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Computational physics is an important tool for analyzing, verifying, and—at times—replacing physical
experiments. Nevertheless, simulating quantum systems and analyzing quantum data has so far resisted an
efficient classical treatment in full generality. While programmable quantum systems have been developed
to address this challenge, the resources required for classically intractable problems still lie beyond our
reach. In this work, we consider a new target for quantum-simulation algorithms; analyzing the data arising
from physics experiments—specifically, muon-spectroscopy experiments. These experiments can be used
to probe the quantum interactions present in condensed-matter systems. However, fully analyzing their
results can require classical computational resources scaling exponentially with the simulated system size,
which can limit our understanding of the studied system. We show that this task may be a natural fit for
the coming generations of quantum computers. We use classical emulations of our quantum algorithm on
systems of up to 29 qubits to analyze real experimental data, and to estimate both the near-term and error-
corrected resources required for our proposal. We find that our algorithm exhibits good noise resilience,
stemming from our desire to extract global parameters from a fitted curve, rather than targeting any indi-
vidual data point. In some respects, our fault tolerant resource estimates go further than some prior work
in quantum simulation, by estimating the resources required to solve a complete task, rather than just to
run a given circuit. Taking the overhead of observable measurement and calculating multiple datapoints
into account, we find that significant challenges still remain if our algorithm is to become practical for
analyzing muon-spectroscopy data.
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At first glance, quantum computing appears to offer
remarkable computational power; potentially yielding
exponential speedups for simulating quantum systems, or
for solving some problems in machine learning. In real-
ity, however, the situation is more nuanced, and there
are a number of challenges that quantum algorithms must
overcome, in order to become practical for real problems
of interest. At the heart of these challenges, is that we
must first build a quantum computer that is both suffi-
ciently large, and has low enough error rates to run the
calculation (in an error-corrected setting these essentially
become the same requirement, as the error rate can be
suppressed by adding additional qubits for increased error
protection). How large and noiseless the computer must
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be is determined by the efficiency of the proposed quan-
tum algorithms, as well as the efficiency of the classical
algorithms they aim to surpass.

The most promising use cases for quantum simulation
and machine-learning algorithms seem to require a num-
ber of features. Firstly, the problem should be hard to
solve classically, and should not admit accurate classical
approximations. Quantum algorithms for solving the elec-
tronic structure problem must overcome this challenge,
as sophisticated classical methods can accurately approx-
imate the low-lying energy levels of many small systems
of interest, up to around 100 qubits [1,2]. Secondly, the
output of the algorithm should be resilient to noise, which
will reduce the resources required when performing quan-
tum error correction, or make the calculation amenable
to noisy, near-term quantum hardware. In the case of
quantum machine-learning algorithms, the problem should
also have an inherently quantum structure, to avoid rely-
ing on heuristic arguments for quantum advantage. The
model should be efficient to train, which is aided by hav-
ing a good prior for the model parameters and structure
[3,4]. Finally, there should be no data input and output
limitations, which avoids the need for hypothetical data
structures like quantum random-access memory, or the
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ability to directly interface a quantum computer with
other quantum systems, which supply the input data
state, such as the interactive quantum-likelihood eval-
uation method [5] or quantum convolutional neural
networks [6].

In this work, we introduce a quantum algorithm that
sits at the interface of quantum simulation and quantum
machine learning, which we apply to analyzing the spectra
arising from muon spin rotation, resonance, and relaxation
(μ+SR) experiments. We seek to optimize our algorithm
against the criteria listed above, in order to ensure its
practicality for solving real problems of interest. Muon-
spectroscopy experiments have been used to analyze a
wide range of physical systems and phenomena, such as
superconductivity and magnetism. These experiments typ-
ically measure the time evolution of the spin polarization
of antimuons that have been implanted into a sample of
interest [7]. A typical experimental setup is shown in Fig. 1
and discussed fully in Sec. I. As the muon spin interacts
with other environmental spins in the system, it oscillates
between eigenstates of the system Hamiltonian. Tracking
these variations enables us to learn quantitatively about the

interactions at the muon site. Although the inputs to the
model are Hamiltonian parameters—classical data—and
the outputs of the experiments are classical-data points,
accurate analysis can require a fully quantum treatment of
the system dynamics. In some cases, this problem appears
challenging to solve on classical computers, admitting few
simplifications, and often requiring exact diagonalization
of the system Hamiltonian [8–10].

In Sec. IV we present an algorithm to solve this prob-
lem efficiently using a quantum computer. Our algorithm
is relatively simple, and requires modest computational
resources. In particular, the finite lifetime of the antimuon
(2.2 μs on average) and our desire to extract global system
properties appears to set a generous limit on the preci-
sion required from our quantum calculations. In Sec. V
we carry out classical numerical emulations of our quan-
tum algorithm, to investigate its scaling behavior and noise
robustness. We use these emulations to analyze muon-
spectroscopy data from a real experiment, finding good
agreement with recent state-of-the-art classical analysis
[9]. The calculations performed as part of our analysis,
involving a Hilbert-space dimension of 229, are the largest
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FIG. 1. Schematic of a muon-spectroscopy experiment, as described in the main text. Spin-polarized muons are implanted into a
sample of interest (a), whereupon they interact with nearby nuclear spins (b). This causes an oscillation of the muon spin polarization
(c). When the muon decays, the positron is preferentially emitted in the direction of the muon spin at the time that it decayed (d). By
recording the normalized asymmetry between positron counts registered by the two detectors, we can reconstruct the time evolution of
the muon polarization (e).

020349-2



LEARNING FROM PHYSICS... PRX QUANTUM 2, 020349 (2021)

to date in the muon literature. We use these numerical
results as the basis for estimating both the near-term and
error-corrected resources required to run our algorithm for
problem sizes of interest. At first glance, our algorithm
appears to require fewer fault-tolerant resources than solv-
ing challenging instances of the electronic structure prob-
lem. However, the large number of repetitions required by
our algorithm (to estimate observables, calculate multiple
datapoints, and repeat the calculation as part of an opti-
mization loop) may result in an impractically long runtime.
We argue in Sec. VI that this is not necessarily a limitation
of our algorithm, but a challenge facing many quantum
algorithms.

Our approach is similar in nature to the proposals of
Refs. [11,12], which also consider using quantum comput-
ers to analyze the outputs of quantum experiments (inelas-
tic neutron scattering on simplified models of magnetic
molecules, and linear response nuclear magnetic resonance
experiments, respectively). All three methods are related to
quantum-likelihood evaluation [5], whereby the data from
one untrusted quantum source (the experiment) is fitted to
simulated data from a trusted quantum source (the quan-
tum computer) in order to extract system parameters of
interest.

I. MUON SPECTROSCOPY

Muon spectroscopy, more commonly known as muon
spin rotation, relaxation, and resonance (μ+SR), emerged
as an experimental technique in the 1970s [13], follow-
ing the theoretical proposal by Garwin et al. [14]. The
technique is closely related to other spin-based methods
for probing magnetic interactions, such as nuclear mag-
netic resonance (NMR) and electron spin resonance (ESR).
μ+SR experiments can provide quantitative information
on a range of physical phenomena, including magnetic
ordering and phase transitions in materials, the diffusion of
light interstitial defects in semiconductors, vortex forma-
tion in superconductors, and low-dimensional magnetism.
In this section, we provide an introduction to μ+SR. We
direct the interested reader to the review article by Blun-
dell [15] and the textbook by Yaouanc and De Reotier [7]
for more detailed discussions of the method.

As mentioned in the Introduction, μ+SR uses spin-
polarized beams of positive (anti)muons (hereafter referred
to as muons, as the ordinary muon is rarely used in muon-
spectroscopy experiments, and so is not discussed in this
work) to probe the interactions in a sample of interest. A
typical μ+SR experiment proceeds as follows.

(a) The μ+ is a positively charged, spin-1/2 particle,
with a mass approximately 1/9th that of the pro-
ton. It can be produced at particle accelerators, from
the decay of pions: π+ → μ+ + νμ. Working in the
rest frame of the pion, and conserving linear and

angular momentum, we find that both the muon-
emission direction and spin polarization (the spin
projection along a specified axis) must be opposite
to those of the neutrino. This decay proceeds via the
weak interaction, and so violates parity. This causes
the neutrino to have its spin polarization orientated
antiparallel to its momentum—and thus, the same
happens to the muon. By selecting muons arising
from pions decaying at rest, spin-polarized muon
beams are produced. In this work, we choose the ini-
tial spin polarization of the muon beam to be along
the positive Z axis. As a result, we can consider the
muons to initially be in state |0〉 〈0|μ, where |0〉 is
the +1 eigenstate of the Pauli-Z matrix.

(b) The beam is directed into the sample of inter-
est. The muons are brought to rest by electrostatic
interactions, which do not depolarize the beam [15].

(c) The muons interact with their local environment
via spin-spin interactions. As the initial polariza-
tion of the muon spin is unlikely to be an eigen-
state of the muon-environment Hamiltonian, the
muon spin polarization will evolve according to the
Schrödinger equation.

(d) The muon decays with a half-life of 2.2 μs into a
positron, electron neutrino, and muon antineutrino.
Once again, as a consequence of the weak inter-
action, the positron is emitted preferentially in the
direction of the muon spin polarization.

(e) The emitted positrons exit the sample, and are
detected by detectors placed forwards and back-
wards along the direction of the muons’ initial spin
polarization. The detection of positrons gives an
asymmetry function

A(t) = N+ − αN−
N+ + αN−

, (1)

which records the normalized difference between
the forward and backward detector counts (N+/−,
respectively), where α accounts for detection inef-
ficiencies and imbalances. This value is converted
to a polarization function, using

P(t) = A(t)− Abg

A0
, (2)

where Abg gives the background positron count, and
A0 = A(0)− Abg. The polarization function is nor-
malized to between ±1, and corresponds to the spin
polarization of the muon beam at time t. Mathemat-
ically, the polarization function is given by

P(t) = Tr
[
Zμρs(t)
]
,

= Tr
{
Zμe−iHst[ |0〉 〈0|μ ⊗ ρe(0)

]
eiHst}, (3)
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where Zμ is the Pauli-Z matrix acting on the muon,
Hs is the system Hamiltonian, ρs(t) is the state of the
muon-environment system at time t, and ρe(0) is the
initial state of the environment.

(f) Measuring the time evolution of the polarization
function enables us to infer the interactions felt by
the muon at its rest site (given a model for the initial
state of the environment), and so learn quantitatively
about the sample.

An understanding of μ+SR experiments can be gleaned
from the following semiclassical example. A spin-
polarized muon beam is directed into a sample of interest,
where it interacts with a transverse magnetic field �B.
The muon spin polarization will precess at a frequency
ω = Bγμ, where γμ = 2π × 135.5 MHz T−1 is the gyro-
magnetic ratio of the muon. After converting the positron
counts into the polarization function, we observe that the
polarization function is given by P(t) = cos(Bγμt). This
enables us to infer the strength of the magnetic field at
the muon site. This example is similar in spirit to many of
the early μ+SR experiments performed. Due to their large
magnetic moment, muons can be used as sensitive probes
of both local magnetic fields and spin-spin interactions.

There are two types of muon beams: continuous wave,
and pulsed. Muons in a continuous beam are implanted
one by one; a timer is started when a muon enters the
sample, and stopped when a positron is detected. If the pre-
vious muon has not decayed before the next muon arrives,
then these events are discarded. In order to keep the count
rate high, the polarization function is only recorded to
around 10 μs. Continuous beams have a time resolution of
around 1 ns. In contrast, pulsed beams implant hundreds
of muons into the sample in a single pulse. The arrival
time between pulses is large compared to the muon life-
time, which enables polarization functions to be measured
to around 30 μs. The resolution of pulsed beams is lim-
ited to around 0.1 μs by the finite width of the pulses. As
a result, continuous and pulsed beams are better suited for
studying fast and slow dynamics, respectively.

Experiments can be carried out at high pressures
(approximately 1.5 GPa), low temperatures (less than 1
K), with high strength transverse or longitudinal mag-
netic fields (approximately 8 T), or with the application of
time-dependent radio-frequency pulses [7]. Each of these
techniques enables the investigation of certain phenom-
ena more closely. For example, if we are investigating
relaxation of the muon spin polarization due to either T1
relaxation (arising from magnetic field fluctuations in time,
which cause the muon to exchange energy with the envi-
ronment) or T2 relaxation (caused by a spatially varying
static field distribution, which causes the muons to precess
at different frequencies, dephasing the beam) then a strong
longitudinal magnetic field can be used. This “locks” the
muon polarization along its initial direction, which then

makes it easier to measure differences in the polarization
function arising from relaxation processes.

As described above, μ+SR experiments have been used
to investigate a range of physical phenomena. For exam-
ple, we can measure the temperature dependence of oscil-
lations in the polarization function (or the lack thereof) in
order to investigate phase transitions in magnetic materi-
als, such as low-dimensional spin chains [16]. Other exper-
iments have measured the polarization function of muons
in semiconductors, at a range of temperatures, in order to
investigate the diffusion of muons within the sample. The
muon acts as a light proton (often capturing an electron in
semiconductors to form “muonium”), so these experiments
can be used to examine the effects of hydrogenic defect dif-
fusion in semiconductors [17]. Similar μ+SR experiments
have examined Li+ ion diffusion in lithium battery mate-
rials [18–20]. In superconducting systems, μ+SR exper-
iments have been used to measure the superconducting
electron density, determine phase diagrams, and character-
ize vortex lattices [7]. μ+SR experiments have also been
applied to biological and chemical systems; for example,
to investigate oxygen-dependent effects in the radiation
treatment of cancer [21].

Muon spectroscopy is a versatile technique, that has
provided insights on a range of physical systems. The
technique is still undergoing active development, includ-
ing the introduction of lower-energy muon beams, which
can be used to probe surface effects [7]. However, there
are also theoretical challenges for μ+SR that are desirable
to address. While some systems can be analyzed using a
mean-field, or semi-classical, approach, others appear to
require a fully quantum treatment [8,10,22,23]. In the fol-
lowing section, we discuss the simulation and analysis of
muon polarization functions in more detail.

II. MUON POLARIZATION FUNCTIONS

In order to analyze the polarization function arising from
a given μ+SR experiment, we can compare it to a theoreti-
cal polarization function obtained from a physical model of
the studied system. The accuracy of these theoretical polar-
ization functions is determined by both the level of detail
included in the model, and the method used to simulate the
model. This can be likened to the field of computational
chemistry, where the accuracy of a simulation is deter-
mined by both the physical effects included in the model
(e.g., the Born-Oppenheimer approximation, or relativis-
tic effects) and the method used to simulate the system
(e.g., mean-field approaches, or exact diagonalization). We
focus first on the different methods used to obtain the
theoretical polarization function, before considering other
physical effects that can be incorporated into the model.

