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The field of materials for quantum information science is rapidly growing with a focus on scaling and
integrating new solid-state qubits. However, despite the extraordinary progress, major challenges must still
be overcome for scaling. Specifically, there is a critical need for efficient coupling of tens to hundreds of
solid-state qubits and multiqubit error correction to mitigate environmental interactions. This Perspective
looks forward to the challenges ahead in the realization of multiqubit operations and collective phenomena
with a focus on solid-state quantum materials. We provide a theorists’ point of view on the modeling and
rational design of these multiqubit systems. Our Perspective identifies a path for bridging the gap between
the model Hamiltonians used to develop quantum algorithms and control sequences and the ab initio
calculations used to understand and characterize single solid-state-based qubits.
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I. INTRODUCTION

A new generation of scalable quantum information
technologies [1] that utilize the principles of quantum
superposition and nonlocal entanglement would unlock
applications ranging from quantum computing [2,3] and
networks [4–6] to quantum sensing [7,8] and metrology
[9,10]. The fundamental building block of these technolo-
gies are two-level quantum systems (qubits). A diverse set
of qubits have already been identified based on supercon-
ducting quantum circuits [11–17], trapped ions [18–20],
photons [21–25], molecules [26–28], and, the focus of
this Perspective, semiconductor-based solid-state systems
[29–35].

Over the past few decades there has been immense
progress in the development of semiconductor-based solid-
state qubits, and a plethora of qubits have been identified
with each having the potential to fill at least one niche
in the quantum revolution [1]. For example, atomiclike
defects (“artificial atoms”) both in three-dimensional (3D)
bulk materials such as color centers in diamond [36–39],
(di)vacancies in silicon carbide (SiC) [40–45], or defects
in ZnO [46–48] and in 2D layered materials [49], such
as transition metal dichalcogenides [50,51] or hexago-
nal boron nitride (hBN) [52–57], have shown promise
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to fulfill the need for single-photon emitters [58,59].
Single-photon emitters are vital to many quantum tech-
nologies (for example, quantum secure communication).
Atomlike quantum defects in solids have also been demon-
strated as electron spin qubits that can couple to nearby
nuclear spins in the material, which are capable of stor-
ing quantum information for timescale orders of magnitude
longer than the coherence times of the electron spin qubits
to act as quantum memories and registers [44,60–70].
A second important class of solid-state qubits are quan-
tum dot-based qubits [30,71–74]. There is a lot of variety
in semiconductor-based solid-state qubits even within the
subfield of quantum dot-based qubits. For example, spin
qubits in electrically gated quantum dots [75–89], which
have recently shown much promise for large-scale quan-
tum computation outside of a dilution refrigerator [90,91].
Additionally, epitaxially grown semiconductor quantum
dots are a leading candidate source of single photons
[92–95], and colloidal quantum dots have recently shown
promise as coherent single-photon emitters [96,97].

Essential to these semiconductor-based qubit systems
reaching their technological potential is the discovery of
improved materials that can coherently store and manip-
ulate qubit states well enough for quantum error correc-
tion. Towards this overarching goal, elucidating a detailed
understanding of the atomic geometry and electronic struc-
ture of the quantum system is a key step. Determination
of these properties such as the symmetries (for exam-
ple, parity and inversion) and associated quantum num-
bers (energy, orbital angular momentum, spin angular
momentum) of the qubit states is critical because quantum
algorithms and control sequences rely on this informa-
tion [43,68,98–104]. Furthermore, the progression from
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fundamental characterization of a single solid-state qubit
to applications of multiqubit logical operations relies on
robust experimental and theoretical techniques capable of
comprehensively characterizing single solid-state qubits.
This realization and necessity has spurred the development
of a range of experimental and computational methods
capable of handling the different length, time, and energy
scales inherent to single solid-state qubits. In particular,
magneto-optical, electron spin resonance, charge and spin
transport, quantum spectroscopy, electron microscopy, and
many other optoelectronic measurement techniques have
been essential to characterizing the functional behavior of
semiconductor-based solid-state qubits [38,51,57,105]. On
the theory side, ab initio methods have been instrumen-
tal in the development of our understanding of the precise
atomic geometry, energy levels, and decoherence mecha-
nisms of solid-state qubits [106–109]. Specifically, density
functional theory [110–114], correlated and multirefer-
ence electronic structure methods (e.g., coupled cluster,
configuration interaction) [115,116], and methods that
include electron-phonon [117–119] and electron-photon
[120–124] coupling, and hyperfine interactions [125–129]
have been and will continue to be critical in identifying the
quantum states and coherence lifetimes of semiconductor-
based qubit states [130]. These methods can also be useful
in determining parameters that can be utilized as input
parameters to open quantum system and dynamical meth-
ods based on effective Hamiltonians to study length and
time scales that are currently out of reach of ab initio
methods [131–135].

Given the diversity of semiconductor-based solid-state
qubit systems and experimental techniques used to ini-
tialize, control, and readout their states, it is no surprise
that many computational methods are required and cur-
rently used to study these material systems. Moreover,
there are many different particle types (electrons, holes,
excitons, electron and nuclear spins, phonons, and pho-
tons) that need to be modeled and understood in order for
semiconductor-based qubits to reach their full potential.
Borrowing terminology that originated in the astrophysics
community [136] and has recently been discussed in terms
of computational many-body physics [137], the terms
“multimethod and multimessenger studies” encapsulate
the need for diverse methods capable of accurately mod-
eling multiple different particle types, often at the same
time and different levels of theory. To this end, we postu-
late that there will be no single method nor computational
formalism that would be able to be universally applied
to modeling semiconductor-based qubit systems, but we
are confident that intelligently combining and extend-
ing current methods will allow for accurate modeling of
the inherently large system sizes of semiconductor-based
multiqubit systems.

