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Stochastic modeling of complex systems plays an essential, yet often computationally intensive, role
across the quantitative sciences. Recent advances in quantum information processing have elucidated the
potential for quantum simulators to exhibit memory advantages for such tasks. Heretofore, the focus has
been on lossless memory compression, wherein the advantage is typically in terms of lessening the amount
of information tracked by the model, while—arguably more practical—reductions in memory dimension
are not always possible. Here, we address the case of lossy compression for quantum stochastic modeling
of continuous-time processes, introducing a method for coarse graining in quantum state space that drasti-
cally reduces the requisite memory dimension for modeling temporal dynamics while retaining near-exact
statistics. In contrast to classical coarse graining, this compression is not based on sacrificing temporal
resolution and brings memory-efficient high-fidelity stochastic modeling within reach of present quantum
technologies.
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I. INTRODUCTION

Everywhere we look, we are surrounded by complex
systems. They manifest across all scales, from the micro-
scopic level of chemical and physical interactions, through
biological processes, to geophysical and meteorological
phenomena and beyond [1–8]. As the descriptor complex
suggests, with such systems manifesting a rich tapestry
of emergent behaviors it quickly becomes an insurmount-
able task to track their many interacting components in
full. Computational tractability demands that when model-
ing complex systems, we keep only a partial knowledge,
sufficient for predicting relevant properties of interest.
Meanwhile, the remaining information that is discarded (or
is not possible to observe in the first place) manifests as
stochastic effects on top of this. Accordingly, stochastic
modeling [9–26] is a critical part of modern science and
identifying ways and means of maximizing its efficacy is a
transdisciplinary endeavor.

A key bottleneck is the amount of memory available,
restricting the amount of information that can be stored.
Each configuration the system can take is assigned to a
state in the memory; the number of states the memory can
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support—its dimension—limits the number of distinct con-
figurations that can be tracked. A form of compression to
mitigate this is coarse graining—grouping together config-
urations that are sufficiently close into a single combined
configuration, reducing the effective dimension, at the cost
of precision. This is particularly prominent for temporal
information: time is a continuous parameter requiring an
unbounded amount of information to specify to arbitrary
precision [27]; in practice, it is coarse grained into bins of
finite width [28].

For a quantum memory, the dimension is no longer
synonymous with the number of different possible states
it can support. In the context of stochastic modeling, by
encoding configurations with partially overlapping fea-
tures into linearly dependent quantum states, a dimensional
compression can be achieved [29–33]. This quantum-
compression advantage can be of significant magnitude
[32], though present techniques are constrained to exact
(lossless) compression, hampering widespread applicabil-
ity. Nevertheless, quantum encodings have been shown to
almost universally reduce the information cost of stochas-
tic modeling [30,34–40], suggesting that many of the
dimensions in the memory are barely utilized. This sub-
stantiates a strong motivation to develop lossy quantum
encodings that trim down these excess dimensions while
retaining high fidelity with the exact model.

Here, we introduce such a lossy compression proto-
col that can be applied to greatly reduce the memory
dimensions devoted to tracking temporal information. Our
compression is based on reconstructing approximate—yet
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near-exact—models of a process where the quantum
memory states are constrained to a low-dimensional
Hilbert space, emancipating the dimension from the num-
ber and width of time bins. After reviewing the necessary
background, we describe our protocol in detail for pure
temporal dynamics, with examples to illustrate the high
fidelities and extreme quantum advantages that can be
achieved with only a few memory qubits. We then describe
how the protocol can be used for compressed modeling of
general continuous-time stochastic processes.

II. FRAMEWORK

A. Stochastic processes and models

Herein, we are concerned with continuous-time discrete-
event stochastic processes [39,41]. These consist of a
series of events described by a sequence of couples xn :=
(xn, tn), where xn ∈ X is the nth event in the series and
tn ∈ R

+ is the time between the (n− 1)th and nth events
[42]. The sequence is probabilistic, drawn from a dis-
tribution P(. . . , Xn−1, Xn, Xn+1, . . .); throughout, we use
upper case to represent random variables and lower case
to represent the corresponding variates. We assume the
set of possible events X to be finite. A contiguous block
of the sequence is denoted xj :k := xj xj+1 . . . xk−1. We
consider bi-infinite length sequences such that n ∈ Z and
assume the process to be stationary such that P(X0:L) =
P(Xm:m+L)∀m, L ∈ Z. We also consider discrete-time
approximations to such processes, where times are coarse
grained into finite intervals of size �t, recovering the
continuous case in the limit �t→ 0.

We can partition the process into a past and future,
delineating what has happened and what is yet to hap-
pen, respectively, relative to some point in the sequence.
Without loss of generality, we can set n = 0 to represent
the present with x0 the next event to occur, such that the
past consists of←−x := x−∞:0(∅, t←−0 ) and the future −→x :=
(x0, t−→0 )x1:∞. Here, t←−0 represents the time since the last
event and t−→0 the time until the next event (t0 = t←−0 + t−→0 ),
and ∅ denotes that the 0th event is yet to occur [39,41].

We desire models that are able to track relevant informa-
tion from the past of a process in order to faithfully repli-
cate the corresponding future statistics [8,43]. We require
the models to be causal, entailing that they can be initial-
ized for any given past, and that they store no information
about the future that could not be obtained from the past
observations [29]. Such models function by means of an
encoding function f :

←−X →M that maps pasts into mem-
ory states ρm ∈M and a transition structure � : M→
M,∅ ∪ X that produces the future statistics and updates
the memory state accordingly [44]. In the continuous-time
setting this transition structure is a continuous evolution,
while in the discrete-time setting it acts once at each time
step [27,28,37,41]. A model with a lossless encoding is

(b)

(a)

FIG. 1. (a) An HSMM representation of a continuous-time
discrete-event stochastic process, showing the transition struc-
ture between modes. Each node corresponds to a mode of the
model and the arrows labeled x : p(t) denote transitions between
modes accompanied by event x occurring at time t since the pre-
vious event, with the transition occurring with probability p(t).
(b) The unpacking into HMM tracking mode-occupation times.
The nodes continue to represent modes and thin lines the transi-
tions, while the thick black line indicates a continuum of states
of the model, tracking both the current mode and the time since
the last event.

able to replicate the future statistics perfectly, while a lossy
one produces an approximation thereof.

