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Recent developments in the coherent manipulation of electrons in ballistic conductors include the gener-
ation of time-periodic electrical currents involving one to few electronic excitations per period. However,
using individual electrons as carriers of quantum information for flying qubit computation or quantum
metrology applications calls for a general method to unravel the single-particle excitations embedded in
a quantum electrical current and how quantum information is encoded within it. Here, we propose a gen-
eral signal-processing algorithm to extract the elementary single-particle states, called electronic atoms
of signal, present in any periodic quantum electrical current. These excitations and their mutual quan-
tum coherence describe the excess single-electron coherence in the same way musical notes and score
describe a sound signal emitted by a music instrument. This method, which is the first step towards the
development of signal processing of quantum electrical currents is illustrated by assessing the quality of
experimentally relevant single electron sources. The example of randomized quantum electrical currents
obtained by regularly clocked but randomly injected unit-charge Lorentzian voltage pulses enables us to
discuss how interplay of the coherence of the applied voltage and the Pauli principle alter the quantum
coherence between the emitted single-particle excitations.
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I. INTRODUCTION

These recent years have seen a spectacular breakthrough
in the manipulation of quantum electric circuits. On-
demand single-electron sources (SESs) in quantum Hall
edge channels [1–4], two-dimensional (2D) electron gases
using electron pumps [5] or surface acoustic waves [6]
and in tunnel junctions [7] enable us to engineer time-
dependent quantum electrical currents involving one to
a few elementary excitations per period. This emerging
field, called electron quantum optics, precisely aims at gen-
erating, manipulating, and characterizing such “quantum
beams of electricity” in metallic quantum conductors [8].
The latest advances have given access to the single-particle
wave functions carried by such quantum electrical currents
together with their emission probabilities and coherences
[9] thereby demonstrating our ability to access electronic
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quantum states at an unprecedented level. These achieve-
ments strongly suggest that this field is now sufficiently
mature for exploring its applications.

From a quantum technology point of view, quantum
electrical currents carry quantum information through
their single-, two-, and ultimately, many-particle content.
For example, single electrons delocalized on two one-
dimensional channels have been proposed as “railroad
flying qubit” [10–14] in which a qubit state is encoded in
the quantum delocalization of an electron on two copropa-
gating one-dimensional (1D) channels [15]. This is a very
promising line of research towards the development of
quantum spintronics [16,17] and, in the longer term, of
free-electron quantum computation [18–20].

This information can be accessed through a hierarchy
of electronic coherences similar to the ones introduced by
Glauber [21] for photons. These coherences are the “quan-
tum signals” carried by the quantum electrical current in
a metallic conductor. Because of the parity superselection
rule [22–24], the first nonzero electronic quantum sig-
nal is the single-electron coherence [25,26] containing all
information on single-particle excitations within the sys-
tem. The next one is the second-order electronic coherence
[27,28] that describes two-particle excitations within the
beam.
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Measuring these quantum signals requires quantum
tomography protocols for n-electron coherence. Such
tomography protocols are all based on the transformation
of quantum signals into measurable quantities. For exam-
ple, Mach-Zehnder, Hong-Ou-Mandel (HOM) and Fran-
son electron interferometry experiments realize “filter-
ing” or “overlaps” on electronic coherences [29], thereby
encoding the results of these operations into experimen-
tally accessible quantities such as average current [30] and
current correlations [31,32]. Electronic HOM interferome-
try [33] is at the core of the recently demonstrated HOM
single-electron tomography [9,34], whereas, for higher-
energy (meV) electrons, a time-dependent quantum point
contact (QPC) is used as a time-dependent energy filter for
reconstructing single-electron coherence [35].

This, however, leaves open the question of decoding
classical or quantum information encoded within quan-
tum electrical currents. This requires finding appropriate
representations of electronic coherences. In the present
context, “appropriate” means simple with respect to the
reference state, which is a Fermi sea at a given chemical
potential. We, therefore, consider the excess single-particle
coherence describing the single-particle content in terms
of electron and hole excitations with respect to the refer-
ence Fermi sea. Ideally, we are looking for the simplest
possible description, requiring minimal data to encode this
description of the single-particle content.

In this paper, we show in full generality that such a
description exists: any excess time-periodic single-electron
coherence admits a minimal description in terms of
quasiperiodic single-electron and single-hole excitations,
which are the time-domain counterparts of Bloch waves
in solid-state physics [36]. This implies that only elec-
tron and hole Bloch-wave emission probabilities as well
as electron-hole coherences between two different Bloch
waves are required to know the single-electron coherence.

Considering the counterpart of Wannier functions [37],
which are localized wave functions contrary to Bloch
waves, the excess single-electron coherence can then be
expressed in terms of a set of mutually orthogonal single-
particle states called electronic atoms of signal [29] thereby
providing us with a discrete description of the electronic
coherence. We see that electronic atoms of signals and the
discrete representation of single-electron coherence can be
viewed as the counterpart of music notes and of a musi-
cal score as pictured on Fig. 1. Therefore, the extraction of
such a simple form of single-electron coherence provides
us with the appropriate toolbox to develop a full wave-
packet-based approach on quantum transport envisioned in
pioneering works [41,42]. In a broader perspective, it is a
crucial step in the development of “quantum signal pro-
cessing” for quantum electrical currents that extends the
general paradigm of signal processing [43] to the quantum
realm. It would entitle us with an enabling set of tech-
nologies and methods aiming at encoding, transferring, and
retrieving quantum information carried by these “quantum
signals,” a crucial step for the applications of electron-
based quantum technologies.

Whenever interactions can be neglected, this description
can be used to describe the full many-body state of the
electron fluid and, therefore, to access many-particle quan-
tities such as the electron-hole entanglement entropies.
This connection can be made explicit using time-periodic
single-particle scattering theory and has been used to
obtain the full counting statistics of single-particle exci-
tations [44].

