasicondensates for different initial phase-locking. Similarly to the main text we consider the phase

locking to act with constant strength along each of the condensates and show the influence of other values of J on the outcome of
merging. (a) For a low value of J = 0.005 Hz there is substantially more excitations compared to the value J = 0.01 Hz used for all
plots presented in the main text. (b) On the other hand, for larger values of phase locking such as J = 0.1 Hz the excitations become
suppressed as the phase zero mode acquires a larger energetic penalty and its initial thermal second moments are smaller. Note, that
when increasing the tunnel coupling J further, one expects a non-Gaussian regime due to non-negligible interactions stemming from

the full cosine potential [20].

potential by Up. Moreover, we assume that tunnel coupling
between zero modes of the left and right quasicondensates
is negligible. This means that the background density and
low-energy excitations feel a hard wall at z = —a for the
left quasicondensate and at z = a for the right quasicon-
densate. For concreteness, let us focus on the left quasi-
condensate, and it is clear that similar considerations apply
also for the right one. The background solution in the bulk
(far from the leftmost end) is W1 (z) = ,/po tanh[—(z +
a)/&], z < —a, where &, = h/(mc) is the healing length.
Considering the first order in matter field fluctuation W, =
lIIO,L]Al + S\iJL around the full stationary solution the Hamil-
tonian term corresponding to atom scattering becomes

x10”
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(neglecting a constant term)
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—00

This term, because of the large gradient of W, in the two
bulks, couples low-energy excitations to high-energy ones.
The former can be represented as S\i!L(z, f) tanh[—(z +
a)/&,], where S\i'L(z, f) is subject to Neumann bound-
ary conditions at z = —a. The factor tanh[—(z + @) /&;]
follows from considering the adiabatic solution of the
time-dependent GPE for excitations with a frequency
much lower than gpo/h and makes the fluctuation van-
ishing at the wall. Let us now consider the propagation

dz Wy 280 ()8, (2). (C49)

—e—1.0 ms

1.30

—e— 3.0 ms
—6—>5.0 ms
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—#—17.0 ms
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1.20 -

-10 0 10
Position (pm)

FIG. 12. Merging of homogeneous systems where the zero mode is artificially removed from the evolution. Using the eigenmode
decomposition for J = 0 we set §09 = ¢p = 0 in the Hamiltonian that governs the merging and compute the initial state using a
pseudoinverse disregarding the zero mode. We see a behavior, both qualitative and quantitative, similar to merging with a regularization

coupling chosen as J = 0.01 Hz.
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of high-energy excitations. The high-energy, particlelike
excitations propagating from the left (>) or from the right
(<) are parametrized with the following set of orthogonal
functions:

07 ) ~ er + isin ﬂkei“ke_ikz, z < —a
k cos Bre'® el z>a
—
< cos Bre'“ke "=, z < —a
z) ~ : .. o C50
wk ( ) {e—zkz +isin ﬂke’“ke’kz, z>a ( )

Here, o4, B; parametrize the transmission and reflec-
tion amplitudes (k > 0) and we also have (1//k§ |1/f,f,,) =
S8k —k),¢', ¢ = >, <.

We can expect that cos f; rapidly increases from almost
0 to almost 1, when k approaches g = +/2mUp/h. We
apply a perturbative approach, with the Hamiltonian with
hard walls at z = +a being the unperturbed Hamiltonian
and the Hamiltonian with the barrier of a finite height being
the perturbed one. The second-order approximation yields
the following term coupling low-energy excitation fields in
the left and right quasicondensates:

Hig=— / s / Y T @)Y )80k +Hel,
o (C51)

where the effective coupling coefficient is
z+_a) tanh’ (Z _ a)
&n &n
2

° dk
X / — q—g{cos[k(z +2]
a Tk

B

2
J(z,7) = @ tanh’ <—

B

+ cos[k(z — ') — o — Bl (C52)

In the harmonic approximation, we replace 8@};5@& ~
(1/2)po(¢r — ¢r)* (after neglecting density fluctuations
[22]) obtaining

. 1 —a 00 R .,
Hig ~ const + 5/ dz/ dz’ J(z,2)pol@(2) — ()]
(C53)

1 —a - 1 0 ~
~ [ & T @b + 5 / =7 (2) pof (2)?

o0 a

- f s / & T p0p@eE),  (CS4)

which motivates the phenomenological model (C38). Note
that in Eq. (C38) we further neglect the last interaction

term — [~ dz [ dz’ T (2,2) po@(2)§(2)).

c. Phase diffusion after removing the phase-locking
interaction

We consider a thermal state with J # 0 with full sup-
port and finite energy penalty on the £ = 0 eigenmode (for
J = 0 it is the phase zero mode). We thus have (¢2) o< kgT

and (8@3)  kgT similar to the ordinary £ > 0 modes. We
then perform a quench to J = 0, which means ¢y — @zm
and §0, — 804, and observe how the phase zero mode
grows given by the equation

22
gr, .
- (803).

