
PRX QUANTUM 2, 020316 (2021)

Two-Way Covert Quantum Communication in the Microwave Regime
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Quantum communication addresses the problem of exchanging information across macroscopic dis-
tances by employing encryption techniques based on quantum-mechanical laws. Here, we advance a new
paradigm for secure quantum communication by combining backscattering concepts with covert com-
munication in the microwave regime. Our protocol allows communication between Alice, who uses only
discrete phase modulations, and Bob, who has access to cryogenic microwave technology. Using notions
of quantum channel discrimination and quantum metrology, we find the ultimate bounds for the receiver
performance, proving that quantum correlations can enhance the SNR by up to 6 dB. These bounds rule
out any quantum illumination advantage when the source is strongly amplified, and shows that a relevant
gain is possible only in the low photon-number regime. We show how the protocol can be used for covert
communication, where the carrier signal is indistinguishable from the thermal noise in the environment.
We complement our information-theoretic results with a feasible experimental proposal in a circuit-QED
platform. This work makes a decisive step toward implementing secure quantum communication concepts
in the previously uncharted 1–10 GHz frequency range, in the scenario when the disposable power of one
party is severely constrained.
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I. INTRODUCTION

It is well understood that the application of quantum
mechanics to traditional technology-related problems may
give a new twist to a number of fields. Quantum communi-
cation is a potential candidate for overpassing its classical
counterpart in relevant aspects of information-theoretic
security. By appropriately encoding the information in the
degrees of freedom of quantum systems, a possible eaves-
dropping attack can be detected due to the sensitivity of the
system to the measurement process. This simple reason-
ing has been at the basis of defining a number of quantum
key distribution (QKD) protocols during the first quan-
tum information era, such as BB84 [1], E91 [2], and B92
[3]. The defined protocols have been proven to be uncon-
ditionally secure provided that the transmitting channel
has a low noise [4,5]. The same level of security would
be impossible to reach even in the most sophisticated
known classical architectures, which rely on the current
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impossibility of solving efficiently specific problems, such
as prime-number factorization or finding the solution of
systems of multivariate equations [6]. This means that clas-
sical encryption techniques are not fundamentally secure:
information considered to be safely stored today is not
guaranteed to be so tomorrow [7]. Quantum communica-
tion aims to solve this long-term security problem at some
infrastructure costs yet to be quantified.

From a theoretical point of view, there is a challenge
in defining quantum communication protocols, which are
secure, efficient, and practical at the same time. In this
respect, optical systems have been considered for decades
the main candidates for quantum communication, as ther-
mal effects are negligible in this frequency range. For
instance, QKD security proofs require level of noises that
at room temperature are reachable only by frequencies
at least in the terahertz band [8]. In addition, entangle-
ment can be distributed with minimal losses, allowing
for the implementation of a series of key long-distance
quantum communication experiments, such as quantum
teleportation [9], device-independent QKD [10], determin-
istic QKD [11], superdense coding [12], and continuous-
variable quantum information correction schemes [13–
15], among others. The realization of these experi-
ments have been mainly possible because of large efforts
in improving photon-detection fidelities, single-photon
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generation, high-rate entanglement generation, and on-
chip fabrication methods [16]. Despite these advances
in optical technology for quantum communication, low-
frequency systems, such as those operating in the
microwave or radio wavelengths, have still advantages
related to easier electronic design. In addition, microwave
signals in the range 100 MHz–10 GHz belong to the
low-opacity window, therefore are particularly suitable for
open-air communication applications. In fact, one may
think of optical fibers as a better choice for long-distance
communication, due to their resilience to environmen-
tal dissipation, and microwave systems for short- and
medium-distance applications for the low cost of their
electronics [17]. It is therefore compelling to investigate
at the fundamental level whether secure open-air commu-
nication protocols are possible at larger wavelengths, with
a long-term idea of reaching a network design integrat-
ing quantum and classical links, with minimal possible
changes in the already existing infrastructure. With the
advent of circuit QED (cQED) as a promising platform for
quantum computation [18], experimental and theoretical
research has been focused on understanding the properties
of microwave signals at the quantum level. If cooled down
at 20 mK, thermal effects are suppressed and microwave
electromagnetic fields with frequency above a few GHz
show exemplary quantum effects, such as superposition,
entanglement, and squeezing below vacuum [19]. Lately,
we witness several experimental advances, which can be
regarded as milestones for developing microwave quantum
communication, such as improved Josephson paramet-
ric amplifiers (JPAs) [20,21], microwave photodetectors
[22] and bolometers [23], generation of path entangle-
ment [19,24,25], generation of multimode-entangled states
[26–28], remote state preparation [29] and quantum tele-
portation [30–32]. The ability of generating and manipu-
lating microwave radiation in a way that reproduces quan-
tum optics experiments allows extension of the concept
of a photon as a single-quanta excitation of the electro-
magnetic field. The short-term promise in the field is to
demonstrate quantum communication and quantum sens-
ing protocols in the microwave regime [33–37], which
would then enable real-life applications [38]. Recent the-
oretical results in noisy quantum sensing and metrology
show that preserving entanglement in an experiment is not
a fundamental feature for reaching a quantum advantage
[39,40], paving the way for the implementation of open-air
quantum microwave protocols.

This paper exploits recent results in quantum com-
munication, quantum sensing, and cQED in order to
introduce a feasible secure two-way quantum commu-
nication protocol in the microwave regime. The proto-
col combines microwave quantum radar technology with
covert communication. It consists in the secure exchange
of information between a classical party (Alice) and a
quantum party (Bob), who preshare a secret. Bob sends

Alice
Bob

Eve

Eve

FIG. 1. Sketch of the two-way quantum communication pro-
tocol. Bob sends a signal to Alice, who embeds the message
by phase modulation. The signal is then sent back to Bob, who
retrieve the information via a suitable measurement. Bob may
use quantum correlations in order to increase the SNR. A passive
Eve is able to collect the photons lost in both paths, but she does
not have access to Bob and Alice labs.

a continuous-variable microwave signal to Alice, who
encodes her message in the phase modulation according to
a preagreed alphabet. The signal is then transmitted back
to Bob and measured in order to discriminate between
the different modulations (see Fig. 1). As Alice is per-
forming uniquely passive operations at room temperature,
she needs only classically available components. If seen
from the energy-expenditure perspective, one can think
of one- and two-way protocols as having fundamentally
different features in quantum communication. In one-way
protocols, Alice (the message transmitter) generates quan-
tum states of some sort, while Bob (the message receiver)
has access to some operations typically easy to imple-
ment, and a measurement device. Taking into account
that even the simplest of the detection schemes, such as
homodyne or heterodyne, requires amplifiers and signal
generators, a non-negligible energy disposal for both Alice
and Bob is required in order to implement any one-way
protocol. Our two-way protocol, instead, puts all the chal-
lenging technological requirements at Bob’s side. This
feature has recently gained a lot of interest in the commu-
nication engineer community, especially for implementing
backscatter communication [41–43]. In fact our protocol
is significantly different with respect to previous propos-
als [44–48], since it does not require active control at
Alice’s side. Since Alice’s energy requirements are mini-
mized, we envision real-life applications in ultralow power
rf communications, Internet of Things, and near-field-
communication- (NFC) based technology, among others.
While the possibility of using this technology has been
speculated in the literature, no rigorous approach has ever
been pursued. One of the goal of this paper is indeed to
provide a solid theoretical basis to the quantum backscatter
communication field, together with a feasible implementa-
tion proposal. We discuss both the cases when the signal
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is in a coherent state and when it is correlated with an
idler. The latter shows a gain of up to 6 dB in the SNR
with respect to the former one, at some experimental cost
in the preparation and the detection stages by Bob. The
setup resembles the Gaussian quantum illumination proto-
col [39,49,50], where a weak two-mode squeezed-vacuum
(TMSV) state is transmitted in a bright environment in
order to detect the presence or absence of a low-reflectivity
object in a region of space. Unlike radar applications,
for which the quantum illumination paradigm is usually
employed [33,37], and where location, velocity and cross
section are unknown, our communicating setup can be
thought to be applied with static antennas where all these
properties are known and can be engineered. In the first
part of the paper, we derive a general expression for the
error probability, putting an emphasis on Gaussian states
and Schrödinger’s cat (SC) states [51]. We prove that 6
dB is indeed the maximal gain in the error probability
exponent reachable by a quantum-correlated state over a
coherent-state receiver. This also settles the ultimate limits
of quantum illumination [52]. We show that our commu-
nication protocol is covert [53–56]. In a covert quantum-
communication protocol the signal is hidden in the thermal
noise unavoidably present in a room-temperature environ-
ment, so that Eve’s detection probability collapses. The
basic idea is therefore to protect the message content by
hiding its existence. This concept has a natural application
in low-frequency spectrum communication. Covertness is
achievable only if the generated signal is weak enough,
so that cryogenic detection technology is needed at Bob’s
side. This concept can be applied in situations when one
does not want to expose the metadata about the propaga-
tion channel access time and duration. In addition, since
covertness works in the regime where the power of all
involved signals is low, one is allowed to use already
licensed frequencies without compromising the perfor-
mance of the licensed users [41]. In our protocol, we use a
one-time-pad cipher to allow for the covert channel to be
measured only by the intended recipients (detectability),
and to make the transmitted and reflected signals uncorre-
lated between each other and indistinguishable from ther-
mal noise (indistinguishability). In this way the protocol
is also unconditionally secure. We show explicit strategies
for how to use entanglement to increase the effective band-
width, i.e., the number of data hiding bits per channel use.
Indeed, we show the square-root law for our two-way com-
munication protocol, which states that the number of bits
that can be sent over n channel usages scales as O(

√
n),

finding explicitly all the multiplicative constants for var-
ious transmitters and receivers. In addition, we design
an entanglement-assisted protocol based on SC states in
a cQED setup, which relies solely on Jaynes-Cumming
interactions and qubit measurements. This is an important
requirement for a cQED implementation, since a receiver
based on photon detection is currently too demanding to

be realistic. This shows the path for future experimental
investigation of our concept.

The paper is organized in the following way. In Sec.
II, we describe our communicating setup. In Sec. III, we
provide the ultimate bounds on the receiver performance
for both local and collective strategies. In Sec. IV, we
focus on the cases of Gaussian and SC states, providing
an explicit expression for the Chernoff bound in the cor-
responding channel discrimination problem. In Sec. V, we
discuss the conditions on the average transmitting power
in order to have a covert system, together with a proof
of the square-root law for our two-way setup for the dis-
cussed transmitters and receivers. We also discuss the
key-expansion and synchronization protocols. In Sec. VI,
we discuss a cQED protocol based on SC states, with a
receiver design, which uses Jaynes-Cumming interactions
and qubit measurements.