The entanglement entropy inferred from this repre-
sentation of single-electron coherence can then be used
to assess the quality of experimentally relevant single-
electron sources such as the mesoscopic capacitor (MC).
We are also able to obtain an explicit description of
the single-electron excitations emitted. Finally, in order
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FIG. 1. Schematic of the process for extracting the single-particle content from a quantum electrical current. Left: the Hong-Ou-
Mandel interferometer uses two-particle interferences to encode the overlap between the injected single-electron coherences into
the outgoing current noise [29]. Middle: the single-electron coherence is reconstructed from current noise measurements [34,38,39].
Right: the result of the tomographic reconstruction, depicted here as the electronic Wigner distribution function [40], is processed by
the algorithm described in the present paper to obtain a description of single-electron coherence in terms of electronic atoms of signal
(counterparts of musical notes) arranged according to a “quantum coherence score” (counterpart of the music score).
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to illustrate the possibility for modulating emission
probabilities and coherences, we apply our algorithm to the
recently introduced randomized trains of Lorentzian pulses
[45], an interesting example that enlightens the role of the
Pauli exclusion principle in electronic quantum signals.

This paper is structured as follows: in Sec. II, we intro-
duce the problem of finding a simple representation of
single-electron coherence. Then, in Sec. III, we present
our algorithm for finding such a representation for any
time-periodic excess single-electron coherence. The rela-
tion of this representation to electron-hole entanglement is
discussed in Sec. IV. Finally, we apply our method to the
study of the mesoscopic capacitor to assess its quality as
a single-electron source, and to periodic and randomized
Leviton trains in Sec. V.

II. STATEMENT OF THE PROBLEM

Let us now introduce and motivate the problem consid-
ered here by considering simple trains of excitations used
to model the emission by experimentally demonstrated sin-
gle to few electron sources. These simple examples enable
us to write down a simple representation of the excess
single-electron coherence, a generalization of which is
shown to exist in Sec. III.

A. Electronic coherence

The central concept of electron quantum optics are the
electronic coherences defined by analogy with Glauber’s
coherences of photon quantum optics [21]. They carry all
the information on the fermionic n-particle states prop-
agating within the conductor. Here we focus on single-
electron coherence, which, at position x along a single
chiral electronic channel, is defined as [25,38]

G(e)ρ,x(t|t′) = tr[ψ(x, t)ρψ†(x, t′)], (1)

where ρ denotes the many-body reduced density oper-
ator for the electron fluid and ψ the fermionic field
operator describing the electrons. When all the electronic
sources are switched off, G(e)x,off coincides with the equilib-
rium single-electron coherence characterized by a chem-
ical potential μ and an electronic temperature Tel. When
sources are switched on, the excess single-electron coher-
ence defined by G(e)x,on = G(e)x,off +�G(e)x contains all the
information on the single-particle excitations generated by
the sources and drives that are switched on.

The single-electron coherence can be studied in the time
domain as well as in the frequency domain but is most con-
veniently visualized using a real-valued time-frequency
representation called the Wigner distribution function [40]

W(e)
ρ,x(t,ω) =

∫
R

vFG(e)ρ,x

(
t + τ

2

∣∣∣t − τ

2

)
eiωτdτ . (2)

B. Electron and hole trains

An ideal periodic single-electron source is a periodically
operated device that emits exactly one single-electron exci-
tation on top of the Fermi sea |Fμ=0〉 during each period.
The corresponding many-body state is an electron train of
the form

|�SES〉 =
∏
l∈Z

ψ†[ϕe,l]|Fμ=0〉, (3)

where ψ†[ϕe,l] creates a single-particle excitation in the
electronic wave function ϕe,l. It differs from ϕe,l=0 by trans-
lation by lT in the time domain. Ideally, one would like
each of these electronic excitations to be perfectly dis-
tinguishable from each other, which means that ϕe,l and
ϕe,l′ are orthogonal when l �= l′. In this case, the excess
single-electron coherence is

�G(e)(t|t′) =
+∞∑

l=−∞
ϕe,l(t)ϕe,l(t′)∗. (4)

For example, when driven by a square gate voltage Vg(t)
and for a suitable value of the dot transparency D = Dopt
the mesoscopic capacitor depicted on Fig. 2 ideally gen-
erates one electron excitation and one hole excitation per
period [1,46]:

|�MC-SES〉 =
+∞∏

l=−∞
ψ†[ϕe,l]ψ[ϕh,l]|Fμ=0〉. (5)

Here ϕe,l and ϕh,l are time translated by lT from the emitted
electron ϕe,0 and hole wave functions ϕh,0 and are mutu-
ally orthogonal and normalized. The excess single-electron
coherence is then given by

�G(e) =
+∞∑

l=−∞
ϕe,l(t)ϕe,l(t′)∗ −

+∞∑
l=−∞

ϕh,l(t)ϕh,l(t′)∗, (6)

where the hole contribution naturally comes with a minus
sign.

When closing the dot, the time needed to emit an elec-
tronic (or hole) excitation becomes larger than T/2. It was
argued [38] that the mesoscopic capacitor emits a quantum
superposition of no excitation and an elementary electron
and hole pair, thereby leading to electron-hole coherences
visible on Fig. 5 of Ref. [38]. Assuming that, for each
period, the corresponding electron-hole pair involves only
electronic atoms of signals associated with this specific
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FIG. 2. Left panel: The mesoscopic capacitor is a ballistic
quantum conductor formed by connecting a quantum dot to a
chiral edge channel via a quantum point contact of transparency
D. Right panel: Modelization as a driven quantum dot with level
spacing � connected to an electronic reservoir. The mesoscopic
capacitor is driven by an ac voltage drive Vg(t) applied to the top
gate. Applying a dc voltage bias to the top gate shifts the energy
levels of the dot. The mesoscopic capacitor emits a stream of
electron and hole excitations whose Wigner distribution function
W(e)

S (t,ω) is depicted as a density plot on the right panel.

period, such a state would be parametrized by

|�e/h(u, v)〉 =
+∞∏

l=−∞

[
u + vψ†(ϕe,l)ψ(ϕh,l)

] |Fμ=0〉, (7)

where |u|2 + |v|2 = 1. The resulting single-electron coher-
ence is then

�G(e)(t|t′) =
∑
l∈Z

[|v|2ϕe,l(t)ϕe,l(t′)∗ − |v|2ϕh,l(t)ϕh,l(t′)∗
]