Continuous-time stochastic processes can be repre-
sented by edge-emitting hidden semi-Markov models
(HSMMs) [23,41]. A HSMM comprises of (hidden) modes
G, an event alphabet X , and a transition dynamic �. Con-
ditional on the current mode and the time for which it has
been occupied, the transition dynamic describes the proba-
bility of the model emitting a symbol x ∈ X and transition-
ing to a new mode, with the probabilities depending on the
particular process [Fig. 1(a)]. That is, the system resides
in a given mode g ∈ G until an emission x ∈ X occurs, at
which point it transitions to a new mode g′ ∈ G; the prob-
ability that a system resides in mode g for a time t before
emitting symbol x and transitioning to mode g′ is given
by the modal wait-time distribution

∑
xg′ P(x, g′|g)φx

g′g(t),
where the probabilities P(X , G′|G) describe the symbolic
transition structure between modes and the dwell functions
φx

g′g(t) the distribution for the time spent in a given mode
before such a given transition occurs. For further details,
see Refs. [39,41] and Sec. VI.

A HSMM can be unpacked [39] into an edge-emitting
hidden Markov model (HMM) [45] with a continuous
state space tracking the occupation time for the modes
[Fig. 1(b)]. States in the HMM represent a mode and time
since the last event (g, t←−0 ), with a transition structure tak-
ing the system to (g, t←−0 + dt) on nonevents in the next
infinitesimal time interval dt, and (g′, 0) upon events. The
corresponding emitted symbols are ∅ for nonevents and
x ∈ X for each event; the transition probabilities follow
from the conditional form of the modal wait-time dis-
tributions. Models of discrete-time stochastic processes
can similarly be modeled by discrete-state HMMs, in
which the occupation time is tracked by the corresponding
coarse-grained states [28].
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B. Memory and quantum advantage

A key metric of efficiency for a model is how much
memory it requires to operate [46]. One way in which
this can be parametrized is via the information cost—in
the sense of Shannon entropy—of storing the compressed
past information [34,44,46]. Another, to which we direct
our focus here, is the size of the substrate into which this
information is encoded—in other words, the dimension of
the memory state space [30,32,44,47,48]. The choice of
encoding function will impact upon the memory cost and
it is ideally chosen to make it as small as possible.

For stationary stochastic processes, the optimal classi-
cal lossless memory encoding function is provided by the
causal equivalence relation (∼ε) of computational mechan-
ics [8,44,49], which partitions the entire set of semi-infinite
pasts

←−X into equivalence classes called causal states, s ∈
S , such that two pasts belong to the same causal state if and
only if they effect the same conditional future statistics:

P(
−→
X |←−x ) = P(

−→
X |←−x ′)⇔←−x ∼ε ←−x ′. (1)

The memory-optimal lossless classical model (known as
the ε-machine) is then constructed by designating a mem-
ory state |s〉 for each causal state s and having the
causal-state encoding function fε assign pasts accordingly.
A typical process evolving in continuous time will require
an infinite-dimensional memory to record the progress
through infinitesimal divisions in time [27,32,37], engen-
dering the need for lossy approximations that evolve with
discretized time steps [28,32].

With the advent of quantum information processing
tools, the optimality of ε-machines has been supplanted
[34]. Quantum encoding functions fq map pasts into a set
of quantum memory states; by leveraging the possibility
of encoding information into an ensemble of nonorthog-
onal states, further compression beyond the causal-state
encoding function may be attained. Prior work has cen-
tered on lowering the information cost of storing the past
[30,34–40], showing that a quantum-compression advan-
tage can almost always be procured. Recent focus has been
devoted to obtaining corresponding advantages in com-
pressing the dimension of the memory, by engineering
quantum memory states with linear dependencies [29–33].
Examples have highlighted that such dimensional com-
pression can sometimes be made arbitrarily strong with
respect to the optimal classical encoding [32], though
instances where it may be achieved in the lossless regime
appear to be much less ubiquitous than in the case of reduc-
ing the information cost [30]. The lossy encoding protocol
that we introduce seeks to remedy this present shortcom-
ing of the quantum models in the context of tracking the
temporal aspect of their dynamics, to escape the associated
memory dimension divergence in the continuous limit.

C. Renewal processes

With our attention directed toward compressing the tem-
poral information, for much of this paper we work with a
special class of continuous-time stochastic processes that
are purely temporal in nature: renewal processes [50].
These consist of a single mode and a single symbol, such
that the resulting process is a series of identical events
stochastically separated in time, with the spacing of each
consecutive pair of events drawn from the same distribu-
tion. The distribution governing the time between events is
called the wait-time distribution φ(t) and the survival prob-
ability �(t) := ∫∞

t φ(t′)dt′ is the probability that a given
interval is of length t or greater [27,28,32,37].

With few exceptions, for generic renewal processes,
the causal states group pasts together according to the
time since the last event occurred [27,28,37]. That is,
all relevant information for predicting the future of a
renewal process is contained within the time since the last
event—such that the causal states are in one-to-one cor-
respondence with t←−0 —and, moreover, can only provide
predictive power with respect to the time t−→0 until the next
event will happen.