II. THE SETUP

The two-way communication protocol is depicted in
Fig. 2. Alice and Bob use n = mM modes of the bosonic
channel simultaneously in order to communicate m sym-
bols. They use M modes to transmit a symbol φ taken from
a discrete alphabet A. We refer to each of these M channel
usages as a slot. In each slot, Bob generates M indepen-
dent and identically distributed (IID) signal modes {â(k)S }
(k = 1, . . . , M ) with NS > 0 average number of photons,
and he sends the modes to Alice. The signal modes are
possibly entangled with M idler modes {â(k)I }, which are
retained in the lab by Bob for the measurement stage. The
signals are generated at a low enough temperature to con-
sider the signal-idler (SI) state as pure. Although the results
of this paper are general, we emphasize the application in
the microwave spectrum, specifically in the range of oper-
ating frequencies of a cQED setup, i.e., 1–10 GHz. In this
range of frequencies, T � 20 mK is required to avoid ther-
mal fluctuations. We refer to the idler-free case when the
idler is absent, or, equivalently, when the signal and the
idler are uncorrelated. The signal modes are sent to Alice
through a room-temperature channel (TB = 300 K), which
is modeled as a beam splitter. Alice receives the modes
{â′(k)S }, with

â′(k)S =
√
η â(k)S +

√
1− η ĥ(k)← . (1)

Here, η is the power-transmitting rate of the channel and
{ĥ(k)←} are independent thermal modes with NB average
number of photons. The numerical value of NB depends on
the signal operating frequency ωk as NB = (eβ�ωk − 1)−1

with β = (kBTB)
−1, kB being the Boltzmann constant. In

the 1–10 GHz spectrum this results to values of the order
NB ∼ 103, therefore we emphasize the NB � 1 case. Alice
modulates the phase of â′(k)S by ϕ̃k = φ + ϕk, with φ,ϕk ∈
A, generating the mode e−iϕ̃k â′(k)S . She then sends the signal
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FIG. 2. Setup for the two-way covert quantum communica-
tion through a bright bosonic channel. A signal microwave mode
â(k)S , possibly entangled with an idler mode â(k)I , is generated by
Bob. The idler mode is stored in the lab, while the signal is sent
through a noisy channel to Alice, who receives the noisy modes
â′(k)S . Alice modulates the phase of the signal by ϕ̃k = φ + ϕk,
where φ and ϕk belong to a preagreed discrete alphabet A. Here,
φ embeds the information to be sent, while e−iϕk is an encod-
ing operator. The value of ϕk is taken uniformly at random in
A, and it is known only to Alice and Bob. The signal is then
scattered back to Bob, who decodes it by applying a phase mod-
ulation eiϕk . This process is repeated M times (k = 1, . . . , M ), for
each symbol transmission. Bob performs a measurement on the
modes {eiϕk â(k)R , â(k)I } in order to discriminate between the pos-
sible values φ. Eve performs a collective measurement on the
modes {ŵ(k)← , ŵ(k)→} in order to understand whether Alice and Bob
are communicating. If the average power of the signal modes is
O(η2NB/

√
n), then Alice and Bob are able to use covertly n chan-

nel modes. This allows transmission of a O(
√

n) number of bits
in a secure way. In the 1–10-GHz band, Bob’s signals are gener-
ated at 20 mK in order to suppress the thermal contribution and
comply with the covertness conditions.

back to Bob through the same channel. Here, φ embeds the
symbol to be transmitted, while the phase shift e−iϕk is an
encoding operation that Alice and Bob have secretly pre-
shared. In other words, Alice and Bob uses a one-time-pad
protocol to encode the symbol φ. Bob receives the modes
{â(k)R }, with

â(k)R =
√
ηe−iϕ̃k â′(k)S +

√
1− η ĥ(k)→ , (2)

Here, {ĥ(k)→} are M independent thermal modes identical to
{ĥ(k)←}. We also assume that the modes {ĥ(k)←} and {ĥ(k)→} are
independent. Bob applies the decoding transformation eiϕk

to the received mode â(k)R . He then applies a discrimina-
tion strategy to the modes {eiϕk â(k)R , â(k)I } for distinguishing
between the different symbols in A.

For a given symbol transmission φ, we denote with ρη,φ
the density matrix of Bob’s state at the receiver, i.e., the
state of the system defined by the modes â(k)R and â(k)I .
As we are working in the IID assumption, ρη,φ does not
depend on k. In the following, we work under the η 
 1

assumption, corresponding to a very lossy thermal propa-
gation channel. This is the case of non-directional antennas
and/or unfavorable weather conditions. However, the the-
ory can be extended to finite values of η as well. The num-
ber M has to be chosen to be large enough in order to give
Bob the chance of discriminating between the possible
phases in A with high confidence. The measurement dis-
criminating between the symbols depends on the adopted
SI system. We consider mainly the binary-phase-shift-
keying (BPSK) alphabet, when A = {0,π}. However, we
discuss how the results in this paper can be extended to
more complex alphabets. Different figures of merit can be
used to quantify the performance of the optimal strategies
to discriminate between the distinct modulations, depend-
ing on their a priori probabilities. Here, we discuss the case
where all the modulations in the key have the same a pri-
ori probability of being realized, which is the most natural
scenario for quantum communication.

The setup can be mapped to quantum illumination [39],
also referred to as on-off keying (OOK), where Alice mod-
ulates the amplitude of the signal. In fact, BPSK and OOK
share the same optimal strategies in the η 
 1 limit (see
Lemma A1 of Appendix A). In addition, BPSK performs
better than OOK for given transmitting power, as the dis-
tance of the symbols in the phase space is larger. A similar
setup has been studied in the optical domain [48]. Here,
a phase-insensitive amplification by Alice is required in
order to add thermal noise and ensure security with respect
to a passive Eve. In the low-frequency spectrum, the ther-
mal noise is naturally present in the environment, so that
no amplification is needed and covertness can be ensured.
Instead, in Ref. [57], the authors discuss the advantage
of using preshared entanglement between Alice and Bob
for communication in noisy environment, finding that the
number of covert bits that can be sent increases by a
logarithmic factor with respect to the unentangled case.
Although their setup falls in the one-way scenario, these
results suggest that using quantum correlations may come
with a logarithmic overhead in the capacity also in our
case.

III. OPTIMAL RECEIVER PERFORMANCE

In this section, we find the ultimate bounds on the
receiver performance for the protocol described in Fig. 2.
These results hold for SI systems in any quantum state.
We set the encoding operation to the identity, i.e., we fix
ϕk = 0. This is possible because both Alice and Bob have a
preshared knowledge of ϕk, therefore this operation can be
reversed by Bob. In the BPSK case, where the φ ∈ {0,π},
our aim is to minimize the total error probability

perr = 1
2

[Pr (φ = π |φ = 0)+ Pr (φ = 0|φ = π)] , (3)
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where Pr (φ = a|φ = b) is the probability of detecting a
phase φ = a given that Alice has transmitted the symbol
φ = b. The main strategies to achieve this can be clas-
sified in (i) collective, where the M modes are allowed
to be measured together, and (ii) local, where the copies
are measured separately, allowing classical communica-
tion between the measurements on the different copies.
We consider the performance of a coherent-state transmit-
ter as reference for the correlated cases. In other contexts,
such as in quantum illumination, coherent-state transmit-
ters are usually used as a classical reference. This choice
is done mainly for two reasons: (1) they achieve the opti-
mal error probability in the idler-free case and (2) they
describe faithfully coherent signals that can be generated
with classical technology.

A. Collective strategies

The quantum Chernoff bound [58–60] provides an upper
bound on the achievable error probability (EP) in the
binary detection problem. Indeed, we have that perr ≤
e−βηM/2, where βη = −mins∈(0,1) log Tr (ρs

η,0ρ
1−s
η,π ). This

bound is tight for M � 1, and its exponent βη can be used
as a figure of merit for quantifying the performance of
the optimal discrimination protocol. Generally, one needs
a collective measurement over all the M modes in order to
saturate this bound. There are few exceptions to this state-
ment, for instance, when either one of ρη,0 or ρη,π is close
enough to a pure state [58], or for coherent-state illumina-
tion in a bright environment. In the following, we focus on
computing analytically βη up to the first relevant order in η,
using a metric-based approach. Since the expansion of βη
to the first order of η is zero (Lemma A2 of Appendix A),
we can define the figure of merit for collective strategies as

βcol ≡ lim
η→0

βη

η2 . (4)

This metric provides us a framework for conducting com-
parative analysis between different transmitters. In addi-
tion, the found relations can be analytically computed,
providing an insight on the scaling of the performance with
respect to the system parameters. We are particularly inter-
ested in the NS 
 1 and NB � 1 limits of βcol, where the
protocol based on quantum correlations will present the
maximal advantage with respect to an uncorrelated input
state with the same power. In addition, we see that uncon-
ditional security by means of covertness can be ensured in
this regime. In the following, for simplicity, we refer to as
βcol as the quantum Chernoff bound (QCB). However, we
stress that in the literature the QCB is generally referred
as βη. Let us denote as βcol

free the value of βcol if the input
is idler-free, i.e., when the signal and the idler are uncor-
related. The following result defines the optimal receiver
performances.

Theorem 1 (Ultimate receiver-EP bound)
The following bounds holds for the receiver performance
with collective strategies:

βcol ≤ min

{
4NS

1+ NB
,

1√
cB

NS + 1
2

1+ NB

}

, (5)

βcol
free ≤

4
(
1+√cB

)2

NS

1+ NB
≡ βcol

cl , (6)

where cB = NB/(1+ NB). The idler-free case bound is
saturated by coherent-state signals.

This is in agreement with the result of the standard quan-
tum illumination protocol. We notice that βcol

cl � NS/NB
in the NB � 1 limit. The general bound in Theorem 1 is
tight for NS 
 1 and for NS, NB � 1. By a direct compar-
ison, we see that the optimal achievable gain with respect
to the idler-free case is 6 dB, and the maximal advantage
can be achieved when NB � 1 and NS 
 1. This result can
be understood by noticing that in the low signal-photon
regime the protocol can be approximated by Gaussian
quantum illumination, where the detection problem can
be mapped to discriminating between two coherent states
with amplitude proportional to the two-mode correlations
at the receiver level [61]. Here, the Kennedy receiver is
optimal, and it shows a 6-dB advantage with respect to
the idler-free case. No advantage can be detected in a
vacuum environment (NB 
 1), which is the case of the
optical systems. Interestingly, our bounds show that even
in the NB � 1 limit the gain decreases with increasing
number of signal photons NS, achieving the same per-
formance of a coherent-state transmitter in the NS � 1
limit. This also means that amplifying the source is not
possible when implementing a quantum illumination pro-
tocol, ruling out any gain claimed in a recent experiment
[36]. The setup in Fig. 2 is particularly relevant for study-
ing entanglement-assisted low-frequency communication
in very noisy environment. However, one must note that
the advantage of using quantum correlations is kept when
the environment is not bright, see Fig. 3(a). For instance,
a 4.6-dB maximal advantage can be achieved for NB � 1,
implying that the advantage in using quantum correlations
is not limited to the NB � 1 case.

B. Quantum-estimation strategies

An approach based on the quantum estimation of the
amplitude modulation has been developed in Ref. [62] in
the quantum illumination context. This is less experimen-
tally demanding than the collective strategy, as it does
not require the interaction between the M copies of the
received signal. However, it comes at some loss in the error
exponent of the EP, quantified as at least 3 dB with respect
to the optimal collective strategy. Here, we use the same
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(a) (b)

FIG. 3. Performance of the quantum-correlated protocol with
respect to the idler-free case. (a) Maximal achievable gain of
the Chernoff bound of the quantum-correlated case (denoted
as βcol

max) with respect to the idler-free case (βcol
cl ), depending

on the average number of thermal photons in the environ-
ment NB. For instance, for NB = 1, the maximal gain is about
4.6 dB and it is reached in the NS 
 1 limit. (b) Compari-
son of the optimal receiver performance for Gaussian states
and Schrödinger’s cat states with respect to the idler-free case,
in the NB � 1 limit. The performance is quantified in terms
of the error probability decaying exponent. Indeed, the quan-
tities gcol

TMSV, SC = βcol
TMSV,SC/β

col
cl and gloc

TMSV, SC = β loc
TMSV,SC/β

loc
cl

are plotted for NB � 1. The graphics show how the advantage in
using quantum correlations decays with the transmitting power
NS . Gaussian states perform better than Schrödinger’s cat states
for finite NS .

concept in order to deal with the BPSK case. We address
this approach as local strategy, as opposite of the collec-
tive strategies previously discussed. First, we notice that
the received modes {â(k)R } can be expressed as

â(k)R = η e−iφ â(k)S +
√

1− η2 ĥ(k), (7)

where ĥ(k) ≡ √η/(1+ η) e−iφ ĥ(k)← +
√

1/(1+ η) ĥ(k)→ are
thermal modes with NB average number of photons. We
can thus optimally estimate the parameter κ ≡ η e−iφ ∈ R,
obtaining a value κest, and deciding towards the hypothesis
[φ = 0] if κest > 0 or the hypothesis [φ = π ] if κest < 0.
We refer to this strategy as “threshold discrimination strat-
egy.” The main figure of merit quantifying the quantum-
estimation performance is the quantum Fisher information
(QFI), defined as [63]

F =
∑

mn

|〈φm|dρ|φn〉|2
λm + λn

, (8)

where dρ = (∂κρκ)|κ=0, with ρκ ≡ ρη.φ , and λm is the
eigenvalue of ρ0 corresponding to the eigenstate |φm〉.
This is due to the Cramer-Rao bound, which asserts the
limit of the achievable precision of an unbiased estimator
κ̂: �κ̂2 ≥ 1/(MF). An estimator saturating the Cramer-
Rao bound is given by the mean over the M single-
copy measurements of the observable Ô = L̂/F , where

Ô =∑mn[〈φm|dρ|φn〉/(λm + λn)]|φm〉〈φn| is the symmet-
ric logarithmic derivative computed at κ = 0. Due to the
central-limit theorem, the EP for the threshold discrimi-
nation strategy is perr � 1− erf (η

√
FM/2) ≤ e−η

2FM/2/2
for M � 1. The previous discussion holds whenever one
has an a priori knowledge of the neighborhood where κ
belongs to (in our case κ 
 1). If no assumptions of this
sort can be made, generally the optimal strategy consists
of a two-stage adaptive protocol: use M 1/δ (with δ > 1)
copies to estimate the neighborhood and then use the rest
of the copies to optimally estimate the parameter. This
provides the same asymptotic performance as when the
information on the neighborhood is provided. The same
adaptive protocol can be used to generalize the ideas of this
paper to more complex alphabets, by first having a rough
estimation of the phase φ, and then rotating the system in
order to maximize the classical Fisher information [57].