(8a)

+
∑
l∈Z

[
uv∗ϕe,l(t)ϕh,l(t′)∗ + vu∗ϕh,l(t)ϕ∗

e,l(t
′)
]

(8b)

in which the rhs of Eq. (8a) lives in the quadrants of elec-
tron and hole excitations (see Fig. 3), whereas Eq. (8b)
represents the electron-hole pair coherence arising from
|�e/h(u, v)〉 whenever uv �= 0. Equation (6) is recovered
for (u, v) = (0, 1), which should, therefore, correspond
to D � Dopt whereas for (u, v) = (1, 0) one recovers the
Fermi sea, the result expected when the dot is totally closed
(D = 0). The case where |u|2 = |v|2 � 1/2 could thus be
viewed as the excess electronic coherence from an ideal
source emitting a coherent superposition of “nothing” and
of a single electron-hole pair per period. It corresponds to
maximal electron-hole entanglement [29]. Note, however,
that the rhs of Eq. (8) does not involves interperiod coher-
ences (terms with l �= l′) as a result of the ansatz described
by Eq. (7). But, as we see in Sec. V A, this is not the
case for the mesoscopic capacitor in the low D regime.

ω

Electrons
coherence

Hole
coherence

Ω
2

Electron and hole
coherence

Electron and hole
coherence

ω+ω−

FIG. 3. Frequency-domain quadrants for single-electron
coherence: depending on the signs (ε+, ε−) of (ω+,ω−), we are
considering the matrix elements 〈ω−|G(e)|ω+〉 of G(e)

ε+,ε− in the
|ω〉 basis of plane waves (see Appendix A for normalizations).
The electronic quadrant (in red) defined by both ω+ = ω +
/2
and ω− = ω −
/2 positive gives information about electronic
excitations. The hole quadrant (in blue) defined by both ω+ and
ω− being negative gives information about hole excitations. The
two electron and hole quadrants (ω+ω− < 0, light gray) contain
information about electron-hole coherences.

The analysis presented in Sec. III indeed enables us to
understand quantitatively all the features of single-electron
coherence in a simple way.

C. Electronic atoms of signal

Equations (4), (6), and (8) correspond to ideal sources
and have a simple expression in terms of a family of
single-electron wave functions called electronic atoms of
signal [29]. Electronic atoms of signal consist of a family
of normalized mutually orthogonal single-electron wave
functions ϕa,l, which are translated by multiples of T:

ϕa,l(t) = ϕa,0(t − lT), (9a)

〈ϕa,l|ϕa′,l′ 〉 = δl,l′δa,a′ . (9b)

Although a decomposition of the form of Eq. (4) is known
[47] for a T-periodic train of Lorentzian voltage pulses of
unit charge at zero temperature, realistic sources are, in
general, not ideal. Even the forms given by Eqs. (6) and
(8) are too simple to describe the excess single-electron
coherence of all experimentally realistic sources. First of
all, even at very low temperature, they correspond to
ideal operating regimes, which are only asymptotic with
respect to the experimental parameters as in the case of the
mesoscopic capacitor at D � Dopt. Moreover, at nonzero
temperature Tel, electron-hole pairs are generated from
thermal fluctuations and introduce an underlying thermal
coherence time �/kBTel a priori unrelated to the period T.
It may lead to interperiod coherences not present in Eq. (8).
Last but not least, when electronic coherence is measured
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at some distance from such a source, Coulomb interactions
alter the electronic coherence in a drastic way [48–50],
leading to extra electron-hole pairs [51].

These remarks raise the question of finding a way to
express an arbitrary periodic single-electron coherence in
terms of suitable electronic atoms of signals. We now
present a systematic procedure for obtaining such an
expression together with the appropriate electronic atoms
of signals from single-electron coherence. This procedure
can be applied to data obtained from a numerical com-
putation but also to experimental data obtained from an
electronic tomography protocol as recently demonstrated
in Ref. [9].

III. FLOQUET-BLOCH-WANNIER ANALYSIS

A. Sketch of the method

Equations (4), (6), and (8) have in common that their
purely electron and purely hole parts are very simple.
This characteristic is at the heart of our signal processing
algorithm for analyzing single-electron coherence. The key
idea, which is to exploit time periodicity of single-electron
coherence

G(e)ρ,x(t + T|t′ + T) = G(e)ρ,x(t|t′), (10)

lies at the heart of Floquet theorem [52], the time-domain
counterpart of Bloch’s theorem for electronic waves in a
periodic crystal [36].

However, in the present situation, we are looking for
a simple description of G(e)ρ in terms of electron and
hole excitations with respect to a reference Fermi sea
(here |Fμ=0〉). Consequently, Floquet’s theorem has to be
adapted in order to be compatible with the decomposi-
tion of the single-particle space of states into a direct
sum H = H+ ⊕ H− of electron and hole excitations that
have positive (respectively, negative) energy with respect
to the μ = 0 Fermi level. As we see, this can be done and
the corresponding eigenvalues have a transparent physi-
cal meaning as an occupation number. Finally, as in band
theory of solids, localized single-particle states [37] can
then be constructed. We show in Sec. III C that these are
the electronic atoms of signals suitable for describing the
quantum electrical current under consideration.

B. Floquet-Bloch analysis

Introducing localized single-particle states |t〉 such that
〈t|t′〉 = v−1

F δ(t − t′), the dimensionless Hermitian operator
G(e) is defined by

G(e) = v2
F

∫
R2

|t〉G(e)(t, t′) 〈t′| dt dt′ (11)

in which the (ρ, x) index is dropped out for simplicity.
The conjugation relation G(e)(t|t′)∗ = G(e)(t′|t) for single-
electron coherence translates into G(e) being Hermitian.

