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The field of classical stochastic processes forms a major branch of mathematics. Stochastic processes
are, of course, also very well studied in biology, chemistry, ecology, geology, finance, physics, and many
more fields of natural and social sciences. When it comes to quantum stochastic processes, however, the
topic is plagued with pathological issues that have led to fierce debates amongst researchers. Recent devel-
opments have begun to untangle these issues and paved the way for generalizing the theory of classical
stochastic processes to the quantum domain without ambiguities. This tutorial details the structure of quan-
tum stochastic processes, in terms of the modern language of quantum combs, and is aimed at students in
quantum physics and quantum-information theory. We begin with the basics of classical stochastic pro-
cesses and generalize the same ideas to the quantum domain. Along the way, we discuss the subtle structure
of quantum physics that has led to troubles in forming an overarching theory for quantum stochastic pro-
cesses. We close the tutorial by laying out many exciting problems that lie ahead in this branch of science.
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I. INTRODUCTION

Many systems of interest, in both natural and social sci-
ences, are not isolated from their environment. However,
the environment itself is often far too large and far too
complex to model efficiently and thus must be treated sta-
tistically. This is the core philosophy of open systems; it
is a way to render the description of systems immersed
in complex environments manageable, even though the
respective environments are inaccessible and their full
description out of reach. Quantum systems are no excep-
tion to this philosophy. If anything, they are more prone to
be affected by their complex environments, be they stray
electromagnetic fields, impurities, or a many-body system.
It is for this reason that the study of quantum stochastic
processes goes back a full century. The field of classical
stochastic processes is a bit older, however, not by much.
Still, there are stark contrasts in the development of these
two fields; while the latter rests on solid mathematical and

conceptual grounds, the quantum branch is fraught with
mathematical and foundational difficulties.

The 1960s and 1970s saw great advancements in laser
technology, which enabled isolating and manipulating sin-
gle quantum systems. However, of course, this did not
mean that unwanted environmental degrees of freedom
were eliminated, highlighting the need for a better and for-
mal understanding of quantum stochastic processes. It is in
this era great theoretical advancements were made to this
field. Still going half a century into the future from these
early developments, there is yet another quantum revolu-
tion on the horizon; the one aimed at processing quantum
information. While quantum engineering was advancing,
many of the early results in the field of quantum stochas-
tic processes regained importance and new problems have
arisen requiring a fresh look at how we characterize and
model open quantum systems.

Central among these problems is the need to understand
the nature of memory that quantum environments carry.
At its core, memory is nothing more than information
about the past of the system we aim to model and under-
stand. However, the presence of this seemingly harmless
feature leads to highly complex dynamics for the sys-
tem that require different tools for their description from
the ones used in the absence of memory. This is of par-
ticular importance for engineering fault-tolerant quantum
devices, which are by design complex and the impact of
memory effects will rise with increased miniaturization
and read-out frequencies. Consequently, here, one aims
to characterize the underlying processes with the hope to
mitigate or outmaneuver complex noise and make the oper-
ation of engineered devices robust to external noise. On the
other hand, there are natural systems that are immersed in
complex environments that have functional or fundamen-
tal importance in, e.g., biological systems. These systems
too undergo open quantum processes with memory as they
interact with their complex environments. Here, in order
to exploit them for technological development or to under-
stand the underlying physics, one aims to better understand
the mechanisms that are at the heart of complex quantum
processes observed in nature.

For the reasons stated above, over the years many
books have been dedicated to this field of research, e.g.,
Refs. [1–5]. In addition, the progress, both in experimen-
tal and theoretical physics has been fast leading to many
review papers focusing on different facets of open quantum
systems [6–12] and the complex multilayered structure of
memory effects in quantum processes [10]. This tutorial
adds to this growing literature and has its own distinct
focus. Namely, we aim to answer two questions: how can
we overcome the conceptual problems encountered in the
description of quantum stochastic processes, and how can
we comprehensively characterize multitime correlations
and memory effects in the quantum regime when the
system of interest is immersed in a complex environment.
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A key aim of this tutorial is to render the connection
between quantum and classical stochastic processes trans-
parent. That is, while there is a well-established formal
theory of classical stochastic processes, does the same hold
true for open quantum processes? And if so, how are the
two theories connected? Thus we begin with a pedagogical
treatment of classical stochastic process centered around
several examples in Sec. II. Next, in Sec. III we formal-
ize the elements of the classical theory, as well as present
several facets of the theory that are important in practice.
In Sec. IV we discuss the early results on the quantum
side that are well-known. Here, we also focus on the fun-
damental problems in generalizing the theory of quantum
stochastic processes such that it is on an equal footing to its
classical counterpart. Section V begins with identifying the
features of quantum theory that impose a fundamentally
different structure for quantum stochastic processes than
that encountered in the description of classical processes.
We then go on to detail the framework that allows one to
generalize the classical theory of stochastic processes to
the quantum domain. Finally, in Sec. VI we present vari-
ous features of quantum stochastic processes, like, e.g., the
distinction between Markovian and non-Markovian pro-
cesses. Throughout the whole tutorial, we give examples
that build intuition for how one ought to address multitime
correlations in an open quantum system. We close with
several applications.

Naturally, we cannot possibly hope to do the vast field
of open-quantum-system dynamics full justice here. The
theory of classical stochastic processes is incredibly large,
and its quantum counterpart is at least as large and com-
plex. Here, we focus on several aspects of the field and
introduce them rather by concrete example than aiming for
absolute rigor. It goes without saying that there are count-
less facets of the field that will remain unexplored, and of
what is known and well established, we only scratch the
surface in our presentation in this tutorial. We do, how-
ever, endeavor to present the intuition at the core of this
vast field. While we aim to provide as many references as
possible for further reading, we do so without a claim to
comprehensiveness, and much of the results that have been
found in the field will be left unsaid, and far too much will
not even be addressed.

II. CLASSICAL STOCHASTIC PROCESSES:
SOME EXAMPLES

A typical textbook on stochastic processes would begin
with a formal mathematical treatment by introducing the
triplet (�,S ,ω) of a sample space, a σ algebra, and a prob-
ability measure. Here, we are not going to proceed in this
formal way. Instead, we begin with intuitive features of
classical stochastic processes and then motivate the formal
mathematical language retrospectively. We then introduce

and justify the axioms underpinning the theory of stochas-
tic processes and present several key results in the theory
of classical stochastic processes in the next section. The
principal reason for introducing the details of the classi-
cal theory is that, later in the tutorial, we see that many
of these key results cannot be imported straightforwardly
into the theory of quantum stochastic processes. We then
pivot to provide resolutions of how to generalize the fea-
tures and key ingredients of classical stochastic processes
to the quantum realm.

A. Statistical state

Intuitively, a stochastic process consists of sequences of
measurement outcomes, and a rule that allocates probabil-
ities to each of these possible sequences. Let us start with
a motivating example of a simple process—that of tossing
a die—to clarify these concepts. After a single toss, a die
will roll to yield one of the following outcomes:

R1 = { , , , , , } . (1)

Here, R (for roll of the die) is called the event space cap-
turing all possible outcomes. If we toss the die twice in a
row then the event space is

R2 = { , , . . . , , } . (2)

While this looks the same as a single toss of two dice

R2 = { , , . . . , , } , (3)

the two experiments—tossing two dice in parallel, and
tossing a single die twice in a row—can, depending on
how the die is tossed, indeed be different. However, in both
cases the event spaces are the same and grow exponentially
with the number of tosses. For example, for three tosses the
event space R3 has 63 entries.

While the event spaces for different experiments can
coincide, the probabilities for the occurrence of different
events generally differ. Any possible event rK ∈ RK has a
probability

P(RK = rK), (4)

where the boldface subscript K denotes the number of
times or the number of dice that are tossed in general,
and RK is the random variable corresponding to K tosses.
Throughout, we denote the random variable at toss k by
Rk, and the specific outcome by rk and we use boldface
notation for sequences. Importantly, two experiments with
the same potential outcomes and the same correspond-
ing probabilities cannot be statistically distinguished. For
example, tossing two dice in parallel, and hard tossing (see
below) of one die twice in a row yield the same proba-
bilities and could not be distinguished, even though the
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underlying mechanisms are different. Consequently, we
call the allocation of probabilities to possible events the
statistical state of the die, as it contains all inferable infor-
mation about the experiment at hand. In anticipation of
our later treatment of quantum stochastic processes, we
emphasize that this definition of state chimes well with the
definition of quantum states, which, too, contain all statis-
tical information that is inferable from a quantum system.
Importantly, the respective probabilities not only depend
on how the die is made, i.e., its bias, but also on how it
is tossed. Since we are interested in the stochastic process
and, as such, sequential measurements in time, we focus
on the latter aspects below.

B. Memoryless process

Let us now, to see how the probabilities PK emerge, look
at a concrete “experiment,” the case where the die is tossed
hard. For a single toss of a fair die, we expect the outcomes
to be equally distributed as

P(R1 = ) = . . . = P(R1 = ) = 1/6. (5)

Now, imagine this fair die is tossed “hard” successively. By
hard, we mean that it is shaken in between tosses—in con-
trast to merely being perturbed (see below). Then, impor-
tantly, the probability of future events does not depend on
the past events; observing, say, , at some toss, has no
bearing on the probabilities of later tosses. In other words,
a hard toss of a fair die is a fully random process that has no
memory of the past. Consequently, this successive tossing
of a single die at k times is not statistically distinguishable
from the tossing of k unbiased dice in general.

The memorylessness of the process is not affected if a
biased die is tossed, e.g., a die with distribution

P(R = { , , , , }) = 4
25

and P(R = ) = 1
5

.
(6)

Here, while the bias of the die influences the respec-
tive probabilities, the dependence of these probabilities
on prior outcomes solely stems from the way the die is
tossed. Alternatively, suppose, we toss two identical dice
with event space given in Eq. (3). Now, if we consider
the aggregate outcomes (sum of the outcomes of the two
dice) {2, 3, . . . , 12}, they do not occur with uniform prob-
ability. Nevertheless, the process itself remains random as
the future outcomes do not depend on the past outcomes.
Processes without any dependence on past outcomes are
often referred to as Markov order 0 processes. We now
slightly alter the tossing of a die to encounter processes
with higher Markov order.

C. Markov process

To introduce a dependence on prior outcomes, let us now
ease the tossing and imagine placing the die on a book and
then gently shaking the book horizontally for 3 seconds,
see the depiction in Fig. 1(b). We refer to this process as
perturbed die. The term “perturbed” here highlights that
the toss is only a small perturbation on the current config-
uration. In this process, the probability to tip to any one
side is q, rolling to the opposite side is highly unlikely [13]
(with probability s), while it is highly likely (with proba-
bility p) that the die stays on the same side. Concretely,
suppose we start the die with , then the probability for
the outcomes of the next roll will be

P(Rk|Rk−1 = ) = [q p q q s q]T , (7)

where T denotes transpose, i.e., the probability distribu-
tion is a column vector. The perturbative nature of the
toss means that p > q � s and normalization gives us p +
4q + s = 1. Above, Rk and Rk−1 are the random variables
describing the die at the kth and (k − 1)th toss, respec-
tively. The conditional probabilities in Eq. (7) denote the
probability for the outcomes { , , , , , } at the kth
toss, given that the (k − 1)th roll was . For example, for
the die to yield outcome Rk = (i.e., to roll on its side)
at the kth toss, given that rk−1 = in the previous toss, is
P(Rk = |Rk−1 = ) = q.

A word of caution is needed. In the literature, condi-
tional probabilities often carry an additional subscript to
denote how many previous outcomes the probability of
the current outcome is conditioned on. For example, P1|k
would denote the probability of one (the current) outcome
conditioned on the k previous outcomes, while Pk would
represent a joint probability of k outcomes. Here, in slight
abuse of notation, we use the same symbol for conditional
probabilities, as we use for one-time probabilities, e.g.,
in Eq. (5), and we omit additional subscripts. However,
since the number of arguments always clarifies what type
of probability is referred to, there is no risk of confusion,
and we maintain this naming convention also for the case
of conditional probabilities that depend on multiple past
outcomes.

(a) (b) (c)

FIG. 1. Classical die processes. (a) Fair toss; (b) perturbed
toss; and (c) the perturbation strength depends on the history.
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In this example, even though the die may be unbiased,
the toss itself is not and the distribution for the future out-
comes of the die depends on its current configuration. As
such, the process remembers the current state. However,
for the probabilities at the kth toss, it is only the outcome
at the (k − 1)th toss that is of relevance, but none of the
earlier ones. In other words, only the current configuration
matters for future statistics, but the earlier history does not
matter. Such processes are referred to as Markov processes,
or, as they “remember” only the most current outcome,
processes of Markov order 1. Importantly, as soon as any
kind of memory effects are present, the successive tossing
of a die can be distinguished from the independent, parallel
tossing of several identical dice, as in this latter case, the
statistics of the kth die cannot depend on the (k − 1)th die
(or any other die).

Again, we emphasize that this process will remain
Markovian even if the die is replaced by two dice or by
a biased die. Similarly, the above considerations would
not change if the perturbation depended on the number
of the toss k, i.e., if the parameters of Eq. (7) were func-
tions q(k), p(k), s(k). We now discuss the case where this
assumption is not satisfied, i.e., where the perturbation at
the kth toss can depend on past outcomes, and memory
over longer periods of time starts to play a non-negligible
role.

D. Non-Markovian processes

Let us now modify the process in the last example a bit
by changing the perturbation intensity as we go. Let us
once again consider the process where the die is placed on
a book, and the book is shaken for 3 seconds. Suppose that
after the first shake the die rolls on its side, say �→ .
The process is such that, after the number of pips changes,
the next perturbation has unit intensity. If this intensity
is low enough then we are likely to see �→ , and if
that happens—i.e., the number of pips is unchanged—then
the intensity is doubled the next shake; and we keep dou-
bling the intensity until either die rolls to a new value or
the intensity reaches the value of eight units (four times),
which we assume to be equal to shaking the die so strongly
that its initial value does not influence future outcomes.
After this, the shaking intensity is reset to the unit level.
We depict this process in Fig. 1(c).

In this example, to predict the future probabilities we
not only need to know the current number of pips the die
shows, but also its past values. That is, the probability of
observing an event, say , after observing two consecu-
tive outcomes is different than if one had previously
observed and , i.e.,

P( | , ) �= P( | , ). (8)

The necessity for remembering the past beyond the most
recent outcomes makes this process non-Markovian. On

the other hand, here, we only have to remember the past
four outcomes of the die due to the resetting protocol of
the perturbation strength. Concretely, the future probabil-
ities are independent of the past beyond four steps. For
example, we have

P( | , , , , ) = P( | , , , , ). (9)

To be more precise, predicting the next outcome with cor-
rect probabilities requires knowing the die’s configuration
for the past four steps. That is, the future distribution is
fully determined by conditional probabilities

P(Rk|Rk−1, . . . , R0) = P(Rk|Rk−1, . . . , Rk−4), (10)

where we need to know only a part of the history, which,
in this case, is the last four outcomes.

As mentioned, the size of the memory is often referred
to as the Markov order or memory length of the process. A
fully random process—like the hard tossing of a die—has
a Markov order 0, and a Markov process has an order of
1. A non-Markovian process has an order of 2 or larger.
This, in turn, implies that the study of non-Markovian
processes contains Markovian processes as well as fully
random processes as special cases. Indeed, most processes
in nature will carry memory, and Markovian processes are
the—well-studied—exception rather than the norm [14].

In general, the complexity of a non-Markovian process
is higher than that of the Markov process in the last sub-
section; this is because there is more to remember. Put less
prosaically, the process has to keep a ledger of the past out-
comes to carry out the correct type of perturbation at each
point. And, in general, the size of this ledger, or the com-
plexity, grows exponentially with the Markov order m: for
a process with d different outcomes at each time (six for a
die), it is given by dm. However, sometimes it is possible
to compress the memory. For instance, in the above exam-
ple, we only need to know the current configuration and
the number of time steps it has remained unchanged; thus
the size of the memory is linear in the Markov order for
this example. Moreover, looking at histories larger than the
Markov order will not reveal anything new and thus does
not add to the complexity of the process.

E. Stochastic matrix

Having discussed stochastic processes and memory at a
general level, it is now time to look in more detail at the
mathematical machinery used to describe them. A conve-
nient way to model stochastic processes is the stochastic
matrix, which transforms the current state of the system
into the future state. It also lends itself to a clear graph-
ical depiction of the process in terms of a circuit, see,
e.g., Fig. 2 for circuits corresponding to the three exam-
ples above. In what follows, we write down the stochastic
matrices corresponding to the three processes above. The
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ΓΓΓ Γ Γ
Random and perturbed die (Markov order 0 and 1)

ℙ(Rk−2) ℙ(Rk−1) ℙ(Rk) ℙ(Rk+1) ℙ(Rk+2)

Γ Γ ΓΓΓ

Non-Markovian die  (     , 3 )    

ℙ(Rk−2) ℙ(Rk−1) ℙ(Rk) ℙ(Rk+1) ℙ(Rk+2)

FIG. 2. Random, Markovian, and non-Markovian processes.
Top panel shows the circuits for random and Markovian die. In
these cases, there are no extra lines of communication between
the tosses (represented by boxes). Only the system carries the
information forward for a Markov process. The bottom panel
shows the non-Markovian die. Here, information is sent between
tosses (represented by boxes) in addition to what the system car-
ries, which is the memory of the past states of the system (die).
This memory is then denoted by the thick line. The memory has
to carry the information about the state of the die in the past four
tosses to determine the intensity of the next perturbation.

future states can then be computed by following the circuit
and performing appropriate matrix multiplication.

1. Transforming the statistical state

Before describing the process, let us write down the state
of the system at time k − 1. At any given time, the die has
a probability of be in one of six states, not necessarily uni-
formly distributed. We can think of this distribution as the
statistical state of the system:

P(Rk−1) = [P( ) P( ) P( ) P( ) P( ) P( )]T . (11)

Here again, T denotes transposition, i.e., the statistical state
is a column vector.

Suppose the die in the (k − 1)th toss rolls to rk−1. Along
with this, if we knew the conditional (or transition) proba-
bilities P(rk|rk−1), the probability to find the die to rolls to
rk in the kth toss can be straightforwardly computed via

P(rk) =
∑

rk−1

P(rk|rk−1)P(rk−1). (12)

This can be phrased more succinctly as

P(Rk) = �(k:k−1)P(Rk−1), (13)

where stochastic matrix �(k:k−1) is the mechanism by
which the statistical state changes in time from time step
k − 1 to k. For brevity we generally omit the subscript on
� (the time at which it acts will be clear from the respec-
tive arguments it acts on) unless it is required for clarity.
The elements of the stochastic matrix are called transition

probabilities as they indicate how two events at k and k − 1
are correlated.

Before examining the explicit stochastic matrices for
the above examples of processes, let us first discuss their
general properties. First, all entries of � are positive,
as they correspond to transition probabilities. Second, to
ensure that the lhs of Eq. (13) is a probability distribution,
the columns of the stochastic matrix sum to 1, which is
a direct consequence of the identity

∑
rk

P(rk|rk−1) = 1,
which holds for all rk−1. On the other hand, the rows
of � do not have to add to unity, as generally we have∑

rk−1
P(rk|rk−1) �= 1 [this is also clear in Eq. (14) for a

biased die below]. In the case where the rows actually add
to 1, the matrix is called bistochastic, and it has some nice
properties and applications [15], which we do not cover in
detail in this tutorial; for example, any bistochastic matrix
can be represented as a convex combination of permutation
matrices, a fact known as Birkhoff’s theorem.

2. Random process

Now, making the concept of stochastic matrices more
concrete, we begin by constructing the stochastic matrix
for the fully random process of the tossing of a die without
memory. In this case, it does not matter what the current
state of the die is, and the future state will be the one given
in Eq. (11). This is achieved by the following matrix:

�(0) =

⎛

⎜⎜⎜⎜⎜⎝

P( ) P( ) P( ) P( ) P( ) P( )

P( ) P( ) P( ) P( ) P( ) P( )

P( ) P( ) P( ) P( ) P( ) P( )

P( ) P( ) P( ) P( ) P( ) P( )

P( ) P( ) P( ) P( ) P( ) P( )

P( ) P( ) P( ) P( ) P( ) P( )

⎞

⎟⎟⎟⎟⎟⎠
.

(14)

As stated above, a fully random process has Markov order
of 0, which we denote by the extra superscript (0). Addi-
tionally, all the columns of the above �(0) add up to 1,
independent of whether or not the die is biased, while in
general, i.e., when the die is biased, the rows do not add up
to unity.

It is easy to check that the above stochastic matrix
indeed leads to the correct transitions; suppose the current
state of the die is , i.e., P(Rk−1) = [0 0 0 0 0 1]T. The sta-
tistical state after the roll will be the one given in Eq. (11),
i.e.,

P(Rk) = �(0)
P(Rk−1)

= [P( ) P( ) P( ) P( ) P( ) P( )]T . (15)

Evidently, this process does not care about the current
state—the “new” probabilities at the kth toss do not depend
on the previous ones—but it merely independently sam-
ples from the underlying distribution corresponding to the
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bias of the coin. As already mentioned, we could read-
ily incorporate a temporal change of said bias, by making
it dependent on the number of tosses. However, as long
as this dependence is only on the number of tosses, and
not on the previous outcomes, we still consider this pro-
cess memoryless (strictly speaking, the die along with a
clock represents a memoryless process). To avoid unnec-
essary notational cluttering, we always assume that the
bias and/or the transition probabilities are independent of
the absolute toss number but may depend on previous
outcomes, as shown below.

For an unbiased die the above stochastic matrix will be
simply

�(0) = 1
6

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎠
, (16)

which is not only a stochastic, but a bistochastic map.
Again, it is easy to check that the output is the uniform
distribution

�(0)
P(Rk−1) = P(Rk) = 1

6
[1 1 1 1 1 1]T , (17)

for any P(Rk−1).

3. Markov process

Let us now move to the perturbed die process, which is
a Markovian process. In this case the stochastic matrix has
the form

�(1) =

⎛

⎜⎜⎝

P( | ) P( | ) · · · P( | )

P( | ) P( | ) · · · P( | )
...

...
. . .

...
P( | ) P( | ) · · · P( | )

⎞

⎟⎟⎠ , (18)

where, again, we use the superscript signifies that the
underlying process is of Markov order 1.

The hallmark of this matrix is that it gives us different
future probabilities, depending on the current configura-
tion; the probability P( | ) to find the die showing
at the kth toss, given that it showed at the (k – 1)th
toss generally differs from the probability P( | ) to show

given that it previously showed . In contrast, for
the fully random process above, both of these transition
probabilities would be given by P( ).

Concretely, for the perturbed die process given in
Eq. (7), the stochastic matrix will have the form

�(1) =

⎛

⎜⎜⎜⎜⎜⎝

p q q q q s
q p q q s q
q q p s q q
q q s p q q
q s q q p q
s q q q q p

⎞

⎟⎟⎟⎟⎟⎠
. (19)

Again, here the conditions p > q � s and p + 4q + s = 1
are assumed, and we have P( | ) = s �= q = P( | ).
Again, it is easy to see that the normalization of the
conditional probabilities implies that the columns of
the stochastic matrix add to 1. Additionally, here, the
rows of �(1) add up to 1, too, making it a bistochastic
matrix.

For a Markov process, the state P(Rk) is related to an
earlier state P(Rj ), with j < k, by repeated applications of
the stochastic matrix

P(Rk) = �
(1)
(k:k−1) · · ·�(1)

(j +2:j +1)�
(1)
(j +1:j )P(Rj ). (20)

Alternatively, we may describe the process from j to k with
the stochastic matrix

�
(1)
(k:j ) := �

(1)
(k:k−1) · · ·�(1)

(j +2:j +1)�
(1)
(j +1:j ). (21)

This is clearly desirable as the above stochastic matrix is
simply obtained by matrix multiplications, which is easy to
do on a computer. Another way to compute the probability
for two sequential events, say rk given we saw event rj at
respective times, is by employing Eq. (12):

P(rk|rj ) =
∑

{rm}k−1
m>j

k−1∏

i=j

P(ri+1|ri)P(rj ). (22)

This is known as the Chapman-Kolmogorov equation.
Here, the sum is over all trajectories between event rj
and event rk, i.e., all possible sequences that begin with
outcome rj at tj and end with outcome rk at tk.

4. Non-Markovian process

Above, the stochastic matrix � must map the statistical
state P(Rj ) at a single time to another single-time statistical
state P(Rk). Thus the future statistics, depend only on the
current state of the system, but not on any additional mem-
ory. Now, turning our attention to non-Markovian dynam-
ics, we expand our view to consider processes that map
multitime statistical states, e.g., P(Rj −1, Rj −2, . . . , Rj −m),
to either a single-time state, e.g., P(Rk), or a multitime
state, e.g., P(Rk−1, Rk−2, . . . , Rk−m), depending on what we
aim to describe. This can be done in several ways, either
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by considering collections of stochastic map, or a sin-
gle stochastic map that acts on a larger space. We briefly
discuss both of these options.

First, let us consider the stochastic matrix for the non-
Markovian process described in Sec. II D, where the per-
turbation intensity depends on the sequence of the previ-
ously observed number of pips. As mentioned before, for
this example we need to know the current state and the
number of times it has not changed—which we denote
by μ—to correctly predict future statistics. As the pertur-
bation strength is reset after the die has shown the same
number of pips three consecutive times, we have μ ∈
[0, 1, 2, 3]. For each μ, we can then write the stochastic
matrix as

�(μ) =

⎛

⎜⎜⎝

P
μ( | ) P

μ( | ) · · · P
μ( | )

P
μ( | ) P

μ( | ) · · · P
μ( | )

...
...

. . .
...

P
μ( | ) P

μ( | ) · · · P
μ( | )

⎞

⎟⎟⎠ , (23)

where the superscript on the transition probabilities and the
stochastic matrices denotes that they depend on the number

of times the outcome has not changed. For μ = 3, the per-
turbation strength is such that the process becomes the
random process given in Eq. (14), and μ = 4 is the same as
μ = 0. Evidently, Eq. (23) defines four distinct stochastic
matrices, one for each μ that leads to distinct future statis-
tics. For any given μ, �(μ) allows us to correctly predict
the probability of the next toss of the die.

It is always possible to write down a family of stochastic
matrices for any non-Markovian process. Given the current
state and history, we make use of the appropriate stochas-
tic matrix to get the correct future state of the system. In
general, for Markov order m, there are at most dm distinct
histories, i.e., μ ∈ {0, . . . , dm−1 − 1}; each such history
(prior to the current outcome) then requires a distinct
stochastic matrix to correctly predict future probabilities.
This exponentially growing storage requirement of dis-
tinct pasts highlights the complexity of a non-Markovian
process.

On the other hand, such a collection of stochastic
matrices for a process of Markov order m could equiv-
alently be combined into one d × dm matrix of the
form

�(m) =

⎛

⎜⎜⎝

P( | · · · ) P( | · · · ) · · · P( | · · · )

P( | · · · ) P( | · · · ) · · · P( | · · · )
...

...
. . .

...
P( | · · · ) P( | · · · ) · · · P( | · · · )

⎞

⎟⎟⎠ , (24)

that acts on dm-dimensional probability vectors

P(RK) = [P( · · · ) · · · P( · · · ) P( · · · )]T ,
(25)

to yield the correct future statistics, i.e., P(Rk) =
�(m)

P(RK). Here, K denotes the last m tosses and thus
by RK we denote the random variable corresponding to
sequences of the last m outcomes starting at the (k − 1)th
toss. As before, �(m) is a stochastic matrix, as all of its
entries are positive, and its columns sum to 1. However,
in contrast to the Markovian and the fully random case,
it ceases to be a square matrix. We thus have to widen
our understanding of a statistical “state” from probability
vectors of outcomes at one time and toss, to probability
vectors of outcomes at sequences of times and tosses. In
quantum mechanics, this shift of perspective allows one
to resolve many of the apparent paradoxes that appear to
plague the description of quantum stochastic processes. In
the following section, we see a concrete example of this
way of describing non-Markovian processes.

We graphically depict non-Markovian processes, with
Markov orders 2, 3, and 4, in Fig. 3. Here, the lines
above the boxes denote the memory that is passed to the
future and required to correctly predict future statistics.
Each box simply has to pass the information about the
current state—which generally is a multitime object—to
future boxes, which, again, can make use of this infor-
mation. Considering Fig. 3, we can already see that the
description of stochastic processes with the memory pro-
vided above is somewhat incomplete. While �(m) allows
us to compute the probabilities of the next outcome, given
the last m outcomes, it yields only a one-time state, not
an m-time state. While this is sufficient if we are interested
only in the statistics of the next outcome, it is not enough to
compute statistics further in the future. Concretely, we can-
not let �(m) act successively to obtain all future statistics.
Expressed more graphically, a map that allows us to fully
compute statistics for a process of Markov order m needs
m input and m output lines (see Fig. 3). Naturally, such
a map, which we denote as � can always be constructed
from �(m), as we discuss in more detail in the next section.
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ΞΞΞ Ξ Ξ

ΞΞΞ Ξ Ξ
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Markov 
order 2

Markov  
order 3

Markov 
order 4

ℙ(Rk−2) ℙ(Rk−1) ℙ(Rk) ℙ(Rk+1) ℙ(Rk+2)

ℙ(Rk−2) ℙ(Rk−1) ℙ(Rk) ℙ(Rk+1) ℙ(Rk+2)

ℙ(Rk−2) ℙ(Rk−1) ℙ(Rk) ℙ(Rk+1) ℙ(Rk+2)

FIG. 3. Memory in non-Markovian processes. For processes
with memory, besides the state of the system at present, we need
additional information about the past to correctly predict future
statistics. If only the probability of the next outcome is of inter-
est, then a map �(m) of the form of Eq. (24) is sufficient, if all
future probabilities are to be computed via the concatenation of
a single map, then �, given in Eq. (26), is required. Together, the
system and memory undergo Markovian dynamics.

Importantly, its action looks just like a square stochastic
matrix:

�(1)
P(Rk−1, . . . , Rk−m) = P(Rk, . . . , Rk−m+1), (26)

which allows us to simply compute statistics via the con-
catenation of � just like in the Markovian case and hence
the superscript 1. In other words, we can think of any non-
Markovian process as a Markovian process on a larger
system, as depicted in the bottom panel. Graphically, this
can already easily be seen in Fig. 3, where the system of
interest (the die) plus the required memory lines form a
Markovian process.

Returning to our discussion of the complexity of non-
Markovian processes, usually, not all distinct pasts—even
within the Markov order—lead to distinct futures, and
memory can be compressed. This effect can already be
seen for the perturbed coin above, where, instead of 63 =
216 stochastic matrices, we can compute the correct future
by means of merely four stochastic matrices. We do not
discuss the issue of memory compression in this tutorial,
but details can be found in the vast literature on the so-
called ε machines, see, for example, Refs. [16–18]. Finally,
we emphasize that, while here we focus on the underly-
ing mechanisms through which the respective probabilities
emerge, a stochastic process is also fully described once
all joint probabilities for events are known. For example,
considering a threefold toss of a die, once the probabili-
ties P(R2, R1, R0) are known, all probabilities for smaller
sequences of tosses [say, for example, P(R2, R0)] as well
as all conditional probabilities for those three tosses can
be computed. Knowing the full joint distribution is thus
equivalent to knowing the underlying mechanism.

F. Hidden Markov model

An important concept in many disciplines and one
that is crucial to be able to deduce probabilities from
sequences of measurement outcomes is that of stationarity.
For stochastic processes, stationarity means time transla-
tion symmetry. That is, it does not matter when we flip a
coin, we need only to consider its states up to the Markov
order. This is useful because often we are interested in
characterizing a process whose inner workings are hid-
den from us. In such a case, we can try to infer the inner
working by noting the statistics of the state of the sys-
tem in a time series. For example, given a long sequence
of coin-flip outcomes F1 = {h, t}, we can determine the
statistics for seeing “heads” h and “tails” t, or any other
sequence, say hhttht. Of course, this requires that the total
data size is much larger than any sequence whose prob-
ability we wish to estimate. From this data we construct
hidden Markov model for the system that will reproduce
the statistics up to any desired Markov order [16–18]. In
2012, Ref. [19] showed that it is advantageous to simu-
late classical stochastic processes using quantum devices.
This discovery has lead to a research field on its own [20–
24], including experimental quantum simulators [25] for
classical stochastic process.

An illuminating graphical representation for a stationary
stochastic process is the so-called Markov chain, which
is associated with the stochastic matrix. For simplicity
of the diagram let us consider a process of dichotomic
outcomes; e.g., a coin flip with the random variables Fk
(for flips). Again, this can be a fully random process,
a Markov process, or a non-Markovian process, depend-
ing on how the coin is flipped. Suppose now that the
coin is flipped a million times in succession and we are
given the sequence of results. For simplicity, we assume
stationarity, i.e., probabilities and conditional probabili-
ties do not depend on the cardinal number of the coin
toss. Under this assumption, from the observed results,
we can compute how frequently one sees h or t, which
is quantified by P(Fk). We might compute how often
h flips to t or remain h and so on; this is quantified
by P(Fk|Fk−1) or the joint distributions P(Fk|Fk−1) for
all k. Analogously, we may also compute the probabil-
ity of seeing longer sequences, like hhh, hht, etc. With
all of this, we can obtain conditional probabilities of
the form P(Fk|Fk−1, Fk−2) and P(Fk|Fk−1, Fk−2, Fk−3). Let
us assume that both of these conditional probabilities
coincide, which leads us to conclude that the Markov
order of the process is 2 [technically, we should check
that P(Fk|Fk−1, Fk−2) = P(Fk|Fk−1, . . . , Fk−n) for all n ≥
2, but as it is unlikely that only longer memory exists, we
consider this test for Markov order 2 sufficient].

In this case, following the ideas laid out below Eq. (24),
the probabilities of future outcomes can be described by a
single stochastic matrix of the form
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�(2) =
(

P(h|hh) P(h|ht) P(h|th) P(h|tt)
P(t|hh) P(t|ht) P(t|th) P(t|tt)

)
. (27)

This map will act on a statistical state that has the form

P(Fk, Fk−1) = [P(hh) P(ht) P(th) P(tt)
]T . (28)

The action of the stochastic matrix on the statistical state
gives us the probability for the next flip.

P(Fk+1) = �(2)
P(Fk, Fk−1)

=
[∑

xy∈{ht} P(h|xy)P(xy)∑
xy∈{ht} P(t|xy)P(xy)

]
. (29)

Combining the probabilities for two successive outcomes
into a single probability vector thus allows us to com-
pute the probabilities for the next outcome in a Markovian
fashion, i.e., by applying a single stochastic matrix to said
probability vector. However, as already alluded to above,
there is a slight mismatch in Eq. (29); while the random
variables we look at on the rhs are sequences of two suc-
cessive outcomes, the random variable on the lhs is a single
outcome at the k + 1th toss. To obtain a fully Markovian
model, one would rather desire a stochastic matrix that pro-
vides the transition probabilities from one sequence of two
outcomes to another, i.e., a stochastic matrix � that yields

P(Fk+1, Fk) = �(1)
P(F̃k, Fk−1), (30)

where, for better bookkeeping, we formally distinguish
between the random variables on the lhs and the rhs. Addi-
tionally, we give � an extra superscript to underline that
it describes a process of Markov order 1. To do so, it has
to act on a larger space of random variables, namely, the
combined previous two outcomes.

Now, in our case, it is easy to see that the action of �(1)

can be simply computed from �(2) as

P(Fk+1, Fk) = �(1)
P(F̃k, Fk−1),

= δFkF̃k
�(2)

P(F̃k, Fk−1), (31)

where δ is the Kronecker function. This, in turn, implies
that �(1) and �(2) contain the same information, and
the distinction between them is more of formal than
of fundamental nature. Importantly though, �(1) can be
applied in succession, e.g., we have P(Fk+n, Fk+n−1) =
(�(1))n

P(F̃k, Fk−1), while the same is not possible for �(2)

due to the mismatch of input and output spaces.
Equation (30) then describes a Markovian model for

the random variable F2, which takes values {hh, ht, th, tt}.
As knowledge of all relevant, i.e., within the Markov
order, transition probabilities allows the computation of
all joint probabilities, such an embedding into a higher-
dimensional Markovian process via a redefinition of the

considered random variables is always possible. The cor-
responding Markovian model is often called the hidden
Markov model. As a brief aside, we note that the amount
of memory that needs to be considered in an experi-
ment depends both on the intrinsic Markov order of the
process at hand, as well as the amount of information
an experimenter can or wants to store. If, for example,
one is only interested in correctly recreating transition
probabilities P(Rk|Rk−1) between adjacent times, but not
necessarily higher-order transition probabilities, like, e.g.,
P(Rk|Rk−1, Rk−2), then a Markovian model without any
memory is fully sufficient (but will not properly reproduce
higher-order transition probabilities).

Returning to our process, we depict the corresponding
Markov chains for each case in Fig. 4. For a fully random
process, the Markov chain has only one state; after each
flip, the state returns to itself, and the future probabilities
do not change based on the past. For a Markov process,
the chain has two states, and four transitions are possible.
Finally, the non-Markovian process is chosen to be deter-
ministic: hh always goes to th, and so on. Note that, here,
as mentioned above, if we care only about transition proba-
bilities P(Fk|Fk−1), i.e., we consider only the last outcome
and not the last two outcomes (i.e., we identify hh and ht,

t
h

ℙ(h | t)

ℙ(t | t) ℙ(t | h)

ℙ(h | h)

ℙ(t)

ℙ(h)

r

ℙ(h | tt)

ℙ(t | hh)

ℙ(t | th)ℙ(h | ht)

h h t h

h t t t

Markov order 0 Markov order 1

Markov order 2

(a) (b)

(c)

FIG. 4. Markov chains. Given a time series of coin flips we
can deduce any of the above hidden Markov models. At memory
length 2 we have a deterministic process and therefore longer
memory will not yield any more information. In other words, the
Markov order of the process in (c) is 2.
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and th and tt), then the process of Fig. 4(c) reduces to the
simpler one in (b), but the information is lost.

All of the panels of Fig. 4 describe Markovian pro-
cesses, however for different random variables. This is a
general feature: any non-Markovian process can be rep-
resented by a hidden Markov model or a Markov chain
by properly combining the past into a “large enough” ran-
dom variable [14] [for example, the random variable with
values {hh, th, ht, tt} in (c)]. This intuition will come in
handy when we move to the case of quantum stochastic
processes. But first, we need to formalize the theory of
classical stochastic process and show where the pitfalls lie
when generalizing this theory to the quantum domains.