(@2(0) = (@3) + - (C55)

Figure 13 demonstrates the effect of taking into account
zero-mode phase diffusion during the merging process.

4. Sudden merging in the continuous QFT limit and
additional checks of the numerical simulation

Let us also briefly discuss here how our simulations
compare with the continuum limit Az — 0. Essentially,
besides the fact that the field operators themselves have the
appropriate continuum limit, in the static case we are also
interested in recovering the spectrum and the eigenfunc-
tions of the Hamiltonian (5) to some extent. In particular,
let us consider two types of density profiles po(z) that are
piecewise constant functions: (1) two disconnected parts of
lengths L4 and Lg on intervals [—L,4, 0) and (0, Lg], where
the interface is at z = 0, which corresponds to the Hamil-
tonian I:IA‘B and (2) a single system with length L,z =
L4+ L where the high wall at the interface has been
removed, which corresponds to the Hamiltonian H 5. We
further impose Neumann (open) boundary conditions at all
boundary points, i.e., 0.¢x|_r, = 0:60kl-1, = 0-@%l1; =
0:00¢|1; = 0, and similarly for the point z = 0 in case (1).
In such cases, solutions to Eq. (C32) can be easily found on
each interval and are given by usual oscillatory functions
with a linear dispersion relation

wp(L) = mck/L, (C56)

where ¢ = /pog/m is the speed of sound, k is an integer
number and it also depends on the length of the corre-
sponding interval L € {L4, Lg,L4p}. In case (1) we have
the two solutions for k£ > 0
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FIG. 13. The contribution of zero-mode phase diffusion to energy excitations during merging. Two systems are prepared in thermal,
phase-locked states according to the localized coupling J shown in (a) with overall strength similar to the value used in the main
text J = % [ dzJ (z) ~ 0.25 Hz. The magnitude of J at the interface can be tuned in experiments by the barrier parameters. After the
preparation phase, J is then quenched to 0, signifying a decoupling of the two systems into independent, gapless Luttinger liquids,
where the zero phase mode has no contribution to energy and diffuses according to Eq. (C55) for a total time of 25 ms. When the
systems are again merged, as shown in (b), we see that large excitations can potentially be induced due to the diffusion of the zero
mode. In order to minimize the energy of excitations one should choose a large J in the beginning (meaning a stronger phase locking
during preparation), and design the cycle times to be shorter. The amount of excitations here is an overestimate as we did not include
in the modeling the possibility of phase locking the condensates before merging, this process could involve strong correlations via the
Josephson junction and could counteract phase diffusion.

2 _
S8, 2) = ¢4l o) = {\ﬁ o (€s7)
s LB
AlB 4B 0 forz € [—Ly4,0]
00y () = ¢ (2) = \/g cos[k(z — Lg)/Lg] forz e (0,Lg], (C8)

(

split Hamiltonian, would have the spectrum of the covari-
ance matrix given by ((¢x)* + (80x)?) = 2(i) + 1, where
(nk) = 1/[exp(Bwy) — 1] are the normal-mode occupation
numbers, given by the usual Bose-Einstein distribution.
Then, from the fact that for our initial state we have
(@lal + aay) = 0 and (@}, + axa)) = (k) + 1)ées we
obtain for the initial real-space correlation matrix

with corresponding dispersion relations, respectively,
wy—1 = mwck/Ly and wyr = mwek/Lg. Note that in the case
Ly = Lp there is a degeneracy between even and odd
modes.