Furthermore, if we introduce the single-particle state |ϕ〉
corresponding to an excitation described by a normalized
wave function ϕ

|ϕ〉 = vF

∫
R

ϕ(t) |t〉 dt, (12)

its occupation probability is a real number between 0 and
1 given by

p[ϕ] = 〈ϕ|G(e)|ϕ〉 (13)

thereby ensuring that G(e) is a positive operator, bounded
by 1. For a T-periodic source, time periodicity of single-
electron coherence translates into the commutation of G(e)

with the time-translation operator TT defined by TT|t〉 =
|t + T〉.

As explained before, our analysis has to be performed
separately on the electron and hole subspaces H±. The
adapted Floquet-Bloch theorem proven in Appendix B
provides us with a basis of single-particle states, which
partially diagonalizes the single-electron coherence oper-
ator while being compatible with the decomposition into
electron and hole excitations.

More precisely, this result states that there exists an
orthonormal basis |ψ(e)

a,ν 〉 of the positive-energy Hilbert
space H+ and an orthonormal basis |ψ(h)

b,ν 〉 of the negative-
energy Hilbert space H−, which are, respectively, indexed
by band indexes a (respectively, b) and quasienergies
0 ≤ ν < 2π f , which are all eigenvectors of the time-
translation operator TT with eigenvalue e−iνT and satisfy
the normalization condition

〈ψ(e)
a,ν |ψ(e)

a′,ν′ 〉 = 2πδa,a′δR/2π f Z(ν − ν ′), (14)

where δR/2π f Z is a Dirac comb of period 2π f . A similar
relation is obtained for the hole states |ψ(h)

b,ν 〉. In these bases,
the projections of the single-electron operators on the elec-
tron and hole quadrants (see Fig. 3) are diagonalized and
their eigenvalues can be expressed as the occupation num-
bers of the corresponding single-electron states. Finally,
the full electronic coherence G(e) also contains the infor-
mation on electron-hole coherences (see Fig. 3), which also
commutes with TT. As explained in Appendix B, all this
leads to the following form of single-electron coherence:

G(e) =
∫ 2π f

0

{∑
a

g(e)a (ν)|ψ(e)
a,ν 〉〈ψ(e)

a,ν |

+
∑

b

[1 − g(h)b (ν)] |ψ(h)
b,ν 〉 〈ψ(h)

b,ν |
}

dν
2π

(15a)
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+
∑
a,b

∫ 2π f

0

[
g(eh)

ab (ν)|ψ(e)
a,ν 〉〈ψ(h)

b,ν |

+ g(he)
ba (ν)|ψ(e)

a,ν 〉〈ψ(h)
b,ν |

] dν
2π

, (15b)

where g(eh)
ab (ν) = g(he)

ba (ν)∗ in order to ensure Hermiticity
of G(e). Let us note that the Floquet-Bloch wave func-
tions being quasiperiodic, these are extended states, which
are not localized on a specific period. This is not yet the
description in terms of electronic atoms of signals that is
discussed in the forthcoming subsection. Before moving
to this description, let us recall that the outcome of the
electronic tomography protocol originally proposed in Ref.
[38] is an experimental determination of �0G(e) to which
the diagonalization procedure can be applied, therefore,
leading to a Floquet-Bloch electronic and hole eigenstate
and spectrum as was done in Ref. [9].

As discussed in Appendix B, the restriction G(e)
++ of the

coherence operator G(e) to the electron quadrant, is also
positive and bounded by 1. This leads to 0 ≤ g(e)a (ν) ≤ 1
for all (a, ν), thus showing that they can interpreted as the
occupation number for the Floquet-Bloch electronic states
|ψ(e)

a,ν 〉. In the same way, 0 ≤ g(h)b (ν) ≤ 1 since 1 − g(h)b (ν)

is the occupation number of the hole state |ψ(h)
b,ν 〉.

C. Electronic atoms of signal

1. Floquet-Wannier states

Since we are interested in finding a description of the
excess single-electron coherence in terms of electronic
atoms of signal [29], which are normalized localized
single-electron states, we consider Floquet-Wannier states,
which are analogous to localized orbitals in solid-state
band theory [37]. They are defined for l ∈ Z as

∣∣ϕa,l
〉 = 1√

f

∫ 2π f

0
e−iνlt

∣∣ψa,ν
〉 dν

2π
, (16)

and form an orthonormal family as implied by Eq. (14).
Moreover, for a given band, all the states (|ϕa,l〉)l∈Z are
related by time translations since TT |ψa,ν〉 = e−iνT |ψa,ν〉
and Eq. (16) imply that

TT|ϕa,l〉 = |ϕa,l+1〉. (17)

Exactly as in solid-state band theory [53], there are ambi-
guities in the determination of electronic atoms of signals
coming from the possibility to redefine the Floquet-Bloch
eigenvectors at a given quasienergy ν within each degen-
erate eigenspace of the projection of G(e) on the electron or
the hole subspace. These ambiguities are extensively dis-
cussed in Appendix C. To circumvent these difficulties, we
focus here on the electronic atoms of signal that have the

smallest spreading in time. This minimal spreading prin-
ciple [53], detailed in Appendix C 2, has the advantage of
producing maximally localized electronic atoms of signal.
This provides a clear view of single-electron coherence
within the electronic fluid in terms of single-particle states
that are associated with a given period.

To understand the meaning of such a description, a
musical analogy is convenient: the sound signal associated
with a music instrument can be described in terms of ele-
mentary units, which are “music notes” arranged along a
“music score,” which specifies the notes to be emitted at
a given time. The electronic atoms of signal can indeed
be viewed as the electron quantum optics counterparts of
“notes” and the expression of the excess single-electron
coherence in the basis of “notes” can be viewed as its
“quantum coherence score.” We now discuss the specific
form of the “quantum coherence score” of a T-periodic
single-electron coherence.