G. (Some) mathematical rigor

As mentioned, in our presentation of stochastic pro-
cesses, we rather opt for intuitive examples than full
mathematical rigor. However, laying the fundamental con-
cepts of probability theory in detail provides a more
comprehensive picture of stochastic processes, and ren-
ders the generalizations needed to treat quantum processes
mathematically straightforward.

The basic ingredient for the discussion of stochastic pro-
cesses is the triplet (�,S ,ω) of a sample space �, a σ

algebra S and a probability measure ω. Intuitively, � is the
set of all events that can occur in a given experiment (for
example, � could represent the myriad of microstates a die
can assume or the possible numbers of pips it can show),
S corresponds to all the outcomes that can be resolved
by the measurement device (for the case of the die, S
could, for example, correspond to the number of pips the
die can show, or to the less fine-grained information “odd”
or “even”) and ω allocates a probability to each of these
observable outcomes.

More rigorously, we have the following definition [26].

Definition (σ algebra): Let � be a set. A σ algebra on �

is a collection S of subsets of �, such that

(a) � ∈ S and ∅ ∈ S;
(b) if s ∈ S , then � \ s ∈ S;
(c) S is closed under (countable) unions and intersec-

tions, i.e., if s1, s2, . . . ∈ S , then
⋃∞

j =1sj ∈ S and⋂∞
j =1sj ∈ S .

For example, if the sample space is given by � =
{ , . . . , } and we resolve only whether the outcome of
the toss of a die is odd or even, the corresponding σ alge-
bra is given by {{ , , }, { , , }, ∅,�}, while in the
case where we resolve the individual numbers of pips, S is
simply the power set of �.

A pair (�,S) is called a measurable space, as now,
we can introduce a probability measure for observable
outcomes in a well-defined way.

Definition (Probability measure): Let (�,S) be a mea-
surable space. A probability measure ω : S → R is a
real-valued function that satisfies

(a) ω(�) = 1;
(b) ω(s) ≥ 0 for all s ∈ S;
(c) ω is additive for (countable) unions of disjoint

events, i.e., ω
(⋃∞

j =1sj

)
=∑∞

j ω(sj ) for sj ∈ S
and sj ∩ sj ′ = ∅ when j �= j ′.

The corresponding triplet (�,S ,ω) is then called a
probability space [26]. As the name suggests, ω maps
each event sj to its corresponding probability, and, using
the convention of the previous sections, we could have
denoted it by P, and do so in what follows. Evidently,
in our previous discussions, we already make use of sam-
ple spaces, σ algebras, and probability measures, without
caring too much about their mathematical underpinnings.

The mathematical machinery of probability spaces pro-
vides a versatile framework for the description of stochas-
tic processes, both on finitely and infinitely many times
(see Sec. III D for an extension of the above concepts to
the multitime case).

So far, we have talked about processes that are discrete
both in time and space. It does not make much sense to
talk about the state of a die when it is in midair; nor
does it make sense to attribute a state of 4.4 to a die.
On the other hand, of course, there are processes that
are both continuous in time and space. A classic exam-
ple is Brownian motion [27], which requires that time be
treated continuously. If not, the results lead to patholog-
ical situations where the kinetic energy of the Brownian
particle blows up. Moreover, in such instances, the event
space is the position of the Brownian particle and can take
uncountably many different real values. Nevertheless, the
central object in the theory of stochastic processes does
not change; it remains the joint probability distribution
for all events, which in the case of infinitely many times
is a probability distribution on a rather complicated, and
not easy to handle σ algebra. Below, we discuss how, due
to a fundamental result by Kolmogorov, it is sufficient to
deal with finite distributions instead of distributions on σ

algebras on infinite Cartesian products of sample spaces.
Finally, this machinery straightforwardly generalizes to
positive operator-valued measures (POVMs) as well as
instruments, fundamental ingredients for the discussion of
quantum stochastic processes.

III. CLASSICAL STOCHASTIC PROCESSES:
FORMAL APPROACH

Up to this point, both in the examples we provided, as
well as the more rigorous formulation, we have somewhat
left open what exactly we mean by a stochastic pro-
cess, and what quantity encapsulates it. We close this gap
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now, and provide a fundamental theorem for the theory of
stochastic processes, the Kolmogorov extension theorem
(KET), which allows one to properly define stochastic
processes on infinitely many times, based on finite-time
information.

A. What then is a stochastic process?

Intuitively, a stochastic process on a set of times Tk :=
{t0, t1, . . . , tk} with ti ≤ tj for i ≤ j is the joint probabil-
ity distribution over observable events. Namely, the central
quantity that captures everything that can be learned about
an underlying process is

PTk+1 := P(Rk, tk; Rk−1, tk−1; . . . ; R0, t0), (32)

corresponding to all joint probabilities

{P(Rk = rk, Rk−1 = rk−1, . . . , R0 = r0, )}rk ,...,r0 (33)

to observe all possible realizations Rk = rk at time tk,
Rk−1 = rk−1 at time tk−1, and so on. Evidently, the time
label—which we omit above and for most of this tuto-
rial—could also correspond to a label of the number of
tosses, etc. We also adopt the compact notation of PTk+1 ,
as defined above, to denote a probability distribution on a
set of k + 1 times.

More concretely, suppose the process we have in mind
is tossing a die five times in a row. This stochastic process
is fully characterized by the probability of observing all
possible sequence of events

{P( , , , , ), . . . , P( , , , , ), . . .

...
...

P( , , , , ), . . . , P( , , , , )},
(34)

where, as before, we omit the respective time and the toss
label.

From the joint distribution for five tosses, one can obtain
any desired marginal distributions for fewer tosses, e.g.,
P(R3); or any conditional distributions (for five tosses),
such as, for example, the conditional probability P(R2 =

|R1 = , R0 = ), to obtain outcome at the third toss,
having observed two in a row previously; the conditional
distributions in turn allows computing the stochastic matri-
ces, which in turn allow casting processes as a Markov
chain. Having the total distribution is enough to deter-
mine whether a process is fully random, Markovian, or
non-Markovian. This statement, however, is contingent on
the respective set of times. Naturally, without any fur-
ther assumptions of memory length and/or stationarity,
knowing the joint probabilities of outcomes—and thus
everything that can be learned—on a set of times Tk does
not provide knowledge about the corresponding process on

a different set of times Tk′ . Consequently, we identify a
stochastic process with the joint probabilities it displays
with respect to a fixed set of times.

While joint probabilities contain all inferable informa-
tion about a stochastic process, working with them is not
always desirable because their number of entries grows
exponentially. Nevertheless, they are the central quantity
in the theory of classical stochastic processes. Our first
aim when extending the notion of stochastic processes to
the quantum domain will thus be to construct the analogy
to joint distribution for time-ordered events. Doing so has
been troubling for the same foundational reasons that make
quantum mechanics so interesting. Most notably, quantum
processes, in general, do not straightforwardly allow for a
Kolmogorov extension theorem, which we discuss below.
However, upon closer inspection, such obstacles can be
overcome by properly generalizing the concept of joint
probabilities to the quantum domain. Before doing so, we
first return to our more rigorous mathematical treatment
and define stochastic processes in terms of probability
spaces.

B. Kolmogorov extension theorem

While, for the example of the tossing of a die, a descrip-
tion of the process at hand in terms of joint probabilities
on finitely or countably many times and tosses is satisfac-
tory, this is not always the case. For example, even though
it can in practice only be probed at finitely many points in
time, when considering Brownian motion, one implicitly
posits the existence of an “underlying” stochastic process,
from which the observed joint probabilities stem. Intu-
itively, for the case of Brownian motion, this underlying
process should be fully described by a probability distribu-
tion that ascribes a probability to all possible trajectories
the particle can take. Connecting the operationally well-
defined finite joint probabilities a physicist can observe
and/or model with the concept of an underlying process
is the aim of the Kolmogorov extension theorem.

Besides not being experimentally accessible, working
with probability distributions on infinitely many times
has the additional drawback that the respective mathe-
matical objects are rather cumbersome to use, and would
make the modeling of stochastic processes a fairly tedious
business. Luckily, the KET allows one to deduce the exis-
tence of an underlying process on infinitely many times,
from properties of only finite objects. With this, model-
ing a proper stochastic process on infinitely many times
amounts to constructing finite time joint probabilities that
“fit together” properly.

To see what we mean by this last statement let PT	
be

the joint distribution obtained for an experiment for some
fixed 	 times. For now, we stick with the case of Brow-
nian motion, and PT	

could correspond to the probability
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to find a particle at positions x0, . . . , x	−1 when measur-
ing it at times T	 = {t0, . . . , t	−1}. As mentioned before,
PT	

contains all statistical information for fewer times as
marginals, i.e., for any subset Tk ⊆ T	 we have

PTk =
∑

T	\Tk

PT	
=: P

|Tk
T	

, (35)

where we denote the sum over the times in the comple-
ment of the intersection of Tk and T	 by T	 \ Tk and use
an additional superscript to signify that the respective joint
probability distribution is restricted to a subset of times
via marginalization. For simplicity of notation, here and in
what follows, we always denote the marginalization by a
summation, even though, in the uncountably infinite case,
it would correspond to an integration.

For classical stochastic processes, all probabilities on a
set of time can be obtained from those on a superset of
times by marginalization. We call this consistency condi-
tion between joint probability distributions of a process on
different sets of times Kolmogorov consistency conditions.
Naturally, consistency conditions hold in particular if the
finite joint probability distributions stem from an underly-
ing process on infinitely many times T ⊇ T	 ⊇ Tk, where
we leave the nature of the corresponding probability dis-
tribution PT somewhat vague for now (see Sec. III D for a
more thorough definition).

Importantly, the KET shows, that satisfaction of the con-
sistency condition on all finite sets Tk ⊆ T	 ⊆ T is already
sufficient to guarantee the existence of an underlying pro-
cess on T. Specifically, the Kolmogorov extension theorem
[3,26,28,29] defines the minimal properties finite probabil-
ity distributions have to satisfy in order for an underlying
process to exist.

Theorem (KET): Let T be a set of times. For each finite
Tk ⊆ T, let PTk be a (sufficiently regular) k-step joint prob-
ability distribution. There exists an underlying stochastic
process PT that satisfies PTk = P

|Tk
T for all finite Tk ⊆ T if

and only if PTk = P
|Tk
T	

for all Tk ⊆ T	 ⊆ T.

Put more intuitively, the KET shows that for a given
family of finite joint probability distributions that satisfy
consistency conditions [30], the existence of an underlying
process, that contains all of the finite ones as marginals,
is ensured. Importantly, this underlying process does not
need to be known explicitly in order to properly model a
stochastic process.

We emphasize that, in the (physically relevant) case
where T is an infinite set, the probability distribution PT
is generally not experimentally accessible. For example,
in the case of Brownian motion, the set T could contain all
times in the interval [0, t] and each realization would repre-
sent a possible continuous trajectory of a particle over this
time interval, see Fig. 5. While we assume the existence

x = 0 x = 1 x = 2 x = 3 … xk

t = 0

t = 1

t = 2

t = 3

…

tk

s1 s2sk s3

FIG. 5. Continuous process. A stochastic process is a joint
probability distribution over all times. From a physical perspec-
tive, we can think of it as the probability of observing a trajectory
sk. This is highly desirable when talking about the motion of
a Brownian particle. However, this interpretation requires some
caution as there are cases where trajectories may not be smooth
or even continuous.

of these underlying trajectories (and hence the existence of
PT) in experiments concerning Brownian motion, we often
access only their finite-time manifestations, i.e., PTk for
some Tk. The KET thus bridges the gap between the finite
experimental reality and the underlying infinite stochastic
process, in turn defining in terms of accessible quantities
what one means by a stochastic process on infinitely many
times. For this reason, many books on stochastic processes
begin with the statement of KET.

In addition, the KET also enables the modeling of
stochastic processes: any mechanism that leads to finite
joint probability distributions that satisfy a consistency
condition is ensured to have an underlying process. For
example, the proof of the existence of Brownian motion
relies on the KET as a fundamental ingredient [31–34].

Loosely speaking, the KET holds for classical stochastic
processes, because there is no difference between “doing
nothing” and conducting a measurement but “not look-
ing at the outcomes” (i.e., summing over the outcomes
at a time); otherwise, as we shall see in the discussion
of quantum stochastic processes, Kolmogorov consistency
conditions are not satisfied. Put differently, the validity
of the KET is based on the fundamental assumption that
the interrogation of a system does not, on average, influ-
ence its state. This assumption generally fails to hold in
quantum mechanics, which makes the definition of quan-
tum stochastic processes somewhat more involved, and
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their structure much richer than that of their classical
counterparts.

C. Practical features of stochastic processes

Now that we have a formal definition of a stochastic
process let us ask what it is useful for. It is worth saying
that working with a probability distribution of a large num-
ber of random variables is not desirable as the complexity
grows exponentially. However, for a given problem, what
we care about is the structure of the stochastic process and
what we may anticipate when we sample from this dis-
tribution. We depict the hierarchy of stochastic processes
in Fig. 6, and in this section focus on the short end of
the hierarchy, i.e., Markovian processes or non-Markovian
processes with low Markov order.

Naturally, the examples in Sec. II and the formal the-
ory in the last subsection only begin to scratch at the
massive literature on stochastic processes. We, of course,
cannot cover all facets of this field here. However, in
practice, there are a few important topics that must be
mentioned. Below we discuss several common tools that
one encounters in the field of stochastic processes. Here,
we do so rather to provide a quick overview than a thor-
ough introduction to the field. First among the tools used
in the field are master equations, which are employed
ubiquitously in the sciences, finance, and beyond. Next,
we briefly cover methods to differentiate between Marko-
vian and non-Markovian processes, as well as quantify the
memory using tools of information theory. While many of
these examples only deal with two-time correlations, we
do emphasize that there are problems that naturally require
multitime correlations.

1. Master equations

A master equation is a differential equation that relates
the rate of change in probabilities with the current and the
past states of the system. Put simply, they are equations of

Indivisible processes 
Γ(t:r) ≠ Γ(t:s)Γ(s:r)

ℙT ⊇ {ℙTk
} ⊇ … ⊇ {ℙT3

} ⊇ {ℙT2
}

Kolmogorov extension theorem 
proves the existence of

Markovian processes,  

master equations,  
data-processing inequality

Generic non-markovian correlations 
ℙ(Xk | Xk−1,…,X0) ≠ ℙ(Xk | X′k−1,…,X′0)

FIG. 6. Hierarchy of multitime processes. A stochastic process
is the joint probability distribution over all times. Of course, in
practice one looks only at finite-time statistics. However, the set
of all k-time probability distributions {PTk } contain, as marginals,
all j -time probability distributions {PTj } for j < k. Moreover, the
set of two and three time distributions plays a significant role in
the theory of stochastic processes.

motion for stochastic processes and thus provide the under-
lying mechanism by which the transition probabilities we
discuss in the previous section come about. There are of
course many famous master equations in physics: Pauli,
Fokker-Plank, Langevin, to name a few on the classical
side. We do not delve into the details of this very rich topic
here, and once again just begin to scratch the surface. We
refer the reader to other texts for more in-depth coverage
of master equations [27,35,36].

It will suffice for our purpose that a master equation, in
general, has the following form [37]:

d
dt

P(Xt) =
∫ t

s
G(t, τ)P(Xτ )dτ , (36)

where G(t, τ) is a matrix operator. The time derivative of
the state at t depends on the previous states up to a time s,
which is the memory length. If the memory length is infi-
nite, then s → −∞. As mentioned before, such a master
equation allows one, in principle, to compute the change
of probabilities, given some information about the past of
the system.

Since the master equation expresses the probabilities
continuously in time it may be then tempting to think that
a master equation is equivalent to a stochastic process as
defined above by means of the KET. However, this is not
the case because a master equation needs at most joint
probabilities of two times or lower. Namely, the set of joint
probability distributions,

{PT2} := {P(Xb, Xa)}b>a ∀ b > a > 0 (37)

is sufficient to derive Eq. (36). The lhs can be computed
by setting b = t and a = t − dt. While the rhs can be
expressed as a linear combination of product of stochas-
tic matrices �c:b�b:a, with c = t, b = τ ≥ s, and a = r <

τ . In fact, the rhs is concerned with functions such as
�c:a − �c:b�b:a, which measure the temporal correlations
between a and c, given an observation at b. In any case,
these stochastic matrices depend only on joint distributions
of two times, as seen in Eqs. (12) and (13), and are not con-
cerned with multitime statistics. Thus, the family of distri-
butions in Eq. (37) suffices for the rhs. Formally, showing
that the rhs can be expressed as a product of two stochastic
matrices can be done by means of the Laplace trans-
form [38,39] or the ansatz known as the transfer tensor
[40–42]. These technical details aside, master equations
play an important practical role for the description of
scenarios, where only two-time probabilities and/or the
change of single-time probabilities are required. By con-
struction, they do not, however, allow for the computation
of multitime joint probabilities. In turn, this implies that
they do not provide a full description of stochastic pro-
cesses in the sense of the KET. Nonetheless, they con-
stitute an important tool for the description of aspects of
stochastic processes.
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2. Divisible processes

To shed more light on the concept of master equations,
let us consider a special case (which we also encounter in
the quantum setting). Specifically, let us consider a family
of stochastic matrices that satisfy

�(t:r) = �(t:s)�(s:r) ∀ t > s > r. (38)

Processes described by such a family are called divisi-
ble. Once the functional dependence of �(t:r) on t and r
is known, one can build up the set of distributions con-
tained in Eq. (37). It is easy to see that the family of
stochastic matrices in Eq. (38) is a superset of Marko-
vian processes. That is, any Markov process will satisfy
the above equation. However, there are non-Markovian
processes that also satisfy the divisibility property [43].
Nevertheless, checking for divisibility is often far simpler
than checking for the satisfaction of the Markov condi-
tions since the latter requires the collection of multitime
statistics, while the former can be decided based on two-
time statistics only. Moreover, as we will see shortly, the
divisibility of the process implies several highly desirable
properties for the process.

A nice property of divisible processes is the corre-
sponding master equation. Applying Eq. (38) to the lhs of
Eq. (36) we get

P(Xt) − P(Xt−dt)

dt
= �(t:t−dt) − 1

dt
P(Xt−dt), (39)

where 1 is the identity matrix. Taking the limit dt → 0
yields the generator Gt := limdt→0[�(t:t−dt) − 1]/dt. This
is a time-local master equation in the sense that the
derivative of P—in contrast to the more general case of
Eq. (36)—depends only on the current time t, but not
on previous times. In turn, the generator is related to
the stochastic matrix as �(t:t−dt) = exp(Gtdt), which is
obtained by integration. When the process is stationary,
i.e., symmetric under time translation, both � and G will
be time independent.

A divisible Markovian process. To make the above
more concrete, let us consider a two-level system that
undergoes the following infinitesimal process:

�(t:t−dt) = (1 − γ dt)
(

1 0
0 1

)
+ γ dt

(
g0 g0
g1 g1

)
. (40)

The first part of the process is just the identity process,
and the second part is a random process. However, together
they form a Markov process. Using Eq. (39) we can derive
the generator for the master equation. This process is very
similar to the perturbed die in the last section, with the dif-
ference that here, we consider a process that is continuous

in time; it takes any state P(Xt−dt) at t − dt to

P(Xt) = (1 − γ dt)P(Xt−dt) + γ dtG, (41)

where G = [g0 g1]T. After some time τ = ndt, i.e., after n
applications of the stochastic matrix, we have

P(Xτ ) = (1 − γ dt)n
P(Xt) + γ ndt G. (42)

That is, the process relaxes any state of the system to the
fixed G exponentially fast with a rate γ . Many processes,
such as thermalization, have such a form. In fact, one
often associates Markov processes with exponential decay.
However, as already mentioned above, such an identifica-
tion is not exact, since there are non-Markovian processes
that satisfy a divisible master equation as we show now
by means of two explicit examples (we encounter an
explicit example of this phenomenon in the quantum case
in Sec. VI A 2).

A stroboscopic divisible non-Markovian process. As
mentioned, divisibility and Markovianity do not coincide.
To see this, we provide the following example, which
comes from Ref. [44] and provides a stroboscopic—in the
sense that we consider only it at fixed points in time—non-
Markovian process that is divisible. Let us consider a
single bit process with xj = 0, 1 with probability 1/2 for
j = 1, 2, 3. That is, the process yields random bits in the
first three times. At the next time, we let x4 = x1 + x2 + x3,
where the addition is modulo 2 (see Fig. 7). It is easy to see
that the stochastic matrix between any two times will cor-
respond to a random process, making the process divisible.
However, P(X4, X3, X2, X1) is not uniform; when x1 + x2 +
x3 = x4 the probability will be 1

8 and 0 otherwise. Conse-
quently, there are genuine four-time correlations, but there
are not two or three time correlations.

A process with long memory. Let us now consider a
process where the probability of observing an outcome xt

FIG. 7. Stroboscopic divisible non-Markovian process. At
each time tj , each of the possible outcomes 0 and 1 occurs with
probability 1/2 (for example, they could be drawn from urns with
uniform distributions). At the final time t4, the observed outcome
is equal to the sum (modulo 2) of the previous three outcomes.
While the stochastic map between any two points in time is com-
pletely random—and thus the process is divisible—the overall
joint probability distribution shows multitime memory effects (as
laid out in the text).
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is correlated with what was observed some time ago xt−s
with some probability

P(Xt = xt|Xt−s = xt−s) = p δxt,xt−s + 1 − p
d

. (43)

Here d is the size of the system. This process has only
two-time correlations, but the process is non-Markovian
as the memory is a long-range one. A master equation, of
the type of Eq. (36), for this process, can be derived by
differentiating. For sake of brevity, we forego this exercise.

As mentioned, master equations are a ubiquitously used
tool for the description of stochastic processes, both in the
classical as well as the quantum (see below) domain. They
allow one to model the evolution of the one-time probabil-
ity distribution P(Xt). However, they are not well suited for
the description of multitime joint probabilities. This will
be particularly true for the quantum case, where interme-
diate measurements—required to collect multitime statis-
tics—unavoidably influence the state of the system. For
many real-world applications though, knowledge about
P(Xt) is sufficient, making master equations an indispens-
able tool for the modeling of stochastic processes. On the
other hand, in order to analyze memory length and strength
in detail, one must—particularly in the quantum case—go
beyond the description of stochastic processes in terms of
master equations (see Sec. V D). This widening of the hori-
zon beyond master equations then also enables one to carry
over the intuition developed for stochastic processes in the
classical case to the quantum realm, as well as a rigorous
definition of quantum stochastic processes in the spirit of
the KET.

At this stage, it is worth pointing out why Markov pro-
cesses are of interest in many cases, and how they fit into
the picture. Suppose we are following the trajectory of
a particle at position x at time t, which then moves to
x′ at t′. If the difference in time is arbitrarily small, say
δt, then for a physical process, x′ cannot be too differ-
ent from x due to continuity. Thus, it is natural to write
down a master equation to describe such a process. Since
the future state will always depend on the current posi-
tion, the process will be at least Markovian. Still, the
process may have higher-order correlations, but they are
often neglected for simplicity. Importantly, if the process is
indeed memoryless, then master equations actually allow
for the computation of all joint probability distributions
and provide a complete picture of the process at hand.
Due to their practical importance, we now provide some
tools that are frequently used when dealing with memo-
ryless processes, and to gauge deviation from Markovian
statistics in an operationally accessible way. As before,
this short overview is by no means intended to be com-
prehensive but merely aimed at providing a quick glimpse
of possible ways to quantify memory.

3. Data-processing inequality

Somewhat abstractly, a stochastic process can be under-
stood as a state being processed in time. Memory, then,
means that some information about the past of the state of
the system at hand is stored and used at a later time to influ-
ence the future statistics of the system. Unsurprisingly, the
mathematical means we use to make this intuition man-
ifest and quantify the presence of memory are borrowed
from information theory. Here, we introduce them, starting
from the special case of divisible processes.

One of the most useful properties of Markov (and, more
generally, divisible) processes is the satisfaction of the
data-processing inequality (DPI). Suppose we are able to
prepare the system in two possible initial states P(X0) and
R(X0), and then subject each to a process �(t:0) to yield
P(Xt) = �(t:0)P(X0) and R(Xt) = �t:0R(X0), respectively.
The intuition behind DPIs is that the process has no mech-
anism to increase the distinguishability between two initial
states unless it has some additional information.

For instance, a natural measure for distinguishing prob-
ability distribution is the so-called Kolmogorov distance or
the trace distance

‖P(X ) − R(X )‖1 := 1
2

∑

x

|P(x) − R(x)|. (44)

When two states are fully distinguishable, the trace dis-
tance will be 1, which is the maximal value it can assume.
On the other hand, if the two distributions are the same
then the trace distance will be 0. The DPI guarantees that
the distance between distributions is nonincreasing under
the action of stochastic maps, i.e.,

‖P(X0) − R(X0)‖1 ≥ ‖P(Xt) − R(Xt)‖1 (45)

for all times t > 0 and equality (for all pairs of initial dis-
tributions) holds if and only if the process is reversible.
Additionally, for Markov processes the DPI will hold for
all times t ≥ s, i.e.,

‖P(Xs) − R(Xs)‖1 ≥ ‖P(Xt) − R(Xt)‖1. (46)

Conversely, if the distinguishability between two distribu-
tions increases at any point of their evolution, then the
underlying dynamics cannot be Markovian and stochastic
maps �t:s between two points in time do not provide a full
picture of the process at hand.

There are many metrics and pseudometrics that sat-
isfy DPI, but not all. For instance, the Euclidean norm,
‖P(X )‖2 := √∑x P(x)2, does not satisfy the DPI. As
an example consider a two-bit process with initial states
P(X0) Pu and R(X0) Pu, where the second bit’s state is
the uniform distribution Pu. If the process simply discards
the second bit, then the final Euclidean distance is simply
P(X0) − R(X0). However, the initial Euclidean distance is
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exactly 1
2 [P(X0) − R(X0)]. Thus the class of functions that

are contractive under the action of a stochastic matrix are
typically good candidates to formulate DPIs.

The DPI plays an important role in information theory
because it holds for two important metrics, the mutual
information and the Kullback-Leibler divergence (also
known as relative entropy). For a random variable, the
Shannon entropy is defined as

H(X ) := −
∑

x

P(x) log[P(x)]. (47)

The mutual information between two random variables X
and Y, that posses a joint distribution P(X , Y), is defined as

H(X : Y) := H(X ) + H(Y) − H(XY). (48)

Here, H(X ) is computed from the marginal distribution
P(X ) =∑y P(X , Y = y); and H(Y) is computed from the
marginal distribution P(Y) =∑x P(X = x, Y). The corre-
sponding DPI then is

H(X0 : Y0) ≥ H(Xt : Yt), (49)

under the action of a stochastic matrix. For Markov pro-
cesses we have a stronger inequality

H(Xs : Ys) ≥ H(Xt : Yt), (50)

for all times t ≥ s.
The relative entropy between two distributions P(X )

and P
′(X ) is defined as

H [P(X )‖R(X )] := −
∑

x

P(x) log
[

R(x)
P(x)

]
. (51)

Note that this is not a quantity that is symmetric in its argu-
ments. The relative entropy is endowed with an operational
meaning as the probability of confusion [45]; that is, if
one is promised R(X ) but given P(X ) instead, then after
n samples the confusion probability is quantitatively given
by P(X ) for R(X )

Prconf = exp{−nH [P(X )‖R(X )]}. (52)

We will see later that a similar expression can be employed
in the quantification of memory effects in quantum
stochastic processes (see Sec. VI B 3). The corresponding
DPI here has the form

H [P(X0)‖R(X0)] ≥ H [P(Xt)‖R(Xt)], (53)

under a stochastic transformation. For Markov processes,
we get the stronger version

H [P(Xs)‖R(Xs)] ≥ H [P(Xt)‖R(Xt)], (54)

that holds for all t ≥ s.

The behavior of relative entropy and the related pseu-
dometric in quantum and classical dynamics is an ongo-
ing research effort [46–48]. The meaning of all of these
DPIs for Markov processes is that the system is pro-
gressively loosing information as time marches forward.
This clearly has implication on our understanding of the
second law of thermodynamics and the arrow of time.
There are still other inequalities that are being discovered,
e.g., see Ref. [44] for the so-called monogamy inequality.
For detailed coverage of DPI see Refs. [49,50]. More-
over, recently, researchers have employed the so-called
entropy cone [51,52] to infer causality in processes, which
is closely related to many of our interests in this tutorial.
However, for brevity, we do not go into these details here.
Here, we merely aim to emphasize that metrics that satisfy
DPI can be used as a herald for non-Markovian behavior
based on two-time distributions only.

4. Conditional mutual information

Naturally, we can go further in the investigation of
the connection of memory and correlation measures from
information theory. While Markov processes, i.e., pro-
cesses with finite Markov order 1, satisfy the DPI, a
general process with finite Markov order (introduced in
Sec. II D) has vanishing conditional mutual information
(CMI), mirroring the fact that such a process is condition-
ally independent of past outcomes that lie further back than
a certain memory length (Markov order) of 	.

For ease of notation, we group the times {tk, . . . , t0}
on which the process at hand is defined into three seg-
ments: the history H = {t1, . . . , tk−	−1}, the memory M =
{tk−	, . . . , tk−1}, and the future F = {tk, . . . , tn}. With this,
the CMI of a joint probability distribution on past, memory,
and future is defined as

H(F : H |M ) = H(F|M ) + H(H |M ) − H(F , H |M ),
(55)

where the conditional entropy is given by

H(X |Y) = H(XY) − H(Y). (56)

This latter quantity is the entropy of the conditional distri-
bution P(X |Y) and has a clear interpretation in information
theory as the number of bits X must send to Y so the latter
party can reconstruct the full distribution.

Consequently, H(F : H |M ) is a measure of the corre-
lations that persist between F and H , once the outcomes
on M are known. Intuitively then, for a process of Markov
order 	, H(F : H |M ) should vanish as soon as M contains
more than 	 times. This can be shown by direct insertion.
Recall that by means of (the general form of) Eq. (10), we
can write P(F|M , H) = P(F|M ) for a process of Markov
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order 	 ≤ |M |, implying

P(F , H |M ) = P(F|M )P(H |M ). (57)

This means that H(F , H |M ) = H(F|M ) + H(H |M ) and,
consequently, the CMI in Eq. (55) vanishes. Importantly,
the CMI vanishes only for processes with finite Markov
order (and |M | ≥ 	), but not in general. If the CMI van-
ishes, then the future is decoupled from the entire history
given knowledge of the memory. Vanishing CMI can thus
be used as an alternative, equivalent definition of Markov
order.

Following this interpretation, the Markov order then
encodes the complexity of the process at hand, as it is
directly related to the number of past outcomes that need to
be remembered to correctly predict future statistics; if there
are d different possible outcomes at each time, then no
more than d	 different sequences need to be remembered.
While, in principle, 	 may be large for many processes,
they can often be approximated by processes with short
Markov order. This is, in fact, the assumption that is
made when real-life processes are modeled by means of
Markovian master equations.

Additionally, complementing the conditional indepen-
dence between history and future, processes with vanish-
ing CMI admit a so-called “recovery map” RM→FM that
allows one to deduce P(F , M , H) from P(M , H) by means
of a map that acts only on M (but not on H ). Indeed, we
have

P(F , M , H) = P(F|M )P(M , H),

=: RM→FM [P(M , H)], (58)

where we add additional subscripts to clarify what vari-
ables the respective joint probability distributions act on.
In spirit, the recovery map is analogous to the map �(1) we
discuss in Sec. II F in the context of hidden Markov mod-
els, with the important difference that, here, the input and
output spaces of RM→FM differ.

While seemingly trivial, the above equation states that
the future statistics of a process with Markov order 	

can be recovered by looking only at the memory block.
Whenever the memory block one looks at is shorter than
the Markov order, any recovery map only approximately
yields the correct future statistics. Importantly, though, the
approximation error is bounded by the CMI between F
and H [53,54], providing an operational interpretation of
the CMI, as well as quantifiable reasoning for the memory
truncation of non-Markovian processes.

While the treatment of concepts used to detect and quan-
tify memory we provide here is necessarily cursory, there
are two simple overall points that will carry over to the
quantum case. On the one hand, in a process without
memory, the distinguishability between distributions can-
not increase, a fact mirrored by the satisfaction of the DPI.

Put more intuitively, in a process without memory, infor-
mation is leaked into the environment but never the other
way round, leading to a “wash out” of distributions and
a decrease in their distunguishability. On the other hand,
memory is generally a question of conditional indepen-
dence between outcomes in the future and the past. One
way to make this concept manifest is by means of the CMI.

As we see in Sec. VI C, many of these properties also
apply in some form to quantum processes of finite Markov
order, with the caveat that the question of memory length
possesses a much more layered answer in the quantum case
than it does in the classical one.

D. (Some more) mathematical rigor

In this section we discuss the master equation as a means
to model aspects of stochastic processes in a fashion that is
continuous in time. This point of view is somewhat at odds
with the discrete examples and definitions we discuss in
the previous sections. As promised above, we now define
what we mean by a stochastic process in more rigorous
terms, and thus give a concrete meaning to the probability
distribution PT when |T| is infinite.

Before advancing, a brief remark is necessary to avoid
potential confusion. In the literature, stochastic processes
are generally defined in terms of random variables [3,29],
and above, we already phrase some of our examples in
terms of them. However, both in the previous examples,
as well as those that follow, explicit reference to random
variables is not a necessity, and all of the results we present
can be phrased in terms of joint probabilities alone. Thus,
foregoing the need for a rigorous introduction of random
variables and trajectories thereof, we phrase our formal
definition of stochastic processes in terms of probability
distributions only. For all intents and purposes, though,
there is no difference between our approach and the one
generally found in the literature.

To obtain a definition of stochastic processes on infi-
nite sets of times, we define stochastic processes—first for
finitely many times, then for infinitely many—in terms
of probability spaces, which we introduce in Sec. II G.
This can be done by merely extending their definition to
sequences of measurement outcomes at (finitely many)
multiple times, like, for example, the sequential tossing of
a die (with or without memory) we discuss above.

Definition (classical stochastic process): A stochastic
process on times α ∈ Tk with |Tk| = k < ∞ is a triplet
(�Tk ,STk , PTk ) of a sample space

�Tk = ×α∈Tk�α , (59)

a σ algebra STk on �Tk , and a probability measure PTk on
STk with PTk (�Tk ) = 1.
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The symbol × denotes the Cartesian product for sets.
Naturally, as already mentioned, the set Tk the stochas-
tic process is defined on does not have to contain times,
but could, as in the case of the die tossing, contain gen-
eral labels of the observed outcomes. Each �α corresponds
to a sample space at tα , and the probability measure PTk :
STk → [0, 1] maps any sequence of outcomes at times
{tα}α∈Tk to its corresponding probability of being mea-
sured. A priori, this definition of stochastic processes is
not concerned with the respective mechanism that leads to
the probability measure PTk ; above, we already see several
examples of how it emerges from the stochastic matrices
we consider. However, as mentioned, once the full statis-
tics PTk are known, all relevant stochastic matrices can
be computed. Put differently, once PTk is known, there is
no more information that can be learned about a classical
process on Tk.

We now formally define a stochastic process on sets of
times T, where |T| can be infinite. Using the mathematical
machinery we introduced, this is surprisingly simple.

Definition: A stochastic process on times α ∈ T is a triplet
(PT,�T,ST) of a sample space

�T = ×α∈T�α , (60)

a σ algebra ST on �T, and a probability measure PT on
ST with PT(�T) = 1.

While almost identical to the analogous definition for
finitely many times, conceptually, there is a crucial differ-
ence between the two. Notably, PT is not an experimentally
reconstructable quantity unless |T| is finite. Additionally,
here, we simply posit the σ algebra ST. However, gen-
erally, the explicit construction of this σ algebra from
scratch is not straightforward, and starting the descrip-
tion of a given stochastic process on times T from the
construction of ST is a daunting task, which is why, for
example, the modeling of Brownian motion processes does
not follow this route. Nonetheless, we often implicitly
assume the existence of an “underlying” process, given
by (PT,�T,ST) when discussing, for example, Brownian
motion on finite sets of times. Connecting finite joint prob-
ability distributions to the concept of an underlying process
is the main achievement of the Kolmogorov extension
theorem, as we lay out in detail below.

IV. EARLY PROGRESS ON QUANTUM
STOCHASTIC PROCESSES

Our goal in the present section, as well as the next
section, will be to follow the narrative presented in the last

two sections to obtain a consistent description of quantum
stochastic processes. However, the subtle structure of
quantum mechanics will generate technical and founda-
tional problems that will challenge our attempts to general-
ize the theory of classical stochastic processes to the quan-
tum domain. Nevertheless, it is instructive to understand
the kernel of these problems before we present the natural
generalization in the next section. Thus we begin with the
elements of quantum stochastic processes that are widely
accepted. It should be noted that we assume a certain level
of mastery of quantum mechanics from the reader. Namely,
statistical quantum states, generalized quantum measure-
ments, composite systems, and unitary dynamics. We refer
the readers unfamiliar with these standard elements of
quantum theory to textbooks on quantum-information the-
ory, e.g., Refs. [55–57]. However, for completeness, we
briefly introduce some of these elements in this section.

The intersection of quantum mechanics and stochastic
processes dates back to the inception of quantum theory.
After all, a quantum measurement itself is a stochastic
process. However, the term quantum stochastic process
means a lot more than that a quantum measurement has
to be interpreted probabilistically. Perhaps, the von Neu-
mann equation (also due to Landau) is the first instance
where elements of the stochastic process come together
with those of quantum mechanics. Here, the evolution of
a (mixed) quantum state is written as a master equation,
though this equation is fully deterministic. Nevertheless,
a few years after the von Neumann equation, genuine
phenomenological master equations appeared to explain
atomic relaxations and particle decays [58]. Later, fur-
ther developments were made as necessitated, e.g., Jaynes
introduced what is now known as a random unitary
channel [59].

Serious and formal studies of quantum stochastic pro-
cesses began in the late 1950s and early 1960s. Two early
discoveries were the exact non-Markovian master equation
due to Nakajima and Zwanzig [60,61] as well as the phe-
nomenological study of the maser and laser [62–65]. It
took another decade for the derivation of the general form
of Markovian master equations [66,67]. In the early 1960s,
Sudarshan et al. [68,69] generalized the notion of the
stochastic matrix to the quantum domain, which was again
discovered in the early 1970s by Kraus [70].