The transition structure between the memory states of
the ε-machine for a renewal process has been likened to
a “conveyor belt” [27], progressing continuously along a
line with time until an event occurs, whereupon the mem-
ory jumps to a “reset” state corresponding to t←−0 = 0.
The probability of occupying the memory state corre-
sponding to t←−0 is given by π(t←−0 ) = μ�(t←−0 ), where

μ := [∫∞
0 tφ(t)dt

]−1 is the so-called mean firing rate
[27,37]. The discrete-time analog consists of a linear
sequence of memory states through which the system pro-
gresses, akin to the incrementation of a counter, until also
resetting upon an event [28,32]. Both are illustrated in
Fig. 2. The exact continuous-time version requires an infi-
nite continuum of memory states, and thus requires a mem-
ory of unbounded dimension; when there is no maximum

(b)

(a)

FIG. 2. (a) Discrete and (b) continuous HMM representations
of ε-machines of a renewal process. The system progresses along
a counter until an event occurs, upon which it transitions to the
reset state. In (a), nodes correspond to states of the HMM track-
ing time since the last event; in (b), the thick black line represents
a continuum of such states. The thin arrows represent transitions
between states, with x : p indicating the probability p of the tran-
sition occurring, accompanied by symbol x. Symbol 1 represents
events and 0 nonevents.
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value for t←−0 , the discrete-time case will similarly need an
infinite-dimensional memory and thus finite-dimensional
approximations must also adopt a terminal state that the
counter cannot exceed [32].

III. QUANTUM COARSE GRAINING

A. Quantum models of renewal processes

In previous work [37], we have established that a gen-
eral renewal process with wait-time distribution φ(t) can
be exactly simulated by a quantum model with a memory
encoding function fq(←−x ) = |ςt←−

0
〉, where

|ςt←−
0
〉 :=

∫ ∞

0

ψ(t←−0 + t)
√
�(t←−0 )

dt|t〉, (2)

in which {|t〉} is an infinite-dimensional orthogonal basis
and ψ(t) := √φ(t) [51]. The future statistics are extracted
from these memory states by means of a continuous mea-
surement sweep that, at each infinitesimal interval δt,
produces a binary outcome as to whether or not the system
is found in a state |t〉 in the interval [0, δt): if yes, then the
event is deemed to have occurred and the memory is reini-
tialized in state |ς0〉; if no, then the event does not occur
and a relabeling t→ t− δt takes place.

A fine-grained discrete analog of this evolution with
time-step interval δt can be implemented through the fol-
lowing unitary interaction Uδt coupling the memory state
to an ancillary system used to provide the measurement
readout, where 0 and 1 represent nonevents and events,
respectively [32]:

Uδt|ςt〉|0〉 =
√
�(t+ δt)
�(t)

|ςt+δt〉|0〉

+
√

1− �(t+ δt)
�(t)

|ς0〉|1〉. (3)

After measurement, the ancilla is set to |0〉 ready for the
next time step. The amplitudes on the right-hand side of
this equation are set such that they yield the correct prob-
abilities for the future statistics, as

∫ t+δt
t φ(t′)dt′ = �(t)−

�(t+ δt). Arbitrary complex phases can be added to these
amplitudes without affecting the statistics [30,32]; on the
first term, this is equivalent to appending an irrelevant
phase to the quantum memory states, while on the latter
it mirrors the effect of a complex phase on ψ(t).

B. Quantum model memory as an integral kernel

The steady-state ρ of the quantum model memory
is given by a mixture of the quantum memory states,

weighted by their probability of occurrence [37]:

ρ : =
∫ ∞

0
π(t←−0 )dt←−0 |ςt←−

0
〉〈ςt←−

0
|

= μ
∫∫∫ ∞

0
ψ(t←−0 + t)ψ(t←−0 + t′)dtdt′dt←−0 |t〉〈t′|. (4)

The rank of ρ corresponds to the dimension required by
the memory substrate to support the range of quantum
memory states. This is given by the number of nonzero
elements in the spectrum of ρ, which can be found from
the characteristic equation

∫ ∞

0
ρ(t, t′)ν(t′)dt′ = λν(t). (5)

This has the form of a homogenous Fredholm inte-
gral equation of the second kind [52], with ρ(t, t′) =
μ

∫∞
0 ψ(t←−0 + t)ψ(t←−0 + t′)dt←−0 corresponding to the ker-

nel of the equation.
We are thus in a position to leverage results from Fred-

holm theory to reveal properties of the spectrum {λ} of
ρ. Most pertinently, if ρ represents a degenerate kernel,
wherein it can be expressed as ρ(t, t′) =∑N

j=1 αj (t)βj (t′)
for some finite integer N and set of functions {αj ,βj },
then the spectrum has at most N nonzero elements [52].
Consequently, the memory states can be stored within an
N -dimensional space. However, the general form of ρ
as per Eq. (4) does not readily present as a degenerate
kernel and, indeed, exact quantum models of renewal pro-
cesses often require an infinite-dimensional memory space.
Nevertheless, the amount of information retained in the
memory about the past of the process typically appears to
be finite [37], suggesting that many of these dimensions are
barely utilized and motivating the pursuit of a lossy—yet
still near-exact—compression method. A suggestive path
to such compression is to truncate ρ by removing the
dimensions corresponding to elements of its spectrum that
are sufficiently small (as the {λ} represent the occupa-
tion probabilities of the eigenstates of ρ). However, this
impacts upon the transition structure of the model, ren-
dering it nonphysical. An approach with greater finesse is
needed, which we now provide.

C. Exponential sums and lossy compression

Rather than taking an existing exact model and intro-
ducing lossy distortion to effect compression, we instead
construct a distortion of the underlying process that is
amenable to simulation by a model with a memory of low
dimension. The intent is that the exact model of the dis-
torted process forms a near-exact compressed model of the
original process.

This requires us to identify what features the wait-time
distribution must possess to permit a finite-dimensional
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exact model; in other words, to identify what the con-
straints on φ(t) are such that it will lead to ρ(t, t′) taking
the form of a degenerate kernel. Let us begin by intro-
ducing the kernel κ(t, t′) := ψ(t+ t′), such that ρ(t, t′) =
μ

∫∞
0 κ(t, t′′)κ(t′′, t′)dt′′. It then follows that the spectrum

of κ(t, t′) is {√λ/μ}, and is thus of the same rank as ρ(t, t′)
[52]. This reduces the problem to identifying the condi-
tions under which κ(t, t′) is a degenerate kernel. These are
then the processes for which we can expressψ(t) as a finite
sum of functions Fj (t) that satisfy Fj (t+ t′) = αj (t)βj (t′).
We can readily identify the appropriate functions as being
(complex) exponentials, i.e., Fj (t) = cj exp(zj t) for some
(cj , zj ) ∈ C

2. Thus, for ψ(t) =∑N
j=1 cj exp(zj t), we cor-

respondingly have at most N nonzero eigenvalues of the
kernel κ(t, t′).