For case (2), instead, we have the solutions

2
80{%(2) = % (z) = ‘/L; cos [wk(z 4+ L4)/Lus],

(C59)  Cyp(z,2,t=0)=C"(z,7) ® " (z,2)
ﬁa)k , N
with dispersion relation wi® = wck/Lyp. The agreement = Z =, dec@)der(@) 2 (k) + 1)
of the dispersion relation and the profile of the eigenmode k=0
functions in the static case can be observed in Figs. 14 g INDYE
and 15 where a comparison with the discretized homoge- g hawy, Ce@Der() ) )

neous model with or without a trapezelike buffer region is
shown.

Afterwards, let us try to compare the dynamics of the
merging QTP with its continuous quantum field limit. First

(C60)

where here and in the following discussion we discard the

of all, we observe that the initial state in the continu-
ous QFT, i.e., the thermal state of the QFT limit of the

zero mode, since in the simulations we have regularized it
as discussed in Appendix C3.
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(a) Trapeze GP profile with buffer region
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Influence of the buffer region on eigenmodes. (a) Using the lattice discretization various inhomogenous GP profiles can be

considered. (b) Phase eigenmodes for k = 1 and k = 2 of disjoint Hamiltonian /5. Only the half system with nonzero eigenmode
functions is shown as they vanish outside of the support of the GP profile. Qualitatively, all modes retain their oscillatory nature,
though at the edges, where the inhomogeneity is the largest, there is a systematic change in the wave functions.

Clearly, the result in Eq. (C60) is very similar to the dis-
cretized case, but contains small differences in the normal-
mode frequencies and in the functional form of the normal
modes with respect to the real-space modes. For the energy
density we thus obtain

dE(z,0) K2
dz

z1=zp=z

po(2)
2;)}1 82] azzcﬁfB(Zl,Z2,t = 0)|

+2C e =0) (C61)

= hZ (ﬂﬁ[az o @T + %%&?i(ﬂ)

x (2(ng) + 1)
_ {% Zk odd wk(<ﬁk>

Zk even a)k( nk

(C62)
+1/2) forz e [—Ly40)

+1/2) forz e (0,Lg],
(C63)

where in the first equality we have used (&Z&z + &k&_;) =

(2(nr) + 1)éx,; and in the second equality we used that
Po & 2, 8Wk . » I wy
FYN 8z =—30 = —— fork dd,
2ma)k[ k(2] +2 2 0:(2) 1.2 orko
1
TP + 5 0} = -5 forkeven
(C64)

for all z, respectively, in [—Ly4, 0) and (0, Lg], and we have
that the functions are zero otherwise. Let us now consider
the time-dependent interaction. The energy density at time

t > 0 during this evolution is calculated as

dEG,0) _ IPpo(2) 5
= 5 00 NOAPCIIEN) .
+ ECZ’iB(z,z, 1, (C65)

where now we need the diagonal blocks of the correlation
matrix at time ¢, namely C‘ﬁ 32,2, 1) = (@(z,H9(Z, 1)
and C’ 4(z,2',1) = (80(z,1)86(, 1)), which, in turn, can
be calculated from the instantaneous eigenmode functions
at time ¢, that are given essentially by solving Eq. (C32),
but now with different boundary conditions at the interface
point z = 0. See Figs. 8 and 9 for a plot of the lowest-lying
eigenmode functions in the discretized model.
Speciﬁcally, given the eigenmode functions (p(t) (z) and

(t) + (2) of the Hamiltonian at time #, together with the cor-

respondlng eigenmode frequencies w,E), we can find the

time-evolved field operators at time ¢ as

ﬂw,({)t’li )

(C66)

¢z, 1) = —ZZ (t)(pk)(z)( i1 t

where 7, and ?Z are the instantaneous creation and annihi-
lation, obtained with a (real) Bogoliubov transformation

I = Z U a; + Uk,lfl;, (C67)

i

from those at r= 0. The Bogoliubov coefficients are
obtained by imposing that the operators ¢(z,¢ = 0) and
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Homogeneous GP profile
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FIG. 15. Dispersion relations for the homogeneous GP profile.
For a homogeneous profile (top) we find that for high momen-
tum modes the dispersion relation is no longer approximately
linear due to the lattice discretization. This leads to the disper-
sion of the wave packets during for example merging. The inset
shows that approximately 30% of the low-energy modes already
gives rise to a good approximation to the continuum limit, espe-
cially for discretizations above the order of approximately 100
pixels, which is the resolution at where our simulations were
performed (see also Fig. 16).