Here, in a sense, we follow the historic route by not
directly fully generalizing classical stochastic processes to
the quantum domain, but rather doing it piecewise, with an
emphasis on the problems encountered along the way. We
begin by introducing the basic elements of quantum the-
ory and move to quantum stochastic matrices (also called
quantum channels, quantum maps, dynamical maps), and
discuss their properties and representations. This then lays
the groundwork for a consistent description of quantum
stochastic processes that allows one to incorporate genuine
multitime probabilities.
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A. Quantum statistical state

As with the classical case we begin with defining the
notion of quantum statistical state. A (pure) quantum state
|ψ〉 is a ray in a d-dimensional Hilbert space HS (where we
employ the subscript S for system). Just like in the classical
case, d corresponds to the number of perfectly distinguish-
able outcomes. Any such pure state can be written in terms
of a basis:

|ψ〉 =
d∑

s=1

cs |s〉 , (61)

where {|s〉} is an orthonormal basis, cs are complex num-
ber, and we assume d < ∞ throughout this tutorial. Thus
the quantum state is a complex vector, which is required
to satisfy the property 〈ψ |ψ〉 = 1, implying

∑
s |cs|2 = 1.

It may be tempting to think of |ψ〉 as the quantum gen-
eralization of the classical statistical state P. However, as
mentioned, a state that is represented in the above form
is pure, i.e., there is no uncertainty about what state the
system is in. To account for potential ignorance, one intro-
duces density matrices, which are better suited to fill the
role of quantum statistical states.

Density matrices are written in the form

ρ =
n∑

j =1

pj |ψj 〉 〈ψj | , (62)

which can be interpreted as an ensemble of pure quan-
tum states {|ψj 〉}n

j =1 that are prepared with probabilities
pj such that

∑n
j =1 pj = 1. Such a decomposition is also

called a convex mixture. Naturally, pure states are spe-
cial cases of density matrices, where pj = 1 for some j .
In other words, density matrices represent our ignorance
about which element of the ensemble or the exact pure
quantum state we possess. It is important though, to add
a qualifier to this statement: seemingly, Eq. (62) provides
the “rule,” by which the statistical quantum state at hand is
prepared. However, this decomposition in terms of the pure
state is neither unique nor do the states {|ψj 〉} that appear in
it have to be orthogonal. For any nonpure density matrix,
there are infinitely many ways of decomposing it as a con-
vex mixture of pure states [71–73]. This is in stark contrast
to the classical case, where any probability vector can be
uniquely decomposed as a convex mixture of perfectly dis-
tinguishable “pure” states, i.e., events that happen with unit
probability.

For a d-dimensional system, the density matrix is a
d × d square matrix [i.e., an element of the space B(H)

of bounded operators on the Hilbert space H]

ρ =
d∑

r,s=1

ρrs |r〉 〈s| and ρ ∈ B(H). (63)

Due to physical considerations, like the necessity for prob-
abilities to be real, positive, and normalized, the density
matrix must be

(a) Hermitian ρrs = ρ∗
sr,

(b) positive semidefinite 〈x|ρ|x〉 ≥ 0 for all |x〉, and
(c) unit trace

∑
r ρrr = 1.

Throughout, we denote semidefiniteness by ρ ≥ 0. As
noted above, the density matrix is really the generaliza-
tion of the classical probability distribution P. In fact, a
density matrix that is diagonal in the computational basis
is just a classical probability distribution. Conversely, the
off-diagonal elements of a density matrix, known as coher-
ences, make quantum mechanics noncommutative and are
responsible for the interference effects that give quantum
mechanics its wavelike nature. However, it is important to
realize that a density matrix is like the single-time prob-
ability distribution P, in the sense that it provides the
probabilities for any conceivable measurement outcome at
a single given time to occur. It will turn out that the key
to the theory of quantum stochastic process lies in clearly
defining a multitime density matrix.

There are many interesting properties and distinct ori-
gins for the density matrix. While we have simply heuris-
tically introduced it as an object that accounts for the
uncertainty about what current state the system at hand is
in, there are more rigorous ways to motivate it. One way to
do so is, e.g., Gleason’s theorem, which is grounded in the
language of measure theory [74,75], and, basically, derives
density matrices as the most general statistical object that
provides “answers” to all questions an experimenter can
ask.

Concerning its properties, a density matrix is pure if and
only if ρ2 = ρ. Any (nonpure) mixed quantum state ρS,
of the system S, can be thought of as the marginal ρS =
trS′[|ψ〉SS′ 〈ψ |] of a bipartite pure quantum state |ψ〉SS′ ,
which must be entangled. This fact is known as quantum
purification and it is an exceedingly important property
that we discuss in Sec. IV B 4. Of course, the same state
ρS can also be thought as a proper mixture of an ensem-
ble of quantum states on the space S alone. However,
quantum mechanics does not differentiate between proper
mixtures and improper mixtures, i.e., mixedness due to
entanglement (see Ref. [76] for a discussion of these dif-
ferent concepts of mixtures). As mentioned, mixtures are
nonunique. The same holds true for purifications; for a
given density matrix ρS, there are infinitely many pure
states that have it as a marginal.

Finally, let us say a few words about the mathematical
structure of density matrices. Density matrices are ele-
ments of the vector space of d × d Hermitian matrices,
which is d2 dimensional. Consequently, akin to the decom-
position of pure state in Eq. (61) in terms of an orthonormal
basis, a density matrix can also be cast in terms of a fixed
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set of d2 orthonormal basis operators:

ρ =
d2∑

k=1

rkσ̂k, (64)

where we can choose different sets {σ̂k} of basis matri-
ces [77]. They can, for example, be Hermitian observables
(e.g., Pauli matrices plus the identity matrix), in which case
{rk} are real numbers. Also, {σ̂k} can be non-Hermitian
elementary matrices, in which case {rk} are complex num-
bers; in both cases, we may have the matrix orthonormality
condition tr[σ̂j σ̂

†
k ] = Nδjk, with N being a normalization

constant. However, in neither case, the matrices {σ̂k} corre-
spond to physical states, as there is no set of d2 orthogonal
d × d quantum states, since a d-dimensional system can
have only d perfectly distinguishable states.

We can, however, drop the demand for orthonormality,
and write any density matrix as a linear sum of a fixed set
of d2 linearly independent density matrices {�̂k}

ρ =
∑

k

qk�̂k. (65)

Here, {qk} will be real but generally not positive, see Fig. 8.
This appears to be in contrast to Eq. (62), where the density
matrix is written as a convex mixture of physical states.
The reason for this distinction is that in the last equation we
have fixed the basis operators {�̂k}, which span the whole
space of Hermitian matrices, and demand that any quan-
tum state can be written as a linear combination of them,
while in Eq. (62) the states {|ψj 〉} can be any quantum
state, i.e., they would have to vary to represent different
density matrices as convex mixtures. Understanding these
distinctions will be crucial in order to grasp the pitfalls that
lie before us as well as to overcome them.

| x+⟩

| x−⟩

| y−⟩ | y+⟩

ρ

FIG. 8. Nonconvex decomposition. All states in the x-y plane
of the Bloch sphere, including the pure states, can be described
by the basis state �̂1, �̂2, and �̂4 in Eq. (69). However, only the
states in shaded region will be convex mixtures of these basis
states. Of course, no pure state can be expressed as a convex
mixture.

1. Decomposing quantum states

Let us illustrate the concept of quantum states with a
concrete example for d = 2, i.e., the qubit case. A generic
state of one qubit can, for example, be written as

α = 1
2
(
σ̂0 + a1σ̂1 + a2σ̂2 + a3σ̂3

)
(66)

in terms of Pauli operators {σ̂1, σ̂2, σ̂3} and the identity
matrix σ̂0. The set {σ̂0, σ̂1, σ̂2, σ̂3} forms an orthogonal basis
of the space of 2 × 2 Hermitian matrices, which implies
aj ∈ R, while positivity of α enforces

∑
a2

j ≤ 1. We can
write the same state in terms of elementary matrices

α =
∑

ij

eij ε̂ij , where ε̂ij = |i〉〈j |, (67)

with complex coefficients {e00, e01, e10, e11} being

{
1 + a3

2
,

a1 − ia2

2
,

a1 + ia2

2
,

1 − a3

2

}
. (68)

The elementary matrices are non-Hermitian but orthonor-
mal, i.e., tr[ε̂ij ε̂

†
kl] = δikδjl.

These are, of course, two standard ways to represent a
qubit state in terms of well-known orthonormal bases. On
the other hand, we can expand the same state in terms of
the following basis states:

�̂1 = |+x〉 〈+x| , �̂2 = |+y〉 〈+y| ,

�̂3 = |+z〉 〈+z| , �̂4 = |−x〉 〈−x| ,
(69)

where |±x〉, |±y〉, and |±z〉 are the eigenvectors of σ̂1, σ̂2,
and σ̂3, respectively. With this, for any Hermitian matrix
α we have α =∑k qk�̂k. It is easy to see that the den-
sity matrices �̂k are Hermitian and linearly independent,
but not orthonormal. The real coefficients {q1, q2, q3, q4}
are obtained by following the inner product

qk = tr(αD̂†
k) =
∑

j

qj tr(�̂j D̂†
k), (70)

where the set {D̂k} is dual to the set of matrices in
Eq. (69) satisfying the condition tr(�̂iD̂

†
j ) = δij . We show

below that such dual matrices are a helpful tool for the
experimental reconstruction of density matrices. See the
Appendix in Refs. [78,79] for a method for constructing
the dual basis.
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For example, for the set of density matrices in Eq. (69)
the dual set is

D̂1 = σ̂0 + σ̂1 − σ̂2 − σ̂3

2
, D̂2 = σ̂2,

D̂3 = σ̂3, D̂4 = σ̂0 − σ̂1 − σ̂2 − σ̂3

2
.

(71)

Note that, even though the states �̂k are positive, this dual
set {D̂k} does not consist of positive matrices (all the duals
of a set of Hermitian matrices are Hermitian, though [79]).
Nonetheless, it gives us the coefficient in Eq. (70) as

{
1 + a1 − a2 − a3

2
, a2, a3,

1 − a1 − a2 − a3

2

}
. (72)

Interestingly, the dual set of a basis itself also forms a linear
basis, and we can write any state α as

α =
∑

k

pkD̂†
k , (73)

where pk = tr(α�̂k). Note that, if all basis elements �̂k are
positive semidefinite, then pk ≥ 0, and we have

∑
k pk =

1 if
∑

k �̂k = 1. This decomposition in particular lends
itself nicely to experimental reconstruction of the state α.
Specifically, given many copies of α, the value tr(α�̂k) is
obtained by projecting α along directions x, y, z, i.e., mea-
suring the observables σ̂1, σ̂2, and σ̂3. The inner product
tr(α�̂k) is then nothing more than a projective measure-
ment along direction k and pk is the probability of observ-
ing the respective outcomes. Importantly, as the duals {D̂k}
can be computed from the basis {�̂k}, these probabilities
then allow us to estimate the state via Eq. (73).

Intuitively, this procedure is not unlike the way in which
one determines the classical state of a system; for exam-
ple, in order to determine the bias of a coin, one flips it
many times and records the respective outcome probabili-
ties for heads and tails. The crucial difference is quantum
mechanics is that one must measure in different directions
to fully construct the state of interest. Algebraically, this
fact is reflected by the dimension of the space of d × d
Hermitian matrices, which is d2 dimensional, thus, in order
to fully determine a density matrix, one needs to know
its overlap with d2 linearly independent Hermitian matri-
ces. If, however, one knows in which basis the state one
aims to represent is diagonal—as is the case in classical
physics—then the overlap with the d projectors that make
up its eigenbasis is sufficient.

The procedure to estimate a quantum state by measuring
it is called quantum state tomography [80–82]. There are
many sophisticated methods to this nowadays, which we
only briefly touch on in this tutorial.

2. Measuring quantum states: POVMs and dual sets

A quantum state can be reconstructed experimentally,
by measuring enough observables (above, with the observ-
ables σ̂1, σ̂2, and σ̂3), and collecting the corresponding
outcome probabilities. Performing pure projective mea-
surement is not the only way in quantum mechanics to
gather information about a state. More generally, a mea-
surement is described by a POVM, a collection J =
{Ek}n

k=1 of positive operators (here, matrices), that add up
to the identity, i.e.,

∑
k Ek = 1 (we comment on the phys-

ical realizability of POVMs below; for the moment, they
can just be thought of as a natural generalization of pro-
jective measurements). Each Ek corresponds to a possible
measurement outcome, and the probability to observe said
outcome is given by the Born rule:

pk = tr(ρEk). (74)

Projective measurements are then a special case of
POVMs, where Ek = |k〉〈k| and {|k〉} are the eigenstates of
the measured observable. For example, when measuring
the observable σ̂3, the corresponding POVM is given by
J = {|+z〉〈+z|, |−z〉〈−z|}, and the respective probabili-
ties are computed via p± = 〈±z|ρ| ± z〉 = tr(ρ|±z〉〈±z|).

A less trivial example on a qubit is the symmetric
informationally complete (SIC) POVM [80] J = {Êk =
1
2 |φk〉〈φk|}4

k=1, where

|φ1〉 = |0〉 , (75)

|φk〉 =
√

1
3

|0〉 +
√

2
3

ei(2(k−2)π/3) |1〉 for k = 2, 3, 4.

While still pure (up to normalization), these POVM ele-
ments are not orthogonal. However, as they are linearly
independent, they span the d2 = 4-dimensional space of
Hermitian qubit matrices, and every density matrix is
fully characterized once the probabilities pk = tr(ρÊk)

are known. As this holds true in any dimension for
POVMs consisting of d2 linearly independent elements,
such POVMs are called “informationally complete” (IC)
[83]. Importantly, using the ideas outlined above, an infor-
mationally complete POVM allows one to fully reconstruct
density matrices.

In short, to do so, one measures the system with an
IC POVM, whose operators {Êk} linearly span the matrix
space of the system at hand. The POVM yields probabili-
ties {pk}, and the measurement operators {Êk} have a dual
set {�̂k}. The density matrix is then of the form [see also
Eq. (73)]

ρ =
∑

k

pk�̂
†
k , (76)

which can be seen by direct insertion; the above state
yields the correct probability with respect to each of the
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POVM elements Êk. Concretely, we have

tr(ρÊk) =
∑

	

p	tr(�̂	Êk) = pk, (77)

where we use tr(�̂	Êk) = δ	k. As the POVM is infor-
mationally complete, this implies the state defined in
Eq. (76) yields the correct probabilities with respect to
every POVM.

It remains to comment on the existence of IC POVMs,
and the physical realizability of POVMs in general, which,
at first sight, appear to be a mere mathematical construc-
tion. Concerning the former, it is easy to see that there
always exists a basis of d2 × d2 Hermitian matrices that
only consists of positive elements. Choosing such a set

{Fk}d2

k=1 of positive elements, one can set F :=∑d2

k=1 Fk.
By construction, F is positive semidefinite. Without much
loss of generality, let us assume that F is invertible (if it
is not, then we could work with the pseudoinverse in what
follows). Then,

J = {Ek = F−1/2FkF−1/2}d2

k=1 (78)

constitutes a set of positive matrices that add up to 1.
To see that the matrices {Ek}d2

k=1 are linearly indepen-
dent, let us assume the opposite and that, for example,
E1 can be written in terms of the remaining Ek, i.e.,

E1 =∑d2

k=2 akEk. Multiplying this expression from the

left and the right by F1/2 then yields F1 =∑d2

k=2 akFk,
which contradicts the original assumption that the matri-
ces {Fk}d2

k=1 are linearly independent. Consequently, the set

{Ek}d2

k=1 is an IC POVM. More pragmatically, one could
make one’s life easier and sample d2 − 1 positive matrices

{Ek}d2−1
k=1 according to one’s measure of choice. In general,

these sampled matrices are linearly independent. Then, one

chooses an α > 0 such that Ed2 := 1 −∑k{Ek}d2−1
k=1 ≥ 0.

With this, the set {Ek}d2

k=1 is a POVM by construction, and
in general also informationally complete.

With respect to the latter, i.e., the physical realizabil-
ity of POVMs, due to Neumark’s theorem [84–86], any
POVM can be realized as a pure projective measurement
in a higher-dimensional space, thus putting them on the
same foundational footing as “normal” measurements in
quantum mechanics. Without going any deeper into the
theory of POVMs, let us emphasize the take-home mes-
sage of the above sections: quantum states can be exper-
imentally reconstructed in a very similar way as classical
states, by simply collecting sufficient statistics; however,
the number of necessary measurements is larger and their
structure is richer. While this latter point seems innocuous,
it actually lies at the heart of the problems one encoun-
ters when generalizing classical stochastic processes to the

quantum realm, like the breakdown of the KET; if all nec-
essary measurements could be chosen to be diagonal in the
same basis, then there would be no fundamental difference
between classical and quantum processes.

B. Quantum stochastic matrix

Our overarching aim is to generalize the notion of
stochastic processes to quantum theory. Here, after having
discussed quantum states and their experimental recon-
struction in the previous section, we generalize the notion
of classical stochastic matrices. In the classical case a
stochastic matrix, in Eq. (12), is a mapping of a statistical
state from time tj to time tk, i.e., �(k:j ) : P(Xj ) �→ P(Xk).
As such, in clear analogy, we are looking for a mapping
of the form E(k:j ) : ρ(tj ) �→ ρ(tk). While there are differ-
ent representations of E(k:j ) (see, for example, Ref. [79]),
we start with the one that most closely resembles the
classical case, where a probability vector gets mapped to
another probability vector by means of a matrix �(k:j ). The
density matrix is the quantum generalization of the classi-
cal probability distribution. Then, consider the following
transformation that turns a density matrix into a vector:

ρ =
∑

rs

ρrs |r〉 〈s| ←→ |ρ〉〉 :=
∑

rs

ρrs |rs〉〉 , (79)

where we use the |•〉〉 notation to emphasize that the
vector originally stems from a matrix. This procedure
is often called vectorization of matrices, for details see
Refs. [56,87–89].

Next, in clear analogy to Eq. (14), we can define a matrix
Ĕ that maps a density matrix ρ (say, at time tj ) to another
density matrix ρ ′ (say, at time tk); we add the symbol ˘ to
distinguish the map E from its matrix representation Ĕ .
Using the above notation, this matrix can be expressed as

Ĕ :=
∑

r′s′,rs

Ĕr′s′,rs |r′s′〉〉 〈〈rs| (80)

and the action of E can be written as

|E[ρ]〉〉 = Ĕ |ρ〉〉 =
∑

r′s′rs

Ĕr′s′,rsρrs |r′s′〉〉 = |ρ ′〉〉 . (81)

Here, Ĕ is simply a matrix representing the map E :
B(Hi) → B(Ho) [90], very much like the stochastic
matrix, that maps the initial state to the final state. For
better bookkeeping, we explicitly distinguish between the
input (i) Hilbert space Hi and output (o) Hilbert space Ho

and denote the space of matrices on said spaces by B(Hx).
While for the remainder of this tutorial, the dimensions of
these two spaces generally agree, in general, the two are
allowed to differ, and even in the case where they do not, it
proves advantageous to keep track of the different spaces.
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It was with the above intuition Sudarshan et al. called
Ĕ the quantum stochastic matrix [68]. In today’s litera-
ture, it is often referred to as a quantum channel, quantum
dynamical map, etc. Along with many names, it also has
many representations. We do not go much into these details
here (see Ref. [79] for further information). We, however,
briefly discuss some of its important properties. Note, that
we stick to discrete level systems and do not touch the
topics of Gaussian quantum information [91,92].

Amplitude damping channel. Before that, let us
quickly provide an explicit example of a quantum stochas-
tic matrix. Consider a relaxation process that takes any
input quantum state to the ground state. Such a process is,
for example, described by the so-called amplitude damping
channel

ĔAD
(t:0) =

⎛

⎜⎜⎝

1 0 0 1 − p(t)
0
√

p(t) 0 0
0 0

√
p(t) 0

0 0 0 p(t)

⎞

⎟⎟⎠ . (82)

This matrix acts on a vectorized density matrix of a qubit,
i.e., |ρ(0)〉〉 = [ρ00, ρ01, ρ10, ρ11]T to yield |ρ(t)〉〉 = {ρ00 +
[1 − p(t)]ρ11,

√
p(t)ρ01,

√
p(t)ρ10, p(t)ρ11}T. When p(t) =

exp{−γ t}, we get relaxation exponentially fast in time, and
for t → ∞, any input state will be mapped to [1, 0, 0, 0]T.
This example is very close in spirit of the classical example
in Eq. (40).

Here, already, it is easy to see that the matrices Ĕ , unlike
their classical counterparts, do not possess nice properties,
like Hermiticity, or stochasticity (note that, for example,
neither the rows not the columns of ĔAD

(t:0) sum to unity).
However, these shortcomings can be remedied in different
representations of Ĕ . Also note that, here, we actually have
a family of quantum stochastic matrices parameterized by
time (for each time t we have in general a different map).
When we speak of a family of maps we label them with
subscript (t : 0). However, often the stochastic matrix rep-
resents only a mapping from the initial time to a final time.
In such cases, we omit the subscript and refer to the initial
and final states as ρ and ρ ′, respectively.

1. Linearity and tomography

Having formally introduced quantum maps, the gener-
alization of stochastic matrices in the classical case, it is
now time to discuss the properties they should display. We
begin with one of the most important features of quantum
dynamics. The quantum stochastic map, like its classical
counterpart, is a linear map:

E[αA + βB] = αE[A] + βE[B]. (83)

This is straightforwardly clear for the specific case of
the quantum stochastic matrix Ĕ because the vectoriza-
tion of a density matrix itself is also a linear map, i.e.,

|A + B〉〉 = |A〉〉 + |B〉〉. Once this is done, the rest is just
matrix transformations, which are linear.

The importance of linearity cannot be overstated and
exploit this property over and over and, in particular, the
linearity of quantum dynamics plays a crucial role in defin-
ing an unambiguous set of Markov conditions in quantum
mechanics and, as we have seen, it is the fundamental
ingredient in the experimental reconstruction of quantum
objects. Due to linearity, a quantum channel is fully defined
once its action on a set of linearly independent states is
known. From a practical point of view, this is important
for experimentally characterizing quantum dynamics by
means of a procedure known as quantum process tomog-
raphy [80,93] (see, e.g., Refs. [94,95] for a more in-depth
discussion).

To see how this works out in practice, let us prepare
a set of linearly independent input states, say {�̂k}, and
determine their corresponding outputs {E[�̂k]} by means of
quantum state tomography (which we discuss above). The
corresponding input-output relation then fully determines
the action of the stochastic map on any density matrix

E[ρ] =
∑

k

qkE[�̂k], (84)

where we use Eq. (65), i.e., ρ =∑k qk�̂k. The above
equation highlights that, once the output states for a basis
of input states are known, the action of the entire map is
determined.

Using ideas akin to the aforementioned tomography of
quantum states we can also directly use linearity and dual
sets to reconstruct the matrix Ĕ . Above, we see that a quan-
tum state is fully determined, once the probabilities for an
informationally complete POVM are known. In the same
vein, a quantum map is fully determined, once the output
states for a basis {�̂j }d2

j =1 of input states are known. Con-
cretely, setting ρ ′

j = E[�̂j ], and denoting the dual set of

{�̂j }d2

j =1 by {D̂k}d2

k=1, we have

Ĕ =
d2∑

j =1

|ρ ′
j 〉〉〈〈D̂j |. (85)

Indeed, it is easy to see that 〈〈A|B〉〉 = tr(A†B), implying
that, with the above definition, we have Ĕ |�̂j 〉〉 = |ρ ′

j 〉〉 for

all basis elements. Due to linearity, this implies that Ĕ
yields the correct output state for any input state. Mea-
suring the output states for a basis of input states is thus
sufficient to perform process tomography. Specifically, if
the output states ρ ′

j are measured by means of an informa-
tionally complete POVM {Ek} with corresponding dual set
{�k}d2

k=1, then ρ ′
j =∑k p (j )

k �̂
†
k , with p (j )

k = tr(�̂j Ek) and
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FIG. 9. Quantum process tomography. Any quantum channel
E can be reconstructed by preparing a basis of input states
and measuring the corresponding output states ρ ′

j = E[�̂j ] with
an informationally complete POVM. The corresponding duals
{D̂j }, {�̂k} and the outcome probabilities then allow for the
reconstruction of E according to Eq. (86).

Eq. (85) reads

Ĕ =
d2∑

j ,k=1

p (j )
k |�̂k〉〉〈〈D̂j |. (86)

As the experimenter controls the states they prepare at each
run (and, as such, the dual D̂j corresponding to each run),
as well as the POVM they use, determining the probabil-
ities p (j )

j thus enables the reconstruction of Ĕ (see Fig. 9
for a graphical representation). While we do not discuss
the reconstruction of classical stochastic maps in detail,
it is clear that it works in exactly the same vein. The
above arguments hinge only on linearity as their main
ingredient, implying that, analogous to the quantum case,
a classical stochastic matrix �(t:0) is determined once the
resulting output distributions �(t:0)[P̂j ] for a basis of input

distributions P̂j are known.

2. Complete positivity and trace preservation

While linearity is a crucial property of quantum chan-
nels, it is naturally not the only pertinent one. A classical
stochastic matrix maps probability vectors to probability
vectors. As such, it is positive, in the sense that it maps any
vector with positive semidefinite entries to another positive
semidefinite vector. In the same vein, quantum channels
need to be positive, as they have to map all density matri-
ces to proper density matrices, i.e., positive semidefinite
matrices to positive semidefinite matrices.

One crucial difference between classical stochastic
maps and their quantum generalization is the requirement
of complete positivity. A positive stochastic matrix is guar-
anteed to map probabilities into probabilities even if it acts
nontrivially only on a subpart (implying that only some but
not all degrees of freedom undergo the stochastic process

at hand), i.e.,

�APA = RA ≥ 0 ⇔ (�A ⊗ 1B)PAB = RAB ≥ 0, (87)

for all PA and PAB where A and B are two different spaces
and 1B is the identity process on B. Here, P ≥ 0 means
that all the entries of the vector are positive semidefinite,
and we give all objects additional subscripts to denote the
spaces they act and live on.

The same is not true in quantum mechanics. Namely,
there are maps that take all density matrices to density
matrices on a subspace, but their action on a larger space
fails to map density matrices to density matrices, i.e.,

EA[ρA] ≥ 0 but EA ⊗ IB[ρAB] � 0, (88)

where IB is the identity map on the system B, i.e.,
IB[ρB] = ρB for all ρB, and ρ ≥ 0 means that all eigenval-
ues of ρ are positive semidefinite. These maps are called
positive maps, and they play an important role in the theory
of entanglement witnesses [96,97]. The most prominent of
a positive, but not completely positive map is the transposi-
tion map ρ → ρT. It is easy to show that positivity breaks
only when the map E acts on an entangled bipartite state
(which is why positivity and complete positivity coincide
in the classical case). Of course, giving up positivity of
probability is not physical, and as such a positive map that
is not also positive when acting on a part of a state is not
physical.

One thus demands that physical maps must take all den-
sity matrices to density matrices, even when acting only
nontrivially on a part of them, i.e.,

EA ⊗ IB[ρAB] ≥ 0 ∀ ρAB ≥ 0. (89)

Maps, for which this is true for the arbitrary size of the
system B are called completely positive (CP) maps [1]
and are the only maps we consider throughout this tuto-
rial (for a discussion of noncompletely positive maps and
their potential physical relevance—or lack thereof—see,
for example, Refs. [79,98–102]).

In addition to preserving positivity, i.e., preserving the
positivity of probabilities, quantum maps also must pre-
serve the trace of the state ρ, which amounts to preserving
the normalization of probabilities. This is the natural gen-
eralization of the requirement on stochastic matrices that
their columns sum up to 1. Consequently, for a quantum
channel, we demand that it satisfies

tr(E[ρ]) = tr(ρ) ∀ρ. (90)

If a map EA is trace preserving, then so is EA ⊗ IB. We
refer to completely positive maps that are also trace pre-
serving as CPTP maps, or quantum channels. Importantly,
while the physicality of noncompletely positive maps is
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questionable, we frequently encounter maps that are CP,
but only trace nonincreasing instead of trace preserving.
Such maps are the natural generalizations of POVM ele-
ments and will play a crucial role when modeling quantum
stochastic processes. Together, linearity, complete posi-
tivity, and trace preservation fully determine the set of
admissible quantum channels.

3. Representations

In the classical case, stochastic matrices map vectors
to vectors, and are thus naturally expressed in terms of
matrices. In contrast, here, quantum channels map density
matrices to density matrices, raising the question of how to
represent their action for concrete calculations. We do not
discuss the details of different representations here in much
depth and provide only a rather basic introduction; we refer
the reader to Refs. [56,79,103] for further reading.

Above, we already see the matrix representation Ĕ of the
quantum stochastic map in Eq. (80). This representation is
rather useful for numerical purposes, as it allows one to
write the action of the map E as a matrix multiplication.
However, it is not straightforward to see how complete
positivity and trace preservation enter into the properties of
Ĕ . When we add these two properties to the mix, there are
two other important and useful representations that prove
more insightful. First is the so-called Kraus representation
of completely positive maps:

E[ρ] =
∑

j

Kj ρK†
j , (91)

where the linear operators {Kj } are called Kraus opera-
tors [70,104] (though, this form was first discovered in
Ref. [68]). For the case of input and output spaces of the
same size, Kraus operators are simply d × d matrices, and
hence are just operators on the Hilbert space. For this rea-
son E is often called a superoperator, i.e., an operator on
operators. Denoting—as above—the space of matrices on
a Hilbert space H by B(H), it can be shown that a map
E : B(Hi) → B(Ho) is CP if and only if it can be written
in the Kraus form (91) for some d × d matrices {Kj }. For
the “if” part, note that for any ρAB ≥ 0, we have

∑

j

(Kj ⊗ 1B)ρAB(K
†
j ⊗ 1B) =

∑

j

Mj M †
j , (92)

where Mj := (Kj ⊗ 1B)
√
ρAB. Since any matrix that can

be written as Mj M †
j is positive, we see that a map E

that allows for a Kraus form maps positive matrices of
any dimension onto positive matrices, making E com-
pletely positive. The “only if” part is discussed below after
introducing a second important representation of quantum
channels.

Finally, the CP map E is trace preserving, if and only
if the Kraus operators satisfy

∑
j K†

j Kj = 1, which can be

seen directly from tr
(∑

j Kj ρK†
j

)
= tr
(∑

j K†
j Kj ρ
)

.

Depolarizing channel. Let us consider a concrete
example of the Kraus representation. A common quan-
tum map that one encounters in this representation is the
depolarizing channel on qubits:

EDP[ρ] =
3∑

j =0

pj σj ρσj with pj ≥ 0,
∑

j

pj = 1, (93)

where {σj } are the Pauli operators. This map is an example
of a random unitary channel [105], i.e., it is a probabilis-
tic mixture of unitary maps. When the pj are uniform the
image of this map is the maximally mixed state for all
input states. It is straightforward to see that the above
map is indeed CPTP, as it can be written in terms of the
Kraus operators {Kj = √pj σj }, and we have

∑
j K†

j Kj =∑
j pj σj σj = 1.
Another important representation that nicely incorpo-

rates the properties of complete positivity and trace preser-
vation is that in terms of so-called Choi matrices. For
this representation of E , consider its action on one part
of an (unnormalized) maximally entangled state |�+〉 :=∑di

k=1 |kk〉:
ϒE := E ⊗ I

[|�+〉〈�+|] ,

=
di∑

k,l=1

E [|k〉〈l|] ⊗ |k〉〈l|, (94)

where {|k〉} is an orthonormal basis of Hi. See Fig. 10 for
a graphical depiction. The resultant matrix ϒE ∈ B(Ho ⊗
Hi) is isomorphic to the quantum map E . This can eas-
ily be seen by noting that in the last equation E is acting
on a complete linear basis of matrices, i.e., the elemen-
tary matrices {ε̂kl := |k〉 〈l|}. Consequently, ϒE contains all
information about the action of E . In principle, instead
of �+, any bipartite vector with full Schmidt rank could
be used for this isomorphism [106], but the definition
we use here is the one encountered most frequently in
the literature. In the form of Eq. (94) it is known as
the Choi-Jamiołkowski isomorphism (CJI) [107–109]. It
allows one to map linear maps, E : B(Hi) → B(Ho) to
matrices ϒE ∈ B(Ho) ⊗ B(Hi).

Usually, ϒE is called the Choi matrix or Choi state of
the map E . We mostly refer to it by the latter. Given ϒE ,
the action of E can be written as

E[ρ] = tri
[(
1o ⊗ ρT

)
ϒE
]

, (95)

where tri is the trace over the input space Hi and 1o

denotes the identity matrix on Ho. The validity of Eq. (95)
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can be seen by direct insertion of Eq. (94):

tri
[(
1o ⊗ ρT

)
ϒE
] =

di∑

k,	=1

〈	|ρT|k〉 E [|k〉〈l|] ,

=
di∑

k,	=1

E [〈k|ρ|	〉 |k〉〈	|] ,

= E[ρ], (96)

where we use the linearity of E . A related decomposition
of the Choi state is

ϒE =
∑

k

ρ ′
j ⊗ D̂∗

j , (97)

where {ρ ′
j = E[ρ̂j ]} are the output states corresponding to a

basis of input states. The above equation is simply a reshuf-
fling of Eq. (85) from vectors to matrices. As is the case for
Eq. (85), its validity can be checked by realizing that the
Choi state ϒE yields the correct output state for a full basis
of input states, which can be seen by direct insertion of
Eq. (97) into (95).

For quantum maps, ϒE has particularly nice properties.
Complete positivity of E is equivalent to ϒE ≥ 0, and it
is straightforward to deduce from Eq. (95) that E is trace
preserving if and only if tro(ϒE) = 1i (see below for a
quick justification of these statements). These properties
are much more transparent, and easier to work with than,
for example, the properties that make Ĕ a matrix corre-
sponding to a CPTP map. Additionally, Eq. (95) allows one
to directly relate the representation of E in terms of Kraus
operators to the Choi state ϒE , and, in particular, the mini-
mal number of required Kraus operators to the rank of ϒE .
Specifically, in terms of its eigenbasis, ϒE can be written as
ϒE =∑r

α=j λj |�j 〉〈�j |, where r = rank(ϒE) and λj ≥ 0.

FIG. 10. Choi-Jamiołkowski isomorphism. A map E : B(Hi)

→ B(Ho) can be mapped to a matrix ϒE ∈ B(Ho ⊗ Hi) by
letting it act on one half on a maximally entangled state. Note
that, for ease of notation, here, we let E act on B(Hi′), such that
ϒE ∈ B(Ho ⊗ Hi). As Hi′ ∼= Hi, this is merely a relabeling
and not of conceptual relevance.

Inserting this into Eq. (95), we obtain

E[ρ] =
r∑

j =1

⎛

⎝√λj

di∑

α=1

〈α|�j 〉 〈α|
⎞

⎠ ρ

⎛

⎝√λj

di∑

β=1

|β〉 〈�j |β〉
⎞

⎠,

=:
r∑

j =1

Kj ρK†
j , (98)

where {|α/β〉} is a basis of Hi. The above equation pro-
vides a Kraus representation of E with the minimal number
of Kraus operators (for more details on this connection
between Choi matrices and Kraus operators, see, for exam-
ple, Ref. [110]). Equation (98) directly allows us to provide
the missing properties of the Kraus and Choi representa-
tions that we alluded to above. Firstly, if E is CP, then
naturally, ϒE is positive, which can be seen from its
definition in Eq. (94). On the other hand, if ϒE is positive,
then Eq. (98) tells us that it leads to a Kraus form, imply-
ing that the corresponding map E is completely positive.
In addition, this means that any completely positive map
admits a Kraus decomposition, a claim we made several
paragraphs above. Finally, from Eq. (95) we see directly
that tro(ϒE) = 1i holds for all for trace-preserving maps
E . Naturally, all representations of quantum maps can
be transformed into one another; details of how this is
done can be found, for example, in Refs. [79,111]; how-
ever, for our purposes, it will prove very advantageous to
predominantly use Choi states.

Depolarizing channel. For concreteness, let us consider
the above case of the depolarizing channel EDP and provide
its Choi state. Inserting Eq. (93) into Eq. (94), we obtain

ϒDP
E =

⎛

⎜⎝

p0 + p3 0 0 p0 − p3
0 p1 + p2 p1 − p2 0
0 p1 − p2 p1 + p2 0

p0 − p3 0 0 p0 + p3

⎞

⎟⎠ . (99)

The resulting matrix ϒDP
E is positive semidefinite (with

corresponding eigenvalues {2p0, 2p1, 2p2, 2p3}), satisfies
troϒDP

E = 1i, and trϒDP
E = 2 = di.

Besides its appealing mathematical properties, the CJI
is also of experimental importance. Given that a (normal-
ized) maximally entangled state can be created in practice,
the CJI enables another way of reconstructing a representa-
tion of the map E ; letting it act on one half of a maximally
entangled state and reconstructing the resulting state via
state tomography directly yields ϒE . While this so-called
ancilla-assisted process tomography [112,113] requires
the same number of measurements as the input-output
procedure, it can be—depending on the experimental sit-
uation—easier to implement in the laboratory.

Additionally, since they simply correspond to quan-
tum states with an additional trace condition, Choi states
straightforwardly allow for the analysis of correlations in
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FIG. 11. Stinespring dilation. Any CPTP map on the system S
can be represented in terms of a unitary on a larger space SA and
final discarding of the additional degrees of freedom. The corre-
sponding unitary can be computed by means of Eq. (105). Here,
for simplicity, we drop the explicit distinction between input and
output spaces we normally employ.

time—in the same way as quantum states do in space.
Consequently, below, when analyzing pertinent properties
of quantum stochastic processes, like, for example, quan-
tum Markov order, many of the results will be most easily
phrased in terms of Choi states and we make ample use of
them.

4. Purification and dilation

At this point, after having pinned down the properties of
statistical objects in quantum mechanics, it is worth taking
a short detour to comment on the origin of stochasticity
in the quantum case, and how it differs from the classical
one. Importantly, in quantum mechanics any mixed state
ρS can be thought of as the marginal of a pure state |�〉SS′
in a higher-dimensional space that, i.e., for any ρS, there
exists a pure state |�〉SS′ such that trS′(|�〉SS′ 〈�|) = ρS.
The state |�〉SS′ is then called a purification of ρS. The
mixedness of a quantum state can thus always be consid-
ered as stemming from ignorance about about additional
degrees of freedom. This is in contrast to classical physics,
which is not endowed with a purification principle.

