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Numerous conceptually important quantum algorithms rely on a blackbox device known as an oracle,
which is typically difficult to construct without knowing the answer to the problem that the algorithm
is intended to solve. A notable example is Grover’s search algorithm. Here we propose a Grover search
for solutions to a class of NP-complete decision problems known as subset sum problems, including the
special case of number partitioning. Each problem instance is encoded in the couplings of a set of qubits
to a central spin or boson, which enables a realization of the oracle without knowledge of the solution. The
algorithm provides a quantum speedup across a known phase transition in the computational complexity
of the partition problem, and we identify signatures of the phase transition in the simulated performance.
Whereas the naive implementation of our algorithm requires a spectral resolution that scales exponentially
with system size for NP-complete problems, we also present a recursive algorithm that enables scalability.
We propose and analyze implementation schemes with cold atoms, including Rydberg-atom and cavity-
QED platforms.
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I. INTRODUCTION

Many quantum algorithms that offer a provable speedup
over their best classical counterparts rely on the ability
to query an oracle: a black box that knows the answer
to the problem that the quantum computer is to solve. A
paradigmatic example is Grover’s search algorithm [1,2],
which theoretically speeds up the time to search through an
unstructured database of N entries, requiring only O(

√
N )

queries of the oracle rather than the classical O(N ) queries.
By extension, Grover’s algorithm can in principle speed up
the search for solutions to a wide range of decision prob-
lems, including NP-complete problems [3] such as boolean
satisfiability, the clique problem, and the number partition-
ing problem [4,5], with applications from cryptography to
finance [6–9].

Formally, any instance of a search or decision problem is
represented by an oracle function f (x) that acts on a string
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x of n bits and returns either 0 (failure) or 1 (success).
The search aims to find a value X such that f (X ) = 1,
while the decision problem asks whether such an X exists
at all. In experimental demonstrations to date of Grover’s
search [10–22], implementing the oracle—a unitary oper-
ation controlled by f (x)—requires knowing the solution(s)
X . To obtain a true benefit from a quantum algorithm
involving an oracle, one requires a physical system that
directly encodes the function f in a manner that is agnostic
to the solution [23].

In this paper, we propose a genuine application of
Grover’s algorithm to solving the NP-complete number
partitioning problem: Given n objects with integer weights,
does there exist a bipartition that balances a scale? Our
approach can be implemented in physical systems that take
the form of either a central spin or central boson model,
featuring n qubits interacting with an ancilla spin or pho-
ton that plays the role of the oracle. Crucially, the decision
problem is encoded in the couplings of the qubits to the
ancilla, allowing the oracle to be implemented without a
priori knowledge of the solution. Numerical simulations of
the quantum algorithm illustrate physical manifestations of
a known phase transition in the computational complexity
of number partitioning, including an exponential scaling
of the spectral resolution required to solve hard prob-
lem instances. A recursive variant of our algorithm avoids
this exponential resource requirement, providing improved
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scalability. By analyzing proposed implementations with
Rydberg atoms and in cavity-QED systems, we show that
a speedup is attainable in near-term experiments.

II. ALGORITHM AND IMPLEMENTATION

We begin with a brief review of Grover’s algorithm
[Fig. 1(a)]. The algorithm starts by initializing a collection
of n = log2 N qubits in an equal superposition

|ψ0〉 = (|0〉 + |1〉)⊗n

2n/2 =
∑

x

cx,0|x〉 (1)

of all possible standard basis states labeled by n-bit num-
bers x, with cx,0 = 1/

√
N . The objective is to amplify the

amplitude cX of the solution state(s) |X 〉. To this end,
the oracle U first marks the solution(s) by applying a π
phase shift (cX → eiπcX ) for all X with f (X ) = 1. The
marked states are then amplified by inversion about the
average: cx → c − (cx − c) for all x, where c = ∑

x cx/N .
This inversion operation V is accomplished by combin-
ing single-qubit Hadamard gates with an n-qubit controlled
phase gate that is similar to the oracle but less techni-
cally demanding (see Appendix B), or can alternatively
be replaced by single-qubit rotations only [24]. Thus, we
focus on the challenge of realizing the oracle.

We will show a natural physical incarnation of the ora-
cle for a class of decision problems known as subset sum
problems [25], focusing on the special case of number
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FIG. 1. (a) Sketch of Grover’s algorithm, showing the ampli-
tude of each basis state |x〉 in the system state |ψ〉. One iteration
consists of the oracle U marking the solution states (red) with a π
phase shift, followed by inversion about the average V. (b) Num-
ber partitioning: a set of weighted spins is partitioned, if possible,
into two sets of equal total weight. (c) Phase shift�γ (Sz) applied
by generalized oracle with step width γ . (d) The weights wi are
encoded by couplings of system spins (red) to an ancilla (blue),
which can be either (i) a central spin (e.g., Rydberg atom); or (ii)
a bosonic mode (e.g., cavity).

partitioning. We specify each problem instance by a list
of n weights wi ∈ (0, 1] of finite bit depth k, and search
for a partition into two sublists of equal total weight. To
encode the partition problem using n qubits representing
the objects with weights wi, we let each qubit state indi-
cate which subset (|0〉 or |1〉) an object is in [Fig. 1(b)], so
that the weighted collective spin

Sz ≡ 1
2

∑

i

wiσ
z
i (2)

represents the imbalance between the subsets. Implement-
ing the oracle then requires applying a π phase shift to any
n-qubit basis state |x〉 satisfying Sz|x〉 = 0.

The quantum oracle thus requires implementing a
collective phase gate U = eiπ f (x) = eiπδ(Sz), where δ(·)
denotes the Kronecker delta function. To design a physical
implementation of this gate, it is helpful to define a gen-
eralized oracle Uγ = ei�γ (Sz) in terms of an Sz-dependent
phase shift

�γ (Sz) = 2 arctan (2Sz/γ )+ π , (3)

which steps from zero to 2π as a function of Sz and pro-
vides a π phase shift at Sz = 0 [Fig. 1(c)]. The ideal oracle
is obtained in the limiting case U ≡ Uγ→0 of an infinitely
steep phase step.

The collective phase gate Uγ can be enabled by coupling
the qubits to an ancilla, which may take the form of an
auxiliary qubit or a bosonic mode. We consider either a
central spin model

Hq = JmaxIzSz (4)

featuring an ancilla qubit represented by a spin-1/2 opera-
tor Iz, or a central boson model

Hc = Jmaxc†cSz (5)

featuring a cavity mode with annihilation operator c. In
both cases, the ancilla couples to n system spins in the
starlike graph of Fig. 1(d), and hence to the weighted col-
lective spin Sz. The maximum coupling between a system
spin and the ancilla is parameterized by Jmax.

For concreteness, we describe representative implemen-
tations of the central boson and central spin models with
cold atoms [Fig. 1(d)]. The system spins are encoded in
two internal states |0〉, |1〉 and coupled to either a cavity
mode [26–33] or an auxiliary atom that can be excited to
a Rydberg state [34–46]. Each coupling wiJmax represents
the energy shift of the |0〉 → |1〉 transition in atom i when
either a photon enters the cavity or the auxiliary atom is
excited. In the cavity implementation, the photon imparts
an ac Stark shift [26–31]. In the Rydberg implementation,
the excited ancilla suppresses an ac Stark shift induced by
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classical control fields that couple the system atoms’ state
|1〉 to a Rydberg state. In both cases, the weights wi can
be programmed via the atomic positions or control fields.
The net effect of the couplings wiJmax on the ancilla is a fre-
quency shift JmaxSz that depends on the weighted collective
spin Sz.

The Sz-dependent resonant frequency of the ancilla is
crucial to enabling the oracle. In the central boson model,
the oracle relies on the phase response of a driven harmonic
oscillator. For a one-sided cavity of linewidth κ , the output
field is phase shifted by π for a resonant drive compared
with the off-resonant case. Having the drive field consist
of a single photon that is resonant if and only if Sz = 0
yields precisely the oracle operation Uγ , with a phase step
of dimensionless width γ = κ/Jmax, where we set � = 1.
In the central spin model, the oracle Uγ is implemented
by attempting to drive a 2π rotation of the ancilla with a
field that is resonant if the weighted spin Sz is zero. For
a suitably shaped drive pulse, the ancilla atom ends up in
its initial state irrespective of Sz [47], and the entire sys-
tem acquires a π geometric phase shift only when Sz = 0.
The width γ = κ/Jmax of the phase step is now set by the
bandwidth κ = 2π/τ of the pulse with temporal width τ .

To examine the performance of the generalized oracle,
we first introduce a convenient visualization of Grover’s
algorithm [48]. We define the solution space A = {|X 〉 :
Sz|X 〉 = 0} as the set of states that solve the partition
problem and let

|A〉 = 1√
NA

∑

|X 〉∈A
|X 〉 (6)

denote the equal superposition of all solutions (assuming
their existence) where NA is the number of solutions. We
additionally define an orthogonal state

|B〉 ∝ |ψ0〉 − |A〉〈A|ψ0〉, (7)

where |ψ0〉 is the initial state of Eq. (1). The states |A〉 and
|B〉 span an SU(2) subspace that can be visualized on a
Bloch sphere with |A〉 and |B〉 as poles.

Grover’s algorithm ideally takes place entirely within
this subspace of the full 2n-dimensional Hilbert space, iter-
atively rotating the initial state |ψ0〉 towards the solution
state |A〉. Each iteration

|ψT+1〉 = VU|ψT〉, (8)

comprises the oracle U and inversion about the average V.
The net effect of these two operations is a rotation about
the Ŷ axis [Fig. 2(a)]. For NA/N 
 1, a near-unity suc-
cess probability is achieved after an optimal number of
iterations

T ≈ (π/4)
√

N/NA. (9)

(a) (b) (c)

FIG. 2. Visualization of Grover’s algorithm and generalized
oracle. (a) Grover’s algorithm with ideal oracle for N = 210 and
NA = 1. Over repeated iterations (blue), the state |ψ0〉 (red)
approaches the solution state |A〉. (b) Grover’s algorithm with
naive application of the generalized oracle for ε = 0.25. (c)
The spin-echo sequence compensates for the imperfection of the
oracle, allowing similar performance to the ideal case.

The generalized oracle with a nonzero step width intro-
duces an error that, to lowest order, is correctable by spin
echo. To visualize how, we consider a simplified scenario
where there exist only two possible values of the phase
�γ ∈ {ε,π}. For nonzero ε, the combination of the gener-
alized oracle and inversion about the average induces the
state to rotate about a tilted axis [Fig. 2(b)]. To mitigate
accumulation of error, we alternate between applying the
oracle Uγ and its Hermitian conjugate U†

γ . A pair of two
Grover iterations then takes the form

|ψT+2〉 = VU†
γVUγ |ψT〉, (10)

where U†
γ = R†

π(x̂)UγRπ(x̂) is implemented by a spin-
echo sequence involving two global π rotations Rπ(x̂)
about the individual qubits’ x̂ axes. The result is the
trajectory shown in Fig. 2(c), which achieves similar per-
formance to the ideal oracle in Fig. 2(a).