Although we begin by assuming ψ(t) is real, if we
allow it to be complex we instead have φ(t) = |ψ(t)|2,
and ρ(t, t′) = μ ∫∞

0 ψ(t+ t←−0 )ψ
∗(t′ + t←−0 )dt←−0 . Note that

even when ψ(t) =∑N
j=1 cj exp(zj t) is complex, it can be

verified through direct substitution that ρ(t, t′) remains
a degenerate kernel of at most rank N . Thus, with an
N -dimensional memory it is possible to model renewal
processes for which

φ(t) =
∣
∣
∣
∣
∣
∣

N∑

j=1

cj ezj t

∣
∣
∣
∣
∣
∣

2

. (6)

Let us decompose zj := −γj + iωj for (γj ,ωj ) ∈ R
2. For

φ(t) to be a valid distribution it must be normalizable to
unity and thus we can constrain γj ∈ R

+.
The complex exponentials exp(−zt) form an overcom-

plete basis into which any piecewise continuous function
of finite exponential order can be decomposed, where
the overlap of the function with the basis elements are
described by its Laplace transform. Thus, for any ψ(t) that
is piecewise continuous and of finite exponential order,
we can express the corresponding wait-time distribution
in the form of Eq. (6), albeit with N not necessarily
finite.

Nevertheless, this provides a constructive approach to
finding lossy compressions for quantum models of renewal
processes. The goal is to find exponential sums with a finite
number of terms that provide a high-fidelity approximation
to ψ(t). In practice, it has been found that such decompo-
sitions can achieve accurate reconstructions of a function
with a relatively small number of terms. Moreover, there
are systematic approaches to obtaining such decomposi-
tions [53]. From the decomposition, we are then able to
build an exact model of the approximate process, to effect
a near-exact model of the original process.

The last step remaining is to find an explicit encod-
ing of the memory states of the approximate model into
a finite-dimensional memory space. Beginning from a

(normalized) approximate decomposition ψ̃(t) =∑N
j=1 cj

exp[(−γj + iωj )t], we assign N “generator” states {|ϕj 〉}
and a unitary operator Ũδt with the evolution [54]

Ũδt|ϕj 〉|0〉 = e(−γj+iωj )δt|ϕj 〉|0〉 +
√

1− e−2γj δt|ς̃0〉|1〉,
(7)

in analogy with Eq. (3). Here, we define

|ς̃0〉 :=
N∑

j=1

cj
√

2γj
|ϕj 〉, (8)

which forms the reset state corresponding to t←−0 = 0, with
the rest of the quantum memory states {|ς̃t←−

0
〉} implicitly

defined by acting U with the ancilla a sufficient num-
ber of times, postselected on all measurement outcomes
being 0, i.e., |ς̃nδt〉 = 〈0|(I ⊗ |0〉〈0|U)n|ς̃0〉|0〉. Non-
normalized, these states can also be expressed |ς̃t←−

0
〉 ∝

∑N
j=1(cj /

√
2γj ) exp[(−γj + iωj )t←−0 ]|ϕj 〉. The overlaps of

the generator states can be obtained [30,38] from the recur-
sive relations 〈ϕj |ϕk〉 = 〈ϕj |〈0|Ũ†

δtŨδt|ϕk〉|0〉, from which
we can move from their implicit definition to express-
ing them explicitly in terms of an N -dimensional set of
orthonormal basis states using a reverse Gram-Schmidt
procedure [55]. The relevant columns of Ũδt are defined
implicitly by Eq. (7) and can now readily be expressed
explicitly in this basis; the remaining columns can be
assigned arbitrarily provided that they preserve orthonor-
mality of the basis states (by using e.g., a Gram-Schmidt
procedure) [38].

Algorithm 1 Quantum coarse graining for modeling
renewal processes
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This constructs a lossy compression of the quantum
memory states, yielding a near-exact model of the process.
The steps are summarized in Algorithm 1.

IV. EXAMPLES

As a demonstration of the efficacy of our quantum-
compression protocol, we apply it to the modeling of
two example renewal processes. For each process, we
show how the quantum models quickly converge on high-
fidelity approximations of the original processes with only
a comparatively small memory dimension. Our approx-
imate exponential sums are found using the method of
Beylkin and Monzón [56], summarized in Appendix A.

We quantify the goodness of fit using a Kolmogorov-
Smirnov (KS) statistic [57], which is defined as the
maximum difference between points in the cumulative dis-
tribution functions of two probability distributions. This
allows us to compare how well discrete distributions
approximate continuous distributions, as the cumulative
distribution function can be extended over a continuum.
That is, let Cp(t) =

∫ t
0 p(t′)dt′ be the cumulative distribu-

tion function of a continuous distribution p(t) and Cq(t) =∑argmax(N |Nδt<t)
n=0 q(nδt) the continuum form of the cumula-

tive distribution of a discrete distribution q(nδt). The KS
statistic is then given by KS(p , q) = maxt|Cp(t)− Cq(t)|.
For a renewal process, the survival probability �(t) =
1− Cφ(t), and so the KS statistic here, also corresponds
to the maximum difference between the survival prob-
abilities of the exact and approximate processes at any
time: KS[φ(t), φ̃(t)] = maxt|�(t)− �̃(t)|, where �̃(t) :=∫∞

t |ψ̃(t′)|2dt′. Thus, the KS statistic as employed here
measures the largest cumulative divergence between the
statistics of the approximate model and the exact process.