80(z,t = 0) coincide with the initial ones, i.e.,

. g ~ ~
—1i E @ 90/(:) (2) E (g — vgp) <0l1T - al)
i\ hay I

=-iy. [ =S50 (al - ),
k

ha),(co)

(C68)

and can be extracted from the scalar products between the
initial and the instantaneous eigenmode functions:

(a) Trapeze GP profile with buffer region
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FIG. 16. Dispersion relations for the trapeze GP profile. When
compared to Fig. 15, the dispersion relation for higher modes is
closer to a linear curve, especially for high-momentum modes.
This is why when using such a trapeze GP model when putting
condensates in heat contact, we observe wave packets undergo-
ing significantly less dispersion. Since less atoms are considered
in this condensate due to the trapeze-shaped profile (TP), the
low-lying energy modes are better approximated by the contin-
uum limit assuming a homogeneous condensate with GP profile
at po = {po(z))1p = const.

_ w]((t) 0) (0
oy — v = | —5 (0@, 9 @)
@
0)
w
W+ v = | —=80,"(),80, @),  (C69)
\ @

where the relation on the right comes from a similar con-
dition on the g, eigenfunctions. Thus, substituting all of
the above relations, the evolved correlation matrices can
be obtained through the formulas
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FIG. 17. Covariance matrix of the piston while being compressed over a period of 20 ms from L(0) = 40 um to L(fcomp) = 20 pm.
The squeezing of eigenmodes can also be seen in real space as shown here: one finds that the overall magnitude of phase fluctuations
decreases while for the density fluctuations it increases. The cross-correlations do not contribute to the energy of the piston but their
presence signifies that the system is not thermal during compression.

030310-38



QUANTUM FIELD THERMAL... PRX QUANTUM 2, 030310 (2021)

s =) Q)+ 1)

klr hy/ a)l([)a)ﬁf)

— (U1 vy ke + Vigly i) COS [(wf[) + w;(t))f] }, (C70)

0 ()9 (z )2{(“lk”rk + VU, k) COS [(a)(’) a),(”)t]

and

hy/ wl(t)w(t)
CY 5,20 =Y () + =,

0" ()80 (= )2{ (yptts + vigvrp) cos | @ — of ]
k,Lr

+ (Up vk + VIkU L) COS [(wm + wlt))f] } (C71)
and finally we obtain the expression for the energy density by plugging all of this into Eq. (C65)

dE(z,0) _ B () 2)(31(?(2){(141kUrk + ULk Up) €OS [(w(” z(t))f] }

dz
k,Lr

D( )(z) { (U1,Vk + VigUy k) COS [(w(’) + w,(t))t] }> (C72)

where, to shorten the notation, we define the quantities

Si(z) = {ﬂ[ 3.0" @)]1[0.0% (2)] + \/w§”wﬁ”ag§”<z)agi”(z)},

M,/ w}%ﬁ’)

DY(z) = {\/ o w80," ()80 (z) — M[@@” (z)][az@f)(z)]},

my/ a)[(t)a)ft)

which depend only on the instantaneous eigenfunctions and eigenfrequencies. Hence, to calculate the energy density at
time ¢ we just need the additional calculation of the Bogoliubov coefficients.

As an illustrative example, let us now consider the case Ly = Lg = L and in which we quench directly to the full
Hyg at t = 0. In such a case we have that the eigenmode functions at r = 0% are given by Eq. (C59) with Lz = 2L
and the corresponding eigenfrequencies are w,(f) = mwck/2L with the same sound velocity ¢, which are just half of the
corresponding odd frequencies at # = 0~. Note, however, that at # = 0~ there is a degeneracy, such that the w; with odd &
have the same values as the even k. Thus, a),(:“) coincide with the even eigenfrequencies at = 0~. The quantities Eq. (C73)

at time ¢ = 01 read

(C73)

S () = E Irsin [ (I +r)(z + L)/2L],

(C74)
DiP(z) = oy Vireoslx(+ 1 +1)/2L].
Furthermore, the Bogoliubov coefficients satisfy
Lo + o 2k+1
Unj— 11———k Oy = —, O =upy,

/ (0) (+) 2kl
(C75)

1 w<+) w _ 2%k

V-1 = 5 )
/ (0) (+) 2kl
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where

V2

2 L
O = %/ dz cos(mkz/L) cos(mlz/2L) =
0

m(k+1/2)