Similarly to the case of collective strategies, we adopt
the exponent of the EP to the first relevant order in η as the
figure of merit, i.e., β loc ≡ F/2. Let us denote with β loc

free the
value of β loc in the idler-free case. We have the following
bounds on the achievable EP decaying rate using quantum-
estimation methods.

Theorem 2 (Ultimate QFI bound)
The following bounds hold for the receiver performance
with local strategies:

β loc ≤ min

{
2NS

1+ NB
,

1√
cB

NS + 1
2

1+ NB

}

, (9)

β loc
free ≤

2
1+ cB

NS

1+ NB
≡ β loc

cl , (10)

where cB = NB/(1+ NB). The idler-free case is saturated
by coherent-state signals, in which case the optimal detec-
tor is homodyne.

Similarly to Theorem 1, the bound in Theorem 2 is tight
for NS 
 1 and for NS, NB � 1. It follows that the max-
imal advantage with respect to the classical case is 3 dB
in the EP exponent if we adopt a threshold discrimination
strategy. Theorem 2 also implies that the optimal detector
in the classical case can be implemented with local mea-
surements in the NB � 2 regime, as in this case β loc

cl � βcol
cl .

However, this is not anymore valid in the NB � 1 regime,
where collective measurements start to perform better,
achieving βcol

cl � 2β loc
cl in the NB 
 1 limit.

IV. TRANSMITTER EXAMPLES

The aim of this section is to discuss two topical transmit-
ter examples whose optimal receiver saturates the ultimate
bounds in the correlated case. For these states, we derive
explicit formulas of βcol and β loc, showing how they scale
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with respect to the system parameters. We also show a
time-bandwidth estimation for a typical communication
scenario.

A. Two-mode squeezed-vacuum-state transmitter

TMSV states are defined as

|ψ〉TMSV =
∞∑

n=0

√
N n

S

(1+ NS)1+n |n〉I |n〉S, (11)

where {|n〉}∞n=0 is the Fock basis. They have been thor-
oughly studied in the context of QI because they are a good
benchmark to show a quantum advantage and because they
are experimentally easy to generate, regardless of the fre-
quency regime. The performance for the optimal receiver
of a TMSV state transmitter are given by

βcol
TMSV =

4
(
1+√cScB

)2

NS

1+ NB
, (12)

β loc
TMSV =

2
1+ cScB

NS

1+ NB
, (13)

where cS = NS/(1+ NS) and cB = NB/(1+ NB) (see
Appendix A). The optimal receiver for a threshold discrim-
ination strategy consists in measuring in the eigenbasis
of âI âR + â†

I â†
R. It is clear that TMSV states saturate the

bound of Theorem 1 in the NS 
 1 limit. In addition,
the advantage of using the optimal detector for TMSV
states decays slowly with increasing NS, making the pro-
tocol useful also for a finite number of signal photons.
The detectors achieving the maximal gain are known for
both the collective (only for NS 
 1 [61]) and the local
(for any NS [64]) cases. Generally, they involve efficient
photon-counting devices, which are yet to be developed in
the microwave regime. A possible solution is the use of
optomechanical transducers in optical frequencies, where
sensitive detectors are available [33]. However, current
optomechanical transducers are still in infancy, as they suf-
fer from low efficiencies and high thermal added noise.
A different solution is to use a qubit as a single-photon
detector. This approach has the advantage of seamless
integration with cQED platforms, as dispersive qubit mea-
surements can be implemented already in the lab [65,66].
However, single-photon detection devices so far have
achieved only a 70% fidelity, making this approach cur-
rently unsuitable for practical applications. On a different
note, the idler storage must be carefully considered in order
to understand how quantum correlations can be useful in
practice. In cQED, memory elements based on a coaxial
λ/4 resonator with coherence time of nearly 1 ms have
been demonstrated [67]. This corresponds to 300 Km of
free-space propagation of light. Another promising alter-
native consists in transferring the idler bosonic degrees of

freedom to the delay line based on surface acoustic waves
[68,69].

B. Schrödinger’s cat state transmitter

We now discuss the performance of the protocol based
on SC states, created by the interaction of a qubit with
a continuous-variable signal. It comes as no surprise that
SC states show the same advantage of Gaussian states for
NS 
 1, because in this limit the two states approximate
each other. However, the underlying physics is different.
In fact, the SC scheme relies on qubit measurements, and
provides us naturally with a digital way to store the idler in
a cQED setup. The SC states that we consider are defined
as

|ψ〉SC = 1√
2

[|+〉I |α〉S + |−〉I | − α〉S] , (14)

where |±〉 = (|g〉 ± |e〉)/√2 are eigenstates of the Pauli
operator σ̂x, |α〉 is a coherent state with amplitude α > 0
(NS = |α|2), assumed to be real for simplicity. Of particu-
lar interest is the case of |α| 
 1, that shows the maximal
advantage with respect to the classical case. This state can
be written in the Schmidt decomposition as

|ψ〉SC =
√
λ+|g〉|α+〉 +

√
λ−|e〉|α−〉, (15)

where λ± = (1± e−2NS )/2 and |α±〉 = [|α〉 ± | − α〉]/
(2
√
λ±). The performance of the optimal receiver for a

SC-state transmitter are given by

βcol
SC = f col

SC (NS, NB)
NS

1+ NB
, (16)

β loc
SC = f loc

SC (NS, NB)
NS

1+ NB
, (17)

where

f col
SC

NB�1= 4− 8
√

NS + O(NS), (18)

f loc
SC

NB�1= 2− 4NS + O(N 2
S ). (19)

The optimal threshold discrimination strategy in the
NB � 1 regime consists in measuring in the eigen-
basis of the observable Ôopt = σ̂−[λ+âR + λ−â†

R]+ c.c.
The exact expressions of f col

SC and f loc
SC are given in

Appendix A. A comparison with the TMSV state case
is shown in Fig. 3(b). As expected, the maximal gain
can be achieved for NS 
 1. In addition, the gain
decays exponentially with increasing NS. In fact, the
observable σ̂x(âR + â†

R) is optimal for NS � 1, therefore
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the classical mixed state [|+〉I 〈+| ⊗ |α〉S〈α| + |−〉I 〈−| ⊗
| − α〉S〈−α|]/2 performs the same as |ψ〉SC in this
regime. This loss of gain for finite NS can be miti-
gated by considering states with larger Schmidt rank, i.e.,
(1/
√

d)
∑d−1

k=0 |wk〉I |αk〉S, where αk =
√

NSei(2πk/d) and the
idler is a d-level system with 〈wk|wk′ 〉 = δk,k′ [62]. This
state can be implemented by letting several transmon
qubits interacting with the same resonator. However, in
this case the optimal detector is complicated and we do
not consider it in the implementation discussion.

C. Time-bandwidth estimation

If we consider a microwave implementation, where
NB � 103 for T = 300 K at 5 GHz, we need a
time-bandwidth product M � (βcl/βTMSV)(NB/η

2NS) log
(1/perr) to reach an error probability of perr. If we assume
propagation in free space at ambient condition, where
power losses are around l � 0.01 dB/Km for the consid-
ered spectrum, and an antenna area of 0.1 m2 for R � 1 m
space propagation, this gives us η = 10−Rl/10(AR/4πR2) �
10−2 [17,70,71]. If we choose NS � 0.01 average num-
ber of photons per mode, where TMSV states show a
close to optimal gain with respect to the classical proto-
col, then we require a time-bandwidth product of M �
109(βcl/βTMSV) log(1/perr). The error probability is cho-
sen depending on the circumstance. In a communication
scenario, one needs to perform error correction where in
practice error probabilities of the order of 10−2 are needed.
This gives us a time-bandwidth product of the order of
M ∼ 109. This number can be considerably lowered by
using directional antennas. These are made typically as
phased arrays, comprising tens or hundreds of small ele-
ments with a phase difference between them. This phase
difference is chosen such that the radiated field is maxi-
mum, due to constructive interference, along the desired
direction. Assuming that an effective way of measuring
the power of large bandwidth signals with few-photons’
sensitivity is available, then a Gaussian state protocol
is arguably the best option for implementing the ideas
presented in this paper. In fact, the ability to generate
large-bandwidth Gaussian signals would reduce the time
complexity of the protocol. Even though at the present
stage Gaussian states remain the main solution for sens-
ing and metrology in the noisy regime, SC states provides
a way to avoid photon-detection.

V. COVERT QUANTUM COMMUNICATION

We now discuss the possibility of performing secure
quantum communication using the setup depicted in Fig. 2,
by exploiting recent results about covert quantum commu-
nication [53,54,56]. The basic idea is to protect the content
of the message to be transmitted by covering the existence
of the carrier in a given bandwidth and temporal frame.
In this context, Eve’s main task becomes to understand

whether a message is being transmitted or not through
the channel. Here, we provide bounds for Eve’s detection
probability depending on the receiver performance. The
results of this section hold for states that well approxi-
mate Gaussian states in the NS 
 1 limit. We prove that a
m̄ = O(

√
n) number of bits are securely transmittable over

n channel usages with an arbitrary small EP. We also show
how quantum correlations can increase the bit transmission
rate by a constant factor, which depends on the adopted
strategy (i.e., collective or local).

A. Square-root law

A natural way of defining covertness consists in bound-
ing from below the probability of detecting that communi-
cation between Alice and Bob is happening.

Definition 1 (Covertness criteria) A communicating sys-
tem is δ-covert over n channel usages if Eve’s EP in
discerning between the equally likely hypothesis of com-
munication happening or not happening is P(Eve) ≥ 1/2−
δ for n large enough.

Ideally, we want to have δ as small as possible by
still being able to communicate a finite number of bits.
Generally, covert communication is possible because Eve
does not have control at least to a part of the environ-
mental channel [53]. This assumption is not radical, as
in the low-frequency regime at room temperature there
is an unavoidable noise dictated by the laws of physics.
We assume that Bob’s and Alice’s places, where the state
manipulation and the measurements are implemented, are
sealed, and that the signals are sent directly to a room-
temperature environment where Eve may be placed. We
also assume, for simplicity, that the part of the channel
that Eve cannot control does not change while communi-
cation is in progress. The latter assumption can be relaxed
by analyzing more general fading communication chan-
nel models, where the amplitude losses and/or the signal
phases are random variables [72]. In addition, we provide
Alice with the capability of implementing truly random
phase modulations on her signal on the alphabet A. This
is an important requirement for ensuring covertness in the
two-way setup.