We compare our quantum models to approximate classi-
cal models constrained to a classical memory of the same
dimension. These classical models are constructed by dis-
cretizing the process into finite-sized time steps and using
gradient descent [58] to fit the parameters, taking the KS
statistic as a cost function (see Appendix B). While we
do not claim this to be the optimal lossy classical com-
pression, we believe it to provide a fair indicator of the
potential performance of classical compression methods
for this task.

A. Alternating Poisson process

As a first example, we consider an alternating Pois-
son process. The output can be described by a sequential
series of Poisson processes, with an event on these under-
lying processes alternatively coinciding with events or
nonevents of the alternating Poisson process (nonevents of
the Poisson processes also correspond to nonevents of the
alternating Poisson process). The corresponding wait-time

(a)

(b)

Memory [(qu)bits]

FIG. 3. (a) Wait-time distributions of compressed quantum
models of an alternating Poisson process in arbitrary units.
(b) KS statistics comparing the performance of compressed
quantum models to compressed classical models.

distribution is given by

φ(t) = γ 2te−γ t, (9)

where the rate γ sets an arbitrary scale for units of time.
This is the continuous-time analog of the so-called sim-
ple nonunifilar source process [43]. While also appear-
ing simple to generate, it too has no finite-dimensional
exact causal classical representation [28]; it is thought that
an exact causal quantum model is similarly structurally
complex.

Using our compression protocol, we observe excellent
performance in replicating the statistics of the alternating
Poisson process with low-dimensional quantum models.
As can be seen in Fig. 3(a), even a single-qubit mem-
ory provides a close approximation to the exact wait-time
distribution and a two-qubit memory is seemingly indistin-
guishable at the resolution shown. In Fig. 3(b), we compare
the performance of our coarse-grained quantum models
with the classical approximations, as well as a memory-
less model. We see that the quantum models bear a KS
statistic orders of magnitude smaller than the correspond-
ing classical model and, moreover, appear to exhibit a more
favorable scaling with increasing memory.

B. Bimodal Gaussian process

For the second example, we find compressed models
of a bimodal Gaussian process. The wait-time distribution
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consists of the sum of two displaced Gaussian peaks:

φ(t) = p1e−(t−μ1)
2/σ 2

1 + p2e−(t−μ2)
2/σ 2

2 . (10)

As with the previous example, the units of time are arbi-
trary and can be set through the σ . We consider the case
where the two peaks have equal weight (p1 = p2) and
equal spread (σ1 = σ2). In units where σ = 1, we then
take μ1 =

√
5 and μ2 =

√
33.8. This leads to little over-

lap between the two peaks, requiring a model to be able to
capture features at both short and long time scales in order
to account for the two regions of high event probability and
the low-probability trough between them.

As can be seen in Fig. 4(a), our coarse-grained models
struggle to fully capture the features with one- and two-
qubit memories, with the former overweighting the first
peak and the latter the second. With a three-qubit memory
however, the model closely follows the exact process. This
is reflected in the KS statistic [Fig. 4(b)], where there is a
drastic decrease when going from two qubits to three. This
is possibly due to the method used here to construct the
approximate exponential sum: rather than fixing the max-
imum allowed number of terms in advance, the method
instead constructs a sum with a large number of terms and
then afterward truncates to those with the largest weight.
In this case, we find that the terms lost to truncation are
not always negligible. This motivates future considera-
tion of alternative methods for constructing approximate

(a)

(b)

Memory [(qu)bits]

FIG. 4. (a) Wait-time distributions of compressed quantum
models of a bimodal Gaussian process in arbitrary units. (b) KS
statistics comparing the performance of compressed quantum
models to compressed classical models.

exponential sums that begin with the constraint of a max-
imum allowed number of terms, in order to make best use
of the available memory resources. Nevertheless, we still
see that our coarse-grained quantum models significantly
outperform classical models with only a small number
of qubits.

V. COSTLY FEATURES?

We see that the quantum-compression protocol performs
well on the two examples above. However, this begs the
question of how well it performs in general and for which
processes it will show the weakest performance. Ulti-
mately, the accuracy of the model comes down to how
good an approximation the finite exponential sum is of
the wait-time distribution—or, conversely, the dimension
required by the model depends on how few terms are
required in the sum to reach a desired precision—as the
compressed model will (experimental imperfections aside)
provide an exact model of this approximation of the wait-
time distribution. In this sense, the performance of our
compression protocol comes down to how well the method
used to construct an approximate exponential sum per-
forms. For the particular algorithm used in our examples,
see the discussion in the associated literature [56,59], also
noting that the authors of these works find even better
performance in practice than indicated by their bounds.

Nevertheless, we can find a useful heuristic in the
information cost of the exact quantum model of the pro-
cess—once the (logarithm of) the dimension drops below
the information cost (i.e., once the capacity of the memory
is lower than the information required for exact modeling),
the compressed model must throw away useful informa-
tion, limiting the accuracy it can achieve. Correspondingly,
we can expect the performance of the quantum compres-
sion to be inversely correlated with the information cost of
exact quantum modeling.

We can also deduce the features that would be most
stubborn to compress. Consider our discussion above,
comparing the exponential sum with expressing the func-
tion in the Laplace basis. Given that we want our sum
to have as few terms as possible, problematic functions
are those that are highly localized, as they have large
spread in the Laplace basis. Indeed, the ultimate limit
of this—δ functions—represent deterministic renewal pro-
cesses; such processes do not allow a quantum advantage
even in information cost in exact compression settings
[34,37]. In Appendix C, we provide a case study of the
performance of our quantum-compression protocol applied
to a series of top-hat wait-time distributions of decreas-
ing width. These processes represent increasingly accurate
models of ideal clocks [48,60] and are also similarly dif-
ficult for classical compression methods. More generally,
processes dominated by such sharp peaks are resistant to
quantum compression in the information cost [37] and so
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can be expected to also present difficulties for methods of
compressing the memory dimension such as ours.

VI. DEPLOYMENT WITH GENERAL
CONTINUOUS-TIME STOCHASTIC PROCESSES

A. Generalizing the protocol

Algorithm 1—our protocol for compressing quantum
models of renewal processes—can be adapted to com-
press the temporal aspect of quantum models of general
continuous-time processes with multiple modes and events
[39,41].