Specifically, as shown in Fig. 1, the modeling of a sin-
gle atomlike quantum defect in a semiconductor, which

can host the electronic qubit states, can often be achieved
by considering on the order of tens of atoms. Today,
mean-field methods such as density functional theory can
readily handle hundreds to upwards of a few thousand
atoms on modern supercomputers [138]. In contrast, elec-
tronic structure calculations using correlated, multirefer-
ence electronic structure methods are typically limited to
only tens of atoms [115,139–141]. Thus, in terms of atom-
like quantum defects, it has become relatively straightfor-
ward to perform mean-field computations on most single
physical qubits and it is even possible to use high-level cor-
related methods on some solid-state single physical qubit
systems [142,143]. On the other hand, the use of high-level
correlated methods on multiple solid-state qubits remains
prohibitively computationally expensive due to multiqubit
systems containing hundreds to thousands of atoms. Thus,
while there are computational methods that are sufficiently
accurate for studying a single physical qubit, understand-
ing the interaction between physical qubits remains an
additional challenge. One contribution to this challenge
is that it is often not valid to assume that a multiqubit
system is simply the “product” of identical single qubits.
For example, defects and atomic substitutions in a mate-
rial often lead to strain that, among other things, can rotate
the lattice such that the ideal periodicity is disrupted and
the identical nature of two different atomic defects within
a single material is broken, as depicted in the top panel of
Fig. 1. Additionally, the reality for the foreseeable future is
that many physical qubits will be needed to form a single
logical qubit in order to be compatible with the quantum
error correction algorithms used in quantum circuits [3].
This further necessitates the development and application
of methods capable of studying system sizes with multi-
ple physical qubits. We envision that this can partly be
achieved by increasing the efficiency of current methods
used to study single semiconductor-based qubit systems,
but it also will involve the development of entirely new
algorithms and novel combinations of current methods.

In this Perspective, we discuss the general material
and computational challenges that are pervasive in study-
ing any semiconductor-based solid-state multiqubit sys-
tem. There are other excellent comprehensive reviews on
specific solid-state qubits and applications of solid-state
qubits that we point the reader to for an understanding
of progress in the field over the last decade. Section II
provides an overview of the overarching material and
computational challenges inherent to semiconductor-based
solid-state multiqubit systems along with several impor-
tant exemplary questions that we surmise ab initio studies
will help answer in the forthcoming years. Section III then
details the opportunities and possible paths forward that we
are confident will be instrumental over the coming years
in the study of semiconductor-based multiqubit systems.
Specifically, Sec. III A examines quantum embedding the-
ories and how they can enable large-scale calculations
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FIG. 1. A schematic of a gen-
eral 2D semiconductor material
containing two quantum defect
atoms shown in gold. The defect
atoms (gold) host atomiclike elec-
tronic states that can act as sin-
gle physical qubits. The 2D host
material also contains spin active
nuclei (I �= 0, green atoms) that
can be utilized as long-term quan-
tum memories but can also induce
decoherence in the form of a spin
bath. Atomic motion (for exam-
ple, via a phonon) is represented
by small blue arrows in the top
scheme. The bottom scheme shows
a hypothetical potential mapping
of the top physical system onto
two six-level systems denoted by
Hs,L and Hs,R, where s stands for
the system Hamiltonian and L, R
denote the left and right qubits,
respectively. These system Hamil-
tonians are coupled to possibly dis-
tinct local baths (HLB,L and HLB,R),
global baths, and external controls.

of correlated, multireference electronic states of multi-
qubit systems. In Sec. III B, we discuss recent develop-
ments in ab initio methods that include electron-phonon
and electron-photon interactions while highlighting areas
where methodological improvements are still needed. In
Sec. III C, we detail how and why the methods described
in Secs. III A and III B ought to be combined with state-
of-the-art open quantum system methods to study time-
dependent phenomena in multiqubit systems such as deco-
herence and quantum error correction schemes. Section
IV concludes this Perspective by providing a brief sum-
mary along with our optimistic outlook on the future of
semiconductor-based solid-state qubits.

II. CHALLENGES AND OPPORTUNITIES IN
MULTIQUBIT STUDIES

Computationally, the challenges inherent to semicon-
ductor-based solid-state multiqubit systems stem from