Alice and Bob use n = mM modes of the bosonic
channel simultaneously. They use M modes to transmit
a symbol taken from a discrete alphabet A. In addition,
they use a publicly available codebook C that maps m̄-bit
input blocks to m-symbol codewords from Am, with m̄ <

m, by generating 2m̄ codeword sequences, i.e., C = {ak ∈
Am}2m̄

k=1. The codebook is built in a way that the codewords,
when the transmission is corrupted by the channel, are dis-
tinguishable from each other with high probability. This
induces a natural way of defining when communication is
reliable.
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Definition 2 (Reliability criteria) A communicating pro-
tocol is ε-reliable if the decoding error probability aver-
aged over the codebook is bounded by ε, i.e., when
(1/|C|)∑ak∈C

∑
aj ∈C\{ak} P(aj |ak) ≤ ε for n large enough.

We focus primarily on the BPSK case, corresponding
to A = {0,π}, keeping in mind that the concept can be
generalized to more complex constellations. Each symbol
transmission is done by performing the two-way protocol
described in Fig. 2. We define the on setting, correspond-
ing to the case when the communication is happening, and
the off setting, when no information is exchanged between
Alice and Bob. In other words, we consider the on set-
ting when Alice and Bob applies the protocol with NS > 0,
while the off setting is when NS = 0. We consider a pas-
sive eavesdropper, able to catch all the modes that are lost
in the Bob-Alice path, denoted with the← subscript, and
the Alice-Bob path, denoted with the→ subscript. In the
following we consider the worst-case scenario, where Eve
gets all the lost photons in the environment, since the case
of Eve with limited capabilities can be similarly derived.
Using directional antennas would decrease the photons
received by Eve in the worst-case scenario, improving the
covert bit transmission rate. For a given slot, Eve gets the
modes

ŵ(k)← = −
√

1− η â(k)S +
√
η ĥ(k)← , (20)

ŵ(k)→ = −
√

1− η e−iϕ̃k â′(k)S +
√
η ĥ(k)→ , (21)

for k = 1, . . . , M . Here, {NS > 0, ϕ̃k = ϕk + φ} defines
the on setting, while {NS = 0, ϕ̃k = ϕk} is the off setting.
The goal is to let the on and the off settings be the least dis-
tinguishable possible. This is possible only in the NS 
 1
limit, as in this case Eve’s mode in both settings approx-
imate each other. This is due to the fact that both ϕk + φ
and ϕk are distributed uniformly at random in the alphabet
A. The inclusion of the random sequence of phase shifts by
Alice is a crucial requirement for the covertness proof, as
otherwise Eve would have enough resources to uncover the
communication by detecting the phase φ in a given slot, by
letting the modes ŵ(k)← and ŵ(k)→ interfere. However, she can
still detect if communication is happening by detecting the
changes in power of each path, and their correlations. As
all the â(k)S are IID, Eve’s quantum state does not depend
on k and on which symbol is being transmitted.

Lemma 1 (Covertness: achievability and converse
bounds) Let NS > 0 be the average number of signal pho-
tons in the on setting. Let the signal density matrix be

ρS =
∑∞

j=0 N j
Sσj , where

σ0 = |0〉〈0|, (22)

σ1 = |1〉〈1| − |0〉〈0|, (23)

σ2 = c(|2〉〈2| − 2|1〉〈1| + |0〉〈0|), (24)

with 0 ≤ c ≤ 1. Then, the communication between Alice
and Bob is δ-covert over n channel usages, provided
that NS ≤ Aη,NBδ/

√
n, with Aη,NB = [4

√
η2NB(1+ η2NB)/

(1− η2)]. In addition, no constant better than Aη,NB can be
found.

Here, we learn that the correlations between the two
paths are not useful for Eve to detect the presence of the
transmitted signal, provided that random modulations of
the signal are applied at Alice. Notice that, the constant
Aη,NB is the same as in the one-way covert protocol with
the change η→ η2 [53], which is due to the double path
transmission. Lemma 1 can be directly applied to a TMSV
state transmitter, which corresponds to c = 1. It can also be
applied to coherent-state and SC-state transmitters, if we
allow Bob to perform random phase modulations. In fact,
let |αk〉 with α = |α|e−ikπ/4 be a coherent state, then ρS =
(1/8)

∑7
k=0 |αk〉〈αk| respects the conditions of Lemma 1

with c = 1/2. Bob’s phase modulation at the transmission
can be reversed at the receiver level due to the linearity of
the communicating channel. We also notice that a Gaussian
thermal state at Bob’s side is not needed in order to ensure
covertness, meaning that complex Gaussian modulations
of Bob’s signal are not needed. We can rely instead on dis-
crete phase modulations, which are experimentally easier
to generate and they require less memory complexity.

We provide an upper bound on the average transmit-
ting power NS, which needs to scale as O(

√
n)−1 in order

to keep the communication covert over n channel usages.
Typical transmitter operates at constant photon number per
mode, and the requirement of NS decaying with the inverse
of
√

n can be quite restrictive. This constraint can be
relaxed by defining a probabilistic version of the protocol,
which makes use only of a fraction τ ≤ Aη,NBδ/(NS

√
n) of

the n available modes in the on setting [56], see Fig. 4.
In each of these modes, the transmitting power NS is kept
constant and small.

Lemma 1, together with a random-coding argument,
implies that the square-root law is achievable by our
two-way setup.

Theorem 3 (Square-root law: two-way setup) Let Alice
and Bob share a publicly available codebook and a
secret random sequence of length n [O(

√
n log n) in the

probabilistic version]. Then, they can communicate m̄ =
βdetβcovδ

√
n+ log2 ε bits over n channel usages by keep-

ing the system δ-covert and the communication ε-reliable.
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FIG. 4. Probabilistic version of the two-way covert quantum-
communication protocol. Alice and Bob secretly choose to com-
municate only in the fraction of the temporal and frequency
modes at their disposal. In the on setting (green dots), Alice per-
forms a phase modulation e−i(φ+ϕ), where φ ∈ A is the symbol
that Alice wants to transmit and ϕ is taken uniformly at random
in A. The phase ϕ is secretly known to both Alice and Bob. In
the off setting (red dots), Alice performs a phase modulation e−iϕ ,
where ϕ is taken uniformly at random in A. Here, φ is generated
in situ and it is not shared by Alice. This version of the protocol
needs O(

√
n log n) of shared secret bits to communicate covertly

O(
√

n).

Here, βcov = [8/(π log 2)]cBη
4 provided that the transmit-

ted signal satisfies the assumptions of Lemma 1, and βdet is
a constant that depends on the detector: βdet ≤ 4 (βdet ≤ 2)
for the TMSV state and SC-state transmitters with a col-
lective (local) receiver, and βdet = 1 for the coherent-state
transmitter with a homodyne receiver.

This result comes from a compromise between the trans-
mission rate needed to keep the communication covert,
quantified as NS = O(

√
n)−1 in Lemma 1, and the ability

of performing error correction on a random code, whose
error probability decreases exponentially with the total
transmitted power nNS = O(

√
n). In this way, the error

probability P in transmitting m̄ bits is log P ∼ m̄− O(
√

n),
which implies the square-root scaling. In Theorem 3, all
the constants are explicitly derived for different transmit-
ters and receivers for the two-way protocol.

B. Key expansion and synchronization

Summarizing, Alice and Bob need to agree secretly on
the following information prior the communication for
each n channels in the on setting: (i) A secret random
sequence corresponding to the random phase shifts by
Alice. This information requires O(n) bits of preshared
knowledge, or O(

√
n) in the probabilistic version. (ii) In

the probabilistic version, the information needed to spec-
ify the modes that are used in the on setting. This requires
O(
√

n log n) bits of shared secret. Moreover, Alice and
Bob need to agree on which temporal frame to turn the
communication on, which requires additional O(N ), where
N = (�T��/n) is the number of temporal frames in a
time interval �T assuming an operational bandwidth ��.

Assuming N = C(n), with C(n) > n, eventually we need
a key of at least ω

(
C(n)/

√
n
)

bits of preshared secret to
transmit O

(
C(n)/

√
n
)

covert bits. It is then clear that there
is an overhead of the number of preshared bits with respect
to the transmitted ones, if we want to ensure covertness.
Therefore, Alice and Bob need to meet regularly in order
to agree on a key. These meetings can be implemented via
public communication through an authenticated channel.
In this case, the key generation and expansion steps can be
done covertly and secretly with a protocol based on likeli-
hood encoder techniques, assuming that the public channel
is classical [73,74]. Once Alice and Bob share the key, we
show that using the Vernam cypher allows for covert and
unconditionally secure communication. If instead the par-
ties are not allowed to publicly communicate at any point,
but they still do preshare a secret key, one can expand the
key using a pseudorandom generating function. Indeed, if
Alice and Bob preshare a pseudorandom generating func-
tion f : {0, 1}l → {0, 1}p(l), where l ∈ N and l = o[p(l)]
for l� 1, then it is possible to communicate more bits than
the preshared ones. The widely used advanced encryption
standard and the secure hashing algorithm have outputs
that are exponentially larger than their seeds while still
retaining computational indistinguishability from true ran-
domness [75]. The security of the protocol defined by a
key expansion step based on pseudorandom functions fol-
lowed by a one-time-pad encoding is not unconditionally
secure. Its security relies on the computational assumption
that hacking the pseudorandom function is hard in a way.
However, covertness adds a new layer of security, since the
transmission is also protected from Eve’s limited detection
capability and the bandwidth spreading. Indeed, let us con-
sider the probabilistic version of the protocol, where only
a small fraction τ of the modes is used to communicate.
Since Alice applies to the remaining modes truly random
phase modulations generated in situ, the randomness of
the transmitted string can be controlled with τ . One may
conceive a similar protocol in the one-way case, by gen-
erating meaningless signals in the off setting. However,
generally the covertness criteria is whether a signal is being
transmitted or not rather than if Alice and Bob are trans-
mitting anything meaningful or not. This is because there
are relevant scenarios when the transmitter must indeed
be switched off [76]. Our two-way protocol, instead, uses
passive operations to embed the information, which allows
generation of meaningless messages when the transmitter
is switched off.

To establish covert communication, Alice and Bob
require a pre-established secret, in this case the knowledge
of the phases ϕk in the on setting and the instances when
communication is happening. This in turn requires them to
have very accurate synchronization so that time tags of sig-
nals are properly assigned. The simplest solution for syn-
chronization is that Alice and Bob are both synchronized
to the same clock. Subnanosecond-level clock accuracy
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is possible using IEEE 1588 high-accuracy default profile
[77], but that requires physical cabling between the master
clock and the communicating party. High-accuracy wire-
less synchronization is possible using a General Global
Navigate Satellite System (GNSS) [78]. Since our scheme
requires continuous synchronization between Alice and
Bob in both the cases of communication switched on and
off, this step does not need to be implemented covertly.

VI. CIRCUIT-QED IMPLEMENTATION

The ideas introduced in this paper can be easily imple-
mented using coherent states properly modulated, as
described in the previous section, and heterodyne mea-
surement. While this scheme does not achieve any of the
ultimate bounds for the receiver, it is the most practi-
cal way of realizing the protocol. If one is allowed to
implement certain entangling operations at the transmit-
ting and receiver level, then larger key rates are achievable.
In this context, optimal schemes for the Gaussian state
receiver have been thoroughly studied in the literature.
Instead, a receiver for the SC-state transmitter is still miss-
ing. In this section, we fill this gap by introducing an
implementation in a circuit-QED setup for of a transmitter
and a receiver based on SC states. We show that Jaynes-
Cummings (JC) operations and qubit measurements are
enough to fully implement the protocol. This comes with a
great advantage with respect to the Gaussian state receiver,
which requires photodetectors. We also provide an analy-
sis of how the decoherence affects the protocol based on
quantum correlations. The discussion will be mostly at the
model level. However, it is noteworthy to observe that all
the operations described in the following have been proved
in cQED for 15 years, with increasing enhancements of
fidelity for the gate implementation and state storage.