On a most basic level, one can use a semiclassi-
cal, mean-field approach, which considers how the muon
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polarization evolves given a model for the surround-
ing magnetic field distribution. For example, a time-
independent magnetic field with Gaussian distributed field
strengths leads to the Kubo-Toyabe polarization function
[7,24]. This analytically derivable formula, and generaliza-
tions of it, are widely applied within the μ+SR field, and
are acceptably accurate in many circumstances.

If greater accuracy is required, techniques have been
developed that treat the muon interactions with its local
spin environment semiclassically [25,26]. In some circum-
stances, these methods can yield high accuracy at a modest
computational cost. However, they cannot always account
for strong spin-spin interactions, or the effect of quadrupole
interactions [7].

Finally, the highest level of accuracy for a given model
can be obtained by using a quantum-mechanical analysis.
The calculations consider a quantum Hamiltonian between
the muon and its local spin environment, and evolve the
muon polarization in time according to the Schrödinger
equation. We discuss these calculations in more detail
below. However, we note here that the cost of these cal-
culations is believed to scale exponentially with the size of
the system simulated, due to the computational complexity
of storing highly entangled quantum states.

In this work, we focus on systems that require a fully
quantum treatment in order to obtain accurate polariza-
tion functions. Two techniques have been developed by
the muon community for exactly simulating the polariza-
tion function. The first relies on exact diagonalization of
the muon-environment Hamiltonian. Because the thermal
energies encountered in μ+SR experiments are typically
much larger than the nuclear energy levels, the environ-
ment is normally assumed to be in the maximally mixed
state ρe(0) = Ie/De where De is the Hilbert-space dimen-
sion of the environment. The polarization function can then
be obtained by

P(t) = 1
Ds

Tr
([

Zμ ⊗ Ie
]
e−iHst[ |0〉 〈0|μ ⊗ Ie

]
eiHst),

= 1
2Ds

Tr
{[

Zμ ⊗ Ie
]
e−iHst[(Iμ + Zμ)⊗ Ie

]
eiHst},

= 1
2Ds

Tr
([

Zμ ⊗ Ie
]
e−iHst[Zμ ⊗ Ie

]
eiHst). (4)

We then use a resolution of the identity in terms of
eigenstates of the system Hamiltonian; |m〉 , |n〉

P(t) = 1
2Ds

∑

m

〈m| Zμe−iHstZμeiHst |m〉 ,

= 1
2Ds

∑

m

∑

n

〈m| Zμe−iHst |n〉 〈n| ZμeiHst |m〉 ,

= 1
2Ds

∑

m

∑

n

| 〈m| Zμ ⊗ Ie |n〉 |2ei(Em−En)t, (5)

where Em is the eigenvalue of eigenstate |m〉. As a result,
we can see that performing an exact diagonalization of the
system Hamiltonian can be used to calculate the polar-
ization function. However, the dimension of the system
Hamiltonian will scale exponentially with the number of
spins considered, which limits the size of these calcula-
tions. These exact calculations have been performed for
a range of systems [7–10,23,27–29], with Hilbert-space
dimensions up to around 2048 [9,10]. Recently, a method
was developed to scale the interactions between the muon
and more distant nuclei, in order to act as a proxy for the
remaining nuclei in the sample, which showed promising
results for muon experiments on CaF2 and NaF [9].

An alternative method, developed by Celio [30], reduces
the memory cost of the calculation, at the expense of
introducing statistical uncertainty into the measured result,
which can be reduced through sampling. This method uses
a first-order product-formula-based approach, whereby the
time-evolution operator is divided into a product of oper-
ators acting on subsystems of the system (this is also
referred to as “Trotterization” by the quantum-computing
community). When the environment is initially in a pure
state |φ(0)〉e, the wavefunction of the system at time t is
given by

|ψs(t)〉 = e−iHst |0〉μ |φ(0)〉e ,

≈
(∏

α

e−iHα
s t/n
)n

|0〉μ |φ(0)〉e ,

≡ U1(t)
[ |0〉μ |φ(0)〉e

]
, (6)

where Hα
s are subterms in the Hamiltonian (for example,

the interaction between a muon and a single nearest-
neighbor spin), and n is referred to as the number of Trotter
steps used. Equality is recovered in the limit that n → ∞.
Celio [30] made use of a random-phase approximation-
inspired method, which sets the wave function at time t
is as

|ψs(t)〉 = U1(t)
[

1√
De

∑

j

eiθj |0〉μ |j 〉e

]
, (7)

where θj are randomly chosen on each sample of the
algorithm, and |j 〉e denote unentangled basis states of
the environment. In this case, an approximation for the
polarization function can be obtained from

P(t) ≈ 〈ψs(t)| Zμ ⊗ Ie |ψs(t)〉 ,

=
∑

j

1
De

〈0|μ 〈j |e U1(t)†ZμU1(t) |0〉μ |j 〉e ,

+
∑

j �=k

1
De

ei(θk−θj ) 〈0|μ 〈j |e U1(t)†ZμU1(t) |0〉μ |k〉e .

(8)
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The first term is equal to the polarization function that we
wish to measure (up to an error induced by the Trotter-
ization of the time-evolution operator). As the phases in
the second term are chosen randomly, many of these terms
cancel, leading to a small error on the polarization func-
tion. This error can be reduced by repeating the method
with independently randomly generated values of θj . The
error also decreases as the Hilbert-space dimension of the
system increases (see Appendix C 2). The Trotter error can
be reduced by using higher-order product formulae, or by
increasing the number of Trotter steps used. We discuss
this source of error in more detail in Sec. IV. While the
exact diagonalization method requires manipulating matri-
ces of dimension Ds × Ds, this product-formula-based
approach requires only storing the wave function, which
has dimension Ds. This has enabled much larger cal-
culations to be performed using this method, including
simulations with Hilbert-space dimension approximately
217 [31] and 226 [32]. This latter calculation is, to the best
of our knowledge, the largest μ+SR calculation performed
to date with an exact method.

Exact methods for calculating the polarization function
have predominantly been used for two purposes: locating
the muon rest site, and studying muon diffusion. Determin-
ing the muon rest site is an important challenge in μ+SR
experiments [33]. If we are able to accurately simulate the
muon polarization function, then the polarization functions
arising from a number of candidate sites can be gener-
ated, and compared to the experimental data, in order to
determine the most likely muon location. This technique
can be employed in conjunction with density-functional
theory [34–38] and experimental methods [39] to give
greater certainty on the muon location. Exact simulation
has repeatedly been employed when studying fluorinated
materials, due to the strong dipolar interaction between the
spin-1/2 fluorine nuclei and the muon, and the large elec-
tronegativity of the fluorine ion, which “traps” the muon
[40]. This effect has been used to locate the muon rest
site in fluorinated polymers [29,41], molecular magnets
[28], and ionic crystals [9,42]. Similar calculations were
used to identify the muon rest sites in the high-temperature
superconductor La2−xSrxCuO4 [32]. The calculations have
often included heuristic terms in the polarization function,
to compensate for the limited system sizes that can be
simulated using these costly techniques.

Polarization functions calculated from quantum mod-
els have also been used to study muon diffusion. As
the muon is a light particle, its diffusion between lat-
tice sites is an inherently quantum phenomenon, involving
quantum tunneling through the potential barrier between
sites. Calculating the hopping amplitudes from first princi-
ples would be an exceedingly costly calculation, requiring
an accurate description of the electronic structure of the
muon-environment system. Fortunately, diffusion of the
muon between lattice sites leads to a measurable change in

the polarization function. We can calculate the muon diffu-
sion rate by comparing the polarization function obtained
in the absence of diffusion (which can be measured at
low temperatures) to the polarization function when dif-
fusion is present. The effect of muon diffusion is typically
incorporated into theoretical calculations using the “strong
collision model” (SCM). The SCM assumes Markovian,
stochastic hopping of the muon between lattice sites. The
muon is considered to probabilistically jump to a new site,
where the surrounding nuclei are in the maximally mixed
state. This leads to a damping of the polarization function,
the strength of which depends on the hopping rate. Dal-
mas de Réotier et al. [31] showed that using the mean-field
Kubo-Toyabe function in conjunction with the SCM can
lead to inaccurate results for the muon hopping strength.
More accurate results were obtained by first computing
a static polarization function using the product-formula
method described above, and then augmenting this with
the SCM. Kadono et al. [43] and Luke et al. [44] used
the product-formula-based method in conjunction with the
SCM to analyze the diffusion of muons in copper. They
noted that using the Kubo-Toyabe function in conjunction
with the SCM would lead to an overestimation of the muon
diffusion rate.

It is known that the strong collision model is of lim-
ited accuracy. The assumption that the muon moves to
a new site with unpolarized nuclei means that it cannot
move to a nearest-neighbor lattice site (as the muon would
have altered the polarization of the nuclei shared between
its previous and new sites), or hop back to its previous
site. However, quantum tunneling is a non-Markovian pro-
cess, and is strongly affected by the presence of phonons
in the system. These phonons can lead to a degeneracy
between the energies of different sites, increasing the tran-
sition probability. In particular, this effect increases the
likelihood of the muon returning to its previous posi-
tion [7]. A more accurate model for muon diffusion
was developed by Celio [22]. A rigorous equation for
the dynamic polarization function with a single jump is
given by

G(t) = G0(t)e−νt + ν

∫ t

0
dt′e−νt′F(t, t′),

G0(t) = Tr
[
e−iH0tρs(0)eiH0tZμ

]
,

F(t, t′) = Tr
[
e−iH1(t−t′)e−iH0t′ρs(0)eiH0t′eiH1(t−t′)Zμ

]

(9)

where H0 is the Hamiltonian at the initial muon site,
H1 is the Hamiltonian at the new site, t′ denotes the
time of the hop, and ν is the hopping rate. The trace
is over all nuclear sites involved in both Hamiltoni-
ans. This equation can be generalized to a larger num-
ber of jumps. Celio [22] showed that the inferred hop-
ping rate can differ by around 20% when using this
rigorous approach, compared to using the SCM. To
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the best of our knowledge, this model has never been
employed when analyzing experimental data, likely due
to the large computational cost of considering many
different sites.

Having established the scenarios where quantum models
are typically utilized in muon-spectroscopy analysis, we
now consider the interactions present in such systems. The
muon-system Hamiltonian typically includes contributions
from dipolar interactions between spins, quadrupole inter-
actions between nuclear spins and electric field gradients
in the sample, and the coupling of spins to time-dependent
or independent magnetic fields. The dipolar contribution is
given by

HD = 1
2

∑

i,j

�2μ0γiγj

4πr3
ij

[
�Si · �Sj − 3(�Si · r̂ij )(�Sj · r̂ij )

]
,

(10)

where μ0 is the permeability of free space, γi is the
gyromagnetic ratio of spin i, �rij is the vector connect-
ing spins i and j , and �Si are the vectorized generalized
spin matrices for a particle with spin quantum number s.
We move the factor of � from the spin matrices to the
coefficient of the sum. For example, for a spin-1/2 parti-
cle we have �Si = (1/2)(Xi, Yi, Zi), where Xi, Yi, Zi are the
Pauli matrices acting on spin i. These can be general-
ized to spins of higher dimension, which we discuss in
more detail in Sec. IV A. This Hamiltonian contains O(N 2)

terms, where N is the number of spins considered in the
simulation.

There is also an interaction between the quadrupole
moment of nuclei with s > (1/2), and any nonzero elec-
tric field gradients in the sample. Such electric field
gradients can often be induced by the presence of
the muon. The quadrupole interaction Hamiltonian is
given by [9]

HQ =
∑

i∈Q

�eQi(1 + �i)

2si(2si − 1)

(
�Si

T · G(�ri) · �Si

)
, (11)

where Q is the set of nuclei in the simulation with
quadrupole moments, e is the electron charge, Qi and
�i are the quadrupole coupling factor and antishield-
ing factor (respectively) of the ith spin, and G(�ri) is
the electric field gradient tensor at position �ri. The ele-
ments of G(�ri) are Gαβ(�ri) = [∂2V(�ri)/∂rα∂rβ], where
V(�ri) is the Coulomb potential at position �ri. This Hamil-
tonian contains O(NQ) terms, each acting on a single
spin (where NQ is the number of nuclei with quadrupole
moments).

The Zeeman interactions of each spin with an applied
magnetic field are given by

HM (t) =
∑

i

�γi�Si · �B(t), (12)

where �B(t) is the magnetic field.
Some previous calculations have neglected the dipolar

interactions between the nuclear spins, as they are often
much smaller than those between the muon and the nuclear
spins [30,32]. Neglecting these interactions reduces the
number of terms in the Hamiltonian to O(N ).

In this section, we discuss theoretical methods to gener-
ate simulated polarization functions. The accuracy of these
polarization functions depends on both the model for the
system (e.g., whether effects like muon diffusion are taken
into account), and the method used to solve the model. The
most accurate calculations require a fully quantum model
of the system. Unfortunately, the cost of classically sim-
ulating the dynamics of a quantum system is expected to
scale exponentially with the size of the simulated system.
This high cost has restricted the simulation ofμ+SR exper-
iments to small systems, with Hilbert-space dimensions of
less than 230. In Sec. IV we show how this exponential
cost can be circumvented by using quantum hardware as
the simulation platform.

III. QUANTUM COMPUTING

Quantum computing leverages quantum-mechanical
effects in order to perform certain information processing
tasks more efficiently than appears possible with classical
computers. Quantum computers were originally proposed
as efficient simulators of other quantum systems [45],
and were later formalized as a more general computa-
tional device [46]. Since these initial proposals, a num-
ber of quantum algorithms have been developed, which
appear to asymptotically outperform known classical algo-
rithms. These include algorithms for factoring numbers
[47], searching databases [48], and simulating quantum
systems [49]. There has also been significant progress in
developing platforms on which to run these algorithms.
Physical qubits can be created in a number of different
systems [50]. These include using the two lowest energy
levels of superconducting circuit resonators [51,52], path
or polarization degrees of freedom in linear optical pho-
tonic systems [53], or a pair of energy levels in ions
[54,55]. Quantum computing is currently referred to as
being in the “noisy, intermediate-scale quantum” (NISQ)
era [56]. Current quantum computers possess up to around
50 qubits, and exhibit gate error rates of approximately
10−3, at best [57]. These limited computational resources
mean that we have so far been unable to run classically
challenging instances of the algorithms referenced above.
In this section, we provide an introduction to quantum
computing. We refer the interested reader to the textbook
by Nielsen and Chuang [58] for more information.