a few fundamental properties. First, the length scales
involved in multiqubit systems are typically one or more
orders of magnitude larger than that of a single qubit. This
is demonstrated in Fig. 1 in which the simulation of a sin-
gle qubit would require only tens to hundreds of atoms
in the unit cell, whereas the simulation of the two-qubit
system would involve hundreds to thousands of atoms.
This increase of the system size by one or more orders of
magnitude significantly impacts the difficulty in accurately
describing multiqubit systems using ab initio methods,
because even the computational cost of “computationally
cheap” ab initio methods such as density functional theory
(DFT) increase with the system size (N ) to the third power.
Throughout this Perspective, computational scalings will
be denoted using the notation O(Nα), where α is an integer
indicating the system size dependence of the computa-
tional cost. For example, the computational scaling of
standard DFT calculations using the local density approx-
imation (LDA) or the generalized gradient approximation
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(GGA) is O(N 3). Furthermore, conventional DFT, in many
cases, does not predict reliable electronic energy levels
[142,144–148]. And, despite much progress, high-level
correlated wavefunction methods that can predict reliable
energy levels are still too computationally expensive to be
applied to multiqubit systems containing hundreds to thou-
sands of atoms because these methods have computational
scalings of at least O(N 5) [149]. The second challenge,
in addition to the “raw” increase in the system size, is
that the complexity also increases due to the necessity of
accurately modeling the external controls involved in mul-
tiqubit operations with first principles methods. The types
of external controls range from driving via electric and
magnetic fields, optical, magneto-optical, optomechanical
pulses, and the combination thereof to cavities and device
contacts [71–73,150–156]. The addition of the nuclear
and light degrees of freedom (i.e., phonon and photon
modes) and their coupling to the electronic degrees of
freedom to the simulation drastically increases the com-
putational cost and complexity of multiqubit calculations.
The third challenge stems from the fact that the exter-
nal controls, atomic positions, and electronic states of
the semiconductor-based qubit materials can vary in time,
bringing us to our final fundamental challenge inherent to
studying semiconductor-based multiqubit systems: how do
we perform quantum dynamics on such large and complex
multiqubit systems?

We conjecture that the promising fields of quan-
tum embedding theories utilizing correlated, multiref-
erence impurity solvers, [157–162], ab initio methods
that include electron-phonon [117–119,163] and electron-
photon interactions [120–124], and open quantum sys-
tem techniques [164–176] combined with exascale high-
performance computing will be able to bring quantitative
accuracy to multiqubit calculations in the forthcoming
decade—greatly speeding up the identification, charac-
terization, and optimization of novel solid-state quantum
materials.

Prior to delving into the details of recent developments
and exciting prospects of these methods and combinations
thereof, it is worthwhile to provide a conceptual under-
standing of the workflow we are imagining and to give
a few concrete examples of the types of questions that
can be answered by combining quantum embedding the-
ories, electron-phonon and electron-photon calculations,
and open quantum system techniques. Conceptually, we
envision the workflow beginning with the utilization of
quantum embedding methods in order to identify the
most important many-body electronic states with quantita-
tive accuracy. Next, electron-phonon and electron-photon
computations will be performed to elucidate the specific
phonon or photon modes that are best suited to act as con-
trol knobs or are most likely to be sources of unwanted
decoherence. With the crucial electronic, phononic,
and photonic states identified and with their couplings

computed, dynamical techniques developed in the open
quantum system communities can be rationally chosen to
study time-dependent phenomena using model Hamiltoni-
ans for the multiqubit system and environmental degrees
of freedom based on information gleaned from the first
principles calculations.

Let us now break down a few exemplary questions
that this workflow can help answer. Three often inter-
twined categories of questions will be discussed here and
throughout Sec. III: formation of stable logical qubits from
multiple physical qubits, deterministic coupling and gener-
ation of entanglement between qubits, and interqubit deco-
herence mechanisms in semiconductor-based multiqubit
systems. The first prototypical system we discuss is that
of electron spin qubits in silicon. In silicon-based quan-
tum computing, the electron spins are typically from either
donor atoms or added via electrical contacts in silicon-
based quantum dots [82]. Here we focus on electron spins
in silicon donated by phosphorus atoms; this system also
serves as a prototype for shallow donor spin qubits [33,34].
A great jumping off point to show our vision for using a
multimethod and multimessenger approach to multiqubit
systems is the recent computation and theoretical study
by Swift et al. [129] in which first principles calculations
of single phosphorus donors in silicon required the use
of hybrid functionals [computational scalings of O(N 4)]
in tandem with traditional, cheaper functionals [computa-
tional scalings of O(N 3)] to accurately model and converge
calculations with large unit cells needed because of the
shallow nature of the donor results in rather delocalized
electronic states. The use of hybrid functionals was neces-
sitated by the well-known problem of both LDA and GGA
functionals to delocalize electronic states too much [129].
Additionally, Swift et al. [129] showed that strain has a
larger impact on the hyperfine structure than predicted by
effective mass theory, highlighting the importance of ab
initio studies. Quantum embedding theories (Sec. III A)
offer a systematic way to combine multiple levels of elec-
tronic structure theory in order to correct errors in low-
level theories, such as the delocalization error in DFT or
complete lack of electron correlation in Hartree-Fock the-
ory, and predict accurate energies and wavefunctions of
electronic qubit states. Furthermore, given the recent report
of a two-qubit gate between phosphorus donor electrons in
silicon [177], accurate descriptions of the electronic wave-
functions will be key to understanding distance-dependent
and entanglement properties of shallow donor-based two-
qubit states. For example, the extent to which the wave-
function is localized to the donor site will be key to
predicting accurate couplings between neighboring donor
sites as direct, tunnelinglike coupling typically has an
exponential dependence on the overlap of the electronic
states. In addition to direct, tunnelinglike coupling, under-
standing the dipolar coupling and resulting entanglement
between semiconductor qubits requires accurate electronic
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wavefunctions along with knowledge of their couplings to
external controls (for example, photons).