A. State preparation

The SC state defined in Eq. (14) can be prepared in a
circuit-QED setup as described in the following. Consider
the JC Hamiltonian

Ĥ = Ĥ (ωr,ωq)
0 + Ĥ g

JC, (25)

where Ĥ (ωr,ωq)
0 = �ωrâ†â+ (�ωq/2)σ̂z, with σ̂z = |e〉〈e| −

|g〉〈g|, and Ĥ g
JC = �g(σ̂+â+ σ̂−â†). Here, ωr and ωq are

the frequency of the resonator and the qubit, respec-
tively, and g is the coupling between these two sys-
tems. We also define the detuning � = ωr − ωq and � =
max{κ , 1/T1, 1/T2}, where κ is the cavity decay rate, and
T1 and T2 are the qubit decaying and dephasing times,
respectively (see Appendix D). In the dispersive regime,
where �� g, one can apply perturbation theory to the
first order of the parameter g/�, finding the effective

Hamiltonian

ĤSDR = Ĥ (ωr,ωq+χ)
0 + �χσ̂zâ†â, (26)

where χ = g2/� [79]. We assume that χ � �, which is
known as the strong-dispersive regime (SDR). In this way,
any losses of the bosonic mode and the qubit are negli-
gible during the implementation of the gate, as long as
the operating time will be sufficiently short. The prepa-
ration protocol is based on the fact that the Hamiltonian
ĤSDR is a conditional phase shift on the resonator, with the
qubit acting as the control. To evidence this more easily,
we work in a rotating frame defined by the free Hamilto-
nian Ĥ (ωr,ωq+χ)

0 . The Hamiltonian in the rotating frame is
χσzâ†â. The preparation protocol consists in the following
steps [80], assuming an initial qubit-resonator state |g〉|0〉
(see Fig. 5).

Step 1: Apply a π/2 σ̂y pulse to the qubit in the ground state,
and drive the resonator at frequency ωr with a sig-
nal calibrated such that the coherent state | − iα〉 is
prepared.

Step 2: Let the qubit and the resonator interact for a time
tχ = π/(2χ). This results in a conditional phase
shift on the cavity state by the operator |g〉〈g| ⊗
exp(iπ â†â/2)+ |e〉〈e| ⊗ exp(−iπ â†â/2). Its action
on the state prepared in step 1 can be understood
as a uniform counterclockwise rotation by an angle
π/2 of the coherent state, followed by the appli-
cation of the photon parity operator exp(−iπ â†â)
if the qubit is excited. The state after this step is
[|g〉|α〉 + |e〉| − α〉]/√2.

Step 3: Apply a π/2 σ̂y pulse to the qubit. The state after
this step is [|+〉|α〉 + |−〉| − α〉]/√2.

In order to implement step 1 and step 3 we need to
decouple the qubit and the resonator: this can be achieved
either by a tunable coupler or by further detuning the qubit.
Also we consider here the ideal situation when all the
operations can be realized with high fidelity, which is a
good approximation in the strong regime [81]. The main
remaining source of errors is due to the spurious thermal
contribution present in the cryogenic environment prior to
the preparation stage. This is the object of discussion later
on.

B. Receiver for the entanglement-assisted protocol

For the implementation of the optimal observable Ôopt
we make use of the JC Hamiltonian defined in Eq. (25)
in the strong-resonant regime, i.e., when ωq = ωr and
g � �. The qubit-resonator system evolution under a
time tg = τ/g corresponds to applying the gate Ûτ =
e−τ [â†

Rσ̂
−−âRσ̂

+] up to a known phase shift e−iĤ0tg/�, as
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FIG. 5. Scheme for the preparation of Schrödinger’s cat state.
A resonator with central frequency ωr is driven with a coherent
signal, displacing the state of the cavity to | − iα〉. A transmon
qubit with frequency ωq is initialized in a state |+〉 = (|e〉 +
|g〉)/√2. A conditional phase shift is then applied. This is imple-
mented by letting the resonator and qubit interact in the strong
dispersive regime for a time tχ = π/(2χ), where χ = g2/� is
the effective coupling. Here, g is the coupling strength of the
qubit-resonator system, � = ωr − ωq and g/�
 1. Finally, a
π/2 σ̂y pulse is applied to the qubit. Feasible parameters are
ωr = 5 GHz, ωq = ωr +�with� = 20 Mhz, and g = 100 Khz.

[Ĥ (ωq,ωq)
0 , Ĥ g

JC] = 0. The observable Ôopt can be imple-
mented in approximately in the following way, see Fig.
6.

Step 1: Perform a squeezing operation Ŝ(r) on the reflected
mode âR, with squeezing parameter r = −arcsinhλ−
[82]. This generates the mode â′R = λ+âR + λ−â†

R.
Step 2: Apply a π/2 σ̂x pulse to the qubit state. This

switches σ̂− with σ̂+.
Step 3: Let the qubit-signal system interact with the JC

Hamiltonian in the strong-resonant regime for a time
tg = τ/g, with a small enough τ . This generates the
transformation

V̂†|e〉〈e|V̂ = |g〉〈g| + τ Ôopt + o(τ ), (27)

where V̂ = Ûτ Ŝ(r)σ̂x.
Step 4: Measure the qubit in the basis {|g〉〈g|, |e〉〈e|}.

If τ is low enough, this protocol approximates the
measurement in the low-energy eigenspace of Ôopt =
σ̂−[λ+âR + λ−â†

R]+ c.c., which, in the NS 
 1 regime,
is the relevant part of the Hilbert space. Let us define
Ôτ = V̂|e〉〈e|V̂†. The threshold discrimination protocol
consists in repeating steps 1–4 M times, collecting the
results {oi}Mi=1. Here, oi = 1 (or 0) is the measure-
ment outcome corresponding to the projection on the
state |g〉 (or |e〉). We then calculate the relative fre-
quency (1/M )

∑M
i=1 oi, which corresponds to the expected

value of the observable Ôτ on the [qubit]-[reflected
signal] system state. We use the result to discriminate
between the two hypothesis: 〈Ôτ 〉φ=0 = λ+ + τη

√
NS(1+

q memory

FIG. 6. Scheme for the implementation of the observable
optimizing the quantum Fisher information. During the signal
transmission, which happens at frequency ωr, the qubit state is
transferred to a quantum memory. The qubit frequency is then
tuned to ωq = ωr. Here the quantum memory is a resonator at fre-
quency ωQM, interacting dispersively with the qubit. This allows
the implementation of the cat code. The state is transferred back
to the qubit for the measurement stage. The received signal âR is
attenuated. A squeezing operation is then applied using a Joseph-
son parametric amplifier in the degenerate mode. The output
interacts with the qubit in the resonant regime. Finally, the qubit
is measured in the {|g〉〈g|, |e〉〈e|} basis.

e−4NS )+ o(τ ) and 〈Ôτ 〉φ=π = λ+ − τη
√

NS(1+ e−4NS )+
o(τ ). We choose the τ value in order to maximize the SNR
QÔτ for the observable Ôτ , defined as

QÔτ ≡
(〈Ôτ 〉ρη,π − 〈Ôτ 〉ρη,0)

2

�Ô2
τ

, (28)

where �Ô2
τ = (1/4)

[√
�Ô2

τ ,φ=π +
√
�Ô2

τ ,φ=0

]2

is the

variance of the observable Ôτ averaged over the states
ρη,φ=π and ρη,φ=0. The SNR is related to the EP of a thresh-

old discrimination strategy with perr ∼ exp
[
−QÔτ

M

8

]
for

M � 1. In Appendix C, we show that any value NS/NB 

τ 2 
 1/NB is good for approximating the optimal SNR in
the NB � 1, NS 
 1 regime. For, instance, if we choose
τ 2 = NS/

√
NB ≡ τ ∗ 2, with NS 
 1/

√
NB, we obtain

QÔτ∗
QÔopt

� 1− 1√
NB

. (29)

Interfacing a signal with NB ∼ 103 number of photons with
a low-temperature environment is challenging. An initial
attenuation is needed, making the protocol less efficient
in terms of the SNR. An attenuation can be modeled with
the beam-splitter input-output relations âR,att = √ηatt âR +√

1− ηatt v̂, where ηatt is a power attenuator and v is a
bosonic mode assumed to be in a vacuum state. This can
be achieved with cryogenic microwave attenuators. The
measurement protocol is applied to the mode âR,att, result-
ing in a rescaled SNR: Qatt

Ôτ∗
/QÔτ∗ � ηattNB/(1+ ηattNB)
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in the NS 
 1 limit, This means that the performance is
not affected as long as ηattNB is kept large enough.

C. Effects of decoherence on the performance

In the state-preparation scheme, the main source of
inefficiency is given by the spurious thermal contribu-
tion present in the cryogenic environment prior to the
preparation stage. In addition, while any sort of signal dis-
sipation after the state preparation is already included in
the quantum illumination setup in an effective way, the
idler decoherence must be characterized and bounded in
order to understand the actual performance of the protocol
in practical scenarios. Let us first discuss how the proto-
col is affected by the initial thermal noise. We assume a
Markovian environment at temperature T, whose Lindblad
master equation is ∂tρ = [Lq

D + Lr
D]ρ. Here,

Lq
D/� =

γ

2
D[σ̂z]+ �↑D[σ̂+]+ �↓D[σ̂−], (30)

models the qubit decoherence, and

Lr
D/� = κ(1+ NT)D[â]+ κNTD[â†], (31)

with NT = (eβ�ωr − 1)−1 and β = (kBT)−1, is the res-
onator dissipation in an environment at temperature
T. Here, the Lindblad operators act on a general
qubit-resonator state ρ as D[L̂]ρ = L̂ρL̂† − (1/2){L̂†L̂, ρ}.
In addition, the relations ag ≡ �↓/(�↓ + �↑) = (1+
e−β�ωq)−1 and ae ≡ �↑/(�↓ + �↑) = e−β�ωq hold for a
qubit in an environment at temperature T. In a T � 20
mK environment we have that β�ωr,q � 1 for ωr,q ∼
1− 10 GHz, therefore decoherence and dissipations in
principle should not play a role in the performance eval-
uation. However, small thermal contributions can be rel-
evant in the low-photons regime, and their effects on the
SNR need to be quantified. We assume the initial qubit-
resonator state to be the steady state of the Lindblad mas-
ter equation, i.e., ρq ⊗ ρr with ρq = ag|g〉〈g| + ae|e〉〈e|
and ρr = 1/(1+ NT)

∑∞
n=0

(
NT

1+NT

)n
|n〉〈n|. By applying

the state-preparation protocol, we obtain the state ρnoisy
= (1/2)∑k,k′∈{+,−}[ag + kk′ae]|k〉〈k′| ⊗ D(kα)ρrD(k′α),
where D(β) is a displacement operator. This implies a
rescaling of the optimal SNR for fixed transmitting power,

given by Qnoisy
Ôopt

/QÔopt
= (ag−ae)2

1+c−1 , where we set |α|2 = cNT.

We notice that for c ≤ [2(ag − ae)
2 − 1]−1 we cannot have

any quantum advantage. This sets an upper limit to the
amount of thermal noise tolerable before losing all the
advantage with respect to a coherent-state transmitter. The
initial thermal contribution can be experimentally charac-
terized in several ways. For instance, recently a primary
thermometry for propagating microwaves with sensitivity
of 4× 10−4 photons/

√
Hz and a bandwidth of 40 MHz has

been developed [83]. A similar analysis can be performed
for the TMSV state case, obtaining comparable results.

