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Estimating and reducing the overhead of fault-tolerance (FT) schemes is a crucial step toward realizing
scalable quantum computers. Of particular interest are schemes based on two-dimensional (2D) topologi-
cal codes such as the surface and color codes that have high thresholds but lack a natural implementation
of a non-Clifford gate. In this work, we directly compare two leading FT implementations of the T gate in
2D color codes under circuit noise across a wide range of parameters in regimes of practical interest. We
report that implementing the T gate via code switching to a three-dimensional (3D) color code does not
offer substantial savings over state distillation in terms of either space or space-time overhead. We find a
circuit-noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below
that achievable by state distillation in the same setting. To arrive at these results, we provide and simulate
an optimized code-switching procedure, and bound the effect of various conceivable improvements. Many
intermediate results in our analysis may be of independent interest. For example, we optimize the 2D color
code for circuit noise yielding its largest threshold to date 0.37(1)%, and adapt and optimize the restric-
tion decoder finding a threshold of 0.80(5)% for the 3D color code with perfect measurements under Z
noise. Our work provides a much-needed direct comparison of the overhead of state distillation and code
switching, and sheds light on the choice of future FT schemes and hardware designs.
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Recent progress in demonstrating operational quantum
devices [1–5] has brought the noisy intermediate-scale
quantum era [6], where low-depth algorithms are run on
small numbers of qubits. However, to handle the cumula-
tive effects of noise and faults as these quantum systems
are scaled, fault-tolerant (FT) schemes [7–15] will be
needed to reliably implement universal quantum compu-
tation. FT schemes encode logical information into many
physical qubits and implement logical operations on the
encoded information, all while continually diagnosing and
repairing faults. This requires additional resources, and
much of the current research in quantum error correction
(QEC) is dedicated toward developing FT schemes with
low overhead.
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The choice of FT scheme to realize universal quantum
computing has important ramifications. Good schemes can
significantly enhance the functionality and lifetime of a
given quantum computer. Moreover, FT schemes vary in
their sensitivity to the hardware architecture and design,
such as qubit quality [16], connectivity, and operation
speed. The understanding and choice of FT scheme will
therefore influence the system design, from hardware to
software, and developing an early understanding of the
trade-offs is critical in our path to a scalable quantum
computer.

At the base of most FT schemes is a QEC code, which
(given the capabilities and limitations of a particular hard-
ware platform) should (i) tolerate realistic noise, (ii) have
an efficient classical decoding algorithm to correct faults,
and (iii) admit a FT universal gate set. In the search of
good FT schemes we focus our attention on QEC codes
that are known to achieve as many of these points as possi-
ble with low overhead. Topological codes are particularly
compelling as they typically exhibit high accuracy thresh-
olds with QEC protocols involving geometrically local
quantum operations and efficient decoders; see, e.g., Refs.
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FIG. 1. Two methods of preparing high-fidelity T states encoded in the 2D color code: state distillation and code switching. Both
approaches are implemented using quantum-local operations in 3D, i.e., noisy quantum operations are geometrically local, whereas
ideal classical operations can be performed globally. In state distillation, many noisy encoded T states are produced and fed into a
Clifford distillation circuit. In code switching, one switches to the 3D color code, where the transversal T gate is implemented.

[15,17–31]. Two-dimensional (2D) topological codes such
as the toric code [32,33] and the color code [34] are par-
ticularly appealing for superconducting [35–37] and Majo-
rana [38,39] hardware, where qubits are laid out on a plane
and quantum operations are limited to those involving
neighboring qubits.

The FT implementation of logical gates with 2D topo-
logical codes poses some challenges. The simplest FT
logical gates are applied transversally, i.e., by indepen-
dently addressing individual physical qubits. These gates
are automatically FT since they do not grow the support of
errors. Unfortunately a QEC code that admits a universal
set of transversal logical gates is ruled out by the Eastin-
Knill theorem [40–42]. Furthermore, in 2D topological
codes such gates can only perform Clifford operations
[43–46]. There are, however, many innovative approaches
to achieve universality, which typically focus on imple-
menting non-Clifford logical gates [47–49], which achieve
universality when combined with the Clifford gates.

The standard approach to achieve universality with 2D
topological codes is known as state distillation [50–52].
It relies on first producing many noisy encoded copies
of a T state |T〉 = (|0〉 + eiπ/4|1〉)/√2, also known as a
magic state, and then processing them using Clifford oper-
ations to output a high-fidelity encoded version of the state.
The high-fidelity T state can then be used to implement
the non-Clifford T = diag(1, eiπ/4) gate. Despite signifi-
cant recent improvements, the overhead of state distillation
is expected to be large in practice [35,53,54]. A compelling
alternative is code switching via gauge fixing [55–58] to
a three-dimensional (3D) topological code, which has a
transversal T gate. The experimental difficulty of moving
to 3D architectures could potentially be justified if it signif-
icantly reduces the overhead compared to state distillation.
To compare these two approaches and find which is most
practical for consideration in a hardware design, a detailed
study is required.

In our work, we estimate the resources needed to pre-
pare high-fidelity T states encoded in the 2D color code,
via either state distillation or code switching. We assume
that both approaches are implemented using quantum-
local operations [59] in three dimensions, i.e., quantum
operations are noisy and geometrically local, whereas clas-
sical operations can be performed globally and perfectly
(although they must be computationally efficient). In par-
ticular, we simulate these two approaches by implementing
them with noisy circuits built from single-qubit state prepa-
rations, unitaries and measurements, and two-qubit uni-
taries between nearby qubits. For state distillation, this 3D
setting allows a stack of 2D color-code patches, whereas
for code switching it allows implementation of the 3D
color code; see Fig. 1. We then seek to answer the fol-
lowing question: to prepare T states of a given fidelity,
are fewer resources required for state distillation or code
switching?

Our main finding is that code switching does not
offer substantial savings over state distillation in terms of
both space overhead, i.e., the number of physical qubits
required, and space-time overhead, i.e., the space over-
head multiplied by the number of physical time units
required; see Fig. 2. State distillation significantly out-
performs code switching over most of the circuit-noise
error rates 10−4 ≤ p ≤ 10−3 and target T state infidelities
10−20 ≤ pfin ≤ 10−4, except for the smallest values of p ,
where code switching slightly outperforms state distilla-
tion. In our analysis we carefully optimize each step of
code switching, and also investigate the effects of replacing
each step by an optimal version to account for poten-
tial improvements. On the other hand, we consider only
a standard state-distillation scheme, and using more opti-
mized schemes such as Refs. [60–62] would give further
advantage to a state-distillation approach. We also find
asymptotic expressions that support our finding that state
distillation requires lower overhead than code switching
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FIG. 2. Comparison of (a),(c),(e) the qubit and (b),(d),(f) space-time overhead as a function of the infidelity pfin of the output T
state for state distillation and code switching. Possible future improvements of any steps of our code-switching protocol would be
included within the shaded region. Note there is no code-switching curve for p = 0.001 without assuming optimistic improvements to
the protocol as this is higher than the observed threshold for code switching.

for p � 1 and log pfin/ log p � 1. In particular, the space
and space-time overhead scale as (log pfin/ log p)�∗ and
(log pfin/ log p)�∗+1, respectively, where �CS = 3 for code
switching and �SD = log3 15 = 2.46 . . . for the distillation
scheme we implement.

To arrive at our main simulation results, we accomplish
the intermediate goals below.

2D color-code optimization and analysis.— In Sec. II,
we first adapt the projection decoder [30] to the setting
where the 2D color code has a boundary and syndrome
extraction is imperfect, as well as optimize the stabilizer
extraction circuits. We find a circuit noise threshold greater

than 0.37(1)%, which is the highest to date for the 2D color
code, narrowing the gap to that of the surface code. We also
analyze the noise equilibration process during logical oper-
ations in the 2D color code and provide an effective logical
noise model.

Noisy state-distillation analysis.—Using the effective
logical noise model, we carefully analyse the overhead
of state distillation in Sec. III. We strengthen the bounds
on failure and rejection rate by explicitly calculating the
effect of faults at each location in the Clifford state-
distillation circuits rather than simply counting the total
number of locations [35,53,63–65]. We remark that we
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stack 2D color codes in the third dimension to imple-
ment logical operations such as the controlled NOT (CNOT)
gate in constant time, whereas strictly 2D approaches such
as lattice surgery would require a time proportional to
code distance. The circuit-noise threshold for this state-
distillation scheme with the 2D color code is equal to the
error-correction threshold of 0.37(1)%.

Further insights into 3D color codes.— In Sec. IV, we
provide a surprisingly direct way to switch between the 2D
color code and the 3D subsystem color code. Our method
exploits a particular gauge fixing of the 3D subsystem
color code for which the code state admits a local tensor
product structure in the bulk and can therefore be prepared
in constant time. We also adapt the restriction decoder [31]
to the setting where the 3D color code has a boundary and
optimize it, which results in a threshold of 0.80(5)% in the
setting of perfect measurements and a better performance
for small system sizes.

End-to-end code-switching simulation.—Sec. V is the
culmination of our work, where building upon results from
the previous sections we provide a simplified recipe for
code switching, detailing each step, and specifying impor-
tant optimizations. In our simulation, we exploit the special
structure of the 3D subsystem color code to develop a
method of propagating noise through the T gates in the
system, despite the believed computational hardness of
simulating general circuits with many qubits and T gates.
We numerically find the failure probability of implement-
ing the T gate with code switching as a function of the
code distance and the circuit-noise strength, which, in
turn, allows us to estimate the T-gate threshold to be
0.07(1)%. We not only find numerical estimates of the
overhead of the fully specified protocol, but also bound
the minimal overhead of a code-switching protocol with
various conceivable improvements, such as using optimal
measurement circuits, and optimal classical algorithms for
decoding and gauge fixing of the 3D color code.

This work, which builds upon early approximate estima-
tion work in Refs. [66] and [67], provides a much-needed
comparative study of the overhead of state distillation and
code switching, and enables a deeper understanding of
these two approaches to FT universal quantum computa-
tion. More generally, careful end-to-end analyses with this
level of detail will become increasingly important to iden-
tify the most resource-efficient FT schemes and, in turn,
to influence the evolution of quantum hardware. Although
our study focuses on color codes, we expect our main
finding, i.e., that code switching does not significantly
outperform state distillation, to hold for other topological
codes such as the toric code as considered in Ref. [49]. Fur-
thermore, our intuition suggests that state distillation will
not be outperformed by code switching exploiting either
2D subsystem codes [68–70] or emulation of a 3D system
with a dynamical 2D system [71–74] since these schemes
are even more constrained than when 3D quantum-local

FIG. 3. Flow diagram illustrating the organization and depen-
dencies between different sections of the paper.

operations are allowed. We remark that there are other
known FT techniques for implementing a universal gate
set [12,75–79], however they are not immediately applica-
ble to large-scale topological codes. Nevertheless, we are
hopeful that there are still new and ingenious FT schemes
to be discovered that could dramatically reduce the over-
head and hardware requirements for scalable quantum
computing.

The structure of the paper is summarized in Fig. 3.

I. BACKGROUND MATERIAL

In this section we review some relatively standard
but important background material that we will refer to
throughout the paper. In Sec. I A we describe the noise
models and simulation approaches that we use to analyze
and simulate state distillation and code switching. In Sec.
I B we provide some basic information about the color
codes. In Sec. I C we review how to implement logical
operations using 2D color codes. Finally in Sec. I C we
review state distillation.

A. Noise and simulation

The noise model we use throughout the paper is the
depolarizing channel, which on single- and two-qubit
density matrices ρ(1) and ρ(2) has the action

E (1)p : ρ(1) �→ (1 − p) ρ(1) + (p/3)
∑

P∈{X ,Y,Z}
Pρ(1)P, (1)

E (2)p : ρ(2) �→ (1 − p) ρ(2) + (p/15)

×
∑

P1,P2∈{I ,X ,Y,Z}
P1⊗P2 �=I⊗I

(P1 ⊗ P2)ρ
(2)(P1 ⊗ P2), (2)

where the parameter p can be interpreted as an error proba-
bility. The depolarizing channel leaves a single-qubit state
unaffected with probability 1 − p and applies an error X , Y,
or Z, each with probability p/3. Similarly, the depolarizing
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FIG. 4. (a) Example of an ideal circuit to measure weight-two
operator ZZ. We assume that every gate, as well as prepara-
tion and single-qubit measurements take one time unit. (b) The
noisy circuit is modeled with ideal gates followed by the depo-
larizing channel of strength p; ideal preparation can fail and
produce a state orthogonal to the desired one with probability
p , and the outcome of the ideal measurement can be flipped with
probability p .

channel leaves a two-qubit state unaffected with probabil-
ity 1 − p and with probability p/15 applies a nontrivial
Pauli error P1 ⊗ P2.

We consider three standard scenarios.

1. Depolarizing noise.—Error correction is imple-
mented with perfect measurements following a sin-
gle time unit, during which single-qubit depolariz-
ing noise of strength p acts. This is often referred to
in the literature as the code capacity setting.

2. Phenomenological noise.—Error correction is
implemented with perfect measurements follow-
ing each time unit, during which single-qubit
depolarizing noise of strength p acts. However,
the measurement outcome bits are flipped with
probability p .

3. Circuit noise.—Measurements are implemented
with the aid of ancilla qubits and a sequence of
one- and two-qubit operations; see Fig. 4(a). One-
and two-qubit unitary operations experience depo-
larizing noise of strength p . One-qubit preparations
and measurements fail with probability p by produc-
ing an orthogonal state or flipping the outcome; see
Fig. 4(b).

In circuit noise, we approximate every noisy gate, i.e.,
Pauli X , Y, and Z operators, the Hadamard gate H , the
phase gate T, the CNOT gate, and the idle gate I , by an
ideal gate followed by the depolarizing channel on qubits
acted on by the gate; see Fig. 4. Preparations of the state
orthogonal to that intended occur with probability p , and
measurement outcome bits are flipped with probability p .
We assume that all the elementary operations take the same
time, which we refer to as one time unit.

For each of the three noise models, we use error rate
and noise strength interchangeably to describe the single
parameter p .

We assume a special form of noise on T states, which
is justified as follows. Consider an arbitrary single-qubit
state

ρ = ρ00|T〉〈T| + ρ01|T〉〈T⊥|
+ ρ10|T⊥〉〈T| + ρ11|T⊥〉〈T⊥|, (3)

written in the orthonormal basis {|T〉, |T⊥〉 = Z|T〉}. Now
consider a “twirling operation” consisting of randomly
applying the Clifford XS† ∝ |T〉〈T| − |T⊥〉〈T⊥|, with prob-
ability 1/2. This single-qubit Clifford gate can be imple-
mented instantaneously and perfectly by a frame update
[80]. The state is transformed as follows:

ρ �→ 1
2
ρ + 1

2
(XS†)ρ(XS†)†

= ρ00|T〉〈T| + ρ11|T⊥〉〈T⊥|. (4)

We therefore assume that the noisy T state is of the form
ρ = (1 − q)|T〉〈T| + q|T⊥〉〈T⊥|, or equivalently that each
T state is afflicted by a Z error with probability q. Due to
this simplified form of the noise, we use infidelity, which
is defined by 1 − 〈T|ρ|T〉, interchangeably with the noise
rate and noise strength to refer to the single parameter q
when describing errors on T states.

For the purpose of defining pseudothresholds later, we
find it useful to define the physical error probability pphy(t)
for a time t as the probability that a single physical qubit
will have a nontrivial operator applied to it over t time
units under this noise model. It can be calculated as
follows:

pphy(t) = 1 −
∑

P1P2···Pt=I

Pr(P1)Pr(P2) · · · Pr(Pt), (5)

where Pr(I) = 1 − p and Pr(X ) = Pr(Y) = Pr(Z) = p/3.
For example pphy(1) = p , pphy(2) = 2p(1 − p)+ 2p2/3,
etc. Note that limt→∞ pphy(t) = 3/4.

To simulate noise, for Clifford circuits we track the
net Pauli operator, which has been applied to the sys-
tem by noisy operations using the standard binary sym-
plectic representation. When non-Clifford operations are
involved, we use modified techniques, which are explained
throughout the text.

To estimate the statistical uncertainty of any quantity
of interest ξ we use the bootstrap technique, i.e., we
repeat sampling from the existing data set I = {I1, . . . , Ia}
to evaluate ξ = ξ(I). In particular, for i = 1, . . . , b we
(i) randomly choose a data points Ii(j ) from the data set
I , where i(j ) ∈ {1, . . . , a}, (ii) evaluate the quantity ξi =
ξ(Ii) using the data set Ii = {Ii(1), . . . , Ii(a)}. We remark
that the same data point can be chosen multiple times in
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step (i). We then estimate the quantity of interest to be

ξ = ξ̂ ±
√√√√

b∑

i=1

(ξ̂ − ξi)2

b − 1
, ξ̂ = 1

b

b∑

i=1

ξi. (6)

Note that when reporting estimated values, we use a digit
in parenthesis to indicate the standard deviation of the pre-
ceding digit. For example, we write 0.021(3) in place of
0.021 ± 0.003.

We often consider the failure probability p task of various
tasks using a distance d code and noise strength p . We use
the following ansatz that characterizes the generic feature
that p task decreases exponentially with d for any p below
the threshold value p∗, i.e.,

p task(p , d) = α(p)β(p)d, (7)

where α(p) and β(p) are functions of p alone. In partic-
ular, β(p) is smaller than one for p < p∗. This can be
considered a generalization of the heuristic behavior of
error-correction failure rate (p/p∗)(d+1)/2 in topological
codes for error rate p in the vicinity of their threshold p∗
[35,81,82].

B. Basics of 2D and 3D color codes

Here we briefly review some important features of color
codes, focusing on 2D and 3D. We also specify the lattices
and some notation we use throughout the paper. For a more
complete review of the topics covered in this subsection,
see Refs. [57,66,83].

Color codes are topological QEC codes, which can be
defined on any D-dimensional lattice composed of D-
simplices with (D + 1)-colorable vertices, where D ≥ 2.
Recall that i-simplices for i = 0, 1, 2, 3 are vertices, edges,
triangles, and tetrahedra, respectively. Qubits are placed
on D-simplices of the lattice; X - and Z-type gauge gen-
erators are on (D − 2 − z)- and (D − 2 − x)-simplices,
and X - and Z-type stabilizer generators are on x- and z-
simplices, where x, z ≥ 0 and x + z ≤ D − 2. We say an
operator is on a k-simplex when its support comprises all
the D-simplices containing that k-simplex.

In this paper, we focus on color codes on two partic-
ular (families of) lattices: a 2D triangular lattice with a
triangular boundary L2D, and a 3D bcc lattice with a tetra-
hedral boundary L3D; see Fig. 5. We occasionally refer to
L2D as the triangular lattice and L3D as the tetrahedral
lattice. Most of the time we rely on context and drop the
subscript, simply writing L. Members of these lattice fam-
ilies are parameterized by the code distance d = 3, 5, 7, . . .
of color codes defined on them. We typically work with
the dual lattice L, but occasionally make use of the primal
lattice L∗. We remark that the graph constructed from the
vertices and edges of the primal lattice L∗ is bipartite [83];
see Fig. 5(a).

Given a lattice L, it is useful to define �k(L) as the set
of all k-simplices in L. We abuse notation and write β ∈
�b(α) (or equivalently β ⊆ α) to denote that a b-simplex β
belongs to an a-simplex α, where 0 ≤ b ≤ a ≤ D. It is also
useful to construct the color-restricted lattice LK, where K
is a set of colors, by removing from L all the simplices,
whose vertices have colors not only in K. For example, the
restricted lattice LRG is obtained by keeping all the vertices

(a)
(b)

FIG. 5. Illustration of color-code lattices L2D and L3D for d = 9; see Appendix A for details. (a) The lattice L2D (gray edges with
R, G, and B vertices) and the corresponding primal lattice L∗

2D (black edges, black and white vertices). Qubits are placed at triangles in
L2D (vertices in L∗

2D), whereas X - and Z-stabilizer generators correspond to interior vertices in L2D (faces in L∗
2D). (b) For the lattice

L3D, qubits are identified with tetrahedra, whereas X - and Z-stabilizer generators correspond to interior vertices and interior edges,
respectively. Note that L2D can be obtained from L3D by retaining only those vertices connected to the boundary vertex vY along with
the edges and faces containing only those vertices.
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of color R or G, as well as all the edges connecting them.
We refer to the edges in LRG as RG edges; similarly for
other colors. For any subset of edges γ ⊆ �1(L) and any
vertex v ∈ �0(L) we define a restriction γ |v as the subset
of edges of γ incident to v. We separate vertices in L into
two types: boundary vertices [the three and four outermost
vertices in Figs. 5(a) and 5(b), respectively], and all others,
which we call interior vertices. We call edges connecting
two boundary vertices boundary edges [there are three and
six boundary edges in Figs. 5(a) and 5(b), respectively],
and call all other edges interior edges. More generally, we
denote the sets of interior objects by �′

k(L), which is the
set of all k-simplices in L containing at least one interior
vertex

On the 2D lattice, we define the stabilizer 2D color code
as follows. Qubits are on triangles, and both X - and Z-
stabilizer generators are on interior vertices �′

0(L). This
code has one logical qubit and stringlike logical operators.
One can implement the full Clifford group transversally on
the 2D color code.

On the 3D lattice, we can have either a stabilizer color
code [84] (with x = 0 and z = 1) or a subsystem color
code (with x = z = 0). In both cases, there is one logi-
cal qubit and the physical qubits are on tetrahedra. For
the 3D subsystem color code, X - and Z-stabilizer gener-
ators are on interior vertices�′

0(L), while X - and Z-gauge
generators are on interior edges�′

1(L). Recall that for sub-
system codes, logical Pauli operators come in two flavors:
bare logical operators, which commute with the gauge
generators, and dressed logical operators, which com-
mute with the stabilizer generators. In the 3D subsystem
color code, bare and dressed logical operators are sheet-
and stringlike, respectively. One can implement the full
Clifford group transversally on the 3D subsystem color
code.

For the 3D stabilizer color code, X - and Z-stabilizer
generators are on interior vertices�′

0(L) and interior edges
�′

1(L), respectively. The logical Pauli Z and X operators
are string- and sheetlike, respectively. Crucially, the T gate
is a transversal logical operator. To implement it, we split
the n qubits in L into two groups, (n + 1)/2 white tetra-
hedra and (n − 1)/2 black tetrahedra, such that no two
tetrahedra of the same color share a face. Applying T to
white qubits and T−1 to black qubits implements the logi-
cal T gate. For notational convenience we write T̃ = T±1,
determined by the color of the qubit.

Lastly, it is useful to introduce the notions of vector
spaces associated with the constituents of the lattice L
and linear maps between them. We define Ci to be a vec-
tor space over F2 with the set of i-simplices �i(L) as
its basis. Note that the elements of Ci are binary vec-
tors and we can identify them with the subsets of �i(L).
For any a, b ∈ [D] = {0, 1, . . . , D} we define a general-
ized boundary operator ∂a,b : Ca → Cb, which is an F2-
linear map specified on the basis element α ∈ �a(L) as

follows:

∂a,bα =
{∑

β∈�b(L):β⊇α β if a ≤ b,∑
β∈�b(L):β⊂α β if a > b.