2. Quantum coherence score

The single-electron coherence restricted to the electronic
quadrant G(e)

++ can then be rewritten as

G(e)
++ =

∑
a

∑
l+,l−

g(e)a (l+−l−)|ϕ(e)a,l+〉〈ϕ(e)a,l−|, (18)

where

g(e)a (l) =
∫ 2π f

0
g(e)a (ν)eiνTl dν

2π f
. (19)

For l �= 0, g(e)a (l) represents the interperiod coherence over
|l| periods whereas g(e)a (0) is the emission probability for
the ϕa electronic atom of signal at each period. Note that
there is no coherence between electronic atoms of sig-
nals associated with different bands. However, electronic
coherence may extend over more than one time period:
a flat band [g(e)a (ν) constant] will not lead to interpe-
riod coherences whereas a nonflat band will. The typical
scale over which g(e)a (ν) varies is nothing but the inverse
time scale over which interperiod coherence exists. The
same considerations apply to hole bands. Finally, using
these Floquet-Wannier states, the electron-hole coherences
g(eh)

ab (l+ − l−) = 〈ϕ(h)b,l−| G(e) |ϕ(e)a,l+〉 in this basis are given
by

g(eh)
ab (l) =

∫ 2π f

0
g(eh)

ab (ν) eilνT dν
2π f

. (20)

Because electron-hole coherence couples different bands,
different choices of electronic atoms of signal lead to dif-
ferent values for g(eh)

ab (�l). This is not the case for the
coherence between purely electronic or purely hole wave
packets given by Eq. (19).
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Note that interperiod and electron-hole coherences make
the “quantum coherence score” richer than an ordinary
(classical) music score, which specifies only the note that
has to be played at a given time and its intensity. The
electronic atoms of signal and the associated “quantum
coherence score” are the natural language to describe an
arbitrary excess single-electron coherence. The “quantum
coherence score” could in principle be used to encode
some quantum information within a quantum electrical
current.

Exactly as a tight-binding quadratic Hamiltonian in a
specific Wannier orbital basis is a natural way to describe
electron hopping within a condensed-matter system, the
“quantum coherence score” is the first step in character-
izing the many-body state of the electronic system. The
excess second-order electronic coherence [28] can also be
expressed in terms of electronic atoms of signal, thereby
providing a view of the first nontrivial electronic correla-
tions within the electronic fluid. Understanding the many-
body state of the electronic fluid in terms of these discrete
representations of first- and higher-order excess electronic
coherences is a very interesting perspective for electron
quantum optics. Although its simplest aspect is discussed
in Sec. IV, a full discussion would go way beyond the
scope of the present paper.

Positivity of the electronic and hole coherences G(e)

and G(h) leads to Cauchy-Schwarz inequalities. Within the
electron and hole quadrants, it leads to

∣∣g(e)a (l)
∣∣ ≤ min[g(e)a , 1 − g(e)a ], (21a)∣∣∣g(h)b (l)
∣∣∣ ≤ min[g(h)b , 1 − g(h)b ], (21b)

with g(e)a = g(e)a (l = 0) and g(h)b = g(h)b (l = 0) denoting the
respective averages of g(e)a (ν) and g(h)b (ν) over 0 ≤ ν <

2π f . In the electron-hole quadrants, the Cauchy-Schwarz
inequalities bound the electron-hole coherences:

∣∣∣g(eh)
ab (l)

∣∣∣2 ≤ g(e)a

[
1 − g(h)b

]
, (22a)

∣∣∣g(eh)
ab (l)

∣∣∣2 ≤ g(h)b

[
1 − g(e)a

]
. (22b)

These inequalities immediately show that, in the absence
of electron [g(e)a (ν) = 0 for all ν and a] or hole [g(h)b (ν) =
0] excitations, there are no electron-hole coherences
[g(eh)

ab (l) = 0] as well as no coherence between the missing
excitations as noted in Ref. [40].

3. Martin-Landauer wave packets

Let us illustrate these ideas on the example of a station-
ary electronic state. In this case, the single-electron coher-
ence only depends on t − t′ and is the Fourier transform of
the electronic distribution function fe(ω). Such a state can

be viewed as T periodic for any period T so, let us choose
one and perform the corresponding Floquet-Bloch anal-
ysis. The excess single-electron coherence being already
diagonal in the plane-wave basis, the Floquet-Bloch
waves are plane waves ψm,ν(t) = v

−1/2
F e−i(ν+2πmf )t (0 ≤

ν < 2π f ). The bands are then indexed by an integer m ∈
N and the corresponding eigenvalues are given by

g(e)m (ν) = fe(ν + 2πmf ). (23)

The corresponding electronic atoms of signal are obtained
by summing plane waves over an energy band of width hf ,
centered at energies (m + 1/2)hf with m integer. These
are the Martin-Landauer wave packets [41]:

ϕMLm,0(t) = 1√
vFT

sin (π ft)
π ft

e−2iπ(m+1/2)ft, (24)

which are known in the signal-processing community
as the Shannon wavelets. Their Wigner representation
WMLm,l(t,ω) = W[t − lT,ω − 2π(m + 1/2)f ], defined for
a single-electron wave packet ϕ by using ϕ(t + τ/2) ϕ(t −
τ/2)∗ instead of G(e)(t + τ/2, t − τ/2) in Eq. (2), are time
and frequency translated from

W(t,ω) = H [π f − |ω|]
(

1 − |ω|
π f

)
sinc[2(π f − |ω|)t].

(25)

where H is the Heaviside step function. The Wigner repre-
sentation WML0,0 , depicted on Fig. 4, is clearly localized in
the 0 ≤ ω ≤ 2π f energy band and decays as 1/t in time.

Because of Eq. (23), the bands are generically not flat
thereby implying the existence of interperiod coherences
and, therefore, of an associated coherence time. The idea is
then to choose the period T so that, the electron distribution
function is as flat as possible over energy bands of width
hf .