In terms of the deterministic coupling of qubits via
dipolar coupling, there is still much to be understood in
terms of how two semiconductor-based qubits interact with
one another. Two recent experimental findings of room-
temperature entanglement between nitrogen-vacancy
(NV) defects in diamond [178,179] are worth analyzing
as a starting point for where we find computations will be
beneficial to this end. In 2013, Dolde et al. [178] reported
strong coupling between the ground-state spin magnetic
dipole moments of NV defects spaced about 25 nm apart in
large magnetic fields. In 2017, Bradac et al. [179] demon-
strated coherent, superradiant emission between multiple
NV centers in diamond microcrystals. A central and reoc-
curring question arises when considering the extensions
of these exciting works: are the NV centers and their
interactions with their local and global environments truly
identical? We surmise that many facets of this question can
be, at least in part, answered by the methods discussed in
Sec. III. One important facet of this question is whether or
not the qubits are subject to the same environmental noise.
If, for example, the quantum defect atoms were to have dif-
ferent orientations in the crystal, as those shown in Fig. 1,
the qubits would not be equivalent and the noise spec-
trum for each qubit would be different. Dolde et al. [178]
postulated that the magnetic field noise was not identical
for their two entangled NV centers based on entanglement
lifetime measurements of two particular multiqubit states
being identical, despite one constituting a decoherence-
free subspace if the magnetic field noise were identical
for both NV centers. We envision computational and the-
oretical investigations into the microscopic origin of this
non-identical noise spectrum providing much value, and
recent computational developments have made it possible
to study systems in strong magnetic fields using coupled
cluster theory [180] and accurately calculate hyperfine
interactions [127–129]. These advances should provide a
means to understand how sensitive the qubits are to mag-
netic field noise on a microscopic level when combined
with quantum embedding techniques to enable large sys-
tem sizes to be studied; see Sec. III A. The superradiant
emission reported by Bradac et al. [179] was not ideal as
a majority of their nanodiamonds did not exhibit super-
radiant emission, begging the question as to what is the
microscopic origin of this finding. Here again, accurate
electronic structure techniques that can study the distance
and geometry-dependent coupling of the optical transi-
tions of NV centers are needed. Furthermore, a potentially
exciting direction would be to analyze the coupling of mul-
tiple optically active defects inside of an optical cavity
using quantum electrodynamics methods [123,181–185].
And similar to how the impact of magnetic field noise
influences the decoherence timescale depending on
whether it is local or nonlocal, the impact of local (that is,

vibrations concentrated near the quantum defect atom) and
nonlocal (that is, global) phonons could have important
consequences on the superradiant properties of a collection
of quantum defect atoms.

Given that superradiant phenomena have many poten-
tial applications in quantum information [130,186–188],
such as the generation of entangled photon pairs [189–
193], we are also enthused by the prospects of super-
radiant phenomena in semiconductor colloidal nanoma-
terials [194]. Furthermore, the recent reports of single
colloidal nanomaterials having emission quantum yields
of 99.6% [195], achieving single-photon emission [96],
and single-photon superfluorescence [196] open the door
to realizing colloidal semiconductor nanomaterials as opti-
cally addressable qubit platforms for quantum information
sciences [97]. We are also excited by the potential of col-
loidal quantum dot molecules [197–199] as a playground
for computational and experimental studies on optically
addressable and electron spin qubits in double quantum
dot nanostructures, which have proven extremely valuable
in other quantum dot communities for studying singlet-
triplet qubits in particular [75,83,84,89,100,101,200–208].
However, numerous questions remain about the decoher-
ence mechanisms and role of electron-phonon coupling
in these novel colloidal nanomaterials. Thus, we con-
clude that accurate electronic structure theory via quantum
embedding theories, electron-phonon and electron-photon
calculations, and dynamical methods will be key to real-
izing the potential of colloidal nanomaterials for quantum
information processing [97].

We now delve into more detail about the recent devel-
opments and opportunities with respect to both method
development and applications of quantum embedding the-
ories (Sec. III A), electron-photon and electron-nuclear
methods (Sec. III B), and utilizing open quantum system
techniques (Sec. III C) to study semiconductor multiqubit
systems.

III. NEW DIRECTIONS IN MULTIQUBIT STUDIES

A. Quantum embedding theories

The nascent field of quantum embedding theories [157–
159,209] will be of great utility to solid-state multiqubit
systems, in part because capturing correlated electrons
within a single qubit and entanglement between qubits
requires computational methods capable of handling large
systems of strongly correlated matter. The development
of ab initio methods that can accurately describe strongly
correlated electrons is an old, yet, still very fruitful field
in the quantum chemistry and condensed matter physics
communities [210]. A few of the methods of particu-
lar interest to modeling solid-state qubits are: coupled
cluster (CC) [211–218], density matrix renormalization
group (DMRG) [219–222], quantum Monte Carlo (QMC)
[223,224], many-body perturbation theory [225,226], and
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configuration interaction (CI) [116,227]. While these
methods have been studied and tested extensively in
molecules [140] and bulk solids with small unit cells
[149,218,228], their use in semiconductor qubit systems
still remains limited. This limited use is a result of the
high computational cost of these methods and the large unit
cells (or large finite sizes) of solid-state qubits, especially
in the case of multiqubit studies (Fig. 1). Specifically, cou-
pled cluster singles and doubles (CCSD) scales as O(N 6),
DMRG also scales as O(N 6), and QMC scales as O(N 5).
These scalings make using these correlated methods [115]
to investigate solid-state single physical qubits very dif-
ficult and will continue to make studying multiqubit sys-
tems impractical even as computing power reaches the
exascale in the forthcoming decade. Fortunately, quan-
tum embedding techniques [158–162,229–240] make it
possible to combine (i.e., embed) high-level correlated
methods with lower-level ab initio methods such as DFT,
Hartree-Fock (HF), or Green’s functions based methods
such as the GW approximation [241,242] to calculate
accurate ground- and excited-state properties of systems
much larger than could be done using only the high-level
method [243,244].