Even with spin echo, the step width will ultimately
limit the resolution of the generalized oracle: selectively
amplifying only spin configurations with Sz = 0 requires
a narrow step. Further, producing a narrow step requires a
long coherence time, so that dissipation will place physical
limits on the performance of the algorithm. We elabo-
rate on both of these considerations in Secs. III and IV.
First, however, we examine the application of Grover’s
algorithm to number partitioning using a phase step nar-
row enough to resolve even the least significant bit of the
weights.

III. SPEEDUP IN NUMBER PARTITIONING

To analyze the performance for number partitioning, we
generate sets of n random k-bit weights and postselect for
instances where at least one perfect partition exists. For
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FIG. 3. Number partitioning with generalized oracle of step
width γ = 2−k. (a) Success probability PT for n = 8, k = 4, 8, 12
(blue squares, orange circles, and green diamonds). Shading indi-
cates standard deviation over 5000 instances of the weights.
(b.i) Optimal number of iterations Topt versus (n, k). (b.ii) Topt
for n = k, grouped by number of solutions NA = 2, 4, 6 (red
triangles, green circles, and yellow stars) and compared with
asymptotic theory Topt ∝ √

N (dashed lines). Black squares show
average over all instances. Dotted gray line indicates linear scal-
ing Topt ∝ N . Blue diamonds show median speedup [Q]0.5 for
n = k, with error bars indicating interquartile range. (c) Prob-
ability Popt versus (n, k). Black line shows critical bit depth
kc(n).

each such instance, we calculate the success probability

PT =
∑

|X 〉∈A
|〈X |ψT〉|2 (11)

as a function of the number T of calls to the oracle, applied
with spin echo [Eq. (10)]. Figure 3(a) shows examples of
PT for n = 8 spins, bit depths k = 4, 8, 12, and a step width
γ = 2−k just narrow enough to resolve changes in the least
significant bit of Sz. As expected from the Bloch-sphere
picture, the success probability oscillates as a function of T.
The maximum probability and the time to reach it combine
to determine the effectiveness of the algorithm.

As a single figure of merit, we calculate the total number
of calls to the oracle required to reach a specified (near-
unity) success probability P . For a search procedure with
fixed success probability P per trial, the number of trials
M needed to reach a probability P = 1 − ε of finding a
solution is

M (P, ε) = ln (ε)
ln (1 − P)

. (12)

Thus, reaching the target error ε with Grover’s algorithm
requires querying the oracle a total of Ttotal = M (PT, ε)T

times. To minimize this quantity, we first calculate its
median value as a function of T over many instances of
weights at a given (n, k, γ ). We then define Topt as the num-
ber of Grover iterations that minimizes the median total
number of queries Ttotal. Note that Topt is independent of
the target error ε.

Figure 3(b.i) shows the optimal number of queries Topt
as a function of the number of spins n and bit depth k,
at fixed step width γ = 2−k. The scaling of Topt with n is
shown in Fig. 3(b.ii) for a cut at n = k (black squares),
where the number of perfect partitions is typically of order
one [4]. We additionally plot Topt for instances of the
weights postselected according to the number of solu-
tions NA = 2, 4, 6 (red triangles, green circles, and yellow
stars). In each case, the optimal number of iterations
approaches the prediction of Eq. (9) (dashed lines) at large
N = 2n, scaling as Topt ∝ √

N . Quantifying the resulting
speedup requires additionally examining Popt, the success
probability after Topt iterations [Fig. 3(c)].

The dependence of success probability Popt on (n, k)
reflects a known phase transition in the computational
complexity of the number partitioning problem [4,49]. For
small bit depth k � n (the “easy” phase), there typically
exist many perfect partitions. For large bit depth k � n (the
“hard” phase), perfect partitions are rare and thus—even
when postselecting for their existence—the probability of
finding them by random guessing is exponentially small
in n. By contrast, in our quantum search [Fig. 3(c)], the
success probability Popt is everywhere of order unity and
highest in the “hard” phase, since Grover’s algorithm is
most effective when solutions are few. The phase boundary
lies at a critical bit depth [4]

kc(n) ≡ n − 1
2

log2

(nπ
6

)
, (13)

shown by the black curve in Fig. 3(c), where the average
number of perfect partitions is 〈NA〉 ∼ √

6/(πn)2n−k = 1
[50].

We quantify the advantage of the algorithm by calcu-
lating the limited quantum speedup Q, defined as in Ref.
[51] by comparing the quantum search with an algorithmi-
cally similar classical search. The most analogous classical
algorithm is a memoryless search, which at each trial
samples (with replacement) a random partition with suc-
cess probability P0 = NA/N . The number of memoryless
search trials needed to reach a target success probability P
also follows from Eq. (12). For each problem instance, we
define speedup Q as the ratio of memoryless trials to total
Grover iterations:

Q = 1
Topt

ln (1 − Popt)

ln (1 − NA/N )
. (14)

This speedup is independent of the target error ε, thanks to
the algorithmic similarity of the two memoryless search
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algorithms, as further discussed in Appendix C. Figure
3(b.ii) shows the median speedup [Q]0.5, where [Q]q
denotes the qth quantile over problem instances. We
observe the expected scaling Q ∝ √

N of the speedup in
query complexity.

A caveat is that physical limitations might preclude suc-
cessfully implementing the algorithm in cases requiring
a narrow step width γ . We have so far assumed a step
width γ = 2−k, motivated by the intuition that γ sets a cap-
ture range of Sz values amplified by Grover’s algorithm.
To test this intuition, we plot the normalized probability
distribution P̃(Sz) ≡ P(Sz)/P(Sz = 0) after Topt(γ )Grover
iterations as a function of step width γ [Fig. 4(a.i)], for
n = k = 6 without postselecting on the existence of per-
fect partitions. Consistent with our expectation, the width
of the distribution is approximately set by the step width
γ . An analytic derivation of this capture range is given in
Appendix E.

To capture only true solutions Sz = 0, the step width γ
should be smaller than the smallest nonzero |Sz| value. In
the easy regime k � n, a step width γ � 2−k is required

to distinguish Sz = 0 from Sz = ±2−k. However, with
increasing k, the typical size of the smallest residue
approaches a finite value |Sz| ≈ 2−kc [4]. Thus, the crit-
ical bit depth kc(n) in Eq. (13) represents the resolution
required to discriminate the smallest typical residue |Sz| in
the large-k limit. For arbitrary (n, k), we can choose the
oracle to have resolution

− log2 γc = min(kc, k) ≈ min(n, k), (15)

coarser than we have so far assumed in the hard regime. We
verify Eq. (15) by plotting the resolution − log2 γ required
to reach a fixed success probability Popt, averaging over
all pairs (n, k) with 3 ≤ n, k ≤ 16, in Fig. 4(a.ii). For each
of three different values of Popt = 0.4, 0.6, 0.8, the required
step width γ is within a constant factor of γc.

We plot the quantum speedup for this less stringent
choice of step width γc in Fig. 4(b.i). The speedup exhibits
a maximum along the phase boundary k = kc(n) (solid
black curve). In Fig. 4(b.ii), we examine the scaling of
the speedup along an approximation to this curve chosen
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FIG. 4. (a) Step width as capture range. (a.i) Normalized probability distribution P̃(Sz) versus γ , for n = k = 6 with no postselection.
White lines indicate contours of P̃(Sz)=0.5. (a.ii) Step width γ required to obtain Popt = [0.4, 0.6, 0.8], shaded from lighter to darker.
Results are plotted versus min(kc, k), with markers showing average over all (n, k)with 3 ≤ n, k ≤ 16. Gray line shows γc = 2− min(kc,k).
(b) Quantum speedup in the decision and optimization problems. (b.i) Median speedup [Q]0.5 versus (n, k) for the decision problem
at step width γc. Lines denote k = kc (solid black), k = n (dotted blue), and fixed problem size nk = 72 (dashed red). (b.ii) Cuts of
Q along n = k for different quantiles q = [0.01, 0.25, 0.5, 0.75, 0.99], shaded from lightest to darkest. Lines denote

√
N scaling. (b.iii)

Cuts of Q at nk = 72 [red dashed line in (b.i)] for different quantiles, as in (b.ii). Lines are a guide to the eye. (b.iv) Median speedup
[Q]0.5 versus n and keff = − log2 γ for the optimization problem with machine-precision weights, approximating the large-k limit.
Black line shows − log2 γ = kc.

020319-5



G. ANIKEEVA et al. PRX QUANTUM 2, 020319 (2021)

to ensure integer values of (n, k), namely, the n = k cut
(dotted blue line). We plot the speedup [Q]q versus N for
different quantiles q (blue circles) and find good agreement
with an asymptotic scaling Q ∝ √

N (solid lines) for all
quantiles. Thus, the generalized oracle with the critical step
width γc suffices to achieve an O(

√
N ) speedup, the same

scaling that is achieved by the ideal oracle and proven to
be optimal for an unstructured search [52–54].

The phase transition in computational complexity man-
ifests in a sharp peak in the speedup at the phase boundary
k = kc(n). We observe this peak in Fig. 4(b.iii) along a cut
of fixed problem size nk, i.e., fixing the total number of
bits encoding the set of n weights. The peak in the speedup
reflects the known result that the hardest problem instances
are not deep in the hard regime, but rather near the phase
transition [4,55]. In particular, the hardest problems are
those with the largest ratio N/NA of the size of the search
space to the number of solutions, after postselecting for the
existence for solutions. This ratio reaches a maximum near
the phase boundary, explaining the peak in Q ∝ √

N/NA.
Even in the experimentally relevant case where the

weights are not restricted to a finite bit depth, the res-
olution of the oracle sets an effective bit depth keff =
− log2 γ that can reveal the complexity phase transition.
For real-numbered weights wi ∈ (0, 1], we consider the
optimization problem of minimizing |Sz|, defining the suc-
cess probability Popt as that of finding the system in a
configuration of minimal |Sz| after an optimal number of
Grover iterations. We plot the median speedup [Q(n, γ )]0.5
in Fig. 4(b.iv). As a function of keff at fixed n, the speedup
first rises to a maximum at keff ≈ kc before declining pre-
cipitously for keff > kc due to the narrowness of the capture
range, providing a striking signature of the complexity
phase transition.

IV. EFFECTS OF DISSIPATION

A key challenge for experimental implementations is
that producing a narrow phase step requires a long coher-
ence time. Specifically, at fixed interaction strength Jmax,
the step width γ determines the physical time κ−1 ∼
1/(γ Jmax) to implement the oracle operation Uγ . Even a
single error occurring during this time thwarts the ampli-
fication process. For concreteness, we consider an error
model in which the excited ancilla decays—or, equiva-
lently, the ancilla photon is lost—at rate �a. In terms of the
interaction-to-decay ratio ρ ≡ Jmax/�a, the error rate per
query of the oracle is then approximately �a/κ = 1/(ργ ).
Thus, on average Tmax ∼ ργ Grover iterations can be
implemented before incurring an error. For ργc � Topt, the
algorithm must be run at an increased step width γ > γc
that reduces the speedup.