For example, at zero temperature, the nonequilibrium
distribution function generated by a dc biased QPC with
Vdc < 0, is a step function that jumps from 1 for ω < 0

−2
0
2
4
6
8

−6 −4 −2 0 2 4 6
t/T

ω
T

0.00 0.25 0.50 0.75W (e)

FIG. 4. Wigner representation of the Martin-Landauer wave
packet ML0,0 as a function of t/T and ωT.
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to the transmission probability 0 < T < 1 from the biased
incoming electrode to the outgoing one we are consider-
ing for 0 ≤ ω ≤ −eVdc/�. It then abruptly falls to zero
ω > −eVdc/� > 0. The natural choice of T is then T =
h/e|Vdc|. The excess coherence has only one nontrivial
band corresponding to g(e)0 (ν) = T for 0 ≤ ν < 2π f =
|eVdc|/�. The excess electronic coherence is then natu-
rally described in terms of Martin-Landauer wave packets
associated with period T = h/e|Vdc|:

�0G(e) = T
∑
l∈Z

|ML0,l〉 〈ML0,l| . (26)

Consequently, this excess single-electron coherence corre-
sponds to a train of Martin-Landauer wave packets without
interperiod coherences and each of them being emitted
with probability T . Stationarity is visible through the
invariance of�0G(e) through translation by T�t for any�t:
time shifting all the Martin-Landauer wave packets in the
rhs of Eq. (26) |MLm,l〉 
→ T�t |MLm,l〉 still gives �0G(e).

At finite temperature Tel > 0 K, the electronic distribu-
tion function is smeared over a scale kBTel/�, thus leading
to a nonflat band spectrum. Therefore, there are always
interperiod coherences over the thermal coherence time
h/kBTel. It might seem surprising that when Tel = 0 K,
the interperiod coherences go to zero whereas the ther-
mal coherence time goes to infinity. This comes from
the fact that when decreasing the temperature, as the off-
diagonal coherences spread over more and more period,
their modulus decreases and ultimately vanishes at zero
temperature.

D. Relation to experimentally relevant quantities

Let us now explain how experimental signals are related
to these spectral quantities. We first discuss the value of
the dip in an HOM experiment, a simple HOM-based
repeated-detection scheme of a given electronic excitation
and finally a time-dependent energy filter based on a driven
QPC [54].

1. The Hong-Ou-Mandel dip

In the case of an HOM experiment with two identical
sources S1 and S2 on the incoming channels of a beam split-
ter with reflection and transmission probabilities R and T ,
the depth of the HOM dip, obtained by synchronizing the
sources, can be related to the Floquet-Bloch spectral prop-
erties of single-electron coherence. This comes from the
expression of the two-particle interference contribution to
low-frequency noise in an HOM experiment as [38]

Q(t, t′) = −e2v2
FRT

(
G(e)1 (t, t′)G(h)2 (t, t′)+ [1 ↔ 2]

)
.

(27)

We consider the low-frequency noise defined by inte-
grating over τ = t − t′ and averaging over t̄ = (t + t′)/2.

Expanding both contributions in the rhs of Eq. (27) in
terms of �0G(e) leads to three distinct contributions. Two
of them involve only one of the incoming excess single-
electron coherences and correspond to the partitioning of
single-particle excitations from one of the two incoming
channels at the QPC [Hanbury Brown and Twiss (HBT)
contribution] whereas the third one involves the excess
single-electron coherence of both sources and accounts for
two-particle interferences between them (HOM contribu-
tion).

At zero temperature and with identical and synchro-
nized sources on two incoming channels the excess noise
in the HBT (only one source on) and HOM experiments
(both sources on) are obtained as sums of a background,
which comes from the transmitted or reflected excess noise
�SS of the sources and of two-excitation interference
contributions denoted by �SHBT and �SHOM:

�S(HBT1)
11 = R2�SS +�SHBT, (28a)

�S(HBT2)
11 = T 2�SS +�SHBT, (28b)

�S(HOM)
11 = (R2 + T 2)�SS +�SHOM. (28c)

As shown in Appendix D,�SHBT and�SHOM are given by

�SHBT = e2RT
∫ 2π f

0

[∑
a

g(e)a (ν)+
∑

b

g(h)b (ν)

]
dν
2π

,

(29a)

�SHOM = 2e2RT
{∫ 2π f

0

∑
a

[1 − g(e)a (ν)]g(e)a (ν)
dν
2π

+
∫ 2π f

0

∑
b

g(h)b (ν)[1 − g(h)b (ν)]
dν
2π

− 2
∫ 2π f

0

∑
a,b

∣∣∣g(eh)
ab (ν)

∣∣∣2 dν
2π

⎫⎬
⎭ . (29b)

In Appendix D 2, we show that the depth of the HOM dip,
which is the difference �Sdip = 2�SHBT −�SHOM at this
operating point can be expressed simply in terms of the
fluctuation of the total charge emitted per period (�Q)2W:

[
�Sdip

]
[
�S(max)

dip

] = 1 − (�Q)2W
N tot

(30)

in which N̄tot is the sum of the average number of electron
and hole excitations [see Eq. (D11)] and (�Q)2W is com-
puted from first-order coherences using Wick’s theorem
(see Appendix D 2). If the many-body state does satisfy
Wick’s theorem, which is the case whenever interactions
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can be neglected, then a maximal dip depth corresponds
to the actual vanishing of charge fluctuations. Under this
hypothesis, an ideal single-electron [see Eq. (4)] or single-
electron and single-hole [see Eq. (6)] source would reach
this bound and, therefore, under the assumption that inter-
actions can be neglected, would lead to a maximally deep
HOM dip at zero temperature. Another important exam-
ple is the state with a single coherent electron-hole pair
obtained by the action of an operator of the form

√
1 − g1 + ei�√

gψ†[ϕe]ψ[ϕh], (31)

where 0 < g < 1, acting on the Fermi sea |Fμ=0〉. This
state belongs to the null eigenstate of the excess charge
operator (with respect to |Fμ=0〉). This explains that the
excess charge fluctuation (�Q)2w as well as the average
excess charge is exactly zero. But it is not an eigenstate
of the electron (or hole) excitation number operators: the
average number of electron (as well as hole) excitations
is g and its fluctuation g(1 − g). It follows from Eq. (30)
that the dip reaches its maximum value. As we see in Sec.
IV, this is the case for all states obtained by acting with a
T-periodic time-dependent scatterer on |Fμ=0〉.

However, let us recall that this is not true when inter-
actions, for example between the sources and the beam
splitter are present [50]: the depth of the dip is decreased
by electronic decoherence. The dip may also not be maxi-
mally deep, at zero temperature, when the emission process
involves some classical randomness, one example being
the randomized train of levitons considered in Sec. V B 2.