Consider such a process with modes g ∈ G, events x ∈
X and a transition dynamic �. The dynamic � effects
an evolution according to P(X , G′|G, T←−0 ) describing the
probability density of an event x occurring accompanied by
a transition into mode g′ in the next infinitesimal interval dt
given that the system is currently in mode g, with time t←−0
since the last event. Following the corresponding literature
on memory-minimal classical models [41], we assume a
HSMM representation of the process where the subsequent
mode is uniquely determined by (g, x)—independent of t0.
This is a slightly stronger condition than strictly necessary
for the model to be causal and we discuss its relaxation
later.

Along with the modal wait-time distributions
∑

xg′ P
(x, g′|g)φx

g′g(t), we can define a corresponding modal
survival probability �g(t) =

∑
xg′

∫∞
t P(x, g′|g)φx

g′g(t
′)dt′

[39]. From these, one can then define a set of quantum
memory states {|ςgt←−

0
〉} and evolution Uδt such that [61]

Uδt|ςgt〉|0〉 : =
√
�g(t+ δt)
�g(t)

|ςgt+δt〉|0〉

+
∑

xg′

√
√
√
√

∫ t+δt
t P(x, g′|g)φx

g′g(t
′)dt′

�g(t)
|ςg′0〉|x〉.

(11)

We are now in a position to generalize Algorithm 1 for
such processes. It transpires that this is, for the most part,
simply a case of repeating the steps for renewal processes
multiple times for each of the dwell functions.

To generalize steps 1 and 2, we define a function
ψx

g′g(t) :=
√
φx

g′g(t) for each of the dwell functions and,

analogous to the case of renewal processes, approximate
each of them by finite exponential sums ψ̃x

g′g(t):

ψ̃x
g′g(t) =

N∑

j=1

cg′gx
j e(−γ

g′gx
j +iωg′gx

j )t. (12)

Generalizing steps 3–5, we then similarly use these to
construct a set of generator states {|ϕg′gx

j 〉}, again defined

implicitly in terms of an evolution operator:

Ũδt|ϕg′gx
j 〉|0〉 = e(−γ

g′gx
j +iωg′gx

j )δt|ϕg′gx
j 〉|0〉

+
√

1− e−2γ g′gx
j δt|ς̃g′0〉|x〉. (13)

Here, we analogously define memory states as linear com-
binations of these generator states:

|ς̃gt〉 ∝
∑

xg′j

√
P(x, g′|g) cg′gx

j
√

2γ g′gx
j

e(−γ
g′gx
j +iωg′gx

j )t|ϕg′gx
j 〉.

(14)

This implicit definition can be used to determine the over-
laps of the generator states, from which a reverse Gram-
Schmidt procedure can be used to express them explicitly
in terms of (at most) N |X ||G| orthonormal basis states
[62]. In turn, the evolution operators and memory states
may be expressed in this basis, completing the protocol.

We remark on a useful feature of this compression—that
the modal wait-time distributions maintain their struc-
ture as a product of symbolic dynamics and a temporal
component—with only this latter factor modified. That
is, the compressed quantum models have the statistics
of a process with the same transition topology but now
with modal wait-time distributions

∑
xg′ P(x, g′|g)φ̃x

g′g(t),
where φ̃x

g′g(t) = |ψ̃x
g′g(t)|2. This distortion introduces

errors only in terms of the times when events occur and not
the probability with which they occur. Moreover, the prod-
uct structure entails that the distortion in the statistics of
the compressed quantum model is no greater than the worst
of the distortions of the φx

g′g(t) and that the errors in each
interevent interval are independent. Thus, the performance
of the protocol seen in the renewal process examples will
still hold in this generalized setting. The memory of the
resultant quantum model will be compressed to at most
N |X ||G| dimensions.

B. Example

As an illustration of how the general case is little more
than a straightforward application of Algorithm 1 for mul-
tiple times, we apply it to an example process consisting
of dwell functions that are based on the examples above.
Specifically, the process has two modes gA, gB and two pos-
sible events x, y, with the dwell function of both modes
corresponding to an alternating Poisson process for event
x and a bimodal Gaussian process for event y, and a tran-
sition structure such that the mode changes on event x and
remains constant on event y; the probability of each event
is different for the two modes. This is depicted as a HSMM
in Fig. 5(a).

We measure the error in the accuracy as the average
KS statistic, where the average is taken over events (for
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(a)

(b)

FIG. 5. (a) An HSMM representation of the example discussed
in Sec. VI B. (b) The corresponding averaged KS statistic with a
32-dimensional memory for the full (p , q) parameter range.

simplicity, we scale all dwell functions to have the same
average mean firing rate, such that this also essentially cor-
responds to the average over time). That is, the average KS
statistic K̄S :=∑

xgg′ KS[φx
g′g(t), φ̃

x
g′g(t)]P(x, g). It is pos-

sible to apply the KS statistic in this way as the errors are
constrained to a single interevent interval and there is no
crossover of errors between the dwell functions of different
events. Moreover, we need not calculate the approxima-
tions of the dwell functions anew—the approximations
(and corresponding errors) found in Sec. IV are the very
same approximations needed. In Fig. 5(b), we plot this
for the full (p , q) parameter range for N = 8 (requiring
32 memory dimensions in total). Of note are the limits
p = q = 0 (corresponding to only an alternating Poisson
process) and p = q = 1 (corresponding to only a bimodal
Gaussian process) where the errors take on their minimum
and maximum, respectively, matching with those found
for the renewal processes, while the error for the remain-
der of the parameter space interpolates between these two
limits. Note that we neglect the extra dimensions made
available by linear dependencies of generator states at
the exceptional parameter regimes p = 0, 1, q = 0, 1, and
p = q.