(ksin [(k—1/2)r] (C76)

p— k 1
s + (=1 s1n(lyr/2))

are the scalar products between the eigenfunctions at £ = 0~ and 7 = 0. Plugging all of this into Eq. (C72) we finally

obtain the energy density at time ¢ > 0 as

dE(Z D_p DO )+ 5 ﬁ[(4/8 + Ir)sin [ (I + r)(z + L) /2L] cos [ ct(r — 1) /2L]

keven rl

(4K — Ir) cos [ (I + P)(z + L) /2L] cos [wet(r + 1) /2L] ]

(C77)

and we can see that this expression reflects a superposition of waves traveling at speed of sound ¢, and, in particular, there

is no dispersion.

5. Details of compression and expansion

Here we give a more detailed discussion of the approxi-
mations that were involved in formulating the piston model
in the main text. We consider the Lieb-Liniger model for
the gas trapped in a box of changing size from L(0) to
L(1). After the standard phononic expansion W = f e
in the long wavelength limit the Hamiltonian can be
approximated as

7 L B2 A oA &g 2

Hyp ~ / dz [—(329)0(3z9) + =0 :| . (C78)
0 2m 2

We next split the operators around the classical hydro-

dynamical solutions, specifically we introduce the den-

sity fluctuations p = py + 86 and phase fluctuations § =

o+ ¢.

The classical phase can be interpreted as the velocity
potential by means of the equation v = hd,¢/m. In a sim-
ple case where only one wall is moving we have that the
classical hydrodynamic equations

)
Z 4 —(pv) =0, (C79)

ot

av av g ap
— — =2 C80
T (C80)
have a solution given by
N L(#)

f) = — =z—". C81
po(t) 0’ v(z, 1) = o (C81)

In this case we find that the velocity depends on the posi-
tion and matches the velocity of the moving wall at the
boundary, namely that v(z =0) =0 and v[z = L(®)] =
L(?). This solution is obtained in the long-wavelength limit

(

and neglecting the acceleration of the walls [169]. A simi-
lar solution can be obtained also in the case of both walls
moving, with Neumann boundary conditions at each wall.

By integrating the velocity we obtain the classical phase
field ¢, which we next use to linearize the Hamiltonian
(C78). We thus obtain the model

L(® 2
ﬁ(t):/ d[w(a o) + 360"
0

2m

RL(t)z

+ — 0 ———[60(0:9) + (Bzw)ée]]

(C82)
If the evolution is slow (adiabatic), a lattice model with
the fixed number of sites can serve as a good approxima-
tion to the discrete-value representation of the continuous
system. Thus, in the following we neglect the second cross-
coupling term between phases and densities, so to model
a quasistatic case where the GP profile gets compressed
very slowly. Then, it is also illustrative to observe explic-
itly how this process works in an infinitesimal stepwise
fashion. The infinitesimal length change is

L—>L.=0+4¢)l, (C83)
and, correspondingly, a homogeneous GP profile pq
changes to po(€) = (1 + €)~!py. Then, the Hamiltonian
after the size change reads

Le tho g
H, = / [Zm(l—l— )(a )+259] (C84)

which is Eq. (C82) without the last term. Thus we observe
that if a GP profiles changes slowly in length then the
phonons are described by a similar Hamiltonian, only with
modified couplings. Note that here we did not consider
explicitly the phase-locking term H;, however, since it
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has a linear dependence on the density, it does not change
while changing the total length. In the main text instead,
we wrote down the full Hamiltonian with the additional
(unmodified) phase-locking term, which is also what we
considered in our simulations.

In the lattice model, we perform a similar procedure,
but work fully in real space, this time with the Hamil-
tonian as a functional of both mean-field density and the
small-distance cutoff. Starting from the discretized Hamil-
tonian Hy [0, Az] of a single condensate with N pixels,
length L = N Az, and density pg, we perform at each step
a small length change L — L. = N A¢, corresponding to a
renormalization

HN[pO; AZ] = HN[IOO(E)’ Aé‘]