2. Repeated HOM detections

Because electronic atoms of signals are localized in
time, they are suitable single-particle states to discuss
repeated detection protocols. Let us discuss such a protocol
based on two-particle interferometry using an ideal beam
splitter with energy-independent transmission probability
T (HOM interferometry).

On one incoming channel, we consider a T-periodic
source S whereas on the other incoming channel, we have a
specific ideal electronic source Sa, which emits a periodic
train of electronic atoms of signals |ϕa,l〉, not necessarily
related to the ones emitted by S. Its excess single-electron
coherence is thus

�G(e)Sa
(t, t′) =

N∑
l=0

ϕa,l(t)ϕ∗
a,l(t

′). (32)

The resulting outgoing current noise contains a HOM con-
tribution proportional to the overlap between �G(e)S and
�G(e)Sa

[40]. Using the T periodicity of �G(e)S , the experi-
mental signal scales as N � 1, which quantifies the total

acquisition time NT:

∫
[−NT/2,NT/2]2

�G(e)Sa
(t, t′)∗�G(e)S (t, t′)dtdt′ ∼ Np̄a. (33)

This overlap counts the number of times an electron in the
single-particle state |ϕa,l〉 is scattered against an electronic
excitation in the same single-particle state for N periods of
duration T. Since Sa is an ideal source sending a train of N
identical excitations shifted by multiples of T, the quantity
p̄a should be interpreted as the average number of times,
the single-particle state ϕa is emitted per period. If the ϕa,l
are among the electronic atoms of signal emitted by S, then
when the emission of Sa is synchronized with the emission
of these atoms of signal by S, p̄a = g(e)a is the probability
of emission of these electronic atoms of signal by S.

3. Time-frequency filtering

A repeated detection protocol can also be realized
by scattering the electron flow through a periodically
driven energy-dependent scatterer. Recently, such a time-
frequency filtering has been demonstrated and used for
single-electron tomography [35]. It relies on a quantum
point contact with an energy-dependent transmission prob-
ability T(ω) equipped with a top electrostatic gate driven
by a time-dependent voltage Vd(t). The signal collected by
such a device is the total charge transmitted through the
QPC, which can be rewritten as a linear filtering of the
incident single-electron excess coherence [54]:

Q = −e
∫

R2
vF�G(e)

(
t + τ

2
, t − τ

2

)
Fd(t, τ)∗dtdτ , (34)

with the filter’s kernel being given by

Fd(t, τ) =
∫

R

T(ω)eiωτ+(ie/�) ∫ t+τ/2
t−τ/2 Vd(t′)dt′ dω

2π
(35)

in which Vd(t′) is proportional to the driving voltage Vd
[55].

For a time-periodic driving at frequency f = 1/T, the
linear filter is also T periodic. Since Fd(t, τ)∗ = Fd(t, −τ),
the Floquet-Bloch analysis can be applied to the filter.
Besides the example considered in Ref. [54], the case of a
driven quantum dot [56,57] corresponding to a Lorentzian
transmission probability T(ω) centered at ω0 > 0 with
width γ0 � ω0 is worth considering since it corresponds
to a dot filtering mostly electronic excitations around
the energy �ω0. Provided the drive is such that ω0 −
eVd(t)/� � γ0, we expect that only purely electronic exci-
tations are transmitted. We should, therefore, be able to
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diagonalize the (dimensionless) filtering operator

Fd = vF

∫
R2

|t+〉Fd

(
t++t−

2
, t+−t−

)
〈t−| dt+dt− (36)

within the electronic quadrant, thus leading to

Fd =
∑
α

∫ 2π f

0
Fα(ν) |ψ(d)

α,ν〉 〈ψ(d)
α,ν |

dν
2π

(37)

in which the eigenstates |ψ(d)
α,ν〉 are electronic Floquet-

Bloch waves of the filter. The eigenvalues Fα(ν) are real
but (as far as we know) are not restricted. In practice,
acquisition of the experimental signal requires a T-periodic
single-electron excess coherence�0G(e) and measurement
over N � 1 periods. Then, the total transmitted charge
increases linearily with time. The average charge trans-
mitted per period QT, and thereby the transmitted dc
current 〈Itdc〉 = QT/T, can then be expressed in terms of
the electronic atoms of signals |ϕ(d)α,l 〉 arising from the
Floquet-Bloch waves of the filter. Decomposing

Fd =
∑
α

∑
(l+,l−)∈Z2

Fα(l − l′) |ϕ(e)α,l+〉 〈ϕ(e)α,l−| (38)

in which Fα(l+ − l−) is related to Fα(ν) by Eq. (19), leads
to the average transmitted dc current:

〈Itdc〉 = −ef
∑
α

∑
l∈Z

Fα(l) 〈ϕ(d)α,0|�0G(e)|ϕ(d)α,l 〉 . (39)

Therefore, the driven QPC studied in Ref. [54] appears as
a linear filter acting on linear coherence, which general-
izes to the time-dependent case, the quantum-dot energy
filter originally used to study electronic relaxation in quan-
tum Hall edge channels [58]. The average current is then
directly proportional to the overlap between �0G(e) and
the time-dependent filter’s “quantum coherence score”
introduced in Sec. III C. Generically, several bands may be
present and, therefore, several electronic atoms of signal
may be needed. However, we can hope that suitable drives
may lead to filtering by mostly one band, or equivalently
one type of electronic atom of signal thereby enabling us
to probe the presence of a specific atom of signal within
�0G(e).

IV. MANY-BODY PROPERTIES

Until now, we have focused on the properties of the
electronic fluid at the single-particle level, assuming noth-
ing more than T periodicity. However, when interactions
within the electronic fluid can be neglected, the single-
particle description actually gives us access to the whole
many-body state. This is notably the case when the single-
electron source is modeled by single-particle scattering
processes.