In this work, we focus on the circuit model of quantum
computation. This formalism abstracts away the physi-
cal details of the hardware implementation, and treats the
qubits as generic two-level systems. The computational
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basis states of the qubit Hilbert space are taken to be

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (13)

A general single qubit state is described by

|ψ〉 = α |0〉 + β |1〉 , (14)

where α,β are complex amplitudes, and the state is nor-
malized to one. Qubits are manipulated by applying quan-
tum logic gates to the system. These gates are defined by
unitary matrices acting on the qubit wave function. Typical
single-qubit gates include the Pauli gates

X =
[

0 1
1 0

]
, Y =
[

0 −i
i 0

]
, Z =
[

1 0
0 −1

]
, (15)

the single-qubit rotation gates

Rx(θ) = e
(−iθX

2

)

, Ry(θ) = e
(−iθY

2

)

, Rz(θ) = e
(−iθZ

2

)

(16)

and the Hadamard and T gates

H = 1√
2

[
1 1
1 −1

]
, T =

[
1 0
0 eiπ/4

]
. (17)

A system of Q qubits is described by a normalized wave
function in the Hilbert space of dimension 2Q. We can
construct wave functions that cannot be decomposed into
tensor products of individual qubits by using multiqubit
entangling gates, such as the controlled NOT (CNOT) gate

⎡

⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎦ . (18)

A quantum circuit consists of a sequence of unitary
gates, applied to a well-defined initial state, such as |0̄〉 =
|0〉 · · · |0〉. Qubits can be measured in the computational
basis, either at an intermediate stage of the computation,
or at the end of the calculation. When a qubit is measured
in the computational basis, it will “collapse” to state |0〉 or
state |1〉, with probability |α|2 and |β|2, respectively.

While some quantum algorithms (such as Ref. [48])
extract their solution from a single measurement of the
qubits, other algorithms require measurements of observ-
ables, O, which are represented by Hermitian matrices.
For algorithms in the latter category, we typically seek
the average value of an observable over many measure-
ments, Ō = 〈ψ | O |ψ〉. In this work, we are predominantly
concerned with measuring the spin polarization of a qubit
representing the muon. To measure the polarization along

the Z axis, we can simply prepare the desired state, and
measure the qubit representing the muon in the compu-
tational basis. We assign a value of +1 to the outcome
|0〉, and −1 to the outcome |1〉. We repeat this process
a number of times, and average the results. To measure
the polarization along a different axis we use a single-
qubit rotation to rotate the measurement axis to the Z axis,
and then apply the procedure described above. For exam-
ple, when measuring X , we use the H (Hadamard) gate
to rotate the basis. In Sec. IV D we discuss a more com-
plex, but asymptotically more efficient way of measuring
the expectation value of Hermitian observables.

The formalism introduced above can be used to con-
struct and describe quantum algorithms, by specifying the
actions applied to individual qubits. These abstract instruc-
tions are then converted into physical controls applied to
the quantum hardware, such as applying laser pulses to
excite a trapped ion qubit. These physical controls are
imperfect, introducing noise to the system. Moreover, the
quantum states constructed are sensitive to decoherence
caused by interaction with the surrounding environment.
These processes introduce noise into the system, which
can be modeled in a number of ways. The presence of
noise can be overcome by using quantum-error-correction
codes. These codes construct a single logical qubit from
highly entangled states of a number of physical qubits.
It is important to note the high overheads introduced by
quantum error correction; a common rule of thumb is that
around 103 − 104 physical qubits per logical qubit may be
required to solve classically intractable problem instances
[59–61]. We elaborate more on this resource estimation in
Sec. V C. We refer the interested reader to Refs. [62–65]
for a more comprehensive discussion of quantum error
correction.

The limited number of qubits in current NISQ devices
precludes our ability to perform quantum error correction.
Instead, alternative algorithmic error mitigation strategies
have been developed, which effectively seek to identify
the noiseless signal from an increased number of noisy
experimental repetitions. We refer the interested reader to
Ref. [66] for a more detailed discussion of error-mitigation
techniques. In this work, we place particular focus on the
extrapolation method of error mitigation. Error extrapola-
tion uses expectation values obtained at multiple different
physical noise levels to infer the noiseless expectation
value [67–71]. We can increase the noise level in the quan-
tum processor in a number of ways, including “stretching”
the duration of gates [72], or by converting the noise into a
Pauli channel and then introducing additional Pauli errors
with the appropriate probabilities [67].

IV. QUANTUM SIMULATION OF µ+SR

In this section, we illustrate how quantum comput-
ers can be used to analyze muon-spectroscopy data.
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We show that a quantum computer is able to simulate
muon polarization functions using resources scaling poly-
nomially with the size of the simulated system. This

is in constrast to the classical methods for simulating
muon polarization functions described in Sec. II, which
require exponentially scaling resources. Our algorithm

spin 1 For example

×

FIG. 2. Outline of the proposed algorithm for simulating muon polarization functions on quantum computers. We first map the spins
onto qubits via the mapping in Sec. IV A, which also enables us to map the spin Hamiltonian to qubit operators. We prepare the
desired initial state on these qubit registers using the techniques described in Sec. IV B. We can then evolve this state in time, using
the methods in Sec. IV C. We can measure the polarization value of the muon qubit, as described in Sec. IV D. This diagram shows the
most simple form of the algorithm. This circuit must be repeated many times in order to estimate the Z expectation value of the muon
at a single time value. We must repeat this procedure for each desired time value. This will generate a simulated polarization function,
which can be incorporated into, for example, an optimization routine to determine the muon rest site, by fitting the generated data to
experimental data.
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is illustrated in Fig. 2, and can be summarized as
follows:

1. Map the spin system of interest to qubits.
2. Prepare the quantum registers in the desired initial

state.
3. Evolve the system in time for the desired

duration, t.
4. Measure the muon Z expectation value, P(t).

We can repeat steps 2–4 of this process at many different
t values in order to obtain a simulated version of the polar-
ization function for the given system. Below, we discuss in
more detail how each of these steps can be implemented.

A. Mapping the spin system to qubits

We first need to map the spin system under
consideration onto the quantum computer, such that the
spin states of the system correspond to valid states of the
quantum register. For the case of spin-1/2 particles, this
mapping takes a simple form

∣∣∣∣
1
2

〉
:= |0〉 ,

∣∣∣∣−
1
2

〉
:= |1〉 .

(19)

This leads to a natural mapping of the spin operators of
particle i

Sx
i = 1

2
Xi,

Sy
i = 1

2
Yi,

Sz
i = 1

2
Zi.

(20)

When considering particles with higher spin s, there are
a number of possible mappings that we could use. One
approach is to store the spin of the particle in a register
with log2(2s + 1) qubits [73]. However, this compact map-
ping can lead to more complicated expressions for the spin
operators, and may be problematic if the spin multiplicity
is not a power of 2. In this work, we employ a spin-to-
qubit mapping based on symmetric quantum states of a
given Hamming weight (known as Dicke states) [74]. For
example, a spin-1 particle is stored as

|1〉 := |00〉 ,

|0〉 := 1√
2

( |01〉 + |10〉 ),

|−1〉 := |11〉 .

(21)

This mapping can be derived by considering the joint
Hilbert space of two spin-1/2 particles, which can be parti-
tioned into a spin-1 triplet space, and a spin-0 singlet space.
This mapping is an embedding of the three-dimensional
triplet space into the four-dimensional two-qubit Hilbert
space. The spin operators for particle i are given by

Sx
i = 1

2
(
Xi0 + Xi1

)
,

Sy
i = 1

2
(
Yi0 + Yi1

)
,

Sz
i = 1

2
(
Zi0 + Zi1

)
.

(22)

We can generalize this mapping for a spin-s particle by
assigning each of the states |j 〉 , j ∈ [−s, . . . , s] to the sym-
metric superposition of states with Hamming weight h
such that h = s − j . For example, a spin-3/2 particle can
be represented by

∣∣∣∣
3
2

〉
:= |000〉 ,

∣∣∣∣
1
2

〉
:= 1√

3

( |001〉 + |010〉 + |100〉 ),
∣∣∣∣−

1
2

〉
:= 1√

3

( |011〉 + |101〉 + |110〉 ),
∣∣∣∣−

3
2

〉
:= |111〉 .

(23)

The spin operator for a spin-s particle i is given by

sSαi = 1
2

2s−1∑

j =0

Pαij , (24)

where α ∈ [x, y, z] denotes which of the Pauli matrices
Pα ∈ [X , Y, Z] are used, and j denotes the qubits in reg-
ister i. For example, the Sx operator on particle i = 1 with
spin s = (3/2) is given by

3
2 Sx

1 = 1
2
(
X10 + X11 + X12

)
. (25)

The total number of qubits required is given by
∑N

i=1 2si,
where si is the spin of the ith particle, and N is the number
of particles in the system. For example, for six spin-3/2
particles, plus a muon, we need

[
6 × 2 × (3/2)

]+ [1 ×
2 × (1/2)

] = 19 qubits. We can use this mapping to obtain
qubit representations of the system Hamiltonians given in
Eqs. (10)–(12). The dipole interaction is the dominant con-
tribution to the number of terms in the Hamiltonian. Each
term sSαi ⊗ s′Sβj is mapped to 4ss′ two-qubit Pauli terms.
As a result, the Hamiltonian contains up toO(N 2s2

max) two-
qubit Pauli terms, where smax is the largest spin value in the
system.
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B. Preparing the initial state of the system

As discussed in Sec. II, the initial state of the system is
typically taken as ρ0 = |0〉 〈0|μ ⊗ (Ie/De). There are two
routes to effectively time evolve this mixed initial state.
The first approach is to emulate nature; we can prepare
the environment register in a state |k〉e =⊗i∈e |ji〉i that
is the tensor product of each environment spin in a ran-
domly selected sz basis state. Each state |k〉e is chosen with
probability pk = (1/De). By repeating the simulation many
times, we obtain

∑

k

pkTr
[
(Zμ ⊗ Ie)e−iHt(|0〉 〈0|μ ⊗ |k〉 〈k|e)eiHt

]

= Tr
[
(Zμ ⊗ Ie)e−iHt

(
|0〉 〈0|μ ⊗ Ie

De

)
eiHt
]

, (26)

as required. This method converges as 1/
√
ω, where ω is

the number of samples taken.
The second approach to effectively sample from the

time-evolved initial mixed state is a modified version of
the random-phase-approximation method [30] discussed in
Eqs. (7) and (8). We first initialize the environment regis-
ter in an equal superposition of all possible |k〉e states. For
the case of spin-1/2 particles, this can be accomplished
by applying a Hadamard gate to each of the qubits. For
the case of higher-spin particles, we discuss below how to
construct this superposition. These steps will prepare the
state

|ψ〉 = 1√
De

∑

k

|0〉μ |k〉e , (27)

which can be compared with the state given in Eq. (7). In
order to generate the desired random phase for each basis
state |k〉e, we apply random single-particle Rz(θ) rotations
to each particle. This procedure will not generate a state
with completely independent phases for each basis state.
If it is necessary to further randomize the state, we can
apply layers of Rz and controlled-Rz rotations between the
different particles. We average the results of several sim-
ulations (each with a different set of randomly chosen θi)
to obtain the polarization function, as shown by Eq. (8).
While the asymptotic convergence properties of the two
methods are the same, we expect the latter method to yield
a smaller error for a given number of samples. As shown
in Appendix C, the variance of the first scheme is upper
bounded by 1, and examples can be found that saturate
this bound. In contrast, the variance of the second scheme
is upper bounded by 1/De, and so decreases exponen-
tially with the number of environment spins considered.
The smaller sampling error of the second method is shown
numerically in Fig. 7.

For both of the methods discussed above, we must con-
struct the states |k〉e, either alone, or in superposition.

These states are tensor products of the environment spins
each in a arbitrary state |j 〉, that is an sz eigenstate. As
discussed in Sec. IV A, we map these spin states onto
qubit Dicke states. Efficiently constructing Dicke states (or
superpositions of Dicke states) on quantum computers has
remained challenging for a number of years [75–78], but
has recently been made possible with the elegant inductive
solution of Bärtschi and Eidenbenz [79]. Their algorithm
can be summarized as follows, and is explained in more
detail in Appendix B. We first define a Dicke state with
Hamming weight h, on n qubits, as |Dn

h〉. For example,
the |–1/2〉 state in Eq. (23) equates to |D3

2〉. We can then
observe that

|Dn
h〉 =
√

h
n

|Dn−1
h−1〉 ⊗ |1〉 +

√
n − h

n
|Dn−1

h 〉 ⊗ |0〉 . (28)

We assume the existence of a unitary operator Un,k
such that Un,k |0〉⊗n−h |1〉⊗h = |Dn

h〉 for all h ≤ k. Through
induction, it can be shown that this unitary operator exists,
and how to construct it from typical single- and two-qubit
gates. For example, note that

|Dn
h〉 = Un,k |0〉⊗n−h |1〉⊗h , (29)

and

|Dn
h〉 =
√

h
n

|Dn−1
h−1〉 ⊗ |1〉 +

√
n − h

n
|Dn−1

h 〉 ⊗ |0〉 ,

= Un−1,k

[√
h
n

|0〉⊗n−h |1〉⊗h

+
√

n − h
n

|0〉⊗n−1−h |1〉⊗h |0〉
]

,

= Un−1,kVn,k |0〉⊗n−h |1〉⊗h , (30)

implying that

Un,k = Un−1,kVn,k. (31)

As shown in Appendix B, these relations can be repeated
recursively, to obtain a circuit purely in terms of the Vn,k-
type gates. Bärtschi and Eidenbenz [79] show how these
gates can be constructed from CNOT gates and single-
qubit rotations (see also Appendix B). The entire state-
preparation circuit has a depth of O(n), and requires O(kn)
gates, even on a one-dimensional (1D) linear chain of
qubits. The algorithm also requires no additional ancil-
lary qubits. Because the unitary Un,k that creates the Dicke
states was defined to work for all input states with h ≤ k,
we can use unitary Un,n to create all of the Dicke states
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|Dn
h≤n〉. As a result, if we input the superposition

√
1

n + 1

n∑

k=0

|0〉⊗n−k |1〉⊗k (32)

then we obtain an equally weighted superposition of all
of the possible Dicke states. If we apply this approach to
each environment spin, then this will generate the state
shown in Eq. (27). It is straightforward to generate the state
in Eq. (32), using a ladder of control-Ry gates, as shown
in Ref. [79]. As a result, a similar number of gates are
required for both of the initial state-preparation methods
described in this section.