(8)

We remark that the standard boundary operator ∂i : Ci →
Ci−1 is a special case of the generalized boundary opera-
tor ∂a,b above if we choose a = b + 1 = i. These boundary
maps are helpful in discussing error correction with the
color code. In particular, since the color code is a Calder-
bank Shor Steane (CSS) [85,86], we can cast the decoding
problem in terms of chain complexes, and treat X and Z
errors and correction independently [30,31]. For the 2D
color code, the boundary map ∂2,0 allows us to find for any
error configuration ε ⊆ �2(L2D) its pointlike syndrome
via ∂2,0ε, where ε is the support of either X or Z error. For
the 3D stabilizer color code, the syndromes of X and Z
errors correspond to looplike and pointlike objects and can
be found as ∂3,1ε and ∂3,0ε, where ε ⊆ �3(L3D) denotes
the support of X and Z error, respectively. In Sec. IV B
we discuss in detail the structure of the looplike gauge
measurement outcomes for the 3D subsystem color code.

C. Fault-tolerant computation with 2D color codes

Here we briefly review an approach to implement quan-
tum computation with a 3D stack of the 2D color codes as
in Fig. 6(a). Note that alternatively we could lay out the
2D color codes on a 2D plane and use lattice surgery [87],
although many of the elementary logical operations, e.g.,
CNOT gates, would be slower than for a stack.

Error correction and decoding.—On each patch of the
2D color code, QEC is continuously performed. We use
the term QEC cycle to refer to a full cycle of stabilizer
extraction circuits producing a syndrome σ , i.e., the set of
measured stabilizer generators with outcome −1.

In a scenario in which measurements are performed per-
fectly, a perfect measurement decoder is used to infer a
correction C for any error E given the input σ(E). The
correction C will return the system to the code space if
applied. The perfect measurement decoder fails if and only
if CE is a nontrivial logical operator.

In a scenario in which measurements are not perfect,
we consider a sequence of QEC cycles t = 1, . . . ncyc, with

(a)a) (b)

|T 〉
|ϕ〉 S T |ϕ〉

FIG. 6. (a) By stacking 2D color codes, one can implement
transversal CNOT and SWAP operations between adjacent patches
(colored in blue) with geometrically local gates. (b) A T state can
be used to implement a T gate via gate teleportation using only
Clifford operations.
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error Et introduced during each cycle, and observed syn-
drome σt for each. For simplicity we assume that the first
and last cycle have no additional error and that the syn-
drome is measured perfectly. Then a faulty measurement
decoder is a decoder with takes the full history of syn-
dromes σ1, σ2, . . . σncyc and outputs a correction C such that
CE1 · · · Encyc has trivial syndrome. The faulty measurement
decoder fails if and only if CE1 · · · Encyc is a nontrivial log-
ical operator. We discuss decoders for the 2D color code in
detail in Sec. II.

Logical operations.—The elementary logical operations
for the 2D color codes are implemented as follows.

(a) State preparation.—To prepare the |0〉 state each
data qubit is prepared in |0〉, then d QEC cycles are
performed, and the X -type syndrome outcomes σ
at the first cycle are inferred (d cycles are needed to
do so fault tolerantly). A Z-type fixing operator with
the syndrome σ is applied. The |+〉 state is prepared
analogously.

(b) Idle operation.—A single QEC cycle is performed.
(c) Single-qubit Clifford gates.—As the gates are

transversal, these are done in software by Pauli
frame updates so are instantaneous and perfect.

(d) CNOT gate.—This is implemented by the applica-
tion of a transversal CNOT between adjacent patches
in the stack, and followed by nafter

cyc QEC cycles; see
Sec. II D for details.

(e) SWAP gate.—This is implemented by swapping the
data qubits on adjacent patches, and followed by a
single QEC cycle.

(f) Measurement.—The readout of single-qubit mea-
surements in the X and Z basis is implemented by
measuring each data qubit in the X and Z basis. The
output bit string is then processed in two stages: (1)
a perfect measurement decoder is run to correct the
bit string such that it satisfies all stabilizers, and then
(2) the outcome is read off from the parity of the
corrected bit string restricted to the support of any
representative of the logical operator.

The above list consists of Clifford operations, which are
not by themselves universal for quantum computation. In
addition, we consider the following non-Clifford gate.

(a) T gate. It is implemented using gate teleportation
of an encoded T state |T〉 = (|0〉 + eiπ/4|1〉)/√2 as
shown in Fig. 6(b). We consider the production of
the encoded T state by both state distillation and
code switching.

D. State distillation

Here we briefly review state distillation [50,51], in
which Clifford operations are used with postselection to
convert noisy resource states into fewer but crucially

less-noisy resource states. In our analysis of the overhead
of state distillation in Sec. III, we consider only the stan-
dard 15-to-1 state-distillation protocol. However, given
the wide range of state-distillation protocols that have
been proposed in recent years, we take the opportunity
to attempt to consolidate the concepts behind them here.
In particular, we outline three classes of state-distillation
protocols, which to our knowledge include all known pro-
posals up to small variations. We then go on to describe a
family of protocols recently introduced by Haah and Hast-
ings [62], for which the 15-to-1 protocol that we consider
is a special instance. In our discussion here we assume
Clifford operations are perfect, although we relax that
assumption in Sec. III.

Let CR be an operator stabilizing a resource state |R〉,
i.e., CR|R〉 = |R〉, and UR

† be a non-Clifford unitary trans-
forming |R〉 into some stabilizer state |S〉, i.e., UR

†|R〉 =
|S〉. We refer to CR and UR as the resource stabilizer and
resource rotator, respectively, and throughout when we
write that UR should be applied, it can be implemented
using |R〉 by gate teleportation as in Fig. 6(b). The three
classes of state-distillation protocols are then summarized
as follows (and depicted Fig. 7).

(a) Code projector then resource rotator.—We use a
code with a transversal logical gate UR = UR ⊗
UR ⊗ · · · ⊗ UR. We prepare the (noisy) logical state
|R〉 by first encoding the logical stabilizer state
|S〉 and then implementing the transversal gate
UR (using n copies of the noisy resource state
|R〉). Unencoding |R〉 and postselecting on the +1
measurement outcomes of the stabilizers of the
code gives a distilled resource state with infidelity
reduced from q to O(qd) for code distance d. See
schemes in Refs. [50,60,62,88,89].

(b) Resource stabilizer then code projector.—We use
a code with a transversal logical gate CR = CR ⊗
CR ⊗ · · · ⊗ CR. We start with n noisy resource states
|R〉⊗n, which by definition satisfy CR|R〉⊗n = |R〉⊗n,
then measure the stabilizers of the code. If all mea-
surement outcomes are +1, then the state |R〉 has
been prepared, which can then be further decoded
to yield a distilled resource state |R〉 with infidelity
suppressed from q to O(qd). Note that this approach
seems less promising than the other two since the
probability of successful postselection is less than
one even for perfect resource states. See schemes in
[50,90].

(c) Code projector then resource stabilizer.—We use
a code with a transversal logical gate CR = CR ⊗
CR ⊗ · · · ⊗ CR and assume that URCRUR

† = P is
a Pauli operator [91]. First, we encode a resource
state |R〉 with infidelity q1 in the code, giving |R〉,
and then measure the logical operator CR and post-
select on the +1 outcome. To measure CR we use
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FIG. 7. The three known types of state-distillation schemes for
a resource state |R〉. Each wire represents a logical qubit of a QEC
scheme that fault tolerantly performs all Clifford gates. (a) We
need a code with a transversal non-Clifford gate UR, such that
UR|S〉 = |R〉 for some stabilizer state |S〉. (b) We need a code
with a transversal gate CR, such that CR|R〉 = |R〉. The measure-
ment of the stabilizers of the code will be probabilistic even when
|R〉 input is noiseless, with postselected state |φ(+1, . . . , +1)〉 =
|R〉. (c) We need a code with a transversal gate CR, such that
CR|R〉 = |R〉 and CR = URPUR

† for some Pauli operator P.

a measurement gadget consisting of the following
three steps. First, apply UR ⊗ UR ⊗ · · · ⊗ UR using
n noisy |R〉 states, each with infidelity q2. Second,
apply the Clifford gate control (P ⊗ P ⊗ · · · ⊗ P),
controlled by an ancilla state |+〉. Third, apply
UR

† ⊗ UR
† ⊗ · · · ⊗ UR

† using another n noisy |R〉
states, each with infidelity q2. After this gadget,
the stabilizers are checked, and if all are satisfied,
then the encoded state is decoded and kept as a
distilled resource state. The output has infidelity
suppressed to O(q2

1)+ O(qd
2), but the suppression

with respect to q1 can be boosted by, for example,
repeating the measurement gadget. See schemes in
Refs. [51,52,92–96].

Historically, the first state-distillation protocol was pro-
posed by Knill [51] (type c), which takes 15 input T states
of infidelity q to produce an output of infidelity 35q3, with
acceptance probability 1 − 15q. Shortly after, Bravyi and
Kitaev [50] proposed two schemes, the first of which is
type a in our classification, but which has the same param-
eters as Knill’s (later the two schemes were shown to be

mathematically equivalent [97]). The second scheme in
Ref. [50] is of type b and has less favorable parameters than
the 15-to-1 scheme, but a higher state distillation thresh-
old. Another type-b scheme was found by Reichardt [90],
which could successfully distill states arbitrarily close to
the stabilizer polytope. In Ref. [60], type-a schemes out-
putting multiple resource states were proposed. Multiple
outputs were also achieved for type-b schemes in Refs.
[93,96]. These “high rate k/n” schemes have promising
parameters and may perform well in certain regimes. How-
ever, they also tend to have large Clifford circuits likely
inhibiting their practicality when including the effect of
realistically noisy Clifford operations. Recently, Haah and
Hastings introduced yet another family of state-distillation
protocols of type a [62]. These are based on punctur-
ing quantum Reed-Muller codes and have both interesting
asymptotic properties [89] and appear to be practically
favorable [62]. We review this family here, which includes
the 15-to-1 scheme that we analyze in detail in Sec. III.

Haah-Hastings state-distillation protocols.—This fam-
ily of state-distillation protocols [62] involves first produc-
ing what we call a Reed-Muller state |Qr〉 on n = 23r+1

qubits, where r = 1, 2, . . ., with a Clifford circuit of depth
3r + 1 using (3r + 1)23r CNOTs; see Fig. 8. This state has
the property that for any subset of k qubits, the state can
be decomposed as a set of k Bell pairs between those
“punctured” qubits and those which remain, namely

|Qr〉 =
k∏

i=1

(
|0〉i|0〉i + |1〉i|1〉i√

2

)
, (9)

where the states of the k punctured qubits have no bar,
and where {|0〉i, |1〉i}i=1,...,k are logical basis states for a
[[n − k, k, dZ]] CSS code, which is triply even and that
transversal T implements a logical T on each logical qubit
of the code. Let the Z distance dZ be the weight of the
smallest nontrivial Z-type logical operator of this code.
To specify the CSS code, which we call the punctured
Reed-Muller code, one can start with the X - and Z-type
stabilizer generators of the |Qr〉 state (which, for example,
could be specified by propagating the initial single-qubit
stabilizers through the CNOT circuit in Fig. 8). Choosing
a stabilizer-generator set for |Qr〉 in such a way that only
one X - and one Z-type generator have nontrivial support
on each punctured qubit, these form logical operators and
the remaining generators with no support on any punc-
tured qubits form the stabilizer generators of the punctured
Reed-Muller code.

The next step of the protocol is to apply a (noisy) T gate
to each nonpunctured qubit,

T⊗(n−k)|Qr〉 =
k∏

i=1

(
T|+〉i ⊗ |+〉i + T|−〉i ⊗ |−〉i√

2

)
.

(10)
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FIG. 8. A 15-to-1 state-distillation circuit as the r = 1 instance
of the Haah-Hastings construction. Each qubit is labeled by a
string of 3r + 1 bits, and if the bit string has weight at most r,
then that qubit is prepared in the |+〉 state, otherwise in the |0〉
state. In the j th round of CNOT gates, we apply CNOTs between
the pairs of qubits with bit string differing only at the j th position.
Note that the blue CNOTs are redundant as their control or target
qubits are |0〉 or |+〉, respectively. The resulting state is |Q1〉 ∝
|+〉|+〉 + |−〉|−〉, where in our case |+〉 and |−〉 are code states
of the 15-qubit Reed-Muller code. We then apply the transversal
T gate and measure every nonpunctured qubit in the X basis to
infer the measurement outcomes mi’s for X stabilizers and mX
for the logical X . The protocol rejects if mi = −1 for some i. If
there are no faults, then the remaining unpunctured qubit is in the
state T3−2mX |+〉.

To see this, note that (I ⊗ T)(|00〉 + |11〉/√2) = (T ⊗
I)(|00〉 + |11〉/√2) = (T ⊗ I)(|++〉 + |−−〉/√2).
Finally, one measures the logical X i operators of the CSS
code. If the measurement outcome of X i is +1, then the
ith punctured qubit is left in the state T|+〉; otherwise, the
ith punctured qubit is in the state T|−〉 = ZT|+〉, requiring
a simple Pauli-Z fix. In practice this is achieved by mea-
suring all n − k nonpunctured qubits in the X basis, and
postprocessing. Note that postprocessing the measurement
outcomes also tells us what the X -stabilizer generators for
the CSS code are, which should all be +1 in the absence
of error. This, in turn, provides a postselection condition
of the protocol. The scheme takes n − k encoded T states
of infidelity q, and outputs k encoded T states of infidelity
AqdZ , where A is the number of nontrivial Z-type logical
operators of minimal weight dZ .

In Fig. 8 we show an instance of the Haah-Hastings
protocol for r = 1, which we analyze more explicitly in
Sec. II. To our knowledge, this instance was first shown

in Ref. [35], and is essentially a modification of the 15-
to-1 Bravyi-Kitaev protocol, which avoids the need of the
unencoding part of the circuit in Fig. 7(a). Some larger
instances of this family have very good properties for state
distillation, although we do not analyze them in detail here.

II. 2D COLOR CODE ANALYSIS

In this section, we describe an efficient and optimized
implementation of the 2D color code under circuit noise.
First, in Sec. II A we adapt Delfosse’s color-code pro-
jection decoder [30] to allow for boundaries in the lat-
tice. Then, we further adapt the decoder to accommodate
faulty measurements in Sec. II B. We optimize the sta-
bilizer extraction circuits in Sec. II C, finding a circuit-
noise threshold of 0.37(1)%. This represents a significant
improvement over the previous highest threshold value for
the color code of 0.2% in Ref. [37], and brings it closer to
the toric code threshold of near one percent [98]. However,
we stress that we are primarily interested in the finite size
rather than asymptotic performance, and therefore take
care to accurately account for effects that are often ignored
when focusing on threshold alone, such as residual error.
We believe the performance improvements we see over
previous studies of the color code under circuit noise are
due to our use of the hexagonal rather than the square-
octagon primal lattice in the case of Refs. [82,99], and by
optimizing extraction circuits and removing the restriction
on the qubit connectivity in the case of Ref. [37].

A. Projection decoder with boundaries

In this subsection, we briefly describe our adaptation of
Delfosse’s color-code projection decoder [30] to the lattice
L2D, which has boundaries. Our adaptation is essentially
the same as that presented in Ref. [99], but for the hexag-
onal rather than the square-octagon primal lattice. This
decoder assumes that the stabilizer measurements are per-
fect, and we analyse its performance under depolarizing
noise.

We consider the 2D color code on the lattice L = L2D
from Sec. I B. Since the 2D color code is a self-dual
CSS code, we can decode X and Z errors separately and
describe here the correction of X errors; the correction of
Z errors is identical. We denote the support of the X errors
by ε ⊆ �2(L), the Z-type syndrome by σ ⊆ �′

0(L) and
the resulting correction by ε̂ ⊆ �2(L). For each pair of
colors K ∈ {RG, RB, GB} we define the set of highlighted
vertices VK to contain the subset σK ⊆ σ of all the vertices
of color in K and we also include in VK a boundary vertex
vK for only one color K ∈ K whenever |σK| is odd, i.e.,
VK = σK or VK = σK + vK . Note that by definition |VK|
is even.

The projection decoder (see Fig. 9) can then be
described as follows.
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vR
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FIG. 9. The projection decoder for the 2D color code of distance d = 7 on the lattice L2D. (a) The primal lattice with errors (black
dots) and the corresponding syndrome (highlighted faces). (b)–(d) We find pairings ERG, ERB, and EGB (thick lines) of highlighted
vertices VRG, VRB, and VGB within the restricted lattices LRG, LRB, and LGB, respectively. Note that in (b),(c) boundary vertices vG and
vR are included as highlighted vertices. (e) The error estimate is the region (shaded) with boundary ERG + ERB + EGB, which contains
the minimal number of qubits (white dots). (f) The decoding succeeds since the initial error and the estimate differ by a stabilizer (black
dots in the primal lattice).

1. For each pair of colors K ∈ {RG, RB, GB} we use
the minimum weight perfect matching (MWPM)
algorithm to find a subset of edges EK ⊆ �1(LK),
which connect pairs of highlighted vertices in VK

within the restricted lattice LK.
2. The combined edge set E = ERG + ERB + EGB sep-

arates the lattice L into two complementary regions
� ⊆ �2(L) and �c = �2(L) \� and we choose
the correction ε̂ to be the smaller of the regions �
and �c.

Note that step 1 can be viewed as the problem of decod-
ing the toric code defined on the lattice LK, and thus
one could use any toric code decoder to find a pairing
EK ⊆ �1(LK). The MWPM algorithm we choose for this
step is computationally efficient. The boundary edges are
permitted in EK, but their edge weight is set to zero for
matching.

In Fig. 10(a) we present the failure probability
of this decoder under depolarizing noise and perfect

measurements. In Fig. 10(b) we consider two distance-
dependent quantities that should both converge to the
threshold as 1/d approaches zero. The first is the pseu-
dothreshold p∗

dep(d), defined as a solution to pfail(p , d) = p .
The pseudothreshold is a good proxy to identify the regime
in which the code of distance d is useful. The second is
the crossing p×

dep(d) between pairs of failure curves of dis-
tances d and (d + 1)/2 for d ≡ 1 mod 4. Note that we
choose to find the crossing of curves corresponding to dis-
tances d and (d + 1)/2 because their slopes differ quite
significantly near their crossing and thus it is relatively
easy to identify its location; the resulting threshold, which
is an asymptotic value, should not depend on that choice.
From a linear extrapolation of the data we find intercepts
13.16(4)% for p×

dep(d) and 12.08(4)% for p∗
dep(d).

Note that the discrepancy in the intercept values sug-
gests that the systems we consider are too small for a naive
linear extrapolation to work reliably. Assuming that both
p∗

dep(d) and p×
dep(d) continue to change monotonically with

d we then take the maximum observed value of p×
dep(d) at
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FIG. 10. (a) Performance of the projection decoder for the 2D
color code of distance d under depolarizing noise and perfect
measurements. (b) The pseudothresholds p∗

dep(d) and the cross-
ings p×

dep(d) between pairs of curves corresponding to distances
d and (d + 1)/2 for various d. From a linear extrapolation of the
data for d ≥ 11 we obtain intercepts of 13.16(4)% for p×

dep(d) and
12.08(4)% for p∗

dep(d).

d = 29 as a conservative estimate of the threshold under
depolarizing noise, i.e., p∗

dep = 12.45(4)% in accordance
with previous threshold estimates in Refs. [28,37].

This analysis of the pseudothresholds and failure-curve
crossings highlights two general points. Firstly, the thresh-
old may not be a good proxy to the finite-size performance.
For example, we see in Fig. 10(b) that our estimate of
the threshold is considerably above the observed pseu-
dothresholds. Secondly, in order to find the threshold
from the data for small systems one has to exert caution,
as extrapolating different quantities (which nevertheless
should recover the same threshold value in the limit of
infinite d) can result in inconsistent estimates.

Although we do not proved it, we suspect that our adap-
tation of the projection decoder can correct all the errors of
weight at most d/3 (up to an additive constant). Examples
of the smallest weight errors, which lead to a logical fail-
ure, are the same as for the adapted restriction decoder in
Ref. [37] and can be found in Appendix A thereof.

B. Noisy-syndrome projection decoder with
boundaries

In this subsection we further generalize the projection
decoder to handle phenomenological noise. To reliably
extract the syndrome and perform error correction one
can repeat the stabilizer measurements multiple times. The
input of the decoder then consists of stabilizer measure-
ment outcomes (possibly incorrect) at QEC cycles labeled
by integers and can be visualized as a (2+1)-dimensional
lattice � = L × [ncyc], where [ncyc] = {0, 1, . . . , ncyc} and
the extra dimension represents time; see Fig. 11. We use
a shorthand notation �[t1,t2] to denote the part of � within
QEC cycles t1 and t2. By a QEC cycle, we simply mean
a full cycle of stabilizer measurements. Temporal edges,
which vertically connect corresponding vertices in two
copies of L at QEC cycles t and t + 1, correspond to
stabilizer measurements at QEC cycle t.

We use the same concepts and nomenclature for the
lattice � as for L in Sec. I B. For instance, we say a ver-
tex (v, t) of � is a boundary vertex if and only if v is a
boundary vertex of L; otherwise, it is an interior vertex.
An edge of � is a boundary edge if and only if it con-
nects two boundary vertices. The sets of interior vertices
and edges of � are denoted �′

0(�) and �′
1(�), respec-

tively. Furthermore, we denote by �K the restricted lattice
of � consisting of vertices of color in K, and the edges
connecting them.

The input of the noisy-syndrome projection decoder is
an observed history of the syndrome σ consisting of the
subset of temporal edges corresponding to −1 stabilizer
measurement outcomes. We define the set of syndrome

(a) (b)

FIG. 11. The noisy-syndrome projection decoder on the
(2+1)D color-code lattice �. (a) During each QEC cycle, errors
can appear on data qubits (shaded triangles), followed by stabi-
lizer measurements, which when incorrect are drawn as ellipses.
The observed syndrome σ (dark temporal edges and filled
ellipses) allows us to find the set of syndrome flips V (high-
lighted vertices). (b) For K ∈ {RG, RB, GB} we find the pairing
EK (colored edges) of the syndrome flips VK within the restricted
lattice �. Then, for every “flattened” connected component of
ERG + ERB + EGB we find a correction ε(t) (hatched regions).

020341-12



COST OF UNIVERSALITY... PRX QUANTUM 2, 020341 (2021)

flips V ⊆ �′
0(�) to be the set of all the vertices, which are

incident to an odd number of edges in σ . The decoder is
then implemented using the following steps.

1. For each t ∈ [ncyc] initialize F(t) = ∅.
2. For every K ∈ {RG, RB, GB} use the MWPM

algorithm to find the pairing EK of syndrome flips
VK within the restricted lattice �K.

3. Combine the obtained pairings, E = ERG + ERB +
EGB, and decompose E as a disjoint sum of maximal
connected components, E = ∑

i Ei.
4. For every connected component Ei:

(a) find the minimal window of QEC cycles τi =[
t(1)i , t(2)i

]
enclosing Ei, i.e. Ei ⊂ �1(�τi),

(b) project Ei onto L in order to obtain the “flat-
tened pairing” Fi = π(Ei), where π : �1(�) →
�1(L) removes temporal edges and adds hori-
zontal ones modulo two,

(c) add the edges of Fi modulo two to the edge set
F
(

t(2)i

)
for QEC cycle t(2)i .

5. For each QEC cycle t, find a correction ε(t) ⊆
�2(L) as the minimal region enclosed by F(t).

We make some additional technical remarks about the
noisy-syndrome projection decoder. In step 2, the bound-
ary edges of the restricted lattice �K are assigned zero
weight when used for pairing. A boundary vertex of a color
in K (it does not matter which) is added to VK whenever
|VK| is odd. In step 3, we remove weight-zero edges when
establishing connected components of E.