The main source of losses appears in the traveling phase
of the protocol. Here, the idler must be preserved coher-
ently in order to profit from the initial quantum correla-
tions. In fact, it is easy to see that under the lossy dynamics
described in Eq. (30), we have that

Qdec
Ôopt

QÔopt

= e−2 t
T2 , (32)

where Qdec
Ôopt

is the SNR for the protocol applied to the state

ρdec = etLq
D/�[|ψ〉SC〈ψ |], T2 = γ + (�↑ + �↓)/2, t is the

traveling time, and we discard any initial thermal contribu-
tions (see Appendix D). This means that the protocol must
be performed in a time well below the dephasing time of
the qubit. Nowadays, qubits with 100-μs lifetime can be
realized [84], corresponding to 30-km free-space propaga-
tion of light. An alternative would be the storage in high-Q
Nb resonators. Presently, internal quality factors can reach
above 1 million [85], which at 5-GHz frequencies it cor-
responds to a decay time of 2/5 ms. Other options include
highly coherent two-level systems formed in the junctions
of qubits and high-frequency piezomechanical modes.

Digital methods based on error correction have been
widely studied in the context of quantum computing. There
are principally two approaches to tackle the decoherence
problem with a digital approach. We may encode the
idler into a logical qubit from the beginning, and perform
the protocol in the logical Hilbert space. This is always
doable in principle, and one may make a statement that an
efficient cQED error-correction code implementation will
soon be reached in the context of quantum computing [86].
However, this approach is generally costly, as it requires
the simultaneous control of several qubits. An alternative
consists in exploiting the possibility to transfer the qubit
information to the infinite degrees of freedom of a bosonic
resonator field via a Jaynes-Cummings interaction [87].
This approach requires only one resonator to store the idler,
making the syndrome-detection and error-correction tasks
easier to realize, because dissipation would be the main
source of noise at T � 20 mK. These so-called cat codes
are at the basis of one of the most promising quantum com-
puting architectures, and they have been experimentally
demonstrated. Theoretically, one may reach substantial
fidelity improvements over the uncorrected protocol for
given time, with millisecond lifetime instead of hundreds
of microseconds of a bare transmon qubit [87]. In prin-
ciple, this approach should be better than using the Fock
states of a resonator as a qubit. However, further experi-
mental research is needed in this context, as the lifetime of
the cat qubit implemented in a recent experiment has been
only 1.1 larger than an uncorrected qubit encoded in the
Fock basis of a resonator [88].
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VII. CONCLUSION

We develop the theory for performing a two-way covert
quantum communication protocol in the low-frequency
regime, in the case where one party has a severe energy
constraint. While the results of this paper are quite gen-
eral, we focus mainly on the 1–10 GHz spectrum, where
cQED platforms have been highly developed in recent
decades. We prove the ultimate bounds for the optimal
receivers, finding that a quantum-correlated detector can
be at most a factor of 4 better in terms of SNR. Our bounds
can be directly applied to the performance of a quan-
tum illumination protocol. They imply that if the source
is strongly amplified, then a protocol based on coherent
state is optimal, ruling out any quantum advantage in a
recent experiment [36]. We use the quantum illumination
paradigm as a tool to perform two-way communication
in the scenario where the sender is constrained to pas-
sive operations. Indeed, we prove the square-root law
for covert communication in our two-way setup, show-
ing that O(

√
n) bits can be covertly transmitted by using

the channel n times. On the practical side, covertness is
still limited by the low transmission rates. However, there
are many machine-type communication applications such
as metering of electric power, gas and water that gener-
ate very little traffic per day and can tolerate large delays
[89]. That is, their required data rates can be as low as
millibits per second. These systems often transmit privacy-
sensitive data. Even if postquantum encryption is utilized,
the adversary could still learn privacy-jeopardizing infor-
mation simply by observing the traffic pattern [90]. Finally,
we provide the ingredients for performing a cQED-based
experiment, using Schrödinger’s cat states as a resource.
Our implementation concept relies on qubit measurements
instead of photodetection, notably improving the exper-
imental requirements for the entanglement-assisted pro-
tocol. Developing a microwave quantum communication
theory is a challenging task, due to the amount of noise that
the related systems exhibit at room temperature. Indeed,
our results contribute towards an implementation of open-
air microwave quantum communication. In particular, we
settle, for the first time, a rigorous ground for developing a
quantum-enhanced version of backscatter communication.
This paradigm is now gaining plenty of interest in the com-
munication engineering community due its ability of com-
municating with low-energy devices, with applications in
rf communications, the Internet of Things, and NFC-based
technology [41]. Indeed, our theoretical treatment gives a
new twist to the field of backscatter communication, and
we believe it will inspire further research on this topic.
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APPENDIX A: RECEIVER ERROR PROBABILITY

In this section, we discuss the results based on the cal-
culation of the Chernoff bounds and the quantum Fisher
information relative to Bob’s receiver. In the following,
as Bob and Alice are sharing ϕk values, we can set it to
zero. In addition, we make frequent use of the following
objects:

(a) Fock basis, indicated with Latin alphabet kets (or
bra): {|k〉}∞k=0.

(b) Coherent states with amplitude α ∈ C, indi-
cated with Greek alphabet kets (or bra): |α〉 =
e−
|α|2

2
∑∞

k=0
αk√

k!
|k〉.

(c) Thermal states with NB average photon numbers:

ρB =
∑

k τk|k〉〈k|, where τk = [1/(1+ NB)]
(

NB
1+NB

)k
.

(d) General signal-idler state of r Schmidt rank:
|ψ〉SI =

∑r
k=0
√

pk|vk〉I |wk〉S. The signal mode is
indicated by âS and we use indistinctively the nota-
tion |v〉|w〉 and |v, w〉. The Schmidt rank r differenti-
ates between the entangled (r > 1) and the idler-free
(r = 1) cases.

(e) Constants: cB=NB/(1+NB) and cS =NS/(1+NS).

1. Equivalence between OOK and BPSK

In the η 
 1 limit, we can map the problem of
discriminating between different φ to the quantum
illumination (QI) setup, where Alice decides to modulate
the amplitude between η = 0 and η = η̄, leaving the phase
unchanged (φ = 0). This is usually referred to as on-off
keying. We first notice that the received modes {â(k)R } can
be expressed as

â(k)R = η (e−iφ â(k)S )+
√

1− η2 ĥ(k), (A1)

where ĥ(k) ≡
√

η

1+η e−iφ ĥ(k)← +
√

1
1+η ĥ(k)→ are thermal

modes with NB average number of photons. This means
that if |ψ〉SI 〈ψ | is the state of the SI system, then the Bob’s
final state is ρη,φ = TrE

[
B̂ηÛφ|ψ〉SI 〈ψ | ⊗ ρBÛ†

φB̂†
η

]
,
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where B̂η = exp
[
arccos η(â†

Sĥ− âSĥ†)
]

is a beam-splitter

operation and Ûφ = e−iφn̂S is a phase-shift operation. We
can now prove the equivalence between OOK and BPSK.

Lemma A1 (Equivalence of OOK and BPSK) In the η 

1 limit, the BPSK and OOK optimal strategies are the
same for both the local and the collective cases. The BPSK
performs as an OOK with η̄ = 2η.

Proof. We have that ρη,0 = ρB − ηdρ + o(η), ρη,π =
ρB + ηdρ + o(η) for η 
 1, where dρ = TrS [â†

Sĥ−
âSĥ†, |ψ〉SI〈ψ | ⊗ ρB]. Therefore, ρ⊗n

η,0 = ρ⊗n
B − ηdσ + o(η)

and ρ⊗n
η,π = ρ⊗n

B + ηdσ + o(η), with dσ =∑n
i=1 ρ

⊗j−1
B ⊗

dρ ⊗ ρ⊗n−j
B . This means that (ρ⊗n

η,π − ρ⊗n
η,0 ) = (ρ⊗n

0,0 −
ρ⊗n

2η,0)+ o(η). Therefore, BPSK performs as an OOK
with η̄ = 2η in the η 
 1 limit, and their measurement
setups—being local or collective—are the same. �

2. Chernoff bound and quantum Fisher information:
general formulas

We can now analyze the OOK case to state the general
formulas for the quantum Chernoff bound and quantum
Fisher information for the BPSK case. In the following,
we denote ρη ≡ ρη,0.

Lemma A2 (Chernoff bound for QI (OOK)). Given ρη =
TrE (B̂η|ψ〉SI〈ψ | ⊗ ρBB̂†

η), with B̂η = exp
[
arccos

√
η(â†

Sĥ−
âSĥ†)

]
. Then, the optimal error probability in the

task of distinguishing between ρ0 and ρη̄ is perr ≤
(1/2)e−MC(ρ0,ρη̄) for M � 1, where

C(ρ0, ρη̄) = η̄2

1+ NB

∑

kk′

pkpk′ |〈wk′ |âS|wk〉|2
[√

pk′ + √pk
√

cB
]2 + o(η̄2).

(A2)

Proof. This is a simple application of one of the results
in Calsamiglia et al. [58]. We have that C(ρ0, ρη̄) =
−mins∈[0,1] log Tr(ρs

0ρ
1−s
η̄ ). Considering the Taylor expan-

sion around η̄ = 0, ρη̄ = ρ0 + η̄dρ + o(η̄), then

C(ρ0, ρη̄) = η̄2

2

∑

kk′nn′

|〈vk, n|dρ|vk′n′〉|2
[
√

pkτn +√pk′τn′]2 + o(η̄2) (A3)

= η̄2βcol + o(η̄2), (A4)

see Eq. (47) of Ref. [58]. The task reduces in computing
Eq. (A4) with dρ = TrS[â†

Sĥ− âSĥ†, |ψ〉SI〈ψ | ⊗ ρB]. First,
we notice that

〈vk, n|dρ|vk′n′〉 = (τn′ − τn)[〈wk′ |â†
S|wk〉
√

n+ 1δn′,n+1 − 〈wk′ |âS|wk〉
√

n′ + 1δn,n′+1]. (A5)

We have that

βcol = 1
2

∑

kk′nn′

|〈vk, n|∑jj ′
√pj pj ′ |vj 〉〈vj ′ | ⊗ [〈wj ′ |â†

S|wj 〉ĥ− 〈wj ′ |ŝ|wj 〉ĥ†, ρB]|vk′ , n′〉|2
[
√

pkτn +√pk′τn′]2 (A6)

= 1
2

∑

kk′nn′

pkpk′ |〈wk′ |â†
S|wk〉(τn′ − τn)

√
n+ 1δn′,n+1 − 〈wk′ |âS|wk〉(τn′ − τn)

√
n′ + 1δn,n′+1|2

[
√

pkτn +√pk′τn′]2 (A7)

= 1
2

∑

kk′nn′

pkpk′(τn′ − τn)
2

[
√

pkτn +√pk′τn′]2

[
|〈wk′ |â†

S|wk〉|2(n+ 1)δn′,n+1 + |〈wk′ |âS|wk〉|2(n′ + 1)δn,n′+1

]
(A8)

= 1
2

∑

kk′n
(n+ 1)pkpk′[τn+1 − τn]2

[
|〈wk′ |â†

S|wk〉|2
[
√

pkτn +√pk′τn+1]2 +
|〈wk′ |âS|wk〉|2

[
√

pkτn+1 +√pk′τn]2

]

, (A9)
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where in the last line we sum on the n′ index. We now use
that the last sum is symmetric under the exchange of k and
k′ and that τn/τn−1 = NB/(1+ NB):

βcol =
∑

kk′n
(n+ 1)pkpk′[τn+1 − τn]2 |〈wk′ |âS|wk〉|2

[
√

pkτn+1 +√pk′τn]2

(A10)

=
∑

kk′n
(n+ 1)τnpkpk′

[
1− τn+1

τn

]2 |〈wk′ |âS|wk〉|2
[√

pk′ + √pk

√
τn+1
τn

]2

(A11)

= 1
1+ NB

∑

kk′

pkpk′ |〈wk′ |âS|wk〉|2
[√

pk′ + √pk

√
NB

1+NB

]2 . (A12)

�

Lemma A3 (Quantum Fisher information for QI (OOK)
[62]). Given ρη as in Lemma A2. Then, the quantum Fisher
information for estimating the parameter η in the η 
 1
neighborhood is

F = 4
1+ NB

∑

kk′

pkpk′

pk′ + pkcB
|〈wk′ |âS|wk〉|2. (A13)

Proof. The QFI is given by [63]

F = 2
∑

kk′nn′

|〈vk, n|dρ|vk′n′〉|2
pkτn + pk′τn′

, (A14)

where dρ = TrS[â†
Sĥ− âSĥ†, |ψ〉SI 〈ψ | ⊗ ρB]. The calcula-

tion is similar to that in Lemma A2. �

3. Ultimate error-probability bounds for the receiver

We can now prove the theorems of Sec. III of the main
text.