C. Evolving the state in time

Once we generate the desired initial state, we can then
evolve it in time for the desired duration. There are a
number of approaches that can be used for perform-
ing time evolution on quantum computers [67,80–83]. In
this work, we focus on product-formula-based approaches
(also referred to as “Trotterization”), which are observed to
lead to lower gate counts than some asymptotically more
efficient algorithms when considering the time evolution of
spin systems [84]. Trotter-based methods implement time
evolution by dividing the propagator into a product of time
evolutions under subterms in the Hamiltonian, that have
known decompositions into single- and two-qubit gates.
Detailed derivations of the error resulting from Trotteri-
zation are given in Ref. [85], and we report some of that
work’s key results below. We decompose the Hamiltonian
into a sum of Pauli strings, as H =∑α hαHα , where hα are
real coefficients. A first-order Trotter decomposition of the
time evolution operator is given by

U1(t) :=
(∏

j

e− it
n hj Hj

)n

, (33)

where n is the number of Trotter steps used. The error in
the first-order product formula is upper bounded by

||U(t)− U1(t)|| := ε ∼ O
(
(L�t)2

n

)
, (34)

where U(t) is the true time-evolution operator, || || denotes
the spectral norm, L is the number of terms in H , and
� = maxα||hα||. A tighter bound on the error due to
first-order Trotterization is given by

ε ∼ t2

2n

∑

i

∣∣
∣∣

∣∣
∣∣
∑

j>i

[hj Hj , hiHi]
∣∣∣
∣

∣∣∣
∣, (35)

which is known to be tight, up to an application of the tri-
angle inequality. We can also consider higher-order prod-
uct formulae, which yield improved error scaling. The

second-order product formula is given by

U2(t) :=
( L∏

j =1

e− it
2n hj Hj

1∏

k=L

e− it
2n hkHk

)n

. (36)

An upper bound on the second-order Trotter error is
given by

||U(t)− U2(t)|| := ε ∼ O
(
(L�t)3

n2

)
, (37)

and a tighter bound (tight up to an application of the
triangle inequality) is given by

ε ∼ t3

n2

[
1
12

(∑

i

∣∣∣∣

∣∣∣∣
∑

j>i

∑

k>i

[hkHk, [hj Hj , hiHi]]
∣∣∣∣

∣∣∣∣

)

+ 1
24

(∑

i

∣∣∣∣

∣∣∣∣
∑

j>i

[hiHi, [hiHi, hj Hj ]]
∣∣∣∣

∣∣∣∣

)]
. (38)

It has also been shown that introducing aspects of ran-
domized compilation into these algorithms can lower the
gate counts required to obtain results of a given accuracy.
For example, it has been shown that randomly permut-
ing the ordering of the product-formula terms in each step
can reduce the error scaling obtained [86]. An alternative
randomized procedure, known as qDRIFT [83], probabilis-
tically selects a number of terms from the Hamiltonian
according to their strength, and then evolves under these
terms (each for an equal duration in time). A single step of
qDRIFT is equivalent to implementing the channel

E(ρ) =
∑

j

hj

λ
e−i λt

N Hj ρei λt
N Hj , (39)

where λ =∑j hj is the 1 norm of the Hamiltonian (when
applying qDRIFT, we shift the signs from the hj coeffi-
cients to the Hj operators, such that hj are all real and
positive), and N is the number of qDRIFT steps used in
this simulation. The error scaling of qDRIFT is given by

ε ∼ λ2t2

N
. (40)

Most notably, the error scaling of qDRIFT is indepen-
dent of the number of terms in the Hamiltonian, making it
an interesting candidate for systems with a large number
of weakly interacting terms. Given the rapid power-law
decay of the dipolar interactions studied in this work,
qDRIFT may be an interesting candidate for simulat-
ing muon spectroscopy on quantum computers. While a
thorough numerical comparison of these approaches is
beyond the scope of this work, it would be an inter-
esting area for future study—especially if methods that
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i0 H • • H

j0 Rx(−π
2 ) Rz(θ) Rx(π

2 )

FIG. 3. A quantum circuit implementing the term
exp(−i θ2 Xi0 Yj0).

interpolate between Trotterization and qDRIFT are also
considered [87].

The aim of our simulation algorithm is to obtain an
accurate estimate for the value of the muon polarization
function at a given time. As a result, we are not interested
in the Trotter error ε directly, but in the error it induces
on Tr
[
Zμρ(t)
]
. We expect that the Trotter error will pro-

vide a loose upper bound for this error, as has been seen
previously [85,88].

Each of the operators of the form exp(−ihαHαt) can
be decomposed into a sequence of single- and two-qubit
gates. We illustrate this by considering a term in the dipo-
lar Hamiltonian for spin-1 particles. A single term, such as
1Sx

i ⊗ 1Sy
j can be mapped to

e−iθ 1Sx
i ⊗1Sy

j = e−i θ2 (Xi0+Xi1 )⊗(Yj0+Yj1 ),

= e−i θ2 Xi0 Yj0 e−i θ2 Xi0 Yj1 e−i θ2 Xi1 Yj0 e−i θ2 Xi1 Yj1 .
(41)

There is no Trotter error arising from this decomposition,
as all of the terms in the exponential commute with each
other. In Fig. 3 we show a quantum circuit that performs
time evolution under one of the exponentials in this term.

As discussed above, the dipolar Hamiltonian can be
decomposed into up to L ∼ O(N 2s2

max) two-qubit Pauli
terms, where smax is the largest spin value in the system.
Considering a second-order product formula, the number
of Trotter steps required to obtain Trotter-error ε is upper
bounded by

n ∼ N 3s3
max�

3
2 t

3
2

ε
1
2

. (42)

Each second-order Trotter step requires O(L) gates to
implement, resulting in a total gate count that scales at
worst as

G ∼ N 5s5
max�

3
2 t

3
2

ε
1
2

. (43)

We note that this scaling is obtained without considering
any possible compilations, and by using the loose second-
order Trotter error bounds. As a result, it is likely that
this scaling estimate could be tightened significantly when
considering a real system of interest. Similar results were
obtained in the context of quantum chemistry calculations.
While initial estimates suggested a scaling of O(N 11) [89],
more careful analysis reduced the asymptotic scaling to
O(N 5.5) [90].

D. Measuring the polarization

The final stage of the algorithm consists of measur-
ing the Z expectation value of the muon qubit. The most
straightforward way to measure this value is described in
Sec. III. We repeatedly prepare the desired state at time t,
measure the muon qubit in the computational basis, and
average the results. The standard error in the estimate
obtained is given by

α =
√

1 − Z̄2
μ√

M
, (44)

where M is the number of samples taken. In order to
obtain an error rate of 10−3 with this approach, we require
up to 106 samples. The repetition rate of a quantum pro-
cessor can depend on a number of factors, including the
depth of the circuit, and the speed of executing quantum
gates. The speed of implementing logic gates in a quantum
computer depends on the hardware considered, and can
range from 10–100 MHz in superconducting qubits [91] to
10 KHz–1 MHz in trapped ion qubits [92]. As a result,
even if a gate depth of only 103 was required for the cir-
cuit, obtaining an estimate of Z̄μ to a precision of 10−3

would take at least 10 s to calculate on a superconduct-
ing qubit processor (in this estimate we neglect the time
taken for qubit readout and initialization, which can often
be longer than the gate time in superconducting qubits
[91]). These estimates become even more costly if the
overhead of quantum error correction is taken into account.
When performing quantum error correction, the logical
gate speed of the quantum computer depends on the time
taken to measure and decode the error syndromes of all
of the physical qubits. This has previously been assumed
to be on the order of 10 μs [93], which would lead to an
estimate of around 2.8 h to measure Z̄μ to a precision of
10−3 using the method described above. This is too slow
for our purpose of analyzing polarization curves consist-
ing of hundreds of data points. While this direct sampling
method has a time cost of O(1/ε2), there are alternative
quantum algorithms, which can reduce the time cost to
O(1/ε). These techniques rely on a combination of quan-
tum amplitude amplification and phase estimation [94,95].
These approaches use a constant number of samples, but
require a circuit depth of O(dU/ε), where dU is the cir-
cuit depth required to implement the time-evolution circuit
U(t). This is achieved by repeatedly evolving the register
under a controlled version of the operator

� := �1�2,

�1 = U(t)
[
Ie,μ − 2 |�〉 〈�| ]U†(t),

�2 = Zμ�1Zμ,

(45)

where |�〉 is the initial state of the system. This conditional
evolution is controlled by the state of an auxiliary register.
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Controlling the evolution on an auxiliary register enables
us to perform quantum phase estimation on the unitary �,
which we can use to extract the value of Z̄μ to the desired
precision. A more detailed discussion of this approach is
given in Refs. [94,95].

The steps outlined in this section can be used to obtain
a simulated polarization function for the system of inter-
est. In order to use this function to analyze experimental
data, the quantum-simulation routine can be incorporated
into an optimization loop. As an example, we consider the
problem of locating the muon rest site. We first specify
the positions of each particle in the system, and use this
information to generate the spin and qubit Hamiltonians.
We can then use the quantum-simulation routine outlined
above to calculate the simulated polarization function.
We can quantify the agreement between the experimental
polarization data and the simulated polarization function
using a suitable loss function, such as χ2 (the sum of the
normalized squared residuals). An optimization loop can
then be used to minimize the value of the loss function, by
updating the positions of the particles in the system.

V. RESULTS

In order to investigate the practicality of the algorithm
discussed in Sec. IV, we perform numerical simulations of
systems with up to 29 qubits. We focus on the dipolar inter-
actions between an implanted muon, and spin-1/2 fluorine
nuclei in a sample of interest. As discussed in Sec. II, the
electronegativity of the fluorine ion (F−) acts as a “trap” for
the positively charged muon. We can use the “fingerprint”
left by the F−-μ+ dipolar interaction on the polarization
function to determine the muon rest site. This technique
has been used to locate the muon in a range of systems,
including the ionic crystals considered in this work [9,41].
We investigate applying our quantum algorithm to ana-
lyze the spectra arising from μ+SR experiments on the
ionic crystal calcium fluoride (CaF2), obtained in Refs.
[9,96]. CaF2 provides an ideal test system for the methods
introduced in this work for two main reasons. Firstly, the
calcium nuclei have spin 0 with an abundance of approx-
imately 99.9%, so we need only to consider the dipolar
interaction between the muon and the spin-1/2 fluorine
nuclei [9]. Secondly, the recent exact simulation results of
Wilkinson and Blundell [9] for this system provide a useful
benchmark for our results.

The geometry studied consists of a simple cubic lattice
of F− ions, with a lattice constant of 2.72 Å. The muon
implantation site is taken to be between two adjacent flu-
orines, as shown in Fig. 4. As the system is composed of
only spin-1/2 particles, we can map each particle to a sin-
gle qubit, as described in Sec. IV A. We consider a dipolar
interaction between all particles; between the muon and
the fluorines, and between the fluorines themselves. The

(a) (b)

(c) (d)

FIG. 4. A selection of geometries investigated for the CaF2 +
μ+ system considered in this work. As discussed in the main
text, the calcium ions are spin 0 with an abundance of around
99.9%, so we include only the fluorine ions [green in (a)–(c)]
and the muon (red) in our simulations. (a) The three spin F-μ+-F
system. (b) The 11-spin F-μ+-F system with eight next-nearest-
neighbor fluorines. (c) The 21-spin system, which includes the
next-next-nearest ten fluorines to the muon. (d) The 21-spin sys-
tem, with fluorines grouped by color. The distances between the
muon and each fluorine in a given group are the same. When fit-
ting simulated data for the 21-qubit system to experimental data,
we separately parameterized the F-μ distances according to these
groups.

Hamiltonian is given by

HD = 1
2

∑

i,j

�2μ0γiγj

4πr2
ij

[
�Si · �Sj − 3(�Si · r̂ij )(�Sj · r̂ij )

]
,

(46)

where μ0 is the permeability of free space, γi is the gyro-
magnetic ratio of spin i (γμ = 2π × 1.355 × 108 Hz T−1,
γF = 2π × 4.006 × 107 Hz T−1), �rij is the vector connect-
ing spins i and j , and �Si = (1/2)(Xi, Yi, Zi), where Xi, Yi, Zi
are the Pauli matrices acting on qubit i.

When calculating the polarization function for this poly-
crystalline system, we must perform an angular average,
because there are a number of equivalent sites located
between two fluorines where the muon could implant.
We must therefore average the polarization function over
all possible orientations of the crystal axes. To calculate
〈Tr[n̂ · �σμρ(t)]〉n̂, we note that n̂ · �σμ = xXμ + yYμ + zZμ,
and ρ(t) = e−iHst[(1/2)(Iμ + n̂ · �σμ)⊗ ρe(0)]eiHst. In the
absence of an applied magnetic field, the Hamiltonian does
not depend on n̂. Using that ρe(0) = (Ie/De), and that
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Tr(σj ) = 0, we can then expand

Tr[n̂ · �σμρ(t)] = 1
2De

∑

j ,k∈{x,y,z}
jkTr(σj e−iHstσkeiHst). (47)

Using that Tr[σj e−iHst(Iμ/2)⊗ (Ie/De)eiHst] = 0, this expres-
sion can be rewritten as

Tr[n̂ · �σμρ(t)]

=
∑

j ,k∈{x,y,z}
jkTr
{
σj e−iHst

[
1
2
(Iμ + σk)⊗ ρe(0)

]
eiHst
}

.

(48)

Using spherical polar coordinates x = cos(φ)sin(θ), y =
sin(φ)sin(θ), z = cos(θ), and performing the integrals∫ 2π
φ=0

∫ π
θ=0 jksin(θ)dθdφ, we find that the cross terms van-

ish, while the diagonal terms give (4π/3). Dividing by
the area element 4π yields the following formula for the
angular averaged polarization function:

〈P(t)〉 = 1
3

(
Tr
{
Zμe−iHst[ |0〉 〈0|μ ⊗ ρe(0)

]
eiHst}

+ Tr
{
Xμe−iHst[ |+〉 〈+|μ ⊗ ρe(0)

]
eiHst}

+ Tr
{
Yμe−iHst[ |+Y〉 〈+Y|μ ⊗ ρe(0)

]
eiHst}
)

(49)

where |+〉 = (1/
√

2)
( |0〉 + |1〉 ), |+Y〉 = (1/

√
2)
( |0〉 +

i |1〉 ), are the +1 eigenstates of X and Y, respectively. If an
external magnetic field were to be applied, then the angular
average would need to be performed explicitly.

We can obtain an increasingly accurate description of
the CaF2 + μ+ system by growing the number of fluorines
considered in the simulation. The smallest system con-
sidered requires three qubits, representing the muon and
its two nearest-neighbor (NN) fluorines. Additional fluo-
rine nuclei are then added in “shells” determined by their
distance from the muon. In the “next-nearest-neighbor”
(NNN) shell, there are an additional eight nuclei. The
“next-next-nearest-neighbor” (NNNN) shell contributes
an additional ten nuclei. The NNN-NN shell adds eight
nuclei. As a result, we consider system sizes of 3 qubits
(μ+ 2 NN F’s), 11 qubits (+8 NNN F’s), 21 qubits (+10
NNNN F’s), and 29 qubits (+8 NNN-NN F’s).