=H,,(1 +€) @ Hys/(1 + €)%, (C85)
where we use that pg(€) = po/(1 +€) and A = (1 +
€)Az. Thus, we see that we are implementing a discretized
version of the Hamiltonian (C84).
Then, in order to complete the full length change AL in
a time #comp = N;At, where At is a small time interval and
N; is the total number of Trotter steps, at each discrete time
step we perform an inifinitesimal length change, such that
€ = AL/N,. (C86)
What we get is the state of the phonons after compressing
by a finite amount. This assumes that the phonons always
see a quasistatic background metric, which is their dynam-
ical time scales are much faster than how we compress the
condensate. We observe that a sufficiently slow compres-
sion will not mix much between the modes and there will
be thermal squeezing of the phonons. We also see that the
energy will in fact change. This is expected, since we are
performing work on the system by compressing it, which
means it should increase in energy. The compression pro-
tocol is therefore our main way to realize a piston, where
one may actively perform and extract work on a conden-
sate by changing its length, and therefore its energy density
and effective temperature.

a. Renormalizing the cutoff during compression QTP

Let us now discuss a technical detail arising in the com-
pression and expansion QTP (see Fig. 17). An implicit
difference between the initial and final Hamiltonians of
a compression and expansion step is that the continu-
ous field theory should be defined in the time-dependent
line [0,L(#)]. In principle, we can also make a change
of the integration variable z — ¢ = zL(0)/L(¢), such that
the theory is defined with a constant length. However,
a subtle issue arises: the field commutation relations
[60(z), 9(z')] = i8(z — Z’) depend on the coordinate z; thus
a rescaling of the coordinate must be compensated by a

corresponding rescaling of the density fluctuation field, in
order to maintain the correct commutation relations. Then,
calling L(f) = L(0)/L(¢) we define the transformation

¢ =iz,

50 = 80/ (D), (C87)

such that the Hamiltonian (C82) becomes

. L©O) 12 00 (z, 0)A2 (¢ . .
H= /0 dc [—p(’(zzm) @ (8;(p)2 + %A(I)SVZ] ,
(C88)

which effectively amounts to a renormalization of the line
differential as

dz > dt = r()dz, (C89)

at the same time ensuring that the fields satisfy the correct
commutation relations:

[60(5),9(cN] = i8(¢ —¢)/A(1)
= [00(), 9GN] =i8(¢ —¢'). (C90)

Note that by making this field transformation, the full
Hamiltonian (C82) is transformed in such a way that the
time derivatives of its parameters disappear. Therefore, the
Hamiltonian (C88) can be approximated by a lattice model
without restrictions on the rate of change of parameters,
i.e., no assumption about adiabaticity is required anymore.
However, one has still to be careful with defining correctly
the new rescaled density-fluctuation field in the discretized
model.

A similar issue arises also working directly in the dis-
cretized version of Eq. (C84): by fixing the number of
pixels and just rescaling the cutoff Az at each Trotter
step we are changing its effective momentum cutoff. Con-
cretely, if we keep the number of pixels we see that the
discretization length A¢ has changed according to

Le
AL = —Az.
L
It is important to stress once more that the covariance
matrices satisfy the Heisenberg constraint that depends
on Az. Thus, we begin with a covariance matrix I" that
satisfies

(C91)

1
'+ —iQ >0, (C92)
Az
but after size change it should satisfy
1
r+—i2>0. C93
+ A;l > (C93)

However, the natural way to implement the compression is,
as we discussed above, to apply a symplectic transforma-
tion G(e) = exp(Q2H,/A¢) that preserves the symplectic
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form and hence does not allow to switch between the
Heisenberg cones with Az — A¢. The way to implement
the latter switch is to multiply the condition of the second
cone and find that

F+tios0e X2ry Ligso (C94)
A E NN 2

Hence we can now do the compression by setting
Az T
F(tcomp) = A_gG(tcomp)F(O)G (tcomp): (C95)

where G(t.omp) implements the Trotterized evolution from
Eq. (C85). This covariance matrix will satisfy the Heisen-
berg relation at the target discretization length. This is not
anymore just a sympletic transformation, but an affinely
symplectic transformation, which preserves the symplectic
form up to an overall prefactor.

6. Achieving larger cooling in the Otto cycle

In the main text, we have shown how to concatenate
the QTPs introduced, in order to operate a refrigerator to
cool down part of the system. The remaining question is
then how can we optimize the transfer of energy from
the system to the bath (via piston), by tuning the various
parameters that we have, such as #ierge, splits fcomps LP(B.5)
etc. We discuss the effects and therefore the strategy of
choice for some of the parameters below.