Proof of Theorem 1. For the idler-free case, we apply
Lemma A2 with η̄ = 2η (see Lemma A1) to the
simple case of Schmidt-rank one, finding that β loc

cl =
4|〈w|âS |w〉|2

1+NB
1

(1+√cB)2
. Then, by applying Hölder’s inequal-

ity, we find that |〈w|âS|w〉|2 ≤ ‖âS|w〉‖2
2 = NS, which

is saturated by |w〉 = |α〉. For the general case, by
applying the inequality pk′

[√pk′+
√

pk
√

cB]2 ≤ 1 to Eq. (A2)

with η̄ = 2η (see Lemma A1), we obtain βcol =
[4/(1+ NB)]

∑
k,k′ pk〈wk|â†

S|wk′ 〉〈wk′ |âS|wk〉. By using the
completeness relation

∑
k′ |wk′ 〉〈wk′ | = I—which can be

assumed by adding zero probability terms to the sum—and
by noticing that NS =

∑
k pk〈wk|â†

SâS|wk〉, we conclude

that βcol ≤ 4NS
1+NS

. By applying the inequality of arithmetic

and geometric means pkpk′
[√pk′+

√
pkcB]2 ≤

√pkpk′
4
√

cB
≤ pk+pk′

8
√

cB
, and

by using the completeness relation, we find the second
inequality βcol ≤ [(2NS + 1)/(1+ NB)]/(4

√
cB). More-

over, no mixed state can do better, as in this case the bound
can be applied to its purification. �

Proof of Theorem 2. For the idler-free case, by applying
Lemma A3 with η̄ = 2η (see Lemma A1) to the Schmidt-
rank-one case, we find that β loc

cl = 2|〈w|âS |w〉|2
1+NB

[1/(1+ cB)],
which is maximal for |w〉 = |α〉 (see the proof of Theorem
1). Homodyne is optimal as one can directly see by check-
ing that the SNR 〈x̂〉2ρη̄/〈x̂2〉ρ0 saturates the QFI, and by
using Lemma A1. The general bound is found similarly as
in the proof of Theorem 1, with the inequalities pk′

pk′+pαcB
≤

1 and pkpk′
pk′+pkcB

≤ pk+pk′
4
√

cB
applied to Eq. (A13). Also in this

case no mixed state can do better, by applying the bound
to the purified state. �

4. Examples

QCB and QFI of TMSV states: This is done by setting
pk = 1

1+NS
ck

S and |wk〉 = |k〉 (Fock state with k photons)
into Eq. (A2), where we set η̄ = 2η, and Eq. (A13). It
results in a sum of a geometric series and its first derivative,
that can be cast as written in the main text. Similarly, the
optimal observable for the threshold discrimination strat-
egy is found by computing

∑
kk′nn′

〈k′,n′|dρ|k,n〉
pk′ τn′+pkτn

|k′, n′〉〈k, n|
(32).

QCB and QFI of SC states: This is done by applying
Lemma A2 and A3 to the Schmidt decomposition of the
SC state given in Eq. (15) of the main text, i.e., |ψ〉SC =√
λ+|g〉|α+〉 +

√
λ−|e〉|α−〉. We then use Lemma A1 to

bring the result to the BPSK case. The result is

βcol
SC =

NS

1+ NB
f col
SC (NS, NB), (A15)

β loc
SC =

NS

1+ NB
f loc
SC (NS, NB), (A16)

with

f col
SC (NS, NB)

= 4λ2
+

(√
λ+ +

√
λ−
√

cB
)2 +

4λ2
−

(√
λ− +

√
λ+
√

cB
)2 , (A17)

f loc
SC (NS, NB) =

2λ2
+

λ++λ−cB
+ 2λ2

−
λ−+λ+cB

. (A18)
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In the NB � 1 limit, these quantities approximate to

f col
SC

NB�1= 2+ 2e−4NS

1+√1− e−4NS
= 4− 8

√
NS + O(NS), (A19)

f loc
SC

NB�1= 1+ e−4NS = 2− 4NS + O(N 2
S ), (A20)

where we use that λ± = 1
2 [1± e−2NS ]. The optimal local observable can be found by computing

Ôopt =
∑

kk′∈{g,e}; nn′∈[0,∞]

〈k′, n′|dρ|k, n〉
pk′τn′ + pkτn

|k′, n′〉〈k, n|, (A21)

where pe = λ− and pg = λ+. Alternatively, one can directly compute the SNR of Ôopt and see that it saturates the QFI in
the NB � 1 limit.

APPENDIX B: COVERT QUANTUM COMMUNICATION

Here, we provide the technical details to prove the main results on covert quantum communication. We denote Eve’s
quantum state when Alice applies a phase modulation ϕ̃ as ρ(NS)

ϕ̃
. NS > 0 corresponds to the on-setting, while NS = 0 is

the off setting. We drop any k superscript and subscript, as we are in the IID assumptions. In addition, we introduce the
beam-splitter unitary operator B̂12 = exp

[
θ(â1â†

2 − â†
1â2)

]
, where θ = arccos

√
η. Let us introduce

Eϕ̃[σ ] = TrS

[
B̂→,Se−iϕ̃n̂S B̂←,S(ρB ⊗ ρB ⊗ σ)B̂†

←,Seiϕ̃n̂S B̂†
→,S

]
(B1)

= e−iϕ̃n̂→TrS

[
B̂→,SB̂←,S(ρB ⊗ ρB ⊗ σ)B̂†

←,SB̂†
→,S

]
eiϕ̃n̂→ , (B2)

where σ =∑kk′ ckk′ |k〉S〈k′|, TrS denotes the partial trace on the signal mode, and the equality is due to the phase invariance
of the thermal state. The latter is evident at seeing the input-output relations in Eqs. (20)–(21) of the main text. Let us
denote by ρ(NS) = 1

|A|
∑

ϕ̃∈A ρ
(NS)
ϕ̃

, where ρ(NS)
ϕ̃
= Eϕ̃[ρS]. Here, we denote the phase shift at Alice as ϕ̃, which is ϕ + φ

or ϕ depending if we are in the on or off setting, respectively. In both cases, ϕ̃ is distributed uniformly at random in A.

Proof of Lemma 1. [Achievability] We have that P(Eve) = 1
2

[
1− 1

2‖ρ(NS)⊗n − ρ(0)⊗n‖1

]
[58]. As done in Ref. [53], we

can simplify the calculation by using Pinsker’s inequality, i.e., ‖ρa − ρb‖1 ≤
√

2D(ρa, ρb) for any states ρa and ρb, where
D(ρa, ρb) = −Tr ρa ln ρb + Tr ρa ln ρa is the quantum relative entropy between ρa and ρb. This provides the bound

P(Eve) ≥ 1
2
−
√

1
8

D(ρ(0)⊗n, ρ(NS)⊗n
), (B3)

meaning that

D(ρ(0)
⊗n

, ρ(NS)⊗n
) ≤ 8δ2 (B4)

ensures that P(Eve) ≥ 1
2 − δ over n modes. We use that the quantum relative entropy is additive for tensor product, i.e.,

D(ρ(0)⊗n, ρ(NS)⊗n
) = nD(ρ(0), ρ(NS)) to reduce the calculation to the single channel-usage case.

(a) TMSV state case: Let us define the vector �r = (x̂←, p̂←, x̂→, p̂→)T, where x̂l = âl+â†
l√

2
and p̂l = âl−â†

l√
2i

(l ∈ {←,→}).
For a zero-mean Gaussian state ρ, the covariance matrix is defined as �ij = Tr ({r̂j , r̂k}ρ). The covariance matrix
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of the Gaussian state ρ(NS)
ϕ̃

is

�
(NS)
ϕ̃
= 2×

⎡

⎢
⎣

A 0 −B cos ϕ̃ B sin ϕ̃
0 A −B sin ϕ̃ −B cos ϕ̃

−B cos ϕ̃ −B sin ϕ̃ C 0
B sin ϕ̃ −B cos ϕ̃ 0 C

⎤

⎥
⎦ , (B5)

where A = 1
2 + ηNB + (1− η)NS, B = (1− η)√η(NB − NS), and C = 1

2 + [(1− η)2 + η]NB + (1− η)ηNS. We
have that

DGauss = D(ρ(0), ρ(NS)) (B6)

≤ 1
|A|

∑

ϕ̃∈A
D(ρ(0)

ϕ̃
, ρ(NS)
ϕ̃

) (B7)

= D(ρ(0)
ϕ̃=0, ρ(NS)

ϕ̃=0 ), (B8)

where we use the joint convexity property of the relative entropy, and that the D(ÛρÛ†, Ûσ Û†) = D(ρ, σ) for any
unitary Û and states ρ and σ , together with Eq. (B2). For zero-mean Gaussian states, we have that

D(ρ(0)
ϕ̃

, ρ(NS)
ϕ̃

) = 1
2

[

log
det[�(NS)

ϕ̃
+ i�]

det[�(0)
ϕ̃
+ i�]

+ 1
2

Tr [�(0)
ϕ̃
(H (NS)

ϕ̃
− H (0)

ϕ̃
)]

]

, (B9)

where � = −iI2 ⊗ σy is the symplectic form and H (NS)
ϕ̃
= 2 arccoth(i��(NS)

ϕ̃
)i� is the Hamiltonian matrix, given

that ρ(NS)
ϕ̃

is a faithful Gaussian state [91,92]. Equation (B9) is computed using Mathematica, finding

D(ρ(0)
ϕ̃

, ρ(NS)
ϕ̃

) = −[1+ 2NBη
2 + 2NS(1− η2)]

{
arccoth(1+ 2NBη

2)

− arccoth[1+ 2NS + 2(NB − NS)η
2]
}

+ 1
2

log
NBη

2(1+ NBη
2)

NS(1+ NS)+ (NB − NS)(1+ 2NS)η2 + (NB − NS)2η4 , (B10)

which, as already mention, does not depend on ϕ̃. The expansion to the third order in NS gives

D(ρ(NS)
ϕ̃=0 , ρ(0)

ϕ̃=0) =
(1− η2)2

2NBη2(1+ NBη2)
N 2

S + aN 3
S + o(N 3

S ) (B11)

≤ (1− η2)2

2NBη2(1+ NBη2)
N 2

S , (B12)

where a < 0 allows us to use Taylor’s remainder theorem.
(b) General case: We extend the result to signal states of the form ρS =

∑∞
j=0 N j

Sσj , where

σ0 = |0〉〈0|, (B13)

σ1 = |1〉〈1| − |0〉〈0|, (B14)

σ2 = c(|2〉〈2| − 2|1〉〈1| + |0〉〈0|), (B15)

with 0 ≤ c ≤ 1. This set of states include the Gaussian state case (c = 1). In addition, for NS 
 1 these states well
approximate Gaussian states. Let us consider the Taylor expansion for the logarithm of a matrix

log(A+ tB) = log(A)+ t
∫ ∞

0

1
A+ z

B
1

A+ z
dz − t2

∫ ∞

0

1
A+ z

B
1

A+ z
B

1
A+ z

dz

+ t3
∫ ∞

0

1
A+ z

B
1

A+ z
B

1
A+ z

B
1

A+ z
dz ++o(t3). (B16)
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If we set A = ρ(0), B = ρ(NS )−ρ(0)
NS

, and t = NS, we obtain

Dc(ρ
(0), ρ(NS)) = −Tr ρ(0) ln ρ(NS) + Tr ρ(0) log ρ(0) (B17)