To analyze error-correction thresholds in a faulty-
measurement setting, it is common to study the somewhat
contrived scenario of an initially perfect code state under-
going d QEC cycles, followed by a single cycle of perfect
measurements. The justification for this is underpinned
by the fact that in the fault-tolerant setting, the logical
clock cycle (the time required to implement logical gates)
requires approximately d QEC cycles with lattice surgery
or braiding. Moreover, one would expect the effects of the
artificially perfect preparation and final measurement cycle
to be negligible over d cycles when d is sufficiently large,
making this scenario appropriate for estimating the thresh-
old value (but not for estimating the actual performance of
finite sizes). In Fig. 12(a) we find the failure probability
after d time units of phenomenological noise. In Fig. 12(d)
we show crossings p×

phe(d) between pairs of these failure
curves corresponding to distances d and (d + 1)/2, which
should converge to the threshold p∗

phe as 1/d approaches to
zero.

The notion of a pseudothreshold must be revisited in
the setting of faulty measurements and we cannot extract
a meaningful pseudothreshold directly from these curves
as we did for the perfect measurement case in Fig. 10.

Consider the scenario in which we assume a perfect
initial code state and a perfect final measurement cycle,
but consider the performance over a varying number ncyc
of noisy QEC cycles; see Fig. 12(b). For each d and ncyc,
we define the time-dependent pseudothreshold p∗

phe(d, ncyc)

as the error rate at which the encoded failure probability
after ncyc QEC cycles matches pphy(ncyc) the unencoded
failure probability for ncyc time units, as defined in Eq.
(5). As ncyc increases, p∗

phe(d, ncyc) is expected to decrease
due to the buildup of residual error. However, for suf-
ficiently large ncyc the time-dependent pseudo-threshold
p∗

phe(d, ncyc) should eventually stabilize to the long-time
pseudothreshold p∗

phe(d), as can be seen in Fig. 12(c). The
following ansatz

p∗(d, ncyc) = p∗(d)
(

1 −
[

1 − p∗(d, 1)
p∗(d)

]
n−γ

cyc

)
. (11)

fits the data well, and allows us to extract an estimate
of the long-time pseudothreshold. We remark that our
approach of finding long-time pseudothresholds is similar
in spirit, but not exactly the same as the one used to find
the “sustainable threshold” [100,101]. Also, the ansatz in
Eq. (11) was used in Ref. [102] to analyze thresholds of
cellular-automata decoders for topological codes.

The long-time pseudothresholds p∗
phe(d), as well as the

failure curve crossings p×
phe(d) should converge in the

limit of infinite d to the threshold under phenomenolog-
ical noise. From a linear extrapolation of the data we
obtain intercepts of 4.38(3)% for p∗

phe(d) and 3.67(3)% for
p×

phe(d); see Fig. 12(d). Note that p∗
phe(d) appears to con-

verge more quickly than p×
phe(d). Assuming that both quan-

tities continue to monotonically change with d we take the
maximum observed value of p∗

phe(d) at d = 17 as a conser-
vative estimate of the threshold under phenomenological
noise, i.e., p∗

phe = 4.19(4)%.
We remark that the modification of the projection

decoder that we present here to handle noisy syndrome
measurements differs from that discussed by Stephens [99]
in an important detail. Namely, our “flattening” of pairings
is local, since it occurs separately on each connected com-
ponent after the matching in the (2+1)-dimensional graphs.
In contrast, Stephens’ flattening is global—all pairings are
flattened together and a global correction is produced. For
any finite noise strength and for a sufficiently large number
of cycles (which does not need to grow with code dis-
tance), the success probability of this global flattening will
be vanishingly small. Therefore the adaption proposed by
Stephens does not have a finite error-correction threshold,
and is not fault tolerant. This did not contribute noticeably
to the numerical results presented in Ref. [99] since the
total cycle number was fixed to d, for data in ranges sat-
isfying d < 1/p . However, by looking at the performance
over longer times of Stephens’ adaption of the projection
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FIG. 12. (a) Failure probability pfail(d, ncyc) of the noisy-syndrome projection decoder for ncyc = d time units of phenomenological
noise and various distances d. (b) We estimate the time-dependent pseudothreshold p∗

phe(d, ncyc) from the intersection of pfail(d, ncyc)

with the error probability for the unencoded qubit (dashed) after ncyc time units for various ncyc and d = 11. See Appendix B for the
analysis of other distances. (c) We estimate the long-time pseudothreshold p∗

phe(d) = 4.15(2)% for d = 11 (red) by fitting p∗
phe(d, ncyc)

with the numerical ansatz in Eq. (11). Note that Stephens’ adaptation of the decoder (yellow), which uses a global flattening, fails to
stabilize. (d) The long-time pseudothresholds p∗

phe(d) (blue) and the crossings p×
phe(d) (yellow) between pairs of curves corresponding

to distances d and (d + 1)/2 for various d. From a linear extrapolation of the data for d ≥ 7 we obtain intercepts of 4.38(3)% for
p∗

phe(d) and 3.67(3)% for p×
phe(d).

decoder, we verify that the time-dependent pseudothresh-
old for this decoder fails to stabilize for large ncyc; see Fig.
12(c).

C. Optimizing stabilizer extraction and circuit-noise
analysis

There is significant freedom in precisely which circuits
are used to extract the syndrome for error correction. We
assume that there is a separate ancilla qubit per stabilizer
generator, such that there are two ancillas per face of the
lattice L2D, and do not worry about the precise connectiv-
ity details, requiring only that coupled qubits are nearby.
The total number of qubits required for our implementation
of the distance-d 2D color code is therefore

N2D(d) = (3d2 − 1)/2. (12)

Each circuit starts by preparing an ancilla qubit in either
|+〉 or |0〉 state, followed by applying CNOT gates between

the ancilla qubit and all the qubits of the stabilizer gener-
ator, and finishes with measuring the ancilla qubit in the
corresponding X or Z basis. During each time unit new
errors can appear in the system and thus it can be benefi-
cial to parallelize as much as possible the circuits used for
stabilizer measurement. When circuits for measuring dif-
ferent stabilizers are interleaved, not all schedules of CNOT
gates will work. The following conditions [82] must be
satisfied.

(a) At each time unit at most one operation can be
applied to any given qubit.

(b) The measurement circuit preserves the group gen-
erated by the elements of the stabilizer group and
Pauli-X or -Z operators stabilizing the ancilla qubits
[103].

In our optimization we assume that it suffices to specify the
CNOT ordering for a single X - and Z-stabilizer generator in
the bulk, as the code is translation invariant. Moreover, the
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(a)

(b)

FIG. 13. (a) The CNOT schedule {a, b, c, d, e, f ; g, h, i, j , k, l} is
a list specifying the time units when each CNOT gate is applied.
At the end, the ancillas, which are initially prepared in |0〉 and
|+〉, are measured to extract the Z- (blue) and X - (red) stabilizer
measurement outcomes, respectively. (b) The CNOT schedules
for stabilizers on faces along the boundary can be viewed as
restrictions of the CNOT schedule in (a).

CNOT schedule for stabilizer generators along the boundary
of the lattice are specified by restricting the schedule for
those in the bulk; see Fig. 13.

The CNOT schedule includes 12 CNOT gates to extract
both Z and X stabilizers. Each CNOT gate is applied
at some time unit, and thus the CNOT schedule is
specified by a list of 12 non-negative integers A =
{a, b, c, d, e, f ; g, h, i, j , k, l}, possibly with repetitions. We
are interested in CNOT schedules, which satisfy the follow-
ing condition:

1. As short as possible.—To ensure there is no time
unit in which both ancillas in a face are idle
A = {a, b, c, d, e, f , g, h, i, j , k, l} contains all num-
bers from 1 to maxA.
Note that this implies that maxA ≤ 12, and thus
there are at most 1212 CNOT schedules. However,
most of them are invalid as they do not satisfy one
of the following necessary conditions [82].

2. One operation per qubit at a time.—The inte-
gers a, b, c, d, e, f must be all distinct, as well as
g, h, i, j , k, l, and d, j , f , l, b, h, and e, k, a, g, c, i.

3. Correct syndrome extraction.—To ensure the
ancilla measurement after each CNOT sequence
extracts the stabilizer measurement outcome, the
following inequalities must hold.

(a) For the stabilizers in the bulk: (a − g)(b − h)
(c − i)(d − j )(e − k)(f − l) > 0, (e − g)(d −
h) > 0, (k − a)(j − b) > 0, (f − h)(e − i) >
0, (l − b)(k − c) > 0, (d − l)(c − g) > 0, and
(j − f )(i − a) > 0.

(b) For the stabilizers along the boundary: (a − g)
(b − h)(c − i)(f − l) > 0, (b − h)(c − i)(d −
j )(e − k) > 0, and (a − g)(d − j )(e − k)(f −
l) > 0.

To illustrate how we obtain the inequalities in the last con-
dition, let us analyze how the Pauli-X operator stabilizing
the X -syndrome extraction ancilla on a given face is spread
by the CNOT schedule. It propagates to all the data qubits
on that face. From each data qubit it may further propa-
gate to the Z-syndrome extraction ancilla on the same face,
and this is determined by the relative order of the CNOT
gates used for the X - and Z-syndrome extraction. We need
to ensure that at the end of the CNOT schedule the Pauli-
X operator on the X -syndrome extraction ancilla has not
propagated to the Z-syndrome extraction ancilla, which
is equivalent to the inequality (a − g)(b − h)(c − i)(d −
j )(e − k)(f − l) > 0 being true. The other inequalities are
derived similarly.

We remove an ordering from the list of valid orderings if
it is equivalent to another ordering in the list up to a sym-
metry of the lattice L2D. No schedules with 6 time units
satisfy all these conditions. However, we find that there
are 234, 4854, and 39160 valid orderings for 7, 8, and 9
time units, respectively.

To select a good CNOT schedule among the large num-
ber of valid ones, we focus on the 234 shortest schedules,
because fewer time units in an error-correction cycle tends
to translate into fewer possible faults and better perfor-
mance. We test each using a d = 7 code for d QEC cycles
with circuit noise of strength p = 0.0035 and estimate the
failure probability by sampling. This value of p is cho-
sen because preliminary studies indicated it was close to
the threshold, and distance d = 7 is chosen as a com-
promise between reducing the simulation run time and
limiting the impact of boundary effects. The limited sam-
pling resources are focused on identifying the best CNOT
schedules; see Fig. 14(a). We find that up to sampling
error, {4, 1, 2, 3, 6, 5; 3, 2, 5, 6, 7, 4} is the best-performing
schedule, with a logical failure probability of 12.8(1)%.
For comparison, the worst-performing length-7 schedule
is {4, 1, 2, 7, 6, 3; 1, 6, 7, 4, 5, 2} and results in substantially
worse logical failure probability of 21.1(1)%. Note that
the QEC cycle for the best schedule requires only 8 time
units to implement by preparing and measuring the X
ancilla at time units 0 and 7, respectively, and prepar-
ing and measuring the Z ancilla at time units 1 and 8,
respectively.

Now we focus on the best-performing CNOT schedule
under circuit noise and find the long-time pseudothresh-
old for a range of distances in Fig. 14(b) using the same
approach as in Sec. II B. Unlike in the cases for depo-
larizing and phenomenological noise, the data for circuit
noise appears to be in the regime where both p∗

cir(d)
and p×

cir(d) can be fitted with a linear fit and their inter-
cepts agree to within error. We take their shared inter-
cept as an estimate of the threshold under circuit noise
p∗

cir(d) = 0.37(1)%.
To estimate the impact of this kind of circuit optimiza-

tion, we compare the best- and worst-performing length-7
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FIG. 14. (a) Logical failure probability over ncyc = 7 cycles
for distance d = 7 and depolarizing circuit noise of strength
p = 0.0035 for each of the 234 CNOT schedules, sorted by
their failure rate. (b) The long-time pseudothresholds p∗

cir(d)
and crossings p×

cir(d) for the best-performing CNOT schedule
{4, 1, 2, 3, 6, 5; 3, 2, 5, 6, 7, 4} under circuit noise; see Appendix
B for further details. From a linear extrapolation of the data
for d ≥ 11 we obtain intercepts of 0.366(6)% for p∗

cir(d) and
0.37(1)% for p×

cir(d).

CNOT schedules and find that the long-time pseudothresh-
old differs by a factor of almost 2 for distance d = 13; see
Appendix B for more details.

D. Modeling noise in logical operations

Now we describe an effective noise model for logical
operations in the optimized 2D color code under circuit
noise, which we later use to estimate the performance of
state-distillation circuits. For circuit-noise strength p and
code distance d, the effective noise model is specified in
terms of the overall failure probability poper(p , d) of each
logical operation oper = prep, idle, CNOT, which we esti-
mate numerically and record in Table I in the form of the
ansatz in Eq. (7).

In our simulations each operation is followed by a full
decoding. This results in the application of a logical Pauli
operator, which if nontrivial is interpreted as a failure. Our

TABLE I. Failure probabilities of logical operations for the 2D
color code as a function of the distance d. Since the failure prob-
ability for logical Pauli measurements is negligible, we assume
measurements to be perfect in the effective noise model, and
report only the measurement failure probability for p = 10−3.

Logical operation Failure probability poper(p , d)

Prep
0.0151 × 0.812d for p = 10−3

0.0074 × 0.719d for p = 5 × 10−4

0.0041 × 0.527d for p = 10−4

Idle
0.0124 × 0.721d for p = 10−3

0.0092 × 0.618d for p = 5 × 10−4

0.0018 × 0.484d for p = 10−4

CNOT
0.0972 × 0.894d for p = 10−3

0.0603 × 0.761d for p = 5 × 10−4

0.0078 × 0.607d for p = 10−4

Meas 0.0011 × 0.690d for p = 10−3

effective noise model is designed to overestimate the prob-
ability of each nontrivial logical Pauli, and assumes each
operation fails independently of others. Specifically,

(a) for state preparation noise is modeled by prepar-
ing an orthogonal logical state to that intended with
probability pprep(p , d),

(b) for an idle operation, noise is modeled by applying
X or Z each with probability p idle(p , d)/2 or Y with
probability p idle(p , d)/20,

(c) single-qubit Clifford gates are done in software by
Pauli-frame updates so are noise-free,

(d) for SWAP, noise is modeled by applying to each
of the two qubits X or Z each with probability
p idle(p , d)/2, or Y with probability p idle(p , d)/20,

(e) for CNOT noise is modeled by applying IX or ZI
each with probability pCNOT(p , d)/2, or XI or IZ
each with probability pCNOT(p , d)/4, or other non-
trivial Pauli each with probability pCNOT(p , d)/20,

(f) measurements in the logical Pauli bases are assumed
to be perfect.

Let us make a number of remarks about this noise model.
Firstly, each failure mode for a given operation occurs
independently in the model for simplicity. Secondly, the
conservative estimates of different types of failure are quite
loose for large distances, and could be made tighter by
fine tuning the noise model. Thirdly, one may wonder
why we treat the SWAP operation as a pair of idle qubits,
whereas we treat the CNOT operation separately and find
it has a considerable failure probability. The reason is
that the propagation of previously existing error (which
is exchanged between patches by SWAP, but added across
patches by CNOT) can be very significant.

In the remainder of this section, we describe how we
estimate the logical failure probabilities using distance-d
patches of 2D color code under circuit noise of strength
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FIG. 15. Sketch of the cumulative failure probability before,
during, and after a logical operation. Logical preparations and
measurements comprise only some parts of this sketch. Before
we apply the operation, we first make sure that the system reaches
QEC equilibrium. The logical operation, which would take napp

cyc
cycles by itself, is augmented with nafter

cyc idle cycles to ensure the
system has returned to QEC equilibrium afterwards. The logi-
cal operation failure rate poper is the increment of pfail over the
noper

cyc = napp
cyc + nafter

cyc QEC cycles.

p followed by a perfect-measurement decoding. To avoid
the influence of boundary effects in these simulations, we
ensure that the patches are close to QEC equilibrium both
before and after the logical operation (or just before or after
for measurement or preparation, respectively); see Fig. 15.
We therefore implement d QEC cycles on the patches prior
to the operation and, when necessary, augment the logi-
cal operation by including additional idle QEC cycles at
the end of the operation, checking that the residual noise
has stabilized before the perfect measurement is imple-
mented. By QEC equilibrium, we mean a regime in which
the failure probability increases linearly with the number
of QEC cycles. Throughout our analysis we use the best-
performing CNOT schedule from Sec. II C, which uses one
ancilla per stabilizer generator. This results in (3d2 − 1)/2
qubits being needed for a distance-d patch.

Logical state preparation.—Recall that |0〉 is prepared
by initializing data qubits in |0〉 and then measuring the
stabilizers for d QEC cycles under circuit noise of strength
p , and applying a Z-type operator intended to fix the X sta-
bilizers, and standard error correction to correct X errors.
We simulate this followed by the perfect-measurement
decoder and estimate the failure probability from the pro-
portion of trials in which the a logical X is applied. The
analogous procedure is used to identify the failure proba-
bility for preparing |0〉. The data is presented in Fig. 16 and
fitted with the ansatz in Eq. (7) using the same parameters.
This fit provides the entry for pprep(p , d) in Table I.

Idle logical qubit.—We extract p idle(p , d), the failure
probability of an idle logical qubit for a single QEC cycle,
by considering the failure probability of a single patch of
distance-d 2D color code over ncyc QEC cycles. We use
the noisy measurement decoder to decode the full history
of the ncyc QEC cycles given a perfect initial state and
a perfect additional final QEC cycle. After a few initial
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FIG. 16. Logical failure probability for preparing the |+〉 and
|0〉 states. The ansatz in Eq. (7) is fitted, giving pprep(p , d) in
Table I. Both plots can be fitted well using the same parameters,
which justifies treating both |+〉 and |0〉 preparation identically
in the noise model.

QEC cycles, we expect the residual error in the system to
reach an equilibrium, and that thereafter the failure rate
should increase linearly with ncyc in the regime of small
pfail(d, ncyc). We can use linear growth of pfail(d, ncyc) with
time as a hallmark of the system being in QEC equilibrium.
To estimate p idle(p , d) for fixed p and d, we fit the failure
probability pfail(d, ncyc) data, such as that presented in Fig.
17(a) for p = 10−3, with the following linear function of
ncyc, i.e.,

pfail(d, ncyc) = p idle(p , d)× ncyc + c(p , d), (13)

where c(p , d) is a constant. We plot this and the fit in Fig.
17(a) for a particular value of p , and use the gradient to
estimate p idle(p , d) for various p and d in Fig. 17(b). We fit
Eq. (7) to the data, giving the entry in Table I. Note that in
Fig. 17(a) the y intercept is negative since the simulation
begins with a perfect code state and so the probability of
failure during the early QEC cycles is artificially reduced.
For later logical operations we assume that d QEC cycles
prior to the logical operation is sufficient to ensure the
system has reached QEC equilibrium.
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FIG. 17. Analysis of the logical idle operation. (a) The failure probability using the best-performing CNOT schedule as a function of
ncyc/d for p = 5 × 10−4. We use the ansatz in Eq. (13) to find the logical failure rate p(p , d). We observe that QEC equilibration occurs
by the dth cycle; see Appendix B for additional data. Not discarding the initial equilibration period would result in an underestimate of
the failure probability. (b) For each value of p , we use the ansatz in Eq. (7) to extract the parameters for p idle(p , d) in Table I. (bottom
panels) The fraction of overall failures corresponding to different logical Pauli errors. The points whose data range falls below the
horizontal axis correspond to no observed failures.

In our noise model, we claim that p idle(p , d)/2,
p idle(p , d)/2, and p idle(p , d)/20 are conservative estimates
of the probability of X , Z, and Y, respectively. In the bot-
tom panels of Fig. 17, we justify this claim by finding
the fraction of failures, which occur for each Pauli oper-
ator. Despite the symmetry of the depolarizing noise, we
observe that Y failures are much less frequent than X or Z
failures due to the independent detection and decoding of
X and Z errors.

Transversal logical CNOT.—The logical CNOT is imple-
mented transversally between a pair of 2D color-code
patches. We assume the system is in QEC equilibrium
before the gate, which is ensured in the simulation by run-
ning d QEC cycles on an initially error-free state. Immedi-
ately after the CNOT gates are applied, the system’s residual
noise is elevated since the CNOT propagates X errors from
the control to the target and Z errors from the target to the
control. To allow the system to return to QEC equilibrium,
we include nafter

cyc QEC cycles after the gate is applied in
the logical CNOT operation. We conclude from Fig. 18(a)
that nafter

cyc = 2 is sufficient, which we then incorporate into
the logical CNOT operation. We analyze the overall failure
probability of the logical CNOT in Fig. 18(b), and the frac-
tion of failures resulting in each logical Pauli in the panels
at the bottom of Fig. 18. Note that in contrast with the phe-
nomenon observed in Fig. 17(a) in which the initial system

equilibrated from a state of lower noise, here the system
equilibrates from a state of higher noise.

To decode each patch, we use the combined syndrome
history—since the CNOT propagates X errors from the first
patch to the second one, we add the Z-type stabilizer his-
tory from the first d QEC cycles from the first patch to
that of the second before decoding X errors in the second
patch, and similarly for Z errors in the first patch. To iso-
late the contribution to the logical operator from the CNOT
alone, we find and remove the contribution to the logi-
cal operator from the initial d QEC cycles by applying
a perfect-measurement decoding on the system immedi-
ately after the d QEC cycles, and propagate that through
the logical CNOT gate [104].

Logical readout.—To fault tolerantly read off Z, one
measures each data qubit in the Z basis. The resulting bit
string can be fixed using a perfect-measurement decoder so
that it satisfies all Z-type stabilizers, and then the outcome
of the Z logical operator can be read off from any repre-
sentative. One can fault tolerantly measure X similarly by
measuring each data qubit in the X basis.

To simulate the logical X readout we first run the sys-
tem for d QEC cycles to ensure equilibration has occurred,
then measure each qubit in the X basis under circuit noise
of strength p , followed by perfect-measurement decoding.
To isolate the contribution to the logical operator from the
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FIG. 18. Analysis of the logical CNOT operation. (a) The change in failure probability between the time immediately after the
transversal application of CNOT gates and nafter

cyc QEC cycles later. We observe that QEC equilibration occurs after two QEC cycles. (b)
For each value of p , we use the ansatz in Eq. (7) to extract the parameters for pCNOT(p , d) in Table I. (Bottom panels) The fraction of
overall failures corresponding to different logical Pauli errors. The dominant errors are ZI and IX , since the logical CNOT propagates
X errors onto the second patch and Z errors onto the first patch. Other noticeable errors include IZ and XI , which correspond to the
failure over two QEC cycles, but become negligible for large d. The points whose data range falls below the horizontal axis correspond
to no observed failures.

logical measurement alone, we find and remove the contri-
bution to the logical operator from the initial d QEC cycles
by applying a perfect-measurement decoding on the sys-
tem immediately after the d QEC cycles. We estimate the
failure probability and mode fraction for logical measure-
ment of X and Z in Fig. 19. We fit Eq. (7) to the data for

both X and Z measurements, which agree with one another
and this fit provides the entry for pmeas(p , d) in Table I.

Note that the noise contributed by readout is orders
of magnitude below the other logical operations, and we
take only data for p = 10−3 since a prohibitively large
number of samples would be required for p = 10−4 and
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FIG. 19. Readout failure probability for X and Z. Note the value is orders of magnitude lower than for the other logical operations
and that we show only that for p = 0.001, since the smaller values of p are so low that they are difficult to observe using Monte Carlo.
We use the ansatz in Eq. (7) to extract the parameters for pmeas(p , d) in Table I, although in our noise model we neglect noise in the
measurement.
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p = 5 × 10−4. This justifies that we neglect contributions
from readout in our effective noise model.