C. Scope for improvement?

Above, we follow the classical condition that the
HSMM representation is such that the symbol and cur-
rent mode alone determine the next mode. Yet the quantum
models described in Eq. (11) still function correctly—and
remain causal—with only the weaker condition on the
HSMM representation that the triple (g, x, t0) suffices to
determine the subsequent mode. That is, emission of a

(a)

(b)

FIG. 6. (a) A HMM representation of a transition that does
not satisfy the classical condition on mode update rules. (b) An
example of spurious overlap of dwell functions introduced by
the compression protocol. The dashed lines show the exact dwell
functions, the solid lines the approximations, and the green areas
the regions of overlap.

given symbol from a given mode can result in a tran-
sition to two (or more) possible different modes, pro-
vided that also knowing the time spent in the current
mode then provides sufficient information to determine
the next mode. That is, the classical convention requires
H(G′|G, X ) = 0, while the exact quantum models assume
only that H(G′|G, X , T0) = 0 [here, H(.) is the Shannon
entropy [63] ]. An example of such a transition satisfying
only the weaker condition is illustrated in Fig. 6(a).

However, in the case where only this weaker condi-
tion holds, there can be interference between the generator
states corresponding to transitions with the same symbol
and initial mode but a different end mode. This mani-
fests from errant overlaps of the approximate dwell func-
tions φ̃x

g′g(t): while
∫∞

0 φx
g′g(t)φ

x
g′′g(t)dt = 0∀x, g, g′, g′′ �=

g′, this may not hold true for the φ̃x
g′g(t). That is,

there may be times t for which φ̃x
g′g(t) and φ̃x

g′′g(t)
(g′′ �= g′) are simultaneously nonzero, violating the con-
dition H(G′|G, X , T0) = 0. Such a violation cannot occur
under the stronger classical condition, as we are already
guaranteed that there is at most one g′ for each pair (g, x)
for which φx

g′g(t) [and thus φ̃x
g′g′(t)] is not zero everywhere.

As an example, consider a process where the dwell
time associated with mode g and event x is uniformly
distributed over the interval [0, τ ], with the system tran-
sitioning into mode g′ if the dwell time is less than τ/2
and into g′′ if it is greater than (or equal to) τ/2. Then,
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φx
g′g(t) is a uniform distribution over [0, τ/2) and φx

g′′g(t)
a uniform distribution over [τ/2, τ ]. When we parse this
through the compression protocol, the approximated dis-
tributions have a nonzero overlap and so have interfering
probability amplitudes. This is illustrated in Fig. 6(b) for
N = 16.

This interference requires us to modify the symbolic
transition probabilities P(X , G′|G) to an approximate form
P̃(X , G′|G) in order to appropriately normalize the mem-
ory states, which will correspondingly distort the transition
structure. In particular, it can result in the model transition-
ing to superpositions of memory states, manifesting new
(potentially infinitely many) effective modes. While these
effective modes do not require additional memory dimen-
sions to track (as they are linear combinations of existing
memory states), they do allow for a gradual accumulation
of errors over time, as the errors are now able to propagate
across multiple interevent intervals. A further complication
is presented in the freedom of choice in how to actually
assign P̃(X , G′|G) to enforce proper normalization—while
a simple rescaling of P(X , G′|G) would work, it is also
possible to achieve this with an uneven rescaling, which
may result in greater accuracy by offsetting the effect of
the interference.

Note that the magnitude of the interference scales with
the overlaps of the memory states for each mode—and
hence the overlaps of their statistics: thus, the more distin-
guishable the statistics of the modes are, the smaller is the
distortion. Further, as noted above, with the stronger con-
dition imposed on classical models these overlaps cannot
occur and thus when compressing a given such classical
model we can sidestep such interference. Nevertheless,
embracing this weaker condition may unlock even greater
compression potential; we leave the optimization of the
P̃(X , G′|G) in such settings as an open question for future
work.

VII. DISCUSSION AND CONCLUSIONS

We have introduced a lossy compression protocol for
the quantum modeling of stochastic temporal dynam-
ics. By harnessing nonclassical features of quantum state
spaces—namely, that sets of quantum states can be at once
linearly dependent and nondegenerate—an effective coarse
graining of the state space inhabited by a quantum memory
can be realized. This achieves a much greater compres-
sion than is possible with analogous classical methods
and exact quantum compression alike. The relaxation from
exact to near-exact replication naturally fits into applica-
tions where the dynamics of the system to be modeled
have been inferred through observation [64,65] and are
thus already an approximation of the true dynamics. This
also brings the additional benefit of placing less demand
on the precision of the quantum processor implementing

the simulation, which in current realistic settings should
not be assumed to be noiseless.

Going forward, our work encourages the development
of similar lossy compression beyond tracking the tempo-
ral component of stochastic processes. For example, the
framework can be applied to compress quantum clocks
[48,60] and motivates the extension to other models with
continuous state spaces, such as belief spaces [66,67] used
in reinforcement learning [68]. Further avenues include
development of analogous methods for compressed mod-
eling of purely symbolic dynamics and input-output pro-
cesses [69].

Furthermore, in spite of the significant compression
advantage offered by our protocol, it is by no means
optimal. Two aspects we foresee as presenting opportu-
nities for enhancing the compression are in the choice
of algorithm for constructing an approximate exponential
sum and in allowing for more general complex ψ(t) to
be considered. Pursuing the former of these may allow
for more faithful approximations of the wait-time distri-
bution without increasing the number of allowed states.
In the latter, we have a family of functions we can
attempt to approximate and we need only take the one
that we can most faithfully represent. In the case of gen-
eral continuous-time processes, the question remains open
how to best handle cases where the classical condition that
the dynamics factor into a product of temporal and sym-
bolic dynamics does not hold. Further improvements in
this regime may also be found by taking a more holis-
tic approach that coarse grains the Hilbert space in terms
of symbolic and temporal dynamics simultaneously. Nev-
ertheless, even in this initial foray, we see the potential
for drastic improvement over classical techniques. More-
over, the high fidelities reached with comparatively few
dimensions places it well within reach of current and near-
term small-scale quantum processors with only a handful
of qubits [33,70], offering exciting prospects for imminent
experimental realizations.
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APPENDIX A: APPROXIMATE EXPONENTIAL
SUMS

In Algorithm 1, step 2 requires that we construct an
exponential sum approximating the square root of the wait-
time distribution. Here, we use the method of Beylkin and
Monzón [56], summarized in Algorithm 2.