The combination of quantum simulation techniques,
which formally defines quantum embedding, can be done
in a variety of ways. Currently, the three formulations
that are front runners for embedding a high-level impurity
solver (e.g., CC, DMRG, CI) within a low-level method
(e.g., DFT, HF, GW approximation) are: density func-
tional embedding, Green’s function embedding, and den-
sity matrix embedding [159,209]. These formulations uti-
lize the single-particle density [245–247], single-particle
Green’s function [235,248,249], and single-particle den-
sity matrix [158,250,251], respectively, to provide feed-
back between the embedded system (i.e., impurity or the
high-level simulation) and its environment (i.e., the low-
level simulation). While we leave the discussion of the
details of these methods to the excellent recent reviews
[157–159,209], we discuss here a couple aspects of quan-
tum embedding methods that are most relevant to our
discussion of solid-state multiqubit systems and provide
details for a potential workflow for utilizing these types
of calculations in practice to study a multidefect system
such as shown in Fig. 1. Common to all quantum embed-
ding methods is the task of dividing the total system into
embedded and environment fragments. This partitioning
can be done in a variety of ways, including real or energy
space. Conceptually, a real-space partitioning is intuitive
for defect-based qubits due to the spatial localization of the
qubit states. On the other hand, the qubit states in quan-
tum dot-based qubits are delocalized over many atoms,
and, thus, an energy-space partitioning seems more nat-
ural. However, studies that benchmark the accuracy and
convergence of the different partitioning strategies is still

an active field of research, especially for semiconductor-
based qubit systems [240,252–254].

Along similar lines, because quantum embedding theo-
ries and algorithms have been developed primarily within
the past few years, they are still a very active field of
research and to date, there is no “gold standard” quantum
embedding theory. Further we expect that more method-
ological development, tests, and benchmarking of these
methods over the coming years will be key to making
quantum embedding theories a reliable and quantitatively
accurate computational tool for detailing the electronic
structure of solid-state multiqubit systems. Additionally,
the extension of the aforementioned ab initio methods to
include relativistic effects [255–258], such as spin-orbit
interactions, is also an important step in making ab initio
electronic structure calculations of solid-state multiqubit
systems generally applicable [103,208,259–262].

We now breakdown the practical steps involved in a
quantum embedding theory calculation, using the system
shown in Fig. 1 as a generic model for a semiconduc-
tor multiqubit system based on quantum defect states. The
first step requires performing a low-level (e.g., DFT, HF,
second-order MØller-Plesset perturbation theory, etc.) cal-
culation of the entire multiqubit system. The next step
involves building the embedded fragments. In the case
of real-space embedding, which typically makes logical
sense for spatially localized qubit states, the embedded
fragments could be chosen based on some spatial crite-
ria [162], such as shown schematically in Fig. 1. Within
the localized orbitals in the embedded fragments, a high-
level impurity solver (e.g., CC, CI, DMRG, etc.) calcula-
tion is performed to capture the correlated, possibly mul-
tireference character of the many-body electronic states.
Next, self-consistency between the embedded fragments
and surrounding system can be imposed [159,209]. In
the event that this fragment-surrounding self-consistency
is not imposed, quantum embedding methods resemble
active space wavefunction methods. Having obtained the
correlated, possibly multireference electronic states for the
multiqubit system, the analysis of their properties (sym-
metries, quantum numbers, etc.) begins. In addition to
the more common analysis of the energies and symme-
tries, we are excited by the possibility of utilizing various
entanglement measures [263–265] commonly employed
in quantum information and the many-body physics com-
munities to probe the interqubit entanglement properties
and, specifically, how the entanglement between qubits
depends on the microscopic details of the system. In the
next section we discuss how to elucidate the impact of the
coupling of these many-body electronic states to the elec-
tromagnetic and nuclear degrees of freedom using both
perturbative and nonperturbative methods. In Sec. III C,
we then delve into how the information gleaned from
the calculations described in Secs. III A and III B can be
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utilized to rationally build simplified model Hamiltonians
to investigate the dynamics of multiqubit systems.

B. Electron-phonon and electron-photon interactions
While quantum embedding theories are a promising

solution to the multireference, strong correlation, and large
system size problems that arise when solving the elec-
tronic structure of multiqubit systems with fixed nuclear
coordinates and outside of any optical cavity, multiqubit
studies will also greatly benefit from methods that include
electron-phonon and electron-photon interactions at the
quantized, ab initio level [163,183,184]. The inclusion
of these interactions is especially necessary for under-
standing the influence of external controls in addition
to uncovering the mechanisms and timescales of relax-
ation and decoherence within and between solid-state
qubits [266].