III. STATE-DISTILLATION ANALYSIS

In this section we carefully analyze the performance and
estimate the overhead of state distillation of T states using
the standard 15-to-1 scheme.

A. Creating the T state via state distillation in three
steps

A protocol to produce an encoded T state using state
distillation, which we illustrate in Fig. 20, consists of the
following steps.

1. T-state initialization.—We initialize encoded T
states in small-distance 2D color-code patches,
which later serve as the input to the first round of
state distillation.

2. Expansion and movement of patches.—The code
distance in consecutive rounds of state distillation is
required to increase to protect the produced T states
of improving fidelity. We must therefore increase the
size of a patch, which is output from one round, and
move it to the desired location where it becomes an
input for the next round.

3. State-distillation circuit.—This is a circuit with
every qubit encoded in a distance-d 2D color code,
consisting of nearest-neighbor logical Clifford oper-
ations on patches arranged in a 3D stack. The input

FIG. 20. Protocol to create an encoded T state via state distil-
lation, with a qualitative timeline of each step. In step 1, noisy
encoded T states are prepared non-fault-tolerantly in a small 2D
color code. In step 2, each code patch is expanded to increase its
distance, and we assume that the logical infidelity of the encoded
T state does not change. In step 3, 16 logical states, either |0〉 or
|+〉, are prepared and then the state-distillation circuit is run on
them and 15 |T〉’s. Given successful postselection, the output is
a single encoded T state of higher fidelity (indicated by a larger
font size). Steps 2 and 3 are iterated until a state of the desired
infidelity is produced.

consists of 15 encoded T states, and the output is one
higher fidelity encoded T state.

The second and third steps are repeated (on multiple copies
of the procedure in parallel) with increasing code distances
chosen to minimize the overhead until a T state of the
desired quality is produced. In the following subsections,
we go through each of the three steps, elaborating on the
implementation and simulation details. In our analysis, we
assume circuit noise of strength p , and use the effective
noise model presented in Sec. II D to analyze the perfor-
mance of logical-level circuits implemented with the 2D
color code.

1. T-state initialization

The first step of any state-distillation protocol is to pro-
duce the initial encoded T states. The initialization protocol
to do this can be crucial since the results of state distilla-
tion depend strongly on the quality of the initial T states.
For example, taking the 15-to-1 scheme with perfect Clif-
ford operations, if the starting infidelity is decreased by a
factor of 2 (which, as we see, can be achieved by varying
the CNOT order in the initialization protocol), the output
infidelity is reduced by about 1, 3, and 8 orders of mag-
nitude over one, two, and three state-distillation rounds,
respectively. Although abstract state-distillation protocols
have received a lot of attention, there is surprisingly lit-
tle research on the initialization of T states as inputs for
state distillation despite the enormous potential impact. For
the surface code, a non-fault-tolerant scheme with the log-
ical error of the final encoded T state comparable with
that of raw state was proposed by Li [105]. More recent
works [78,106] present fault-tolerant approaches to initial-
ize encoded T states and can, in some regimes, achieve
higher fidelity encoded T states with low overhead, but are
somewhat more challenging to implement.

Our strategy of initializing T states for the 2D color
code can be viewed as a generalization of the approach
in Ref. [105], which consists of two main steps: (i) pro-
duce an encoded T state in a distance d1 code (with
d1 < d), then (ii) enlarge the code from d1 to d. For judi-
ciously chosen d1, the noise added during step (ii) can
be neglected because it is much less significant than the
noise from step (i). We produce an encoded T state in the
following steps.

1. Choose representatives of the logical X and Z oper-
ators, which intersect on a single qubit, and prepare
that qubit in |T〉. Prepare the remaining data qubits
along the support of the logical X and Z in |+〉 and
|0〉, respectively. Other data qubits are prepared in
either |+〉 or |0〉; see Fig. 21(a).

2. Measure each stabilizer twice; see Fig. 21(b). If the
observed syndrome is not the same or the syndrome
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(a)) (b)b)

FIG. 21. T-state initialization for the 2D color code with dis-
tance d = 3. (a) In step 1, the top qubit is prepared in |T〉, and the
remaining data qubits are prepared in either |+〉 or |0〉. We depict
the support of logical X and Z representatives as shaded yellow
and green strips. (b) In step 2, all the stabilizers are measured
using the depicted CNOT order (or its restriction).

could not have arisen without fault, the initialization
procedure is restarted.

3. Apply a Pauli operator fixing the observed syn-
drome.

In our simulation, we say the procedure has succeeded
in creating an encoded T state if upon a single additional
fault-free QEC cycle, one obtains the encoded T state. We
remark that the state from step 1 is not an eigenstate of
all the stabilizers measured in step 2, and thus, even in
the absence of faults, we may need to apply a nontrivial
Pauli operator in step 3 to ensure that all the stabilizers are
satisfied.

Lastly, we optimize the initialization protocol by vary-
ing the order in which the CNOT gates are applied during
the two QEC rounds in step 2. We consider a range of sys-
tem sizes, and again assume that there is a separate ancilla
qubit per stabilizer generator and consider the 234 valid
schedules consisting of 7 CNOT time units as in Sec. II C.
We find that the d = 3 size resulted in the best parame-
ters, and that the worst schedule (which is not the same
as that used for standard error correction) results in more
than twice the lowest-order failure probability of the best
schedule; see Appendix C for more details.

The protocol takes

τ init = 19 (14)

time units: one time unit to prepare the qubits in |0〉, |+〉
and |T〉, and two QEC cycles each lasting 9 time units. We
find that under circuit noise of strength p the lowest-order
contributions to the output infidelity p init

fail and rejection
probability p init

rej are

p init
fail = 6.07p , p init

rej = 126p . (15)

2. Expansion and movement of patches

We neglect any error introduced by expansion of the
encoded T states, i.e., while enlarging the distance of the
base code from d(i) to d(i+1) between rounds i and i + 1,
and while these patches are moved into the starting loca-
tion for the i + 1 round. This is justified since errors are
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FIG. 22. The 15-to-1 state distillation protocol implemented
on the logical level using nearest-neighbor operations in a stack
of 2D color codes. The 31 logical qubits are encoded in distance-
d 2D color codes, which are stacked on top of one another.
Logical idle locations (thick wire segments), SWAPs and CNOTs
last one, one, and two QEC cycles, respectively. The 15 input
encoded T states remain idle for d + 16 QEC cycles (pink) while
the Reed-Muller state is prepared (lilac). We assume the logi-
cal |0〉 and |+〉 states are only prepared (indicated by a triangle)
when they are needed, taking d QEC cycles. A shuffle circuit
(green), which lasts 14 QEC cycles interleaves the encoded
T states with the qubits in the Reed-Muller state, where they
undergo gate teleportation and measurement (blue) in two QEC
cycles. The distilled encoded T state is in the top wire (orange).

suppressed throughout the expansion similarly as during
error correction of the distance-d(i) code. We also neglect
any additional time overhead introduced by the expansion
and movement of patches. This is justified since the expan-
sion can be done within the d(i) QEC rounds, and the swaps
needed to move the outputs each take just one QEC cycle,
which we expect can be done during the d(i+1) QEC rounds
needed to prepare the |0〉 and |+〉 states at the start of the
state-distillation circuit; see Fig. 22.

3. 15-to-1 state distillation circuit

Here, we analyze the 15-to-1 scheme run on logical
qubits encoded in patches of 2D color code with distance
d arranged in a 3D stack. The logical circuits are analyzed
using the effective noise model in Sec. II D, which takes
two parameters: the distance d of the 2D color codes used,
and the strength p of the underlying circuit noise. Since we
allow Clifford operations only between adjacent patches in
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the stack, we have to appropriately modify the state distil-
lation circuit; see Fig. 22. In our analysis, we keep track
only of errors up to order q3 and p , which are of similar
order of magnitude in the regime of interest, where q is the
infidelity of the input encoded T states, and p is the noise
strength in the effective noise model. This splits the analy-
sis into looking at error either in the encoded T states alone,
or in the Clifford operations alone.

Noisy T states.—First, we briefly review the effect of
noise on T states [50]. As described in Sec. I A, we simplify
the form of noise assumed on a T state by twirling, which
in this case corresponds to randomly applying the Clif-
ford XS† ∝ |T〉〈T| − |T⊥〉〈T⊥| with probability 1/2. Recall
that single-qubit Clifford gates can be done instantaneously
and perfectly by frame tracking in the 2D color code as
described in Sec. I C. This twirling forces the noisy T
state to be of the form ρ = (1 − q)|T〉〈T| + q|T⊥〉〈T⊥|, or
equivalently that each T state is afflicted by a Z error with
probability q. The noise on the set of 15 input noisy T states
is therefore represented as a Z-type Pauli error E occurring
with probability q|E|(1 − q)15−|E|. The protocol will reject
if E is a detectable error for the punctured Reed-Muller
code, which has distance d = 3 for Z-type operators. The
protocol results in a failure if and only if E is a nontriv-
ial logical operator. Explicit enumeration shows that there
are 35 weight-3 Z-type logical operators, such that the
contributions prej and pfail due to T errors are

pT
rej = 15q, pT

fail = 35q3. (16)

Noisy Clifford operations.—Now we consider the effect
of noise in the Clifford operations [63,64] in the state-
distillation circuit. First, we analyze the faults that occur
during the Reed-Muller state preparation (lilac in Fig. 22),
which takes 16 QEC cycles to complete. We propagate
each fault as a logical Pauli operator through the cir-
cuit, and assume that every other operation acts perfectly,
including the T gates. By explicitly representing the state
and operations as the vector and matrices of dimension 216

and 216 × 216, respectively, we find that the contributions
are

pRM
rej = 12.3pprep + 73p idle + 38.2pCNOT,

pRM
fail = 0.875p idle + 1.93pCNOT.

(17)

Next we consider faults in the 16 idle QEC cycles of the
output qubit. Note that there is a choice of which of the 16
qubits of the Reed-Muller state to puncture in the 15-to-
1 protocol. We simulate all 16 choices, and select the third
qubit as the output since it has the lowest contribution from
pCNOT; see Appendix C for further details. Any failure in
any of these locations will result in an undetected failure

pout
rej = 0, pout

fail = 16p idle. (18)

By explicit calculation, we find the exact contribution to
prej and pfail of every Clifford fault location in Fig. 22
according to our effective noise model.

Lastly we analyze the remaining fault locations. These
consist of the 15(d + 16) idle locations involving qubits
holding the T states, which remain idle during the pro-
duction of the RM state (pink), the 420 idle, and SWAP
locations in the shuffle circuit (green), and the 15 CNOTs
used to implement gate teleportation (blue) in Fig. 22. A
single fault in any of these locations will propagate to a
Pauli operator X x1

1 Zz1
1 X x2

2 Zz2
2 acting only on one pair of

qubits as shown, where x1, z1, x2, and z2 each take values
0, 1 and the first qubit holds the |T〉, and the second is from
the Reed-Muller state. To analyze the effect of such a Pauli
operator, we imagine delaying the measurements on the
affected pair of qubits until after the completion of the rest
of the circuit; see Fig. 23. At this point, all other measure-
ments are completed, and if the Pauli operator is trivial,
i.e., if x1 = z1 = x2 = z2 = 0, the outcome b ∈ {0, 1} of the
X measurement would be determined by the previous out-
comes since the X stabilizers must be satisfied. Therefore,
the pair of qubits must be completely unentangled with the
rest of the system. This tells us that none of these fault
locations can result in a failure, but result in rejection if
and only if the outcome of the X measurement is modified
by the Pauli operator X x1

1 Zz1
1 X x2

2 Zz2
2 . We straightforwardly

analyze this two-qubit circuit with its pure initial state and
for the Pauli operator find the probability pflip(x1, x2, x3, x4)

that the outcome is flipped, namely

pflip =

⎧
⎪⎨

⎪⎩

0 if x1 = x2 and z2 = 0,
1/2 if x1 �= x2 and z2 = 0,
1 if x1 = x2 and z2 = 1,
1/2 if x1 �= x2 and z2 = 1.

(19)

Then all that remains is to count the contribution to each of
these Paulis from the aforementioned locations according

X

X

X

FIG. 23. A part of the state-distillation circuit with the inclu-
sion of a Pauli error X x1

1 Zz1
1 X x2

2 Zz2
2 on a pair of qubits. Such an

error can appear as a result of previous faults being propagated
through the circuit. Without loss of generality we assume that all
the other measurements are completed before this error, which
ensures that the pair of qubits is decoupled from the rest of the
system. If the error-free outcome is b, then the error-free state
must be |ψ〉 = (Zb|T⊥〉)⊗ |T〉. This simple two-qubit circuit can
then be analyzed for all 16 cases of the error X x1

1 Zz1
1 X x2

2 Zz2
2 .
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to the effective noise model, which yields

p rem
rej = (392 + 4.13d)p idle + 13.5pCNOT,

p rem
fail = 0.

(20)

The contributions from Eqs. (16)–(18) and (20) combine
to give the rejection and failure probability of the state-
distillation step

pdist
rej = 15q + 12.3pprep + (466 + 4.13d)p idle

+ 51.7pCNOT, (21)

pdist
fail = 35q3 + 16.9 p idle + 1.93pCNOT. (22)

The number of time units required to implement the state-
distillation circuit can be straightforwardly identified from
Fig. 22 and is equal to

τ dist(d) = 8 (d + 32) . (23)

B. State-distillation overhead

Here we estimate the overhead required for a k-round
state-distillation protocol using distances {d(1), d(2), . . . ,
d(k)} under circuit noise of strength p , as well as the infi-
delities output by each round {q(1), q(2), . . . , q(k)}. Note that
q(k) is the infidelity of the encoded T state produced by the
overall protocol.

Recall that the first step of the state-distillation proto-
col is to initialize encoded T states in distance-5 2D color
codes; see Fig. 20 and Sec. III A 1. Writing the infidelity of
the state after initialization as q(0) = p init

fail (p), the remaining
infidelities are then calculated iteratively according to

q(i) = pdist
fail (q

(i−1), p , d(i)). (24)

To estimate the overhead, it is useful to streamline our
notation. Recall from Eq. (12) that N2D(d) = (3d2 − 1)/2
qubits are used to implement the distance-d 2D color
code. For each state distillation round i ∈ {1, 2, . . . k}, let
r(i) =

[
1 − pdist

rej (p , q(i−1), d(i))
]

be the acceptance proba-

bility, R(i) = 15 be the number of |T〉s required assuming
acceptance, and α(i) = 31/15 be the number of logical
qubits needed per input |T〉 in the state-distillation circuit.
To account for the initialization step, we also set d(0) = 3,
r(0) =

[
1 − p init

rej (p)
]
, R(0) = 1, and α(0) = 1.

We can calculate the expected number of physical qubits
required in each round. We imagine preparing a large
number of output T states, and thus we can talk about
the average overhead [107]. Since the state-distillation
protocol in the last round succeeds with probability r(k),
on average it needs R(k)/r(k) input |T〉’s. We therefore
require on average α(k)N2D(d(k))R(k)/r(k) qubits for the last
round. To supply the kth round, the (k − 1)th round must

therefore output R(k)/r(k) |T〉’s on average, which requires
α(k)N2D(d(k))R(k−1)R(k)/(r(k−1)r(k)) physical qubits, and so
on. The qubit overhead NSD of the state-distillation proto-
col can then be found as the number of qubits needed in
the most qubit-expensive state-distillation round, namely

NSD = max
i=1,...,k

⎡

⎣α(i)N2D
(
d(i)

) k∏

j =i

R(j )

r(j )

⎤

⎦ . (25)

The time required for state distillation is

τSD = τ init +
k∑

i=1

τ dist(d(i)). (26)

The space-time overhead is then simply NSDτSD. For var-
ious values of p , we run a simple search over a number
of rounds k ∈ {1, 2, 3} and distances {d(1), d(2), . . . , d(k)} to
distill a target infidelity pfin for a low space or space-time
overhead; see Fig. 24.

Let us briefly remark on the threshold of this 15-to-1
state distillation using the 2D color code. This threshold
is the noise strength above which arbitrarily low target
infidelity cannot be achieved, irrespective of the number
of state-distillation rounds. There are two main features
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FIG. 24. (a) The qubit and (b) space-time overhead of state
distillation as a function of the infidelity pfin of the output T state.
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that could limit the state-distillation threshold. Firstly, error
correction in the 2D color code could be the limiting fac-
tor. Namely, if p is above the circuit-noise threshold of
0.37(1)%, one will be unable to achieve logical states
with arbitrarily low infidelity. Secondly, the first round of
state distillation can be a bottleneck if the infidelity of the
initial encoded T state cannot be improved by it. For sim-
plicity, we assume that the encoded Clifford operations
execute perfectly, and solve for the critical infidelity qc
satisfying 35q3

c = qc. Using Eq. (15), we obtain a corre-
sponding critical error rate of 1/(6.07 × √

35) ≈ 3%. We
conclude that error correction is the bottleneck, so we esti-
mate the threshold for state distillation with this scheme to
be 0.37(1)%.

IV. INSIGHTS INTO 3D COLOR CODES

In this section we present some insights into 3D color
codes that are useful for code switching. In Sec. IV A, we
describe a simple approach to switch between the 2D and
3D color codes. At the core of this approach is the fact that
in a particular state of the gauge qubits, the 3D subsys-
tem color code can be viewed as a collection of 2D color
codes. In Sec. IV B, we describe some relevant features of
the gauge operators of the 3D color code, which will be rel-
evant for gauge fixing and also for the simulation of noise
upon the application of the transversal T gate. Our discus-
sion closely follows material in Ref. [108]. In Sec. IV C,
we generalize the restriction decoder to correct Z errors in
the 3D color code with boundaries, which are later used in
our code-switching protocol.

A. A simple way to switch between 2D and 3D color
codes

First we recall the general procedure for gauge fixing
from a subsystem code with gauge group G to a stabilizer

code with stabilizer group S ′ ⊆ G, where both codes share
a set of bare logical operators. We require that the stabilizer
group S of the subsystem code, which is the centralizer of
G in the Pauli group intersected with G modulo the phase,
i.e., S = [Z(G) ∩ G]/〈iI〉, is contained in S ′, namely S ⊆
S ′. Consider any state |ψ〉 in the code space of the sub-
system code, which by definition is a (+1) eigenstate of
all elements of S . To switch from G to S ′, we first mea-
sure a generating set of S ′ \ S . A subset of those measured
generators may have −1 outcomes, but there must exist
an element g ∈ G, which anticommutes with precisely that
subset of generators. Hence after applying g, all the stabi-
lizers of S ′ will be satisfied, and since g commutes with
the bare logical operators, the logical state is unaffected,
which completes the transfer from G to S ′. This procedure
is named gauge fixing since it involves measuring some
(initially unsatisfied) gauge operators, and fixing them to
be +1.

Central to switching between color codes is the fact that
both the 3D stabilizer color code and the 2D color code
can be viewed as gauge fixings of the 3D subsystem color
code; see Fig. 25. The gauge and stabilizer groups Gsub and
Ssub for the 3D subsystem color code, and the stabilizer
group S3D for the 3D stabilizer color code are

Gsub = 〈X (e), Z(e) | ∀e ∈ �′
1(L3D)〉, (27)

Ssub = 〈X (v), Z(v) | ∀v ∈ �′
0(L3D)〉, (28)

S3D = 〈X (v), Z(e) | ∀v ∈ �′
0(L3D), e ∈ �′

1(L3D)〉.
(29)

We can define the stabilizer group S2D of the 2D color
code within the 3D lattice L3D since L2D is “contained”
in L3D; see Fig. 25(b). Let Sint be the stabilizer group for
the interior, i.e., the qubits that are not near the Y-boundary

(a) (b) (c)

FIG. 25. (a) In one gauge fixing of the 3D subsystem color code Gsub on the lattice L3D [shown in Fig. 5(b)], all Z edges (depicted
by light struts) are satisfied. This corresponds to the 3D stabilizer color code S3D. (b) In another gauge fixing of Gsub, all X and Z edges
incident to Y vertices in �0(L3D) (depicted by light struts) are satisfied. This corresponds to the 2D color code S2D on the qubits near
the boundary vertex vY and the 2D spherical color codes Sint on other qubits. We depict the primal lattice of the 2D color code on the
lattice L2D [shown in Fig. 5(a)] in black. (c) Around each Y vertex in �′

0(L3D), there is the 2D spherical color code, whose primal
lattice we depict in black.
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vertex vY. Then,

S2D = 〈X (e), Z(e) | ∀e ∈ �′
1(L3D) incident to vY〉, (30)

Sint = 〈X (e), Z(e) | ∀e ∈ �′
1(L3D) incident to

any interior Y vertex〉, (31)

where vY is the Y-boundary vertex. We can think of Sint
as the group generated by the stabilizers of the 2D spher-
ical color codes centered around every Y interior vertex
of L3D; see Fig. 25(c). Note that every 2D spherical color
code encodes zero logical qubits.

It is straightforward to see that Gsub contains both
S3D and 〈S2D,Sint〉. Moreover, Ssub ⊆ S3D and Ssub ⊆
〈S2D,Sint〉 since vertex operators X (v) and Z(v) can be
formed by multiplying operators X (e) and Z(e) on all the
edges of the same color incident to v. Also note that there
is a shared representation of bare logical operators for all
three codes (for example X and Z applied to every qubit in
L2D). Therefore, to move from the subsystem code Gsub to
either of the stabilizer codes, i.e., S3D or 〈S2D,Sint〉, gauge
switching can be used. Switching from either of the stabi-
lizer codes to the subsystem code requires no action, since
any state, which is a (+1) eigenstate of every element of
S3D or 〈S2D,Sint〉, must also be a (+1) eigenstate of every
element in Ssub.

This example of gauge fixing is sometimes referred to
as a dimensional jump because the logical information is
moved between codes defined on 2D and 3D lattices [58].

B. Physics of the gauge flux in 3D color codes

Here we consider general features of the gauge operators
of the 3D subsystem color code. Our discussion closely
follows material in Ref. [108]. Suppose there is some X
error ε ⊆ �3(L) in the system. We define the Z-type gauge
flux γ ⊆ �′

1(L) to be the subset of interior edges, which
would return −1 outcomes if all Z edges in the system were
measured perfectly. Since each edge has one color from
K = {RG, RB, RY, GB, GY, BY}, we distinguish six types
of the flux and write

γ =
∑

K∈K
γ K . (32)

Although the flux γ can be random, it has to form a collec-
tion of strings, which may branch and can terminate only at
the boundary of the lattice; see Fig. 26. A local constraint
capturing this behavior, which we call the Gauss law, can
be stated as follows. Let K1, K2, K3, K4 ∈ {R, G, B, Y} be
four different colors. Then, for any vertex v ∈ �′

0(L) of
color K1, the number of edges of γ of color K1K2 or K1K3
and incident to v has to be even, i.e.,

∣∣γ K1K2 |v + γ K1K3 |v
∣∣ ≡ 0 mod 2. (33)

(a) (b)

FIG. 26. Schematic representation of the Z-gauge flux γ in the
bulk (enclosed by the black tetrahedron) of the 3D subsystem
color code on the lattice L3D in Fig. 5(b). (a) The flux γ consists
of strings of six different colors. There are seven branching points
of γ (depicted as red, green, blue, and yellow vertices). The flux
γ has to satisfy the Gauss law in the bulk, and can terminate at
any of the boundary vertices of L3D. (b) We highlight one linked
component of γ , which contains three connected components of
γ that are linked.