1. Initial lengths (and length ratios) of system,
piston, and bath. The lengths of each machine
compartment determines their heat capacity. For
example, a larger piston would be able to absorb
(or lose) more heat when interacting with the system
(bath). The size of the bath would largely determine
how strong the non-Markovian effects are, espe-
cially since wave packets are traveling ballistically
in the condensate. For example, in our simulations
the bath is only 3 times larger, which is a realistic
figure when considering implementations. Accord-
ing to Fig. 6, the wave packets induced in the bath
at the piston-bath interface has already traveled to
the other bath edge and returned to the interface
during the second cycle of piston-bath interaction,
effectively making the process non-Markovian. In
Fig. 18, we see a simulation where one effectively
simulates a Markovian bath (and piston) by reini-
tializating them before every new cycle.

2. Compression ratio of piston. It is clear that the
more compression the piston undergoes, the more
work is injected into the refrigerator. This causes a
larger effective temperature difference between pis-
ton and bath, thereby inducing a larger amount of
heat flow between them, which in turn increases
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the capability of the piston to later absorb heat
while interacting with the system. While in classi-
cal scenarios the piston stays in equilibrium while
gradually increasing in temperature, our model of
compression as discussed in Sec. IIB is akin to
squeezing, and therefore the higher the amount of
compression, the further we expect the system goes
out of equilibrium, which is seen in our simulations.

. Compression ratio of bath and system. In the pro-

tocol we presented, for simplicity, the bath and sys-
tem never undergo any change in length. However,
if we imagine the three condensates on a chip, when-
ever we compress the piston, this leaves additional
room for the bath to expand. Such an additional step,
if undertaken, will further increase the temperature
gradient and therefore facilitate heat flow.

. Total duration when merging and splitting two

systems. Suppose two systems are connected and
heat flow occurs due to an effective temperature gra-
dient. How would one design the protocol to allow
a maximum amount of net heat flow? Naturally, one
expects that in the long time limit, energy will be
equally distributed throughout the joint system, i.e.,
they thermalize. However, we are interested mostly
in finite time scales. Therefore, in practice, the most
relevant parameters to set are the timings of merg-
ing, with respect to the lengths of the interacting
systems. Moreover, the energy input during merg-
ing is non-negligible due to the relatively small sizes
of each system. To overcome this, for example, one
could time the protocol so that when we split the
condensates again at the end, the wave packets come
back to the interface and then are taken out of the
system due to the change in Hamiltonian. This can
be done because we know the speed of sound in
the condensate, concretely, it becomes natural to set
t, = L,/c, where t, is a relevant time scale of the
piston process. This illustrates the role of informa-
tion in such a process: although a lot of energy may
be injected during merging, the information about
this energy is preserved, and therefore it can be suit-
ably retrieved (instead of being irreversibly lost into
other degrees of freedom).

. Further refinements when considering the GP

profile of condensates. We have seen this in the
case of putting two systems into heat contact. When
a single condensate sits in the trap, the bulk region
has a roughly uniform density, which is why one
usually considers the fairly good approximation of
a homogeneous py. The situation becomes more
complicated when two such systems are merged:
ideally, we would like the contact interface to have
large atom density as well, so that heat transport
is maximized. However, we saw from the simula-
tions that this induced extremely high-momentum
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Isplit = feomp = 20 MS, Lyiston = Lsystem = 40 um, and Lyap, = 120 pum.

In this figure, we show the Otto cycle energy changes of system, piston and bath with a different setting: fcqupie = 20 ms,

On one hand, the GP profile of the condensates at the edge drop

off only slightly to about 0.8 of the peak value, which allows for more heat flow to occur between condensates during finite time, with
the cost of injecting higher momentum modes into the simulation. On the other hand, after each cycle we reset the piston and the bath
to its original state. This reinitialization, while challenging to perform in experiments, allows fresh thermal resources to be brought
into the QFM and therefore allows us to achieve more cooling in subsequent cycles. Despite having a similar qualitative behavior as
in Fig. 6, it is evident that the various specific parameters governing each of the primitives will affect the final cooling efficiency of the

engine.

modes, which may cause us to observe more disper-
sion, and furthermore the Luttinger liquid analysis
may no longer be useful in such regimes. On the
other hand, having a small contact interface such as
shown in the trapeze profile would imply that heat
flow occurs more slowly in finite time scales.
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