In particular, as shown in Fig. 1, the nuclei surrounding
the atomic substitutions that host the physical qubit states
(and, generally, the nuclei throughout the multiqubit space)
are constantly in motion. This motion can strongly impact
the electronic energy levels and dynamics of solid-state
qubits through electron-phonon interactions [267]. Typi-
cally, the impact of electron-phonon interactions on the
coherence time of solid-state qubits is detrimental. This
detrimental impact can be dramatically reduced by going
to low temperatures; however, a major selling point for
solid-state qubits is their potential to operate at room tem-
perature [40,64,66,156,178,268,269]. On the other hand,
electron-phonon interactions can provide an avenue for
controlling the electronic qubit states via driving of spe-
cific phonon modes [270]. Designing phonon-mediated
qubit control requires a detailed understanding of the
electron-phonon coupling in the material. Thus, first prin-
ciples methods that include electron-phonon interactions
and, ideally, simultaneously capture the multireference
character of solid-state qubits are very desirable.

To this end, DFT-based frozen phonon and perturba-
tion theory (DFPT) [271–273] has been the go-to ab
initio method for the inclusion of electron-phonon inter-
actions in solid-state materials for a while now [214,
274]. However, DFPT inherits the limitations of con-
ventional DFT [275,276] (e.g., fails to capture strong
correlations, provides orbital energies of questionable
accuracy, etc.) and is also perturbative in the electron-
phonon coupling strength by construction. Perturba-
tive methods that are compatible with the high-level
methods (e.g., coupled cluster) have been developed,
providing a multireference wavefunction-based method
for investigating electron-phonon interactions in the
ground state of materials. Additionally, GW perturba-
tion theory (GWPT) has recently proven a reliable tool
for studying electron-phonon coupling in the perturba-
tive coupling regime of charged excitations in mate-
rials [118,276–280]. And we envision that the recent

extensions of GWPT to include electron-hole interac-
tions via the Bethe-Salpeter equation [281–284] will
permit accurate and fruitful studies on the impact of
exciton-phonon interactions in optically addressable solid-
state qubit systems.

In order to tackle the challenge of strong electron-
phonon interactions and phonon driven systems in solid-
state multiqubit systems, recent advances that treat
electron-phonon interactions on an equal footing as
electron-electron interactions will be very valuable [120,
285,286]. Furthermore, we expect that the recent exten-
sion of these methods that include electrons and nuclei on
equal footings to be compatible with the high-level impu-
rity solvers such as coupled cluster theory [119,163,287–
289] makes these methods ready to be combined with
the quantum embedding theories discussed in Sec. III A.
These combinations could result in accurate computational
approaches for studying weak to strong electron-phonon
interactions in large, complex multiqubit systems.

Analogous to electron-phonon interactions, electron-
photon interactions play a crucial role in many semicon-
ductor-based qubit systems [67,73,290–294]. For example,
optical cavities are often utilized to enhance optical tran-
sitions [295–301], light pulses are used to initialize qubit
states [302], perform gate operations [92,293,303], and
readout qubit states [65,304] for the promising category of
optically addressable solid-state qubits [292,294,305,306],
and electric and magnetic fields are often used to control
quantum dot-based spin qubits [78,90,91,307,308]. There-
fore, methods capable of accurately calculating transition
electric dipole matrix elements along with the impact of
light-matter interactions on the electronic structure are
desired [184,309].

Similar to DFT-based methods having been the work-
house of electron-phonon interactions in materials, quan-
tum electrodynamics density functional theory (QEDFT)
[120,121,181,182,310] has been instrumental in the devel-
opment of ab initio hybrid light-matter methods. However,
QEDFT typically does not describe optical excitations
accurately. This inaccuracy stems from QEDFT relying
on DFT to model the electronic states, which often pre-
dicts inaccurate energies and magnitudes of optical tran-
sitions [311]. To solve this problem, we are thrilled by
the recent development of including electron-photon inter-
actions in a nonperturbative manner within the Bethe-
Salpeter equation (BSE) formalism [122]. BSE formalisms
for calculating neutral excitations (i.e., excitons) have
been tremendously valuable in investigations of the optical
properties of materials [225]. Additionally, QED-CC is an
exciting example of a method that combines an accurate
correlated wavefunction-based approach with quantum
electrodynamics [123,124,185]. And, given that equation
of motion coupled cluster theories have been very success-
ful at predicting optical absorption energies and transition
strengths [215,217,218], we suggest that QED-CC is a
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promising method for analyzing interqubit interactions in
optical cavities [153,312]. A recent report by Haugland
et al. [185] highlights the importance of using correlated
electronic structure methods when analyzing intermolec-
ular interactions in optical cavities with ab initio QED
methods. In particular, Haugland et al. [185] found that
QED-HF and QED-DFT predicted purely repulsive inter-
actions between two H2 molecules, whereas QED-CCSD
was able to capture the attractive interaction. It was also
reported that the changes in the strength of dipole-induced
dipole and dipole-dipole interactions as a result of the
cavity were much larger in QED-CCSD calculations com-
pared to QED-HF and QED-DFT calculations. These find-
ings demonstrate the importance of using correlated elec-
tronic structure methods when analyzing intermolecular
interactions. Thus, we postulate that these lessons learned
from fundamental studies of intermolecular interactions
will also apply in studies of interqubit interactions inside
cavities. However, unfortunately, QED-CC is computa-
tionally expensive. Thus, QED-CC will likely have to be
combined with a lower-level method, such as QED-HF, via
a quantum embedding scheme in order for studies of mul-
tiqubit systems to be both accurate and computationally
tractable.