To show that such a purification always exists, recall that
any mixed state ρS is diagonal in its eigenbasis {|r〉S}, i.e.,

ρS =
∑

r

λr |r〉S 〈r| , with λr ≥ 0 and
∑

r

λr = 1.

(100)

This state can, for example, be purified by

|�〉SS′ =
∑

r

√
λr |r〉S |r〉S′ . (101)

More generally, as a consequence of the Schmidt decom-
position, any state |�〉SS′′ that purifies ρS is of the form
|�〉SS′′ =∑r

√
λr |r〉S W(|r〉S′), where W is an isometry

from space S′ to S′′. Importantly, |�〉SS′ is entangled
between S and S′ as soon as ρS is mixed, i.e., as soon as
λr < 1 for all r.

As entangled states lie outside of what can be captured
by classical theories, classical mixed states do not admit

a purification in the above sense—at least not one that
lies within the framework of classical physics. Random-
ness in classical physics can thus not be considered as
stemming from ignorance of parts of a pure state in a
higher-dimensional space, but it has to be inserted man-
ually into the theory. On the other hand, any quantum
state can be purified within quantum mechanics, and thus
randomness can always be understood as ignorance about
extra degrees of freedom.

Purification example. To provide an explicit example,
consider the purification of a maximally mixed state on a
d-dimensional system ρS = (1/d)

∑d
i=r |r〉S 〈r|. Following

the above reasoning, this state is, for example, purified by
|�+〉SS′ := (1/

√
d)
∑d

i=1 |r〉S |r〉S′ , which is the maximally
entangled state.

Remarkably the purification principle also holds for
dynamics, i.e., any quantum channel can be understood as
stemming from a unitary interaction with an ancillary sys-
tem, while this does not hold true for classical dynamics.
This former statement can be most easily seen by direct
construction. As we have seen, quantum channels can be
represented in terms of their Kraus operators as

E[ρS] =
∑

j

Kj ρSK†
j , where

∑

j

K†
j Kj = 1S. (102)

The above can be easily rewritten as an isometry in terms
of operators Kj ∈ B(HS) and vectors |j 〉E ∈ HE:

VS→SE :=
∑

j

Kj ⊗ |j 〉E =: V, (103)

satisfying V†V = 1S. Consequently, the number of Kraus
operators determines the dimension dE of the environment
that is used for the construction [114]. With this, we have

E[ρS] = trE(VρSV†) = trE(UρS ⊗ |0〉〈0|EU†). (104)

The second equality comes from the fact that any isom-
etry V can be completed to a unitary USE→SE =: U (see,
for example, Ref. [115] for different possible construc-
tions). For completeness, here, we provide a simple way to
obtain U from V: let {|	〉S}dS−1

	=0 ({|α〉E}dE−1
α=0 ) be an orthog-

onal basis of the system (environment) Hilbert space. By
construction [see Eq. (104)], we have U |	0〉SE = V |	〉S.
Consequently, U can be written as

U =
∑

	=0

V |	〉S 〈	0|SE +
∑

	=0,
α=1

|ϑ	,α〉SE 〈	α|SE , (105)

where SE 〈ϑ	′,α|V|	〉S = 0 for all {	, 	′} and α ≥ 1 and
〈ϑ	′,α′ |ϑ	,α〉 = δ		′δαα′ . Such a set {|ϑ	′,α〉} of orthogonal
vectors can be readily found via a Gram-Schmidt orthog-
onalization procedure. It is easy to verify that the above
matrix U is indeed unitary.
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The fact that any quantum channel can be understood
as part of a unitary process is often referred to as Stine-
spring dilation [116]. Together with the possibility to
purify every quantum state, it implies that all dynamics in
quantum mechanics can be seen as reversible processes,
and randomness arises only due to a lack of knowledge. In
particular, we have

E[ρS] = trES′[U(�SS′ ⊗ |0〉〈0|E)U†], (106)

where we omit the respective identity matrices, see Fig. 11.
On the other hand, in the classical case, the initial state

of the environment is definite, but unknown, in each run
of the experiment. Supposing that the system too is ini-
tialized in a definite state, then any pure interaction, i.e., a
permutation will always yield the system in a definite state.
In other words, if any randomness exists in the final state,
the randomness must have been present a priori, either in
the initial state of the environment or in the interaction.
A classical dynamics that transforms pure states to mixed
states, i.e., one that is described by stochastic maps, can
thus not have come from a permutation and pure states
only, and stochasticity in classical physics does not stem
from ignorance about additional degrees of freedom alone.

As both of these statements, the purifiability of quan-
tum states and quantum channels ensure the fundamental
reversibility of quantum mechanics, purification postulates
have been employed as one of the axioms in reconstructing
quantum mechanics from first principles [117,118].

Purification of dephasing dynamics. Before advanc-
ing, it is insightful to provide the dilation of an explicit
quantum channel. Here, we choose the so-called dephasing
map on a single qubit:

EDD
(t:0)[ρ(0)] = ρ(t) (107)

ρ(0) =
(
ρ00 ρ01
ρ10 ρ11

)
�→ ρ(t) =

(
ρ00 e−γ tρ01

e−γ tρ10 ρ11

)
.

In what follows, whenever a dynamics is such that the off-
diagonal elements vanish exponentially in a given basis,
we call it pure dephasing. The above channel can be
represented with two Kraus matrices

K0(t) =
√

1 + e−γ t

2
σ0, K1(t) =

√
1 − e−γ t

2
σ3. (108)

Following Eq. (103), the corresponding isometry is given
by V(t) = K0 ⊗ |0〉E + K1 ⊗ |1〉E , which implies

V(t) |0〉S =
√

1 + e−γ t

2
|00〉SE +

√
1 − e−γ t

2
|01〉SE ,

V(t) |1〉S =
√

1 + e−γ t

2
|10〉SE −

√
1 − e−γ t

2
|11〉SE .

(109)

From this, we can construct the two remaining vectors
|ϑ01〉SE (t) and |ϑ11〉SE (t) to complete V(t) to a unitary U(t)
by means of Eq. (105). For example, we can make the
choice

|ϑ01(t)〉SE =
√

1 − e−γ t

2
|10〉SE +

√
1 + e−γ t

2
|11〉SE ,

|ϑ11(t)〉SE =
√

1 − e−γ t

2
|00〉SE −

√
1 + e−γ t

2
|01〉SE .

(110)

It is easy to check that these vectors indeed satisfy
SE 〈ϑ	′,α|V|	〉S = 0 for all {	, 	′} and α ≥ 1, as well
as 〈ϑ	′,α′ |ϑ	,α〉 = δ		′δαα′ . This, then, provides a unitary
matrix U(t) that leads to the above dephasing dynamics:

U(t) = V(t) |0〉S 〈00|SE + V(t) |1〉S 〈10|SE + |ϑ01(t)〉〈01|SE

+ |ϑ11(t)〉〈11|SE . (111)

Insertion into Eq. (104) then shows that the thusly defined
unitary evolution indeed leads to dephasing dynamics on
the system.

Finally, while we choose to introduce quantum channels
in terms of the natural properties one would demand from
them, we could have chosen the converse route, starting
from the assumption that every dynamics can be under-
stood as a unitary one in a bigger spaces, thus positing an
equation along the lines of Eq. (106) as the starting point.
Unsurprisingly, this, too, would have yielded CPTP maps,
since we have

E[ρS] = trES′[U(�SS′ ⊗ |0〉〈0|E)U†] =
∑

α

KαρSK†
α ,

(112)

where Kα := 〈α|U|0〉, {α} is a basis of HE and ρS =
trS′(�SS′). Since this is a Kraus decomposition that satis-
fies
∑

α K†
αKα = 1S, the dynamics of an initial system state

that is initially uncorrelated with the environment (here in
the state |0〉〈0|E) and evolves unitarily on system plus envi-
ronment, is always given by a CPTP map on the level of
the system alone. We use this fact—amongst others—later
on when we lay out how to detect non-Markovianity based
on quantum master equation approaches.

C. Quantum master equations

While we have yet to formalize the theory of quan-
tum stochastic processes (in the sense that we have yet
to explore how to obtain multitime statistics in quantum
mechanics), the quantum stochastic matrix formalism is
enough to keep us occupied for a long time. In fact,
much of the active research in the field of open quantum
system dynamics is concerned with the properties of fam-
ilies of quantum channels. It should be already clear that
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the quantum stochastic matrix, like its classical counter-
part, deals only with two-time correlations, see Figs. 6
and 24, and can thus not provide a complete description
of quantum stochastic processes. This analogy goes fur-
ther; as is the case on the classical side, an important
family of stochastic matrices corresponds to quantum mas-
ter equations [119]. Before fully generalizing the concept
of stochastic processes to the quantum realm, let us thus
have a quick—and very superficial—look at quantum mas-
ter equations and witnesses of non-Markovianity that are
based on them.

Quantum master equations have a long and rich history
dating back to the 1920s. Right at the inception of mod-
ern quantum theory, Landau derived a master equation for
light interacting with charged matter [120]. This should
not be surprising because master equations play a key
role in understanding the real phenomena observed in
the lab. For the same reason, they are widely used tools
for theoretical physicists and beyond, including quantum
chemistry, condensed-matter physics, high-energy physics,
material science, and so on. However, the formal deriva-
tion of overarching master equations took another 30 years.
Nakajima and Zwanzig independently derived exact mem-
ory kernel master equations using the so-called projection
operator method. Since then there have been an enormous
number of studies of non-Markovian master and stochas-
tic equations [121–144], spanning from exploring their
mathematical structure, studying the transition between
the Markovian and non-Markovian regime [145,146] and
applying them to chemistry or condensed-matter systems.
Here, we do not concern ourselves with these details and
limit our discussion to the overarching structure of the
master equation, and in particular how to tell Markovian
ones apart from non-Markovian ones. We refer the reader
to standard textbooks for more details [2,3,5] on these
aspects as well as proper derivations, which we do not
provide in this section.

The most general quantum master has a form already
familiar to us. We simply replace the probability distri-
bution in Eq. (36) with a density matrix to obtain the
Nakajima-Zwanzig master equation [147]

d
dt

ρ(t) =
∫ t

s
K(t, τ)[ρ(τ)]dτ . (113)

Above, K(t, τ) is a superoperator [148] that is called the
memory kernel. Often, this equation is written in two parts

d
dt

ρ(t) = −i[H , ρ(t)] + D[ρ(t)] +
∫ t

s
K(t, τ)[ρ(τ)]dτ ,

(114)

where D is called the dissipator with the form

D[ρ(t)] =
d2∑

n,m=1

γj

(
Lj ρ(t)L

†
j − 1

2

{
L†

j Lj , ρ(t)
})

. (115)

Above, the first term on the rhs corresponds to a unitary
dynamics, the second term is the dissipative part of the
process, and the third terms carry the memory (which can
also be dissipative). We note in passing that we have yet to
define what Markovian and non-Markovian actually mean
in the quantum realm, and how the ensuing definitions
relate to their classical counterparts. We provide a rigorous
definition of these concepts in Sec. VI, while here, for the
moment, we content ourselves with the vague “definition”
that non-Markovian processes are those where memory
effects play a non-negligible role; Markovian processes are
those where memory effects are absent.

While the Nakajima-Zwanzig equation is the most gen-
eral quantum master equation, the rage in the 1960s and
1970s was to derive the most general Markovian master
equation. It took well over a decade to get there, after
many attempts, see Ref. [149] for more on this history
and Ref. [150] for a pedagogical treatment. Those who
failed in this endeavor were missing a key ingredient, com-
plete positivity. In 1976, this feat was finally achieved
by Gorini-Kossakowski-Sudarshan [66] and Lindblad [67]
independently [151]. A quantum Markov process can be
described by this master equation, now known as the
GKSL master equation. Equation (114) already contains
the GKSL master equation in the sense that the final term
vanishes for the Markov process

d
dt

ρt = L[ρt] with L[•] = −i[H , •] + D[•], (116)

and, here L stands for Louivillian, but often called Lind-
bladian. Intuitively, the above master equation is consid-
ered memoryless, since it does not contain the integral
over past states that is present in Eq. (114) (we see in
Sec. VI A 2 that this intuition is somewhat too simplistic,
since there are processes that carry memory effects but can
nonetheless be modeled by a GKSL equation). If L is time
independent, then the above master equation has the formal
solution

ρt = Et:r[ρr] = eL(t−r)[ρr], (117)

where ρr is the system state at time r. From this, we see that
the respective dynamics between two arbitrary times r and
t depends only on t − r, but not the absolute times r and
t (or any earlier times). Using eL(t−r) = eL(t−s)eL(s−r), this
implies the often used semigroup property of Markovian
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dynamics

Et:r = Et:s ◦ Es:r (118)

for t ≥ s ≥ r.
Some remarks are in order. The decomposition in

Eq. (114) is not always unique. Often, a term dubbed
as the inhomogeneous term is present and it is due to
the initial system-environment correlations. As we out-
line below, describing dynamics with initial correlations in
terms of quantum channels (and thus, master equations),
is operationally dubious and the interpretation of an inho-
mogeneous term as stemming from initial correlations thus
somewhat misdirected.

In the Markovian case, the superoperators in Eq. (116)
should be time independent. In fact, it is possible to derive
master equations for non-Markovian processes that look
just like Eq. (116) but then the superoperators will be time
dependent and the rates {γj } may be negative [38,135,152–
155] (while they are always positive in the Markovian
case). For a Markovian master equation, the operators {Lj }
are directly related to the Kraus operators of the result-
ing quantum channels [156]. Since Eq. (114) is the most
general form of a quantum master equation it contains
equations due to Redfield, Landau, Pauli, and others. To
reach this equation one usually expands and approximates
the memory kernel. This is a field of its own and we can-
not do justice to these methods or the reasoning behind the
approximations here (for a comparison of the validity of
the different employed approximations, see, for example,
Refs. [157,158]).

As with the classical case, the above master equations
express the statistical quantum state continuously in time
[159]. They can be either derived from first principles by
making the right approximations, or as adhoc phenomeno-
logical dynamical equations that model the pertinent prop-
erties of a process at hand (see, for example, Ref. [3] for
a wide array of different derivations of quantum master
equations).

As before, it may be tempting to think that the master
equation is equivalent to a stochastic process as defined
above. However, just as in the classical case, the quantum
master equation accounts only for two-point correlations.
This can be seen intuitively by realizing that the solution
of a master equation is a family of quantum channels, each
corresponding to two-time correlations, or, more directly,
by employing the transfer tensor method [40–42], which
shows that the rhs of Eq. (114) can be expressed as a lin-
ear combination of product of quantum maps E(c:b) ◦ E(b:a),
with c being either t or t − dt, b = s, and a being either
the initial time. A quantum map E(b:a) is a mapping of a
preparation at time a to a density matrix at time b. Thus,
it contains only correlations between two times a and b.
The lhs can be computed by setting b = t and a = t − dt.
Another formal method for showing that the rhs can be

expressed as a product of two stochastic matrices can be
done by means of the Laplace transform [38,39].

This also puts into question our somewhat lax use of
the term “Markovian” in the above discussion. As we dis-
cuss in the classical case, Markovianity is a statement
about conditional independence for multitime probability
distributions. How, then, can a master equation that is con-
cerned with two-point correlations only, be Markovian?
Indeed, as we see below it is possible to have physical
non-Markovian processes (i.e., processes that do not dis-
play the correct conditional independence) that can be
described by what we dub a Markovian master equation
in Eq. (116). That is, the implication only goes one way;
a Markov process always leads to a master equation of
Eq. (114) form with the final term vanishing. The converse
does not hold. We detail an example below, but to fully
appreciate it we must have a better understanding of mul-
titime quantum correlations. Nonetheless, while it is not
possible to unambiguously deduce the Markovianity of a
process from limited statistical data only, one can, just like
in the classical case, already use it to detect the presence of
memory effects.

D. Witnessing non-Markovianity

As mentioned above, Markovian processes will lead to
master equations of the form of Eq. (116) and, in turn,
can be fully described by the resulting family of CPTP
maps. Thus, having access to the stochastic matrix and
master equation is already sufficient to witness departures
from Markovianity. That is, there are certain features and
properties that must belong to any Markovian quantum
processes, which then allows for discriminating between
Markov and non-Markov processes.

1. Initial correlations

Consider the dynamics of a system from an initial time
to some final time. When the system interacts with an
environment the process on the system can be described
by a map E(t:0). As we show in Eq. (104), such a map
can be thought to come from unitary system-environment
dynamics, with the caveat that the initial system environ-
ment has no correlations [in Eq. (104), it was of the form
ρS ⊗ |0〉〈0|]. Already in the 1980s and 1990s, researchers
began to wonder what happens if the initial system-
environment state has correlations [98,99,160]. Though
this may—at first glance—seem unrelated to the issue of
non-Markovianity, the detectable presence of initial corre-
lation is already a non-Markovian effect. This is because
initial correlations indicate past interactions and if the ini-
tial correlations affect the future dynamics then the future
dynamics are a function of the state of the system at t = 0,
as well as further back in the past. As this is in line with an
intuitive definition of non-Markovianity (a thorough one
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will be provided later), the observable presence of ini-
tial correlations constitutes an experimentally accessible
witness for memory [161–166].

We emphasize, that the presence of initial correlations
does not make the resulting process non-Markovian per
se; suppose there are initial correlations whose presence
cannot be detected on the level of the system, then these
initial system-environment correlations do not lead to
non-Markovianity. If, however, it is possible to detect an
influence of such correlations on the behavior of the sys-
tem (for example, by observing a breakdown of complete
positivity [98,101,102] or by means of a local dephas-
ing map [162,164]), then the corresponding process is
non-Markovian. With this in mind, in what follows, by
“presence” of correlations, we always mean “detectable
presence.”

A pioneering result on initial correlations and open sys-
tem dynamics was due to Pechukas in 1995 [98]. He
argued that either there are no initial correlations or we
must give up either the complete positivity or the linearity
of the dynamics. Around the same time, many experiments
began to experimentally reconstruct quantum maps [167–
169]. Surprisingly, many of these experiments revealed not
completely positive maps. This began a flurry of theo-
retical research either arguing for not-completely-positive
(NCP) dynamics or reinterpreting the experimental results
[101,170,171,171–177]. However, this does not add to
the physical legitimacy of NCP processes [178]. Nev-
ertheless, NCP dynamics remains as a witness for non-
Markovianity. We show below that all dynamics, including
non-Markovian ones, must be completely positive. We do
this by getting around the Pechukas theorem by paying
attention to what it means to have a state in quantum
mechanics. For the moment though, the take-home mes-
sage is that, one way to detect memory is to devise
experiments that can detect initial correlations between the
system and the environment.

Two illustrative examples. Let us conclude this discus-
sion of initial correlations with two examples that highlight
the problems encountered in the presence of initial cor-
relations. To this end, we consider a single-qubit system
interacting with a single-qubit environment. We let the
initial correlated state be

ρSE(0) = 1
4
(
1S ⊗ 1E + �a · �σS ⊗ 1E + gσ y

S ⊗ σ z
E

)
.

(119)

The system-environment interaction is chosen to be

USE =
∏

j =x,y,z

{
cos(ωt)1S ⊗ 1E − sin(ωt)σ j

S ⊗ σ
j
E

}
.

(120)

We are of course interested in only the reduced dynamics
of the system. The initial state of the system is ρS(0) =

1
2 (1S + �a · �σS) and under the above unitary, it evolves to

ρS(t) = 1
2
[
1S + c2

ω�a · �σS − g cωsωσ x
S

]
. (121)

where cω := cos(2ωt) and sω := sin(2ωt).
Example 1: In the first instance, in order to provide a full
basis of input states, we fix the correlation term [i.e., the
third term in Eq. (119)] and vary the system state alone. By
choosing �a to be κ(±1, 0, 0)T, κ(0, 1, 0)T, and κ(0, 0, 1)T

gives us a linearly independent set of input states given in
Eq. (69). Here, κ is a number less than 1 to ensure that the
total SE state is positive. The quantum stochastic matrix
is straightforwardly constructed plugging the output states
along with the dual basis in Eq. (71) in Eq. (85).

This process is easily shown to be not completely posi-
tivity. To do so, we compute the Choi state using Eq. (97)
to get

ϒE = 1
2

⎛

⎜⎜⎝

1 + c2
ω 0 −g cωsω 2c2

ω

0 1 − c2
ω 0 −g cωsω

−g cωsω 0 1 − c2
ω 0

2c2
ω −g cωsω 0 1 + c2

ω

⎞

⎟⎟⎠ .

(122)

Two of the four eigenvalues of this Choi matrix turn out to
be 1

2

[
1 − cos2(2ωt) ± g cos(2ωt) sin(2ωt)

]
, which are not

always positive, i.e., the process is not completely positive.
Seemingly then, initial correlations lead to dynamics that
are not CP.

Example 2: One argument against the above procedure
is that there is no operational mechanism for varying the
state of the system, while keeping the correlation term
fixed. This is indeed true and a major flaw with the pro-
gram of NCP dynamics. However, we could envisage the
case where the initial state of the system is prepared,
starting from the correlated state of Eq. (119), by means
of projective operations along directions of the vectors
�a ∈ {κ(±1, 0, 0)T, κ(0, 1, 0)T, κ(0, 0, 1)T}. The Choi state
of the resulting map, in this case, turns out to be

ϒE = 1
2

⎛

⎜⎜⎜⎜⎜⎝

1 + c2
ω 0 0 f

0 s2
ω − ig

2
s2ω 0

0
ig
2

s2ω s2
ω 0

f ∗ 0 0 1 + c2
ω

⎞

⎟⎟⎟⎟⎟⎠
, (123)

where f := −1 − c2ω + (ig/2)s2ω. This map is perfectly
operational (in the sense that there is a clear procedure of
how to obtain it experimentally) and still we find that the
dynamics are NCP, since the above matrix is not positive
semidefinite.

One of the key assumptions in the construction of CP
maps (and linear maps in general) is that the state of the
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environment is the same for all possible inputs of the
system, and thus does not depend on how the system of
interest is prepared. This is clearly not the case here, as the
correlation term vanishes for three of these projections, but
not for the projection along eigenvectors of σ y

S . This is the
source of NCP dynamics and this is the reason why NCP
dynamics are an indicator for non-Markovianity, since
system-environment correlations constitute a memory of
past interactions.

However, there is a bigger question looming over us:
how do we decide whether the first or the second map is
the valid one? Worse yet, we can also construct a third
map; let us assume that the initial state has the Bloch vec-
tor �a = κ(1, 0, 0), and we prepare the basis of input states
by applying local unitary operations to this initial state. In
this case, the correlation term will be different for each
preparation and we get another map that will also be NCP.
It turns out that there are infinite ways of preparing the
input states [179] and each will lead to a different dynami-
cal map, see Ref. [176] for several examples related to the
two presented here. This is not tenable as we do not have
a unique description for the process (since the maps we
obtain depend on how we create the basis of input states)
and it violates the CP condition. Moreover, all of these
maps will further violate the linearity condition. That is, a
map should have value in predicting the future state of the
system, given an arbitrary input state. The above map in
Example 2, has little to no predictive power; when prepar-
ing an initial system state that is not one of the original
basis states, the action of the map of Eq. (123) will not
yield the correct output state. The map in Example 1 does
have predictive power, but it is not an operationally feasi-
ble object because, as mentioned before, there is no way
to manipulate �a without changing the correlation term. In
Sec. V C we show how these problems are avoided in a
systematic, and operationally well-defined manner.

2. Completely positive and divisible processes

Going beyond this rather static marker of non-
Markovianity in terms of initial system-environment cor-
relations, we can extend the concept of divisibility that
we first discuss in Sec. III C 2 for the classical case to the
quantum case. A quantum process is called divisible if

E(t:r) = E(t:s) ◦ E(s:r), ∀ r, s, t. (124)

Here, ◦ stands for the composition of two quantum maps.
Since they are not necessarily matrices, the composition
may—depending on the chosen representation—not be a
simple matrix product. Moreover, in the quantum case we
now further require that each map here is completely posi-
tive and thus such a class of processes is referred to as CP
divisible processes.

Understanding the divisibility of quantum maps and giv-
ing it an operational interpretation is a highly active area

of research [180–189], and we scratch only the surface.
Importantly, as we have seen above, processes that satisfy
a GKSL equation are divisible [see Eq. (118)], making the
breakdown of divisibility a witness of non-Markovianity.

Now, if r = 0 then we can certainly run a set of experi-
ments to determine the quantum maps {E(t:0)} for all t by
means of quantum process tomography outlined above.
These maps will be CP as long as there are no initial
correlations. But how do we determine the intermediate
dynamics E(t:s) for s > 0? One possible way is to infer an
intermediate process from the family of maps {E(t:0)} by
inversion

ζ(t:s) := E(t:0) ◦ E−1
(s:0), (125)

provided the maps {E(t:0)} are invertible. We deliberately
label this map with a different letter ζ , as it may not actu-
ally represent a physical process [190]. Now, if the process
is Markovian then ζ(t:s) = E(t:s), i.e., it corresponds indeed
to the physical evolution between s and t, and it will be
completely positive. Conversely, if we find that ζ(t:s) is not
CP then we know that the process is non-Markovian.

Example of an indivisible process. To provide some
more concrete insight, let us provide an example of a pro-
cess that is not divisible. To this end, we consider the initial
state in Eq. (119), along with the interaction in Eq. (120).
Here, we take the limit of g → 0, thus dropping the cor-
relation term and rendering the initial system-environment
state uncorrelated. The Choi matrix for the dynamics of the
system is then given by

ϒE = 1
2

⎛

⎜⎜⎝

1 + c2
ω 0 0 −2c2

ω

0 1 − c2
ω 0 0

0 0 1 − c2
ω 0

−2c2
ω 0 0 1 + c2

ω

⎞

⎟⎟⎠ . (126)

While this process is CP when considered from the initial
time (since system and environment are initially uncorre-
lated), it is not divisible, simply because it is not possible to
“divide” cos(2ωt) into a product of two functions readily.
More concretely, due to the oscillatory nature of the pro-
cess, many of the possible inferred maps ζ(t:s) of Eq. (125)
would be NCP. On the other hand, for a process where cω
is replaced by something like exp(−ωt), the process would
become divisible, see Eq. (130).

Working with divisible processes has several advan-
tages. Two that we already discuss in the classical case are
the straightforward connection to the master equation and
data-processing inequality (which also holds in the quan-
tum case). We can use these to construct further witnesses
for non-Markovianity, such as those based on the trace dis-
tance measure [191]. The amplitude damping channel in
Eq. (82) and the dephasing channel in Eq. (107) are both
divisible as long as they relax exponentially. Otherwise,
they are indivisible processes, which is easily checked
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numerically. As in the classical case, the logic surround-
ing CP divisibility and its relationship to Markovianity is
as follows: if a process is Markovian, it is also CP divisible
(the converse does not necessarily hold). A breakdown of
CP divisibility thus signals non-Markovian effects, without
the need to investigate multitime statistics. Pursuing this
line of reasoning further, there are properties that hold for
CP divisible processes, like, for example, quantum data-
processing inequalities (see below). Instead of checking
for the breakdown of CP divisibility, one can thus check
the breakdown of other properties as a proxy. This, how-
ever, will lead to successively weaker (but potentially more
easily accessible) witnesses of non-Markovianity.

We mention briefly that CP divisibility is not the only
type of divisibility of open quantum system dynamics.
There exists a vast body of research on different types
of divisibility for quantum processes, their stratification
and interconnectedness [192–195], as well as the closely
related question of simulatability of quantum and classical
channels and dynamical maps [19,24,196–198]. Here, we
do not dive into these fields in detail.

3. Snapshot

As in the classical case, when a process is divisible it
will be governed by Markovian master equation of GKSL
type of Eq. (116). Following the classical case, in Eq. (39),
the Liouvillian for the quantum process can be obtained
via

d
dt

ρ(t) = lim
�t→0

Et+�t:t − I
�t

ρ(t) = L[ρt]. (127)

This, in turn, means that

ρ(t) = E(t:0)[ρ(0)] with E(t:0) = eLt. (128)

We can now reverse the implication to see if a process is
Markovian by considering the process E(t:0) for some t. We
can take the log of this map, which has to be done care-
fully, to obtain L. If the process is Markovian then exp(Ls)
will be CP for all values of s. If this fails then the pro-
cess must be non-Markovian, provided it is also symmetric
under time translation. That is, we may have a Markovian
process that slowly varies in time, and may fail this test.
This witness was one of the first proposed for quantum
processes [192,196]. Once again, note that here only two-
time correlations are accounted for and, again, we use the
term “Markovian master equation” in a rather lax sense;
most importantly, besides reasoning by intuition, we do not
yet define what a Markovian quantum process actually is.
Unsurprisingly then, this witness will miss processes that
are non-Markovian at higher orders.

Dephasing dynamics. Let us clarify these concepts by
means of a concrete example. The dephasing process intro-
duced in the previous subsection is divisible and thus can

be described by a Markovian master equation. To obtain
this, we simply differentiate the state at time t to get

d
dt

ρ(t) = γ e−γ t

2
(σ3ρσ3 − ρ). (129)

The quantum stochastic matrix for this process is

Ĕ(t:0) =

⎛

⎜⎝

1 0 0 0
0 e−γ t 0 0
0 0 e−γ t 0
0 0 0 1

⎞

⎟⎠ . (130)

Since the matrix is diagonal, it can be trivially
seen to be divisible by the fact that exp (−γ t) =
exp [−γ (t − s)] exp (−γ s). Consequently, the underly-
ing process could—in principle—be Markovian. In
Sec. VI A 2 we revisit this example and show that there
are non-Markovian processes, where the two point corre-
lations have this exact form.

4. Quantum data-processing inequalities

As mentioned, just like in the classical case, in quantum
mechanics, data-processing inequalities hold, with the dis-
tinction that here, they do not apply to stochastic matrices,
but to quantum channels, i.e., CPTP maps. Specifically,
there are several distance measures that are proven to be
contractive under CPTP dynamics [199,200]:

f [ρ, σ ] ≥ f [E(ρ), E(σ )]. (131)

Three prominent examples are the quantum trace distance

‖ρ − σ‖1 := tr|ρ − σ |, (132)

the quantum mutual information,

S(A : B) = S(ρA) + S(ρB) − S(ρAB), (133)

and the quantum relative entropy

S(ρ‖σ) = −tr[ρ log(σ ) − log(ρ)]. (134)

All of these are defined as in the classical case, with
the sole difference that for the latter two we replace
Shannon entropy with von Neumann entropy, S(ρ) :=
−tr[ρ log(ρ)]. Since divisible processes can be composed
of independent CPTP maps, they have to satisfy data-
processing inequalities between any two points in time.
Violation of the DPI thus implies a breakdown of CP divis-
ibility, and thus heralds the presence of memory effects.

Two of the most popular witnesses of non-Markovianity
[191,201,202], derived using the first two data-processing
inequalities, were introduced about a decade ago. In partic-
ular, Ref. [202] proposed to prepare a maximally entangled
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state of a system and an ancilla. The system is then
subjected to a quantum process. Under this process, if
the quantum mutual information (or any other correlation
measure) between the system and ancilla behaves non-
monotonically then the process must be non-Markovian.
A similar argument was proposed by Ref. [191] using the
trace-distance measure. It can be shown that the former
is a stronger witness than the latter [203]. Nonetheless,
even this latter witness of non-Markovianity is generally
not equivalent to the breakdown of CP divisibility, as there
are processes that behave monotonically under the above
distance measures, but are not CP divisible [185,204–
206]. We do not delve into the details of these measures
here since there are excellent reviews on these topics
readily available [7,8] (for an in-depth quantitative study
of the sensitivity to memory effects of correlation-based
measures, see, for example, Ref. [207]).

With this, we come to the end of our very cursory dis-
cussion of quantum stochastic processes in terms of master
equations and two-point correlations. We emphasize that
the above is meant less as a pedagogical introduction to
the field, but rather as a brief (incomplete) overview of
the machinery that exists to model processes and detect
memory by means of master equations and their properties.
While very powerful and widely applicable in experimen-
tal settings, the reader should also have noted the natural
shortcomings of this approach. On the one hand, it can-
not account for multitime statistics, thus not providing a
complete framework for the definition and treatment of
quantum stochastic processes. On the other hand, as a
direct consequence of these shortcomings, we somehow
had to awkwardly beat around the bush when it came to
a proper definition of Markovianity in the quantum case.
The remainder of this tutorial is focused on working out
the explicit origin of the difficulties with defining quantum
stochastic processes, and how to overcome them.

E. Troubles with quantum stochastic processes

Do we need more (sophisticated) machinery than fam-
ilies of quantum stochastic maps and quantum master
equations [208] to describe stochastic quantum phenom-
ena? Perhaps for a long time, the machinery introduced
above was sufficient. However, as quantum technologies
gain sophistication and as we uncover unexpected nat-
ural phenomena with quantum underpinnings, the above
tools do not suffice [209–211]. Take, for example, the
pioneering experiments that have argued for the persis-
tence of quantum effects on time scales relevant for pho-
tosynthetic processes [212–217], and, in particular, that
these processes might exploit complex quantum memory
effects arising from the interplay of the electronic degrees
of freedom—constituting the system of interest—and the
vibrational degrees of freedom—playing the role of the
environment. In these experiments, three ultrashort laser

pulses are fired at the sample and then a signal from
the sample is measured. The time between each pulse,
as well as the final measurement, are varied. The system
itself is mesoscopic and therefore certainly an open sys-
tem. The conclusion from these experiments is based on
the wavelike feature in the signal, see the video in the
Supplemental Material of Ref. [213]. This experiment is
fundamentally making use of four-time correlations and
thus requiring more sophistication for its description than
the above machinery affords us.

Another important example is the mitigation of non-
Markovian noise in quantum computers and other quantum
technologies [218–222], which can display nontrivial mul-
titime statistics. Finally, as we already mention in our
discussion of classical Master equations, in order to make
assertions about multitime statistics, it is inevitable to
account for intermediate measurements, which cannot be
done within approaches to quantum stochastic processes
based on master equations. It seems reasonable then, to
aim for a direct generalization of the description of clas-
sical stochastic processes in terms of multitime statistics
to the quantum realm. However, as we unveil next, there
are fundamental problems that we must overcome first
before we can describe multitime quantum correlations as
a stochastic process.

1. Breakdown of KET in quantum mechanics

As we mention in Sec. III B, one of the fundamen-
tal theorems for the theory of classical stochastic pro-
cesses, and the starting point of most books on them, is
the Kolmogorov extension theorem. It hinges on the fact
that joint probability distributions of a random variable S
pertaining to a classical stochastic process satisfy consis-
tency conditions amongst each other, like, for example,∑

s2
P(S3, S2 = s2, S1) = P(S3, S1); a joint distribution on

a set of times can always be obtained by marginalization
from one on a larger set of times. Fundamentally, this is a
requirement of noninvasiveness, as it implies that not per-
forming a measurement at a time is the same as performing
a measurement but forgetting the outcomes.

While seemingly innocuous, this requirement is not
fulfilled in quantum mechanics, leading to a breakdown
of the KET [223]. To see this, consider the following
concatenated Stern-Gerlach experiment [224] (depicted
in Fig. 12): let a qubit initially be in the state |x+〉 =
(1/

√
2)(|z+〉 + |z−〉), where {|z+〉 , |z−〉} are the pure

states corresponding to projective measurements in the z
basis yielding outcomes z+, z−. Now, the state is mea-
sured sequentially (with no intermediate dynamics happen-
ing) in the z, x, and z direction at times t1, t2, and t3 (see
Fig. 12). These measurements have the possible outcomes
{z+, z+} and {x+, x−} for the measurement in z and x
direction, respectively. It is easy to see that the probability
for any possible sequence of outcomes is equal to 1/8. For
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example, we have

P(z+, x+, z+) = 1
8

. (135)

Now, summing outcomes at time t2, we obtain the
marginal probability

∑
s2=x± P(z+, s2, z+) = 1/4. How-

ever, by considering the case where the measurement is not
made at t2, it is easy to see that P(S3 = z+, S1 = z+) =
1/2. The intermediate measurement changes the state of
the system, and the corresponding probability distributions
for different sets of times are not compatible anymore
[8,225]. Here, for example, when summing over the out-
comes at t2, the corresponding transformation of the state
of the system corresponds to

ρt−2
�→ ρt+2

= 〈x + |ρt−2
|x+〉 |x+〉〈x+|

+ 〈x − |ρt−2
|x−〉 |x−〉〈x−|, (136)

which, in general, does not coincide with the state ρt−2
right before t2. Does this then mean that there is no sin-
gular object that can describe the joint probability for a
sequence of quantum events? Alternatively, what object
would describe a quantum stochastic process if it cannot
be a joint probability distribution?

Seemingly, the breakdown of consistency conditions
prevents one from properly reconciling the idea of an
underlying process with its manifestation on finite sets of
times, as we did in classical theory by means of the KET.
However, somewhat unsurprisingly, this obstacle is one of
formalism, and not a fundamental one, in the sense that
marginalization is more subtle for quantum processes than
it is for classical ones; introducing a proper framework for
the description of quantum stochastic processes—as we do
below in Sec. V—brings with it a natural way of marginal-
ization in quantum mechanics, that contains the classical

Z Z

X ZZ
| z+⟩

| z−⟩| x−⟩

| z−⟩| z−⟩

ρ

ρ

FIG. 12. A simple quantum process that violates the assump-
tions of the KET. Successive measurements of the spin of a
spin- 1

2 particle do not allow one to predict the statistics if the
intermediate measurement is not conducted. Here, measuring in
the x basis is invasive, and thus summing over the respective
outcomes is not the same as not having done the measurement at
all.

FIG. 13. Perturbed coin with interventions. Between measure-
ments, the coin—which initially shows heads—is perturbed and
stays on its side with probability p and flips with probability 1 −
p , leading to a stochastic matrix � between measurements. Using
their instrument, upon measuring an outcome, the experimenter
flips the coin. Here, this is shown for the sequence of outcomes
th. For most values of the probability p , this process—despite
being fully classical—does not satisfy the requirement of the
KET.

version as a special case and alleviates the aforementioned
problems.