We utilize a range of simulation techniques, in order
to investigate a number of different properties of our
proposed algorithm. Simulations of the random-phase-
approximation-based approach described in Sec. II are
carried out using the QuEST package for emulating quan-
tum circuits [97]. These simulations manually generated
the initial state shown in Eq. (7), and then carried out quan-
tum circuit emulations of first and second-order Trotter

decompositions of the time-evolution operator. QuEST is
implemented in the C language, and can be efficiently par-
allelized using OpenMP or MPI. This efficiency enables
us to perform calculations on system sizes of up to 29
qubits, surpassing the largest calculations performed pre-
viously in the μ+SR literature [32] (to the best of our
knowledge). Because these simulations used the random-
phase-approximation approach, sampling noise is present
in the results. We also perform quantum circuit-level sim-
ulations of running the algorithm on a quantum processor,
using the density-matrix simulator included in Cirq [98],
a PYTHON package for the simulation of NISQ hardware.
Due to the increased computational cost of storing and
manipulating the density matrix, these calculations are
restricted to systems of up to 11 qubits. However, these
simulations enable us to initialize the environment in a
maximally mixed state, eliminating the sampling error
present in wave-function-based approaches. They also pro-
vide a more efficient way to investigate the effects of
circuit-level noise on the algorithm. We also perform exact
diagonalization of the Hamiltonians of systems with up
to 11 qubits. This provides exact results, which can be
used to quantify the error introduced by Trotterizing the
time-evolution operator. The Hamiltonians in this work are
generated using OpenFermion, a PYTHON package for gen-
erating qubit-mapped Hamiltonians of physical systems,
such as molecular electronic structure Hamiltonians [99].

A. Noiseless simulations

As discussed in Sec. II, there are two sources of algorith-
mic error in the wave-function-based method introduced
by Celio [30] for simulating muon polarization functions;
error introduced by Trotterizing the time-evolution oper-
ator, and sampling errors arising from working with a
random-phase augmented wave function, rather than with
an actual mixed state. In this section, we discuss numeri-
cal simulations that quantify the magnitude and scaling of
these sources of error, for the CaF2 + μ+ system investi-
gated in this work. Given the similarities between Celio’s
method and the quantum algorithm introduced in Sec. IV,
these simulations enable us to better quantify the quantum
resources required to run our algorithm.

1. Quantifying errors

We first investigate the Trotter error present in the
algorithm for the 3- and 11-qubit systems. We are able to
isolate the Trotter error from the sampling error by simu-
lating the Trotterized time evolution of the density matrix
(Ie/De)⊗ |0〉 〈0|μ. We time evolve this state using both
first- and second-order Trotter formulae, with a “magni-
tude ordering” of the terms. By this, we mean that the
strongest Hamiltonian terms are placed first in the product-
formula sequence. We then calculate the polarization value
of the muon qubit at a given time, and compare this to the
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value obtained from an exact diagonalization of the muon-
environment Hamiltonian [see Eq. (5)]. We compare the
numerically simulated Trotter error to two different bounds
for the Trotter error. The first bound is given by Eq. (34)
for a first-order Trotterization, and Eq. (37) for second-
order Trotter, and represents a loose bound on the error
between the exact time-evolution operator and the uni-
tary specified by the product formula. The second bound
is given by Eq. (35) for a first-order Trotterization, and
Eq. (38) for second-order Trotter (the commutators in the
sums are evaluated, the resulting operator is simplified by
collecting like terms, and then the triangle inequality is
applied, so that the spectral norm is bounded by the 1 norm
of the resulting error operator), and represents a tighter
bound on the error between the exact time-evolution oper-
ator and the unitary specified by the product formula. The
improved “tightness” of the second bound stems from it
taking into account commutativity between different terms
in the Hamiltonian. These quantities upper bound the error
in any observable measured after time evolution, and so
will be strictly larger than the error in the polarization
value obtained from our numerical simulations. The Trot-
ter errors for the 3- and 11-qubit systems are shown in
Figs. 5 and 6, respectively. We plot the Trotter errors
obtained at time values of 5, 10, and 15 μs.

We see from both plots that in all cases the “loose” error
bounds are orders of magnitude larger than the “tight” error
bounds, which in turn are at least an order of magnitude
larger than the numerically observed Trotter errors. As dis-
cussed above, this can be partially explained by the fact
that the analytic bounds give errors in the unitary evolu-
tion, while the numerical results give the error in a specific
observable. In addition, despite the improved bounds given
by the “tight” formulae, they are still known to not be com-
pletely tight to numerical results [85]. However, the fact
that the tight bounds are still at least an order of magni-
tude larger than the numerical results highlights the value
in work to bound the error in specific observables, rather
than existing worst-case bounds. While initial steps have
been taken in this direction [85,88], it would be inter-
esting to consider if tighter bounds are possible for the
case of muon spectroscopy, given the simple form of the
observable measured.

Another interesting observation is that both the first-
and second-order product formulae appear to give simi-
lar asymptotic scaling for the numerically observed Trot-
ter error. This is in contrast to the expected behavior
that is evident in the analytic bounds; that the second-
order formula should show improved asymptotic scaling
as a function of the number of Trotter steps taken. As
implementing the second-order formula on a quantum
computer can require twice the number of quantum gates
needed for the first-order formula, this suggests that there
may be scenarios in which it is preferable to use the first-
order approach. For example, the three-qubit data at 15 μs

Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose

First-order tight

Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose

First-order tight

Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose

Number of Trotter steps

First-order tight

FIG. 5. The Trotter error in the three-qubit F-μ+-F system.
The error bounds used are described in the main text. In all of
these results, we use a magnitude ordering of Hamiltonian terms
in the product formula; the terms with the largest coefficients are
placed first in the Trotter formula.

would suggest using a first-order decomposition, over a
second-order approach. In most cases however, the second-
order formula appears to offer improved constant factor
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Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose
First-order tight

Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose
First-order tight

Second-order loose

Simulated second order
Simulated first order
Second-order tight

First-order loose
First-order tight

Number of Trotter steps

FIG. 6. The Trotter error in the 11-qubit system. The error
bounds used are described in the main text. In all of these results,
we use a magnitude ordering of Hamiltonian terms in the product
formula; the terms with the largest coefficients are placed first in
the Trotter formula.

scaling that makes up for the increased gate depth required
for implementation. It would be interesting to investigate
whether it is possible to obtain further improvements using
higher-order product formulae, as has previously been

observed in the simulation of other spin-1/2 systems [84].
We can see that for the 11-qubit system, approximately
40 second-order Trotter steps are sufficient to obtain an
accuracy of 10−3 in the polarization function at times less
than 15 μs. Interestingly, the Trotter error for the 11-
qubit system does not seem to worsen significantly as the
simulated time is increased.

We also investigate the error that arises from sampling
a wave-function-based simulation, rather than time evolv-
ing the exact mixed state that describes the system. We
consider sampling environmental basis states |j 〉e chosen
with equal probability, as well as two possible sampling
schemes given by Eq. (7), which we restate here

|ψs(t)〉 = U(t)
[

1√
De

∑

j

eiθj |0〉μ |j 〉e

]
, (50)

The first scheme, referred to as the “random-phase-
approximation (RPA) method” is exactly the same as
Celio’s method, and considers θj chosen uniformly at
random in the range [0, 2π). The second, referred to as
the “dephasing method” considers θj chosen at random
from the discrete set {0,π}. We refer to this approach
as the dephasing method, as it can be understood from
a quantum-computing perspective as first applying a
Hadamard gate to each environment qubit to obtain the
state

|ψs〉 =
[

1√
De

∑

j

|0〉μ |j 〉e

]
, (51)

and then passing this state through an Ne-qubit dephasing
channel, with an equal probability of all errors

ρ → ρ ′ = 1
2Ne

[
ρ +

Ne−1∑

i=0

ZiρZi + · · · +
Ne−1⊗

j =0

Zj ρZj

]
.

(52)

This channel can easily be sampled on a quantum com-
puter by applying any of the possible Z strings acting on Ne
qubits with equal probability. This approach can be gen-
eralized to particles with spin greater than 1/2 using the
method discussed in Sec. IV B.

In order to isolate the sampling error, we fix the num-
ber of Trotter steps, and compare the results obtained
from a calculation on the 11-qubit system using both
sampling and Trotterization, to those from a calculation
that uses Trotterized time evolution of the mixed initial
state (Ie/De)⊗ |0〉 〈0|μ. Without loss of generality, we
fix the number of Trotter steps to 40, and take the aver-
age of the absolute values of the sampling error at 20
time values, spaced equally in the interval [0, 10) μs. In
Fig. 7 we observe that the sampling error arising from
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FIG. 7. The sampling error present in the random-phase-
approximation, dephasing, and basis state sampling methods
described in the main text, for the 11-qubit system with 40
second-order Trotter steps. Each point is the average of 20 values
taken in the interval [0, 10) μs.

the RPA method is around an order of magnitude smaller
than that of the dephasing method, due to the increased
randomization of the former technique.

As shown in Eq. (8), the error in the sampling-based
methods decreases as the size of the simulated system
increases. We investigate this by considering the sam-
pling error in a larger, 21-qubit simulation. Due to the
increased size of this simulation, we are unable to carry
out simulations utilizing the “exact” mixed initial state for
comparison. In lieu of this, we investigate the convergence
of the obtained polarization function as the number of sam-
ples is increased. In Fig. 8 we investigate this behavior for
both the RPA and dephasing methods. We observe that the
RPA method rapidly converges, and exhibits small fluc-
tuations around its converged value. In particular, we find
that using the RPA method, only 20 samples suffice to con-
verge the polarization function to within 10−4 of the value
obtained with 9600 samples.

In a similar vein, we can investigate the convergence
of Trotter errors for systems too large to be exactly sim-
ulated. In Fig. 9 we show how the polarization function
converges as the number of Trotter steps is increased, for
both the 21- and 29-qubit systems. These simulations are
performed using the RPA method, with 48 samples for
the 21-qubit simulation, and a single sample for the 29-
qubit simulation. We compare the polarization function at
a range of Trotter steps to that obtained with 30 Trotter
steps. We note that this metric does not provide a bound
on the Trotter error at 30 Trotter steps. However, given
that the convergence error in both cases is monotonically
decreasing, and less than 10−2 by 20 Trotter steps, this

FIG. 8. We compare the sampling error obtained using both
the random-phase-approximation method and the dephasing
method, at a given number of samples, to that obtained at 9600
samples. We see that the RPA method rapidly converges to the
value obtained at 9600 samples. While we are unable to bound
the sampling error at 9600 samples, we see from Fig. 7 that the
RPA method can obtain an accuracy of less than 10−3 for the
11-qubit system with 100 samples. Given that the sampling error
decreases with both system size, and the number of samples, we
can infer that the error is likely small for even a modest number
of samples with the RPA method for the 21-qubit system.

may be taken as an indication that the polarization func-
tion is rapidly converging as the number of Trotter steps is
increased.

2. Analyzing CaF2 + µ+ spectra

We can use the results discussed above to determine how
many samples and Trotter steps to use in order to quanti-
tatively investigate the CaF2 + μ+ system. In Fig. 10 we
plot the angular averaged polarization functions obtained
for the 3-, 11-, 21-, and 29-qubit CaF2 + μ+ systems for
the first 9.5 μs of evolution. The simulated data points for
the 3- and 11-qubit systems are obtained by time evolving
the initial state (Ie/De)⊗ |0〉 〈0|μ, using 30 second-order
Trotter steps, which suffices to measure the polarization
function to an accuracy of less than 10−2. These data points
are plotted with the polarization functions obtained from
exact diagonalization of the corresponding system Hamil-
tonian. The simulated data points for the 21- and 29-qubit
systems are obtained using the RPA method, with 48 sam-
ples used for the 21-qubit system, and a single sample used
for the 29-qubit system. Both of these simulations also
use 30 second-order Trotter steps. We see from Fig. 10
that introducing additional fluorine nuclei causes a damp-
ing effect on the polarization function, which appears well
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FIG. 9. Convergence of the Trotter error for both the 21-
and 29-qubit systems, as a function of the number of Trotter
steps used. As these systems are too large to exactly simulate
classically, we are unable to calculate the Trotter error in the
polarization function. As a result, we plot how the polarization
converges towards the value at 30 Trotter steps (which may still
be far from the true value).

converged at 29 qubits. This observation is in good agree-
ment with the recent numerical results of Wilkinson and
Blundell [9], who showed that the additional environmen-
tal spins act as a source of decoherence, as polarization
leaks from the muon to the environment.

Having confirmed that our algorithm produces the quali-
tative results expected, we can use it to locate the muon rest
site in CaF2. This is achieved by parametrizing the muon-
fluorine distances, and generating a polarization function
for a given geometry. We can then compute the value
of a loss function between the simulated data and the
experimental data (in this case, the reduced-χ2 value), and
use an optimization algorithm to generate new values of
the parameters that describe the geometry of the system.
In our numerical simulations, we use the Nelder-Mead

algorithm. It is necessary to use a derivative-free opti-
mization method because of the sampling noise present in
the RPA method, which is larger than the finite-difference
steps used to calculate the gradient in many black-box
optimization algorithms. We use this approach to opti-
mize the geometry of the 21-qubit system (composed of
the muon, the two nearest-neighbor fluorines, eight next-
nearest-neighbor, and ten next-next-nearest-neighbor fluo-
rines). Five geometric fitting parameters are used, which
we describe via the colors used in Fig. 4(d):

1. The distance between the muon (red) and the
nearest-neighbor fluorines (both colored black).

2. The distance between the muon and the next-
nearest-neighbor fluorines (all colored blue).

3. The distance between the muon and the green next-
next-nearest-neighbor fluorines.

4. The distance between the muon and the purple next-
next-nearest-neighbor fluorines.

5. The distance between the muon and the orange next-
next-nearest-neighbor fluorines.

along with two parameters to fit the asymmetry

A(t) = A0P(θ1, . . . , θ5; t)+ Abg. (53)

We use the RPA method to generate the polarization func-
tion, with 40 second-order Trotter steps, and a single
sample for each data point.

We plot the fit to the experimental data in Fig. 11.
The fitted data shows excellent qualitative agreement with
the experimental data, particularly at early times. The fit
obtains a reduced χ2 value of 2.13, which suggests an
incomplete fit to the data. We attribute this to a combina-
tion of limited experimental data at times beyond 10 μs,
as well as the ineffective nature of the Nelder-Mead opti-
mization algorithm, which is liable to becoming trapped
in local minima. Our fitting procedure causes the nearest-
neighbor fluorines to move towards the muon by 0.188
Å. This is in excellent agreement with the calculation
of Wilkinson and Blundell [9], which yielded a value of
0.190(1) Å for the same quantity. We note that the results
of Ref. [9] were obtained by fitting an 11-spin system
to the experimental data, and considering two physical
parameters; the muon–nearest-neighbor fluorines distance,
and a factor that scaled the strength of the next-nearest-
neighbor interactions to act as a proxy for more distant
nuclei. Our fitting procedure also caused the next-nearest-
neighbor fluorines to move towards the muon by 0.206
Å. While Ref. [9] did not explicitly consider the effect of
perturbing the positions of the more distant nuclei, they
carried out density-functional-theory (DFT) calculations
suggesting that the next-nearest-neighbor fluorines move
only towards the muon by around 0.03 Å. We carry out
additional numerical simulations with this geometry for
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FIG. 10. Polarization functions for the unperturbed 3-, 11-, 21-, and 29-qubit CaF2 + μ+ systems. All simulations use 30 second-
order Trotter steps to simulate time evolution. The 3- and 11-qubit results are obtained using a density-matrix simulation, that eliminates
sampling error. The 21- and 29-qubit simulations are performed using the random-phase-approximation method, with 48 and 1 samples,
respectively.

the 21-spin system (shown in Fig. 16 in Appendix A), and
found a worse fit for the experimental data, with a χ2

ν value
of 4.44. This implies that either:

1. Our system size of 21 spins is still not large enough
to fully capture the continuum extrapolation of Ref.
[9], and larger simulations are required (which are
impractical to perform on classical hardware).