This local constraint arises from the redundancies
among gauge generators. Namely, in order to form a sta-
bilizer generator Z(v) identified with the vertex v, we can
multiply all the gauge generators on edges of color K1K2
incident to v. Alternatively, we can obtain Z(v) as the prod-
uct of all gauge generators on edges of color K1K3 incident
to v. Since the parity of the number of −1 measurement
outcomes among those gauge generators in both cases is
the same, we recover Eq. (33).

Note that when the stabilizer Z(v) is violated (indicating
the presence of some X error), then the number of −1 out-
comes for gauge generators on edges incident to v of color
K1K2 has to be odd, i.e.,

∣∣γ K1K2 |v
∣∣ ≡ 1 mod 2. In such a

case, we call the vertex v a branching point of γ , as three
different flux types γ K1K2 , γ K1K3 , and γ K1K4 meet at v. We
remark that to perform error correction with the 3D sub-
system color code, one can use the information about the
branching points of the flux γ . If the flux γ has no branch-
ing points at any interior vertex, then all Z stabilizers are
satisfied and there always exists an X -type gauge oper-
ator, which anticommutes with precisely those Z gauge
generators in γ .

If an edge set satisfies the Gauss law, we say that it is
valid. An edge set that does not satisfy the Gauss law is
said to be invalid, and we refer to all vertices that vio-
late the Gauss law as violation points. When the gauge
flux is measured with noisy circuits, there can be errors
in the reported noisy gauge flux causing it to be invalid;
see Fig. 27.

Now, we discuss the structure of the flux γ , which satis-
fies the Gauss law. First, we can find a decomposition of γ
in terms of its connected components, i.e.,

γ =
a∑

j =1

γj . (34)
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(a) (b)

FIG. 27. (a) The flux γ (highlighted RB edges) due to a sin-
gle GY-edge generator (shaded four tetrahedra) contains only
RB edges. This set of edges γ satisfies the Gauss law. (b) A
noisy measurement of the flux may not be valid, meaning it
does not satisfy the Gauss law. Here γ̃ has two violation points
(highlighted R and B vertices) at which the Gauss law is not
satisfied.

By definition, different connected components are disjoint,
i.e., γj ∩ γk = ∅ for j �= k.

Then, we define a linked component of γ as a subset
of all connected components of γ , which are linked (in
the sense of knot theory); see Fig. 26(b). Finally, we can
decompose γ as a disjoint union of its linked components

γ =
b∑

i=1

λi. (35)

Note that each λi is the sum of some γj ’s.
For convenience, we introduce a function col :

�0(L) → Z
3
2, which for each vertex v returns its color,

where we set R = (1, 0, 0), G = (0, 1, 0), B = (0, 0, 1), and
Y = (1, 1, 1).

For any linked component λi of γ we refer to a subset
σ ⊆ �0(λi) as an excitation configuration for λi and call∑

v∈σ col(v) the total charge of σ . We denote the collection
of excitation configurations �(λi) for λi with the neutral
total charge as follows:

�(λi) =
{
σ ⊆ �0(λi)

∣∣∣∣
∑

v∈σ
col(v) = (0, 0, 0)

}
. (36)

Writing the linked component λi in terms of its connected
components λi = γi1 + γi2 + · · · + γik , we also introduce
the collection of excitation configurations without the link-
ing charge

�′(λi) = �(γi1)×�(γi2)× · · · ×�(γik ). (37)

We remark that the linking charge is a charge that can be
transferred between two connected components γi and γj ,
which are linked; see [108]. Note that �′(λi) is contained
in �(λi), i.e., �′(λi) ⊆ �(λi), and they coincide when-
ever the linked component λi consists of a single connected
component.

C. Restriction decoder for 3D color codes with
boundaries

Here we provide details on correcting Z-type errors in
the 3D stabilizer color code with perfect measurements,
which is needed for the final step of the code-switching
protocol. We seek an efficient decoder for the 3D color
code with good performance. Our approach is to adapt the
restriction decoder from Ref. [31], which was originally
defined for lattices with no boundary, to the tetrahedral
lattice L3D. We also apply additional minor modifica-
tions to improve the performance. In what follows we
briefly review the restriction decoder and describe our
modifications.

Let σ ⊆ �′
0(L3D) be the syndrome of the 3D stabilizer

code on the tetrahedral lattice L3D. We pick one color,
say Y, and for each color K ∈ {R, G, B} we separately ana-
lyze the restricted syndrome σKY ⊆ �′

0(LKY
3D) within the

restricted lattice LKY
3D. If |σKY| ≡ 1 mod 2, then we add

the boundary vertex vY to σKY. Next, we find a subset of
edges EKY ⊆ �1(LKY

3D), which provides a pairing of ver-
tices of σKY within the restricted lattice LRY

3D. Note that we
can find a pairing of minimal weight by using the MWPM
algorithm. Also, the weight of the edge connecting the
boundary vertices vY and vK is set to zero.

After finding the pairing E = ERY + EGY + EBY we
apply a local lifting procedure to every Y vertex in the
interior of L3D. Namely, for every Y vertex v ∈ �′

0(L3D)

we find any subset of tetrahedra τ(v) ⊆ ∂0,3v in the neigh-
borhood of v, whose 1-boundary locally matches E, i.e.,
[∂3,1τ(v)]|v = E|v . We emphasize that all such choices of
τ(v) result in operators Z(τ (v)), which may differ only by
a stabilizer operator.

To lift the boundary vertex vY, we need to adapt the
original restriction decoder from Ref. [31]. Since L2D
is a sublattice of L3D [see Fig. 25(b)], one can show
that the problem of finding τ(vY) ⊆ ∂0,3vY, which satis-
fies [∂3,1τ(vY)]|vY = E|vY , is equivalent to the problem of
decoding the 2D color code defined on the facet of the
tetrahedral lattice L3D near vY. We remark that different
choices of τ(vY) may lead to operators Z(τ (vY)) differing
by a logical operator. We use the projection decoder for
the 2D color code as described in Sec. II A. Finally, the
correction operator is found as

∏
v∈�0(L3D)

Z(τ (v)), where
the product is over all Y vertices, including the boundary
vertex vY. Note that this adaption to accommodate a lattice
boundary in 3D is analogous to an adaption presented in
Ref. [37] for the 2D case.

In Fig. 28(a) we show the performance of the restric-
tion decoder adapted to the 3D stabilizer color code on
the tetrahedral lattice L3D, finding a threshold of 0.55(5)%
for independent and identically distributed (IID) phase-flip
Z noise. This value can be contrasted with the restriction
decoder threshold of 0.77% for the color code on the three-
torus reported in Ref. [31]. Also, a similar adaption of the
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FIG. 28. Performance of the restriction decoder for the 3D
color code adapted to the tetrahedral lattice L3D with IID Z noise.
Using the decoder (a) once for color Y, and (b) once each for R,
G, B, and Y and then selecting the lowest weight output. This
improves the performance and raises the observed threshold from
0.55(5)% to 0.80(5)%.

restriction decoder to the 3D color code with a boundary
was recently presented in Ref. [109], and although the
initial posting of their paper had low reported thresh-
old values of 0.1%–0.2%, a later posting reported values
consistent with those we find.

This adapted restriction decoder on moderate system
sizes is far from optimal. For example, some weight-2
errors can cause failure for any d ≤ 9. This phenomenon is
not solely due to the presence of the boundaries. Namely,
we find that there are some weight-2 errors in the color
code of distance d = 6 on the three-torus, which cause the
restriction decoder to introduce a logical error.

To improve the performance, we consider a very sim-
ple additional modification of the restriction decoder to
improve its performance for moderate system sizes. In
addition to selecting a small weight set τ(vY) for the
boundary vertex vY, we choose as τ(v) the set of min-
imal weight for every Y vertex v ∈ �′

0(L3D). As men-
tioned above, this can only change the decoder output
by a stabilizer, but the explicit representation will typi-
cally be of lower weight. Then, we simply rerun the same
decoder 3 times by picking other colors, i.e., R, G, and B

instead of Y, and finally select the correction which has the
lowest total weight among the four for colors Y, R, G, and
B. This simple modification yields significant improve-
ments: the lowest distance that corrects all weight-2 errors
is now d = 7 compared to d = 11, which is needed with-
out the modification, and the threshold is increased from
0.55(5)% to 0.80(5)%; see Fig. 28.

V. CODE-SWITCHING ANALYSIS

In this section we describe how code switching between
2D and 3D color codes can be used to fault tolerantly pro-
duce an encoded T state in the 2D color code, and analyze
the overhead of this process.

A. Creating the T state via code switching in six steps

Here we outline the protocol to produce an encoded T
state using code switching in the presence of circuit noise.
The main idea is to first produce a Bell state across a pair of
2D color codes, and switch one of the two into a 3D color
code where the logical T is applied transversally. Then, by
measuring X for the 3D code, the encoded T state is effec-
tively teleported to the remaining 2D code (up to a known
logical Pauli correction). This approach avoids switching
from the 3D code back to the 2D code, which we believe
considerably reduces the amount of extra noise and simpli-
fies our simulation. More explicitly, the protocol consists
of the following steps (which are illustrated in Fig. 29).

1. Prepare Bell state in 2D codes.—The encoded Bell
state (|0〉2D|0〉2D + |1〉2D|1〉2D)/

√
2 state is fault tol-

erantly prepared in a pair of 2D color codes, defined
on two copies of the lattice L2D. The second of these
2D color codes should be seen as the code defined
along the 2D boundary near the yellow vertex of the
3D lattice as in Fig. 25(b).

2. Prepare the 3D interior.—The remaining qubits in
L3D, i.e., those that are not near the boundary ver-
tex vY, are prepared as a tensor product of unique
spherical 2D color-code states. The logical state of
the system is a Bell pair between a 2D color code
and the 3D subsystem color code (|0〉2D|0〉sub +
|1〉2D|1〉sub)/

√
2.

3. Measure gauge operators.—All Z-edge operators
for all edges not incident to any Y vertex are mea-
sured, yielding the subset of edges γ̃ corresponding
to −1 outcomes.

4. Gauge fix.—We find and apply an X -gauge opera-
tor, which seeks to fix all Z-edge operators to have
+1 outcomes. The logical state is now a Bell state
encoded into the 2D color code and the 3D stabilizer
color code (|0〉2D|0〉3D + |1〉2D|1〉3D)/

√
2.

5. Apply T, and measure.—We apply T̃ to every
data qubit. This, in turn, implements a log-
ical T gate, yielding the state (|0〉2D|0〉3D +
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One cycle

FIG. 29. Protocol to create an encoded T state via code switch-
ing, with the timeline of each step in units of QEC cycles for the
2D color code. In steps 1 and 2 we simultaneously prepare the
Bell state |�+〉 in a pair of 2D codes, and the interior of the 3D
subsystem color code. In step 3, we measure gauge operators,
before fixing them in step 4 to end up in the 3D stabilizer color
code. In step 5, T is applied and all the qubits are measured. In
step 6, a decoder is used to infer the outcome of the logical X of
the 3D stabilizer color code, and the state of the remaining 2D
patch is |T〉 up to a logical Z.

eiπ/4|1〉2D|1〉3D)/
√

2. Then we measure each indi-
vidual data qubit in the 3D code in the X basis.

6. Decode Z errors in 3D code.—We use the single-
qubit X -basis measurements to first decode Z errors,
and then infer the outcome m = ±1 of the logical
X . Then, the state encoded in the 2D color code is
(|0〉2D + meiπ/4|1〉2D)/

√
2, which for m = −1 needs

to be fixed to the encoded T state by application of
logical Z.

In the following subsections, we go through each of the
six steps, elaborating on the implementation and simula-
tion details. In our analysis, we adhere to the following
guiding principles.

(a) For each step, we use Monte Carlo simulations
under circuit noise to estimate the performance. We
select the best error-correction techniques, fault-
tolerant gadgets, and efficient decoding algorithms
that we are aware of, and optimize measurement
circuits where possible.

(b) It is possible that some steps will benefit from
future improvements in error-correction techniques
and decoders. We estimate the impact these could
have on the performance of this code-switching pro-
tocol by replacing those steps by a justified estimate
of the best improvement one could hope for.

(c) We choose the fault-tolerant error correction for the
2D color code to be the same optimized configura-
tion we assume for state distillation (see Sec. II D) to
allow for a fair comparison between code switching
and state distillation.

(d) We assume a single ancilla qubit per gauge operator
in the 3D color code interior.

In Fig. 30(a) we present our findings by showing the
overall probability of failure of code switching using our
simulations. In Figs. 30(b)–30(f) we indicate the impact of
optimistic improvements of various steps in the protocol
on the overall probability of failure of code switching.

1. Preparing the Bell state in 2D codes

To fault tolerantly prepare the encoded Bell state
(|0〉2D|0〉2D + |1〉2D|1〉2D)/

√
2 in a pair of 2D color codes

of distance d, we first fault tolerantly prepare them in
|+〉2D and |0〉2D, respectively, and then transversally apply
a CNOT from the first to the second. Preparation of |+〉2D
is carried out by initializing all data qubits in the 2D color
code in |+〉, and then performing d QEC cycles and fixing
the inferred initial syndrome of the Z stabilizers. Prepa-
ration of |0〉2D similarly involves initialization of all data
qubits in |0〉, followed by d QEC cycles and fixing the
inferred initial syndrome of the X stabilizers. Since each
QEC cycle for the 2D color code requires 8 time units, the
preparation of the encoded Bell state takes 8d time units.
After this point the second of the 2D codes undergoes a sin-
gle additional QEC cycle while code switching occurs for
the first 2D code patch. Although it is arbitrary which of the
two patches is used for code switching, in practice there is
an asymmetry in the X and Z noise for the patches. We find
a marginal benefit from feeding the first patch (initialized
in |+〉 prior to the CNOT) to be used for code switching. For
details, see Appendix E.

2. Preparing the 3D interior

There are 2D spherical color-code states to be prepared
around each yellow vertex as that shown in Fig. 25(b).
Implementation details and optimizations of this step are
given in Appendix D, but we provide the key features here.

Data qubits are prepared in |+〉, then Z stabilizers are
measured with the shortest circuit that uses a single ancilla.
If the syndrome extracted for a 2D color code around a yel-
low vertex is valid, meaning there is an X operator that will
set all stabilizers to have +1 outcomes, then such a fix is
applied, otherwise the preparation is repeated. If the second
iteration also yields an invalid syndrome, one randomly
selected outcome is flipped, producing a valid syndrome,
which is then fixed. The interior preparation step is started
sufficiently early so that any repeated preparations have
finished by the time the two 2D color-code patches com-
plete. Note that since the 2D spherical color code encodes
no logical qubits, it is not necessary to repeat measure-
ments, in contrast to preparation of a logical state in the 2D
color-code patch, which requires a number of QEC cycles
proportional to d.
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FIG. 30. (a) Failure probability of the code-switching protocol under circuit noise, for which we observe a T gate threshold of
0.07(1)%. We also estimate the code-switching failure probability when one step, i.e., (b) interior preparation, (c) gauge measurement,
(d) gauge fixing, and (e) the decoder, is replaced with an optimistic version. In (f), all four of these steps are replaced by their optimistic
versions. We use a special form of the ansatz in Eq. (7), i.e., pfail = A

(
p/p∗

CS

)(Cd+D) to fit the data up to the crossing. The gray region
between the fit lines from (a) is superimposed onto (b)–(f) to guide the eye. We observe that improving the interior preparation and
developing a better decoder have the most potential to improve the performance of code switching. If all the potential improvements
are achievable, the threshold could be as large as 0.22(5)%.

Optimistic improvements. One may hope to improve the
preparation of the 2D spherical color codes. Although we
find a schedule of shortest length to measure the stabi-
lizers, there could be many others of the same length,
which could potentially lead to fewer errors. Moreover,
it may be possible to exploit the unused ancilla associ-
ated with the RG, RB, and GB edges and to consider

collective rather than independent preparations of the
2D color codes. No matter how good such a prepara-
tion protocol is, it would require at least 3 time units as
each qubit appears in three Z-type stabilizer generators.
Therefore, we use 3 idle time units with circuit noise of
strength p to bound potential improvements of this step in
Fig. 30(b).
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3. Measuring gauge operators

To change gauge to the 3D stabilizer code, the Z edges
of color in K = {RG, RB, GB} are measured. Implemen-
tation details and optimizations of this step are given in
Appendix F. We find a minimal length circuit to measure
the gauge operators in parallel with a single ancilla qubit
per edge. Including ancilla preparation and measurement,
this circuit requires 8 time units, although the prepara-
tion can be done during the last time unit of the interior
preparation step.

Since we choose to measure only Z-edge operators of
color in K, not all Z-edge operators, we learn only the
restricted noisy gauge flux γ̃K. We emphasize that due to
faults in the measurement process, γ̃K is likely to violate
the Gauss law and differ from the restricted gauge flux γK

in the system.
Optimistic improvements. It seems difficult to reduce the

errors introduced by this step without increasing the space
or time overhead significantly, and for example to use ver-
ified cat states to measure each edge operator. We neglect
any space or time overhead in our estimate so that we
bound the effect of potential improvements. As each data
qubit is in three measurements, a minimum of 3 time units
would be required to implement the measurement. There-
fore, we use 3 idle time units with circuit noise of strength
p in our optimistic simulation in Fig. 30(c).

4. Gauge fixing

This step corresponds to a classical algorithm which
takes as its input the restricted noisy gauge flux γ̃K ⊆
�′

1(LK
3D) corresponding to some subset of edges of color

in K = {RG, RB, GB}, and outputs some X -type gauge
operator aiming to fix γ̃K. The algorithm proceeds as
follows.

(i) Validation of the noisy flux: for any color K ∈ K
we validate the noisy restricted flux γ̃ K by match-
ing its violation points within the restricted lattice
LRG

3D . We denote by λK ⊆ �′
1(LK

3D) the set of edges
used in the pairing of the violation points of γ̃ K .
Then, γ̂ = ∑

K∈K(γ̃
K + λK) is the validated flux.

Note that γ̂ ⊆ �′
1(LK

3D).
(ii) Gauge fixing from the validated flux: we find an

operator
∏

e∈f (γ̂ ) X (e) consistent with γ̂ and apply
it. Such an X -gauge operator can be efficiently
found by, e.g., Gaussian elimination.

In this step, we are treating the restricted noisy gauge flux
γ̃K as arising from a gauge flux γ̂ with no branching points
along with some measurement errors; see Fig. 31. In other
words, we want to find a gauge flux γ̂ corresponding to
some X -gauge operator just by looking at its restricted
noisy gauge flux γ̃K. However, the gauge flux can in fact
have branching points due to X errors in the system. In

(a) (b)

FIG. 31. (a) A Z-gauge flux due to an isolated X error (shaded
tetrahedron) consists of six edges of different colors. (b) The
restricted gauge flux, which is measured (assuming no errors
occur during the measurement), excludes edges incident to Y ver-
tices. The gauge-fixing algorithm in this scenario would connect
the marked vertices in each subgraph thereby removing the RG,
RB, and BG edges in the measured restricted gauge flux as if they
were each erroneous, leaving the X error present in the system
following gauge fixing. An improved algorithm could potentially
correct this error.

such a case, the restricted noisy gauge flux does not even
satisfy the Gauss law in the absence of measurement errors
as we omit Z-type operators associated with RY, BY, and
GY edges. For every K ∈ K we choose to independently
pair up all the violation points of γ̃ K within the restricted
lattice LK , which in turn allows us to find the desired γ̂ .

Optimistic improvements. One can ask how close to
optimal the performance of the algorithm is. For instance,
it may be possible to not only estimate a gauge fix from the
noisy Z-flux measurement, but also to correct X errors in
the system; see Fig. 31. To bound the impact of any poten-
tial improvements of this step in our simulation, we assume
that all X errors in the system prior to the gauge measure-
ments are corrected, and that the gauge itself is identified
exactly; see Fig. 30(d). The only remaining X error that is
retained in this bound is therefore that which is introduced
by the noisy gauge measurement circuits themselves.

5. Applying T and measuring the 3D code’s data qubits

In this step, we first apply the T̃ gate to each data qubit,
and then measure it in the X basis. These can be com-
bined into a single operation requiring 1 time unit. Despite
being one of the simplest code-switching steps to imple-
ment, it is quite challenging to simulate efficiently due to
the large number of T gates. In what follows we describe
how we exploit some additional structure and assumptions
that render the simulation tractable.

Let the X -type residual error before the application of
the logical T gate be supported on ρX ⊆ �′

3(L3D); simi-
larly, let ρZ denote the Z-type residual error. Note that if
we could perfectly fix the gauge in the previous step and
there were no additional X errors, then there would be
no residual X error. Generically, there is some nontrivial
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residual X error, which unlike the Z error does not com-
mute with the logical T gate. The effect of the residual X
error on the measurement outcomes amounts to, roughly
speaking, flipping some outcomes along the Z-gauge flux
γ = ∂3,1ρX of the residual X error ρX . This is made precise
in the following lemma.

Lemma V.1: Let ρX , ρZ ⊆ �′
3(L3D) be residual X and

Z errors. Let γ = ∂3,1ρX be the Z-gauge flux and γ =∑b
j =1 λj be a decomposition of γ into its linked compo-

nents λj ’s. If T̃ is applied to every data qubit and the
X stabilizers are perfectly measured, then one obtains a
syndrome

σ = ∂3,1ρZ +
b∑

j =1

σj , (38)

where each excitation configuration σj ∈ �(λj ) is chosen
uniformly at random from �(λj ).

In the above, we use notation introduced in Sec. IV B.
To simulate this step, one can generate Pauli operators
resulting in the same distribution of syndromes. Note that
there is a possibility of introducing a logical Z operator at
this step, which we ignore in our simulation, leading to an
underestimate of the failure of code switching. For more
details and a justification of this lemma, see Ref. [108].

In our simulation we make the additional simplify-
ing assumption to sample σj uniformly from within the
collection of excitation configurations without the link-
ing charge �′(λj ) rather than the collection of excitation
configurations �(λj ). Recall that �′(λj ) ⊆ �(λj ). This
assumption amounts to ignoring the linking charge, and we
do not expect it to substantially effect the performance. We
generate the random Z-error τZ ⊆ �′

3(L3D) as

τZ =
∑

v∈�′
0(γ )

τ (γ |v), (39)

where τ(γ |v) is a local sampling procedure, which we
now describe in detail. Let v ∈ �′

0(γ ) be a vertex of color
A, which is incident to the flux γ = ∂3,1ρX , and γ |v be
the restriction of γ to the edges incident to v. Let K′ =
{R, G, B, Y} \ {A} denote the set of three different colors.
We find a subset τ(γ |v) ⊆ ∂0,3v of tetrahedra containing v
as follows.

(i) With probability 1/2 set � = 0; otherwise � = 1.
(ii) For each K ∈ K′, if �

∏
K∈K

∣∣γ |AK
v

∣∣ = 0, then
choose uniformly at random a subset EAK ⊆ γ |AK

v

of even cardinality; otherwise choose uniformly at
random a subset EAK ⊆ γ |AK

v of odd cardinality.