2. Input-output processes

As outlined above, the breakdown of the KET comes
from the fact that in general, quantum measurements
are invasive. Analogously, our understanding of classical
stochastic processes, and with it the consistency between
different observed joint probability distributions are built
upon the idea that classical measurements are noninvasive.
However, depending on the “instrument” J an experi-
menter uses to probe a system, this assumption of nonin-
vasiveness might not be fulfilled, even in classical physics.

To see this, consider the example of a perturbed coin,
that flips with probability p and stays on the same side
with probability 1 − p (see Fig. 13). Instead of merely
observing outcomes, an experimenter could actively inter-
fere with the process. As there are many different ways,
how the experimenter could interfere at each point in time,
we have to specify the way in which they probe, or, in
anticipation of later matters, what instrument they use,
which we denote by J .

For example, upon observing heads or tails, they could
always flip the coin to tails and continue perturbing it. Or,
upon observing an outcome, they could flip the coin, i.e.,
h �→ t and t �→ h. Finally, they could just leave it on the
side they found it and let the perturbation process continue.
Let us refer to the latter two instruments by JF and JI ,
respectively.

Now, let us assume, that, before the first perturbation,
the coin shows heads. Then, if at t1 we choose the instru-
ments J1 = JF that, upon observing an outcome, flips the
coin, we obtain, e.g.,

P(F2 = h, F1 = t|J1 = JF ) = p(1 − p),

P(F2 = h, F1 = h|J1 = JF ) = p(1 − p).
(137)
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This means that P(F2 = h) = 2p(1 − p) when J1 = JF .
On the other hand, if the experimenter does not actively
change the state of the coin at the first time, i.e., J1 = JI ,
upon perturbation, the coin will show h with probabil-
ity 1 − p and t with probability p at time t1. Then, the
probability to observe h at time t2 is given by

P(F2 = h) = (1 − p)2 + p2, (138)

which does not coincide with 2p(1 − p) except if p = 1
2 .

Thus the two cases do generally not coincide and the
requirements of the KET are not fulfilled.

As, here, the experimenter can observe the output of the
process, and freely choose what they input into the process,
these processes are often called input-output processes and
are subject of investigation in the field of computational
mechanics [226]. As for the case of “standard” classical
stochastic processes, it may be beneficial to simulate such
classical processes with quantum devices [227].

A priori, it might seem arbitrary to allow for active inter-
ventions in classical physics. However, such operations
naturally occur in the field of causal modeling [228], where
they can be used to deduce causal relations between events;
indeed, the only way to see whether two events are causally
connected is to change a parameter at one of them and see
if this change affects the outcome statistics at the other one.

On the other hand, while in classical physics it is a
choice (up to experimental accuracy that is) to actively
interfere with the process at hand, in quantum mechan-
ics such an active intervention due to measurements—even
projective ones—can generally not be avoided. Consider-
ing classical processes with interventions thus points us in
the right direction as to how quantum stochastic processes
should be modeled.

Concretely, when active interventions are employed,
the outcome statistics are conditional on the choices of
instruments the experimenter made to probe a process at
hand. Consequently, such a setup would not be described
by a single joint probability distribution P(Fn, . . . , F1),
but rather by conditional probabilities of the form
P(Fn, . . . , F1|Jn, . . . ,J1). It is exactly this dependence of
observed probability distributions on the employed instru-
ments that we encounter again when describing quantum
stochastic processes.

Given that the breakdown of the KET can even occur
in classical physics, one might again pause and wonder if
there actually exists such a thing as a classical stochas-
tic process with interventions. Put differently, is there an
underlying statistical object that is independent of the
made interventions and can thus be considered the under-
lying process. While we discuss in detail below that this
is indeed the case, recalling the above example of inter-
ventions that are used to unveil causal relations between
events already tells us why the answer will be affirmative.
Indeed, causal relations between events, and the strength

with which different events can potentially influence each
other are independent of what experimental interventions
are employed to probe them.

Interestingly, the breakdown of the requirements of the
KET is closely related to the violation of Leggett-Garg
inequalities in quantum mechanics [229,230], which, in
brief, were derived to distinguish between the statistics
of classical and nonclassical processes. These inequali-
ties are derived on the assumption of realism per se and
noninvasive measurability. While realism per se implies
that joint probability distributions for a set of times can
be expressed as marginals of a respective joint probability
distribution for more times, noninvasiveness means that all
finite distributions are marginals of the same distribution.
Naturally then, as soon as one of these conditions does not
hold, the KET can fail and Leggett-Garg inequalities can
be violated. More precisely, if one allows for active inter-
ventions in the classical setting, without any additional
restrictions, then classical processes can exhibit exactly the
same joint probability distributions as quantum mechan-
ics [231] (this equivalence changes once one imposes, for
example, dimensional restrictions).

3. KET and spatial quantum states

Before finally advancing to quantum stochastic pro-
cesses, it is instructive—as a preparation—to reconsider
the concept of states in quantum mechanics in the con-
text of measurements. To this end, consider the situation
depicted in Fig. 14, where four parties (Alice, Bob, Char-
lie, and David) measure separate parts of a multipartite
quantum state. In the general case, their measurements
are given by POVMs denoted by JX , where each out-
come j corresponds to a positive matrix Xj , and we have∑

j Xj = 1. Then, according to the Born rule, probabilities
for the measurements depicted in Fig. 14 are computed via

P(a, b, c, d|JA,JB,JC,JD)

= tr[ρ(Aa1 ⊗ 12 ⊗ Bb34 ⊗ Cc5 ⊗ Cc6 ⊗ Dd7)], (139)

where ρ := ρ1234567 is the probed multipartite state, and
{Xam} is the POVM operator for party X with outcome a
when measuring system m. We use the double subscript
notation to label the operator index and the system at once.
The above probability depends crucially on the respective
POVMs the parties use to probe their part of the state
ρ. This dependence is denoted by making the probabil-
ity contingent on the instruments JX . As soon as ρ is
known, all joint probabilities for all possible choices of
instruments can be computed via the above Born rule. In
this sense, a quantum state represents the maximal sta-
tistical information that can be inferred about spatially
separated measurements.

While, pictographically, Fig. 14 appears to be a direct
quantum version of the classical stochastic processes we
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encountered previously, there is a fundamental difference
between spatially and temporally separated measurements:
In the spatial setting, none of the parties can signal to the
others. For example, we have

∑

c

P(a, b, c, d|JA,JB,JC,JD)

=
∑

c′
P(a, b, c′, d|JA,JB,J ′

C,JD) (140)

for all instruments. Put differently, the quantum state a
subset of parties sees is independent of the choice of instru-
ments of the remaining parties. This is also mirrored by the
fact that we model the respective measurement outcomes
by POVM elements, which make no assertion about how
the state at hand transforms upon measurement.

On the other hand, the possible breakdown of the KET
in quantum mechanics and classical processes with inter-
ventions shows that, in temporal processes, an instrument
choice at an earlier time can influence the statistics at later
times. To accommodate for this kind of signaling between
different measurements, we have to employ a more general
description of measurements, that accounts for the trans-
formations a quantum state undergoes upon measurement.
These differences notwithstanding, the general idea of how
to describe temporal processes can be directly lifted from
the spatial case: as soon as we know how to compute the
statistics for all sequences of measurements and all choices
of (generalized) instruments, there is nothing more that can
be learned about the process at hand. Unsurprisingly then,
we recover a temporal version of the Born rule [232,233],
where the POVM elements are replaced by more general
completely positive maps, and the spatial quantum state is
replaced by a more general quantum comb that contains all
detectable spatial and temporal correlations.

2 3 4 51 6 71 3 5 64 7

Alice Bob Charlie David

FIG. 14. Spatial measurements. Alice, Bob, Charlie, and
David perform measurements on a seven-partite quantum state
ρ. Both Bob and Charlie have access to two parts of said
state, respectively, but while Bob can perform correlated mea-
surements on said systems, Charlie can only access them inde-
pendently. The probabilities corresponding to the respective
outcomes are computed via the Born rule [see Eq. (139)].

V. QUANTUM STOCHASTIC PROCESSES

In the last section, we saw various methods to look at
two-time quantum correlations. While indispensable tools
for the description of many experimental scenarios, these
methods are not well suited to describe multitime statis-
tics, and as such do not allow one to extend the notion of
Markovianity—or absence thereof—to the quantum case
in a way that boils down to the classical one in the cor-
rect limit. We now introduce tools that will allow us
to consistently describe multitime quantum correlations,
independently of the choice of measurement. Before doing
this, it is worth elaborating in more detail on the source
of the troubles in way of a theory of quantum stochastic
processes.

A. Subtleties of the quantum state and quantum
measurement

Let us use the initial correlation problem in quan-
tum mechanics as an example. This problem has been
fraught with controversies for decades now [170] as some
researchers have argued that, in presence of initial cor-
relations, a dynamical map is not well defined [100],
while others have argued to give up complete positivity
or linearity [99,170]. What is the underlying reason for
these disagreements? And does the same problem exist in
classical mechanics?

The answer to this latter question is no. The crucial dif-
ference being that it is possible to observe classical states
without disturbing the system, while the same cannot be
said for quantum states. Consider a classical experiment
that starts with an initial system-environment state that is
correlated between the system of interest and some envi-
ronment. The overall process takes the initial state �(t:0) :
P(S0E0) �→ P(StEt). Of course, we can simply observe the
system (without disturbing it) and measure the frequencies
for S0 = sj �→ St = sk. This is already enough to construct
joint distribution P(St, S0) and from it, we can construct a
stochastic matrix �(t:0) that takes the initial system state
to the final state. In other words, the initial correlations
pose no obstacles at all here. This should not be surprising,
after all, a multitime classical process will have system-
environment correlations at some point. And we already
argued that it is always possible to construct a stochastic
matrix between any two points.

If we try to repeat the same reconstruction process for
the quantum case, we quickly run into trouble. Again,
without any controversy, we can imagine that an initial
system-environment quantum state is being transformed
into a final one, ρSE(0) �→ ρSE(t). It may then be tempt-
ing to say that we can also have a transformation on the
reduced state of the system, i.e., ρS(0) �→ ρS(t). However,
we run into trouble as soon as we try to determine the
process ρS(0) �→ ρS(t). In order to do this, we need to
relate different initial states and the corresponding final
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states. Do we then mean that there is an initial set of states
{ρSE(0)} and for each element of the set we have a differ-
ent initial state for the system, i.e., {ρS(0) = trE[ρSE(0)]}?
This is possible of course but requires knowledge about the
environment, which goes against the spirit of the theory
of open systems where we assume that the experimenter
does not have control over the environmental degrees of
freedom.

Our problem is still more profound when we focus
solely on S. Suppose that the above setup is true and the
initial system states {ρS(0)} are linearly independent, con-
stituting an input basis. But then, in a given run of the
experiment, how do we know which element of this set
we have at our disposal? Quantum mechanics fundamen-
tally forbids us to unambiguously discriminate a set of
nonorthogonal states; if the set {ρS(0)} contains d2 linearly
independent basis elements, then at most d of them can be
orthogonal. Therefore, quantum mechanics fundamentally
forbids us from experimentally deducing the dynamical
map when there are initial correlations!

This contextual nature of quantum states is the key sub-
tlety that forces a fundamentally different structure for
quantum stochastic processes than classical ones. Perhaps,
a theorist may be tempted to say that never mind the exper-
iments and let us construct the map with a theoretical
calculation, i.e., first, properly define the SE dynamics,
then infer the process on S alone. This is in fact what
was done by many theorists in the past two decades.
They asked what happens if we fixed the correlations in
the initial state ρSE(0) and consider the family of ρS(0)
states that are compatible with the former, see Example
1 in Sec. IV D 1. Can we construct a map under these
assumptions? These types of constructions are precisely
what led to not completely positive maps. However, do
such calculations have a correspondence with reality then
[176]?

The real source of the problem (in the technical sense)
is that—as we saw when we discuss the experimental
reconstruction of quantum channels—we need an infor-
mationally complete set of initial states and corresponding
final states to have a well-defined map. For an experi-
menter, there is an “easy” solution. You simply go ahead
and prepare the initial state as desired, which can even be
noisy [179]. Then, let this initial state evolve and mea-
sure the corresponding final state. In fact, this is the only
way, in quantum mechanics, to ensure that we have a lin-
early independent set of input states, whose output states
are also accessible. Without preparation at the initial time,
we have only a single point in the state space, i.e., the
reduced state ρS = trE(ρSE), and a map is only defined
on a dense domain. However, in general, when there are
system-environment correlations, the preparation of input
states will affect the state of the environment, which, in
turn, will influence the subsequent dynamics, seemingly
making it nonlinear in the sense that the dynamics itself

depends on the input state. See Example 2 in Sec. IV D 1
and subsequent discussion.

This, in turn, raises the question of whether a finite set
of such experiments has enough information to construct
a well-defined dynamical map? And will this mapping
be linear (and, in a sense to be defined below, CP and
trace preserving)? Somewhat surprisingly, despite all the
apparent roadblocks we sketch above, the answer is yes!
However, to achieve this goal, it is necessary to switch our
understanding of what a dynamical map actually is when
there are initial correlations. Giving away the punchline of
the following sections, here, it is not meaningful to define a
mapping from initial to final states, but rather from initial
preparations to final states. It is easy to show that there
is only a finite number of preparations that are linearly
independent (for finite-dimensional systems). And there-
fore, any other preparations can be expressed as a linear
combination of a fixed set of preparations. Since for each
initial preparation it is possible to determine the final out-
put state, very much in the same way as we already see
for quantum channel tomography, one can unambiguously
reconstruct a map that correctly maps all inputs (here the
initial preparations) to the final output states. We flesh out
and extend these ideas in this and the following sections.

First, we lay out the mathematical foundations for the
notion of preparation, which is historically known as an
instrument and which generalizes POVMs. With these
tools, we show that the solution of the initial correlation
problem is well defined, completely positive, and linear
all at once [234]. Moreover, this is then a pathway to
laying down the foundations for quantum stochastic pro-
cesses, since it will be directly generalizable to multitime
scenarios.

B. Quantum measurement and instrument

As mentioned in Sec. IV E, unlike in the case of spatially
separate measurements, in the temporal case, it is impor-
tant to keep track of how the state of the system of interest
changes upon being measured, as this change will influ-
ence the statistics of subsequent measurements. In order to
take this into account, we work with the concept of gener-
alized instruments introduced by Davies and Lewis [235].
This will both allow us to overcome the problems with
initial correlations lined out above, as well as provide a
fully fledged theory of quantum stochastic processes that
can account for intermediate measurements, and, as such,
multitime correlations.

To this end, first, recall the definition of a POVM pro-
vided in Sec. IV A 2. A POVM is a collection of positive
matrices J = {Ej }n

j =1 with the property
∑

j Ej = 1. Each
element of J corresponds to a possible outcome of the
measurement. Intuitively, a POVM allocates an operator
to each measurement outcome of the measurement device
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that allows one to compute outcome statistics for arbi-
trary quantum states that are being probed. However, it
does not enable one to deduce how the state changes upon
observation of one of the outcomes.

To account for state changes, we have to modify the
concept of a POVM; this generalization is known as a gen-
eralized instrument [236,237]. As POVMs turn out to be a
special case of (generalized) instruments, we denote them
by J , too. An instrument corresponding to a measurement
with outcomes j = {1, . . . , n} is a collection of CP maps
J = {Aj } that add up to a CPTP map, i.e., A =∑n

j =1 Aj .
Each of the CP maps corresponds to one of the possible
outcomes, while their sum corresponds to the overall trans-
formation of the state at hand due to the application of
the respective instrument (it is exactly the invasiveness of
said map that leads to a breakdown of the KET in quan-
tum mechanics). For example, returning to the case of a
measurement of a qubit in the computational basis, the
corresponding instrument is given by

{A0[•] := |0〉〈0| • |0〉〈0|,A1[•] := |1〉〈1| • |1〉〈1|},
(141)

assuming, that after projecting the state onto the computa-
tional basis, it is sent forward unchanged.

Importantly, an instrument allows one to compute both
the probability to obtain different outcomes and the state
change upon measurement. The latter is given by

ρ ′
j = Aj [ρ] (142)

when the system in state ρ is interrogated by the instrument
J , yielding outcome j . The state after said interrogation,
given the outcome, is obtained via the action of the cor-
responding element of the instrument. Importantly, this
state is in general not normalized. Its trace provides the
probability to observe a given outcome. Concretely, we
have

P( j |J ) = tr(Aj [ρ]) = tr
(∑

αj

Kαj ρK†
αj

)
, (143)

where the sum runs over all Kraus operators that pertain
to the CP map Aj , and we have

∑
αj

K†
αj Kαj < 1 if Aj is

not trace preserving. The requirement that all CP maps of
an instrument add up to a CPTP map ensures—just like
in the analogous case for POVMs—the normalization of
probabilities:

n∑

j =1

P( j |J ) = tr

⎛

⎝
n∑

j =1

∑

αj

Kαj ρK†
αj

⎞

⎠ = tr(A[ρ]), (144)

which is 1 for all quantum states ρ. Naturally, the concept
of generalized instruments contains POVMs as a special

case, namely as those generalized instruments, where the
output space of the respective CP maps is trivial. Put differ-
ently, if one simply wants to compute the probabilities of
measurements on a quantum state, generalized instruments
are not necessary. Concretely, we have

P( j |J ) = tr(ρEj ) with Ej =
∑

αj

K†
αj

Kαj . (145)

This is because for a single measurement, the state trans-
formation is not of interest. However, as we see in the
next section, this situation drastically changes, as soon as
sequential measurements are considered. There, POVMs
are not sufficient anymore to correctly compute statistics.

Before advancing, it is insightful to make the connection
between the CP maps of an instrument and the elements of
its corresponding POVM explicit. This is most easily done
via the Choi states we introduced in Sec. IV B 3. There,
we discuss that the action of a map Aj on a state ρ can be
expressed as

ρ ′
j = Aj [ρ] = tri[AT

j (ρ ⊗ 1◦)], (146)

where Aj ∈ B(Hi ⊗ Ho) is the Choi state of the map Aj
and ρ ∈ B(Hi), and we move the transposition onto Aj
instead of ρ. Using this expression to compute probabili-
ties, we obtain

P( j |J ) = trio[AT
j (ρ ⊗ 1o)] = tr(Ej ρ). (147)

Comparing this last expression with the Born rule, we see
that the POVM element Ej corresponding to Aj is given by
Ej = tro(A

T
j ), where the additional transpose stems from

our definition of the CJI. This relation indeed yields a
POVM, as the partial trace of a positive matrix is also pos-
itive, and we have

∑n
j =1 Ej =∑n

j =1 tro(A
T
j ) = 1, where

we use that the Choi state A of A satisfies tro(A) = 1. Dis-
carding the outputs of an instruments thus yields a POVM.
This implies that different instruments can have the same
corresponding POVM. For example, the instrument that
measures in the computational basis and feeds forward the
resulting state, has the same corresponding POVM as the
instrument that measures in the computational basis, but
feeds forward a maximally mixed state, indiscriminate of
the outcome. While both of these instruments lead to the
same POVM, their influence on future statistics can be
very different.

1. POVMs, instruments, and probability spaces

Before advancing to the description of multitime quan-
tum processes, let us quickly connect POVMs and instru-
ments to the more formal discussion of stochastic pro-
cesses we conducted earlier. The benefit of making this
connection transparent is twofold; on the one hand, it
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recalls the original ideas, stemming from the theory of
probability measures, that led to their introduction in quan-
tum mechanics. On the other hand, it renders the follow-
ing discussions of quantum stochastic processes a natural
extension of both the concept of instruments, as well as the
theory of classical stochastic processes.

In the classical case, we describe a probability space as
a σ algebra (where each observable outcome corresponds
to an element of the σ algebra) and a probability mea-
sure ω that allocates a probability to each element of said
σ algebra. Without dwelling on the technical details (see,
e.g., Refs. [237,238] for more thorough discussions), this
definition can be straightforwardly extended to POVMs
and instruments. However, instead of directly mapping
observable outcomes to probabilities, in quantum mechan-
ics, we have to specify how we probe the system at hand.
Mathematically, this means that instead of mapping the
elements of our σ algebra to probabilities, we map them
to positive operators via a function ξ that satisfies the
properties of a probability measure (hence the name pos-
itive operator-valued measure). For example, the POVM
element corresponding to the union of two disjoint ele-
ments of the σ algebras is the sum of the two individual
POVM elements, and so on. Together with the Born rule,
each POVM then leads to a distinct probability measure
on the respective σ algebra. Concretely, denoting the Born
rule corresponding to a state ρ by χρ[E] = tr(ρE), then
ωρ = χρ ◦ ξ is a probability measure on the considered σ

algebra.
For instruments, the above construction is analogous,

but with POVM elements replaced by CP maps. It is then a
natural step to assume that, in order to obtain probabilities,
a generalized Born rule [232,233] that maps CP maps to
the corresponding probabilities is required. More generally
yet, sequences of measurement outcomes correspond to
sequences of CP maps, and a full description of the process
at hand would be given by a mapping of such sequences
to probabilities. In the next section, we see that this rea-
soning indeed leads to a consistent description of quan-
tum stochastic processes that—additionally—resolves the
aforementioned problems, like, e.g., the breakdown of the
Kolmogorov extension theorem.

C. Initial correlations and complete positivity

With the introduction of the instrument, we are now in
a position to operationally resolve the initial correlation
problem alluded to above. Importantly, the resolution of
this special case will directly point us in the right direction
of how to generalize stochastic processes to the quantum
realm, which is why we consider it first.

We begin with an initial system-environment quantum
state that is correlated. Now, in a meaningful experiment,
that aims to characterize the dynamics of the system from

the initial time to the final time, one will apply an instru-
ment J = {Aj } on the system alone at the initial time to
prepare it into a known (desired) state. To be concrete,
this instrument could, for example, be a measurement in
the computational basis, such that each Aj is a trace non-
increasing CP map with action Aj [ρ] = 〈 j |ρ| j 〉 | j 〉〈 j |.
Importantly, though, we impose no limitation on the set of
admissible instruments an experimenter could use. Next,
the total SE state propagates in time via a map

U(t:0)[•] := U(t:0)(•)U†
(t:0). (148)

Note that, due to the dilation theorem in Sec. 7 we can
always take the system-environment propagator to be uni-
tary. Taking the propagator to be a CPTP map would make
no difference at the system level. The full process can
written down as

ρj (t) = trE{U(t:0) ◦ (Aj ⊗ I)[ρSE(0)]}. (149)

Above, I is the identity map on the E as the instrument
acts only on S. While perfectly correct, whenever ρSE(0) is
not of product form, the above does not allow one to obtain
a (physically meaningful) mapping that takes input states
of the system and maps them to the corresponding output
states at a later time.

Now, let us recall that a map (in quantum, classical,
and beyond physics) is nothing more than a relationship
between experimentally controllable inputs and measur-
able outputs. Here, the inputs are the choice of the instru-
mentJ = {Aj }—which can be freely chosen by the exper-
imenter—and the corresponding outcome is ρS(t)—which
can be determined by means of quantum state tomogra-
phy. Then, right away, by combining everything that is
unknown to the experimenter in Eq. (149) into one object,
we have the map

ρj (t) = T(t:0)[Aj ]. (150)

The map T(t:0) was introduced in Ref. [234] and was
referred to as the superchannel in Ref. [239], where it
was first realized experimentally. By comparing Eqs. (149)
and (150), we see that the action of the superchannel is
given by

T(t:0)[•] = trE{U(t:0) ◦ (•⊗I)[ρSE(0)]}, (151)

which is a linear map on the operations Ai it is defined on.
While, in contrast to the case of quantum channels, T(t:0)
does not act on states but on operations, we emphasize
the operational similarities between quantum channels and
superchannels. On the one hand, they are both “made up”
of all the parts of the evolution that are not directly accessi-
ble to the experimenter; the initial state of the environment
and the unitary system-environment evolution in the case
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FIG. 15. Complete positivity and trace preservation for super-
channels. A superchannel is said to be CP if it maps CP maps
to CP maps (even when acting on only a part of them), and we
call it CPTP if it maps CPTP maps to CPTP maps. Here, T(t:0) is
CP (CPTP) if for all CP (CPTP) maps A and all possible ancilla
sizes, the resulting map A′ is also CP (CPTP). Note that for the
TP part, it is already sufficient that T(t:0) maps all CPTP maps on
the system to a unit-trace object.

of quantum channels, and the initial system-environment
state and the unitary system-environment evolution in the
case of superchannels. Additionally, they both constitute a
mapping of what can be freely chosen by the experimenter
to a later state of the system at time t. Unsurprisingly then,
as we see below, quantum channels can be considered to
be just a special case of superchannels.

Ref. [234] proved that—besides being linear—the map
T(t:0) is completely positive and trace preserving (in a well-
defined sense); and clearly, it is well defined for any initial
preparation Aj . The trace-preservation property means
that if A is CPTP then the output will be unit trace. See
Ref. [240] for further discussion and theoretical develop-
ment with respect to open system dynamics of initially
correlated systems.

The meaning of complete positivity for this map is oper-
ationally clear and very analogous to the case of quantum
channels; suppose the instrument J acts not only on the
system S, but also on an ancilla. Then the superchan-
nel’s complete positivity guarantees that the result of its
action on any CP map—which could be acting on the sys-
tem and an additional ancilla—is again a CP map (see
Fig. 15 for a graphical depiction). We do not provide a
direct proof of this statement here. However, as we dis-
cuss below, it is easy to see that T(t:0) has a positive Choi
state, which implies complete positivity in the above sense.
Since the explicit computation of T(t:0) from U(t:0) and
ρSE(0) requires—as for the case of quantum channels—the
choice of an explicit representation, we also relegate it
to Sec. 3, where we discuss Choi states of higher-order
quantum maps in more detail.

The “TP” property of superchannels means that T(t:0)
maps any trace-preserving map A to a unit-trace object.
Indeed, with the Definition (151) of superchannels in
mind, we see that, since trE and U(t:0) are trace preserv-
ing and ρSE(0) is a unit-trace state, T(t:0)[A] amounts to a
concatenation of trace preserving maps acting on a unit-
trace state, thus yielding a unit-trace object. This, then,
also implies that, whenever Aj is trace nonincreasing,
ρj (t) = T(t:0)[Aj ] is subnormalized and its trace amounts

to the probability of the map Aj occurring. This is a
simple consequence of the fact that T(t:0) is made up of
trace-preserving elements only, and, as we discuss around
Eq. (143), the trace of the output of a CP map yields its
implementation probability.

Importantly, as mentioned, the superchannel is a higher-
order map as its domain is the set of CP maps and the
image is density operators. Clearly, this is different from
the quantum stochastic matrix. In fact, the superchannel is
the first step beyond two point quantum correlations. This
is most easily seen from its Choi state, which is a bounded
operator on three Hilbert spaces: ϒ(t:0) ∈ B(Hi

0 ⊗ Ho
0 ⊗

Hi
1 ) (details for constructing the Choi state of higher-order

maps can be found below and in Sec. 3). Moreover, the
superchannel contains “normal” quantum channels as a
limiting case: when there are no initial correlations, i.e.,
ρSE(0) = ρS(0) ⊗ ρE(0), then the superchannel reduces to
the usual CPTP map:

T(t:0)[Aj ] = (E(t:0) ◦ Aj )[ρS(0)], where

E(t:0)[•] = trE{U(t:0)[•⊗ρE]}, (152)

which can be seen by direct insertion of the product state
assumption into Eq. (151).

The superchannel is a primitive for constructing the
descriptor of quantum stochastic processes. As such, it
should be operationally accessible via a set of experiments,
in the same vein as quantum channels are experimentally
reconstructable. Somewhat unsurprisingly, the reconstruc-
tion procedure for superchannels works in a similar way as
that for quantum channels; the input of the superchannel,
CP maps, span a vector space that has a basis consisting of
CP maps. This means that the superchannel is fully deter-
mined by its action on the CP maps {Âj } that form a linear
basis. Concretely, let the output states corresponding to this
basis of input operations be

T(t:0)[Âj ] = ρj (t). (153)

Now, this informationally complete input-output relation
can be used to represent the superchannel T(t:0). As is
already the case for channels, this can be done in terms of
duals, but this time not in terms of duals for a set of input
states, but a set of input operations {Âj }. While there is
no conceptual problem with duals of maps, let us avoid
this additional level of abstraction. Rather, here, we opt to
directly choose the Choi state representation of the super-
channel, in the same spirit as Eq. (97). To this end, let {Âj }
be the Choi states of the maps {Âj }, and let {D̂j } be the cor-

responding set of dual matrices, i.e., tr(D̂†
j Âk) = δjk. Then,

the Choi state of T(t:0) can be written as

ϒT(t:0) =
∑

j

ρj (t) ⊗ D̂∗
j , (154)
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and its action on an arbitrary map A is given by

T(t:0)[A] = tri[(1o ⊗ AT)ϒT(t:0)], (155)

where A is the Choi state of the map A and i denotes the
degrees of freedom A is defined on. While somewhat more
complex than in the case of quantum channels, this form
should not come as a surprise; indeed, it simply expresses
a linear input-output relation. Equation (154) “attaches”
the correct output state to each dual of a basis map, and
Eq. (155) guarantees that the action of T(t:0) is properly
defined on all basis elements, and thus on all maps A. The
fact that we go via the Choi representation of the maps is
then rather a mathematical convenience than a conceptual
leap. Below, we discuss Choi states of higher-order maps
in more detail, and also argue why the above object ϒT(t:0)
can rightfully be called a Choi state of T(t:0).

For the moment, let us emphasize once again that ϒT(t:0)
together with the action given by Eq. (155) yields the cor-
rect output state for any input operation A; any CP map can
be cast as a linear sum of the basis maps as A =∑j αj Âj .
The action of T(t:0) defined above yields the correct output
state for a basis {Âj }, since

T(t:0)[Âj ] =
d2∑

k=1

tri{(1o ⊗ Â
T

j )[ρk(t) ⊗ D̂∗
k ]},

=
d2∑

k=1

ρk(t)tr(D̂
†
kÂj ) = ρj (t), (156)

where we use the duality of D̂†
k and Âj . Consequently,

the superchannel defined in this way indeed provides the
correct mapping on all conceivable CP maps A.
Example: Armed with this new operational understanding
of open system dynamics, we now revisit the example from
Sec. IV D 1, where we discussed open system dynamics in
the presence of initial correlations. Previously, we saw that
the usual CPTP map fails to describe this process. Now, as
promised, we see that the superchannel can describe this
process adequately. To do so, let us first write down a linear
basis of CP maps on a qubit as

Âij [•] := |πi〉〈πj |•|πj 〉〈πi|, (157)

where |πi〉 , |πj 〉 ∈ {|x+〉 , |y+〉 , |z+〉 , |x−〉}. Intuitively,
each of the maps Aij performs a projective measurement
and, depending on the outcome, feeds forward a different
state. Since the corresponding pure states form a linear
basis on the matrix space B(H), their cross-combination
forms a basis on the instrument space (we discuss the nec-
essary number of basis elements in more detail below). The
corresponding Choi states are given by Âij = |πi〉〈πi| ⊗
|πj 〉〈πj |, with corresponding duals Dk	 = Dk ⊗ D	 [given
in Eq. (71)]. Using these instruments we can tomographi-
cally construct the superchannel according to Eq. (154) by
computing the corresponding output states ρij (t) for this
scenario. Doing this, we obtain

ϒTt:0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+
3 C2+

2 0 0 a+
3 c2

ω

−igs2
ω+a−C2+

2 0 0 −gcωsω + a−c2
ω

0 a+
3 C2−

2 0 0 0 ig+a−
2 s2

ω 0 0

0 0 a+
3 C2−

2 0 0 0 −ig+a−
2 s2

ω 0

a+
3 c2

ω 0 0 a+
3 C2+

2 gcωsω + a−c2
ω 0 0 igs2

ω+a−C2+
2

igs2
ω+a+C2+

2 0 0 gcωsω + a+c2
ω

a−
3 C2+

2 0 0 a−
3 c2

ω

0 −ig+a+
2 s2

ω 0 0 0 a−
3 C2−

2 0 0

0 0 ig+a+
2 s2

ω 0 0 0 a−
3 C2−

2 0

−gcωsω + a+c2
ω 0 0 −igs2

ω+a+C2+
2 a−

3 c2
ω 0 0 a−

3 C2+
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(158)

where cω = cos(2ωt), sω = sin(2ωt), C2
± = 1 ± c2

ω, a±
3 =

1 ± a3, a+ = a1 + ia2, a− = a1 − ia2, and g is the cor-
relation coefficient. Importantly, the above matrix is pos-
itive semidefinite, making—as we see when we discuss
higher-order quantum maps in more generality—the

corresponding superchannel a completely positive map.
Additionally, the above procedure is fully operational; the
resulting T(t:0) is independent of the respective maps Âij ,
and, once reconstructed, can be applied to any preparation
A to yield the correct output state. This also implies that
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the superchannel is constructed with a finite number of
experiments. Consequently, the examples in Sec. IV D 1
are all contained here as limiting cases. Finally, a CPTP
map acting on a d-dimensional system would be repre-
sented by d2 × d2 matrix. The superchannel, on the other
hand, is a d3 × d3 matrix that contracts with a CP map to
yield an output that is a d × d matrix.

In fact, the superchannel has been observed in the lab-
oratory [239] and proven to be effective at dealing with
initial correlations without giving up either linearity or
complete positivity. One then might wonder how this gets
around Pechukas’ theorem which implied that one of these
properties would have to be given up in the presence of
initial correlations? To retain both linearity and complete
positivity we have given up the notion of the initial system
state. In fact, as we argued in Sec. V A, in the presence of
correlations, quantum mechanics does not allow for a well-
defined local state beyond a singular point in the Hilbert
space. Therefore a map on this singular point alone is not
very meaningful, hence there is no big loss in giving up
the notion of the initial state as a relevant concept for the
dynamics [241]. Finally, it should be said that this line
of reasoning is very close to that of Pearl [228] in classi-
cal causal modeling, which goes beyond the framework of
classical stochastic processes and allows for interventions.

At this point, it is insightful to quickly take stock of
what we achieved in this section, what we implicitly
assumed, and how to generalize these ideas to finally
obtain a fully fledged description of quantum stochastic
processes. Firstly, in order to deal with initial correla-
tions, we switched perspective and describe the dynamics
in terms of a mapping from initial operations (instead of
initial states) to final states at time t. While seemingly
odd from a mathematical perspective, from the opera-
tional perspective it is only reasonable: experimentally
meaningful maps should map from initial objects that can
independently be controlled and prepared by the experi-
menter to objects that can be measured. In the presence of
initial system-environment correlations, the experimenter
does not have control over the initial state—at least not
without potentially influencing the remaining parameters
of the dynamics (i.e., the correlations with the environ-
ment). However, they have control over what operation
they implemented, and the dynamics from those opera-
tions to the final states can be defined and reconstructed,
and is fully independent of what the experimenter does (in
the sense that T(t:0) is independent of the experimenter’s
actions). Consequently, switching perspective is simply
natural from an operational point of view.

Since the superchannel already deals with “interme-
diate” CP maps performed by the experimenter, it also
directly points out how to go beyond experimental sce-
narios where the experimenter only acts at two times; in
principle, nothing keeps us from also performing CP maps
at intermediate times, and then reconstructing the final

state for sequences of CP maps, instead of only one CP
map, as we have done here. It should not come as a sur-
prise that this is exactly what we are going to do in the
next section.

It remains to quickly comment on the mathematical
details that we deliberately brush over in this section. Natu-
rally, to make things simpler, we choose the most insightful
representation of the superchannel in terms of a d3 × d3

matrix. Unsurprisingly, there is also a vectorized version
of the superchannel [79], or we could have kept things
entirely abstract and phrase everything in terms of maps
acting on maps. Again, we emphasize that representation
has no bearing on physical properties, but employing the
representation we choose proves very advantageous; for
example, it allows us to easily derive the dimension of the
spaces we work with, as well as express the properties of
higher-order quantum maps in a concise way. Addition-
ally, as is the case for quantum channels, we see that this
representation indeed has an interpretation in terms of a
(multipartite) quantum state, which is why we already call
it the Choi representation throughout this section.

D. Multitime statistics in quantum processes

Following the above resolution for the initial correlation
problem in quantum mechanics, we are now in a position
to provide a fully fledged framework for the description
of multitime quantum processes. Here, we predominantly
focus on the case of finitely many times at which the
process of interest is interrogated (for an in-depth dis-
cussion of continuous measurements, see, for example,
Refs. [242,243]). Note that we can but scratch the sur-
face of the different approaches that exist to the theory of
multitime quantum processes. For a much more in-depth
investigation of the relation between different concepts of
memory in quantum physics, see Ref. [10].

In principle, there are two ways to motivate this frame-
work. On the one hand, by generalizing joint probabilities,
the descriptor of classical stochastic processes, to the quan-
tum realm, and taking into consideration that, in quantum
mechanics, we have to specify the instruments that are
used to interrogate the system. This approach would then
yield a temporal Born rule [232,233], and provide a nat-
ural descriptor of quantum stochastic processes in terms
of a “quantum state over time.” We circle back to this
approach below. Here, we take the second possible route
to the description of multitime open quantum processes,
which—just like in the case of initial correlations—is
motivated by considering the underlying dynamics of a
quantum stochastic process. As we see, though, both
approaches are equivalent and lead to the same descriptor
of quantum stochastic processes.

The initial correlation problem is solved by taking the
preparation procedure into account, and to construct a
consistent mapping of the preparation operations to final
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states. To obtain a consistent description of a multitime
process, consider—as before—a system of interest S cou-
pled to an environment E. Initially, the joint system-
environment (SE) is in state ρSE(0), which might be
correlated. Together, we consider SE to be closed, such
that, between any two times, the system-environment state
evolves unitarily—described by the unitary map

ρSE(tj +1) = U(j +1:j )[ρSE(tj )] =: Uj [ρSE(tj )]. (159)

For brevity we contract the subscript on U . Next, in order
to minimize notational clutter we define several sets

Tk := {t0, t1, . . . , tk−1, tk}, (160)

JTk := {J0,J1, . . . ,Jk−1,Jk}, (161)

xTk := {x0, x1, . . . , xk−1, xk}, (162)

AxTk
:= {Ax0 ,Ax1 , . . . ,Axk−1 ,Axk }. (163)

The first set, Tk, is the set of times on which the process
is defined. At these times the system S is interrogated with
a set of instruments JTk , yielding a set of outcomes xTk .
The set of outcomes corresponds to a set of CP map AxTk

.
Note, that while we let the instruments at each time be
independent of each other, we can also allow for correlated
instruments, also known as testers, see Sec. 6.