Figure 5(a) shows the speedup calculated at finite
interaction-to-decay ratio ρ = 103. We model the decay
by modifying the frequency shift of the ancilla’s excited
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FIG. 5. Effects of dissipation. (a) Median speedup [Q]0.5 ver-
sus (n, k) in the presence of decay with interaction-to-decay ratio
ρ = 103. Solid black line denotes k = kc. (b) Median speedup
[Q]0.5 versus ρ for n = k = (4, 6, 8, 10) denoted by dark blue
to light green shaded lines. The shading denotes the interquar-
tile range. Black solid line denotes scaling Q ∼ ρ1/3. Dashed
lines show maximum achievable Q for each system size n. (c)
Amplification versus step width γ for T = 1. Solid curves show
average amplification in large-N limit for finite cavity coopera-
tivity η = 101, 3 × 101, 102, 3 × 102, . . . , 105 (purple to yellow)
and for unitary evolution (red dashed). Dark red circles show
simulated amplification at n = k = 12 with no dissipation; error
bars denote standard deviation. Inset shows optimal amplifica-
tion (red circles) and step width (orange diamonds) versus η for
n = k = 12, matching the prediction for large N (solid curves).

state (Sec. II) with an imaginary component, JmaxSz +
i�a/2, as detailed in Appendix G. We choose the step
width γ for each (n, k) to maximize the speedup, account-
ing for a reduction in success probability due to the
chance of ancilla decay. While the speedup no longer
achieves O(

√
N ) scaling, we preserve an advantage Q ≈

10 compared with the classical search. The dependence
of the speedup on interaction-to-decay ratio ρ is shown
in Fig. 5(b) for n = k at different system sizes n. The
speedup scales as Q ∼ ρ1/3, consistent with an analytic
model derived in Appendix G, before saturating to the
value expected for the ideal Grover’s algorithm.

An interaction-to-decay ratio ρ � 103 is experimentally
accessible in an implementation of the central spin model
using Rydberg atoms, as detailed in Appendix 1. In this
implementation, the dominant dissipative process is decay
of the ancilla from the Rydberg state, whereas decay of the
system spins is suppressed by coupling to their Rydberg
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states off-resonantly [38–40,42]. In terms of the maxi-
mum attainable Rabi frequency �max of this coupling, the
interaction-to-decay ratio is limited to ρ < �max/(2

√
n�),

which permits values of order ρ ∼ 103 for realistic laser
powers and high-lying Rydberg states.

At lower interaction-to-decay ratios, the optimum
speedup is obtained by performing only a single Grover
iteration. In the absence of dissipation, this single-cycle
speedup Q1 is identical to the amplification factor P1/P0,
assuming P0,1 
 1. Figure 5(c) shows Q1 = P1/P0 as a
function of step width γ for n = k = 12 with no dis-
sipation (red circles), corroborating an analytical model
derived in Appendix E in the large-N limit (dashed curve).
The model shows that the gain is set by γ /

√
n, which

parameterizes the ratio of the step width to the width of
the initial Sz distribution, and saturates at a maximum
value Q1 = 9 for γ /

√
n 
 1. Ancilla decay reduces the

amplification Q1 below this ideal curve, becoming signifi-
cant for interaction-to-decay ratios ρ � 1/γ . The optimum
speedups in Fig. 5(b) are obtained from a single amplifica-
tion cycle for interaction-to-decay ratios ρ � 102.

A single amplification cycle could be performed in near-
term realizations of the central boson model with atoms in
a cavity (Appendix H 2), by driving with a weak coher-
ent field and heralding on the detection of a photon. The
coherence of the atom-cavity coupling is quantified by the
cooperativity η = 4g2/κ�e, where g is the vacuum Rabi
frequency and (κ ,�e) are the linewidths of the cavity and
an atomic excited state to which it couples. The resulting
interaction-to-decay ratio scales as ρ ∝ ηγ/n, reflecting
the fact that decreasing the dimensionless step width γ =
κ/Jmax comes at the cost of increasing the photon loss
probability by atomic scattering. Achieving amplification
requires reaching a step width γ <

√
n/12 narrower than

the initial Sz distribution while keeping ργ > 1 to avoid
photon absorption, and hence requires strong coupling
η � 1.

The full dependence of amplification Q1 on step width
γ and cooperativity η is shown by the solid curves in
Fig. 5(c). Notably, the amplification at an optimal step
width [Fig. 5(c) inset] is independent of the number of
spins n, depending only on the cooperativity η. A state-
of-the-art optical cavity with demonstrated cooperativity
η ∼ 200 [56] thus allows for amplifying solutions to the
partition problem at scalable system size. Stronger ampli-
fication could be attained by coupling Rydberg atoms
or superatoms [57,58] to a high-cooperativity millimeter-
wave cavity [29,59,60]. For the parameters of Ref. [29],
the cooperativity η = 4 × 108 is no longer the limiting fac-
tor. Instead, finite lifetime �−1 of the Rydberg states places
a limit ρ < g/(n3/2�) = 5 × 103/n3/2 on the interaction-
to-decay ratio, which permits near-maximal Q1 for up to
n ∼ 30 atoms. Rydberg-based implementations might be
further enhanced by inhibition of spontaneous emission
[61,62].

V. SCALABLE ALGORITHM

The requirement of an exponentially fine resolution of
the oracle poses challenges for scalability in the simple
application of Grover’s algorithm presented so far. Specif-
ically, we showed in Sec. III that the required step width
γ ∼ 2−k becomes exponentially small with increasing sys-
tem size n ∼ k for the hardest problem instances. As a
result, if we scale the system-ancilla couplings such that
the energy grows extensively with system size by fixing
the maximum coupling Jmax, then the time required for
each query of the oracle grows as 2k ∼ 2n. Alternatively,
to keep the query time fixed, the energy must be chosen to
grow exponentially with increasing system size.

The exponential resource requirement can be avoided by
a more sophisticated version of our algorithm that operates
at a fixed resolution γ ∼ 2−m of the oracle for arbitrary
(n, k). This scalable algorithm begins by identifying can-
didate solutions of the number partitioning problem by
searching for spin configurations in which the m least sig-
nificant bits of Sz are zero. To this end, we first perform
Grover amplification with each coupling Ji set to a value
given by the m least significant bits of the weights. We
thereby amplify only spin configurations for which 2kSz is
a multiple of 2m, thus producing a superposition state with
a sparser distribution of Sz values than the initial state |ψ0〉
(Fig. 6). We subsequently consider increasing numbers �m
of bits in successive layers � = 1, 2, 3, . . . of the algorithm,
setting couplings

Ji,� = Jmaxmod(2kwi, 2�m)
2�m

, (16)

while keeping the resolution of the oracle fixed.
This scalable algorithm retains the benefit of an effi-

cient encoding in a central spin system, but does place
additional technical demands compared with our stan-
dard algorithm. First, the system-ancilla couplings must
be changed between layers of the algorithm (Appendix
F 1), a capability that is naturally present in our proposed
implementation schemes. A second new ingredient is a
modular oracle that can detect the imbalance 2kSz mod-
ulo a specified power of 2 (Appendix F 2). This modular
oracle can readily be implemented by applying a multifre-
quency drive to the ancilla. Finally, successive layers � of
the algorithm require increasingly complex operators V� to
invert about the average amplitude of previously amplified
states. In fact, as we explain in Appendix F 3, the inversion
step in layer � involves repeating the entire algorithm up
through layer �− 1. For this reason, we call our scalable
algorithm the recursive algorithm.

We describe and analyze the recursive algorithm in
detail in Appendix F, showing that it solves the num-
ber partitioning problem in O(2n/2+cn/m) queries, where
c = log2(π/2). Thus, in the limit of a high but fixed reso-
lution of m � 1 bits, we recover the ideal Grover speedup.
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FIG. 6. Sketch of the scalable algorithm, showing amplitudes
of basis states versus Sz . Each layer � of the algorithm consists of
T� amplification cycles, each comprising the modular oracle U�

and recursive inversion operator V�. The modular oracle acts on
states spaced in energy by Jmax with a spectral resolution γ Jmax
illustrated by the shaded blue curves. The operator V� inverts the
amplitudes of the states amplified by the previous layer of the
algorithm about their average (dashed purple line). Implementing
V� requires recursion to the lower layers of the algorithm. In the
final layer � = k/m, the standard nonmodular oracle is used.

Importantly, we now attain this speedup not only in query
complexity but also in the physical time to implement the
algorithm in a scalable manner, in the sense that the total
interaction energy required to encode the problem grows
linearly with the problem size.

A comparison of the recursive algorithm with the stan-
dard algorithm of Secs. II–IV is shown in Fig. 7. We
simulate both algorithms with the same 1000 instances
of weights to examine the scaling of their physical run-
times, which is proportional to Ttotal/γ for a fixed maxi-
mum system-ancilla coupling strength Jmax [Fig. 7(a)]. The
physical runtime of the standard algorithm with γ = γc
scales as O(21.5n) due to the exponential narrowing of
the step width γ ∼ 2−k with system size n = k, whereas
the scaling of the recursive algorithm for m = 6 and
γ = 2−m−1 is consistent with the theoretical prediction
O(20.5n+0.65n/m) derived in Appendix F. Thus, the recursive
algorithm exhibits a scalable quantum speedup.

The performance of the recursive algorithm in realis-
tic implementations with finite interaction-to-decay ratio
shows an advantage over the standard algorithm. In
Fig. 7(b), we plot the speedup Q versus n = k for different
interaction-to-decay ratios, with the step width γ chosen
to minimize the total number of Grover queries Ttotal. In
the recursive algorithm, the number of amplification cycles
per layer of the algorithm (Appendix F 3) is additionally

4 8 12 16 20
n, k
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T
to

ta
l/
γ

4 8 12 16
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Q

(a) (b)

FIG. 7. Comparison of the recursive and standard algorithms.
(a) Physical time Ttotal/γ to implement all Ttotal queries of the
oracle at fixed Jmax, plotted versus n = k. Blue circles show the
standard algorithm with γ = γc. Orange squares show recur-
sive algorithm with m = 6 and γ = 2−m−1. Lines denote scal-
ings 2αn, with α = 1.5 for the standard algorithm and α =
0.5 + 0.65/m for the recursive algorithm. (b) Speedup Q ver-
sus n = k for standard algorithm (open markers) and recursive
algorithm (solid markers) at interaction-to-decay ratios ρ = 103

(green diamonds), ρ = 104 (purple squares), and ρ = 105 (red
triangles).

optimized to minimize Ttotal. Whereas the speedup of the
standard algorithm plateaus with increasing system size
because dissipation limits the resolution of the oracle, the
recursive algorithm achieves a higher speedup because it
is designed to operate at fixed resolution of the oracle.

VI. DISCUSSION AND OUTLOOK

In this paper, we describe practical implementations of
Grover’s algorithm for the number partitioning problem,
relying on a natural encoding in spin systems with a star-
like coupling graph. The problem offers an ideal setting for
examining the physical manifestations of computational
complexity, thanks to a well-understood phase diagram
including easy and NP-hard regimes. Numerical simu-
lations of our quantum algorithm show clear signatures
of the complexity phase transition, yet even in the hard
phase we are able to find an advantage over an analogous
classical search.