(iii) Find a subset of tetrahedra τ(γ |v), whose 1-
boundary locally matches

∑
K∈K′ EAK , i.e.,

[∂3,1τ(γ |v)]|v =
∑

K∈K′
EAK . (40)

We remark that in step (iii) one can always find an appro-
priate subset of tetrahedra τ(γ |v). Namely, since γ satisfies
the Gauss law, all γ AK |v’s have the same parity, and sub-
sequently all EAK |v’s have the same parity. Thus, the
endpoints of the EAK |v’s excluding the vertex v can be
viewed as a valid syndrome of the 2D color code on a
sphere around v, i.e., the sphere bounding the ball com-
prising the tetrahedra in ∂0,3v. Decoding that syndrome
configuration will give us some subset χ of triangular faces
around v. Subsequently, we can choose τ(γ |v) to be a sub-
set of tetrahedra in ∂0,3v, which are spanned by faces in χ
and the vertex v.

We now explain why this algorithm produces τZ ⊆
�′

3(L3D) with the correct syndrome distribution. First, any
excitation configuration σj ∈ �′(λj ) can be viewed as a
sum of local excitation configurations with neutral total
charge. If the vertex v is in�′

0(λj ), then step (ii) is equiva-
lent to randomly selecting a local excitation configuration
for λj |v, which is created by operators supported within the
neighborhood ∂0,3v of v and with the neutral total charge.
Since each local excitation configuration is equally likely
selected, thus the resulting excitation configuration σj is
chosen uniformly at random from �′(λj ). Also note that
the search in (iii) can be implemented by exhaustively
checking which of the possible subsets of tetrahedra ∂0,3v

containing v satisfies Eq. (40). This naive implementation
is nevertheless efficient since |∂0,3v| is bounded. Lastly, we
remark that the residual Z-error present in the system right
before the measurement in the X basis is ρZ + τZ . We use
this Z error in the following code switching step.

6. Decoding Z errors in the 3D color code

In the final step of the protocol, a classical decoding
algorithm is run to correct Z errors for the 3D stabilizer
color code. The input to the decoder is the set of X mea-
surement outcomes for each data qubit from the previous
step. The output of the decoder will be a Z-type Pauli cor-
rection, which, if applied, would flip all the syndromes
computed given the single-qubit X outcomes. At that point
one can reliably read off the logical X measurement m =
±1. Then, the state encoded in the remaining 2D color
code from step 1 is (|0〉2D + meiπ/4|1〉2D)/

√
2, which is the

encoded T state, up to the multiplication by Z for m = −1.
We implement a decoder based on the restriction

decoder from Ref. [31], but modified in two ways. The first
modification is to adapt the decoder to the 3D stabilizer
color code on the lattice L3D, which has boundaries. The
second modification is to improve performance. We do this
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by favoring low-weight corrections (which differ by a sta-
bilizer from the output of the original decoder). Running
four independent versions of this decoder in parallel, we
then simply select the lowest-weight correction from the
four candidates. We describe and analyze the performance
of this modified restriction decoder in Sec. IV C.

Optimistic improvements. A different decoder may
improve the performance of code switching. It is difficult
to give as rigorous bounds on the performance of this step
as we were able to give for the previous steps. However,
by assuming that the best decoder performs as if the phase-
flip Z noise is IID, we estimate the effect of any potential
performance improvements using the following steps.

(i) Run the modified restriction decoder, and if it suc-
ceeds then we assume the improved version would
also succeed, if it fails then continue to the next step.

(ii) Let w be the minimum of the weight of the
error, and the weight of the correction produced
by the modified restriction decoder. Let n be the
number of data qubits in the distance-d 3D sta-
bilizer color code. Choose uniformly at random
a real number from 0 to 1, and if it is smaller

than p (1)3DCC

(
(w/n)/p (1)3DCC

)(d+1)/2
, then the correc-

tion fails; otherwise, the correction succeeds.

Note that p (1)3DCC � 1.9% is the known threshold of the
optimal decoder for the 3D stabilizer color code under
IID Z noise [102]. We provide more detailed justifications
for this estimate in Appendix G. The impact of potential
improvements of this step on code switching is shown in
Fig. 30(e).

B. Code-switching overhead

To calculate the space and time overhead required to
produce an encoded T state with failure probability pfin, we
first find the minimum distance d(pfin), which achieves this
by extrapolating the data in Fig. 30(a). The time to imple-
ment the code-switching protocol at distance d is simply
8(d + 1), which is the time for (d + 1) QEC cycles of
the 2D color code to complete. The number of qubits to
implement the code-switching protocol at distance d is

NCS(d) = (26d3 + 51d2 + 22d − 51)/24. (41)

This is comprised of two 2D color-code patches [each of
which has N2D(d) = (3d2 − 1)/2 qubits from Eq. (12)] and
the 3D interior [which has d(d2 + 1)/2 − (1 + 3d2)/4 data
qubits and (d − 1)(7d2 + 10d + 15)/12 − 3(d + 1)(d −
1)/8 measurement qubits]. Details of the lattices, which
make clear where these numbers originate from, can be
found in Appendix A.
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FIG. 32. (a) The qubit and (b) space-time overhead of code
switching as a function of the infidelity pfin of the output T state.
Note there is no curve for p = 0.001 as this is higher than the
observed threshold for code switching.

In Fig. 30 we fit a special form of the ansatz in Eq. (7),
i.e., pfail = A

(
p/p∗

CS

)(Cd+D) to fit the data up to the cross-
ing. Setting the failure probability to be at most the target
infidelity, i.e., pfail ≤ pfin, and solving for d we obtain

d = log(pfin/A)
C log

(
p/p∗

CS

) − D/C, (42)

where we round the right-hand side up to the closest odd
integer. Finally, in Fig. 32 we substitute this into NCS(d)
and plot the qubit overhead and the space-time overhead
as a function of pfin for various values of p for two cases:
assuming no improvements, and assuming all optimistic
improvements can be achieved.

VI. DISCUSSION

In this work, we simulate concrete realizations of state
distillation and code switching under circuit noise and
compare the overhead that each requires to produce high-
fidelity T states encoded in 2D color codes. We focus on
regimes of practical interest, with physical error rates from
10−4 to 10−3 and target logical error rates from 10−20 to
10−4; see Fig. 2. For error rates of 10−3 and above, our
implementation of code switching is not viable since its
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observed threshold is 0.07(1)%, considerably lower than
that of 0.37(1)% for state distillation. For error rates near
5 × 10−4, our implementation of code switching becomes
viable, but requires considerably more overhead than state
distillation. However, for error rates around 10−4, our
code-switching implementation begins to slightly outper-
form that of state distillation. Lastly, we see in Fig. 2
that a highly optimistic implementation of code switching
(which may be very difficult if not impossible to achieve)
would not provide substantial savings over our simple
implementation of state distillation in the studied regimes.

We now discuss the scaling of the space overhead OS
∗

and space-time overhead OST
∗ of code switching and state

distillation for small physical error rate, i.e., p � 1. We
further assume that log pfin/ log p � 1. As we derive in
Appendix H, we have

OS
∗ ∼ cS

∗

(
log pfin

log p

)�∗
, OST

∗ ∼ cST
∗

(
log pfin

log p

)�∗+1

,

(43)

where cS
∗ and cST

∗ are some constants, �CS = 3 for code
switching and �SD = max(2, logF R) for state distillation.
Here, R is the ratio of the number of input to output magic
states and F is the order of error suppression in a single
distillation round. The change in the value of �SD can be
understood as follows—if logF R > 2, then the overhead is
dominated by the initial distillation round; otherwise, it is
dominated by the final round. For the 15-to-1 distillation
scheme we have R = 15 and F = 3, leading to logF R ≈
2.46 and �SD < �CS. From Eq. (43) we thus conclude
that for log pfin/ log p � 1 state distillation will always
outperform code switching. On the other hand, if we are
willing to extrapolate Eq. (43) to more modest values of
log pfin/ log p , the overhead of code switching is predicted
to drop below that of state distillation. The precise value
of the crossover is highly sensitive to the implementation
details, but this could explain why we observe code switch-
ing outperforming state distillation for low p and modest
pfin in Fig. 2.

Our findings point toward a number of future research
directions. First, it could be fruitful to explore the poten-
tial of code switching in the regime of very low error
rates, which may be achievable in trapped ion qubits [110]
and topological qubits [38]. Second, improving the 2D
color-code state-preparation procedure, syndrome extrac-
tion, and decoding algorithms would further reduce the
overhead of both code switching and state distillation.
We expect that code switching may also greatly benefit
from better 3D color-code decoders. Third, our code-
switching protocol produces the T state, but it is possible
to directly apply the T gate rather than injecting it, which
may allow one to implement code switching in constant
time rather than a time that scales with the code distance
d. It is, however, far from obvious whether there exists

a regime where this would lead to an improvement. On
the one hand, the time cost would be improved; on the
other hand, the performance might heavily degrade due
to replacing the destructive measurements and subsequent
perfect-measurement decoding of the standard 3D color
code with a more complex decoding problem. Fourth, we
see that in contradiction with the commonly held belief that
a distillation scheme overhead is dominated by that of the
first round approximately (log 1/pfin)

logF R, the last round
overhead is approximately (log 1/pfin)

2 when implemented
with 2D codes, and dominates when logF R < 2; similar
observations were also made in Refs. [14,111]. This sug-
gests that searches and optimizations of new distillation
schemes should not be restricted to those with very low
logF R. Lastly, it is interesting to consider scenarios in
which our main conclusions may not hold. For instance,
if the physical error rate continues to drop significantly, it
seems possible that the cost of code switching would con-
tinue to drop relative to distillation. Also, in a setting of
qubit abundance, the somewhat lower time cost of code
switching could make it favorable compared to distillation.
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APPENDIX A: LATTICE PARAMETERS AND
SPECIFICATIONS

Here we provide parameters of the lattices that are used
throughout the paper. Tables II and III show parameters
of the direct lattice and the dual lattice used to define the
2D and 3D color codes of distance d. In general, these
lattices can be obtained by tessellating a D sphere with
D-simplices and then removing one vertex from that tes-
sellation, as well as all the simplices containing that vertex
[57,83].
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TABLE II. The lattice L2D, which we use to define the 2D sta-
bilizer color code of distance d, consists of 3(d2 + 7)/8 vertices,
3(3d2 + 5)/8 edges, and (1 + 3d2)/4 faces. We group vertices
of L2D into three different categories depending on the number
of faces incident to them. Note that qubits are placed on faces,
whereas stabilizers are identified with vertices of L2D.

No. of vertices No. of incident faces

3(d − 1)/2 4
3(d − 3)(d − 1)/8 6
3 d

APPENDIX B: SUPPLEMENTARY DETAILS FOR
2D COLOR-CODE SIMULATIONS

Here we provide additional data for the analysis of
the performance of the 2D color code using the faulty-
measurement projection decoder under phenomenological
noise and circuit noise in Sec. II in the main text. In Fig. 33
we show the performance under phenomenological noise,
which we use to produce the long-time pseudothreshold
plot in Fig. 12(d) in the main text. Similarly, in Fig. 34

TABLE III. The lattice L3D, which we use to define the 3D
subsystem and stabilizer color codes of distance d, consists
of (d − 1)(d + 1)(d + 3)/12 + 4 vertices, (d − 1)(7d2 + 10d +
15)/12 + 6 edges, d3 + d + 2 faces, and (d3 + d)/2 tetrahe-
dra. We group vertices and edges of L3D into, respectively,
five and three different categories depending on the number of
tetrahedra incident to them. Note that qubits are placed on tetra-
hedra, whereas stabilizer and gauge generators are identified with
vertices and edges of L3D.

No. of vertices

No. of
incident

tetrahedra No. of edges

No. of
incident

tetrahedra

4 1+3d2

4 6 d
2(d − 1) 8 d3+3d2+11d−15

4 4
(d−3)(d−1)

2 12 (d−3)(d−1)(2d+5)
6 6

(d−3)(d−1)
2 18

(d−5)(d−3)(d−1)
12 24

we show the performance under phenomenological noise,
which we use to produce the long-time pseudothreshold in
Fig. 14(b) in the main text. We point out that the decay
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FIG. 33. (Top two rows) Failure probability of ncyc QEC cycles for phenomenological noise of strength p given a perfect initial
state and final QEC cycle, for various distances d. We estimate the time-dependent pseudothreshold p∗

phe(d, ncyc) as an intersection of
quadratic fits (solid lines) with the corresponding physical qubit error probability pphy(ncyc) as defined in Eq. (5) in the main text (dashed
curves). (a) The time-dependent pseudothreshold p∗

phe(d, ncyc) as a function of ncyc. We estimate the long-time pseudothresholds p∗
phe(d)

by fitting p∗
phe(d, ncyc)with the ansatz in Eq. (11) in the main text and in (b) we plot the decay parameter γ . We observe that γ stabilizes

rapidly with increasing d, confirming that the residual noise reaches equilibrium over a time that is independent of system size.
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FIG. 34. (Top two rows) Failure probability of ncyc QEC cycles for circuit noise of strength p given a perfect initial state and final
QEC cycle, for various distances d. We estimate the time-dependent pseudothreshold p∗

cir(d, ncyc) as an intersection of quadratic fits
(solid lines) with the corresponding physical qubit error probability pphy(ncyc) as defined in Eq. (5) in the main text (dashed curves). (a)
The time-dependent pseudothreshold p∗

cir(d, ncyc) as a function of ncyc. We estimate the long-time pseudothresholds p∗
cir(d) by fitting

p∗
cir(d, ncyc) with the ansatz in Eq. (11) in the main text and in (b) we plot the decay parameter γ . We observe that γ stabilizes rapidly

with increasing d, confirming that the residual noise reaches equilibrium over a time which is independent of system size.

parameter in the fit of the time-dependent pseudothresh-
old in Figs. 33(b) and 34(b) shows that convergence
to the long-time pseudothreshold seems not to depend

d = 5
d = 7
d = 9
d = 11

d = 13
d = 17
d = 21

0.002 0.003 0.004 0.005
10–3

10–2

10–1

p

p
fa

il

FIG. 35. Failure probability pfail of the noisy-syndrome pro-
jection decoder for ncyc = d rounds of circuit noise and various
distances d.

significantly on the system size. In Fig. 35 we provide
the data used to produce the crossings in Fig. 14(b) in
the main text. In Fig. 36 we show the impact of optimiz-
ing the stabilizer extraction circuit on the performance of
error correction under circuit noise by comparing the per-
formance of the best and worst ranked schedues from Fig.
14(a) in the main text. In Fig. 37, we show additional
data from which we extract the logical failure rates for
p = 0.001, 0.0001 in Fig. 17(b) in the main text.

APPENDIX C: SUPPLEMENTARY DETAILS FOR
DISTILLATION ANALYSIS

Here we provide more details of the distillation anal-
ysis in Sec. III in the main text. In Table IV we consider
variants of the distillation circuit formed by puncturing dif-
ferent qubits of the quantum Reed-Muller state. This helps
us identify that puncturing qubit number three is best with
the noise model we assume in this paper since it results
in the smallest leading-order failure probability given that
pCNOT ≥ pprep ≥ p idle.
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FIG. 36. Performance comparison of (a) the best ranked, and (b) the worst ranked length-7 CNOT schedules, namely
{4, 1, 2, 3, 6, 5; 3, 2, 5, 6, 7, 4} and {4, 1, 2, 7, 6, 3; 1, 6, 7, 4, 5, 2}. We numerically estimate the failure probability of ncyc QEC cycles for
circuit noise of strength p for d = 13 given a perfect initial state and final QEC cycle. We fit this data with quadratic functions (solid
lines), and also show the physical qubit error probability pphy(ncyc) (dashed curves). We estimate the pseudothreshold p∗

cir(d, ncyc),
which we plot in subfigure (c) by identifying the intersection of the solid and dashed curves for a given d, p , and ncyc. We see that
the long-time pseudothreshold for the good circuit is 0.193(2)% (blue, dashed), considerably larger than that of 0.126(3)% for the bad
circuit (yellow, dashed).

Now we elaborate on the procedure to initialize a T
state in a distance d color code described in Sec. III A 1 in
the main text, and explain some structure that we exploit
to simplify the noise analysis. First note that even in the
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FIG. 37. Failure probability of the logical idle operation using
the best-performing CNOT schedule as a function of ncyc/d for (a)
p = 10−3 and (b) p = 10−4. We use the ansatz in Eq. (13) in the
main text to find the logical failure rate p(p , d). We observe that
QEC equilibration occurs by the dth QEC cycle.

absence of noise, the stabilizers, which are measured in the
initialization protocol, have uncertain outcomes because
the state is not a code state of the 2D color code at the
start of the protocol. Let A and B be the two sets of qubits
prepared in |0〉 and |+〉, respectively; see Fig. 21(a). The
protocol involves taking the observed syndrome σ , and
producing a Pauli operator P(σ ) = PX PZ , where PX and
PZ are Pauli X and Z operators supported on qubits in
B and A, respectively. The protocol rejects if no such fix
exists or if the syndromes from the consecutive rounds of
QEC differ. Note that the fix is unique up to a stabilizer
since neither of the disjoint sets A and B support a logi-
cal operator. This implies that for any two syndromes σ
and σ ′ the Pauli operators P(σ )P(σ ′) and P(σ + σ ′) are
equivalent up to a stabilizer.

To faithfully simulate this protocol in the presence
of noise, one can consider the scenario in which a
complete set of perfect stabilizer measurements is per-
formed (and their outcomes discarded) before the QEC
circuits are applied. This allows us to begin the simula-
tion with a state, which is an eigenstate of the stabilizer
group. The simulation can therefore be implemented as
follows.

1. Start with a perfect code state.
2. With some probability Pr(σ ), apply a Pauli operator

P(σ ) = PX (σ )PZ(σ ), where PX (σ ) and PZ(σ ) are
Pauli X and Z operators supported within B and A,
respectively.

3. Run the noisy circuits explicitly as described in Sec.
I A in the main text. A set of faults will propagate
to some Pauli error E on the data qubits at the end
of the protocol. The faults could result in the syn-
dromes from the two QEC cycles disagreeing, in
which case the protocol is rejected, or both QEC
rounds having the same observed syndrome σ̃ , pos-
sibly different from the syndrome σ of P. Note that
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TABLE IV. Leading-order contributions to the probability of failure pRM
fail and rejection pRM

rej of the 15-to-1 distillation scheme from
the production of the Reed-Muller state for each choice of punctured qubit.

Punctured qubit Failure probability pRM
fail Rejection probability pRM

rej

1 1.98pCNOT + 0.875p idle + pprep 38pCNOT + 75.6p idle + 11.3pprep
2 2.2pCNOT + 0.85p idle 38.2pCNOT + 73.3p idle + 12.3pprep
3 1.93pCNOT + 0.875p idle 38.2pCNOT + 73p idle + 12.3pprep
4 2.45pCNOT + 2.31p idle + pprep 38.1pCNOT + 77.1p idle + 11.8pprep
5 1.98pCNOT + 0.875p idle 38pCNOT + 73p idle + 12.3pprep
6 2.2pCNOT + 0.85p idle + 0.5pprep 38.2pCNOT + 75.5p idle + 12pprep
7 1.93pCNOT + 0.875p idle + 0.5pprep 38.2pCNOT + 75.3p idle + 12pprep
8 2.45pCNOT + 3.69p idle + 2pprep 38.1pCNOT + 76.4p idle + 11.3pprep
9 1.98pCNOT + 0.875p idle + pprep 38pCNOT + 74.8p idle + 11.3pprep
10 2.2pCNOT + 0.85p idle 38.2pCNOT + 73.3p idle + 12.3pprep
11 1.93pCNOT + 0.875p idle 38.2pCNOT + 73p idle + 12.3pprep
12 2.45pCNOT + 2.31p idle + pprep 38.1pCNOT + 77.1p idle + 11.8pprep
13 1.98pCNOT + 0.875p idle 38pCNOT + 73p idle + 12.3pprep
14 2.2pCNOT + 0.85p idle + 0.5pprep 38.2pCNOT + 75.9p idle + 12pprep
15 1.93pCNOT + 0.875p idle + 0.5pprep 38.2pCNOT + 75.5p idle + 12pprep
16 2.45pCNOT + 2.59p idle + 2pprep 38.1pCNOT + 77p idle + 11.3pprep

σ + σ̃ can only depend on the set of faults, and is
independent of σ .

4. Apply a Pauli operator P(̃σ ) = PX (̃σ )PZ (̃σ ) with
the syndrome σ̃ , where PX (̃σ ) and PZ (̃σ ) are Pauli
X and Z operators supported on qubits in B and A,
or reject if such an operator cannot be found.

5. If the net operator EP(σ )P(̃σ ) is correctable, then
we say that the protocol succeeds, and otherwise we
say it fails.

However, note that the net operator EP(σ )P(̃σ ) must
be independent of σ , since P(̃σ ) and P(σ )P(σ + σ̃ ) are
equivalent up to a stabilizer. In our simulation we therefore
set σ to be trivial for simplicity without loss of generality.

Using this simulation approach, we analyze all 234
valid CNOT schedules for a variety of distances, and

find that {1, 4, 6, 7, 5, 2; 4, 5, 7, 6, 2, 3}, as shown in Fig.
21, has the lowest failure pro ability, namely p init

fail =
6.07p . For comparison, the worst schedule using d = 3 is
{1, 4, 6, 7, 5, 2; 4, 5, 7, 6, 2, 3} and results in a p init

fail of 12.7p .

APPENDIX D: PREPARING THE 3D INTERIOR
FOR CODE SWITCHING

Here we consider the 3D interior of the initial state for
code switching discussed in Sec. V A 2 in the main text,
which consists of a (trivial) 2D color-code state on the
qubits surrounding each Y interior vertex. This object can
be viewed as a 2D sphere; see Fig. 38. This state of each
sphere is formed by preparing all data qubits in the |+〉
state, then measuring the Z stabilizers, each with an ancilla
measurement qubit in a single QEC cycle, followed by

(a) (b) (c) (d)

FIG. 38. Dual and primal lattices for the 2D spherical color codes, which appear in the preparation of interior of the 3D
color code. Qubits are black dots, and stabilizers are gray edges with colored vertices. For each, the subset of vertices
from vlist in Eq. (D1) are (a) {1, 2, 3, 4, 8, 15, 17}, (b) {1, 2, 3, 4, 6, 7, 8, 11, 17}, (c) {1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15}, and (d)
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16}.

020341-37



BEVERLAND, KUBICA, and SVORE PRX QUANTUM 2, 020341 (2021)

TABLE V. Shortest CNOT sequences to measure each Z stabilizer with a single ancilla for the 8-, 12-, 18-, and 24-qubit spherical
color codes in Fig. 38. Sets of two and four vertices from vlist are used to label edges (measurement qubits) and tetrahedra (data qubits),
which form the target and control of each CNOT, which is applied in the specified time unit. Note that weight-4 stabilizers have their
CNOTs applied in the last 4 time units, avoiding unnecessary idle times in the measurement circuits.