Now, in clear analogy to both the classical case, as well
as the quantum case with initial correlations, we envision
an experimenter that probes the system of interest at times
Tk by means of instruments JTk and we are interested in
a consistent descriptor of this experimental situation. For
example, they could perform measurements in the com-
putational basis, such that each outcome xj at a time tj
would correspond to the (trace nonincreasing) transfor-
mation ρ �→ 〈xj |ρ|xj 〉 |xj 〉〈xj |. However, importantly, we
do not limit the set of allowed operations in any way,
shape, or form (besides them being trace nonincreasing
CP maps). The overall system-environment dynamics is
thus a sequence of unitary maps on the system and the
environment, interspersed by CP maps that act on the sys-
tem alone, each of them corresponding to a measurement
outcome (see Fig. 16). This continues until a final interven-
tion at tk, and then the environmental degrees of freedom
are discarded. We emphasize that, as we do not limit or
specify the size of the environment E, this setup is fully
general; as we outline above, due to the Stinespring dila-
tion, any quantum evolution between two points in time
can be understood as a unitary evolution on a larger space.
As such, our envisioned setup is the most general descrip-
tion of the evolution of an open quantum system that
is probed at times Tk. We see below that this statement
even holds in more generality: there are no conceivable
quantum stochastic processes that cannot be represented

in the above way, as sequences of unitaries on a system-
environment space, interspersed by CP maps that act on
the system alone.

The probability to observe a sequence of quantum
events, i.e., the outcomes xTk corresponding CP to maps
AxTk

, can then be straightforwardly computed via

P(xTk |JTk ) = tr{Axk©k−1
j =0Uj ◦ Axj [ρSE(0)]}. (164)

Above, © denotes the composition of maps, the maps
A act on S alone, while the maps U act on SE, but we
omit I on E for brevity. This last equation is just quan-
tum mechanics, as well as simply a multitime version
of Eq. (149), which defines the superchannel. Of course,
the challenge is to now turn this equation into a clear
descriptor for a multitime quantum process.

This can be done by noting that the above expression
is a multilinear map with respect to the maps Axk [244].
This is similar to the superchannel case we discuss in the
previous section, which is linear with respect to the prepa-
ration maps Aj . It is then possible to write Eq. (164) as
a multilinear functional TTk , which we call the process
tensor:

P(xTk |JTk ) =: TTk [AxTk
]. (165)

While seemingly a mere mathematical rearrangement, the
above description of an open system dynamics in terms
of the process tensor TTk is of conceptual relevance [244–
246]; it allows one to separate the parts of the dynamics
that are controlled by the experimenter, i.e., the maps AxTk

,
from the unknown and inaccessible parts of the dynamics,
i.e., the initial system-environment state and the system-
environment interactions. This clean separation means that
when we speak of a quantum stochastic process we need
only refer to TTk , and then for any choice of instrument,
we can compute the probability for the sequence of out-
comes by means of Eq. (165). As already mentioned in

FIG. 16. General quantum stochastic process. The system of
interest is coupled to an unknown environment and probed at
times Tk = {t0, t1, . . . , tk} with corresponding CP maps AxTk

=
{Ax0 ,Ax1 , . . . ,Axk }. In between measurements, the system and
the environment together undergo closed, i.e., unitary dynamics.
The corresponding multitime joint probabilities can be computed
by means of the process tensor corresponding to the process at
hand (depicted by the gray dotted outline).
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the discussion of superchannels, this is akin to the well-
known case of quantum channels, where we separate the
part of the process that cannot be controlled—that is, the
quantum channel E—from the parts of the process that
are controlled by the experimenter—that is, the initial sys-
tem. Here, while the respective objects are somewhat more
involved, the underlying idea is exactly the same. Conse-
quently, TTk is the clear generalization of the superchannel
T(t:0), which is, in turn, is a generalization of CPTP maps
as discussed in Sec. V C.

Moreover, this separation will later help us to resolve the
aforementioned issues with the KET in quantum mechan-
ics, where, apparently, the possible invasiveness of mea-
surements prevented a consistent description of quantum
stochastic processes. This will be possible because TTk
does not depend on the maps AxTk

, and as such provides
a description of open quantum system dynamics that is
independent of the way in which the process at hand is
probed.

We now discuss several key properties of the process
tensor. To remain close to the classical case in spirit,
we focus on probabilities, i.e., understand TTk as a map-
ping that allocates the correct probability to any sequence
of measurement outcomes for a given given choice of
instruments. At first glance, this is not in line with the
superchannel, which constituted a mapping from CP maps
to final states. However, we could also understand the pro-
cess tensor as a mapping from operations to a final state
at time tk; as it can act on all sequences of CP maps, one
can choose to not apply an instrument at the last time tk.
Consequently, TTk allows for the construction of a related
map

T̃Tk [AxTk−1
] = ρ(tk|xTk−1 , JTk−1) (166)

whose output is a quantum state at tk conditioned on the
sequence of CP maps AxTk−1

at times Tk−1. Often, in what
follows, we do not explicitly distinguish between process
tensors that return probabilities and those that return states,
and the respective case will either be clear from context, or
irrelevant for the point we aim to make. With this some-
what technical point out of the way, let us now become
more concrete and discuss both the experimental recon-
struction as well as the representation of process tensors.
Unsurprisingly, we can directly generalize the ideas we
developed above to the multitime case.

1. Linearity and tomography

As mentioned above, TTk is a multilinear functional
on sequences of CP maps AxTk

. Consequently, once all
the probabilities for the occurrence of a basis of such
sequences are known, the full process tensor is deter-
mined. This is analogous to the classical case, where the
full process at hand was completely characterized once all

joint probabilities for all possible combinations of different
outcomes were known. Here, the only difference is that dif-
ferent measurements can be applied at each point in time,
making the reconstruction a little bit more cumbersome.
As the space of sequences of CP maps is finite dimensional
(for d < ∞), TTk can be reconstructed in a finite number
of experiments, in a similar vein to the reconstruction of
quantum channels and superchannels discussed above. The
instrument Jtj at any time tj is a set of CP maps

{Axj : B(Hi
j ) → B(Ho

j )}. (167)

The space spanned by such CP maps, i.e., the space that
contains all maps of the form

∑
xj

cxj Axj is (dj idj o)
2

dimensional since it is—as we see in our discussion of
the CJI in Sec. IV B 3—isomorphic to the matrix space
B(Ho

j ⊗ Hi
j ) (in what follows, we assume dj i = dj o = d).

Since we can choose an instrument at each time inde-
pendently of other times, we can form a multitime basis
consisting of basis elements at each time, which forms a
linear basis on all times Tk (in the same way as the basis
of a multipartite quantum system can be constructed from
combinations of local basis elements):

ĴTk =
{ ˆAxTk

:= {Âxk , . . . , Âx0}
}d4

xj =1
. (168)

Importantly, any other sequence of operations (and also
temporally correlated ones, see below) can be written
as a linear combination of such a complete set of basis
operations.

The action of the process tensor on the multitime basis
gives us the probability to observe the sequence xTk as

P(xTk |ĴTk ) := TTk [ ˆAxTk
]. (169)

From our discussion of the reconstruction of the super-
channel, reconstructing the multitime object TTk is now a
straightforward endeavor, which, again, we carry out using
Choi states. To this end, we note that, since all operations
performed at different times are uncorrelated, their over-
all Choi state AxTk

is simply a tensor product of the Choi
states of the individual operations, i.e.,

ÂxTk
= Âxk ⊗ Âxk−1 ⊗ . . . ⊗ Âx1 ⊗ Âx0 . (170)

The Choi state of the process tensor can then be writ-
ten—in the same spirit as Eq. (97)—as

ϒTk =
∑

xTk

P(xTk |ĴTk )D̂
∗
xk

⊗ · · · ⊗ D̂∗
x0

, (171)

with the action of the process tensor given by

TTk [A ] = tr[AT
xTk

ϒTk ]. (172)
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Here, again, {D̂xk } forms the dual basis to the Choi states

of the basis operations {Âxk } at each time tk, i.e., tr[D̂†
xiÂxj ]

= δij .
Again, by construction, the process tensor above yields

the correct probabilities for any of the basis sequences in
ĴTk [which can be seen by direct insertion of Eq. (171) into
Eq. (172)]:

TTk [ÂxTk
] =
∑

x′
Tk

tr[(Â
T

xk
⊗ . . . ⊗ Â

T

x0
)

· (P(x′
Tk

|ĴTk )D̂
∗
x′

k
⊗ · · · ⊗ D̂∗

x′
0
)],

=
∑

x′
Tk

P(x′
Tk

|ĴTk )tr(D̂
†
x′

k
Âxk ) · · · tr(D̂†

x′
0
Âx0),

= P(xTk |ĴTk ), (173)

thus yielding the correct probability for any basis sequence
of measurements, implying that it yields the correct prob-
ability for any conceivable operation on the set of times
Tk. In order to reconstruct a process tensor on times Tk, an
experimenter would hence have to probe the process using
informationally complete instruments {Ĵj }—in the sense
that its elements span the whole space of CP maps. More
concretely, the duals Dxj can be computed, the joint proba-

bilities P(xTk |ĴTk ) can be measured, and Eq. (171) tells us
how to combine them to yield the correct matrix ϒTk (see
below and Refs. [244,247] for details on the reconstruction
of ϒTk ). This reconstruction also applies in the case that
the experimenter does not have access to informationally
complete instruments, yielding a “restricted” process ten-
sor [221,247], that only meaningfully applies to operations
that lie in the span of those that can be implemented.

While the number of necessary sequences for the recon-
struction of a process tensor scales exponentially with
the number of times (if there are N times, then there
are d4N different sequences, for which the probabilities
would have to be determined), the number is still finite,
and thus, in principle, feasible. We note that classical
processes are plagued by a similar exponential scaling
problem. If there are d different outcomes at each time,
then the joint probabilities for dN different sequences of
N outcomes need to be determined. Let us now discuss
some concrete properties and interpretations of these above
considerations.

2. Spatiotemporal Born rule and the link product

As before, let

AxTk
= Axk ⊗ Axk−1 ⊗ . . . ⊗ Ax1 ⊗ Ax0 , (174)

be a set of Choi states corresponding to a sequence of inde-
pendent CP maps. Then, as we have seen, the probability

to obtain this sequence is given by

P(xTk |JTk ) = tr[ϒTk AT
xTk

], (175)

where ϒTk is the Choi state of TTk (see below for a dis-
cussion as to why it actually constitutes a Choi state). The
advantage of representing the process tensor by its action
in this way is twofold. On the one hand, all objects are now
rather concrete (and not abstract maps), and we can easily
talk about their properties (see below). On the other hand,
the fact that ϒTk is a matrix and not an abstract map will
allow us to freely talk about temporal correlations in quan-
tum mechanics in the same way that we do in the spatial
setting.

Additionally, the above Eq. (175) constitutes a multi-
time generalization of the Born rule [232,233], where ϒTk
plays the role of a quantum state over time, and the Choi
states AxTk

play a role that is analogous to that of POVM
elements in the spatial setting. In principle, ϒTk can be
computed from the underlying dynamics by means of the
link product � defined in Ref. [248] as

ϒTk = trE[Uk � . . . � U0 � ρSE(0)]. (176)

Here, Uj is the Choi state of the map Uj and
the link product acts like a matrix product on the
space E and a tensor product on space S. Basi-
cally, the link product translates concatenation of maps
onto their corresponding Choi matrices, i.e., if A and
C are the Choi states A and C, respectively, then
D = C � A is the Choi state of D = C ◦ A. We do
not employ the link product frequently in this tuto-
rial, but quickly provide its definition and motiva-
tion here (see, for example, Ref. [248] for more
details).

Concretely, as an exemplary case, let A : B(H1) →
B(H3 ⊗ H4) and C : B(H4 ⊗ H5) → B(H6), then D =
C ◦ A : B(H1 ⊗ H5) → B(H3 ⊗ H6). Correspondingly,
for the respective Choi states we have C ∈ B(H4 ⊗ H5 ⊗
H6), A ∈ B(H1 ⊗ H3 ⊗ H4), and D ∈ B(H1 ⊗ H5 ⊗
H3 ⊗ H6). Using Eq. (95), one can rewrite the action of
the resulting map D on an arbitrary matrix ρ ∈ B(H1 ⊗
H5) in terms of its Choi state, which yields

D[ρ] = tr15[D(ρT ⊗ 136)] =: tr15[(C � A)(ρT ⊗ 136)],
(177)

where 136 is the identity matrix on H3 ⊗ H6. Now, using
the above equation, one can directly read off the form of
C � A as

C � A = tr4[(C ⊗ 113)(AT4 ⊗ 156)]. (178)

The derivation of the above relation from Eq. (176) is
straightforward but somewhat lengthy and left as an exer-
cise to the reader. Intuitively, the above tells us that the
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link product between two matrices consists of (i) tensoring
both matrices with identity matrices so that they live on the
same space, (ii) partially transposing one of the matrices
with respect to the spaces both of the matrices share, and
(iii) taking the trace of the product of the obtained objects
with respect to the spaces both of the matrices share. This
recipe holds for all conceivable situations where the Choi
matrix of the concatenation of maps is to be computed. As
mentioned, we do not make much use of the link product
here (with the exception of Sec. VI B 1), but it can be very
convenient when working out the Choi states of higher-
order quantum maps like the process tensor. Let us mention
in passing that the link product has many appealing prop-
erties, like, for example, commutativity (for all intents and
purposes [248]) and associativity, which allows us to write
the Choi state ϒTk in Eq. (176) as a multilink product with-
out having to care about in what order we carry out the
“multiplication” �.

As it will turn out, ϒTk is a many-body density matrix
(up to a normalization), therefore constituting a very natu-
ral generalization for a classical stochastic process, which
is a joint probability distribution over many random vari-
ables. Since it allows the compact phrasing of many of the
subsequent results, we frequently opt for a representation
of TTk in terms of its Choi matrix ϒTk in what follows, and
we often call both of them the process tensor for simplic-
ity. Nonetheless, for better accessibility, we also express
our results in terms of maps whenever appropriate.

Before advancing, let us recapitulate what has been
achieved by introducing the process tensor for the descrip-
tion of general quantum processes. First, the effects on
the system due to interaction with the environment have
been isolated in the process tensor ϒTk . All of the details
of the instruments and their outcomes are encapsulated in
AxTk

, while all inaccessible effects and influences are con-
tained in the process tensor. In this way, ϒTk is a complete
representation of the stochastic quantum process, contain-
ing all accessible multitime correlations [249–253]. The
process tensor can be formally shown to be the quantum

generalization of a classical stochastic process [224], and
it reduces to classical stochastic process in the correct limit
[224,254,255] (we get back to this point below).

We emphasize that open quantum system dynamics is
not the only field of physics where an object like the pro-
cess tensor (or variants thereof) crop up naturally. See, for
example, Refs. [246,248,256–268] for an incomplete col-
lection of works where similar mathematical objects have
been used for the study of higher-order quantum maps,
causal automata and nonanticipatory channels, quantum
networks with modular elements, quantum information in
general relativistic space time, quantum causal modeling,
and quantum games (see also Table I). In open quantum
system dynamics, they have been used in the disguise of
so-called correlation kernels already in early works on
multitime quantum processes [237,238,269].

3. Many-body Choi state

While we now know how to experimentally reconstruct
it, it remains to provide a physical interpretation for ϒTk ,
and discuss its properties (and justify why we called it
the Choi matrix of TTk above). We start with the former.
For the case of quantum channels, the interpretation of the
Choi state ϒE is clear; it is the state that results from let-
ting E act on half of an unnormalized maximally entangled
state. ϒE then contains exactly the same information as
the original map E . Somewhat unsurprisingly, in the mul-
titime case, the CJI is similar to the two-time scenario of
quantum channels. Here, however, instead of feeding one
half of a (unnormalized) maximally entangled state into
the process once, we have to do so at each time in Tk (see
Fig. 17 for a graphical representation). From Eq. (175),
we see that ϒTk must be an element of B(Hi

k ⊗ Ho
k−1 ⊗

· · · ⊗ Ho
0 ⊗ Hi

0 ). Labeling the maximally entangled states
in Fig. 17 diligently, and distinguishing between input and
output spaces, we see that the resulting state ϒTk lives on
exactly the right space. Checking that the matrix ϒTk con-
structed in this way indeed yields the correct process tensor

TABLE I. “Process tensors” in different fields of quantum mechanics. Mathematical objects that are similar in spirit to the process
tensor crop up frequently in quantum mechanics. The below table is an incomplete list of the respective fields and commonly used
names. Note that, even within these fields, the respective names and concrete applications differ. Additionally, some of the objects that
occur on this list might have slightly different properties than the process tensor (for example, process matrices do not have to display
a global causal order), and might look very different than the process tensor (for example, it is a priori not obvious that the correlation
kernels used in open quantum system dynamics are indeed variants of process tensors in disguise). These disparities notwithstanding,
the objects in the table are close both in spirit, as well as the related mathematical framework.

Name Application

Quantum information Quantum comb and causal box Quantum circuit architecture
Open quantum system dynamics Correlation kernel and process tensor Study of temporal correlations
Quantum games Strategy Computation of winning probabilities
Quantum causality Process matrix Processes without definitive causal order
Quantum causal modeling Process matrix Causal relations in quantum processes
Quantum Shannon theory Causal automaton and nonanticipatory channel Quantum channels with memory
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can be seen by direct insertion. Indeed, by using the Choi
state of Fig. 17 and the definition of the Choi states {Axj },
one sees that Eq. (175) holds. While straightforward, this
derivation is somewhat arduous and left as an exercise to
the reader.

We thus see that ϒTk is proportional to a many-body
quantum state, and the spatiotemporal correlations of the
underlying process are mapped onto spatial correlations of
ϒTk via the CJI and each time corresponds to two Hilbert
spaces (one for the input space, and one for the output
space). Specifically, statements like “correlations between
different times” now translate to statements about cor-
relations between different Hilbert spaces the state ϒTk
is defined on. These properties lend themselves to con-
venient methods for treating a multitime process as a
many-body state with applications for efficient simulations
and learning of process [270–274].

Additionally, the CJI for quantum channels as well as
superchannels are simply special cases of the more general
CJI presented here. We emphasize that, with this, express-
ing the action of a process tensor in terms of matrices has
become more than just a convenient trick. Knowing that
ϒTk is (proportional to) a quantum state tells us straight
away that it is positive, and all spatiotemporal correlations
present in the process can now conveniently be understood
as spatial correlations in the state ϒTk . This convenience
is the main reason why most of our results are phrased in
terms of Choi matrices in what follows.

FIG. 17. Choi state of a process tensor. At each time, half of
an unnormalized maximally entangled state is fed into the pro-
cess. For better bookkeeping, all spaces are labeled by their
respective time. The resulting many-body state ϒTk contains
all spatiotemporal correlations of the corresponding process as
spatial correlations.

4. Complete positivity and trace preservation

Just like for the case of quantum channels, the properties
of a multitime process can be most easily read off its Choi
state. First, as we see above, ϒTk is positive. Like in the
case of channels, and superchannels, this property implies
complete positivity of the process at hand. As is the case
for superchannels, complete positivity here has a particular
meaning: let the process act on any sequence of CP maps

BTk = {Bx0 ,Bx1 , . . . ,Bxk−1 ,Bxk },
BxTk

:= Bxk ⊗ Bxk−1 · · · ⊗ Bx1 ⊗ Bx0 ,
(179)

where Bx is the Choi state of Bx. These superoperators act
both on the system S of interest, as well as some external
ancillas, which we collectively denote by B, which do not
interact with the environment E that is part of the process
tensor. We can see the complete positivity of the process
tensor directly in terms of the positivity of the process’
Choi state

trS[(ϒTk ⊗ 1B)BT
xTk

] ≥ 0. (180)

Above ϒTk acts on S at times Tk, 1B is the identity matrix
on the ancillary degrees of freedom B and trS denotes the
trace over all system degrees of freedom. As the positivity
of the Choi state implies complete positivity of the under-
lying map, any sequence BxTk

of CP maps is mapped to a
CP map by TTk . Analogously, we could have expressed the
above equation in terms of maps, yielding

(TTk ⊗ IB)[Bx0 ,Bx1 , . . . ,Bxk−1 ,Bxk ] is CP. (181)

However, as mentioned, the properties of process tensors
are much more easily represented in terms of their Choi
matrices.

In clear analogy to the case of quantum channels, pro-
cess tensors should also satisfy a property akin to trace
preservation. At its core, trace preservation is a statement
about normalization of probabilities. As CPTP maps can
be implemented with unit probability, at first glance, the
natural generalization of trace preservation thus appears to
be

tr[ϒT
Tk
(Ak ⊗ · · · ⊗ A0)] = 1 (182)

for all CPTP maps A0, . . . , Ak. However, this requirement
on its own is too weak, as it does not encapsulate the tem-
poral ordering of the process at hand [264]. If only the
above requirement is fulfilled, then, actions at a time tj
could, in principle, influence the statistics at an earlier time
t′j < tj . This should be forbidden by causality, though. For-
tunately, ϒTk already encapsulates the causal ordering of
the underlying process by construction. Specifically, trac-
ing over the degrees of freedom of ϒTk that correspond to
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FIG. 18. Trace conditions on process tensors. Displayed is the
pertinent part of Fig. 17. As tr ◦ U = tr for all CPTP maps U ,
tracing out the final degree of freedom of ϒTk , denoted by ki,
amounts to a partial trace of �+

k−1o . This, in turn, yields a tensor
product between 1k−1i and a process tensor on one step less. As
in Fig. 17, the swap operation is represented by a vertical line
with crosses at its ends.

the last time (i.e., the degrees of freedom labeled by ki in
Fig. 17) yields

trkiϒTk = 1k−1o ⊗ ϒTk−1 , (183)

where ϒTk−1 is the process tensor on times Tk−1 with a final
output degree of freedom denoted by k − 1i. The above
property trickles down, in the sense that

trk−1iϒTk−1 = 1k−2o ⊗ ϒTk−2 ,

trk−2iϒTk−2 = 1k−3o ⊗ ϒTk−3 ,

...

tr1iϒT1 = 10o ⊗ ϒT0 ,

tr0iϒT0 = 1.

(184)

Before elucidating why these properties indeed ensure
causal ordering, let us quickly lay out why they hold.
To this end, it is actually sufficient to prove only the first
condition (183), as the others follow in the same vein. A
rigorous version of this proof can, for example, be found
in Refs. [244,248]. Here, we prove it by means of Fig. 17.
Consider tracing out the degrees of freedom denoted by ki

in said figure. This, then, amounts to tracing out all out-
put degrees of freedom of the map Uk. As Uk is CPTP,
tracing out all outputs after applying Uk is the same as sim-
ply tracing out the outputs without having applied Uk, i.e.,
tr ◦ Uk = tr. This, then, implies a partial trace of the unnor-
malized maximally entangled state �+

k−1o , yielding 1k−1o ,
as well as a trace over the environmental output degrees of
freedom of Uk−1 (see Fig. 18 for a detailed graphical repre-
sentation). The remaining part, i.e., the part besides 1k−1o

is then a process tensor on the times Tk−1 = {t0, . . . , tk−1}.
Iterating these arguments then leads to the hierarchy of
trace conditions in Eq. (184). While a little bit tedious alge-
braically, these relations can very easily be read off from
the graphical representation provided in Fig. 18.

Showing that the above trace conditions indeed imply
correct causal ordering of the process tensor now amounts
to showing that a CPTP map at a later time does not have
an influence on the remaining process tensor at earlier
times. We start with a CPTP map at tk. This map does
not have an output space. The only CPTP map with triv-
ial output space is the trace operation, which has a Choi
state 1ki . Thus, letting ϒTk act on it amounts to a partial
trace trkiϒTk , which is equal to 1k−1o ⊗ ϒTk−1 . Letting this
remaining process tensor act on a CPTP map Ak−1 at time
tk−1 yields

trk−1[(1k−1o ⊗ ϒTk−1)A
T
k−1] = 1k−2o ⊗ ϒTk−2 , (185)

where trk−1 denotes the trace over k − 1i and k − 1o, and
we use the property of CPTP maps that trk−1o(Ak−1) =
1k−1i . As the lhs of the above equation does not depend
on the specific choice of Ak−1, no statistics before tk−1
will depend on the choice of Ak−1 either. Again, iterating
this argument then shows that the above hierarchy of trace
conditions implies proper causal ordering.

5. “Reduced” process tensors

Importantly, this independence on earlier CPTP maps
implies that we can uniquely define certain “reduced” pro-
cess tensors. Say, we have a process tensor ϒTk that is
defined on times t1 < · · · < tk and we want to obtain the
correct process tensor only on the first couple of times
{t0, . . . , tj } with tj < tk. To this end, at first glance, it seems
like we would have to specify what instruments Ji we
aim to apply at times ti > tj . However, since ϒTk satisfies
the above causality constraints, earlier statistics, and with
them, the corresponding process tensors are independent
of later CPTP maps. This is in contrast to later statistics,
that can, due to causal influences, absolutely depend on
earlier CPTP maps. Long story short, while “tracing out”
later times is a unique operation on combs, “tracing out”
earlier ones is not, and the corresponding resulting process
tensor would depend on the CPTP maps that were used
for the tracing out operations. This, unsurprisingly, is in
contrast to the spatial case, where local CPTP maps never
influence the statistics of other parties, for the simple rea-
son that in the spatial case, there is no signaling between
different parties happening. To be more concrete, in order
to obtain a process tensor ϒTj from ϒTk , where tj < tk,
we could “contract” ϒTk with any sequence of CPTP maps
Aj +1, . . . , Ak:

ϒTj = trk:j +1[ϒTk (A
T
j +1 ⊗ · · · ⊗ AT

k )]. (186)

Since ϒTk satisfies the causality constraints of Eqs. (183)
and (184) the above ϒTj is independent of the choice
of CPTP maps Aj +1, . . . , Ak and correctly reproduces all
statistics on Tj . Since the choice of CPTP maps is arbi-
trary, we can take the simple choice Ai = (1/dio)1

i
i ⊗ 1io ,
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which yields

ϒTj = 1
�k

i=j +1dio
trk:j +1(ϒTk ). (187)

Again, we emphasize that the causality constraints on ϒTk
apply only in a fixed order—that is, the order that is given
by causal ordering of the times in Tk, such that a “reduced”
process tensor on later times is a meaningful concept,
but would in general depend on the CPTP maps that are
applied at earlier times. For example, we would generally
have

ϒ
(A0)
tk ,...,t1 := tr0(ϒTk A

T
0 ) �= tr0(ϒTk A

′T
0 ) =: ϒ

(A′
0)

tk ,...,t1 . (188)

As before, the above results can, equivalently, be stated
in terms of maps. However, the corresponding equations
would not be very enlightening. To summarize, process
tensors, just like channels and superchannels satisfy com-
plete positivity and trace preservation, albeit with slightly
different interpretations than is the case for channels.

At this point, it is insightful to return to the two different
ways of motivating the discussion of quantum stochastic
processes we alluded to at the beginning of Sec. V D. Nat-
urally, based on a reasoning by analogy, we could have
introduced the process tensor as a positive linear func-
tional that maps sequences of CP maps to probabilities and
respects the causal order of the process. After all, com-
ing from classical stochastic processes and knowing about
how measurements are described in quantum mechanics,
this would have been a very natural route to take. This,
then, might, in principle, have led to a larger set of process
tensors than the ones we obtain from underlying circuits.
However, this is not the case; as we see in the next section,
any object that is positive and satisfies the trace hierarchy
above actually corresponds to a quantum circuit with only
pure states and unitary intermediate maps. Consequently,
and somewhat reassuringly, both the axiomatic perspec-
tive, as well as the operational one we take here, lead
to the same resulting descriptors of quantum stochastic
processes.

Finally, one might wonder, why we never discussed
the question of causality in the case of classical stochas-
tic processes. There, however, causality does not play a
role per se if only noninvasive measurements are con-
sidered. It is only through the invasiveness of measure-
ments and interrogations that influences between different
events, and, as such, causal relations can be discerned. A
joint probability distribution obtained from making non-
invasive measurements does thus not contain information
about causal relations. This, naturally, changes drastically,
as soon as active interventions are taken into considera-
tions, as is done actively in the field of classical causal
modeling [228], and as cannot be avoided in quantum
mechanics [224].

FIG. 19. Tester element. In the most general case, an experi-
menter can correlate the system of interest with an ancilla (here,
initially in state |�〉), use said ancilla again at the next time, etc.,
and make a final measurement with outcome x in the end. As
the unitaries Vj can also act trivially on parts of the ancilla, this
scenario includes all conceivable measurements an experimenter
can perform. Summing over the outcomes xTk amounts to trac-
ing out the ancillas, thus yielding a proper comb (compare with
Fig. 16). Note that the inputs (outputs) of the resulting tester ele-
ments correspond to the outputs (inputs) of the process tensor,
and the system of interest corresponds to the top line, not the
bottom line.

6. Testers: temporally correlated “instruments”

So far, we have only considered application of indepen-
dent instruments, which have the product form given in
Eq. (174). However, these are not the only operations a
process tensor can meaningfully act on. In principle, an
experimenter could, for example, condition their choice
of instrument at time tj ′ on all outcomes they recorded
at times tj < tj ′ . This would lead to a (classically) tem-
porally correlated “instrument,” which is commonly prac-
ticed in quantum optics experiments [275]. More generally,
at times Tk, the experimenter could correlate the system
of interest with external ancillas which are reused, and
measure said ancillas at time tk (see Fig. 19). This, then,
would result in a generalized instrument that has temporal
quantum correlations.

We can always express such correlated operations using
a local linear basis as

AxTk
=
∑

xTk

αxTk
Âxk ⊗ Âxk−1 ⊗ . . . ⊗ Âx1 ⊗ Âx0 . (189)

The lhs side of this equation is labeled the same as
Eq. (174). This is because the above equation contains
Eq. (174) as a special case. Here, {Âxj } form a linear basis
for operations at time tj and αxTk

are generic coefficient
that can be nonpositive. In other words, the above corre-
lated operation can carry “entanglement in time” since not
only convex combinations of product operations are pos-
sible. Temporally correlated operations can be performed
as part of a temporally correlated instrument. Such gener-
alizations of instruments have been called “testers” in the
literature [232,248,276].

In the case of “normal” instruments, the respective ele-
ments are CP maps and have to add up to a CPTP map.
Here, in clear analogy, the elements of a tester have to add
up to a proper process tensor. In terms of Choi states, this
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means that the elements {AxTk
} of a tester have to be pos-

itive, and add up to a matrix A =∑k AxTk
that satisfies

the hierarchy of trace conditions of Eqs. (183) and (184).
We emphasize that the possible outcomes xTk that label
the tester elements do not have to correspond to sequences
x0, . . . xk of individual outcomes at times t0, . . . tk. As out-
lined above, for correlated tester elements, all measure-
ments could happen at the last time only, or at any subset
of times. Consequently, in what follows, unless explicitly
stated otherwise, xTk will label “collective” measurement
outcomes and not necessarily sequences of individual out-
comes. Interestingly, since tester elements add up to a
proper process tensor, this discussion of testers already
points us to the interpretation of correlations between dif-
ferent times in ϒTk ; each type of them corresponds to a
different type of information that is transmitted between
different points in time by the environment—just like in
the tester case classical correlations correspond to classi-
cal information that is fed forward, while entanglement
between different times relates to quantum information
being processed. We make these points clearer below, but
already want to emphasize the dual role that testers and
process tensors play.

However, for a tester, the roles of input and output are
reversed with respect to the process tensors that act on
them; an output of the process tensor is an input for the
tester and vice versa. Consequently, keeping the label-
ing of spaces consistent with the above, and assuming
that testers end on the last output space ki, the trace
hierarchy for testers starts with trko(AxTk

) = 1ki ⊗ ATk−1 ,
trk−1o(ATk−1) = 1k−1i ⊗ ATk−2 , etc., implying that, with
respect to Eqs. (183) and (184), the roles of i and o in
the trace hierarchy are simply exchanged. Naturally, testers
generalize both POVMs and instruments to the multitime
case.

Importantly, for any element AxTk
of a tester that is

ordered in the same way as the underlying process tensor,
we have

0 ≤ tr(ϒTk AT
xTk

) ≤ 1, and tr(ϒTk AT
Tk
) = 1, (190)

which can be seen by employing the hierarchy of trace
conditions that hold for process tensors and testers. Sim-
ilarly to the case of POVMs and instruments, letting a
process tensor act on a tester element yields the probabil-
ity to observe the outcome xTk that corresponds to AxTk
(see Fig. 20 for a graphical representation). Below, we
encounter temporally correlated tester elements when dis-
cussing Markovianity and Markov order in the quantum
setting.

As before, one might wonder why temporally corre-
lated measurements—unlike temporally correlated joint
probability distributions—made no occurrence in our dis-
cussion of classical stochastic processes. Again, the answer

is rather simple; in our discussion of classical stochastic
processes, there was no notion of different instruments
that could be used at different times, so that there was
also no means of temporally correlating them. Had we
allowed for different classical instruments, i.e., had we
allowed for different kinds of active interventions, then
classically correlated instruments would have played a
role as well. However, these instrument would have dis-
played only classical correlations between different points
in time, since no quantum information can be sent between
classical instruments.

7. Causality and dilation

In Sec. V E, we will see that, besides being a handy
mathematical tool, process tensors allow for the derivation
of a generalized extension theorem, thus appearing to be
the natural extension of stochastic processes to the quan-
tum realm on a fundamental level. Here, in a first step, we
connect process tensors to underlying dynamics.

In classical physics, it is clear that every conceiv-
able joint probability distribution can be realized by
some—potentially highly exotic—classical dynamics. On
the other hand, so far, it is unclear if the same holds for
process tensors. By this, we mean, that, we have not yet
shown the claim made above, that every process tensor,
i.e., every positive matrix that satisfies the trace hierarchy
of Eqs. (183) and (184) can actually be realized in quan-
tum mechanics. We provide a short “proof” by example
here; more rigorous treatments can, for instance, be found
in Refs. [244,248,258,277].

Concretely, showing that any process tensor can be real-
ized in quantum mechanics amounts to showing that they
admit a quantum circuit that is only composed of pure
states and unitary dynamics. This is akin to the Stinespring
dilation we discussed in Sec. IV B 4, which allowed us to
represent any quantum channel in terms of pure objects
only. In this sense, the following dilation theorem will
even be more general than the analogous statement in the
classical case, where randomness has to be inserted “by
hand.”

We use the property that all quantum states are purifi-
able to obtain a representation for general process tensors.

FIG. 20. Action of a process tensor on a tester element. “Con-
tracting” a process tensor (depicted in blue) with a temporally
correlated measurement, i.e., a tester element (depicted in green),
yields the probability for the occurrence of said tester element.
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For concreteness, let us consider a three-step process ten-
sor ϒ0i0o1i1o2i , defined on three times {t0, t1, t2}. Now, due
to the causality constraints of Eqs. (183) and (184), we
have tr2i(ϒ0i0o1i1o2i) = 11o ⊗ ϒ ′

0i0o1i , where the prime
is added for clearer notation in what follows. Since each
of its components is proportional to a quantum state, this
latter term can be dilated in at least two different ways:

11o ⊗ ϒ ′
0i0o1i = tr2iA(|ϒ〉〈ϒ |0i0o1i1o2iA),

= d1o tr1o′B(�
+
1o1o′ ⊗ |ϒ ′〉〈ϒ ′|0i0o1iB),

(191)

where |ϒ〉0i0o1i1o2iA and |ϒ ′〉0i0o1iB are purifications of
ϒ0i0o1i1o2i and ϒ ′

0i0o1i , respectively (with correspond-
ing ancillary purification spaces A and {1o′, B}), and the
additional prefactor d1o = tr(11o) is required for proper
normalization. These two different dilations of the same
object are related by an isometry V1o′B→2iA =: V that acts
only on the dilation spaces, i.e.,

|ϒ〉〈ϒ |0i0o1i1o2iA = d1oV(�+
1o1o′ ⊗ |ϒ ′〉〈ϒ ′|0i0o1iB)V

†.
(192)

In the same vein, due to the causality constraints of
ϒ ′

0i0o1i , we can show that there exists an isometry
W0o′0i′→1iB =: W, such that

|ϒ ′〉〈ϒ ′|0i0o1iB = d0oW(�+
0o0o′ ⊗ |ϒ ′′〉〈ϒ ′′|0i0i′)W†,

(193)

where |ϒ ′′〉0i0i′ is a pure quantum state. Insert-
ing this into Eq. (192) and using that ϒ0i0o1i1o2i =
trA(|ϒ〉〈ϒ |0i0o1i1o2iA) yields—up to normalization—a
representation of ϒ0i0o1i1o2i in terms of a pure ini-
tial state |ϒ ′′〉〈ϒ ′′|0i0i′ ⊗ �+

0o0o′ ⊗ �+
1o1o′ and subsequent

FIG. 21. Dilation of the Choi state of a process tensor. Up to
normalization, Eqs. (192) and (193) together yield a quantum
circuit for the implementation of the Choi state of a two-step pro-
cess tensor that consists only of pure states and isometries (which
could be further dilated to unitaries).

FIG. 22. Process tensor corresponding to Fig. 21. Rearranging
the wires of the circuit of Fig. 21 and removing the maximally
entangled states (i.e., undoing the CJI), yields the representa-
tion of a process tensor we already encountered in the previous
section. As above, note that Ho

0
∼= Ho

0′ and Ho
1

∼= Ho
1′ , such that

this is indeed the correct dilation of ϒ0i0o1i1o2i .

isometries W0o′0i′→1iB and V1o′B→2iA (see Fig. 21). As
any isometry can be completed to a unitary, this implies
that ϒ0i0o1i1o2i can indeed be understood as stemming
from a quantum circuit consisting only of pure states
and unitaries. This circuit simply provides the CJI of the
corresponding process tensor, as can easily be seen by
“removing” the maximally entangled states, and rearrang-
ing the wires in a more insightful way (see Fig. 22).
Naturally, these arguments can be extended to any number
of times. Here, we sacrifice some of the mathematical rigor
for brevity and clarity of the exposition; as mentioned, for
a more rigorous derivation, see Refs. [244,248,258,277].
Importantly, with this dilation property at hand, we can be
sure that every process tensor actually has a physical repre-
sentation, i.e., it describes a conceivable physical situation.
This is akin to the case of channels, where the Stinespring
dilation guarantees that every CPTP map could be imple-
mented in the real world. With these loose ends wrapped
up, it is now time to discuss process tensors and quantum
stochastic processes on a more axiomatic level.