There have also been recent advancements that per-
mit the inclusion of dissipative processes in cavity QED
within ab initio formalisms [313]. The inclusion of dissi-
pative processes is an important aspect as dissipation arises
naturally in cavity-mediated qubit operations and results
in energy relaxation—hurting the performance of opti-
cally addressable solid-state qubits. Therefore, the ability
to study these processes on a first principles level is critical
to improving solid-state qubits. Put together, we envision
that the methodological advancements on accurately mod-
eling electron-phonon and electron-photon interactions in
complex solid-state materials should permit exciting new
design principles and quantum control schemes of multi-
qubit solid-state systems. For example, the dipole-dipole
coupling between optically addressable qubits [179,314]
could be analyzed and optimized using first principles cal-
culations together with experimental techniques to control
the defect-defect distance in materials [315]. In the follow-
ing section, we delve into how the aforementioned meth-
ods for calculating electron-phonon and electron-photon
interactions can also be used to provide key input param-
eters (i.e., matrix elements) to open quantum system tech-
niques that have been developed for studying the central
dynamical processes in quantum information processing.

C. Open quantum system techniques

In Sec. III A we discussed the methods that we
expect will make it possible to identify the intricate
details (e.g., quantum numbers) of the few many-body

electronic energy levels of interest in a multiqubit sys-
tem. Then, in Sec. III B, we outlined a procedure for
predicting how the electronic states of interest couple
to optical (electron-photon interactions) and mechanical
(electron-phonon interactions) degrees of freedom. Two of
the goals of the calculation of these couplings are: (1) to
understand the intrinsic stability (for example, the energy
loss T1 and dephasing times T2) of the multiqubit sys-
tem and (2) to identify specific couplings (e.g., electric
dipole transitions, phonon modes) that can be utilized to
develop and optimize useful quantum control schemes for
the qubits. This brings us to the bottom half of Fig. 1 where
we postulate that leveraging the methods of the open quan-
tum systems community [316–318] to study and optimize
the performance of solid-state multiqubit systems will be
very fruitful.

Specifically, we envision that in order to predict the suc-
cess and optimize solid-state qubit systems, the static ab
initio electronic structure methods described in Secs. III A
and III B must be combined with open quantum system
methods to study the dynamics [317] of these multiqubit
systems. While the time-dependent simulation of an entire
multiqubit systems (e.g., Fig. 1) along with its environment
and time-dependent external controls at a fully quantized
first principles level would be ideal, such a treatment is not
feasible and it is generally unnecessary to treat all degrees
of freedom of the electrons, nuclei, and photon modes
at an equal level of theory. Whereas quantum embed-
ding approaches allow for the use of multiple levels of
ab initio electronic structure theory to be used in a sin-
gle static electronic structure simulation and possibly over
short timescales, open quantum system techniques provide
an avenue for studying dynamical processes over much
longer timescales than ab initio methods (e.g., ab initio
molecular dynamics) by integrating over specified degrees
of freedom. The integration of most of the degrees of free-
dom permits the dynamics of the remaining degrees of
freedom (termed the system) to be scrutinized in detail.
The degrees of freedom that are traced over are referred
to as the environmental degrees of freedom, and there are
many approximations of varying generality used to simu-
late the dynamics of the environmental and system degrees
of freedom [316,319].

In the context of solid-state qubits, the most prevalent
baths are: (i) phonon baths, (ii) photon baths, (iii) nuclear
spin baths, and (iv) charge noise. Fortunately, decades of
work have already gone into developing methods capable
of studying the dynamics of an electronic qubit or mul-
tiqubit system coupled to these types of baths [316,319–
321]. Furthermore, the methods have already been exten-
sively tested against model Hamiltonians (for example, the
Anderson-Holstein model for phonon baths [322], Jaynes-
Cummings model for photon baths [323], spin star model
for spin baths [324], and two-level fluctuator models for
charge noise [325–328]).
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In what follows, we present a brief discussion of the typ-
ical methods that have been developed over the years to
study time-dependent phenomena in these model Hamil-
tonians as well as their extensions. We also discuss recent
progress and future opportunities in applying these tech-
niques to ab initio simulations. Throughout this discussion,
the important question of how to choose both the correct
model Hamiltonian and method will be demonstrated by
analyzing specific solid-state multiqubit systems.