Sphere size Edge Time unit 1 Time unit 2 Time unit 3 Time unit 4 Time unit 5 Time unit 6

(8,1) (1,2,4,8) (1,2,3,8) (1,3,8,17) (1,4,8,17)
(8,2) (1,2,3,8) (1,2,4,8) (2,3,8,15) (2,4,8,15)

8 (8,3) (3,8,15,17) (2,3,8,15) (1,2,3,8) (1,3,8,17)
qubits (8,4) (2,4,8,15) (4,8,15,17) (1,4,8,17) (1,2,4,8)

(8,15) (2,3,8,15) (2,4,8,15) (4,8,15,17) (3,8,15,17)
(8,17) (1,3,8,17) (1,4,8,17) (3,8,15,17) (4,8,15,17)
(8,1) (1,3,8,17) (1,2,3,8) (1,2,4,8) (1,4,8,17)
(8,2) (1,2,3,8) (1,2,4,8) (2,3,6,8) (2,6,8,11) (2,4,7,8) (2,7,8,11)
(8,3) (1,2,3,8) (2,3,6,8) (1,3,8,17) (3,6,8,17)

12 (8,4) (1,2,4,8) (2,4,7,8) (1,4,8,17) (4,7,8,17)
qubits (8,6) (6,8,11,17) (3,6,8,17) (2,3,6,8) (2,6,8,11)

(8,7) (2,7,8,11) (7,8,11,17) (4,7,8,17) (2,4,7,8)
(8,11) (2,6,8,11) (2,7,8,11) (6,8,11,17) (7,8,11,17)
(8,17) (1,3,8,17) (1,4,8,17) (3,6,8,17) (4,7,8,17) (7,8,11,17) (6,8,11,17)
(8,1) (1,2,3,8) (1,2,4,8) (1,3,5,8) (1,4,5,8)
(8,2) (1,2,4,8) (1,2,3,8) (2,3,8,15) (2,4,8,15)
(8,3) (1,2,3,8) (1,3,5,8) (3,5,8,9) (2,3,8,15) (3,8,9,12) (3,8,12,15)
(8,4) (1,2,4,8) (1,4,5,8) (4,5,8,10) (2,4,8,15) (4,8,10,13) (4,8,13,15)

18 (8,5) (1,3,5,8) (3,5,8,9) (1,4,5,8) (4,5,8,10) (5,8,9,14) (5,8,10,14)
qubits (8,9) (5,8,9,14) (3,8,9,12) (3,5,8,9) (8,9,12,14)

(8,10) (4,8,10,13) (5,8,10,14) (4,5,8,10) (8,10,13,14)
(8,12) (3,8,9,12) (3,8,12,15) (8,9,12,14) (8,12,14,15)
(8,13) (8,13,14,15) (4,8,13,15) (8,10,13,14) (4,8,10,13)
(8,14) (5,8,9,14) (5,8,10,14) (8,9,12,14) (8,10,13,14) (8,12,14,15) (8,13,14,15)
(8,15) (2,4,8,15) (3,8,12,15) (4,8,13,15) (8,12,14,15) (8,13,14,15) (2,3,8,15)
(8,1) (1,2,3,8) (1,2,4,8) (1,3,5,8) (1,4,5,8)
(8,2) (1,2,3,8) (1,2,4,8) (2,6,8,11) (2,3,6,8) (2,4,7,8) (2,7,8,11)
(8,3) (2,3,6,8) (1,2,3,8) (1,3,5,8) (3,5,8,9) (3,8,9,12) (3,6,8,12)
(8,4) (1,2,4,8) (2,4,7,8) (1,4,5,8) (4,7,8,13) (4,5,8,10) (4,8,10,13)
(8,5) (1,3,5,8) (1,4,5,8) (3,5,8,9) (4,5,8,10) (5,8,9,14) (5,8,10,14)
(8,6) (2,3,6,8) (2,6,8,11) (3,6,8,12) (6,8,11,12)

24 (8,7) (2,4,7,8) (2,7,8,11) (4,7,8,13) (7,8,11,13)
qubits (8,9) (3,8,9,12) (5,8,9,14) (3,5,8,9) (8,9,12,14)

(8,10) (4,5,8,10) (4,8,10,13) (5,8,10,14) (8,10,13,14)
(8,11) (2,6,8,11) (2,7,8,11) (8,11,12,16) (6,8,11,12) (7,8,11,13) (8,11,13,16)
(8,12) (3,6,8,12) (3,8,9,12) (6,8,11,12) (8,9,12,14) (8,11,12,16) (8,12,14,16)
(8,13) (4,7,8,13) (4,8,10,13) (7,8,11,13) (8,10,13,14) (8,11,13,16) (8,13,14,16)
(8,14) (5,8,10,14) (8,9,12,14) (8,10,13,14) (8,13,14,16) (8,12,14,16) (5,8,9,14)
(8,16) (8,11,13,16) (8,12,14,16) (8,13,14,16) (8,11,12,16)

the application of an appropriate X Pauli to fix incorrect
stabilizers.

CNOT circuits.—For each of the four types of spheres,
we find an ordering of CNOTs, which allows for a minimal-
length circuit to measure the stabilizers; see Table V.
These sequences are found using a greedy algorithm with
a random initial sequence and minimizing the cost func-
tion of the number of unsatisfied constraints (we require
that no qubit is involved in more than one gate per time
unit) minus the average time unit when each gate occurs.
The greedy algorithm terminates when all constraints are

satisfied and when the cost function cannot be further
reduced. We fix the total number of time units to be mini-
mal (four CNOT time units for the eight-qubit sphere, which
involves only weight-4 stabilizers, and six CNOT time units
for the 12-, 18-, and 24-qubit spheres, which involve
weight-6 stabilizers). We maximize the average time unit
when each gate occurs since this removes idle time units
by not preparing ancillas for lower-weight stabilizer mea-
surements until they are needed. The sequences we find are
optimal with regard to this cost function: all constraints are
satisfied using the minimal number of time units, and all
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weight-r stabilizer generators have CNOTs in the last r time
units of each schedule. There could be many schedules that
are optimal in this sense, but we did not attempt to explore
among those for schedules that performed better.

To make the representation of the schedules slightly
more compact, we specify 17 vertex locations in a list vlist
in lexicographical order as follows:

vlist =
{
(−1, 0, 0) ,

(− 1
2 , − 1

2 , − 1
2

)
,
(− 1

2 , − 1
2 , 1

2

)
,

(− 1
2 , 1

2 , − 1
2

)
,
(− 1

2 , 1
2 , 1

2

)
, (0, −1, 0) ,

(0, 0, −1) , (0, 0, 0) , (0, 0, 1) ,

(0, 1, 0) ,
( 1

2 , − 1
2 , − 1

2

)
,
( 1

2 , − 1
2 , 1

2

)
,

( 1
2 , 1

2 , − 1
2

)
,
( 1

2 , 1
2 , 1

2

)
, (1, −1, −1) ,

(1, 0, 0) ,
( 3

2 , 3
2 , 3

2

) }
, (D1)

where the coordinates (1, −1, −1) and
( 3

2 , 3
2 , 3

2

)
are for

placing boundary vertices vG and vR, while the others
describe the interior vertices. The colors of the vertices in
vlist in order are G, R, B, B, R, G, G, Y, G, G, B, R, R, B, G,
G, R. The central Y vertex is placed at the origin (0, 0, 0)
and is the eighth entry in vlist. To apply the CNOT schedules
we specify in Table V, one must map the neighborhood of
every vertex to one of these four standard configurations.
All interior vertices lie precisely on these standard coor-
dinates relative to their central yellow vertex. Boundary
vertices connected to their central yellow vertex will not
be on the standard coordinates in vlist, but can be identified
and shifted to the standard coordinate uniquely since there
is at most one boundary vertex of each color included in
the neighborhood of any yellow vertex.

Syndrome fixing.— In the absence of error, the syndrome
readout of the Z-stabilizer measurements for each spherical
2D color code (which will have random outcomes) deter-
mines the X -type gauge operator to “fix” the outcomes to
be +1. Since the spherical 2D color code encodes no logi-
cal qubits, any X -type operator with the correct syndrome
will suffice, and can be found with Gaussian elimination.
However, faults in the measurement circuits can render the
syndrome invalid, in the sense that there is no gauge oper-
ator with the observed syndrome. We consider a number of
strategies to deal with this. Firstly, we consider the repeat
strategy: if the observed syndrome is invalid, we repeat the
preparation once. Secondly, we consider the flip strategy:
if the observed syndrome is invalid, we flip a bit of the
syndrome to produce a valid syndrome, and then apply
a fixing operator. We test the impact of these approaches
on the failure probability of code switching using a dis-
tance nine code in Fig. 39. Note that when using the repeat
strategy, if the first round is successful, the qubits are left
idle in the prepared state to allow for a second round to

w/o R and w/o F
w/o R and w/ F
w/ R and w/o F
w/ R and w/ F

0.0003 0.0005 0.0007 0.0009
10–3

10–2

10–1

p

p f
ai

l

FIG. 39. Overall code-switching performance of four syn-
drome fixing approaches for the preparation of 2D spherical color
codes. Each approach either uses or does not use the repeat (R)
and flip (F) strategies for distance d = 9. In the approach, which
uses both strategies, we use the repeat strategy, and the flip strat-
egy if the repeat also yields an invalid syndrome. In each case,
the stabilizers are measured with the CNOT circuits described in
Table V. Both the repeat and flip strategies improve performance.

be applied on spheres that failed the first round. In prac-
tice we find that these idle rounds do not have a lot of
impact on the performance in the regime of interest. We
see that both the repeat and flip strategies improve per-
formance, and so we incorporate both into the optimized
code-switching protocol.

APPENDIX E: CHOICES OF BASIS FOR
CODE-SWITCHING PREPARATION

Here we analyze the effect of the choice of basis in the
first two steps of the code switching described in Secs.
V A 1 and V A 2 in the main text. The performance of the
code may depend on this choice as it could lead to an
asymmetry in the X - and Z-type noise and later steps of the
protocol would not treat X and Z error in the same way.

The first choice is for the preparation of the Bell state in
the 2D color-code patches in Sec. V A 1 in the main text.
We fault tolerantly prepare the first patch in |+〉, and the
second in |0〉 before applying a transversal CNOT from the
first to the second. Since the CNOT copies X noise from the
first to the second patch, and Z from the second to the first,
we can expect that the first patch has more Z noise and
the second patch has more X after a faulty preparation. We
choose whether to feed the first or the second patch to be
involved in code switching, which we refer to as 2D patch
|+〉 and 2D patch |0〉, respectively.

The second choice is for the preparation of the 2D spher-
ical color code in its unique code state around each interior
yellow vertex as described in Sec. V A 2 in the main text.
We can do this by either preparing each data qubit in |0〉
and then measuring the X stabilizers, or by preparing each
data qubit in |+〉 and then measuring the Z stabilizes. We
refer to these cases as 3D interior |0〉 and 3D interior
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FIG. 40. The impact on the failure probability of the code-
switching protocol from different choices of basis for first two
steps of the protocol.

|+〉, respectively, and compare their impact along with the
choice for the patch preparation in Fig. 40. The data pre-
sented there is for distance d = 9, and has all other steps
as described in Sec. V in the main text for the optimized
code-switching protocol. We find that there is very little
difference in the performance of each of these choices, and
we select 2D patch |+〉 and 3D interior |+〉 for use in the
optimized version of the protocol.

APPENDIX F: GAUGE MEASUREMENT
CIRCUITS FOR CODE SWITCHING

Here we discuss the circuits used to measure the Z-
type gauge generators corresponding to RG, RB, and
GB edges used in Sec. V A 3 in the main text for code
switching. We find a minimum-length circuit with a sin-
gle ancilla, which needs 8 time units (including prepara-
tion and measurement). A more naive circuit of 20 time
units is constructed by initially preparing ancillas in the
first time unit, sequentially applying CNOTs associated
with RG, RB, and GB edges in time units 2–7, 8–13,
14–19, respectively, and finally measuring ancillas in time
unit 20.

To specify the CNOT sequences, we separate edges (mea-
surement qubits) into 20 types by color and orientation and
identify the tetrahedra containing them (data qubits) in a
systematic way in terms of their spatial position relative
to the edge. The CNOT sequence is then specified for each
edge type. To specify the neighborhood of each edge we
label every qubit in its support with some number from 1
to 6 in such a way that all edges of the same type have
qubits labeled locally, and are all consistent. There edges
containing vertices in the boundary are treated separately;
see Fig. 41 where we show parts of the full lattice from
Fig. 5(b) in the main text.

For completeness, we now specify our conventions to
label the circuits. To label tetrahedra around an edge with

(a) (b)

(c) (d)

FIG. 41. Z-type gauge operators that are measured in the pro-
tocol to implement code switching are associated with RG, RB,
and GB edges in the lattice, illustrated for the distance d = 9
lattice. We separate the edges into 20 cases. (a) Edges connect-
ing interior vertices are classified by color and the vector from
one vertex to the other. (b)–(d) Other edges are classified by
the boundary vertex and the color of the interior vertex they are
incident to.

two interior vertices, we specify a local coordinate sys-
tem. The z-basis vector for an RG, GB, or RB edge is the
normalized vector vedge from the first to the second ver-
tex. The x-basis vector is the normalized vector parallel to
virr = (1,π ,

√
2), but perpendicular to vedge, which is guar-

anteed not to be parallel to any edges. The y-basis vector
is then specified uniquely to form a right-hand coordinate
system (x, y, z). The tetrahedra around the edge are then
labeled in sequence according to the azimuthal angle to
their midpoint in this coordinate system. For edges that
contain a boundary vertex, the same applies, but the vec-
tor vedge is specified according to Table VI. In the bulk, the
tetrahedra are positioned regular azimuthal angles for each
edge type, but at the boundary we identify the tetrahedra
by whichever standard angle it is closest to. When tetra-
hedra are “missing” around an edge due to cuts along the
boundary, they are simply skipped in the CNOT sequence,
with no CNOTs applied during the assigned time unit for
that edge.

The sequence in Table VI is found using a greedy
algorithm starting with a random initial sequence and min-
imizing the cost function of the number of unsatisfied
constraints (we require that no qubit is involved in more
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TABLE VI. Measurement circuit specification for RG, RB, and GB gauge operators. Edges connecting interior vertices (first 14 rows)
are labeled by the vertex colors (first column) and the vector connecting them (second column). Edges connecting a boundary vertex
are labeled by that boundary vertex vR, vG, or vB and the color of the interior vertex. Qubits around an edge are labeled in order of
increasing azimuthal angle, and the column in which each data qubit appears specifies which time unit a CNOT occurs from that data
qubit to the corresponding measurement qubit for the edge.

Vertex types Edge vector Time unit 1 Time unit 2 Time unit 3 Time unit 4 Time unit 5 Time unit 6

R-G (+ 1
2 , − 1

2 , − 1
2 ) 1 3 2 4 5 6

R-G (+ 1
2 , + 1

2 , + 1
2 ) 1 2 3 4 5 6

R-G (− 1
2 , + 1

2 , − 1
2 ) 1 2 3 6 5 4

R-G (− 1
2 , − 1

2 , + 1
2 ) 1 2 4 3 5 6

G-B (+ 1
2 , − 1

2 , − 1
2 ) 1 2 3 6 4 5

G-B (+ 1
2 , + 1

2 , + 1
2 ) 1 2 3 6 5 4

G-B (− 1
2 , + 1

2 , − 1
2 ) 3 1 2 4 5 6

G-B (− 1
2 , − 1

2 , + 1
2 ) 1 2 3 6 5 4

R-B (+0, +0, −1) 1 2 3 4
R-B (+0, +1, +0) 1 2 3 4
R-B (+1, +0, +0) 1 2 3 4
R-B (−1, +0, +0) 1 2 3 4
R-B (+0, −1, +0) 1 2 4 3
R-B (+0, +0, +1) 1 2 3 4
vR-G (−1, −1, −1) 1 2 3 4 5 6
R-vG (+1, −1, −1) 1 2 3 4 5 6
vG-B (−1, +1, +1) 1 2 3 5 6 4
G-vB (−1, +1, −1) 2 1 3 4 5 6
vR-B (−1, −1, −1) 1 2 5 3 4 6
R-vB (−1, +1, −1) 1 2 3 4 6 5

than one gate per time step) minus the average step time
for each gate. The result is the shortest possible measure-
ment circuit using a single measurement qubit per edge,
and which involves no idle time units for edge types of
weight 4.

To simulate the gauge measurements, we first apply an
X -type gauge operator gX supported on randomly selected
RB, GB, and RG edges. Then the specified circuits are
applied and produce the outcomes γ̃ , which in the absence
of error would correspond to precisely the Z edges, which
anticommute with gX .

APPENDIX G: OPTIMISTIC IMPROVEMENTS
FOR THE 3D COLOR CODE DECODER

Here we justify our estimate of the impact on code-
switching performance due to any potential improvements
on the 3D color-code decoder as used in Sec. V A 6 in
the main text. For any error E we define its stabilizer-
reduced weight to be the minimum of the weight of sE
for any stabilizer s. The estimate rests on the following
assumptions.

1. We assume that the stabilizer-reduced weight of
errors generated by code switching can be approx-
imated by the minimum of the weight of either

the error itself or its correction produced by the
modified restriction decoder.

2. The decoder does not take into account any cor-
relations in the noise produced during the various
steps of code switching and its failure probability for
errors with stabilizer-reduced weight w produced by
code switching is no lower than that of the optimal
decoder for IID Z errors of weight w.

3. The optimal decoder for IID Z noise, when applied
to uniformly drawn weight-w errors has failure
probability satisfying

p IID
fail (w, d) > p (1)3DCC

(
w/n

p (1)3DCC

)(d+1)/2

, (G1)

where n is the number of data qubits, and p (1)3DCC �
1.9% is the known optimal threshold of the the 3D
stabilizer color-code decoder for IID Z noise [102].

We use the stabilizer-reduced weight rather than the actual
weight of an error as a proxy for how hard it is to correct.
It is important to do this since errors are equivalent up to
the application of a stabilizer when applied to code states.
Moreover, single faults in a stabilizer measurement circuit
can propagate to a high-weight error, which is equivalent
to a low-weight error up to the stabilizer being measured
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by the circuit. The first assumption is then made to avoid
needing to multiply the error by an exponential number
of stabilizers to find its minimum-weight representative.
This assumption is somewhat justified by the fact that the
modified restriction decoder in Sec. IV C in the main text
seeks to output a low-weight correction.

The second assumption is somewhat crude, since
decoders that take correlations into account can outperform
those that do not; see, e.g., Ref. [28]. However, we sus-
pect that the assumption holds for typical error patterns,
since the decoder will have to correct uncorrelated weight
w errors in addition to correlated errors. Therefore, we
believe it is unlikely that one can design a decoder, which
significantly outperforms the optimal decoder for IID Z
noise in this setting. We gain further confidence in the
first two assumptions by numerically testing the decoder
on correlated and uncorrelated noise; see Fig. 42. There,
we verify that the performance of the modified restriction
decoder for noise produced by the code-switching proto-
col with stabilizer-reduced weight w (estimated using the
first assumption) is comparable to its performance for IID
Z noise with weight w.

The third assumption is based on the heuristic behavior
of error-correction failure rate pfail in topological codes for
error rate p in the vicinity of their threshold p∗ [35,81,82],
i.e., that pfail(p , d) � (p/p∗)(d+1)/2, which is a special case
of the ansatz in Eq. (7). To form an inequality in terms
of the error weight w, we first take w as a proxy for the
typical error 〈w〉, which for IID Z noise on n qubits satis-
fies 〈w〉 = pn. We then note that taking p∗ as a prefactor

uncorrelated
correlated

1 2 3 4 5 6 7 8 9
10–5

10–4

10–3

10–2

10–1

Error weight

p f
ai

l

FIG. 42. Performance of the modified restriction decoder for
the 3D color code for distance d = 9 given various error weights.
Uncorrelated Z noise (blue) of weight w is generated by ran-
domly selecting w of the n qubits and applying a Z error.
Correlated Z noise (yellow) is generated by running the decoder
for error rate p = 0.0003, and for each error generated, esti-
mating its stabilizer-reduced weight w by taking the smaller of
the weight of the error itself and its correction. The correlated
and uncorrelated cases are not identical but are very similar,
justifying our assumptions.

would correspond to the pseudothreshold being indepen-
dent of system size, thereby overestimating error rate for
most topological codes.

APPENDIX H: ASYMPTOTIC OVERHEAD
ANALYSIS

Here we derive the scaling of the space and space-time
overhead of code switching between 2D and 3D codes and
state distillation using 2D codes in Eq. (43) in Sec. VI in
the main text. We consider the regime with p � 1 and
log pfin/ log p � 1, which allows us to assume the code
distances and the number of distillation rounds are large.

First, we consider code switching. We assume that the
failure probability obeys

pCS(p , d) = ACS

(
p

p∗
CS

)CCSd

. (H1)

In order to implement code switching we need (to leading
order in d) N3Dd3 qubits and τ3Dd time units. In the imple-
mentation presented in Sec. V in the main text, N3D =
13/12 and τ3D = 8. To produce a state of infidelity pfin,
we find the smallest d for which pCS(p , d) < pfin, arriving
at the expressions

OS
CS ∼ N3D

C3
CS

(
log pfin − log ACS

log p − log p∗
CS

)3

, (H2)

OST
CS ∼ N3Dτ3D

C4
CS

(
log pfin − log ACS

log p − log p∗
CS

)4

. (H3)

Now we consider distillation. The starting point is the sim-
plification that the failure probability of logical operations
in the 2D color code is approximately captured by the
phenomenological form

p2D(p , d) = A2D

(
p

p∗
2D

)C2Dd

. (H4)

We assume that the iterative application of an R-to-1 dis-
tillation scheme, which (with perfect Clifford operations)
reduces the error in a T state from q to EqF using a Clif-
ford circuit containing L locations and Ranc encoded ancilla
qubits. In the case of the 15-to-1 scheme presented in Sec.
III in the main text, R = 15, E = 35, and F = 3, and L is
of the order of 103, depending on the precise details of the
implementation and the effective noise model. We assume
that the input to the first round is an encoded magic state in
a code of fixed size d0 with infidelity q0 = GpH , where the
initialization scheme presented in Sec. III A 1 in the main
text has G = 6.07 and H = 1.
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We consider k rounds of distillation, with distances
{d1, d2, . . . , dk}, and with outputs of each round having infi-
delity {q1, q2, . . . , qk} satisfying qi+1 = EqF

i in the absence
of Clifford noise. In this analysis, we assume that for each
round the distance di is chosen such that Lp2D(p , di) ∼ qi,
and neglect the effect of Clifford error. We can use the fact
that the final round should output the target infidelity, i.e.,
qk = pfin, to relate qi to pfin as follows:

qi = pα(k−i)
fin

Eβ(k−i) ,

α(j ) = 1/Fj ,

β(j ) =
j∑

l=1

F−l = 1 − F−j

F − 1
.

(H5)

We solve for the number of rounds k in q0 = GpH =
pα(k)fin /Eβ(k), which yields

k = logF

(
log E + (F − 1) log pfin

log E + (F − 1) log(GpH )

)
. (H6)

The ratio of the number of qubits needed in round i + 1
and round i is

d2
i+1

Rd2
i

= [log qi+1 − log(A2DL)]2

R [log qi − log(A2DL)]2 ,

=
[
log(EqF

i )− log(A2DL)
]2

R [log qi − log(A2DL)]2 −−→
p→0

F2

R
, (H7)

as p → 0 implies qi → 0. Note that this ratio is indepen-
dent of the round number i, implying that the overhead
changes monotonically with i. Therefore, if logF R > 2, the
first round dominates, whereas if logF R < 2 then the last
round dominates. Similar observations were also made in
Refs. [14,111]. We can therefore conclude that the space
overhead is dominated by either the first or last round of
distillation. The distances d1 and dk for the first and last
rounds are

d1 ∼ HF
C2D

⎛

⎝
log p + 1

HF log
(

EGF

A2DL

)

log p − log p∗
2D

⎞

⎠ , (H8)

dk ∼ 1
C2D

(
log pfin − log(A2DL)

log p − log p∗
2D

)
. (H9)

There are [(R + Ranc)/R] Rk logical qubits needed in the
first rounds, and R + Ranc for the last. To leading order in
d, there are N2Dd2 qubits needed for a distance d 2D color
code, and τ2Dd time units, where N2D = 3/2 and τ2D = 8 in
our implementation in Eq. (12) in the main text. The time
cost scales as the sum of the distances, which is between

τ2Ddk and kτ2Ddk since dk is the largest distance; see Eq.
(23) in the main text. However, we just take the time cost
to be τ2Ddk (neglecting the prefactor k) since k depends
doubly logarithmically on both p and pfin. The space and
space-time overhead are then

OS
SD ∼ N2D

(
1 + Ranc/R

)
max

(
Rkd2

1, Rd2
k

)
. (H10)

OST
SD ∼ τ2DOS

SDdk. (H11)

Assuming p � 1 and log pfin/ log p � 1 then yields Eq.
(43) in the main text with

�CS = 3, (H12)

�SD = max(2, logF R), (H13)

cS
CS ∼ N3D

C3
CS

, (H14)

cST
CS ∼ τ3DcS

CS

CCS
, (H15)

cS
SD ∼ N2D

(
1 + Ranc

R

)

C2
2D

{
F2H 2−logF R if logF R > 2
R otherwise

,

(H16)

cST
SD ∼ τ2DcS

SD

C2D
. (H17)

We expect the asymptotic expressions derived here to
apply quite generally for code switching from a 2D to a 3D
code, and for state distillation using 2D codes. Note that a
similar analysis was carried out for the case of distillation
in Ref. [14].