E. Generalized extension theorem (GET)

Above, we provide a consistent way to describe quan-
tum stochastic processes. Importantly, this description
given by process tensors can deal with the inherent inva-
siveness of quantum measurements, as it separates the
measurements made by the experimenter from the under-
lying process they probe. Unsurprisingly then, employ-
ing this approach to quantum stochastic processes, the
previously mentioned breakdown of the KET in quan-
tum mechanics can be resolved in a satisfactory manner
[224,269].

Recall that one of the ingredients of the Kolmogorov
extension theorem—which does not hold in quantum
mechanics—is the fact that a multitime joint probability
distribution contains all joint probability distributions for
fewer times. In quantum mechanics on the other hand, a
joint probability distribution, say, at times {t1, t2, t3} for
instruments {J1,J2,J3} does not contain the information
of what statistics one would have recorded, had one not
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FIG. 23. Consistency condition for quantum stochastic pro-
cesses. Letting a process tensor act on an identity (here at time
t2) yields the correct process tensor on the remaining times.

measured at t2, but only at times {t1, t3}. More gener-
ally, P(x3, x2, x1|J3,J2,J1) does not allow one to predict
probabilities for different instruments {J ′

1,J ′
2,J ′

3}. On the
other hand, the process tensor allows one to—on the set
of times it is defined on—compute all joint probabili-
ties for all employed instruments, in particular, for the
case where one of more of the instruments are the “do-
nothing” instrument. Consequently, it is easy to see that for
a given process on, say, times {t1, t2, t3}, the corresponding
process tensor T{t1,t2,t3}—where for concreteness, here we
use T{t1,t2,t3} instead of TT3—contains the correct process
tensors for any subset of {t1, t2, t3}. For example, we have

T{t1,t3}[•, •] = T{t1,t2,t3}[•,I2, •], (194)

where I2 is the identity map I[ρ] = ρ at time t2 (see
Fig. 23 for a graphical representation).

This, in turn, implies that process tensors satisfy a gener-
alized consistency condition. Importantly, as I is a unitary
operation, letting T act on an identity does generally not
coincide with the summation over measurement outcomes.
Concretely, for any instrument with more than one out-
come, we have

∑
x Ax �= I , and thus summation over

outcomes is not the correct way to “marginalize” process
tensors. We discuss below, why it works nonetheless for

Indivisible processes 
ℰ(t:r) ≠ ℰ(t:s) ∘ ℰ(s:r)

ΥT ⊇ {ΥTk
} ⊇ … ⊇ {ΥT3

} ⊇ {ΥT2
}

Generalized extension theorem 
proves the existence of

Markovian processes,  

master equations,  
data-processing inequality

Generic non-markovian correlations 

tr [ΥTk
AT

k:j+ ⊗ AT
j−:0] ≠ tr [ΥTk

AT
k:j+ ⊗ A′Tj−:0]

FIG. 24. Hierarchy of multitime quantum processes. A quan-
tum stochastic process is the process tensor over all times. Of
course, in practice one looks only at finite-time statistics. How-
ever, the generalized extension theorem tells us that the set of
all k-time process tensors {ϒTk } contain, as marginals, all j -time
probability distributions {ϒTj } for j < k. Moreover, the set of
two and three time processes plays a significant roles in the the-
ory of quantum stochastic processes. Here, we display only a
small part of the multifaceted structure of non-Markovian quan-
tum processes. For a much more comprehensive stratification,
see Refs. [7,10].

classical processes. To make this concept of compatibil-
ity for process tensors more manifest, let us revisit the
concatenated Stern-Gerlach experiment we presented in
Sec. IV D 1 when we discussed the breakdown of the Kol-
mogorov extension theorem in quantum mechanics. There,
the system of interest underwent trivial dynamics (given by
the identity channel I), interspersed by measurements in
the z, x, and z direction (see Fig. 12). Choosing the initial
state of the system to be fixed and equal to |+〉 (as we did
in Sec. IV D 1) then yields a corresponding process tensor
that acts on CP map {Ax1 ,Az2 ,Ax3} at times {t1, t2, t3} as

T{t1,t2,t3}[Ax1 ,Az2 ,Ax3]

= tr{(Ax3 ◦ I2→3 ◦ Az2 ◦ I1→2 ◦ Ax1)[|+〉〈+|]}.
(195)

Now, replacing Az2 in the above by I2, since I2→3 ◦ I2 ◦
I1→2 = I1→3, we see that we exactly obtain the process
tensor for trivial dynamics between t1 and t3, i.e.,

T{t1,t2,t3}[Ax1 ,I2,Ax3 ] = tr{(Ax3 ◦ I1→3 ◦ 7Ax1)[|+〉〈+|]}
= T{t1,t3}[Ax1 ,Ax3]. (196)

On the other hand, summing over the outcomes at t2 (as
one would do in the classical case), we would not obtain
the correct process tensor in absence of a measurement at
t2. Specifically, setting Az =∑z2

Az2 , we obtain

∑

z2

T{t1,t2,t3}[Ax1 ,Az2 ,Ax3]

= tr{(Ax3 ◦ Az ◦ Ax1)[|+〉〈+|]} �= T{t1,t3}[Ax1 ,Ax3].
(197)

The quantum process we discussed in Sec. IV D 1, and
more generally, all quantum processes thus satisfy consis-
tency properties, however, not in exactly the same sense as
classical processes do.

With this generalized consistency condition at hand, a
generalized extension theorem (GET) in the spirit of the
KET can be proven for quantum processes [224,269]; any
underlying quantum process on a set of times T leads to
a family of process tensors {TTk }Tk⊂T that are compatible
with each other, while any family of compatible process
tensors implies the existence of a process tensor that has
all of them as marginals in the above sense. More precisely,
setting

T |Tk
T	

[•] := TT	

[ ⊗

α∈T	\Tk

Iα , •
]

, (198)

where we employ the shorthand notation
⊗

α∈T	\Tk
Iα to

denote that the identity map is “implemented” at each time
tα ∈ T	 \ Tk, we have the following Theorem [224,269].
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Theorem (GET): Let T be a set of times. For each finite
Tk ⊂ T, let TTk be a process tensor. There exists a pro-
cess tensor TT that has all finite ones as “marginals,” i.e.,
TTk = T |Tk

T if and only if all finite process tensors sat-

isfy the consistency condition, i.e., TTk = T |Tk
T	

for all finite
Tk ⊂ T	 ⊂ T.

As the proof of the GET is somewhat technical, we
do not provide it here and refer the interested reader to
Refs. [224,269]. We emphasize though, that, since the
basic idea of the GET is—just like the KET—based on
compatibility of descriptors on different sets of times, it
can be proven in a way that is rather similar to the proof of
the KET [224].

Importantly, this theorem contains the KET as a spe-
cial case, namely the one where all involved process
tensors and operations are classical. Consequently, intro-
ducing process tensors for the description of quantum
stochastic processes closes the apparent conceptual gaps
we discussed earlier, and provides a direct connection to
their classical counterpart; while quantum stochastic pro-
cesses can still be considered as mappings from sequences
of outcomes to joint probabilities, in quantum mechan-
ics, a full description requires that these probabilities are
known for all instruments an experimenter could employ
(see Fig. 25). Additionally, the GET provides satisfac-
tory mathematical underpinnings for physical situations
where active interventions are purposefully employed, for
example, to discern different causal relations and mech-
anisms. This is for instance the case in classical and
quantum causal modeling [228,246,266,278] (see Fig. 26
for a graphical representation).

In light of the fact that, mathematically, summing over
outcomes of measurements does not amount to an iden-
tity map—even in the classical case—it is worth reiter-
ating from a mathematical point of view, why the KET
holds in classical physics. For a classical stochastic pro-
cess, we always implicitly assume that measurements are
made in a fixed basis (the computational basis), and no
active interventions are implemented. Mathematically, this
implies that the considered CP maps are of the form
Axj [ρ] = 〈xj |ρ|xj 〉 |xj 〉〈xj |. Summing over these CP maps
yields the completely dephasing CPTP map �j [ρ] :=∑

xj
〈xj |ρ|xj 〉 |xj 〉〈xj |, which does not coincide with the

identity map. However, on the set of states that are diag-
onal in the computational basis, the action of both maps
coincides, i.e., �j [ρ] = Ij [ρ] for all ρ =∑xj

λxj |xj 〉〈xj |.
More generally, their action coincides with the set of all
combs that describe classical processes [255]. In a sense
then, mathematically speaking, the KET works because, in
classical physics, only particular operations, as well as par-
ticular process tensors are considered. Going beyond either
of these sets requires—already in classical physics—a
more general way of “marginalization,” leading to an

FIG. 25. “Trajectories” of a quantum stochastic process. An
open quantum process is fully described once all joint proba-
bilities for sequences of outcomes are known for all possible
instruments an experimenter can employ to probe the process.
Like in the classical case, each sequence of outcomes can be
considered a trajectory, but unlike in the classical case, there
is no ontology attached to such trajectories. Additionally, each
sequence of outcomes in the quantum case corresponds to a
sequence of measurement operators, not just labels. If both the
process and the allowed (noninvasive) measurements are diago-
nal in the same fixed basis, then the above figure coincides with
Fig. 5, where trajectories of classical stochastic processes are
considered. Importantly, while in classical physics, only proba-
bilistic mixtures of different trajectories are possible, quantum
mechanics allows for the coherent superposition of “trajectories”
[279].

extension theorem that naturally contains the classical one
as a special case.

With the GET, which, here, we look at only in a very
cursory manner, we answer the final foundational ques-
tion about process tensors and establish them as the natural
generalization of the descriptors of classical stochastic pro-
cesses to the quantum realm, both from an operational as
well as an axiomatic perspective. While rather obvious in
hindsight, it requires the introduction of some machinery
to be able to properly describe measurements in quantum
mechanics. For the remainder of this tutorial, we employ
the developed machinery to discuss properties of quantum
stochastic processes, in particular, that of Markovianity
and Markov order.

VI. PROPERTIES OF QUANTUM STOCHASTIC
PROCESSES

A. Quantum Markov conditions and causal break

Now, armed with a clear description for quantum
stochastic processes, i.e., the process tensor, we are in the
position to ask when a quantum process is Markovian.
We formulate a quantum Markov condition [245,246] by
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FIG. 26. (Quantum) causal network. Performing different
interventions allows for the causal relations between different
events (denoted by Xj ) to be probed. For example, in the figure
the event B1 directly influences the events C3 and A2, while A3
influences only B4. As not all pertinent degrees of freedom are
necessarily in the control of the experimenter, such scenarios
can equivalently be understood as an open system dynamics.
Any such scenario can be described by a process tensor [248],
and the GET applies, even though active interventions must be
performed to discern causal relations. For example, the events
D3, D4, B5 could be successive (e.g., at times t3, t4 and t5) spin
measurements in z, x, and z direction, respectively. Summing
over the results of the spin measurement in x direction at t4 would
not yield the correct probability distribution for two measure-
ments in z direction at t3 and t5 only, but consistency still holds
on the level of process tensors (see also Sec. IV D 1).

employing the notion of causal breaks. As we saw in the
classical case, Markovianity is a statement about condi-
tional independence of the past and the future. Intuitively
speaking, information of the past can be transmitted to the
future in two different ways: via the system itself and via
the inaccessible environment. In a Markovian process, the
environment does not transmit any past system informa-
tion to the future process on the system. This condition is
encapsulated in the classical Markov condition

P(xk|xk−1, . . . , x0) = P(xk|xk−1) ∀k. (199)

Conditioning on a given outcome blocks the information
flow from the past to the future through the system (since
it is set to a fixed outcome), and conditional independence
from the past then tells us that there is no information that
travels through the environment.

A causal break allows one to extend this classical intu-
ition to the quantum case. It is designed to block the
information transmitted by the system itself and at the
same time look for the dependence of the future dynamics
of the system conditioned on the past control operations
on the system. If the future depends on the past controls,
then we must conclude that the past information is trans-
mitted to the future by the environment, which is exactly
the non-Markovian memory.

Let us begin by explicitly denoting the process ϒT	

on a set of time T	 = {t0, . . . , tk, . . . , t	}. We break this
set into two subsets at an intermediate time step k < l as

T− = {t0, . . . , tk−} and T+ = {tk+ , . . . , t	} where tk− and
tk+ , respectively, are the times corresponding to the spaces
in the Choi state of the process denoted by ki and ko. In the
first segment, we implement a tester element Ax− belong-
ing to instrument J− with outcomes {x−}. In the next time
segment, as the system evolves to time step 	, we imple-
ment a tester element Ax+ belonging to instrument J+
with outcomes {x+} (see Fig. 27). Together, we apply two
independent tester elements Ax+ ⊗ Ax− , where the simple
tensor product between the two testers implies their inde-
pendence. In detail, the two testers split the timestep k: the
first instrument ends with a measurement on the output of
the process at time tk (labeled as tk−). The second instru-
ment begins with preparing a fresh state at the same time
(labeled as tk+). Importantly, it implies a causal break that
prevents any information transmission between the past
T− and the future T+ via the system, which is similar to our
reasoning in the classical case. Thus, detecting an influence
of past operations on future statistics when implementing a
causal break implies the presence of memory effects medi-
ated by the environment. Additionally, it is easy to see that
causal breaks can span a basis of the space of all testers on
T, a property we make use of below.

For future convenience, let us define the process ten-
sor ϒT− := (1/dO+)tr+(ϒT	

) that is defined on T− only.
As we saw in our discussion of causal ordering of process
tensors, ϒT− is well defined and reproduces the statistics
on T− correctly. We now focus on the conditional out-
come statistics of the future process, which are given by
Eq. (175)

P(x+|J+,J−, x−) = tr[ϒ
(Ax− )

T+ AT
x+]. (200)

Note that we add a second condition x− on the lhs as well
as an additional superscript on the rhs because the future
process, in general, may depend on the outcomes for the
past instrument J−. Importantly, above we set

ϒ
(Ax− )

T+ := tr−(ϒT	
AT

x−)/tr(ϒT−AT
x−), (201)

making the P(x+|J+, x−) given in Eq. (200) a proper con-
ditional probability. This operationally well-defined con-
ditional probability is fully consistent with the conditional
classical probability distributions in Eq. (7).

The causal break at timestep k guarantees that the sys-
tem itself cannot carry any information of the past into
the future beyond step k. The only way the future process

ϒ
(Ax− )

T+ could depend on the past is if the information of
the past is carried across the causal break via the environ-
ment. We depict this in Fig. 27, where the only possible
way the past information can go to the future is through
the process tensor itself. This immediately results in the
following operational criterion for a Markov process.

Quantum Markov condition. A quantum process is
Markovian when the future process statistics, after a
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causal break at time step k (with l > k), is independent of
the past instrument outcomes x−

P(x+|J+,J ′
−, x−) = P(x+|J+), (202)

∀ J+,J− and ∀ k ∈ T.
Alternatively, the above Markov condition says that a

quantum process is non-Markovian if and only if there
exist two past testers outcomes, x− and x′

−, such that after
a causal break at time step k, the conditional future process
statistics are different for a some future instrument J+:

P(x+|J+,J ′
−, x−) �= P(x+|J+, x′

−). (203)

Conversely, if the statistics remain unchanged for all possi-
ble past controls, then the process is Markovian. Naturally,
the Markov condition of Eq. (202) should ring a bell
and remind the reader of the exactly analogous Markov
condition in the classical case.

The above quantum Markov condition is fully opera-
tional (since it is phrased in terms of conditional prob-
abilities, which can, in principle, be determined exper-
imentally) and thus it is testable with a finite number
of experiments [280]. Suppose the conditional indepen-
dence in Eq. (202) holds for a complete basis of past and
future testers {Âx− ⊗ Âx+}, then, by linearity it holds for
any (product) instruments, and the future is always con-
ditionally independent of the past. It is worth noting that
this definition is the quantum generalization of the causal
Markov condition for classical stochastic evolutions where
interventions are allowed [281].

Additionally, in spirit, the above definition is similar to
the satisfaction of the quantum regression formula (QRF)
[2,3,282]. Indeed, its equivalence to a generalized QRF has
been shown in Ref. [10], while satisfaction of the gener-
alized QRF has been used in Refs. [237,269] as a basis
for the definition of quantum Markovian processes. On
the other hand, the relation of the QRF and the witnesses
of non-Markovianity we discussed in Sec. IV D has been
investigated [209,283]. Here, we opt for the understanding

FIG. 27. Determining whether a quantum process is Marko-
vian. Generalized testers (multitime instruments) Ax− and Ax+
are applied to the system during a quantum process, where the
subscripts represent the outcomes. The testers are chosen to
implement a causal break at a timestep tk, which ensures that the
only way the future outcomes depend on the past if the process
is non-Markovian. Thus by checking if the future depends on the
past for a basis of instruments we can certify the process to be
Markovian or not.

of Markovianity in terms of conditional future-past inde-
pendence, an approach fully equivalent to the one taken in
the aforementioned works [10,237,269].

1. Quantum Markov processes

Intuitively, the quantum Markov condition implies that
any segment of the process is uncorrelated with the remain-
der of the process. Put differently, at every time in T	, a
Markovian process is conditionally independent of its past.
This right away means that a Markov process must have
a rather remarkably simple structure. Translating the idea
of conditional independence to the correlations that can
persist in ϒT	

, one would expect that ϒT	
cannot contain

any correlations between distant times if the underlying
process is Markovian. And indeed, the Choi state of the
process tensor for a Markov process can be shown to be
simply a product state

ϒ
(M )
T	

= ρ0 ⊗
	−1⊗

j =0

ϒE
( j +1−:j +)

, (204)

where each ϒE
( j +1−:j +)

is the Choi matrix of a CPTP map
from tj + to tj +1− and ρ0 is the initial state of the sys-
tem. Before commenting on the origin of Eq. (204), let us
first comment on the meaning of its structure. The above
equation simply says that there are no temporal correla-
tions in the process, other than those between neighboring
time steps facilitated by the channel on the system itself,
i.e., there is no memory transmitted via the environment.
An obvious example of such a process is a closed process,
i.e., a unitary process. Here each ϒE

( j +1+:j −)
will be maxi-

mally entangled (since quantum information is transmitted
perfectly by unitary maps) and corresponds to a unitary
evolution, respectively. However, there are no other mem-
ory effects between distant times present, since in a closed
process there is no environment that could transport such
memory.

By inserting Eq. (204) into Eq. (175), where the action
of the process tensor in terms of its Choi state is defined,
we see that for a sequence of CP maps Ax0 ⊗ · · · Ax	
performed by the experimenter, after rearrangement, we
have

P(xT	
|JT	

) = tr[AT
x	ϒE(	−:	−1+)

AT
x	−1

· · ·ϒE(1−:0+)
AT

x0
ρ0],
(205)

which simply looks like a concatenation of mutually inde-
pendent maps that act on the system alone, as one would
expect from a Markovian process. This becomes even
clearer when we represent the above equation in terms
of quantum maps. Then, the action of the corresponding
process tensor T (M )

Tk
on CP maps {Axi} can be expressed
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equivalently to Eq. (205) as

T (M )
Tk

[ρ,Ax1 , . . . ,Ak] = tr{(Ak ◦ E(k−:k−1+) ◦ · · · ◦ E(2−:1+)

◦ Ax1 ◦ E(1−:0+))[ρ0]}, (206)

where all E( j +1−:j +) (corresponding to ϒE
( j +1−:j +)

) are
mutually independent CPTP maps that act on the system
alone, and ρ0 is the initial system state. While this property
of independent CPTP maps—at first sight—seems equiv-
alent to CP divisibility, we emphasize that it is strictly
stronger, as the mutual independence of the respective
maps has to hold for arbitrary interventions at all times in
Tk [190,244,245] and is thus—unlike CP divisibility—a
genuine multitime statement.

As an aside, the above form for Markov processes does
not mean that we need to do experiments with causal
breaks in order to decide Markovianity of a process. We
simply need to determine if the process tensor has any
correlations in time, which can also be done using noisy
or temporally correlated instruments that do not corre-
spond to causal breaks. We can infer the correlations in
a process once we reconstruct the process tensor. This
can be done—as outlined above—by tomography, which
requires only applying a linear basis of instruments, causal
breaks or not. Causal breaks, however, have the conceptual
upside that they make the relation to the classical Markov
condition transparent. Additionally, deviation from Marko-
vianity can already be witnessed—and assertions about
the size of the memory can be made—even if a full
basis of operations is not available to the experimenter
[221,247,271,284], but we do not delve into these details
here.

Finally, let us comment on how we actually arrive at
the product structure of Markovian process tensors, start-
ing from the requirement of conditional independence of
Eq. (202). Slightly rewritten in terms of process tensors,
conditional independence of the future and the past implies
that

tr−(ϒT	
AT

x−) ∝ tr−(ϒT	
A′T

x−) ∀ Ax− , A′
x− , (207)

where the proportionality sign ∝ is used instead of an
equality, since Ax− and A′

x− generally occur with different
probabilities [this has no bearing on the conditional future
probabilities though, since they are renormalized by the
respective past probabilities—see Eqs. (200) and (201)].
Since the above equation has to hold for all conceivable
tester elements Ax− and A′

x− (and thus, by linearity, for
all matrices), it is easy to see that the corresponding ϒT	

has to be of product form, i.e., ϒT	
= ϒ+ ⊗ ϒ−. Demand-

ing that conditional independence holds for all times in T	

then implies that ϒT	
is indeed of the product form postu-

lated in Eq. (204). More detailed proofs of this statement
can, for example, be found in Refs. [244–246].

It is important to emphasize that we did not start out by
postulating this product structure of Markovian processes.
While tempting—and eventually correct—it would not
have been an a priori operationally motivated postulate,
but rather one guided by purely mathematical consider-
ation. Here, we rather started from a fully operational
quantum definition of Markovianity, phrased entirely in
terms of experimentally accessible quantities, and in line
with its classical counterpart.

Besides following the same logic as the classical
definition of Markovianity, that is, conditional indepen-
dence of the future and the past, the above notion of
Markovianity also explicitly boils down to the classical
one in the correct limit: Choosing fixed instruments at each
time in Tk yields a probability distribution P(xk, . . . , x1) for
the possible combinations of outcomes. Now, if each of the
instruments consists only of causal breaks—which is the
case in the study of classical processes—then a (quantum)
Markovian process yields a joint probability distribution
for those instruments that satisfies the classical Markov
condition of Eq. (199). The quantum notion of Markovian-
ity thus contains the classical one as a special case. One
might go further in the restriction to the classical case,
by demanding that the resulting statistics also satisfy the
Kolmogorov consistency conditions we discussed earlier.
However, on the one hand, there are quantum processes
that do not satisfy Kolmogorov consistency conditions,
independent of the choice of probing instruments [255].
On the other hand, Markovianity is also a meaningful
concept for classical processes with interventions [228],
where Kolmogorov conditions are generally not satisfied.
Independent of how one aims to restrict to the classical
case, the notion of Markovianity we introduce here for the
quantum case would simplify to the respective notion of
Markovianity in the classical case.

Below we use the structure of Markovian processes
to construct operationally meaningful measures for non-
Markovianity that go beyond the witnesses of non-
Markovianity based on two-time correlations we presented
in Sec. IV D. We then discuss the concept of quantum
Markov order to close this section.

Before doing this, we shortly discuss how the quan-
tum Markov condition we introduce above relates to the
aforementioned witnesses of non-Markovianity we already
encountered. In contrast to the non-Markovianity wit-
nesses discussed in Sec. IV D, the above condition is
necessary and sufficient for memorylessness. That is, if
it holds, then there is no physical experiment that will
see conditional dependence between the past and future
processes. If it does not hold then there exists some
experiment that will be able to measure some conditional
dependence between the past and the future processes.
In fact, a large list of non-Markovian witnesses, defined
in Refs. [161,162,166,174,191,196,202,202,205,234,285–
289,289–297], herald the breaking of the quantum Markov
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condition. However, there are always non-Markovian pro-
cesses that will not be identified by most of these wit-
nesses. This happens because these witnesses usually
account only for (at most) three-time correlations. Many of
them are based on the divisibility of the process. A Markov
process, which has the form of Eq. (204), will always be
CP divisible, while the converse does not hold true in gen-
eral [190,269]. To see this latter point, it suffices to show an
example of a CP-divisible process that is non-Markovian.

2. Examples of divisible non-Markovian processes

A completely positive and divisible process on a single-
qubit system that is non-Markovian can be acquired by
following the prescription in Refs. [269,298,299], where
the so-called shallow pocket model is discussed. We begin
with the system in an arbitrary state ρ(0) that interacts with
an environment whose initial state is a Lorentzian wave
function

〈x|ψE〉 = ψE(x) =
√

G

π

1
x + iG

. (208)

We assume the initial state to be uncorrelated, i.e., of the
form ρ(0) ⊗ |ψE〉〈ψE|. The two evolve together accord-
ing to the Hamiltonian HSE = (g/2)σ3 ⊗ x̂, where x̂ is the
environmental position degree of freedom. The total SE
dynamics are then due to the unitary operator

Ut = e−iHSEt. (209)

It is easy to show, by partial tracing of the environ-
ment E, that the reduced dynamics of the system S is pure
dephasing in the z basis [see Eq. (129) in Sec. IV D 3], and
can be written exactly in GKSL form, i.e., if the system is
not interfered with, the evolution between any two points
is a CPTP map of the following form:

ρ(tj ) = E(tj −ti)[ρ(ti)] with

E(tj −ti) = exp{L(tj − ti)}.
(210)

As we argue above, such a process is both completely
positive, fully divisible [7,8,297], and also has a “Marko-
vian” generator as required by the snapshot method [196].
However, as we see now, this process is not Markovian,
since there are instruments that can detect memory in the
process.

Suppose we start the system in initial states ρ±(0) :=
{|x±〉 〈x±|}. After some time t, these states will have the
form

ρ±(t) := 1
2

(
1 ±e−γ t

±e−γ t 1

)
with γ = g G . (211)

e−i g
2 σ3⊗ ̂x t e−i g

2 σ3⊗ ̂x t
{ | x±⟩}

| ψE⟩

σ1

FIG. 28. A CP-divisible but non-Markovian process. A qubit
system is prepared in states |x±〉 and evolves along with an
environment. The uninterrupted dynamics of the system is pure
dephasing, which is certified as Markovian by two-point wit-
nesses. However, when an instrument X is applied at time t, the
system dynamics reverse and the system returns to its original
state, which is only possible in the presence of non-Markovian
memory.

It is then easy to see that the trace distance between the
two states will monotonically decrease:

D[ρ+(t), ρ−(t)] := 1
2
‖ρ+(t) − ρ−(t)‖ = e−γ t. (212)

This means that the non-Markovianity witness based on
nonmonotonicity of the trace-distance measure, given in
Ref. [191], would call this a Markovian process. This is not
surprising as the process is divisible, which a stronger wit-
ness for non-Markovianity than the trace distance [7,203].
This process will also be labeled as Markovian by the
snapshot approach, as the generator of the dynamics of
the system alone will always lead to CP maps. In fact,
we already showed in Sec. IV D that divisibility-based
witnesses will not see any non-Markovianity in a pure
dephasing process. However, as we discuss, Markovian-
ity is a multitime phenomenon that should be decided on
conditional independence of events at different points in
time.

To take this argument further, let us split the process
from 0 → 2t into two segments: 0 → t and t → 2t. If the
process is indeed Markovian then we can treat it identi-
cally in each segment, i.e., the dynamical map for both
segments will be the same. This fact should be indepen-
dent of whether or not an instrument is performed at time
t; observing a change of the dynamics from t to 2t would
thus constitute a memory effect. Now, using this intuition,
we show that this process, while divisible, is indeed non-
Markovian. However, the usual witnesses fail to detect
temporal correlations as the process reveals only non-
Markovianity when an instrument at an intermediate time
is applied, see Fig. 28.

Suppose, we apply a single element (unitary) instru-
ment J1 = X [•] := σ1(•)σ1 at time t. Doing so should
not break the Markovianity of the process. Moreover, the
process should not change at all because the states in
Eq. (211) commute with σ1. Thus, continuing the process
to time 2t should continue to decrease the trace distance
monotonically,

D[ρ+(2t), ρ−(2t)] → exp(−γ 2t). (213)
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Indeed this is what happens if the instrument X is not
applied. However, when the instrument X is applied, the
dynamics in the second segment reverses the dephasing.
This is most easily seen by the fact the total system-
environment unitary is mapped to its adjoint by X as
U† = σ1Uσ1. Concretely we have

ρ(t) = trE[Utσ1Utρ(0) ⊗ ρEU†
t σ1U†

t ],

= trE[σ1U†
t Utρ(0) ⊗ ρEU†

t Utσ1],

= σ1ρ(0)σ1. (214)

Above, ρE = |ψE〉 〈ψE|. This calculation shows that the
state at time 2t is unitarily equivalent to the initial state
of the system, which is in contrast to Eq. (213).

There are a few take-away messages here. First, the ini-
tial states, ρ±(0), which are monotonically moving closer
to each other during the first time segment, begin to move
apart monotonically if the CPTP map X is applied on the
system at time t. In other words, during the second seg-
ment, they are becoming more and more distinguishable.
This means that the trace distance monotonically grows
for a time greater than t (until 2t that is). Therefore, with
the addition of an intermediate instrument, the process is
no longer seen to be Markovian. Indeed, if the process is
Markovian then an addition of an intermediate instrument
would not break the monotonicity of the trace distance.
In other words, this is breaking a data-processing inequal-
ity, and therefore the process is non-Markovian from the
beginning.

Second, the dynamics in the second segment are restor-
ing the initial state of the system, which means that the
dynamical map in the second segment depends on the ini-
tial condition. If the process is Markovian, then the total
dynamics would have to have the following form:

E(2t:0) = E(2t:t) ◦ Xt ◦ E(t:0). (215)

However, as we saw above, this is not the same as the
total dynamics, which is simply a unitary transformation.
Therefore, the process is not divisible anymore when an
intermediate instrument is applied. Again, if the process
is Markovian, adding an intermediate instrument will not
break the divisibility of the process, and therefore the
process is non-Markovian from the beginning.

Third, the snapshot witness [196] would not be able to
attribute CP dynamics to the second segment (if the map X
is applied at t) and thus it too would conclude that the pro-
cess is non-Markovian. In fact, it is possible to construct
dynamics that look Markovian for arbitrary times and then
reveal themselves to be non-Markovian [300].

To be clear, unlike the snapshot method, the process
tensor for the whole process will always be completely
positive. Let us then write down the process tensor ϒ{2t,t,0}
for this process for three times {2t, t, 0} [255]. To do so,

FIG. 29. Choi state for the shallow pocket model. Each wire
of the Choi state of the shallow pocket model [defined in
Eq. (217)] corresponds to a different time (where t−1 and t+1 are
the input and output wire at time t1, respectively). The interme-
diate system-environment unitaries Ut are given by Eq. (216).
Note that, in contrast to previously depicted Choi states, here,
the environmental degree of freedom E is not traced out yet.

we first notice that the action of the system-environment
unitary has the following simple form:

Ut |0ψE〉 = |0〉 e−i(gt/2)x̂ |ψE〉 = |0〉 ut |ψE〉 ,

Ut |1ψE〉 = |1〉 ei(gt/2)x̂ |ψE〉 = |1〉 u†
t |ψE〉 ,

(216)

where ut := exp[−i(gt/2)x̂] is a unitary operator on E
alone. Next, to construct the Choi state for this process
we “feed” half of two maximally entangled states into
the process. That is, we prepare two maximally entangled
states for the system: |�+〉0 ∈ HS0 ⊗ HS′

0
and |�+〉1 ∈

HS1 ⊗ HS′1 and let the part S′
0 interact with the environ-

ment in time segment one and then S′
1 in time segment two.

Namely, let U(0)
t ∈ B(HS′0 ⊗ HE) and U(1)

t ∈ B(HS′1 ⊗
HE), where these are the interaction unitary matrices for
the two segments. We first write down the process ten-
sor for the whole SE, i.e., without the final trace on the
environment (see Fig. 29):

|ϒSE
{2t,t,0}〉 = U(1)

t U(0)
t |�+〉1 ⊗ |�+〉0 ⊗ |ψE〉 ,

= |0000〉 u2
t |ψE〉 + |0011〉 utu

†
t |ψE〉

+ |1100〉 u†
t ut |ψE〉 + |1111〉 (u†

t )
2 |ψE〉 ,

= |00u2tψE〉 + |01ψE〉 + |10ψE〉 + |11u†
2tψE〉 ,

(217)

where we define |0〉 := |00〉 ∈ HSi ⊗ HS′
i

and |1〉 :=
|11〉 ∈ HSi ⊗ HS′

i
for brevity, where i ∈ {0, 1}.

Combining Eq. (217) with Eq. (216) and tracing over
the environment [i.e., ϒ{2t,t,0} = trE(|ϒSE

{2t,t,0}〉〈ϒSE
{2t,t,0}|)], we
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get the Choi state of the process in the compressed basis
|0〉 := |00〉 and |1〉 := |11〉:

ϒ{2t,t,0} =

⎛

⎜⎜⎝

1 e−γ t e−γ t e−2γ t

e−γ t 1 1 e−2γ t

e−γ t 1 1 e−2γ t

e−2γ t e−γ t e−γ t 1

⎞

⎟⎟⎠ . (218)

We use the fact that

tr[ut |ψE〉 〈ψE|] = tr[u†
t |ψE〉 〈ψE|] = e−γ t, (219)

where again γ = g G and we employ the explicit form of
|�E〉 provided in Eq. (208). Note that the process tensor
is really a 16 × 16 matrix, but we express it in the com-
pressed basis. In other words, all elements of the process
that are not of the form |jjll〉 〈mmnn| are vanishing.

Looking at the Choi state it is clear that there are corre-
lations between time steps 0 and 2. This is most easily seen
by computing the mutual information. We can think of the
process tensor in Eq. (218) as a two-qubit state, where the
first qubit represents spaces S0S′

0 and the second qubit rep-
resents S1S′

1 (see Fig. 29). Moreover, the S′
0 and S′

1 spaces
are the output of the process at times t and 2t, respectively.
Computing the mutual information information between
these spaces thus gives us an idea of whether the process
correlates the initial and the final time. If it does, it can-
not be of product form, and thus it is not Markovian. For
our chosen example, the mutual information between the
respective spaces of interest is about 0.35 for large values
of γ t. Therefore, it does not have the form of Eq. (204) and
the process is non-Markovian. This non-Markovianity will
also be detectable if causal breaks are applied at t. How-
ever, it is not detectable by witnesses of non-Markovianity
that are based on CP divisibility only.

For completeness, let us detail how to obtain quantum
channels from the more general object ϒ{2t,t,0}. The quan-
tum stochastic matrix from 0 → 2t can be obtained by
contracting the process tensor with the instrument at time t:

ϒE(At)
(2t:0)

:= trtito[ϒ{2t,t,0}AT
t ]. (220)

Note that this cannot be done in the compressed basis as the
instruments live on the S′

0S′
1 spaces, i.e., one would have

to fully write out the process tensor of Eq. (218), which
we leave as an exercise to the reader. Naturally, the chan-
nel resulting from Eq. (220) depends on the operation At
(even in the Markovian case). Applying the identity, i.e.,
contracting with �+

t , which is the Choi state of the identity
channel, will give us—as expected—exactly Choi state of
the dephasing channel

ϒE(It)
(2t:0)

=

⎛

⎜⎜⎝

1 0 0 e−2γ t

0 0 0 0
0 0 0 0

e−2γ t 0 0 1

⎞

⎟⎟⎠ . (221)

On the other hand, applying the Xt instrument will give
us a unitary channel, as we already know from Eq. (214):
E (Xt)
(2t:0)[ρ] = σ1ρσ1.
This example shows that there are non-Markovian

effects that can only be detected by interventions. This
is not a purely quantum phenomenon; the same can be
done in the classical setting and this is the key distinc-
tion between stochastic processes and causal modeling,
that is, between theories with and without interventions.
Naturally, a similar comparison between other traditional
witnesses for non-Markovianity in the quantum case, and
the results obtained by means of the process tensor can be
conducted, too; we point the interested reader to Ref. [301]
for a detailed analysis.

B. Measures of non-markovianity for multitime
processes

Having encountered the shortcomings of traditional wit-
nesses and measures of non-Markovianity in quantum
mechanics, it is natural to construct new, more sensitive
ones, based on the process tensor approach. Importantly,
we already know what Markovian processes “look like”
making the quantification of the deviation of a process
from the set of Markovian ones a relatively straightfor-
ward endeavor. Concretely, the Choi state ϒ of a quantum
process translates the correlations between timesteps into
spatial correlations. A multitime process is described by a
many-body density operator. This general description then
affords one the freedom to use any method for quantify-
ing many-body correlations to quantify non-Markovianity.
However, there are some natural candidates, which we dis-
cuss below. We do warn the reader that there will be infinite
ways of quantifying non-Markovianity, as there are infinite
ways of quantifying entanglement and other correlations.
However, there are metrics that are natural for certain oper-
ational tasks. We emphasize that, here, we provide only
general memory measures, and do not make a distinction
between classical and quantum memory, the latter corre-
sponding to entanglement in the respective splittings of
the corresponding Choi matrix [252,302]. Also, we pro-
vide only a cursory overview of possible ways to quantify
non-Markovian effects, and refer the reader to the refer-
ences mentioned in this section for further information.
Finally, in what follows, we omit the subscripts on the pro-
cess tensors, as they will all be understood to be many-time
processes.