2. The fit obtained by our simulation may suggest
an inaccuracy in the DFT results. However, from
a physical perspective, it would be surprising if
the more distant nuclei are more strongly attracted
towards the muon than the nearest neighbors.

The most likely explanation may be a combination of
these factors, together with the fact that a number of sim-
ilarly good local minima are present in the χ2 surface for
our parameter space. This highlights the value in utilizing
complementary techniques to analyze muon-spectroscopy
data, as well as the benefit provided by having access to as
large a simulation of the system as possible.

B. Noisy simulations

As discussed in Sec. III, existing quantum computers
have far higher error rates than their classical counter-
parts. The presence of physical noise can corrupt the results
of calculations on these devices, rendering any quantum
speedup offered moot. As such, it is essential to investigate
the effects of noise on our algorithm. A simple model of
the noise present in near-term quantum-computing devices

is the single-qubit depolarizing noise channel

ρ → ρ ′ = (1 − p)ρ + p
3
(X ρX + YρY + ZρZ), (54)

where ρ and ρ ′ are the density matrix of the qubit before
and after the noise channel (respectively). This channel
effectively applies an X , Y, or Z error to the qubit, with
probability p/3, and leaves it unchanged with probabil-
ity (1 − p). We assume that this noise model is applied
after each gate in the circuit, acting separately on each
qubit involved in the gate. In Fig. 12 we plot the effects
of this depolarizing noise model on an exact density-
matrix simulation of the three-qubit F-μ+-F system. We
use 20 second-order Trotter steps for the simulation, which
suffices to obtain an accuracy of less than 10−3 in the polar-
ization function at all values within the first 5 μs. We
merge adjacent single-qubit gates together, to yield a cir-
cuit with 900 single-qubit gates, and 680 two-qubit gates.
In this error model, we are assuming that noise is uncorre-
lated between the qubits involved in a two-qubit gate, and
that the error rate for single-qubit gates is the same as that
for two-qubit gates. We note that the circuit depth is the
same for all of the points calculated. This means that the
Trotter error is likely smaller in points taken at earlier times
than at later times, while the effective physical noise rate of
the circuit will be similar at all points. In reality, we would
likely choose to fix the Trotter error along the polarization
function, which would enable us to use a shorter depth cir-
cuit to simulate points at earlier times—thus reducing the
physical noise in those datapoints. We see from Fig. 12 that
even with a depolarizing noise rate of p = 10−4 (which
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FIG. 11. Fit of the 21-qubit simulated data (using the random-phase-approximation method with one sample per data point, and 40
second-order Trotter steps) to the experimental data obtained in Ref. [9]. The fit is performed using the gradient-free Nelder-Mead
algorithm. The fitting parameters are the muon-fluorine distances described in the main text, and a scaling factor and offset to convert
the simulated polarization value to an asymmetry value.

is an order of magnitude lower than the best error rates
observed to date in quantum hardware [100,101]), there is
still a significant decay in the value of the simulated polar-
ization function. This noise rate corresponds to an expected
number of errors per circuit (defined as the error rate mul-
tiplied by the number of gates in the circuit) of around
0.16.

It has been previously observed that when the expected
number of errors in the circuit is less than around unity, the
error-mitigation techniques introduced in Sec. III can be
successful in recovering the noiseless value of the circuit
[68,71]. In this work, we investigate the use of exponential
extrapolation to mitigate the effects of noise. We con-
sider the same three-qubit system discussed above, with
a baseline noise rate of p = 5 × 10−4. We then artificially
“boost” the error rate by a heuristically chosen factor of
λ = 1.1, and calculate the extrapolated expectation value
as

P0 =
(

Pλε
Pλε

) 1
λ−1

, (55)

where Pε is the polarization value calculated with the base-
line noise rate, and Pλε is the polarization value calculated
with the boosted noise rate. We see from Fig. 13 that this
exponential extrapolation is able to recover almost noise-
less results, despite the large damping of the polarization
function in the unmitigated case. The noise strength of
p = 5 × 10−4 corresponds to an expected number of errors
per circuit of 0.79. The mean absolute error in polarization
function after exponential extrapolation is 0.011.

In this work, we investigate a quantum algorithm for
analyzing muon-spectroscopy data. As such, it is interest-
ing to ask whether the noise inevitably present in μ+SR
experimental results means that physical errors in the
quantum computer are less damaging than they would be in

FIG. 12. Density-matrix simulations of the three qubit F-μ+-F
system, with single-qubit depolarizing noise applied after each
gate. The noise channel is applied independently to each qubit
involved in the gate. The simulation used 20 second-order Trotter
steps, which yield a circuit with 900 single-qubit gates, and 680
two-qubit gates.
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other applications (such as trying to calculate the ground-
state energies of chemical systems). As shown in Fig. 11,
muon-spectroscopy data can exhibit errors arising from
a number of sources—most notably, the statistical uncer-
tainties arising from recording a finite number of muon
decay events. In order to investigate the noise robust-
ness of our algorithm for analyzing μ+SR data, we try to
locate the muon rest site in the presence of noise in the
simulated data for the 11-qubit system. Rather than con-
sidering the circuit-level noise models discussed above,
we effectively engineer noise in the polarization function
through undersampling in the RPA method. As shown in
Fig. 7, we can generate mean errors of 0.0243, 0.0068, and
0.0022 in the polarization function by using the dephasing
method with ten samples, the RPA method with one sam-
ple, and the RPA method with ten samples, respectively.
We note that there are two important assumptions present
in this noise model. Firstly, we are assuming that physi-
cal noise would cause the data points to become normally
distributed around the noiseless value, as happens for the
sampling noise. As is evident from Fig. 12, this is not nec-
essarily the case; many sources of noise will simply cause
a decay in the polarization function. However, we can
see from Fig. 13 that performing extrapolation can change
how the data points are distributed around the noiseless
result. When shot noise in the quantum algorithm is taken
into account, this may enable us to approach the nor-
mal distribution of noise considered in these simulations.
Another path to recover normally distributed results could
be to use an alternative error-mitigation method, known
as the “quasiprobability technique” [68,69,102,103]. The

FIG. 13. Using exponential extrapolation of data obtained at
two different noise rates to infer the noise-free polarization func-
tion. The extrapolation is performed using Eq. (55). The data
points are obtained in the same way as described in the caption
of Fig. 12. The expected number of errors in the circuit is 0.79.

quasiprobability technique attempts to invert the physical
noise channel of each gate, by sampling from an increased
number of carefully modified, noisy circuits, and com-
bining the results in postprocessing. This approach has
previously been observed to give results that are approx-
imately normally distributed around the true values [68].
Secondly, we assume that the magnitude of the noise is the
same for all data points. In reality, as discussed above, we
would fix the Trotter error along the polarization function,
and thus consider shorter depth circuits at earlier times.
This would reduce the noise in earlier data points, mimick-
ing the error bars present in the experimental results (in the
experimental case, the muon half life is around 2.2 μs, so
a significant number of decay events must be observed to
record sufficient statistics at later time values). In our simu-
lations we use 40 second-order Trotter steps, and consider
two geometric fitting parameters:

1. The muon–nearest-neighbor fluorine distance.
2. The muon–next-nearest-neighbor fluorine distance.

Along with two parameters to fit the asymmetry

A(t) = A0P(θ1, θ2; t)+ Abg. (56)

Once again, we use the Nelder-Mead algorithm to min-
imize the error-weighted least-squares residuals between
the experimental data and the simulated data.

In Fig. 14 we plot examples of the fitted data obtained
at the three noise values listed above. We see that even at
high noise rates of around 2.5% in each data point, the fit-
ting procedure is able to approximately capture the overall
shape of the polarization function. As the strength of the
noise is reduced, we obtain increasingly better fits to the
experimental data.

In order to better quantify the degree of noise robust-
ness present in the algorithm, we plot the error that noise
induces on the noiseless values of the two geometric fit-
ting parameters in Fig. 15. The noiseless values of the fitted
parameters are obtained by fitting the 11-qubit polarization
function, generated by exact diagonalization, to the exper-
imental data, using the Nelder-Mead algorithm. The upper
plot in Fig. 15 shows that as the average noise in each
individual data point is reduced, we obtain an improved
estimate of the noiseless muon–nearest-neighbor fluorine
distance. Interestingly, the fractional error in the parame-
ter is around an order of magnitude smaller than minimum
fractional error in the polarization value (the maximum
value of the polarization function is 1, so the minimum
fractional error is equivalent to the noise strength of the
simulation). We attribute this noise resilience to the fact
that the fitting procedure is extracting a global property
of the system (the muon-fluorine distance) rather than the
value of any individual data point. The lower plot in Fig. 15
suggests that the muon–next-nearest-neighbor fluorine dis-
tance is less resilient to noise, as the fractional error in
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the parameter is approximately the same order of magni-
tude as (but larger than) the magnitude of the noise in the
polarization function. Nevertheless, we are optimistic that
the algorithm could be made more noise resilient by (1)
reducing the noise strength at earlier times by adapting the
number of Trotter steps used (as discussed above), and (2)
using an optimization routine known to be more resilient
to noise than the Nelder-Mead algorithm, such as Bayesian
optimization.

Linking back to our earlier simulations of circuit-level
noise, we note the following:

1. Our fitting routine obtained accurate parameter val-
ues when the error in each simulated polarization
data point is less than around 0.01 (for the 11-qubit
system).

FIG. 14. Fits of the 11-qubit simulated data with 40 second-
order Trotter steps to the experimental data obtained in Ref.
[9]. The noise in each simulated datapoint is varied by control-
ling the number of samples used. The fit is performed using the
gradient-free Nelder-Mead algorithm. The fitting parameters are
the muon-fluorine distances described in the main text, and a
scaling factor and offset to convert the simulated polarization
value to an asymmetry value.

2. Using exponential extrapolation, we obtain a mean
absolute error in the polarization function of 0.011
when the expected number of errors in the circuit is
around 0.8 (for the three-qubit system).

Assuming that the circuit-level result holds for larger sys-
tem sizes (we would expect the results to be better for
larger system sizes, as when errors do occur, in larger sys-
tem sizes they are less likely to occur on the crucial muon
qubit), we infer that our data-analysis algorithm is able to
tolerate an expected error rate of around 0.8 errors per cir-
cuit, on average. In the 11-qubit case, this would enable
us to learn the muon–nearest-neighbor fluorine distance
to an accuracy better than 0.1%, and the muon–next-
nearest-neighbor fluorine distance to an accuracy of
around 5%.

It would be interesting to consider whether this fitting
procedure could be shown to be provably noise robust.
If so, we would expect these results to be useful beyond
this work, earmarking experimental data analysis as a

FIG. 15. Fractional error in the geometric fitting parameters
used to fit the simulated muon-spectroscopy data to the experi-
mental data in Fig. 14. The noiseless values of the parameters are
obtained through exact diagonalization of the 11-qubit Hamilto-
nian to obtain a polarization function, which is fitted using the
Nelder-Mead algorithm.
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promising application area for quantum computers, even
in the presence of noise.

C. Resource estimates

We now consider the quantum resources required to per-
form the calculations described above. We consider differ-
ent cost metrics for NISQ simulations and error-corrected
simulations. When performing NISQ calculations, we aim
to minimize both the circuit depth and the total number
of gates, as these will determine the number of errors that
are likely to occur in the circuit. In particular, we focus
on two-qubit gates, as in many systems these have error
rates at least an order of magnitude worse than those of
the single-qubit gates. As NISQ devices typically lack the
resources required for quantum error correction, the num-
ber of gates that can be applied in the circuit is limited by
the magnitude of the noise in the system.

In order to determine an appropriate fault-tolerant cost
metric, we first need to consider which error-correcting
code we are considering using for the simulation. One pos-
sible choice of error-correcting code is the surface code
[104]. The surface code has received considerable atten-
tion in recent years, owing to its comparatively high code
threshold of around 1%, and its compatibility with two-
dimensional (2D) nearest-neighbor connectivity architec-
tures [59]—which are realistic architectures for solid-state
qubit systems. When considering error-corrected calcula-
tions using the surface code, we seek to minimize the
number of T gates. While T gates (or an alternative
“non-Clifford group” gate) are required for universality in
quantum computation, these gates cannot be natively
implemented in a fault-tolerant manner in the surface
code. They are typically implemented via processes known
as “magic state distillation” and “magic state injec-
tion”, and are often the dominant cost in fault-tolerant
resource estimates. Arbitrary angle single-qubit rotations
can be synthesized from these T gates. The number of T
gates required per rotation depends logarithmically on the
inverse of the synthesis error [105]. A reasonable assump-
tion for calculations of the size considered in this work,
is that around 100 T gates per single-qubit rotation will
suffice [106].

1. NISQ resource estimates

As shown in Fig. 6, we require approximately 40
second-order Trotter steps to reduce the Trotter error in
the observable to 10−3 when calculating P(t = 15 μs) for
the 11-qubit system. We perform a basic compilation of
the circuit, by merging adjacent single-qubit gates. This
results in a gate count of 5 × 104 single-qubit gates, and
3.9 × 104 two-qubit gates. If we assume that single-qubit
gates have an error rate 10 times lower than two-qubit
gates, then this circuit is roughly equivalent to implement-
ing 4.4 × 104 two-qubit gates. As discussed in Sec. V B,

we observe that for the three-qubit system, exponential
extrapolation is able to recover acceptably accurate results
when there are around 0.8 expected errors per circuit. In
order to achieve this circuit error rate for the 11-qubit sys-
tem with 4.4 × 104 two-qubit gates, we would require a
two-qubit gate error rate of p = 2 × 10−5. This is approxi-
mately 2 orders of magnitude lower than the current lowest
two-qubit gate error rates [57,100,101]. Simulations of
larger, classically challenging system sizes will require an
even larger number of gates. The most promising avenue
for realizing these calculations before the advent of quan-
tum error correction is to significantly reduce the gate
count required. One possible route towards this goal would
be to consider Trotter orderings that reduce the Trot-
ter error, or that enable a larger number of gates to be
cancelled. We could alternatively consider neglecting the
dipolar interactions between the nuclei, retaining only the
muon-fluorine dipolar interactions (as has previously been
done in classical simulations [32]). Even if these optimiza-
tions can be incorporated, it appears challenging for NISQ
devices to surpass classical μ+SR simulation capabilities.
This is not necessarily reflective of the performance of
the algorithm described in this work, and instead serves
to highlight both the quality of classical simulations of
quantum systems, and the challenges inherent in many
NISQ algorithms, resulting from high noise rates in current
quantum processors.