[1] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,
Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014).

[2] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E.
Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P.
O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Korotkov, A. N. Cleland, and J. M. Martinis, Supercon-
ducting quantum circuits at the surface code threshold for
fault tolerance, Nature 508, 500 (2014).

[3] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A.
Smolin, M. Ware, J. Strand, B. L. T. Plourde, and M.
Steffen, Process verification of two-qubit quantum gates
by randomized benchmarking, Phys. Rev. A 87, 030301
(2013).

[4] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M.
Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extend-
ing the lifetime of a quantum bit with error correction in
superconducting circuits, Nature 536, 441 (2016).

020341-43

https://doi.org/10.1126/science.1253742
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1038/nature18949


BEVERLAND, KUBICA, and SVORE PRX QUANTUM 2, 020341 (2021)

[5] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[6] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[7] P. Shor, in Proceedings of 37th Conference on Founda-
tions of Computer Science (IEEE Comput. Soc. Press,
Burlington, VT, USA, 1996), p. 56.

[8] E. Knill, Scalable quantum computing in the presence
of large detected-error rates, Phys. Rev. A 71, 042322
(2005).

[9] A. M. Steane, Active Stabilization, Quantum Computa-
tion, and Quantum State Synthesis, Phys. Rev. Lett. 78,
2252 (1997).

[10] D. Aharonov and M. Ben-Or, in Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of
Computing (ACM, El Paso, Texas, 1997), p. 176.

[11] J. Preskill, Reliable quantum computers, Proc. Roy. Soc.
Lond. 454, 385 (1998).

[12] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accu-
racy threshold for concatenated distance-3 codes, Quan-
tum Inf. Comput. 6, 097 (2005).

[13] R. Raussendorf and J. Harrington, Fault-Tolerant Quan-
tum Computation with High Threshold in two Dimen-
sions, Phys. Rev. Lett. 98, 190504 (2007).

[14] R. Raussendorf, J. Harrington, and K. Goyal, Topological
fault-tolerance in cluster state quantum computation, New
J. Phys. 9, 199 (2007).

[15] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topo-
logical quantum memory, J. Math. Phys. 43, 4452 (2002).

[16] A. W. Cross, D. P. Divincenzo, and B. M. Terhal, A com-
parative code study for quantum fault tolerance, Quantum
Info. Comput. 9, 541 (2009).

[17] B. J. Brown, D. Loss, J. K. Pachos, C. N. Self, and J. R.
Wootton, Quantum memories at finite temperature, Rev.
Mod. Phys. 88, 045005 (2016).

[18] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topo-
logical Quantum Codes, Phys. Rev. Lett. 104, 050504
(2010).

[19] H. Anwar, B. J. Brown, E. T. Campbell, and D. E. Browne,
Fast decoders for qudit topological codes, New J. Phys.
16, 063038 (2014).

[20] G. Duclos-Cianci and D. Poulin, Kitaev’s Z_{d}-code
threshold estimates, Phys. Rev. A 87, 062338 (2013).

[21] S. Bravyi and J. Haah, Quantum Self-Correction in the
3D Cubic Code Model, Phys. Rev. Lett. 111, 200501
(2013).

[22] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal,
Renormalization group decoder for a four-dimensional
toric code, IEEE Trans. Inf. Theory 65, 2545 (2019).

[23] A. Kubica and J. Preskill, Cellular-Automaton Decoders
with Provable Thresholds for Topological Codes, Phys.
Rev. Lett. 123, 020501 (2019).

[24] M. Vasmer, D. E. Browne, and A. Kubica, Cellular
automaton decoders for topological quantum codes with
noisy measurements and beyond, Sci. Rep. 11, 2027
(2021).

[25] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms
for maximum likelihood decoding in the surface code,
Phys. Rev. A – At., Mol., Opt. Phys. 90, 032326 (2014).

[26] A. S. Darmawan and D. Poulin, Linear-time general
decoding algorithm for the surface code, Phys. Rev. E 97,
051302 (2018).

[27] N. H. Nickerson and B. J. Brown, Analysing correlated
noise on the surface code using adaptive decoding algo-
rithms, Quantum 3, 131 (2019).

[28] N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advan-
tages of versatile neural-network decoding for topological
codes, Phys. Rev. A 99, 052351 (2019).

[29] C. Chamberland and P. Ronagh, Deep neural decoders
for near term fault-tolerant experiments, Quantum Sci.
Technol. 3, 044002 (2018).

[30] N. Delfosse, Decoding color codes by projection onto
surface codes, Phys. Rev. A 89, 012317 (2014).

[31] A. Kubica and N. Delfosse, Efficient color code
decoders in d ≥ 2 dimensions from toric code decoders,
arXiv:1905.07393 (2019).

[32] A. Y. Kitaev, Quantum computations: Algorithms and
error correction, Russ. Math. Surv. 52, 1191 (1997).

[33] S. Bravyi and A. Y. Kitaev, Quantum codes on a lattice
with boundary, arXiv:9811052 (1998).

[34] H. Bombin and M. Martin-Delgado, Topological Quantum
Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[35] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A.
N. Cleland, Surface codes: Towards practical large-
scale quantum computation, Phys. Rev. A 86, 032324
(2012).

[36] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A. W. Cross, Topological and Subsystem Codes on Low-
Degree Graphs with Flag Qubits, Phys. Rev. X 10, 011022
(2020).

[37] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Tri-
angular color codes on trivalent graphs with flag qubits,
New J. Phys. 22, 023019 (2020).

[38] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M.
B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge,
Y. Oreg, C. M. Marcus, and M. H. Freedman, Scalable
designs for quasiparticle-poisoning-protected topological
quantum computation with majorana zero modes, Phys.
Rev. B 95, 235305 (2017).

[39] R. Chao, M. E. Beverland, N. Delfosse, and J. Haah, Opti-
mization of the surface code design for majorana-based
qubits, Quantum 4, 352 (2020).

[40] B. Eastin and E. Knill, Restrictions on Transversal
Encoded Quantum Gate Sets, Phys. Rev. Lett. 102,
110502 (2009).

[41] B. Zeng, A. Cross, and I. L. Chuang, Transversality versus
universality for additive quantum codes, IEEE Trans. Inf.
Theory 57, 6272 (2011).

[42] T. Jochym-O’Connor, A. Kubica, and T. J. Yoder,
Disjointness of Stabilizer Codes and Limitations on
Fault-Tolerant Logical Gates, Phys. Rev. X 8, 21047
(2018).

[43] S. Bravyi and R. König, Classification of Topologically
Protected Gates for Local Stabilizer Codes, Phys. Rev.
Lett. 110, 170503 (2013).

[44] F. Pastawski and B. Yoshida, Fault-tolerant logical
gates in quantum error-correcting codes, arXiv:1408.1720
(2014).

020341-44

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.71.042322
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1088/1367-2630/9/6/199
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1103/PhysRevA.87.062338
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.1103/PhysRevLett.123.020501
https://doi.org/10.1038/s41598-021-81138-2
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevE.97.051302
https://doi.org/10.22331/q-2019-04-08-131
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.1103/PhysRevA.89.012317
http://arxiv.org/abs/arXiv:1905.07393
https://doi.org/10.1070/RM1997v052n06ABEH002155
http://arxiv.org/abs/arXiv:9811052
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.22331/q-2020-10-28-352
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1103/PhysRevX.8.021047
https://doi.org/10.1103/PhysRevLett.110.170503
http://arxiv.org/abs/arXiv:1408.1720


COST OF UNIVERSALITY... PRX QUANTUM 2, 020341 (2021)

[45] M. E. Beverland, O. Buerschaper, R. Koenig, F.
Pastawski, J. Preskill, and S. Sijher, Protected gates for
topological quantum field theories, J. Math. Phys. 57,
022201 (2016).

[46] P. Webster, M. Vasmer, T. R. Scruby, and S. D. Bartlett,
Universal fault-tolerant quantum computing with sta-
biliser codes, arXiv:2012.05260 (2020).

[47] H. Bombin and M. Martin-Delgado, Exact topological
quantum order in d = 3 and beyond: Branyons and brane-
net condensates, Phys. Rev. B 75, 075103 (2007).

[48] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the
color code, New J. Phys. 17, 083026 (2015).

[49] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures,
Phys. Rev. A. 100, 012312 (2019).

[50] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[51] E. Knill, Fault-tolerant postselected quantum computa-
tion: Threshold analysis, arXiv:0404104 (2004).

[52] E. Knill, Fault-tolerant postselected quantum computa-
tion: Schemes, arXiv:0402171 (2004).

[53] D. Litinski, Magic state distillation: Not as costly as you
think, Quantum 3, 205 (2019).

[54] M. Beverland, E. Campbell, M. Howard, and V. Kliuch-
nikov, Lower bounds on the non-clifford resources for
quantum computations, Quantum Sci. Technol. 5, 035009
(2020).

[55] A. Paetznick and B. W. Reichardt, Universal Fault-
Tolerant Quantum Computation with Only Transversal
Gates and Error Correction, Phys. Rev. Lett. 111, 090505
(2013).

[56] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-
Tolerant Conversion between the Steane and Reed-
Muller Quantum Codes, Phys. Rev. Lett. 113, 080501
(2014).

[57] H. Bombin, Gauge color codes: Optimal transversal gates
and gauge fixing in topological stabilizer codes, New J.
Phys. 17, 083002 (2015).

[58] H. Bombín, Dimensional jump in quantum error correc-
tion, New J. Phys. 18, 043038 (2016).

[59] H. Bombin, Single-Shot Fault-Tolerant Quantum Error
Correction, Phys. Rev. X 5, 031043 (2015).

[60] S. Bravyi and J. Haah, Magic-state distillation with low
overhead, Phys. Rev. A 86, 052329 (2012).

[61] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic
state distillation with low space overhead and optimal
asymptotic input count, Quantum 1, 31 (2017).

[62] J. Haah and M. B. Hastings, Codes and protocols for dis-
tilling T, controlled-S, and toffoli gates, Quantum 2, 71
(2018).

[63] P. Brooks, Ph.D thesis, Caltech, 2013, https://resolver.cal
tech.edu/CaltechTHESIS:05302013-143644943.

[64] T. Jochym-O’Connor, Y. Yu, B. Helou, and R. Laflamme,
The robustness of magic state distillation against errors in
clifford gates, Quantum Inf. Comput. 13, 0361 (2013).

[65] N. C. Jones, Logic synthesis for fault-tolerant quantum
computers, PhD Thesis (Stanford):1310.7290 [quant-ph]
(2013).

[66] A. Kubica, Ph.D. thesis, Caltech, 2018, https://resolver.cal
tech.edu/CaltechTHESIS:05282018-173928314.

[67] M. Beverland, Ph.D. thesis, Caltech, 2016, https://resolver.
caltech.edu/CaltechTHESIS:06072016-162802972.

[68] S. Bravyi and A. Cross, Doubled Color Codes,
arXiv:1509.03239 (2015).

[69] T. Jochym-O’Connor and S. D. Bartlett, Stacked codes:
Universal fault-tolerant quantum computation in a two-
dimensional layout, Phys. Rev. A 93, 022323 (2016).

[70] C. Jones, P. Brooks, and J. Harrington, Gauge color codes
in two dimensions, Phys. Rev. A 93, 052332 (2016).

[71] H. Bombin, 2D quantum computation with 3D topological
codes, arXiv:1810.09571 (2018).

[72] B. J. Brown, A fault-tolerant non-clifford gate for
the surface code in two dimensions, Sci. Adv. 6
(2020).

[73] T. R. Scruby, D. E. Browne, P. Webster, and M. Vasmer,
Numerical implementation of just-in-time decoding in
novel lattice slices through the three-dimensional surface
code, arXiv:2012.08536 (2020).

[74] J. Iverson and A. Kubica (to be published).
[75] C. D. Hill, A. G. Fowler, D. S. Wang, and L. C. L.

Hollenberg, Fault-tolerant quantum error correction code
conversion, Quantum Info. Comput. 13, 439 (2013).

[76] T. J. Yoder, R. Takagi, and I. L. Chuang, Universal Fault-
Tolerant Gates on Concatenated Stabilizer Codes, Phys.
Rev. X 6, 031039 (2016).

[77] T. Jochym-O’Connor and R. Laflamme, Using Concate-
nated Quantum Codes for Universal Fault-Tolerant Quan-
tum Gates, Phys. Rev. Lett. 112, 010505 (2014).

[78] C. Chamberland and A. W. Cross, Fault-tolerant magic
state preparation with flag qubits, Quantum 3, 143 (2019).

[79] C. Chamberland and K. Noh, Very low overhead fault-
tolerant magic state preparation using redundant ancilla
encoding and flag qubits, npj Quantum Inf. 6, 91
(2020).

[80] Since we assume throughout that arbitrary one- and two-
qubit physical operations are allowed, single-qubit Clif-
ford physical operations can actually be done “offline” by
tracking the basis of each physical qubit, and modifying
future operations to be applied to that qubit accordingly.
They are therefore perfect and instantaneous, as they only
involve classical processing. Moreover, we later see that
logical Clifford operations can be done offline in 2D color
codes such that the logical noise on encoded T states can
also be twirled offline.

[81] A. G. Fowler, Analytic asymptotic performance of topo-
logical codes, Phys. Rev. A 87, 040301 (2013).

[82] A. J. Landahl, J. T. Anderson, and P. R. Rice,
Fault-tolerant quantum computing with color codes,
arXiv:1108.5738 (2011).

[83] A. Kubica and M. Beverland, Universal transversal gates
with color codes: A simplified approach, Phys. Rev. A 91,
032330 (2015).

[84] There is another stabilizer code with parameters x =
1, z = 0 but we work only with the x = 0, z = 1 version
here.

[85] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098
(1996).

[86] A. M. Steane, Phys. Rev. A 54, 4741 (1996).
[87] A. J. Landahl and C. Ryan-Anderson, Quantum com-

puting by color-code lattice surgery, arXiv:1407.5103
[quant-ph] (2014).

020341-45

https://doi.org/10.1063/1.4939783
http://arxiv.org/abs/arXiv:2012.05260
https://doi.org/10.1103/PhysRevB.75.075103
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1103/PhysRevA.71.022316
http://arxiv.org/abs/arXiv:0404104
http://arxiv.org/abs/arXiv:0402171
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1088/2058-9565/ab8963
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2017-10-03-31
https://doi.org/10.22331/q-2018-06-07-71
https://resolver.caltech.edu/CaltechTHESIS:05302013-143644943
https://resolver.caltech.edu/CaltechTHESIS:05282018-173928314
https://resolver.caltech.edu/CaltechTHESIS:06072016-162802972
http://arxiv.org/abs/arXiv:1509.03239
https://doi.org/10.1103/PhysRevA.93.022323
https://doi.org/10.1103/PhysRevA.93.052332
http://arxiv.org/abs/arXiv:1810.09571
https://doi.org/10.1126/sciadv.aay4929
http://arxiv.org/abs/arXiv:2012.08536
https://doi.org/10.1103/PhysRevX.6.031039
https://doi.org/10.1103/PhysRevLett.112.010505
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1038/s41534-020-00319-5
https://doi.org/10.1103/PhysRevA.87.040301
http://arxiv.org/abs/arXiv:1108.5738
https://doi.org/10.1103/PhysRevA.91.032330
http://arxiv.org/abs/arXiv:1407.5103


BEVERLAND, KUBICA, and SVORE PRX QUANTUM 2, 020341 (2021)

[88] A. J. Landahl and C. Cesare, Complex instruction set com-
puting architecture for performing accurate quantum Z
rotations with less magic, arXiv:1302.3240 (2013).

[89] M. B. Hastings and J. Haah, Distillation with Sublogarith-
mic Overhead, Phys. Rev. Lett. 120, 050504 (2018).

[90] B. W. Reichardt, Quantum universality from magic states
distillation applied to CSS codes, Quantum Inf. Process.
4, 251 (2005).

[91] If the unitary UR is in the third level of the Clifford hier-
archy, then CR is a Clifford operator, but by using this
approach with a code which implements a non-Clifford
transversal gate CR, state distillation for higher-order
schemes should be possible.

[92] A. M. Meier, B. Eastin, and E. Knill, Magic-state distilla-
tion with the four-qubit code, Quantum Inf. Comput. 13,
0195 (2013).

[93] C. Jones, Multilevel distillation of magic states for quan-
tum computing, Phys. Rev. A 87, 042305 (2013).

[94] G. Duclos-Cianci and D. Poulin, Reducing the quantum-
computing overhead with complex gate distillation, Phys.
Rev. A 91, 042315 (2015).

[95] E. T. Campbell and J. O’Gorman, An efficient magic state
approach to small angle rotations, Quantum Sci. Technol.
1, 015007 (2016).

[96] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic
state distillation at intermediate size, arXiv:1709.02789
(2017).

[97] J. Haah, Towers of generalized divisible quantum codes,
Phys. Rev. A 97, 042327 (2018).

[98] In Ref. [112], a threshold above 1% was reported, how-
ever follow-up work [37] failed to reproduce this result
and reported 0.7%.

[99] A. M. Stephens, Efficient fault-tolerant decoding of topo-
logical color codes, arXiv:1402.3037 (2014).

[100] B. J. Brown, N. H. Nickerson, and D. E. Browne, Fault-
tolerant error correction with the gauge color code, Nat.
Commun. 7, 4 (2015).

[101] B. M. Terhal, Quantum error correction for quantum
memories, Rev. Mod. Phys. 87, 307 (2015).

[102] A. Kubica, M. E. Beverland, F. Brandão, J. Preskill, and
K. M. Svore, Three-Dimensional Color Code Thresholds
via Statistical-Mechanical Mapping, Phys. Rev. Lett. 120,
180501 (2018).

[103] We say that an ancilla prepared in |+〉 or |0〉 state is
stabilized by a Pauli-X or -Z operator, respectively.

[104] Note that it is possible to considerably improve this imple-
mentation of the CNOT gate. Namely, one first decodes the
error separately for the patch, which is the source of the
copied error (i.e., the control patch for X error and the tar-
get patch for the Z error) and then applies the correction
to the destination of the copied error before correcting the
residual error there [113].

[105] Y. Li, A magic state’s fidelity can be superior to the
operations that created it, New J. Phys. 17, 023037 (2015).

[106] C. Chamberland and K. Noh, Very low overhead
fault-tolerant magic state preparation using redundant
ancilla encoding and flag qubits, arXiv:2003.03049
(2020).

[107] If we were to produce just one output T state, then
the overhead would slightly increase as we would need
to guarantee that with high probability there are suffi-
ciently many T states at each level of the state-distillation
protocol.

[108] H. Bombin, Transversal gates and error propagation in 3d
topological codes, arXiv:1810.09575 (2018).

[109] S. Turner, J. Hanish, E. Blanchard, N. Davis, and B.
L. Cour, A decoder for the color code with boundaries,
arXiv:2003.11602 (2020).

[110] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J.
M. Sage, Trapped-ion quantum computing: Progress and
challenges, Appl. Phys. Rev. 6, 021314 (2019).

[111] J. O’Gorman and E. T. Campbell, Quantum computa-
tion with realistic magic-state factories, Phys. Rev. A 95,
032338 (2017).

[112] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Sur-
face code quantum computing with error rates over 1%,
Phys. Rev. A 83, 020302 (2011).

[113] A. Fowler (private communication).

020341-46

http://arxiv.org/abs/arXiv:1302.3240
https://doi.org/10.1103/PhysRevLett.120.050504
https://doi.org/10.1007/s11128-005-7654-8
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1103/PhysRevA.91.042315
https://doi.org/10.1088/2058-9565/1/1/015007
http://arxiv.org/abs/arXiv:1709.02789
https://doi.org/10.1103/PhysRevA.97.042327
http://arxiv.org/abs/arXiv:1402.3037
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.120.180501
https://doi.org/10.1088/1367-2630/17/2/023037
http://arxiv.org/abs/arXiv:2003.03049
http://arxiv.org/abs/arXiv:1810.09575
http://arxiv.org/abs/arXiv:2003.11602
https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/PhysRevA.95.032338
https://doi.org/10.1103/PhysRevA.83.020302

	I.. BACKGROUND MATERIAL
	A.. Noise and simulation
	B.. Basics of 2D and 3D color codes
	C.. Fault-tolerant computation with 2D color codes
	D.. State distillation

	II.. 2D COLOR CODE ANALYSIS
	A.. Projection decoder with boundaries
	B.. Noisy-syndrome projection decoder with boundaries
	C.. Optimizing stabilizer extraction and circuit-noise analysis
	D.. Modeling noise in logical operations

	III.. STATE-DISTILLATION ANALYSIS
	A.. Creating the T state via state distillation in three steps
	1.. T-state initialization
	2.. Expansion and movement of patches
	3.. 15-to-1 state distillation circuit

	B.. State-distillation overhead

	IV.. INSIGHTS INTO 3D COLOR CODES
	A.. A simple way to switch between 2D and 3D color codes
	B.. Physics of the gauge flux in 3D color codes
	C.. Restriction decoder for 3D color codes with boundaries

	V.. CODE-SWITCHING ANALYSIS
	A.. Creating the T state via code switching in six steps
	1.. Preparing the Bell state in 2D codes
	2.. Preparing the 3D interior
	3.. Measuring gauge operators
	4.. Gauge fixing
	5.. Applying T and measuring the 3D code's data qubits
	6.. Decoding Z errors in the 3D color code

	B.. Code-switching overhead

	VI.. DISCUSSION
	. ACKNOWLEDGMENTS
	. APPENDIX A: LATTICE PARAMETERS AND SPECIFICATIONS
	. APPENDIX B: SUPPLEMENTARY DETAILS FOR 2D COLOR-CODE SIMULATIONS
	. APPENDIX C: SUPPLEMENTARY DETAILS FOR DISTILLATION ANALYSIS
	. APPENDIX D: PREPARING THE 3D INTERIOR FOR CODE SWITCHING
	. APPENDIX E: CHOICES OF BASIS FOR CODE-SWITCHING PREPARATION
	. APPENDIX F: GAUGE MEASUREMENT CIRCUITS FOR CODE SWITCHING
	. APPENDIX G: OPTIMISTIC IMPROVEMENTS FOR THE 3D COLOR CODE DECODER
	. APPENDIX H: ASYMPTOTIC OVERHEAD ANALYSIS
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV <>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