1. Memory bond

We begin by discussing the natural structure of quan-
tum processes. One important feature of the process tensor
is that it naturally has the structure of a matrix product
operator (MPO) [303,304], i.e., it can be written as a prod-
uct of matrices that are “contracted” on certain spaces and
contain open indices. While this vague notion of an MPO
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already reminds us of the action of the link product that
we introduced in Sec. V D 2 let us be more concrete and
provide such a matrix product operator for a simple three-
step process with an initial system-environment state ρ and
two system-environment unitary maps U and V . Before we
do so, we emphasize that we are not attempting to provide
a general introduction to MPOs, but rather motivate why
their usage in the context of process tensors can be very
fruitful. Let us denote the involved system spaces from 0i

to 2i and the involved environment spaces by {abc} (see
Fig. 30 for reference). As we have seen in our discussion of
the link product, we can write the resulting process tensor
ϒ in terms of the Choi matrices U and V as

ϒ = ρ0ia � U0o1iab � trcV
1o2ibc, (222)

where we have added the respective spaces each of the
matrices is defined on as superscripts. Using the definition
of the link product provided below Eq. (178), and recalling
that it amounts to a partial transpose and trace over shared
spaces, the above can be written as

ϒ = trb{tra[ρ0ia(U0o1iab)Ta]trc(V
1o2ibc)Tb}, (223)

where we have omitted the respective identity matrices.
Note that, in the above, the spaces with labels {a, b, c} are
“contracted”, while the remaining spaces are untouched,
such that ϒ ∈ B(Hi

0 ⊗ Ho
0 ⊗ Hi

1 ⊗ Ho
1 ⊗ Hi

2 ). This can
be made more concrete by rewriting Eq. (223) as a prod-
uct of three matrices (without any trace operations). To this
end, let us set

ρ̆ 0ia =
∑

ia

〈iaia| ρ0ia,

Ŭ
0o1iab =

∑

ib,ia

〈ibib|(U0o1iab)Ta |iaia〉 ,

and V̆
1o2ibc =

∑

ib

trc(V
1o2ibc)Tb |ibib〉 ,

(224)

where {|ix〉} is an orthogonal basis of Hx. Note that each
of the objects above now corresponds to a matrix with
different input and output spaces, i.e., we have

ρ̆ 0ia : Hi
0 → Hi

0 ⊗ H⊗2
a ,

Ŭ
0o1iab

: Ho
0 ⊗ Hi

1 ⊗ H⊗2
a → Ho

0 ⊗ Hi
1 ⊗ H⊗2

b ,

and V̆
1o2ibc

: Ho
1 ⊗ Hi

2 → Ho
1 ⊗ Hi

2 ⊗ H⊗2
b .

(225)

Basically, the reshapings in Eq. (224) are required such that
the trace operations that occur in Eq. (223) are moved into

matrices and Eq. (223) can be expressed as a simple matrix
product. Indeed, we have

ϒ = ρ̆ 0ia · Ŭ
0o1iab · V̆

1o2ibc
, (226)

which can be seen by direct insertion of the expressions of
Eq. (224) into the above equation:

ρ̆ 0ia · Ŭ
0o1iab · V̆

1o2ibc
,

=
∑

ia,ib,ja,jb

〈ia| 〈ia| ρ0ia〈ib| 〈ib|(U0o1iab)Ta |ja〉 |ja〉

· trc(V
1o2i6c)Tb |jb〉 |jb〉,

=
∑

ia,ib

〈ib|[〈ia|ρ0ia(U0o1iab)Ta |ia)trc(V
1o2ibc)Tb]|ib〉 ,

= trb{tra[ρ0ia(U0o1iab)Ta]trc(V
1o2ibc)Tb} = ϒ , (227)

where, for better orientation, we color code the bras and
kets that belong together. At this point, one might wonder
why we go through the ordeal of rewriting the process ten-
sor in terms of a product of matrices, above all in light
of the fact that any many-body operator can be written
as a matrix product operator. To see why this representa-
tion is meaningful, let us take a closer look at Eq. (226);
each of the matrices that occur has some “open indices,”
i.e., spaces that only one of the matrices is defined on,
while each of them also shares spaces with their respec-
tive neighbors (a is shared between ρ̆ and Ŭ, b is shared
between Ŭ and V̆) that are “contracted” over and do not
appear in the resulting ϒ . The dimension of these latter
degrees of freedom is the bond dimension of the MPO
[in our case, it would be max(d2

a, d2
b)]. Comparing this

to the circuit of Fig. 30, we see that the bond dimension
directly corresponds to the dimension of the environment.
Why would we go through the hassle of working out a
MPO representation of ϒ then? The reason is twofold.
Firstly, in general, we are not given the circuit represen-
tation of ϒ , but only ϒ itself. Then, finding a matrix
product operator representation gives us a good gauge for
the size of the required environment. On the other hand,
even if we were given some dilation of ϒ , there might be
other representations that require a smaller environment,
thus providing a representation that uses only the effec-
tive environment required for the propagation of memory.
Concretely then, the bond dimension corresponds to the
smallest environment ancilla transporting memory that is
required in order to reproduce the process tensor at hand.
For a Markov process, naturally, the bond dimension is
one. While it is not necessarily straightforward to find a
representation of a MPO with minimal bond dimension,
by employing methods from the field of tensor networks
we can compress the bond and give the process an efficient
description [21].
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FIG. 30. Three-step process. Graphic provided as reference for
the considerations of Sec. VI B 1.

Additionally, and more importantly for the numeri-
cal analysis of multitime processes, the theory of MPOs
provides a large toolbox for the efficient representation
of process tensors. This holds particularly true for pro-
cesses that are time translationally invariant, i.e., each
of the matrices that occur in the product is the same
(see Fig. 31). Since a proper introduction of these tech-
niques would require a tutorial article of its own right
(and excellent tutorials on the matter already exist, see,
for example, Refs. [305,306]), we do not delve deeper into
the theory of tensor networks and MPOs. Let us empha-
size though, that their explicit use both for the conceptual
and numerical description of open-system dynamics is a
very active field of research [307–310] and the corre-
sponding techniques are particularly well tailored to tackle
multitime processes within the process tensor framework
[270,272,274,311]. As mentioned though, these techniques
go beyond the scope of this tutorial, and here, we con-
tent ourselves with mentioning that the structure of process
tensors allows for a very direct representation in terms of
MPOs, which (i) allows for the whole machinery devel-
oped for MPOs to be used for the efficient description of
open system dynamics, and (ii) enables the interpretation
of the minimal necessary bond dimension as a measure of
non-Markovinanity.

2. Schatten measures

Next in our discussion of measures of non-Markovianity,
we make use of the form of Markov processes given
in Eq. (204), where we see that the Choi state of a
Markovian process tensor is of tensor product form. We
remind the reader that this quantum Markov condition con-
tains the classical Markov condition as a special case,
and any deviations from it in the structure of ϒ imply
non-Markovianity. Importantly, this structural property of
Markovian processes, and the fact that ϒ is—up to normal-
ization—a quantum state allow for operationally meaning-
ful measures of non-Markovianity. That is, by sampling
from a process we can determine if it has memory or not
and then also quantify this memory. For instance, if we
want to distinguish a given non-Markovian process from
the set of Markov processes, we can measure the distance
to the closest Markov process for a choice of metric, e.g.,

FIG. 31. MPO representation of a multitime process ϒ . Under
the assumptions that all the unitaries in the process are the
same—which, for example, holds true when the times are
equidistantly spaced and the generating Hamiltonian is time
independent, then the resulting process tensor can be written as
a product of an initial matrix ρ̆ and matrices Ŭ, together with a
final partial trace (bent orange line on the right). The degrees of
freedom that they share (orange lines) are the bond dimension of
the MPO, the remaining open indices correspond to the spaces
the resulting MPO lives on. The smallest bond dimension of all
possible MPO representations of a given ϒ can be taken as a
measure of non-Markovianity of ϒ .

the Schatten p norm,

Np := min
ϒ(M )

‖ϒ − ϒ(M )‖p , (228)

where ‖X ‖p
p = tr(|X |p). Here, we are minimizing the dis-

tance for a given quantum process ϒ over all Markovian
processes ϒ(M ), which have the form of Eq. (204). Natu-
rally, this goes to zero if and only if the given process is
Markovian. On the other hand, to maximally differentiate
between a given process and its closest Markovian process
the natural distance choice is the diamond norm:

N� ≡ 1
2

min
ϒ(M )

‖ϒ − ϒ(M )‖�, (229)

where ‖ • ‖� is the generalized diamond norm for pro-
cesses [248,251] and the somewhat random prefactor of
1/2 is just added for consistency with the literature.
Equation (229) then gives the optimal probability to dis-
criminate a process from the closest Markovian one in a
single shot, given any set of measurements together with
an ancilla. The difference between the diamond norm and
Schatten norm is that in the former, we are allowed to use
ancillas in the form of quantum memory. This is known to
lead to better distinguishability, in general.

Schatten norms play a central role in quantum-
information theory. Therefore, the family of non-
Markovianity measures given above will naturally arise
in many applications. For instance, the diamond norm is
very convenient to work with when studying the statisti-
cal properties of quantum stochastic processes [312,313].
However, while constituting a natural measure, these quan-
tifiers of non-Markovianity have the drawback that they
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require a minimization over the whole set of Marko-
vian processes, which makes them computationally hard
to access. This problem can be remedied by choosing a
different metric in Eq. (228).

3. Relative entropy

We could also use any metric or pseudometric D that is
contractive under CP operations

N := min
ϒ

(M)
k:0

D
[
ϒk:0‖ϒMarkov

k:0

]
. (230)

Here, CP contractive means that D[�(X )‖�(Y)] ≤
D[X ‖Y] for any CP map � on the space of general-
ized Choi states. A metric or pseudometric that is not CP
contractive, may not lead to consistent measures for non-
Markovianity since, for example, it could be increased by
the presence of an independent ancillary Markov process.
Here, the requirement that D is a pseudometric means that
it satisfies all the properties of a distance except that it may
not be symmetric in its arguments. Different quasidistance
measures will then have different operational interpreta-
tions for the memory. In general though, they will still be
plagued by the problem of minimization that appears in
Eq. (230).

A very convenient pseudometric choice is the quantum
relative entropy [45], which we already encountered in
Sec. IV D 4 when we discussed quantum data-processing
inequalities. In order to be able to use the relative entropy,
let us assume for the remainder of this section that all
the process tensors we use are normalized, i.e., trϒ = 1.
Besides being contractive under CP maps, this pseudomet-
ric is very convenient because for any given process ϒ ,
the closest (with respect to the quantum relative entropy)
Markovian process is straightforwardly found by discard-
ing the correlations. That is, the process made of the
marginals of the given process is the closest Markov
process, such that

NR = D
[
ϒk:0‖ϒ1−:0+ ⊗ · · · ⊗ ϒk−:k−1+

]
, (231)

where the CPTP maps {ϒj −:j =1+} are the respective
marginals (obtained via partial trace) of ϒk:0. This fol-
lows from the well-known fact that, with respect to the
quantum relative entropy, the closest product state of a
multipartite quantum state is the one that is simply a tensor
product of its marginals [314]. Moreover, besides allevi-
ating the minimization problem, this measure has a clear
operational interpretation as a probability of confusing the
given process for being Markovian [244]:

Pconfusion = exp{−nNR}, (232)

where NR is the relative entropy between the given pro-
cess and its marginals. Specifically, this measure quantifies

the following: suppose a process in an experiment is non-
Markovian. The employed model for the experiment is,
however, Markovian. The above measure is related to the
probability of confusing the model with the experiment
after n samplings. If NR is large, then an experimenter will
very quickly realize that the hypothesis is false, and the
model needs updating, i.e., the experimenter is quick to
learn that the Markovian model poorly approximates the
(highly) non-Markovian process.

With this, we conclude our short presentation of
measures for non-Markovianity in the multitime setup.
The attentive reader will have noticed that we do not
touch on witnesses of non-Markovianity here, unlike in
Sec. IV D where we discuss (some of the) witnesses for
non-Markovianity in the two-time scenario. In principle,
such witnesses can be straightforwardly constructed. We
already did so in this tutorial, when we discussed the
shallow pocket model and its non-Markovian features.
Also, experimentally implementing some causal breaks
and checking for conditional independence would pro-
vide a witness for non-Markovianity. However, to date,
no experimentally used witness for non-Markovianity in
the multitime setting has crystallized, and a systematic
construction of memory witnesses that are attuned to
experimental requirements is subject of ongoing research.

More generally though, “simply” deciding whether a
process is Markovian or not seems somewhat blunt for a
multitime process. After all, it is not just of interest if there
are memory effects, but what kinds of memory effects
there are. At its core, this latter question is a question of
Markov order for quantum processes. We thus spend the
remainder of this tutorial providing a proper definition of
Markov order in the quantum case, as well as a nontrivial
example to illustrate these considerations.

C. Quantum Markov order

The process tensor allows one to properly define Marko-
vianity for quantum processes. As we have seen, though, in
our discussion of the classical case, Markovian processes
are not the only possibility. Rather, they constitute the set
of processes of Markov order 1 (and 0). It is then natural
to ask if Markov order is a concept that transfers neatly to
the quantum case as well. As we will see, Markov order is
indeed a meaningful concept for quantum processes but
turns out to be a more layered phenomenon than in the
classical realm. Here, we focus only on a couple of basic
aspects of quantum Markov order. For a more in-depth
discussion, see, for example, Refs. [250,315]. Addition-
ally, while it is possible to phrase results on quantum
Markov order in terms of maps, it proves rather cumber-
some, which is why the following results are presented
exclusively in terms of Choi states.

Before turning to the quantum case, let us quickly recall
(see Sec. III C 4) that for classical processes of Markov
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order |M | = 	, we have

P(F|M , H) = P(F|M ), (233)

which implies that the conditional mutual information
H(F : H |M ) between the future F and the history H given
the memory M vanishes. Additionally, for classical pro-
cesses of finite Markov order, there exists a recovery map
RM→FM that acts only on the memory block and allows
one to recover P(F , M , H) from P(M , H).

In the quantum case, an equation like Eq. (233) is ill
defined on its own, as the respective probabilities depend
on the instruments {JF ,JM ,JH } that are used at the
respective times to probe the process. With this in mind, we
obtain an instrument-dependent definition of finite Markov
order in the quantum case [249,250]:

Quantum Markov order. A process is said to be of
quantum Markov |M | = 	 with respect to an instrument
JM , if for all possible instruments {JF ,JH } the relation

P(xF |JF ; xM ,JM ; xH ,JH ) = P(xF |JF ; xM ,JM ) (234)

is satisfied at all times in T.
Intuitively, this definition of Markov order is the same as

the classical one; once the outcomes on the memory block
M are known, the future F and the history H are indepen-
dent of each other. However, here, we have to specify, what
instrument JM is used to interrogate the process on M .
Importantly, demanding that a process has finite Markov
order at all times with respect to all instruments JM is
much too strong a requirement, as it can only be satisfied
by processes of quantum Markov order 0, i.e., processes
where future statistics do not even depend on the previous
outcome [44,249,250].

While seemingly a quantum trait, this instrument depen-
dence of memory length is already implicitly present in
the classical case; there, we generally consider only joint
probability distributions that stem from sharp, noninva-
sive measurements. However, as mentioned above, even
in classical physics, active interventions, and, as such,
different probing instruments, are possible. This, in turn,
makes the standard definition of Markov order for classical
processes inherently instrument dependent, albeit without
being mentioned explicitly. Indeed, there are classical pro-
cesses that change their Markov order when the employed
instruments are changed (see, e.g., Sec. VI of Ref. [250]
for a more detailed discussion).

In the quantum case, there is no “standard” instrument,
and the corresponding instrument dependence of memory
effects is dragged into the limelight. Even the definition
of Markovianity, i.e., Markov order 1, that we provided
in Sec. VI A is an inherently instrument-dependent one;
quantum processes are Markovian if and only if they
do not display memory effects with respect to causal
breaks. However, this does not exclude memory effects

from appearing as soon as other instruments are employed
(as these memory effects would be introduced by the
instruments and not by the process itself, the instrument-
dependent definition of Markovianity still captures all
memory that is contained in the process at hand). Just like
for the definition of Markovianity, once all process ten-
sors are classical and all instruments consist of classical
measurements only, the above definition of Markov order
coincides with the classical one [249].

For generality, in what follows, the instruments on M
can be temporally correlated, i.e., they can be testers (how-
ever, for conciseness, we call JF ,JM , and JH instruments
in what follows). While in our above definition of quantum
Markov order we fix the instrument JM on the memory
block, we do not fix the instruments on the future and
the history, but require Eq. (234) to hold for all JF and
JH . This, then, ensures, that, if there are any conditional
memory effects between future and history for the given
instrument on the memory, they would be picked up.

As all possible temporal correlations are contained in the
process tensor ϒFMH that describes the process at hand,
vanishing instrument-dependent quantum Markov order
has structural consequences for ϒFMH . In particular, let
JM = {AxM } be the instrument for which Eq. (234) is satis-
fied, and let JF = {AxF } and JH = {AxH } be two arbitrary
instruments on the future and history. With this, Eq. (234)
implies

tr[ϒT
FMH (AxF ⊗ AxM ⊗ AxH )]
tr[ϒT

MH (AxM ⊗ AxH )]

=
∑

xH
tr[ϒT

FMH (AxF ⊗ AxM ⊗ AxH )]
∑

xH
tr[ϒT

MH (AxM ⊗ AxH )]
, (235)

where the process tensor on MH is ϒMH = (1/dFo)trF
(ϒFMH ) (which, due to the causality constraints is inde-
pendent of JF ) and dFo is the dimension of all spaces
labeled by o on the future F (we already encountered this
definition of reduced processes in Sec. V D 5). As the rela-
tion (235) has to hold for all conceivable instruments JH
and JF , and all elements of the fixed instrument JM , it
implies that each element AxM ∈ JM “splits” the process
tensor in two independent parts, i.e.,

trM [ϒTM
FMH AxM ] = ϒF|xM ⊗ ϒ̃H |xM . (236)

See Fig. 32 for a graphical representation. While straight-
forward, proving the above relation is somewhat tedious,
and the reader is referred to Refs. [249,315], where a
detailed derivation can be found. Here, we rather focus
on its intuitive content and structure. Most importantly,
Eq. (236) implies that, for any element of the fixed instru-
ment JM , the remaining “process tensor” on future and
history does not contain any correlations; put differently, if
one knows the outcome on M , the future statistics are fully

030201-65



SIMON MILZ and KAVAN MODI PRX QUANTUM 2, 030201 (2021)

independent of the past. Conversely, by insertion, it can be
seen that any process tensor ϒFMH that satisfies Eq. (236)
for some instrument JM also satisfies Eq. (234). As an
aside, we already saw this “splitting” of the process ten-
sor due to conditional independence when we discussed
Markovian processes. Indeed, the resulting structure of
Markovian processes is a particular case of the results for
Markov order presented below.

On the structural side, it can be directly seen that the
terms {ϒF|xM } in Eq. (236) are proper process tensors, i.e.,
they are positive and satisfy the causality constraints of
Eqs. (183) and (184). Specifically, contracting ϒFMH with
a positive element on the memory block M yields positive
elements, and does not alter satisfaction of the hierarchy
of trace conditions on the block F . This fails to gener-
ally hold true on the block H . While still positive, the
terms ϒ̃H |xM do not necessarily have to satisfy causality
constraints. However, the set {ϒ̃H |xM } forms a tester, i.e.,∑

xM
ϒ̃H |xM = ϒH is a process tensor.

Employing Eq. (236), we can derive the most general
form of a process tensor ϒFMH that has finite Markov
order with respect to the instrument JM = {AxM }n

xM =1. To
this end, without loss of generality, let us assume that all
n elements of JM are linearly independent [316]. Then,
this set can be completed to a full basis of the space of
matrices on the memory block M by means of other tester
elements {ĀαM }dM

αM =n+1, where dM is the dimension of the
space spanned by tester elements on the memory block. As
these two sets together form a linear basis, there exists a
corresponding dual basis, which we denote as

{
{�xM }n

xM=1

⋃
{�̄αM }dM

αM =n+1

}
. (237)

From this, we obtain the general form of a process ten-
sor ϒFMH with finite Markov order with respect to the

FIG. 32. Quantum Markov order. If a process ϒFMH has finite
Markov order with respect to an instrument and tester JM =
{AxM } on the memory block, then the application of each of the
elements of JM leaves the process in a tensor product between
future F and history H .

instrument JM [250]:

ϒFMH =
n∑

xM =1

ϒF|xM ⊗ �∗
xM

⊗ ϒ̃H |xM

+
dM∑

αM =n+1

ϒ̃FH |αM ⊗ �̄∗
αM

. (238)

It can be seen directly [by insertion into Eq. (236)] that the
above ϒFMH indeed yields the correct term ϒF|xM ⊗ ϒ̃H |xM
for every AxM ∈ JM . Using other tester elements, like, for
example ĀαM , will however not yield uncorrelated ele-
ments on FH (as the terms ϒ̃FH |αM do not necessarily
have to be uncorrelated). This, basically, is just a different
way of saying that an informationally incomplete instru-
ment is not sufficient to fully determine the process at hand
[247]. Additionally, most elements of the span of JM will
not yield uncorrelated elements, either, but rather a linear
combination of uncorrelated elements, which is generally
correlated.

While remaining a meaningful concept in the quantum
domain, quantum Markov order is highly dependent on the
choice of instrument JM , and there exists a whole zoo of
processes that show peculiar memory properties for dif-
ferent kinds of instruments, like, for example, processes
that have only finite Markov order for unitary instru-
ments, or processes, which have finite Markov order with
respect to an informationally complete instrument, but the
conditional mutual information does not vanish [249,315].

Before providing a detailed example of a process with
finite quantum Markov order, let us discuss this aforemen-
tioned connection between quantum Markov order and the
quantum version of the conditional mutual information.
In analogy to the classical case, one can define a quan-
tum CMI (QCMI) for quantum states ρFMH shared between
parties F , M , and H as

S(F : H |M ) = S(F|M ) + S(H |M ) − S(FH |M ), (239)

where S(A|B) := S(AB) − S(B) and S(A) := −tr[A log(A)]
(see Sec. IV D 4) is the von Neumann entropy. Quan-
tum states with vanishing QCMI have many appealing
properties, like, for example, the fact that they admit a
block decomposition [317], as well as a CPTP recovery
map WM→FM [ρMH ] = ρFMH that acts only on the block
M [318,319]. Unlike in the classical case, the proof of
this latter property is far from trivial and a highly cele-
brated result. States with vanishing QCMI or, equivalently,
states that can be recovered by means of a CPTP map
WM→FM are called quantum Markov chains [53,54,317,
319–323]. Importantly, for states with approximately van-
ishing QCMI, the recovery error one makes when employ-
ing a map WM→FM can be bounded by a function of the
QCMI [53,54,322,323].
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As process tensors ϒFMH are, up to normalization, quan-
tum states, all of the aforementioned results can be used for
the study of quantum processes with finite Markov order.
However, the relation of quantum processes with finite
Markov order and the QCMI of the corresponding process
tensor is—unsurprisingly—more layered than in the clas-
sical case. We present some of the peculiar features here
without proof to provide a flavor of the fascinating jun-
gle that is memory effects in quantum mechanics (see, for
example, Refs. [249,250,315] for in-depth discussions).

Let us begin with a positive result. Using the repre-
sentation of quantum states with vanishing QCMI pro-
vided in Ref. [317], for any process tensor ϒFMH that
satisfies S(F : H |M )ϒFMH = 0, one can construct an instru-
ment on the memory block M , that blocks the memory
between H and F . Put differently, vanishing QCMI implies
(instrument-dependent) finite quantum order.

However, the converse does not hold. This can already
be seen from Eq. (238), where the general form of a
process tensor with finite Markov order is provided. The
occurrence of the second set of terms ϒ̃FH |αM ⊗ �̄αM
implies the existence of a wide range of correlations
between H and F that can still persist (but not be picked up
by the fixed instrument chosen on M ), making it unlikely
that the QCMI of such a process tensor actually vanishes.
On the other hand, if the instrument JM is informationally
complete, then there is a representation of ϒFMH that con-
tains only terms of the form ϒF|xM ⊗ �xM , which looks
more promising in terms of vanishing QCMI (in principle,
such a decomposition can also exist when the respective
tester elements are not informationally complete, which
is the case for classical stochastic processes). However,
when the tester elements AxM corresponding to the duals
�xM do not commute (which, in general they do not), then,
again, the QCMI of ϒFMH does not vanish [249,250,315].
Nonetheless, for any process tensor of the form

ϒFMH =
∑

xM

ϒF|xM ⊗ �∗
xM

⊗ ϒ̃H |xM , (240)

knowing the outcomes on the memory block (for the
instrument JB = {AxM }) allows one to reconstruct the full
process tensor. Concretely, using

ϒMH = trF(ϒFMH )

dFo

:= 1
dFo

∑

xM

cxM �∗
xM

⊗ ϒ̃H |xM ,
(241)

where we set cxM = tr(ϒF|xM ) and dFo is the dimension of
all output spaces on the future block, we have

ϒFMH = dFo
∑

xM

c−1
xM

ϒF|xM ⊗ �∗
xM

⊗ trM (ϒMH AT
xM

)

=: W̃M→FM [ϒMH ].
(242)

Here, the map W̃M→FM appears to play the role of a
recovery map. However, as the duals {�xM } are not nec-
essarily positive [324], W̃M→FM in the above equation is
generally not CPTP. Nonetheless, with this procedure one
can then construct an ansatz for a quantum process with
approximate Markov order. The crucial point being that
the difference between the ansatz process and the actual
process can be quantified by relative entropy between the
two [251]. Such a construction has applications in taming
quantum non-Markovian memory; as we stated earlier, the
complexity of a process increases exponentially with the
size of the memory. Thus, contracting the memory with-
out the loss of precision, is highly desirable. With this,
we conclude our discussion of the properties of quantum
processes with finite Markov order. We now provide an
explicit example of such a process.

1. Nontrivial example of quantum Markov order

Let us now consider a process, introduced in Ref. [251]
and depicted here in Fig. 33, which requires leaving parts
of M attached to H and F (as we see shortly). We label
the input-output spaces associated to each time of the pro-
cess as follows: {H , M , F} = {Hi, Ho, Li, Lo, Ri, Ro, Fi},
where we subdivide M into left L and right R spaces. At
each time, the system of interest comprises three qubits,
and so each Hilbert space is of the form HX = HXa ⊗
HXb ⊗ HXc , where X takes values for the times and a, b, c
are labels for the three qubits; whenever we refer to an indi-
vidual qubit, we label the system appropriately, e.g., Lia
refers to the a qubit of the system Li; whenever no such
label is specified, we are referring to all three qubits.

The environment first prepares the five-qubit common
cause states

|e+〉 = 1√
2
(α |ψ0, 00〉 + β |ψ1, 11〉) and

|e−〉 = 1√
2
(γ |φ0, 01〉 + δ |φ1, 10〉).

(243)

Here, we separate the first register, which is a three-qubit
state, from the second, which consists of two qubits, with
a comma. The first parts of the states |e+〉 and |e−〉 are,
respectively, sent to Hi and Fi. The second parts are
sent either to Li or Ri, according to some probability
distribution (see Fig. 33).

030201-67



SIMON MILZ and KAVAN MODI PRX QUANTUM 2, 030201 (2021)

FH L L R
(abc) (abc) (abc) (abc) (abc) (abc) (abc)

Φ+
3

ϕ0,ϕ1

01,10

e+

e−

00,11

ψ0,ψ1
Φ+
3

ẽ
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FIG. 33. (Quantum) Markov order network. A process with
finite quantum Markov order with parts of M kept by H and
F . The top panel shows the first process, in which parts of the
common cause state |e+〉 is sent to Li and |e−〉 is sent to Ri.
The process in the bottom panel has the recipients flipped. The
process tensor is depicted in gray, and entanglement between par-
ties are color coded in green and maroon. The overall process is a
probabilistic mixture of both scenarios. Still the process has finite
Markov order because it is possible to differentiate between the
scenarios by making a parity measurement on M .

Let the state input at Ho be the first halves of three max-
imally entangled states

⊗
x∈{a,b,c} |�+〉Ho

x H ′o
x

with |�+〉 :=
(1/

√
2)(|00〉 + |11〉); here, the prime denotes systems that

are fed into the process, whereas the spaces without a
prime refer to systems kept outside of it (these maximally
entangled states are fed into the process to construct the
resulting Choi matrix). The input at Lo and Ro are labeled
similarly. In between times Ho and Li, the process makes
use of the second part of the state |e+〉 to apply a controlled
quantum channel X , which acts on all three qubits a, b, c.
Following this, qubits a and b are discarded. The ab qubits
input at Lo, as well as all three qubits input at Ro, are sent
forward into the process, which applies a joint channel Y
on all of these systems, as well as the first part of the state
|e−〉. Three of the output qubits are sent out to Fi, and the
rest are discarded. The c qubit input at Lo is sent to Ri,
after being subjected to a channel Z, which interacts with
the first part of the common cause state |e−〉, i.e., the φ0,φ1
register.

Consider the process where |e+〉 is sent to Hi and Li

and |e−〉 to Ri and Fi. The process tensor for this case is

ϒ± = �±
HiHoLi ⊗ χ±

LoRiRoFi with

�±
HiHoLi = tre1

[|G±〉 〈G±|] and

χ±
RiRoFi = tre2

[|K±〉 〈K±|] ,
(244)

where

|G±〉 = 1√
2

(
α |ψ0〉Hi |μ0〉Hoe1Lic |00〉Liab

+ β |ψ1〉Hi |μ1〉Hoe1Lic |11〉Liab

)
, (245)

with |μk〉Hoe1Lic = X k
H ′o→e1Lic

|�+〉⊗3
HoH ′o ,

|K±〉 = 1√
2

YL′o
abR′o ẽ→Fie2

Zk
L′o

c ẽ→Ric ẽ

×
(
γ |01〉Riab

|φ0〉ẽ + δ |10〉Riab
|φ1〉ẽ

)

× |φ+〉⊗3
LoL′o |φ+〉⊗3

RoR′o . (246)

Next, consider the process where |e+〉 is sent to Hi and
M ′i and |e−〉 to Mi and Fi. The process tensor for this
scenario is

ϒ∓ = �∓
HiHoLic Riab

⊗ χ∓
LiabLoRic RoFi

with

�∓
HiHoLic Riab

= tre1

[|G∓〉 〈G∓|] and

χ∓
LiabLoRic RoFi

= tre2

[|K∓〉 〈K∓|] ,
(247)

where

|G∓〉 = 1√
2

(
α |ψ0〉Hi |μ0〉Hoe1Lic |00〉Riab

+ β |ψ1〉Hi |μ1〉Hoe1Lic |11〉Riab

)
, (248)

with |μk〉Hoe1Lic = X k
H ′o→e1Lic

|�+〉⊗3
HoH ′o ,

|K∓〉 = 1√
2

YL′o
abR′o ẽ→Fie2

Zk
L′o

c ẽ→Ric ẽ

×
(
γ |01〉Liab

|φ0〉ẽ + δ |10〉Liab
|φ1〉ẽ

)

× |�+〉⊗3
LoL′o |�+〉⊗3

RoR′o . (249)

In the first case, there is entanglement between Hio and
Li, as well as between LoRio and Fi. In the second case,
there is entanglement between Hio and Lic Ri

ab, as well as
between LiabLoRi

c Ro and Fi. The overall process is the
average of these two, which will still have entanglement
across the same cuts for generic probability distributions
that the common cause states are sent out with.

This process has a vanishing Markov order because we
can make a parity measurement on the ab parts of Li

and Ri. The parity measurement applies two controlled
phases to an ancilla initially prepared in the state |+〉,
with the control registers being qubits a and b. If the two
control qubits are in states |00〉 or |11〉, then |+〉 �→ |+〉.
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However, if the control qubits are in states |01〉 or |10〉,
then |+〉 �→ |−〉. By measuring the final ancilla, which can
be perfectly distinguished since it is in one of two orthogo-
nal states, we can know which process we have in a given
run; in either case, there are no FH correlations. Lastly,
note that this process also has vanishing QCMI; this agrees
with the analysis in Ref. [250], as the instrument that erases
the history, comprises only orthogonal projectors.

VII. CONCLUSIONS

We began this tutorial with the basics of classical
stochastic processes by means of concrete examples. We
then built up to the formal definition of classical stochastic
processes. Subsequently, we moved to quantum stochas-
tic processes, covering the early works from half a cen-
tury ago to modern methods used to differentiate between
Markovian and non-Markovian processes in the quantum
domain. Our main message throughout is to show how
a formal theory of quantum stochastic processes can be
constructed based on ideas akin to those used in the clas-
sical domain. The resulting theory is general enough that
it contains the theory of classical stochastic processes as
a limiting case. On the structural side, we showed that a
quantum stochastic process is described by a many-body
density operator (up to a normalization factor). This is a
natural generalization for classical processes, which are
described by joint probability distributions over random
variables in time. Along the way, we attempted to build
intuition for the reader by giving several examples.

In particular, the examples in the last section show that,
in general, quantum stochastic processes are as complex as
many-body quantum states are. However, there is beauty
in the simplicity of the framework that encapsulates com-
plex quantum phenomena in an overarching structure. We
restrained our discussion to Markov processes and Markov
order in the final section, but needless to say, there is much
more to explore. Complex processes, in the quantum or
classical realm, will have many attributes that are of inter-
est for foundational or technological reasons. We cannot
do justice to many (most) of these facets of the theory
in this short tutorial. On the plus side, there are a lot of
interesting problems left unexplored for current and future
researchers. Our tutorial has barely touched the topic of
quantum probability, and associated techniques such as
quantum trajectories, quantum stochastic calculus, and the
SLH [325] framework. This is an extremely active area of
research [6,223,275,326–328] with many overlaps with the
ideas presented here; however, a detailed cross comparison
would form a whole tutorial on its own.

We now bring this tutorial to closure by discussing some
important open problems and some important applications
of the theory of open quantum systems.

The vastness of the theory of classical stochastic pro-
cesses suggests that there are many open problems in the

quantum realm. In this sense, it is a daunting endeavor
to even attempt to make a list of interesting problems,
and we make no claims of comprehensiveness. On the
foundational front, understanding the quantum to classi-
cal transition for stochastic processes [255] should be a
far more manageable problem than the elusive connec-
tion between pure-state unitary quantum mechanics and
phase-space classical mechanics. In a similar vein, pin-
pointing what makes a process tensor genuinely quantum
is an active field of research [231,252,302,329–333]; as
we alluded to, classical processes with active interven-
tion would—due to the invasiveness of the employed
operations—also require a description in terms of process
tensors. With this in mind, it is then a conceptually intrigu-
ing, and potentially technologically relevant question what
parts of the formalism are indeed required to capture quan-
tum effects (in contrast to merely accounting for “normal”
invasiveness), and how this demarcation can be exploited
in concrete applications.

Objectivity of quantum measurements and quantum
Darwinism [334] are also enticing topics to reconsider
from the process tensor perspective, i.e., as emergent phe-
nomena in time rather than in space. It may also be
possible to better understand quantum chaos by analyz-
ing multitime correlations in quantum processes (e.g.,
out-of-time-ordered correlations already discuss quantum
chaos in a similar vein). The list of complex dynamical
phenomena includes dynamical phase transitions [335],
dynamical many-body scars [336], measurement induced
phase transition [337], and understanding memory in com-
plex quantum processes [312]. For all of these areas,
higher-order quantum maps like the process tensor pro-
vide an ideal framework to foster future developments.
For practical implementations, quantifying and witnessing
entanglement in time (i.e., genuinely nonclassical temporal
correlations) is of utmost importance for complex experi-
mental setups that aim to exploit quantum phenomena in
time.

On the mathematical side, there are many interesting
problems such as embedding coherent dynamics in clas-
sical processes, simulating classical processes on quantum
devices [24], or identifying processes that cannot be classi-
cal. Finally, there is still much work to be done approximat-
ing quantum processes with ansatz-type considerations.
For instance, what are the best ways (in the sense of mini-
mal error) to truncate quantum memories, how to quantify
contextual errors due to finite pulse width for the control
operations, i.e., how to deal with experimental operations
that cannot be considered to be implemented instanta-
neously, as we did throughout this tutorial. The process
tensor also opens up—as we already mentioned—the
whole toolkit of tensor network calculus to characterize,
simulate, and manipulate complex quantum processes and
multitime statistics in quantum mechanics. In particular,
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little attention is devoted so far to understanding criti-
cal quantum processes from a multitime perspective, i.e.,
to efficiently describing processes where the correlations
decay is slow (power law).

On the application side, the foremost application of the
theory of quantum stochastic processes is quantum control,
e.g., dynamical decoupling [338–341] (and understanding
processes that cannot be decoupled [342]), decoherence-
free subspaces [343,344], quantum error correction [345],
and the quantum Zeno effect [346–348]. All of these are
dynamical phenomena and it remains to see how they
fit into the theory described in this tutorial. Moreover,
small quantum computers are now readily available, but
they suffer from complex noise, i.e., undergo complex
non-Markovian stochastic processes. This forms a fertile
ground for the process tensor framework to provide new
conceptual insights [221]. Additionally, there are natural
systems that would also be excellent candidates for an
application of the process tensor framework, for instance,
control of biological systems [349]. They are interesting
because it is possible that these systems harness com-
plex noise to achieve efficient and quantum-information-
processing tasks [350–354]. Already, and even more so
in the future, these tools (will) enable quantum technolo-
gies in presence of non-Markovian noise [355–357]. As we
attempt to engineer more and more sophisticated quantum
devices we need more sophistication in accounting for the
noise due to the environment. These applications will be
within reach once we can characterize the noise [358–
365] and understand how quantum processes and memory
effects can serve as resources [366–371].

There are also foundational applications to the frame-
works discussed above. For instance to better understand
how the theory of thermodynamics fits with the theory of
quantum mechanics requires better handling of interven-
tions and memory, and already there is progress on this
front [372–375]. This framework also allows for a method
to build a classical-quantum correspondence, i.e., deter-
mining quantum stochastic processes that look classical
[254,255]. Furthermore, it enables one to understand the
statistical nature of quantum processes, i.e., when is the
memory too complex [312,313,376,377], or when does a
system look as if it has equilibrated [378,379]? These lat-
ter questions are closely related to ones aiming to derive
statistical mechanics from quantum mechanics [380–383].
In general, non-Markovian effects in many-body systems
[384–386] and complex single-body systems [387,388]
will be of keen interest as they will contain rich physics.

Finally, the tools introduced in the tutorial are closely
related to those used to examine the role of causal
order—or absence thereof—in quantum mechanics. As
they are tailored to account for active interventions, they
are used in the field of quantum causal modeling [246,
266,278,389,390] to discern causal relations in quantum
processes. Beyond such causally ordered situations, the

quantum comb and process matrix framework have been
employed to explore quantum mechanics in the absence of
global causal order [264,391], and it has been shown that
such processes would provide advantages in information-
processing tasks over causally ordered ones [391–396].
The existence of such exotic processes is still under debate
and the search for additional principles to limit the set
of “allowed” causally disordered processes is an active
field of research [397]. Nonetheless, the tools to describe
them are—both mathematically and in spirit—akin to the
process tensors we introduced for the description of open
quantum processes, demonstrating the versatility and wide
applicability of the ideas and concepts employed in this
tutorial.
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