Specifically, we compare our quantum algorithm to a
probabilistic classical search, with query complexity O(2n)

equivalent to that of a brute-force search (see Appendix C).
While there exist classical algorithms that match [63,64]
and surpass [65,66] our algorithm’s query complexity, they
do so at the expense of exponential memory requirements
[67,68]. To the best of our knowledge, the leading clas-
sical algorithm of polynomial space complexity is that
by Esser and May, which achieves a time complexity of
O

(
20.645n

)
[69]. Our proposed implementation achieves an

improved O
(
20.5n

)
runtime while remaining hardware effi-

cient, underscoring the significance of attaining a Grover
speedup. Further, the possibility of using our algorithm
as a subroutine in more sophisticated classical algorithms
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[64,66,70] opens several directions for future work
[5,71–74].

In quantifying speedup, we define the runtime of the
quantum algorithm in terms of the query complexity, i.e.,
the number of queries to the oracle. An additional consid-
eration is the physical time required to implement a single
query. In our standard algorithm, for a fixed maximum
pairwise interaction strength Jmax, the spectral resolution
γ Jmax required of the oracle results in a query time that
scales as γ−1 ∼ 2kc ≈ 2n along the phase boundary k =
kc. This exponential scaling highlights the importance of
considering not only query complexity, but also the time
required to implement the oracle given physical limitations
of the hardware (the finite interaction energy). At finite
interaction-to-decay ratio, this scaling limits the speedup
of the standard algorithm in our simulations, whereas the
recursive algorithm achieves higher performance limited
only by the increase in optimal number of queries with
system size.

In near-term experiments, despite fragility to dissipa-
tion, even the standard algorithm could produce a speedup
in few-qubit systems in the hard regime, and in scalable
systems in the easy phase. In the hard regime and along the
phase boundary, achieving the ideal performance at scal-
able system size is precluded by the exponential decrease
of the energy gap with n. If instead we vary n at fixed
bit depth k, the time to implement each query saturates to
a fixed value set by γ−1 ∼ 2k as we cross the transition
into the easy regime, allowing the ideal performance to
be maintained at fixed interaction-to-decay ratio. Irrespec-
tive of k, if we fix the duration of each query, the standard
algorithm samples from a probability distribution P(Sz) of
fixed effective temperature set by Jmaxγ , which may enable
extensions to Boltzmann sampling [75].

Our hardware-efficient approach to implementing the
Grover oracle enables near-term realizations in cold-atom
systems, as well as comparisons with alternative proposed
methods for solving NP-hard problems in similar platforms
[76,77]. Our approach also generalizes to other platforms,
including trapped ions [20], or superconducting qubits
coupled to phononic [78,79] or microwave [80] resonators.
The algorithms presented here might be further optimized
by a variational approach that adapts the resolution of the
oracle and the number of queries over multiple trials [81].
Grover amplification could also be applied to engineer
entangled states, e.g., to produce squeezed or Dicke states
by amplifying a particular Sz value. For more versatile
quantum control, arbitrary superpositions of Dicke states
might be amplified by shaping the drive pulse [27,28,82].
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APPENDIX A: GENERALIZATION TO SUBSET
SUM PROBLEM

The number partitioning problem is a special case of
the more general class of decision problems known as
subset sum problems. These problems answer the question:
given a set of n objects with positive weights wi ∈ (0, 1] of
finite bit depth k, does there exist a subset X ⊂ {wi} of
total weight

∑
X wj = W∗ for a specified value W∗? The

entire class of problems are naturally implemented with
the two experimental realizations that we present in detail
in Appendices H 1–H 2.

For general subset sum problems, implementing the ora-
cle requires applying a π phase shift to the system of qubits
if and only if the total weight of the qubits in state |1〉 is
a specified target weight W∗, i.e., if the system is in an
eigenstate of

W1 ≡
∑

i

wi|1〉i〈1|i, (A1)

with eigenvalue W∗. Experimentally, the target weight is
set by the frequency of a field that drives the ancilla. For
the special case of the partition problem, the target weight
is set to W∗ = ∑

i wi/2, and the condition in Eq. (A1) then
reduces to the condition Sz|x〉 = 0 of the main paper. More
generally, the oracle phase shift in terms of W1 is given by

�γ (W1) = 2 arctan [2(W∗ − W1)/γ ] + π . (A2)

APPENDIX B: INVERSION ABOUT THE
AVERAGE

The operator V that performs inversion about the aver-
age, also known as the diffusion operator, requires a multi-
qubit controlled phase gate similar to the Grover oracle. In
particular, the operator

V = 2|ψ0〉〈ψ0| − 1 = HnRHn (B1)

can be decomposed into two n-qubit Hadamard transforms
Hn and a multiqubit controlled phase gate R [2]. The opera-
tion Hn is performed by applying a single-qubit Hadamard
gate to each qubit. The operator

R = 2|0〉〈0| − 1 (B2)

is a diagonal matrix in the basis of spin configurations
|x〉, with matrix elements R00 = 1 and Rxx = −1 for x �= 0.

020319-9



G. ANIKEEVA et al. PRX QUANTUM 2, 020319 (2021)

101 102 103 104 105 106

ρ

100

101

102
Q

FIG. 8. Comparison of speedups Q between two diffusion
operator methods: Q versus the interaction-to-decay ratio ρ for
the perfect diffusion operator (full lines) and the diffusion oper-
ator using the generalized oracle (dashed lines) for n = k =
(4, 6, 8, 10), shaded from darkest to lightest.

Thus, R applies a phase shift of π to all basis states except
for |0〉.

The multiqubit controlled phase gate R can be imple-
mented by adapting the protocol used for the generalized
oracle. Specifically, the phase gate R is equivalent, up to
a global phase, to the Grover oracle for a subset sum
problem [Eq. (A1)] with target weight zero. A general-
ized version Rγ can be implemented by setting all of the
weights to the maximum value wi = 1, and simultaneously
choosing the detuning to set the target weight W∗ = 0. We
expect the resulting generalized diffusion operator HnRγHn
to produce the desired amplification for a relatively broad
diffusion step width, requiring only γ < 1. Notably, the
step width permissible for diffusion is much broader than
that required for the oracle, allowing inversion about the
average to occur with negligible added dissipation even at
finite interaction-to-decay ratio ρ.

We verify that added dissipation due to the generalized
diffusion operator has negligible effect by examining the
quantum speedup. In Fig. 8, we compare the achievable
quantum speedup between the perfect diffusion operator
and the generalized diffusion operator, in the latter case
including effects of decay during diffusion as well as the
nonzero step width. The speedup is reduced by at most
23% over a wide range of ρ values, thanks to the less
stringent requirement on the step width during the gener-
alized diffusion transform compared with the oracle. Thus,
for simplicity, we directly apply the ideal diffusion opera-
tor V in the calculations presented in Figs. 2–5 of the main
paper.

It is also possible to replace the diffusion operator with
only single-qubit rotations, e.g., a global transverse field
as in Ref. [24]. While a detailed analysis of this alterna-
tive is beyond the scope of the present work, we simulate
the application of a transverse field for a time t = π/n in
lieu of inversion about the average, finding success proba-
bilities approximately half as large as those achieved with
the multiqubit diffusion operator. The transverse field thus
enables a technically convenient scheme in which the only
multiqubit gate is the oracle.

APPENDIX C: CLASSICAL SEARCH
ALGORITHMS

In the main text, we evaluate our implementations of
Grover’s algorithm by comparing them to the most anal-
ogous classical algorithm, memoryless search. We begin
this section by quantifying that relationship, discussing the
expected and worst-case performance for each method. We
then consider increasingly more complex classical num-
ber partitioning algorithms and identify their benefits and
drawbacks. This allows us to consider how our algorithm
compares with the best classical algorithms, and indicates
prospects for more sophisticated versions of our quantum
algorithm.

Both Grover’s algorithm and the classical memoryless
search have a probability of success p that is the same for
every trial. For such search algorithms, the number of trials
M to obtain a solution is a random variable with expected
value E[M ] = 1/p . For Grover’s algorithm the success
probability is P(Topt) = Popt, as defined in the main text,
so the expected number of Grover readout measurements
MG is

E[MG] = 1
Popt

. (C1)

For memoryless search with N = 2n possible partitions
and NA exact solutions, p = NA/N . The expected number
of memoryless trials MM is then

E[MM ] = N
NA

. (C2)

Incidentally, when T = 0, Grover’s algorithm reduces to
measuring an equal superposition of configuration states.
The success probability is then P0 = NA/N , equivalent to
memoryless search.

We also consider the worst-case performance of both
algorithms. This is equivalent to the number of queries
required to reach P = 1 − ε probability of having found
a solution, in the limit ε → 0. For both algorithms, even
after an arbitrarily large number of queries, there remains
an exponentially small probability that a perfect partition
exists but has not been found. We quantify this worst-case
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FIG. 9. Speedup scaling over all (n, k), shown by plotting
median total Grover iterations versus memoryless search trials
required to reach P = 0.99 probability of success. Each point
represents a particular (n, k), where n and k each take values over
the range [3, 16]. Black and red lines denote linear and square
root dependences, respectively.

performance when N � NA by allowing ε to remain finite,
so that the P quantile of MGTopt can be written as

[MGTopt]P ∈ O
[

ln
(

1
ε

)
× Topt

Popt

]
, (C3)

and the P quantile of MM is

[MM ]P ∈ O
[

ln
(

1
ε

)
× N

NA

]
. (C4)

Figure 9 shows the relative median scaling of MM and
MGTopt, each calculated according to Eq. (12), with
Grover’s algorithm showing the expected

√
N speedup.

While memoryless search follows the same probabil-
ity distribution as Grover readout measurements, it is not
as efficient as linear search through an unsorted list. The
expected number of trials ML for linear search is

E[ML] = N + 1
NA + 1

. (C5)

For N , NA � 1, the expected trial scaling of both memory-
less and linear search algorithms is O(N/NA). The largest
difference occurs with postselection in the hard regime,
where E[NA] ≈ 2 and memoryless search is expected to
take 1.5 times as many trials as linear search.

For the linear search, the worst-case performance is
N − NA. More generally, we can take ε arbitrarily close

to 0 such that [ML]P converges to N − NA, while retain-
ing the scaling of [MM ]P in Eq. (C4). Thus, while both
algorithms are both worst-case linear in N , worst-case
memoryless search requires O[ln (1/ε)/NA] times as many
queries as worst-case linear search in the hard regime. Fur-
ther, because both algorithms are unstructured, they do
not need to precalculate a potentially exponential number
of values before performing queries. Thus their mem-
ory scaling is O(n), set by the number of values to be
partitioned.