Most of the common methods used to simulate time-
dependent phenomena in open quantum systems (recall
that all qubit systems are open quantum systems in
practice) are based on: reduced density matrix theories,
Green’s functions [329–331], semiclassical and quasi-
classical treatments [118,332–334], Floquet theory [335–
337], and approximate descriptions of the full many-body
wavefunction. Recent combinations of these methods also
appear to be promising methods for simulating large mul-
tiqubit and bath Hilbert spaces while maintaining accuracy
and efficiency [338–340]. While the intricacies of these
methods are out of the scope of this Perspective, it is
worthwhile to elaborate on a few of the techniques and
approximations used to make these simulations computa-
tionally tractable. For example, formally exact equations of
motion for the reduced density matrix (which are general-
ized quantum master equations) can be greatly simplified
by utilizing perturbation theory and timescale separation
to obtain Born-Markov master equations. These approx-
imate quantum master equations, such as the Lindblad
formalism or Redfield’s theory, are computationally much
easier to solve. However, as mentioned above and dis-
cussed more below, the role of non-Markovian effects on
the coherence between qubits is an important open ques-
tion [130,178,203,266]; we suggest that combining the ab
initio methods discussed in Secs. III A and III B with non-
Markovian open quantum system techniques [341,342] can
address these questions. For example, accurate electronic
structure calculations can be used to obtain hyperfine
parameters [343] in semiconductor qubits that can then
be used to build a spin star model Hamiltonians from
which non-Markovian dynamics has been studied [324].
Extensions of these to the multiqubit systems will be very
interesting and will critically enable the design and under-
standing of decoherence free subspaces. Another scenario
in which non-Markovian effects would be important is
understanding the role of electron-phonon interactions on
the coherence between two defect qubits. Specifically, we
are intrigued by the possibility of elucidating the impact
of local and nonlocal phonons on the entanglement and
coherence properties between qubits [344,345].

Additional important approximations are incorporated
during the separation of system and environmental degrees
of freedom. Particularly, the decisions of which degrees
of freedom should be included in the system, and how
accurately to treat the environmental degrees of freedom

are relevant in work trying to model the dynamics of
multiple solid-state qubits. To make these approximations
physically relevant, using input from both experimental
measurements and ab initio calculations will be key. In
other words, a tight feedback loop between experimental
measurements, ab initio calculations, and model Hamilto-
nian predictions will greatly aid the rational design of open
quantum system techniques used to model the dynamics of
multiqubit systems. As an explicit example of how these
pieces can potentially come together, we consider the driv-
ing of the two-qubit system shown in Fig. 1 by a laser field
at finite temperature. The multimessenger involved in this
system is seen immediately, with electronic, nuclear, and
electromagnetic field degrees of freedom being involved.
One open quantum system direction that may be use-
ful for modeling the dynamics of this driven multiqubit
problem is the application of semiclassical and quasiclassi-
cal methods in atomistic molecular dynamics simulations.
In particular, recent developments of these methods use
classical trajectory-based approaches to approximate the
quantum dynamics have allowed for nonadiabatic dynam-
ics in a laser field [339], nuclear quantum effects [346], and
decoherence and coherence processes [173,347] to be sim-
ulated. We envision the role of the methods discussed in
Secs. III A and III B to illuminate, with the aid of experi-
mental measurements, which electronic, nuclear, and elec-
tromagnetic degrees of freedom need to be included quan-
tum mechanically and which can be modeled classically
(for example, can the nuclear motion be modeled well by
Ehrenfest dynamics?). Lastly, we note that utilizing simi-
lar open quantum system techniques developed to analyze
and model semiconductor-metal interfaces [174,175,348]
in conjunction with ab initio calculations could result
in improved multiqubit coherence lifetimes and opera-
tion fidelities in quantum dot-based qubits that use gate
operations based on quantum transport. In these systems,
model Hamiltonians have been instrumental in their devel-
opment as spin and charge transport through quantum
dots and quantum dot arrays using model Hamiltonians
has been a staple problem in the open quantum system
community for decades [330,349–355]. While it has been
challenging to utilize these techniques in ab initio set-
tings with large system sizes, recent works provide hope
this may be possible for multiqubit studies in the coming
years [356–365].

Thus, we envision that open quantum system techniques
are primed for applications for studies of real and complex
solid-state multiqubit systems. Conceptually, joining the
ab initio methods discussed in Secs. III A and III B with
the abovementioned open quantum system techniques to
study a new solid-state multiqubit system would proceed
as follows. Experiments and ab initio calculations would
provide information to guide the modeling and solving of
effective system and bath Hamiltonians from which key
dynamical properties (e.g., information flow [366]) of the
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multiqubit system can be obtained. A recent example of
this for a single solid-state qubit was that of analyzing
the impact of the nuclear spin bath on the dynamics of
the electronic qubit of a NV center in diamond using the
open quantum system method of the coupled-correlation
expansion method [132,367].

In summary, the comprehensive approach to method
development discussed in Sec. III that focuses on the
combination of accurate electronic structure methods with
sophisticated theories from open quantum systems can
address the challenges in characterizing and optimizing the
performance of novel multiqubit solid-state systems over
the coming decade.

IV. SUMMARY OF THE PERSPECTIVE

Theoretical and experimental studies of multiple physi-
cal qubits are essential in the field of quantum information
sciences because many physical qubits are often required
to produce the single logical qubits that are the building
blocks of quantum computing algorithms and circuits [3].
In this Perspective, we describe and provide new directions
to overcome the challenges associated with performing
accurate ab initio computations of solid-state multiqubit
systems. Specifically, we outline how quantum embed-
ding theories, ab initio methods that include electron-
phonon and electron-photon interactions, and open quan-
tum system techniques can all play an important, and often
intertwined role, in developing solid-state qubits over the
course of the next decades. We confidently conclude that
these types of calculations combined with the ever advanc-
ing experimental techniques and quantum algorithms will
be instrumental to solid-state qubits reaching their full
potential.
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