2. Error-corrected resource estimates

Given the challenges faced by NISQ machines, it is
natural to investigate the resources required to implement
the algorithm described in this work in an error-corrected
setting. As discussed above, we consider error correction
within the surface code. We initially consider running our
algorithm on a “small” fault-tolerant quantum computer,
meaning that we use the smallest footprint possible to
implement the algorithm. Nevertheless, this device will
likely still contain many thousands of physical qubits. We
follow the approach to surface-code resource estimation
taken in Ref. [107], which considers surface-code oper-
ations implemented using lattice surgery, complemented
with magic state distillation for implementing T gates. We
use a “compact” data block of physical qubits to store each
logical qubit. For a system with Q logical qubits, using
a compact block results in needing �1.5Q + 3� surface-
code tiles. For a distance d surface code, each surface-code
tile consists of 2d2 physical qubits (d2 data qubits and d2

syndrome qubits).
For the 11-qubit system with 40 second-order Trot-

ter steps, we require 1.96 × 104 non-Clifford single-qubit
rotations, which we assume requires 1.96 × 106 T gates.
We use a 15-1 distillation block for magic state distillation,
which, for a physical noise rate of p = 10−3, produces out-
put magic states with an error rate of at most 3.5 × 10−8,
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TABLE I. Error-corrected resource estimates for simulations
of the 11-qubit CaF2 + μ+ system with 40 second-order Trotter
steps. Here, p is the physical error rate, ε is the expected number
of errors per circuit, and d is the surface-code distance used.

p ε d Physical qubits Circuit time (s)

10−3 0.01 22 30 008 474
10−4 0.01 10 6200 216
10−3 0.8 18 20 088 388
10−4 0.8 8 3968 172

and requires an additional 11 surface-code tiles. For our
11-qubit system, this results in B = 31 surface-code tiles in
total. With this setup, we can consume a magic state every
11d surface-code cycles. Our calculation therefore must
“survive” for T = 11d × (1.96 × 106) code cycles. The
size of the surface code required to perform our calculation
can be determined using [107]

B × T × 0.1(100p)(d+1)/2 < ε, (57)

where p is the physical error rate, and ε is the target cir-
cuit error rate. The fault-tolerant resources required are
shown in Table I, for a number of scenarios. We consider
resource estimates with a realistic two-qubit gate error
rate of p = 10−3, as well as a more optimistic error rate
of p = 10−4. We also consider two target noise suppres-
sion levels. In the first case, we consider suppressing the
error rate such that there are ε = 0.01 errors in the cir-
cuit, on average. In the second case, we assume that we
are able to tolerate a noise rate of ε = 0.8 errors in the cir-
cuit, on average. This choice of target circuit error rate is
motivated by the success of exponential extrapolation in
obtaining accurate results for the three-qubit system in the
presence of noise of this magnitude. We assume a surface-
code decoding cycle time of 1 μs. We can see from Table I
that while the error robustness of the algorithm can reduce
the resources required by a factor of around 1.5, this is
overshadowed by the exponential improvements arising if
the physical error rate can be reduced.

We can also estimate the resources required for a larger
system, such as the 29-qubit system. We assume that 50
second-order Trotter steps are needed, which leads to a
circuit involving around 2.3 × 107 T gates. We use the
same surface-code setup as described above, and consider
a physical noise rate of p = 10−3, and a target circuit error
rate of ε = 0.8. We find that a distance 21 surface code
is needed, requiring around 51 000 physical qubits. The
calculation takes 5234 s to run. On first inspection, this
is a modest number of physical qubits, compared to exist-
ing resource estimates for solving classically challenging
chemistry calculations with quantum hardware. At p =
10−3 physical error rates, it has previously been estimated
that around 3 × 105 physical qubits would be required to
find the ground-state energies of classically challenging

instances of the Fermi-Hubbard model [93], and that over
a million physical qubits running for several days may be
needed to find the ground state of small molecules relevant
for catalysis [108,109]. We note that these resource esti-
mates are upper bounds that may be loose (particularly in
the case of the Fermi-Hubbard resource estimates, which
use loose analytic bounds on the Trotter error), while our
estimates use tighter error bounds obtained from numerical
simulations. Moreover, the calculations considered in these
other works are likely more challenging than the 29-qubit
simulations discussed herein. Nevertheless, these mitigat-
ing factors are unlikely to fully account for the reduced
resources needed for our approach. We attribute some of
these resource savings to the fact that we are simulat-
ing spin systems, which may require less overhead than
fermionic systems when mapping to qubits. Moreover,
we are able to exploit the noise robustness exhibited by
our algorithm to further reduce the surface-code distance
required.

Unfortunately, there are limitations to the approach
taken in our resource estimates above, that cause us to
reconsider how these calculations would be performed on
error-corrected quantum computers. As seen in Table I,
performing a single iteration of even the 11-qubit simula-
tion would take several minutes, assuming a surface-code
decoding cycle time of 1 μs (which may be optimistic
for slower systems, such as trapped ion quantum comput-
ers). If we estimate the polarization value through direct
sampling of the wave function, then obtaining a preci-
sion of 10−2 in the polarization would take around 10 000
repetitions. We must then repeat the calculation at a num-
ber of simulated time values to perform a single step of
our optimization subroutine. In turn, the optimization rou-
tine may require hundreds of iterations in order to obtain
a good fit for the experimental data. As a result, if the
methods discussed in this work are to prove useful for ana-
lyzing experimental data, we must find ways to reduce the
runtime of the algorithm.

As discussed in Sec. IV D, we can obtain a measure-
ment of the polarization using a combination of ampli-
tude amplification and quantum phase estimation. This
approach increases the circuit depth required by a factor of
1/εm (where εm is the measurement precision desired), but
reduces the number of repetitions required to a constant
value. While a full resource estimate of using this tech-
nique is beyond the scope of this work, we can perform
a rough estimate of how this approach would compare to
those discussed above. We assume a value of εm = 10−2,
increasing the circuit depth required by a factor of 100. For
the 29-qubit system, this increases our T count estimate
to 2.3 × 109 T gates. We neglect the resources required
for magic state distillation, and focus on the resources
required to reduce the expected number of errors in the
logical qubits to less than ε = 0.01. Assuming that distill-
ing a magic state still takes 11d surface-code cycles, we
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need to solve

�(1.5 × 29)+ 3� × (11d × 2.3 × 109)

× 0.1(100p)(d+1)/2 < 0.01. (58)

This expression is satisfied for d ≥ 29. The compact data
block for the 29 logical qubits corresponds to around
80 000 physical qubits. With this minimal setup, the calcu-
lation would take at least 8 days to complete. As discussed
in Ref. [107], we can reduce the runtime of the calculation
by exchanging spatial resources for time resources. Adding
more qubits enables us to distill and consume magic states
more quickly, until we reach the point at which a magic
state can be consumed every d surface-code clock cycles.
The addition of further qubits allows us to parallelize the
implementation of T gates using quantum teleportation. If
the T gates required by our algorithm can be fully paral-
lelized into around 8 × 107 layers, and one layer can be
implemented per surface-code cycle, a calculation of the
polarization value along a single axis, at a single point in
time, would finish in 80 s. Building a quantum computer
with these capabilities would require billions of qubits
[107]—considerably larger than any machines that are
planned within the coming decades.

Given the challenges associated with building even
a small error-corrected quantum computer, it is natural
to ask whether there are other ways to reduce the run-
time of the algorithm. First and foremost, we should
search for algorithmic improvements. As in the NISQ
case, better compilation routines, or the use of more effi-
cient time-evolution algorithms, could reduce the number
of gates required to execute our proposal. In particular,
we could consider alternative Hamiltonian decomposi-
tions that reduce the Trotter error by grouping commuting
terms [110], or that exploit the locality of power law
interactions [111]. Similarly, we could utilize techniques
that exploit symmetries in the Hamiltonian coefficients to
reduce the total number of T gates required for the circuit
[93,112].

Given the embarrassingly parallel nature of our
algorithm, it may have to wait until quantum hardware
becomes as cheap and ubiquitous as classical computing
is today. This would enable us to distribute each data point
and repetition across a number of different processors—in
much the same way as the classical emulations in this
work are performed. Finally, we note that the challenges
discussed in this section are not unique to our proposal,
but will be faced by all quantum algorithms that require
a large number of repetitions to fulfil their purpose. Per-
haps such “multirepetition” algorithms will be impractical,
unless we are able to develop improved error-correcting
codes, more reliable physical qubits, or reduced code cycle
times—which would all improve the effective clock speed
of the quantum processor.

VI. CONCLUSION

In this work, we introduce and investigate a quan-
tum algorithm for analyzing the data arising from muon-
spectroscopy experiments. As discussed in Sec. I, muon
spectroscopy is a versatile experimental technique, that has
been used to investigate a wide range of physical systems
and phenomena. In some cases, accurately analyzing the
spectra produced by these experiments requires compari-
son to data generated by a quantum model for the system.
The cost of simulating these quantum models scales expo-
nentially with the size of the simulated system, using all
known classical methods. These techniques are particu-
larly necessary when trying to locate the muon rest site,
or when studying the effects of muon diffusion.

The quantum algorithm introduced in this work is
quite simple, and resembles the (classical) random-phase-
approximation-based method introduced to the muon com-
munity by Celio [30]. Our algorithm constructs suitable
initial states on the quantum computer, evolves them in
time, and measures the Z expectation value of the muon
qubit, in order to construct simulated polarization func-
tions. The number of gates required by our algorithm
scales polynomially with the size of the system, at worst
as O(N 5), as shown in Sec. IV C.

Numerical emulations of our quantum algorithm on
classical hardware enable us to bound the error from
both Trotterization, and finite sampling of the initial
mixed state. We observe that the error in the polarization
function resulting from Trotterization is orders of mag-
nitude smaller than existing analytic bounds. We apply
these numerical emulations to analyze the data from a
muon-spectroscopy experiment on CaF2, and observe good
agreement with the recent analysis of Wilkinson and Blun-
dell [9] for the same dataset, which uses state-of-the-art
classical simulation methods. In the process, we perform
the largest simulation employed in muon-spectroscopy
analysis to date, with a Hilbert-space size of 229.

By considering the impact of noise in the quantum com-
puter on our algorithm, we are able to estimate the quan-
tum resources required to perform classically challenging
instances of muon spectroscopy analysis. In particular,
we observe significant noise robustness in our algorithm,
stemming from our aim of extracting a global parameter
from the fitted polarization function, rather than target-
ing any individual data point. These results may find use
beyond this work, and suggest that analyzing noisy exper-
imental data may be a good target for future quantum
computers.

Nevertheless, our resource estimates highlight the chal-
lenges faced by both the algorithm introduced in this work,
and many other quantum algorithms. In the context of
NISQ simulations, we observe that the gate counts pro-
duced by our algorithm are likely too large to simulate on
devices with realistic noise rates, even if error-mitigation
techniques are utilized. Similar challenges have been
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noted previously for NISQ electronic structure calculations
[113]. While noise can ultimately be overcome using quan-
tum error correction, challenges also remain in this arena.
At first glance, our algorithm appeared to require fewer
fault-tolerant resources than solving challenging instances
of the electronic structure problem. However, the large
number of repetitions required by our algorithm (to esti-
mate observables, calculate multiple datapoints, and repeat
the calculation as part of an optimization loop) result in
an impractically long runtime. While this runtime can be
reduced by increasing the size of the quantum computer,
or parallelizing the calculation across multiple quantum
machines, these both come at significant cost. We argue
that this is not necessarily a limitation of our algorithm, but
a challenge facing many quantum algorithms. For exam-
ple, while Ref. [84] performed a more rigorous analysis of
the gate counts required to perform classically intractable
simulations of spin-1/2 systems than this work, it stopped
short of estimating the resources required to estimate a
given observable. Their gate counts, on the order of 108 T
gates, are similar to those found in this work. As a result,
they will run into the same problems that we have, when
taking into account the resources required to estimate a
given observable, or to sample a range of conditions.
Similarly, while existing estimates for solving the elec-
tronic structure problem on small fault-tolerant quantum
processors [93,108,109,114,115] show that we can obtain
the energy of a classically intractable system in hours or
days, these works typically stop short of considering what
problem that actually solves. In order to optimize a molec-
ular geometry, estimate other observables on the ground
state, or elucidate a phase diagram, these calculations will
likely have to be repeated many times—resulting in what
may be a prohibitively long calculation time. As such, we
stress that it is important to consider the total resources
required to solve a given problem with a quantum com-
puter, and not just the quantum resources required to run
the corresponding circuits. The embarrassingly parallel
nature of many classical algorithms (including the classical
emulations in this work) and the low cost and ubiquity of
classical hardware, will place stringent requirements on the
performance of future quantum algorithms. Similar argu-
ments were recently made by Babbush et al. [116], in the
context of whether quadratic quantum speedups will be
sufficient to show quantum advantage on realistic problem
instances.

There are a number of optimizations that could be intro-
duced to our algorithm, which would help to make it
more practical for muon-data analysis. In particular, bet-
ter compilation of our time-evolution circuits, or the use
of more efficient time-evolution algorithms, could dramat-
ically reduce the number of gates required to achieve a
given accuracy. It will also be interesting to consider which
real-world systems would be most interesting to apply our
algorithm to. As discussed in Sec. II, many systems can be

satisfactorily analyzed using mean-field-type methods. As
such, it is important to engage with the muon community
to elucidate which systems appear difficult to analyze with
classical techniques. One possible avenue for exploration,
would be the application of our algorithm to the quantum
model of muon diffusion discussed in Sec. II [see Eq. (9)],
which has not yet been employed for data analysis, due to
the large Hilbert space of the resulting simulation. Liaising
with the muon community will also enable the introduc-
tion of problem-specific optimizations of the algorithm.
For example, one could consider incorporating the ideas
of Ref. [9], which scaled the interaction strengths of more
distant nuclei to act as a proxy for the rest of the sample.

A related question is whether the quantum algorithm
introduced in this work can be simulated efficiently using a
classical computer. The environment being in a mixed ini-
tial state may motivate the belief that approximate classical
methods may be able to efficiently simulate this problem.
While answering this question is beyond the scope of this
work, our approach has clear links to the “one clean qubit”
(DQC1) model of quantum computing [117], which has so
far resisted efficient classical simulation [118–121].