Improving upon memoryless and linear search requires
us to consider a variety of structured search algorithms,
which can be grouped based on the difficulty of the prob-
lem instance they aim to solve. An instance’s difficulty is
related to its density, defined for a set of integer weights
a = (a1, . . . , an) as the ratio d = n/ log2 (maxi ai) of the
number of weights to the number of bits needed to repre-
sent the largest weight [83,84]. Thus, d < 1 corresponds
to the “hard phase” and d > 1 to the “easy phase” [4].
In the easy phase there are typically many perfect parti-
tions and a problem instance can generally be solved effi-
ciently by various classical methods, with the best based on
the Karmarkar-Karp differencing algorithm [50,70]. In the
hard phase, classical algorithms have been demonstrated to
solve “almost all” problems of density d < dc < 1 in poly-
nomial time, with subsequently published algorithms push-
ing dc closer to 1 [83–86]. In such “low-density attack”
algorithms, the number partitioning problem is reduced to
the shortest vector problem, for which there exist algo-
rithms that produce good approximations in polynomial
time.

Indeed, the hardest instances of the number partition-
ing problem are not deep into the hard phase, but near the
phase transition at a density close to 1 [4,55]. For such
instances, classical algorithms with the best known time
complexity are subject to a space-time trade-off; improve-
ments in runtime come at the cost of exponential memory
requirements [67,68]. However, Esser and May devised
a classical algorithm that achieves a time complexity of
O

(
20.645n

)
while maintaining polynomial space complex-

ity [69]. This algorithm offers a compelling comparison to
our proposed Grover implementations, as each algorithm is
hardware efficient in its use of memory or qubits. With our
Grover implementation requiring O

(
20.5n

)
queries, a direct

comparison would yield a speedup O
(
20.145n

)
.

Finally, an interesting open question is whether one can
design hardware-efficient quantum algorithms that exploit
the problem structure of number partitioning. Answers to
this question would build on recent work that combined
quantum and classical methods to produce hybrid algo-
rithms with exponential time, memory, and qubit trade-offs
[5,71–74]. One avenue to explore is the use of our Grover
search as a subroutine in a differencing algorithm, in which
a pair of large weights wi, wj is replaced by their difference
to reduce the size of the search space. Such differencing
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could be performed either classically (representing wi −
wj by a single spin) or quantumly (representing wi − wj
by an entangled state |01〉 + |10〉 of two spins). While clas-
sical differencing has the potential benefit of reducing the
dynamic range of the weights, quantum differencing gen-
eralizes to initializing the system in a superposition state
that reflects classically computed probabilities of find-
ing certain pairs of spins on opposite sides of a perfect
partition.

APPENDIX D: NUMERICAL METHODS

The simulations of Grover’s algorithm are performed
numerically, by matrix multiplication according to Eq.
(10). Each simulation for a specific problem size is per-
formed on an ensemble of lists of randomly selected
weights. To postselect on the existence of solutions, for
each list of weights we first use the classical complete
Karmarkar-Karp differencing algorithm [70] to search for
solutions, and simulate the quantum algorithm only for
instances with solutions. The number of problem instances
in an ensemble, after postselection where applicable,
ranges from 1000 to 5000 for all datasets except that used
for Fig. 4(a.i), in which each probability distribution P(Sz)

is determined from 5 × 104 instances.
To find a sufficiently narrow step width γ to reach a

specified success probability Popt in Fig. 4(a.ii), we gen-
erate an ensemble of weights and numerically optimize
γ using the Nelder-Mead algorithm to reach the specified
value Popt. To find the optimal step width γ in the pres-
ence of decay [Figs. 5 and 7(b)], we similarly optimize γ
to minimize the median total number of Grover iterations
using a gradient-descent algorithm.

APPENDIX E: CAPTURE RANGE AND
AMPLIFICATION

The interpretation of the step width γ as a capture range
for Sz values is illustrated in Fig. 4(a.i) of the main text,
where we plot the amplification factor after Topt Grover
iterations. Here, we additionally present an analytic deriva-
tion of the amplification factor after a single Grover iter-
ation. Specifically, for a given spin configuration |x〉, we
show that the amplification factor after the first Grover
cycle is of the Lorentzian form

∣∣∣∣
cx,1

cx,0

∣∣∣∣
2

= A
1 + (2Sz/γ )2

+ B, (E1)

with width γ set by the width of the phase step. While the
amplitude A and offset B depend on the set of weights, we
analytically derive their values averaged over instances of
the weights to determine the amplification factor at Sz = 0
as a function of step width.

We first consider the combined effect of the generalized
oracle and inversion about the average on a generic state

|ψT〉 =
∑

x

cx,T|x〉. (E2)

The state |ψT+1〉 = VUγ |ψT〉 is characterized by coeffi-
cients

cx,T+1 = −ei�γ (x)cx,T + 2
N

∑

x′
ei�γ (x′)cx′,T. (E3)

Equation (E3) simplifies for the case of T = 0, where all
coefficients cx,0 = 1/

√
N are equal. Thus, after the first

Grover iteration, we have

cx,1

cx,0
= −ei�γ (x) + 2

N

∑

x′
ei�γ (x′). (E4)

In terms of phasors χ(x) = ei�γ (x) and the average pha-
sor χ = ∑

x χ(x)/N , the gain in probability of finding the
system in state |x〉 is then given by

G(x) ≡
∣∣∣∣
cx,1

cx,0

∣∣∣∣
2

= 4|χ |2 − 4Re [χ(x)χ ] + |χ(x)|2. (E5)

We now proceed to account for the specific functional
form �γ (x) = 2 arctan(2Sz/γ )+ π of the oracle’s phase
response. Defining μ(x) ≡ 2Sz(x)/γ as the weighted spin
normalized by the step width, we have

χ = μ2 − 1
μ2 + 1

− i
2μ

1 + μ2 . (E6)

Furthermore, since for each spin configuration |x〉 with
weighted spin Sz there exists a complementary spin con-
figuration with weighted spin −Sz, the average phasor χ is
always real. Equation (E5) then reduces to

G(μ) = (1 − 2χ)2 + 8χ
1 + μ2 . (E7)

This result is of the Lorentzian form in Eq. (E1), with
amplitude A = 8χ and offset B = (1 − 2χ)2. The gain
in the first Grover cycle for a solution state (μ = 0) is
bounded above by Gmax = 9, which is achieved if χ = 1
and approached in the limit where the number of solutions
is small and the step is narrow.

For illustration, we examine a single iteration of
Grover’s algorithm applied to number partitioning with
n = 12 random weights of bit depth k = 12. Figure 10
shows the amplification factor G averaged over all spin
configurations |x〉 with the same value of the weighted spin
Sz, as a function of step width γ . Cuts at fixed γ are well
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FIG. 10. Top: Amplification factor G after one Grover itera-
tion for a single representative instance of weights at n=k=12.
Fits with the Lorentzian model of Eq. (E1) are shown as solid
lines. Offset B is the sole free fit parameter, which is related to
A by Eq. (E7). Bottom: Initial Sz probability density distribution
for n = k = 12, averaged over 104 instances (yellow points with
shading). Expected initial distribution, a Gaussian with σSz = 1,
shown as a solid orange line.

fit by the Lorentzian form in Eq. (E7) with μ = 2Sz/γ ,
confirming that the step width γ sets the capture range for
amplification. The peak amplification G0 ≡ G(0) remains
near its maximum possible value Gmax = 9 until the width
γ grows to roughly σSz/Gmax, where σSz denotes the width
of the initial Sz distribution, which we plot for comparison
in the bottom panel of Fig. 10.

The amplification G0 of solution states depends to low-
est order only on the ratio of γ to the width σSz ∝ √

n of
the Sz distribution. To calculate the dependence of G0 on
γ /

√
n from Eq. (E7), we express χ in terms of the number

of partitions g(μ) with a given value of the imbalance μ:

χ = 1
N

∑

μ

g(μ)
μ2 − 1
μ2 + 1

. (E8)

Here, we have used the relation g(μ) = g(−μ) to elimi-
nate the term that is odd in μ. Assuming a large number
N � 1 of spin configurations, we approximate the aver-
age multiplicity 〈g(μ)〉 over many instances of the weights
using a normal distribution

p(μ) = 1

σ
√

2π
e−μ2/(2σ 2) (E9)

of standard deviation σ = wrms
√

n/γ , where wrms ≡√
〈w2

i 〉 = 1/
√

3 for weights chosen from a uniform dis-
tribution on (0, 1]. In terms of p(μ)dμ ≈ 〈g(μ)〉/N , we
have

〈χ〉 =
∫ ∞

−∞
p(μ)

μ2 − 1
μ2 + 1

dμ

= 1 −
√

2πe1/(2σ 2)

σ
erfc

(
1√
2σ

)
, (E10)

where erfc is the complementary error function. The
average amplification over many instances of the weights
is given in terms of χ by

〈G0〉 = 1 + 4〈χ〉 + 4〈χ2〉 ≥ 1 + 4〈χ〉 + 4〈χ〉2. (E11)

This bound is tight in the large-N limit, where the variance
in χ over different instances of the weights is small. We
plot the lower bound in Eq. (E11) as the dashed red curve
in Fig. 5(c). There, we denote the amplification as Q1 ≡ G0
to emphasize its equivalence to the quantum speedup for
a single Grover cycle. We compare our model with the
amplification calculated at n = k for n = 12, in each case
averaging over 103 instances of the weights with postselec-
tion. We observe excellent agreement between the model
and the simulation.

APPENDIX F: SCALABLE ALGORITHM

In Sec. V, we outline a recursive version of our
algorithm that allows for operating at a fixed resolution
γ ∼ 2−m of the oracle for arbitrary problem size. The
essence of our approach is to consider only the �m least
significant bits of the weights for successive values � =
1, 2, 3, . . .. These truncated weights suffice to amplify, in
each layer � of the algorithm, candidate solutions satis-
fying the condition mod(2kSz, 2�m) = 0. In the final layer
of the algorithm, the fixed m-bit resolution of the oracle
suffices to identify only true solutions satisfying Sz = 0,
thanks to the preamplification of a sparse distribution of Sz
values in prior layers.

In this appendix, we elaborate on the details of the scal-
able algorithm, including the encoding of the weights, the
modular oracle, and the recursive implementation of inver-
sion about the average. Finally, we derive the asymptotic
scaling of the query complexity and present numerical
simulations corroborating our analysis.

1. Encoding the weights

Key to our approach is the ability to dynamically change
the mapping from weights wi to system-ancilla couplings
Ji between successive queries of the oracle. We define the
following set of mappings from weights to system-ancilla
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couplings:

Ji,� = Jmaxmod(2kwi, 2�m)
2�m

, (F1)

with � = 1, 2, . . . k/m. Here, we scale the couplings to
a fixed maximum value Jmax as usual, but for a given
value � we use only the �m least significant bits of the
weights. [For � > 1, we are keeping more bits than the ora-
cle can actually resolve, to avoid subtleties of accounting
for carry bits that can add up. It should never be neces-
sary to program the weights with a resolution of more than
m + log2(n) bits, but the higher precision assumed in Eq.
(F1) also does no harm.]