020342-10



QUANTUM COARSE GRAINING FOR EXTREME DIMENSION. . . PRX QUANTUM 2, 020342 (2021)

Algorithm 2 Approximate exponential sum [56]

For our purposes, to obtain an N -term approximate sum,
we keep only the triples with the N largest magnitudes for
weights {|cj |}. Prior to this, we also discard any terms with
nonpositive γj [to ensure a valid quantum state of the form
Eq. (2) can be constructed] and rescale the weights by a
constant factor to ensure that the sum has unit L2 norm.
By varying the precision ε, we obtain different decompo-
sitions, with truncation to fewer terms favoring larger ε
and, conversely, larger number of terms performing better
with smaller ε. In our examples, we take M = 1000 and
vary ε to find the most accurate decomposition for each
N (according to the KS statistic), ultimately using values
in the range 10−12 to 10−1. We use the ROOTS function
of GNU OCTAVE [71] to numerically solve the polyno-
mials and c = (VTV)−1VTh to solve the overconstrained
Vandermonde system.

APPENDIX B: LOSSY CLASSICAL
COMPRESSION METHOD

As shown in Fig. 2, the transition structure between
the memory states of the ε-machine of a renewal process
takes the form of an incrementing counter that resets upon
events. A finite-dimensional approximation must adopt the
structure of Fig. 7, where the counter progresses up to
a terminal state, upon which it loops back to an earlier
state [32]. The variable parameters are the transition prob-
abilities {pj }, the time-step size �t, and the target state of
the loop R.

The optimal lossy classical compression at fixed dimen-
sion is found by minimizing the associated cost func-
tion over all possible choices of these parameters. We
use a standard gradient-descent-based approach to seek
the minimum of the KS statistic. For each possible
choice of loop state R, we generate W seeds of ran-
dom parameters for ({pj },�t) and run S steps of update

0 Δt . . . RΔt . . . NΔt
0 : p1

1 : 1 − pN

0 : pN

FIG. 7. The HMM topology of the most accurate (N + 1)-
dimensional approximation of a renewal process. The variable
parameters are the transition probabilities {pj }, the time-step size
�t, and the position of the loop R.

according to pj → pj − ηp∇j D({pj },�t) and �t→ �t−
ηt∇tD({pj },�t), where D is the KS statistic (with hard con-
straints to ensure that the parameters remain physical). We
then keep the final parameter set that reaches the minimum
value of D across all choices of loop state and seeds. As
with the quantum method, we rescale the wait-time distri-
bution to the domain [0, 1] and for purposes of numerical
evaluation discretize it into 1000 steps. We again remark
that we do not claim this method to necessarily yield the
very optimal lossy classical compression at fixed dimen-
sion but simply that it should offer a ballpark figure as to its
performance. That is, we believe it is reasonable to expect
that the optimal classical compression will not perform
significantly better than the explicit examples we find here.

We generate the initial seeds for {pj } uniformly in the
interval [0, 1] and�t exponentially decaying. For the alter-
nating Poisson process, we find the best performance by
taking learning rates ηp = 10−4 and ηt = 10−8, with gra-
dients estimated over discrete intervals δp = 10−3 and
δt = 10−4. Empirically, the descents appear to converge on
a minimum within S = 12 500N steps and running more
than W = 1000 seeds for each loop state does not seem
to yield any improved minima. For the bimodal Gaussian
process, we find the best performance with much the same
parameters; a slight improvement is found by increasing
the learning rates by a factor of 10 for the first 1250N
steps of descent, whereupon convergence is reached within
S = 6250N steps.
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FIG. 8. KS statistics showing the performance of compressed
quantum models for renewal processes with top-hat distributions
of varying width.
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APPENDIX C: COMPRESSION OF TOP-HAT
DISTRIBUTIONS

In Sec. V, we discuss how wait-time distributions with
sharp peaks are hard to compress. Here, we illustrate this
with a case study of renewal processes with top-hat dis-
tributions, showing how the performance of the quantum
compression degrades with narrowing of the width.

Such top-hat distributions of width �t take on uniform
values between τ −�t and τ (and zero elsewhere), with τ
forming a arbitrary scaling factor. We consider the cases
�t/τ = 20, 21, . . . , 25 and use Algorithm 1 to construct
quantum models of between one- and five-qubit memo-
ries. In running Algorithm 2, we set M = 6000 and place
τ at 512, with the long time scale properly accounting for

FIG. 9. The wait-time distributions (left) and survival prob-
abilities (right) of four-qubit compressed quantum models for
renewal processes with top-hat distributions of varying width
(arbitrary units).

the long tails of the poorer-performing models. The best
performance is found for ε in the range of 10−3 to 102.

In Fig. 8, we plot the KS statistic found for the quan-
tum models, truncated to the smallest width that the model
can simulate with a KS statistic below 0.45 (note that
a memoryless model of any process exists with a KS
statistic no greater than 0.5). We see that each halv-
ing of the width requires an additional qubit to model
with roughly the same accuracy, as one would intuitively
expect—in the classical case, doubling the number of
states allows a model with half the time-step size. As
a point of comparison, consider that a classical model
with N < τ/�t cannot beat a KS statistic of 0.5; to see
this, consider that the best classical model in this instance
would be a deterministic counter that emits only on the
last state, positioned to coincide with the time where
�(t) = 0.5. In Fig. 9, we compare wait-time distributions
and survival probabilities of the compressed four-qubit
quantum models to their exact counterparts for each of
the widths. As the width narrows, the periodicity of the
approximate distributions can be seen, due to competition
between suppressing these spurious peaks with the expo-
nential decay and the need to not suppress the modeled
peak.
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