Finally, it is interesting to ask if other, more complex
quantum algorithms could be applied to analyzing muon-
spectroscopy data. One possibility could be to use quantum
read-only memory (QROM) [114] to load the experimental
data values into our quantum computer. We could then
attempt to compute all of the simulated data in super-
position [the state would resemble

∑
t |t〉 |P(t)〉, where t

denotes the simulated time], and use existing quantum
machine learning algorithms to extract fitting parameters
of interest. While the details of this approach would likely
be more complicated than outlined here, we note that this
is a slightly different approach than is typically considered
in quantum machine-learning algorithms. Here, we exploit
the exponential speedup in calculating P(t) (and poten-
tially polynomial speedups in parameter fitting), and do
not mind that there is no speedup for loading in the data.
We would seek to load in a number of datapoints that is
generally constant for a given type of muon-spectroscopy
experiment (as it is defined by the characteristics of the
beam type used). Given the numerous possible avenues for
exploration, we believe that both muon spectroscopy, and
the analysis of data arising from other experiments under-
pinned by quantum mechanics, are promising targets for
future quantum computers.

ACKNOWLEDGMENTS

This work is supported by the EPSRC National Quan-
tum Technology Hub in Networked Quantum Informa-
tion Technology (EP/M013243/1) and the QCS Hub
(EP/T001062/1). We thank S. Blundell and J. Wilkinson
for kindly providing the μ+SR experimental data analyzed
in this work, and for helpful discussions on this project,

020349-27



SAM MCARDLE PRX QUANTUM 2, 020349 (2021)

paper, and μ+SR experiments. We are grateful to S. Ben-
jamin and T. Jones for useful discussions on this work, and
for the implementation of functions for Trotterized time
evolution in QuEST. We thank Z. Cai for useful feedback
and suggestions on this paper. We also thank X. Yuan,
Y. Su, D. Litinski, J. McClean, B. Koczor, O. Higgott, and
E. Campbell for helpful conversations on various aspects
of this work. We acknowledge the use of the University of
Oxford Advanced Research Computing (ARC) facility in
carrying out this work.

APPENDIX A: SIMULATION DETAILS AND
ADDITIONAL NUMERICAL RESULTS

The simulations presented in this work are performed
using Cirq [98] and QuEST [97], as described in the main
text. QuEST simulations are run on CPU nodes containing
two Intel Xeon 8268 processors, each with 24 cores, with
a total of 384 GB of RAM. For simulations with over 21
qubits, OpenMP is used to parallelize over the 48 avail-
able cores. Each datapoint is run on a separate node, to
parallelize the calculation of the polarization function. The
largest calculations, utilizing 29 qubits, 30 second-order
Trotter steps, and a single sample, takes approximately 4
days to run.

In Fig. 16 we present the alternative fit to the experimen-
tal data with the 21-qubit system, discussed in the main
text.

APPENDIX B: PREPARING DICKE STATES ON
QUANTUM COMPUTERS

In this section, we discuss the method developed by
Bärtschi and Eidenbenz [79] to prepare Dicke states on
quantum computers. As discussed in the main text, to pre-
pare a Dicke state with Hamming weight h, acting on n
qubits, the algorithm requires O(kn) gates, O(n) depth,
and n qubits. Here, we present a slightly less rigorous, but
more pedagogical overview of the algorithm introduced in
Ref. [79], and refer the reader to the original reference for
more information.

The state-preparation algorithm proceeds recursively,
making use of the following expression for Dicke states:

|Dn
h〉 =
√

h
n

|Dn−1
h−1〉 ⊗ |1〉 +

√
n − h

n
|Dn−1

h 〉 ⊗ |0〉 . (B1)

We assume the existence of a unitary operator Un,k such
that Un,k |0〉⊗n−h |1〉⊗h = |Dn

h〉 for all h ≤ k. As we show
below, this operator exists, and can be constructed from
typical single- and two-qubit gates.

As a first step, we note that

|Dn
h〉 = Un,k |0〉⊗n−h |1〉⊗h , (B2)

and

|Dn
h〉 =
√

h
n

|Dn−1
h−1〉 ⊗ |1〉 +

√
n − h

n
|Dn−1

h 〉 ⊗ |0〉 ,

=
(

Un−1,k ⊗ I
)[√

h
n

|0〉⊗n−h |1〉⊗h

+
√

n − h
n

|0〉⊗n−1−h |1〉⊗h |0〉
]

,

=
(

Un−1,k ⊗ I
)

·
(

In−k−1 ⊗ Vn,k

)
|0〉⊗n−h |1〉⊗h ,

(B3)

with

(
In−k−1 ⊗ Vn,k

)
|0〉⊗n−h |1〉⊗h

=
√

h
n

|0〉⊗n−h |1〉⊗h

+
√

n − h
n

|0〉⊗n−1−h |1〉⊗h |0〉 . (B4)

These relations imply that

Un,k =
(

Un−1,k ⊗ I
)

·
(

In−k−1 ⊗ Vn,k

)
. (B5)

Here, Un−1,k acts on the leftmost n − 1 qubits. Vn,k is
defined on n qubits, but acts trivially on the first n − k − 1
qubits, so can be considered to act only on the final k + 1
qubits. We can then recurse this relationship

Un−1,k =
(

Un−2,k ⊗ I
)

·
(

In−k−2 ⊗ Vn−1,k

)
, (B6)

where Vn−1,k acts on the leftmost k + 1 of the final k + 2
qubits in the state. This enables us to write that

Un,k =
(

Uk+1,k ⊗ In−k−1

)
· · ·
(

In−k−2 ⊗ Vn−1,k ⊗ I
)

·
(

In−k−1 ⊗ Vn,k

)
. (B7)
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FIG. 16. The CaF2 + μ+ geometry is fixed in this simulation, and given by the density-functional-theory results of Ref. [9]. The
nearest-neighbor fluorines are moved towards the muon by 0.19 Å, and the next-nearest-neighbor fluorines are moved towards the
muon by 0.027 Å. The NNNN fluorines are at their equilibrium positions. We use a 21-qubit simulation with the random-phase-
approximation method (with 48 samples per data point, and 40 second-order Trotter steps) to generate a polarization function for this
geometry, P(t). This polarization function is fitted to the experimental asymmetry data obtained in Ref. [9], using A(t) = A0P(t)+ Abg,
where A0 and Abg are fitting parameters. The fit is performed using the Levenberg-Marquardt algorithm to minimize the normalized
square residuals. The reduced χ2 value of the generated data is 4.44.

We can repeat our analysis above for Uk+1,k, considering just the k + 1 qubits acted upon

Uk+1,k |0〉 |1〉⊗k = |Dk+1
k 〉 , =

√
k

k + 1
|Dk

k−1〉 ⊗ |1〉 +
√

1
k + 1

|1〉⊗k ⊗ |0〉 ,

=
(

Uk,k−1 ⊗ I
)[√

k
k + 1

|0〉 |1〉⊗k−1 ⊗ |1〉 +
√

1
k + 1

|1〉⊗k ⊗ |0〉
]

,

=
(

Uk,k−1 ⊗ I
)

·
(

Vk+1,k

)
|0〉 |1〉⊗k−1 ⊗ |1〉 , (B8)

where Vk+1,k acts on all of the k + 1 qubits. We can then continue the recursion above

Un,k =
(

Uk+1,k ⊗ In−k−1

)
· · ·
(

In−k−2 ⊗ Vn−1,k ⊗ I
)

×
(

In−k−1 ⊗ Vn,k

)
=
(

Uk,k−1 ⊗ In−k

)
×
(

Vk+1,k ⊗ In−k−1

)
· · ·

×
(

In−k−2 ⊗ Vn−1,k ⊗ I
)

×
(

In−k−1 ⊗ Vn,k

)
= · · ·

=
(

V2,1 ⊗ In−2

)
×
(

V3,2 ⊗ In−3

)
· · · · ·
(

Vk,k−1 ⊗ In−k

)

×
(

Vk+1,k ⊗ In−k−1

)
×
(

I ⊗ Vk+2,k ⊗ In−k−2

)
· · · ·
(

In−k−2 ⊗ Vn−1,k ⊗ I
)

×
(

In−k−1 ⊗ Vn,k

)
. (B9)
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We can express this more concisely via the expression
in Lemma 2 of Ref. [79]:

Un,k =
k∏

l=2

(
Vl,l−1 ⊗ In−l

)
·

n∏

l=k+1

(
Il−k−1 ⊗ Vl,k ⊗ In−l

)
.

(B10)

This confirms the existence of the gate Un,k, if we are able
to construct the unitary Vn,k for arbitrary n, k. As discussed
in Ref. [79], we can construct Vn,k from standard single-,
two-, and three-qubit gates as follows.

We have that
(

Vn,k

)
|0〉⊗k+1−h |1〉⊗h =

√
h
n

|0〉⊗k+1−h |1〉⊗h

+
√

n − h
n

|0〉⊗k−h |1〉⊗h |0〉 . (B11)

This unitary only changes the value of the zeroth
qubit from the right, and the hth qubit from the right.
First, consider the circuit shown in Fig. 17. If we set
θ = 2cos−1(

√
1/n), then the circuit applies the unitary
⎡

⎢⎢⎢⎢
⎣

1 0 0 0

0
√

1
n −
√

n−1
n 0

0
√

n−1
n

√
1
n 0

0 0 0 1

⎤

⎥⎥⎥⎥
⎦

. (B12)

Similarly, the circuit in Fig. 18 with θ = 2cos−1(
√
α/n)

acts trivially on all input states, except for

|011〉 →
√
α

n
|011〉 +

√
n − α

n
|110〉 ,

|110〉 → −
√

n − α

n
|011〉 +

√
α

n
|110〉 .

(B13)

We can now use these building blocks to construct the uni-
tary Vn,k. We first apply the gate in Fig. 17 to the final two
qubits in the register, and then repeatedly apply the gate Wα

n
shown in Fig. 18, incrementing the value of α each time.
As we are applying these gates on the state |0〉⊗n−h |1〉⊗h,
the first h qubits encountered are all in the |1〉 state, so
these gates act trivially. After these h qubits, the three-
qubit Wh

n gate encounters the state |0〉n−h |1〉n−h+1 |1〉n,
which it transforms into

√
(h/n) |0〉n−h |1〉n−h+1 |1〉n +√

(n − h/n) |1〉n−h |1〉n−h+1 |0〉n. The subsequent Wi>h
n

gates act trivially on both branches of this superposition.
Taken together, these gates carry out the transform in
Eq. (B11), for all h ≤ k. It is shown in Ref. [79] how the
three-qubit W gate can be decomposed into single- and
two-qubit gates, and how the circuit can be implemented
with O(kn) gates, O(n) depth, and n qubits on a linear
array of qubits, with nearest-neighbor connectivity.

• Ry(θ) •
•

FIG. 17. A circuit that yields the unitary operator given by Eq.
(B12).

APPENDIX C: BOUNDING THE VARIANCE OF
THE SAMPLING SCHEMES

As discussed in Sec. IV B, there are two approaches
that can be used to effectively sample from the maximally
mixed environment state. The first, which we refer to in
this Appendix as scheme A, samples environment basis
vectors |k〉e with equal probability (1/De). The second
approach, referred to here as scheme B, is the random-
phase-approximation method introduced in Ref. [30], and
discussed in Eq. (8). In this Appendix, we show that the
expectation values of these two schemes are equivalent to
sampling from the maximally mixed state, and calculate
the variance of both schemes.

1. Scheme A

We sample a random variable 〈0|μ 〈j |e Z(t) |0〉μ |j 〉e :=
αjj (j ) (that depends on the discrete random variable
j ∈ [0, De)), with probability p(j ) = (1/De). We define
Z(t) = eiHtZμe−iHt. The expectation value of the random
variable is

E[αjj (j )] = 1
De

∑

j

〈0|μ 〈j |e Z(t) |0〉μ |j 〉e ,

= Tr
[

e−iHt
(

|0〉 〈0|μ ⊗ Ie

De

)
eiHtZμ

]
,

= P(t), (C1)

as required. The variance of the random variable is given
by

Var[αjj (j )] = E[αjj (j )2] − E[αjj (j )]2,

=
(

1
De

∑

j

α2
jj

)
−
(

1
D2

e

∑

j ,k

αjjαkk

)
. (C2)

n − α • Ry(θ) •
n − α + 1 •

n •

FIG. 18. A circuit that yields the unitary operator, which we
refer to as Wα

n . This operator acts trivially on all input states,
except those noted in Eq. (B13).
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This can be bounded as

Var[αjj (j )] = 1
De

∑

j

α2
jj − P(t)2 ≤ 1

De

∑

j

α2
jj ≤ 1.

(C3)

If half of αjj = 1, and half are −1, then this bound is
saturated.

2. Scheme B

We first define αjk := 〈0|μ 〈k|e Z(t) |0〉μ |j 〉e. Unlike in
scheme A, αjk is not a random variable. We then define
a random variable X (�θ) := (1/De)

∑
j ,k eiθj e−iθkαjk, that is

a function of the random variables �θ = {θ1, . . . θi, . . . θDe}
that are chosen uniformly at random in the range [0, 2π).
We assume that these random variables are independent
here, which will be a reasonable assumption when the
circuit used to prepare the initial state is sufficiently

randomizing. The expectation value of the random variable
X is

E[X (�θ)] = 1
De

E

[∑

j ,k

eiθj e−iθkαjk

]
,

= 1
De

∑

j

αjj + 1
De

∑

j �=k

E[eiθj e−iθk ]αjk,

= 1
De

∑

j

αjj + 1
De

(
1

2π

∫ 2π

θj =0
eiθj dθj

)

×
(

1
2π

∫ 2π

θk=0
e−iθk dθk

)
αjk,

= 1
De

∑

j

αjj = 1
De

∑

j

〈0|μ 〈j |e Z(t) |0〉μ |j 〉e

= P(t), (C4)

as required. The variance is given by

Var[X (�θ)] = E[|X (�θ)|2] − |E[X (�θ)]|2

= 1
D2

e

∑

j ,k,l,m

(
1

(2π)4

∫ 2π

θj ,θk ,θl,θm=0
eiθj e−iθk e−iθl eiθmdθj dθkdθldθm

)
αjkα

∗
lm − P(t)2. (C5)

The integral evaluates to zero unless j = k and l = m or j = l and k = m (but j �= k). Thus,

Var[X (�θ)] =
(

1
De

∑

j

αjj

)(
1

De

∑

l

αll

)
+ 1

D2
e

∑

j �=k

αjkα
∗
jk − P(t)2,

= 1
D2

e

∑

j �=k

|αjk|2. (C6)

We can bound this as [defining Z(t) |0〉μ |k〉e := |φk〉]

1
D2

e

∑

j �=k

|αjk|2 ≤ 1
D2

e

∑

j ,k

|αjk|2,

= 1
D2

e

∑

k

〈0|μ 〈k|e Z(t)
(

|0〉μ 〈0|μ ⊗
∑

j

|j 〉e 〈j |e
)

Z(t) |0〉μ |k〉e ,

= 1
D2

e

∑

k

〈φk|
( |0〉μ 〈0|μ ⊗ Ie

) |φk〉 ,

≤ 1
De

. (C7)

This bound is independent of the values αjk and shows that the variance is suppressed exponentially in the number of
environment spins.
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