2. Grover amplification with modular oracle

In each layer � of our algorithm, our objective is
to amplify spin configurations satisfying the condition
mod(2kSz, 2�m) = 0, i.e., spin configurations for which the
�m least significant bits of the imbalance Sz are zero. To
check this condition for a given value of �, we need only
to know the �m least significant bits of each weight, so we
use the couplings Ji,� defined in Eq. (F1) for each layer �.
We further define

Sz,� = 2−�m
n∑

i=1

mod(2kwi, 2�m)σ z
i /2

= 1
Jmax

n∑

i=1

Ji,�σ
z
i /2, (F2)

representing the imbalance at layer � using only the �m
least significant bits of the weights. We wish to design the
oracle to produce a π phase shift if mod(2�mSz,�, 2�m) = 0,
which is equivalent to the ancilla resonance energy shift
being an integer multiple of Jmax.

This modular oracle can be implemented in the central
spin or central boson model by subjecting the ancilla to a
multifrequency drive field, consisting of a comb with spac-
ing Jmax. Since Sz,� ≤ n, there are approximately n different
possible values 2�mSz,� that are equivalent to zero mod-
ulo 2�m, and correspondingly only approximately n drive
frequencies are needed. Each tooth of the comb of drive
fields has a spectral width γ Jmax, which we choose to be
independent of �, with a value γ ∼ 2−m 
 1. The sepa-
ration of scales between the width and the spacing of the
teeth ensures that the phase response of the oracle is well
approximated as

�� ≈ 2 arctan
[

2mod(2kSz, 2�m, −2�m−1)

2�mγ

]
+ π , (F3)

where mod(·, d, b) denotes the modulo with divisor d and
offset b. In terms of the phase shift�� at layer �, we define

the modular oracle U� = exp(i��). In the final layer of
the algorithm, where �m = k, we want to amplify only the
partitions with Sz = 0 without taking the modulus, so we
apply our usual oracle Uk/m = exp(i�) with resolution γ .

3. Recursive algorithm

The first layer of our algorithm consists simply of apply-
ing the modular oracle in alternation with the diffusion
operator V = HnRHn, where Hn is the n-qubit Hadamard
and R is a multiqubit controlled phase gate (Appendix
B). For an imperfect oracle, we apply the usual spin-echo
sequence to produce a state

|ψ1〉 = (VU†
1VU1)

T1/2|ψ0〉, (F4)

where |ψ0〉 = Hn|0〉⊗n is the equal superposition of all spin
configurations. We assume the number of amplification
cycles T1 to be even for notational simplicity, but Eq. (F4)
can also be generalized to allow an odd number of cycles.
Since only a fraction 2−m of the spin configurations satisfy
the condition mod(2mSz,1, 2m) = 0, we expect to require
approximately T� ≈ (π/4)2m/2 amplification cycles in the
first layer � = 1. Upon completion of this layer of the
algorithm, the state |ψ1〉 ≡ G1|ψ0〉 is approximately an
equal superposition of all spin configurations that are can-
didate solutions to the number partitioning problem based
on the m least significant bits of Sz.

Naively one might expect subsequent layers of our
algorithm to be analogous to Eq. (F4) with the replace-
ment U1 → U�. However, an important subtlety is that the
diffusion operator V must be modified so that at layer � it
rotates by π about the state |ψ�−1〉, i.e.,

V� = 2|ψ�−1〉〈ψ�−1| − 1. (F5)

In particular, it is important to rotate about |ψ�−1〉—as
opposed to |ψ0〉—so that the amplitude of the solution
states is inverted about the average amplitude in the sparse
superposition of Sz values produced in the preceding layer,
while ignoring the near-zero amplitudes of the spin config-
urations that have already been suppressed.

To understand how to implement the generalized diffu-
sion operator V�, we first recall how our usual diffusion
operator is constructed [Eqs. (B1)–(B2)]. We can perform
a π rotation about any state |ψ〉 by a combination of (1) the
operator R that rotates about the state |0〉 ≡ |0〉⊗n and (2)
a unitary operator O that transforms |ψ〉 to |0〉. In terms
of these ingredients, the rotation about |ψ〉 is implemented
by applying the compound operator O†RO. For the usual
Grover’s algorithm, the n-qubit Hadamard O = Hn = O†

is the operator that transforms |ψ〉 to |0〉 and back.
To construct the diffusion operator V� for any layer of

our algorithm, we thus require an operator O that trans-
forms the state |ψ�−1〉 to state |0〉. Conveniently, we know
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exactly how to perform this transformation for arbitrary
�—by applying Grover’s algorithm all the way up to layer
�− 1. If we define the Grover operator at level � as

G� ≡
(

V�U
†
�V�U�

)T�/2
, (F6)

such that |ψ�〉 = G�|ψ�−1〉, then the operator O† =(∏�−1
�′=1 G�′

)
Hn transforms |0〉⊗n to |ψ〉�−1. Thus, the dif-

fusion operator needed in layer � of the algorithm is

V� =
(
�−1∏

�′=1

G�′
)

HnRHn

(
�−1∏

�′=1

G�′
)†

. (F7)

Note that Eq. (F7) correctly reduces to V1 = V for the first
layer of our algorithm.

4. Query complexity

Due to the recursive nature of the algorithm, the
query complexity grows exponentially with k and hence
with n in the hard regime. This should not surprise us,
since Grover’s algorithm cannot produce an exponential
speedup. The key performance metric, then, is the coeffi-
cient α in the exponent of the O(2αn) query complexity.

The query complexity is given by

Ttot =
k/m∑

�=1

T�τ�, (F8)

where T� is the number of amplification cycles at layer
� and τ� is the number of calls to the oracle required in
each amplification cycle, including the queries involved
in implementing the diffusion operator V� for � > 1. We
expect to need T� ≈ (π/4)2m/2 amplification cycles at each
layer except the final one, by the same argument given
above for � = 1. The final layer takes a factor of

√
n more

steps, but this factor will only introduce a subexponential
correction to the query complexity so we can ignore it in
the following analysis. The number of calls to the oracle in
each amplification cycle of the �th layer is

τ� = 1 +
�−1∑

�′=1

2T�′τ�′ , (F9)

based on Eq. (F7). Put another way, we have

τ� = τ�−1 (1 + 2T�−1)

≈ τ�−1

[
1 + 2m/2

(π
2

)]
. (F10)

Since the first layer requires only τ1 = 1 call to the oracle
per amplification cycle, for general � we have

τ� =
[
1 + 2m/2

(π
2

)]�−1
, (F11)

as can readily be verified by induction.
The total number of calls to the oracle given by Eq. (F8)

thus takes the form of a finite geometric series. Evaluating
the geometric series yields

Ttot =
(π

4

)
2m/2

([
1 + 2m/2 (π/2)

]k/m − 1

2m/2
(
π
2

)
)

≈ 2k/2−1 (π/2)k/m

= 2k(1/2+c/m)−1, (F12)

where c = log2(π/2) ≈ 0.65. For n ≈ k, we obtain a query
complexity O(2αn) with α = 0.5 + 0.65/m. We thus need
m ≈ 5 bits of resolution to outperform the best scalable
classical algorithm [69].

While the query complexity of the recursive algorithm
is at best (i.e., for large m) the same as that of the standard
algorithm, the recursive algorithm offers the benefit that the
actual runtime in a scalable implementation with fixed Jmax
is directly proportional to the query complexity, and thus
exhibits a Grover speedup. We thus eliminate the exponen-
tial overhead that is present in the simplest algorithm, and
we do so without compromising on hardware efficiency.

5. Simulation

A representative comparison of the standard algorithm
and the recursive algorithm is shown in Fig. 11(a), where
we simulate a single instance of number partitioning
with n = k = 12. The instance is selected to have exactly
one pair of solutions. The recursive algorithm is per-
formed with m = 4 bits of resolution, and the amplification
steps per layer (T1, T2, T3) = (2, 3, 2) are chosen to maxi-
mize the probability at each layer. The resolution of the
oracle is set to γ = 2−m−1 for the recursive algorithm
(orange squares), compared with γ = 2−k for the standard
algorithm (blue circles). While the recursive algorithm
required approximately 3 times as many queries as the
standard algorithm, the physical time per query at fixed
Jmax is a factor of 2k−m−1 = 27 times longer for the stan-
dard algorithm than for the recursive algorithm. Thus, in
this example the recursive algorithm produces a significant
reduction in runtime for a fixed maximum system-ancilla
coupling.

To compare the time complexity of the algorithms, we
simulate both algorithms for a range of problem sizes (n, k)
with 1000 instances of weights [Figs. 11(b) and 11(c)]. For
each layer � of the recursive algorithm with m = 6 and γ =
2−m−1, the number of amplification cycles T� is optimized
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FIG. 11. Comparison of the standard (blue circles) and recursive (orange squares) algorithms. (a) Success probability P versus
number of oracle queries T for a single instance of number partitioning at n = k = 12. Recursive algorithm is performed with m = 4
and γ = 2−m−1. The physical time per query (at fixed Jmax) is longer by a factor of 2k−m−1 = 27 for the standard algorithm than for
the recursive algorithm. (b) Median speedup [Q]0.5 in query complexity, plotted versus n = k for the standard algorithm with γ = γc
and the recursive algorithm with m = 6 and γ = 2−m−1. Lines denote the 20.5n scaling for the standard algorithm and 2(0.5−0.65/m)n

scaling for the recursive algorithm. (c) Speedup [Q]0.5 γ in physical runtime at fixed Jmax, plotted vs. n = k for the standard algorithm
with γ = γc and the recursive algorithm with m = 6 and γ = 2−m−1. Lines denote the 2−0.5n scaling for the standard algorithm and
2(0.5−0.65/m)n scaling for the recursive algorithm.

to minimize the median total number of Grover oracle
queries Ttotal. We expect the total number of Grover queries
Ttotal in the recursive algorithm to follow the query com-
plexity derived in the preceding section (Appendix F 4).
For m = 6, the expected scaling is Ttotal ∈ O(20.61n), lead-
ing to a Q ∈ O(20.39n) scaling of the speedup with system
size, which is confirmed by the simulation in Fig. 11(b).
While the speedup Q in query complexity for the recur-
sive algorithm at finite bit depth m is slightly lower than
that of the standard algorithm, the benefit of the recursive
algorithm becomes apparent when we plot the speedup Qγ
in physical runtime at fixed Jmax [Fig. 11(c)]. The growth
in Qγ with system size in the recursive algorithm confirms
its scalability.

APPENDIX G: EFFECTS OF DECOHERENCE

Two forms of decoherence that can limit the perfor-
mance of our algorithm in realistic implementations are
decay of the ancilla and decay of the system spins. In
this section, we first provide an analytic estimate of the
scaling of the quantum speedup with a generic interaction-
to-decay ratio in the standard algorithm (Appendix G 1).
We then describe how we calculate the speedup in the
numerical simulations of Fig. 5, focusing on decay of the
ancilla, which is the dominant decay channel in the near-
term experimental implementations proposed and analyzed
in Appendix H.