= −Tr (ρ(NS) − ρ(0))
∫ ∞

0

1
ρ(0) + z

ρ(0)
1

ρ(0) + z
dz

+ Tr ρ(0)
∫ ∞

0

1
ρ(0) + z

(ρ(NS) − ρ(0)) 1
ρ(0) + z

(ρ(NS) − ρ(0)) 1
ρ(0) + z

dz

− Tr ρ(0)
∫ ∞

0

1
ρ(0) + z

(ρ(NS) − ρ(0))

1
ρ(0) + z

(ρ(NS) − ρ(0)) 1
ρ(0) + z

(ρ(NS) − ρ(0)) 1
ρ(0) + z

dz

+ o(N 3
S ) (B18)

= N 2
S Tr ρ(0)

∫ ∞

0

1
ρ(0) + z

ρ1
1

ρ(0) + z
ρ1

1
ρ(0) + z

dz (=b1N 2
S )

− N 3
S Tr ρ(0)

∫ ∞

0

1
ρ(0) + z

ρ1
1

ρ(0) + z
ρ1

1
ρ(0) + z

ρ1
1

ρ(0) + z
dz (=b2N 3

S )

+ cN 3
S Tr ρ(0)

∫ ∞

0

[
1

ρ(0) + z
ρ1

1
ρ(0) + z

ρ2
1

ρ(0) + z

+ 1
ρ(0) + z

ρ2
1

ρ(0) + z
ρ1

1
ρ(0) + z

]
dz (=cb3N 3

S )

+ o(N 3
S ), (B19)

where ρk = 1
|A|
∑

ϕ̃∈A Eϕ̃[σk]. Here, we use that
∫∞

0
s

(s+z)2
dz = 1 and that ρ(NS) − ρ(0) is traceless in order to con-

clude that the first line of Eq. (B17) is zero. Next, we prove that b2 ≤ 0. We have that b2 = −Tr
∫∞

0 AzBzAzBzAzdz,

with Az =
√
ρ(0)

ρ(0)+z
ρ1

√
ρ(0)

ρ(0)+z
and Bz = ρ(0)+z

ρ(0)
, as ρ(0) is full rank. Therefore, we have the bound

b2 = −Tr
∫ ∞

0
(AzBz)

2Azdz (B20)

≤ −Tr
∫ ∞

0
Azdz = 0, (B21)

where we use that (AzBz)
2 ≥ 0 and that ρ1 is traceless.

We can now bound Dc regardless of the sign of b3, by using Eq. (B12), as c = 1 includes the Gaussian case. In
fact, assume that b3 ≥ 0, then Dc = DGauss + (c− 1)b3N 3

S + o(N 3
S ). We can use Eq. (B12) and Taylor’s remainder

theorem to conclude that D0≤c≤1 ≤ (1−η2)2N 2
S

2NBη2(1+NBη2)
. Assume that b3 < 0, then we have that Dc ≤ b1N 2

S by Taylor’s

remainder theorem. In addition, we have that the bound DGauss = b1N 2
S + O(N 3

S ) ≤
(1−η2)2N 2

S
2NBη2(1+NBη2)

holds for any

NS > 0, which implies that b1 ≤ (1−η2)2

2NBη2(1+NBη2)
.

Therefore, if we choose NS ≤ 4
√

NBη2(1+NBη2)δ

(1−η2)2
√

n
, then we have that P(Eve) ≥ 1

2 − δ over n channel usages.

020316-19
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[Converse] We now prove that D(ρ(NS)⊗n, ρ(0)⊗n
) ≤

8δ2 implies that NS ≤ 4
√
η2NB(1+η2NB)

(1−η2)2
δ√
n . Let us consider

Eve’s modes ŵ(k)← and ŵ(k)→ , k = 1, . . . , n. Let these modes
be the output of a blackbox, which has the knowledge of
the individual realizations of ϕ̃k. The blackbox acts as a
beam splitter, generating the modes

ŵ(k)1 =
√

η

1+ η ŵ(k)→ +
√

1
1+ η e−iϕ̃k ŵ(k)← , (B22)

ŵ(k)2 = −
√

1
1+ η ŵ(k)→ +

√
η

1+ η e−iϕ̃k ŵ(k)← . (B23)

We then trace out the modes ŵ(k)2 . Notice that

ŵ(k)1 = −
√

1− η2 â(k)S e−iϕ̃k + η ĥ(k), (B24)

where ĥ(k) =
√

η

1+η ĥ(k)→ +
√

1
1+η e−iϕ̃k ĥ(k)← is in a thermal

state with NB average number of photons, regardless of the
value of ϕ̃k. Since Eve does not have the knowledge of the
phase ϕ̃k and â(k)S are IID, the state of the modes ŵ(k)1 does
not depend on k. Let us denote its density matrix as σ (NS).
Here, NS = 0 in the off setting and NS > 0 in the on setting.
We have that

D(ρ(0)
⊗n

, ρ(NS)⊗n
) ≥ D(σ (0)

⊗n
, σ (NS)⊗n

), (B25)

which comes from the monotonicity of the quantum rela-
tive entropy under completely positive and trace preserv-
ing maps. This reduces the calculation to the one-way case.
Following the proof of Theorem 1 in Ref. [56], we find that

D(σ (0)
⊗n

, σ (NS)⊗n
) ≥ n(1− η2)2N 2

S

2η2NB(1+ η2NB)
+ o(N 2

S ).

(B26)

Solving for NS ends the proof. �
Lemma 1 implies the square-root law, provided that

Alice and Bob share a codebook. Notice that the error
probability of reading one wrong bit is

Perr = 1− (1− perr)
m ≤ mperr, (B27)

where perr is the single-bit receiver error probability. This
automatically means that a number m = O(

√
n/ log n) bits

are reliably transmissible. In fact, we have that perr ≤
1
2 exp (−Mβη2 NS

1+NB
) for M large enough. Here, β = 4 for

the TMSV state and SC-state transmitters with the optimal
collective receiver, β = 2 for the TMSV state and SC-state
transmitter with the optimal local receiver, and β = 1 for
the coherent-state transmitter with a homodyne detector

receiver. By setting NS = 4
√

NBη2(1+NBη2)δ

(1−η2)2
√

n
, with n = mM ,

we get

Perr ≤ m
2

exp
(
−4cBβδη

4
√

n
m

)
, (B28)

where cB = NB
1+NB

. By setting m = A
√

n
log A

ε log
√

n
with A =

4δη4cBβ, we have that Perr ≤ ε

log A
ε log

√
n
≤ ε, for small

enough ε.
We can use the results in Refs. [53,93] for AWGN chan-

nels in order to get a better scaling for the decoding error
probability. This is Theorem 3 of the main text.

Proof of Theorem 3. Let us define σ 2
β = 1+NB

2βη2M
. In the opti-

mal local protocol case, the induced AWGN channel for
M � 1 has a variance σ 2

β=2. For the coherent-state case,
the induced AWGN channel for any M has a variance σ 2

β=1.
In the optimal collective protocol case, we can induce a
AWGN channel by dividing M into K � 1 slots of M/K
samples each, and apply the optimal collective protocol
on each of the K slots. This provides the same asymp-
totic performance for the receiver as long as M/K � 1.
The resulting AWGN channel has σ 2

β=4 variance. In all
cases, we can follow the derivation of Theorem 1.2 of Ref.
[93] to upper bound the error probability for transmitting
m̄ bits over m modes averaged over a uniformly distributed
codebook in a AWGN channel as

Perr ≤ 2
m̄− mNS

π log(2)σ2
β

+O(1)
≡ P, (B29)

where cB = NB
1+NB

and the bound holds for MNS = o(1). By

setting NS = 4
√

NBη2(1+NBη2)δ

(1−η2)2
√

n
and M = n

m , we get

log2 P � m̄− m
π log 2

NS

σ 2
β

(B30)

= m̄− m
π log 2

8
√

NBη2(1+ NBη2)δ

(1− η2)2
√

n
βη2n/m
1+ NB

(B31)

≤ m̄− 8
π log 2

cBβδη
4√n. (B32)

By setting m̄ = 8
π log 2 cBβδη

4√n+ log2 ε, we get that P ≤
ε. As this calculation holds for a random codebook, it
implies that there exists a specific codebook achieving this
performance. Renaming βdet = β and βcov = 8

π log 2 cBβη
4

concludes the proof. �
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APPENDIX C: SNR OF SCHRÖDINGER’S CAT
STATE RECEIVER

Here, we quantify the performance of the circuit-QED
implementation of Ôτ in terms of the SNR.

Taylor expansion of Ôτ : We first expand Û†
τ |e〉〈e|Ûτ

with respect to the parameter τ :

Û†
τ |e〉〈e|Ûτ = |e〉〈e| + τ

[
Ê, |e〉〈e|

]

+ τ
2

2!

[
Ê, [Ê, |e〉〈e|]

]
+ o(τ 2), (C1)

where Ê = â†
Rσ̂
− − âRσ̂

+. By applying the unitary evolu-
tion Ŝ(r)σ̂x to each of the terms in Eq. (C1), and using the
relations σ̂xσ̂

±σ̂x = σ̂∓, σ̂xσ̂zσ̂x = −σ̂z and Ŝ(r)†âRŜ(r) =
â′R, we obtain

Ôτ = |g〉〈g| + τ Ôopt + τ 2Â+ o(τ 2), (C2)

where Â = −|g〉〈g| + σ̂zâ
′†
R â′R. This holds for τ 2〈Â〉ρη,φ 


1. In the NS 
 1, NB � 1 regime, this means roughly
τ 2 
 1/NB.

SNR estimation: We compute the SNR up to the second
order in τ , obtaining

QÔτ � QÔopt

[
τ 2

a+ τ 2(1+ b)

]
, (C3)

where �Ô2
opt = 〈Ô2

opt〉ρη=0 − 〈Ôopt〉2ρη=0
, a = (λ+ − λ2

+)/

�Ô2
opt, and b = −[2λ2

+〈Â〉2ρη,φ=0
+ 2〈|g〉〈g|(I+ â′†R

â′R)〉ρη,φ=0 ]/�Ô2
opt. Here, we use the approximation

〈Ô2
opt〉ρη=0 − 〈Ôopt〉2ρη=0

� 〈Ô2
opt〉ρη,φ − 〈Ôopt〉2ρη,φ

holding for
any value of φ in the η 
 1 limit. In the NS 
 1 and
NB � 1 regime, we have that a � NS/NB and b � −4NS.
If τ 2 � a

1+b , then the SNR of Ôτ is close to the opti-
mal one. In the NB � 1 regime, this happens whenever
τ 2 � NS/NB. Therefore, any value NS/NB 
 τ 
 1/NB

approximates Ôτ to the optimal observable. For instance,
by setting τ 2 = NS/

√
NB = τ ∗2, we have that

QÔτ∗
QÔopt

� 1− a
τ 2 − b (C4)

� 1− 1√
NB
+ 4NS. (C5)

APPENDIX D: QUBIT DECOHERENCE

In this section, we show how the decoherence affects the
qubit measurements. We are assuming a Markovian noise

described by the Lindblad operator LD/� = γ

2D[σ̂z]+
�↑D[σ̂+]+ �↓D[σ̂−], where D[L̂]ρ = (L̂ρL̂† − 1

2

{L̂†L̂, ρ}). In order to do so, we solve the equation ∂tÔ =
L†

DÔ for different Ô defining a basis in the qubit Hilbert
space, with L†

D being the dual of LD. The linearity of the
time-translation operator allows us to find the solution for
general qubit observables. Indeed, we have that

etL†
D σ̂z = e−t/T1 σ̂z +

[
1− e−t/T1

] �↑ − �↓
�↑ + �↓ I (D1)

etL†
D σ̂− = e−t/T2 σ̂−, (D2)

where T1 = (�↑ + �↓)−1 and T2 =
(
γ + �↑+�↓

2

)−1
. Since

Ôopt = σ−(λ+â+ λ−â†)+ c.c. is linear in σ̂− and σ+, we
have that Qdec

Ôopt
/QÔopt

= e−2t/T2 , which is Eq. (32) of the
main text.
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