1. Quantum speedup in presence of decay

Decay during the generalized Grover’s oracle limits the
maximum achievable quantum speedup. Here, we analyti-
cally derive the scaling of optimal quantum speedup with
the interaction-to-decay ratio for the standard algorithm

presented in Secs. II–III. The speedup is maximized at a
step width γopt set by a competition between the reduction
in capture range at narrower step widths, which ideally
increases the success probability, and the accompanying
increase in decay. Figure 12 shows the optimal step width
and the optimal number of Grover iterations Topt that pro-
duce the speedup shown in Fig. 5(b) of the main text. At
small interaction-to-decay ratios, it is optimal to use a sin-
gle amplification cycle with a wide phase step, while at
larger interaction-to-decay ratios, the optimal step width is
narrower, allowing for a performance closer to that of the
ideal Grover’s algorithm.

To estimate the optimal step width, we observe that the
number of partitions NAeff(γ ) within the capture range
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FIG. 12. (a) Ratio of optimal step width γ to critical step width
γc versus the interaction-to-decay ratio ρ for n = k = (4, 6, 8, 10)
denoted by markers shaded from darkest to lightest. (b) Optimal
number of Grover iterations Topt versus the interaction-to-decay
ratio ρ for n = k = (4, 6, 8, 10) denoted by markers shaded from
darkest to lightest. Dashed lines represent the number of iter-
ations Topt at which the speedup is maximized in the ideal
Grover’s algorithm.
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|Sz| � γ sets the behavior of the generalized Grover’s
algorithm in roughly the same way as the number of per-
fect partitions NA sets the behavior of the ideal Grover’s
algorithm. With increasing step width, in the absence of
dissipation, the number of iterations required to maximize
the success probability decreases as

Topt
∗ ≈ π

4

√
N

NAeff , (G1)

in analogy to Eq. (9). (In defining Topt
∗ to maximize the

success probability, we are choosing a slightly different
definition from that of Topt in the main text.) For large step
widths, where we capture a larger number NAeff of spin
configurations than the actual number of solutions NA, we

can approximate NAeff ≈ γN
√

6
πn from the theoretical dis-

tribution of total weights in the partition problem [87,88].
Thus, in tems of the step width γ , we have

Topt
∗ = π

4γ 1/2

(πn
6

)1/4
. (G2)

The decrease in the optimal number of iterations Topt
∗

with increasing step width comes at the cost of a reduced
success probability Popt ≈ NA/NAeff, even before account-
ing for dissipation. Thus, employing a narrower step for
a larger number of iterations T is preferable unless decay
results in an appreciable reduction in Popt. To estimate the
optimal number of Grover iterations at finite interaction-
to-decay ratio ρ, we first determine the maximum number
TC of iterations that can be performed with a given proba-
bility e−C of incurring no error. Here, C is a constant that
we choose to optimize the speedup. The error rate per iter-
ation is D/(ργ ), where D is an order-unity factor that is
derived in Appendix G 2 for the case of the first amplifica-
tion step and, more generally, can be obtained from a fit to
numerical data. We thus estimate the maximum number of
iterations as TC ≈ Cργ/D.

We expect the optimum number of iterations in the
presence of decay to be given by Topt

∗ = TC for some
order-unity value C. Combining the expression for TC and
the relationship between Topt

∗ and γopt [Eq. (G2)], the
optimal step width is then

γopt =
(
πD
4Cρ

)2/3 (πn
6

)1/6
. (G3)

To estimate the speedup Qopt, we approximate Popt in
the presence of dissipation as Popt ≈ e−CNA/NAeff. The
speedup Qopt is then given by

Qopt = log(1 − Popt)

Topt
∗ log(1 − P0)

≈ Popt

Topt
∗P0

, (G4)

where P0 = NA/N and we assume Popt 
 1 and P0 
 1.
Finally, collecting the expressions, we find

Qopt = e−C

Topt
∗γopt

√
πn
6

=
(

4
π

)4/3 (πn
6

)1/6
e−C

(
Cρ
D

)1/3

. (G5)

The scaling of the optimal speedup as a function of
interaction-to-decay ratio is given by Qopt ∼ ρ1/3. For high
values of ρ, the optimal speedup will start to saturate to
the quantum speedup of the ideal Grover’s algorithm. This
saturation occurs when the optimal step width becomes
smaller than the smallest nonzero |Sz| values, which
for n = k is at γopt ≈ √

n/N , with N = 2n. Thus, the
interaction-to-decay ratio where the speedup starts to sat-
urate scales as ρ ∼ N 3/2/

√
n. This scaling exemplifies the

fact that reaching the ultimate quantum speedup allowed
by Grover’s algorithm requires exponentially increasing
the interaction-to-decay ratio with problem size.

The numerical results of the generalized Grover’s
algorithm with ancilla decay in Fig. 5(b) are well described
by the model of Eq. (G5) with constants C = 1/3 and
D = 1.2. This equation is applicable in a region between
100 � ρ � N 3/2/

√
n. The upper limit of this regime of

validity comes from the saturation of the speedup to the
ideal Grover’s algorithm limit, while the lower limit is
reached when Topt

∗ = 1.

2. Generalized oracle with ancilla decay

The effect of ancilla decoherence during the general-
ized Grover’s oracle can be modeled as an imaginary term
in the oracle phase shift [Eq. (3)]. A particular system
spin configuration |x〉 will shift the ancilla excited state
from resonance by �x = (W∗ − W1)Jmax, where W1 and
W∗ are the actual and target weights in the subset sum
problem as defined in Appendix A. To include the effect of
ancilla decoherence, we make a substitution �x −→ �x +
i�a/2, where �a is the linewidth of the ancilla excited
state [89]. Thus, the oracle phase shift applied to the spin
configuration |x〉 is given by

�γ (W1) = 2 arctan [2(W∗ − W1)/γ + i�a/(Jmaxγ )] + π

= 2 arctan (μ+ ir)+ π . (G6)

Here, μ = 2(W∗ − W1)/γ in an analogy to the definition
in Appendix E and

r ≡ �a

Jmaxγ
= 1
ργ

(G7)

parameterizes the decay rate per query of the oracle,
assuming the decay is dominated by the ancilla decay.
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The effect of the oracle on the amplitudes of the spin
states is given by χ(W1) = exp[i�γ (W1)]. Using Eq. (G6)
we derive

χ(W1) = −1 + iμ− r
1 − iμ+ r

. (G8)

This full form of the oracle including dissipation modifies
the single-cycle amplification formula given in Appendix
E. To see how, we rewrite χ in terms of its real and
imaginary components,

χ = μ2 + r2 − 1
μ2 + (r + 1)2

− i
2μ

(1 + r)2 + μ2 , (G9)

where we use the fact that both r and μ are real.
The expression for the amplification in Eq. (E5) now

reduces to

G(μ) = 4χ (χ − 1)+ (1 − r)2

(1 + r)2
+ 8χ(1 + r)
(1 + r)2 + μ2 .

(G10)

As before, χ is real and thus depends only on the real
components of χ , weighted by the density of states g(μ):

χ = 1
N

∑

μ

g(μ)
μ2 + r2 − 1
μ2 + (r + 1)2

. (G11)

Taking the continuum limit and using the probability dis-
tribution p(μ) derived in Appendix E yields the updated
expectation value,

〈χ〉 =
∫ ∞

−∞
p(μ)

μ2 + r2 − 1
μ2 + (r + 1)2

dμ

= 1 −
√

2πe(1+r)2/(2σ 2)

σ
erfc

(
1 + r√

2σ

)
. (G12)

From Eqs. (G10) and (G12) we compute the average
amplification over many instances:

〈G0〉 ≥ (1 − r)2

(1 + r)2
+

(
8

1 + r
− 4

)
〈χ〉 + 4〈χ〉2. (G13)

The amplification in Eq. (G13) is a lower bound both due
to the substitution of 〈χ〉2 for 〈χ2〉 and due to the small
additional probability, which we elsewhere neglect, that
the spins end up in a solution state following a dissipation
event. The inequality becomes exact in the limit of large
N and low dissipation r 
 1. To estimate the reduction in
amplification due to dissipation in this limit, we assume a
phase step sufficiently narrow that 〈χ〉 ≈ 1. Expanding Eq.
(G13) to lowest order in r then yields

〈G0〉 ≈ 9 (1 − 4r/3) . (G14)

(b)

(a) Ancilla spin System spin

Detector

FIG. 13. (a) Central spin model realized by Rydberg-dressed
atoms (red) interacting with ancilla qubit encoded on a ground-
to-Rydberg transition (blue). (b) Central boson model realized by
driving one-sided cavity coupled to system spins and heralding
on photodetection.

APPENDIX H: EXPERIMENTAL
IMPLEMENTATIONS

1. Central spin model with Rydberg atoms

As a central spin system for encoding subset sum prob-
lems, we consider an array of atoms that can be optically
coupled to Rydberg states to controllably turn on the inter-
action Hamiltonian Hq [Eq. (4)]. The implementation is
illustrated in Fig. 13(a). The spins of the system atoms
are encoded in two ground states |0〉, |1〉. The ancilla qubit
is encoded using a ground state |g〉 and a Rydberg state
|R〉, in terms of which we define the spin raising operator
I+ = |R〉〈g| and lowering operator I− = |g〉〈R|. The sys-
tem is initialized with the ancilla in state |g〉 and the system
spins in state |ψ0〉.

To turn on the system-ancilla interactions, the system
atoms are individually addressed by control fields that off-
resonantly couple state |1〉 of the ith atom to the Rydberg
state |R〉 with Rabi frequency �i and detuning |�s| � �i.
In this regime, the lowest-order effect of the light on the
atomic states is an ac Stark shift given by �2

i /(4�s). Thus
we can write the interaction Hamiltonian as

HR = |R〉〈R|
∑

i

Ji|1〉〈1|i, (H1)

where

Ji = �2
i

4

[
1

�s − VR(ri)
− 1
�s

]
(H2)

and VR(ri) is the Rydberg pair potential between the
ith system atom and the ancilla. We choose VR and �s
to have opposite signs. If the ancilla is in the Rydberg
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state, the interaction energy VR then increases the detuning
|�s − VR|, thereby suppressing the ac Stark shift of atom i
by an amount Ji. The result [Eq. (H1)] is equivalent to the
central spin model in Eq. (4) up to overall energy shifts,
with weights wi = Ji/Jmax, where Jmax is the largest of the
system-ancilla couplings Ji.

The oracle is implemented by simultaneously turning
on the couplings Ji and attempting to drive a 2π pulse
on the |g〉 → |R〉 transition of the ancilla. The ancilla is
driven with a field of Rabi frequency �a(t), with the pulse
shape chosen to ensure that the qubit ends up in its ground
state irrespective of whether the pulse is resonant. This
condition is satisfied for a pulse shape [47]

�a(t) = 2π
τ

sech
(
π t
τ

)
, (H3)

where τ sets the width of the oracle phase step. In practice,
we must restrict the pulse to a finite window −tp/2 < t <
tp/2, where a duration tp � 3τ suffices to provide a smooth
turn on. The detuning �a of the ancilla’s control field sets
the target weight W∗ = �a/Jmax in the subset sum prob-
lem [Eq. (A1)]: for configurations of the system spins with
weight W1 = W∗ in state |1〉, the ancilla undergoes a 2π
rotation that imparts a geometric phase of π .

More generally, this protocol produces a unitary trans-
formation

UR = T e
−i

∫ tp /2
−tp /2

H(t) dt
, (H4)

where we set � = 1, T denotes time ordering, and

H(t) = HR +�a(t)Ix, (H5)

where Ix = (I+ + I−)/2. For the hyperbolic secant pulse in
Eq. (H3), we obtain a W1-dependent phase shift UR = ei�γ

where

�γ = 2 arctan [2(W∗ − W1)/γ ] + π , (H6)

and the width of the phase step is given by γ = 2π/(Jmaxτ)

[90].
Two effects that can limit the performance of the Ryd-

berg implementation are the finite lifetime 1/�R of the
Rydberg state and residual interactions among the system
spins. The residual interactions between the system spins
are smaller than the system-ancilla couplings by a factor
of order (�i/�s)

2 assuming |VR(ri)| � |�s|. If necessary,
these interactions can furthermore be cancelled by an echo
procedure in which the control fields �i are applied again
with the signs of �s and VR reversed, the latter by tuning
the electric field near a Förster resonance [91]. We there-
fore neglect residual interactions in our analysis and focus
on the limits set by Rydberg decay.

To estimate the requirements for implementing Grover’s
algorithm while keeping the probability of Rydberg decay
small, we define the maximum �max of the Rabi frequen-
cies �i and the dressing amplitude ε = �max/(2|�s|). Our
perturbative analysis of the dressing assumes that ε2 <

1/n, where n is the number of system spins. Let us fur-
thermore assume that the most strongly weighted atom is
sufficiently close to the ancilla that |VR| � |�s|, such that
its coupling is

Jmax ≈ �2
max/(4�s) = ε�max/2. (H7)

During the oracle pulse, the probability of decay for a sys-
tem atom due to the coupling to the Rydberg state will
be tpε2�R. The worst-case decay probability of the sys-
tem spins when each spin is in state |1〉 is 3πnε2/ργ ,
based on the pulse time tp = 3π/γ Jmax. In addition, the
error rate due to ancilla decay during the generalized ora-
cle is approximately �R/Jmaxγ . In the weak dressing limit
nε2 
 1, the decay due to the ancilla dominates over the
decay of the dressed system spins.

We now present concrete experimental parameters for
implementing the central spin model with cesium atoms.
Coupling to high-lying Rydberg states is beneficial as
the lifetime scales as the cube of the principal quan-
tum number. By coupling to the

∣∣80P3/2
〉

state, we can
achieve �max ≈ 2π × 10 MHz with realistic laser param-
eters [42,92]. The Rydberg interaction strength is given
by VR(r) = −C6/r6, where C6 ≈ 2π × 7000 GHz μm6

for
∣∣80P3/2

〉
[93]. For a typical distance between neigh-

boring atoms in an optical tweezer array r0 ≈ 4 μm, the
interaction shift will be VR(r0) ≈ 2π × 1.7 GHz.

The achievable interaction strength in the Rydberg
implementation will depend on system size n, as the weak
dressing condition ε2 < 1/n puts an upper limit on Jmax <

�max/(2
√

n). To give a particular example, for a system
size n = 6, with nε2 = 0.1 and �max = 2π × 10 MHz,
the interaction strength is Jmax ≈ 650 kHz for �s ≈ 2π ×
39 MHz. The interaction shift |VR(r0)| > |�s| is large
enough to extinguish the light shift of the most strongly
coupled atom as we assumed in the preceding analysis. For
the state

∣∣80P3/2
〉

in cesium, �R ≈ 2π × 0.5 kHz, giving
the interaction-to-decay ratio ρ ≈ 1200.

2. Central boson model with atoms in a cavity

As a central boson system for encoding subset sum prob-
lems, we consider n spins that are coupled to a cavity of
linewidth κ . We require a dispersive atom-light interaction
described by a Hamiltonian

H = c†c
∑

i

Ji|1〉〈1|i. (H8)
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Here, Ji = g2
i /�i is the shift of the cavity resonance when

the ith spin is flipped, in terms of the vacuum Rabi fre-
quency gi and the detuning �i � �e of the cavity from
resonance with a transition |1〉 → |e〉 of linewidth �e
[Fig. 13(b)].

To implement the oracle, the cavity is driven by a weak,
narrow-band coherent field |α〉 of frequency ω = ωc + δ,
where ωc is the resonance frequency of the bare cavity. The
output and input modes

bout = χbin (H9)

are related by the cavity response function [94]

χ = −κ/2 + iδ′

κ/2 − iδ′ , (H10)

where δ′ = δ − JmaxW1, assuming that cavity losses are
negligible compared with transmission. The weighted sum
W1 is defined as in Appendix A using weights determined
by the couplings of each spin to the cavity, wi = Ji/Jmax.
The choice of detuning of the drive field from bare cav-
ity resonance δ sets the target weight W∗ = δ/Jmax for
the subset sum problem. This can be tuned to specifically
implement the partition problem (see Appendix A).

More generally, we can also account for a photon loss
rate �a, including any absorption by the atoms, by letting

δ′ = δ − JmaxW1 + i�a/2. (H11)

The magnitude and phase of the cavity response function
χ determine, respectively, the probability |χ |2 of success-
fully detecting the ancilla photon and the resulting oracle
phase shift. On resonance, the magnitude of the response
function is

|χ(0)| = κ − �a

κ + �a
, (H12)

which yields a detection probability |χ |2 ≈ 1 − 4�a/κ for
small �a/κ . The phase shift is given by

�(W1) ≡ arg [χ ] = 2 arctan(2δ′/κ)+ π . (H13)

The phase � increases from 0 to 2π in a step of char-
acteristic width κ , assuming low losses �a � κ/2, as a
function of the atom-dependent detuning between the drive
and cavity resonance. We parameterize the step width by
the dimensionless value γ = κ/Jmax.

To apply the oracle Uγ , we initialize the system in a
product state of the atoms, the vacuum field in the cavity,
and a weak, narrow-band coherent state in the input mode:

|�〉 = |ψ0〉|0c〉
∣∣αbin

〉
. (H14)

The coherent field leaks through the input mirror into the
cavity mode, where the light and atoms interact according

to Eq. (H8), then leaks into the output mode bout. After a
time t � 1/(�ω) � 1/κ , where �ω is the bandwidth of
the input field, the state evolves to

|�t〉 = eiαχb†
out |ψ0〉|0c〉

∣∣0bout

〉
. (H15)

The action of eiαχb†
out displaces the vacuum state of the out-

put mode |0bout〉 such that the detection of a single photon
in the output mode heralds the state

〈1bout |�t〉 = ei�(W1)|ψ0〉|0c〉, (H16)

thus applying the oracle.
As an alternative to the coherent drive and heralding, an

ancilla atom can be used as an intracavity single-photon
source. By coupling the ancilla to the cavity via a two-
photon transition, with the first leg being a classical field,
the cavity can be controllably excited from the vacuum to
the single-photon state. The bosonic mode is thus reduced
to two levels |0〉c, |1〉c that are coupled by the control field
on the ancilla, so that we effectively recover a central spin
model. The implementation of the oracle then proceeds
much as in Appendix 1, by driving a shaped 2π pulse that
returns the ancilla atom to its initial state and the cavity to
the vacuum state. The width τ of this pulse now controls
the step width γ = 2π/(Jmaxτ), subject to the requirement
that the pulse be short compared to the cavity lifetime.

We now proceed to estimate the cavity parameters
required to observe Grover amplification [as in Eq. (E7)],
as well as the attainable interaction-to-decay ratio. Ampli-
fying the probability of solution states requires a phase step
narrower than the initial probability distribution P(W1),
which in turn requires strong atom-light coupling. In par-
ticular, we will show that the single-atom cooperativity
η = 4g2/(κ�e) sets an upper bound on the dispersive cav-
ity shift Jmax achievable at low photon loss rate �a < κ ,
and hence a lower bound on the dimensionless step width
γ = κ/Jmax in the driven cavity.

The lower bound on the step width γ arises because
increasing the dispersive coupling Jmax comes at the cost
of increased chance of atomic absorption. In the worst-case
scenario where all n atoms are in state |1〉 in the scheme of
Fig. 13(b), atomic absorption produces a photon loss rate

�a = �e

n∑

i=1

g2
i

�2
i

= �eJmax
2

n∑

i=1

w2
i

g2
i

(H17)

in terms of the weights wi. While each weight can be tuned
via either the atom-cavity coupling gi or the detuning �i,
the latter is preferable because it allows all atoms to benefit
from the maximum cavity cooperativity. Thus we set gi ≡
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g to be maximal for all atoms, reducing Eq. (H17) to

�a

κ
= �eκ

γ 2g2

n∑

i=1

w2
i = 4nwrms

2

ηγ 2 , (H18)

where wrms
2 represents the mean-squared value of weights

and is given by wrms
2 = 1/3 for weights drawn from a uni-

form distribution wi ∈ (0, 1]. Thus, keeping photon loss
small (�a/κ � 1) requires a step width γ � √

n/η.
Equation (H18) gives the decay parameter r = �a/κ

necessary to determine the single-cycle amplification in
Eq. (G13). Notably, we can re-express the decay parameter
in terms of the variance σ 2 = nwrms

2/γ 2 of the normalized
weighted spin μ = 2(W∗ − W1)/γ and the cooperativity:

r = 4σ 2

η
. (H19)

Achieving amplification requires σ 2 > 1, i.e., the proba-
bility distribution of W1 should be broader than the width
γ of the phase step. To achieve this condition at low loss
r < 1, we require strong coupling η � 1. This requirement
is corroborated by plots of the amplification versus step
width for various cooperativities in Fig. 5. The maximum
achievable single-cycle amplification, shown in Fig. 5(c),
becomes larger than 1 for η � 50. This condition can
be satisfied in state-of-the-art optical cavities, where the
highest cooperativities achieved are η ∼ 102 [56,95], at
scalable system size n.

Achieving substantial quantum speedups requires oper-
ating in the ultrastrong coupling regime η � n to reach
step widths γ 
 1. A cooperativity as high as η = 4 × 108

has been achieved by coupling circular Rydberg atoms
to a superconducting millimeter-wave cavity [59], with
(g, κ ,�) = 2π × (2.5 × 104, 1.4, 4.4) Hz. To access this
high cooperativity, both spin states |0〉, |1〉 must be Ryd-
berg states with finite lifetime �−1, and the dominant
decay channel is then atomic decay rather than photon loss,
resulting in an interaction-to-decay ratio ρ ≈ Jmax/(n�).
The detunings �i should be set to maximize the cou-
plings, up to Jmax = εg, where ε ≡ g/min(�i) is limited
by the requirement nε2 < 1 to avoid absorption of the pho-
ton. Fixing nε2 = 0.1 allows an interaction-to-decay ratio
ρ ≈ 2 × 103/n3/2 for the parameters of Ref. [59].
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