In this section, we explain how the Floquet-Bloch anal-
ysis allows us to give a simple many-body description and
unravel some of the symmetries hidden within the band
structure. We are also able to rederive the single-particle
scattering operator leading to such a single-electron coher-
ence, thereby exploring the path followed in Ref. [44]
the other way around. Furthermore, by giving a direct
insight on electron-hole entanglement, the Floquet-Bloch
analysis is well suited to quantify the quality of electron
sources. We use it in Sec. V to identify the best operating
experimental parameters for a given source.

A. Many-body state at zero temperature

For the sake of simplicity but without loss of general-
ity, we focus on a T-periodic coherence corresponding to a
vanishing average dc current so that the chemical potential
of the electron fluid is exactly zero, a specific case also con-
sidered in Ref. [59]. We assume that single-electron coher-
ence is the result of T-periodic single-particle scattering
μ = 0 Fermi sea (Tel = 0 K) |F〉, which thereby generally
describes a T-periodic ac source whenever interactions can
be neglected.

In order to derive the many-body state at zero tem-
perature, the method consists of finding an expression of
the many-body Floquet operator from the Floquet-Bloch
decomposition (see Appendix E) thereby inverting the pro-
cedure described in Refs. [44,59]. Applying this operator
to the Fermi sea leads to the general form of many-body
state |�〉 emitted by the source:

∏
ν∈[0,2π f [

a∈N

{√
1 − g(e)a (ν)+

√
g(e)a (ν)ψ† [ψ(e)

a,ν

]
ψ

[
ψ(h)

a,ν

]} |F〉.

(40)

From this expression, we notice an important symmetry on
the spectrum: because electrons and holes are emitted in
pairs, we have g(e)a (ν) = g(h)a (ν). It is worth noting that this
relation is different from electron-hole symmetry, which
reverses frequencies and, as such, would be g(e)a (ν) =
g(h)a (2π f − ν). Consequently, when electron-hole symme-
try is satisfied in state (40), the Floquet–Bloch spectrum
exhibits the symmetry: g(e)a (ν) = g(e)a (2π f − ν).

1. The case of flat bands

When the bands are flat, we can go further in the analysis
and re-express the many-body state in terms of Floquet-
Wannier wave functions. The flat band case [ga(ν) = ga]
happens for a purely ac voltage drive at zero temperature.
The case of ac voltage drives have been studied previously
in Refs. [60–62]. In this case, as shown in Appendix E,
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Eq. (40) can be rewritten as

|�〉 =
∏
a∈N

∏
l∈Z

{√
1 − ga + √

gaψ
†
[
ϕ
(e)
a,l

]
ψ

[
ϕ
(h)
a,l

]}
|F〉 .

(41)

This is the formula for a classical voltage drive found in
Ref. [61]. Since there is no relative phase between

√
1 − ga

and
√

gaψ
†[ϕ(e)a,l ]ψ[ϕ(h)a,l ], once a determination for the elec-

tronic Floquet-Wannier wave functions has been chosen, it
determines also the wave functions for holes, up to a global
phase. As such, we do not expect the Floquet-Wannier
wave functions to be minimally spread for both electrons
and holes. This also allows us to come back to the ansatz
guessed in Eq. (8). This ansatz works only in the case of flat
bands. While this is the case for a classical drive, we see
that it is usually not the case for the mesoscopic capacitor.

B. Electron-hole entanglement entropy

Accessing the many-body state allows us to quantify
the quality of a single-electron (or more generally, a n-
electron) source. Such a source would emit electrons and
holes independently, without correlations besides Fermi
statistics. Furthermore, because our sources are described
as noiseless single-particle scattering from an equilibrium
state, quantifying outgoing correlations gives the amount
of correlation generated during the scattering process.
When the global state is pure (Tel = 0 K), the correlations
only come from entanglement.

Although the question of entanglement is a complicated
problem in a many-body system [63], the very definition of
electron and hole provides us with a natural way to split the
many-body Hilbert space in two orthogonal components,
thereby enabling us to fall back on a more familiar descrip-
tion. Thanks to the parity superselection rule for fermions
[22–24] and to the absence of superconducting correlations
in a metallic conductor, the many-body density operator is
block diagonal, only exhibiting coherences between states
having the same number of electron and hole excitations
with respect to a reference Fermi sea. Quantifying the
electron-hole entanglement could, in principle, be done by
looking separately into all these superselection sectors but
this would require knowing electronic coherences to all
orders.

Fortunately, when Wick’s theorem is satisfied, the full
many-body state depends only on first-order coherence.
This is also true for the partial trace on positive or nega-
tive energy states since higher-order correlations functions
expressed in frequency basis are just correlation functions
of the whole state taken in the simplex of positive frequen-
cies and thereby, they also obey Wick’s theorem. From
this and the superselection rule follows that the many-body
state associated to the electronic quadrant corresponds to
filling noncoherently each Floquet-Bloch mode |ψ(e)

a,ν 〉 with

its probability g(e)a (ν):

ρ̂++ =
⊗

ν∈[0,2π f [
a∈N

{[
1 − g(e)a (ν)

] |0〉〈0|

+ g(e)a (ν)ψ†[ψ(e)
a,ν ]|0〉〈0|ψ[ψ(e)

a,ν ]
}

. (42)

Its form is reminiscent of a the thermal state with a mode-
dependent temperature.

An important property of an ideal n-electron source is
that there are no correlations between the electron and hole
excitations it emits. Namely, we expect the full many-body
state associated to positive and negative frequencies to fac-
torize as ρ̂SES = ρ̂++ ⊗ ρ̂−−. In the present case of a pure
many-body state for the whole electronic fluid, the depar-
ture from such a factorized form is measured by the von
Neumann entanglement entropy of the electrons (or the
holes), a quantitative measure of entanglement in this case
[64]. Starting from Eq. (42) for the many-body state, it is
given by

SvN = −
∑
a∈N

∫ 2π f

0

(
g(e)a (ν) log2[g(e)a (ν)]

+ [1 − g(e)a (ν)] log2[1 − g(e)a (ν)]
) dν

2π f
. (43)

Therefore, the entanglement entropy can be inferred from
the properties of the Floquet-Bloch spectrum for electrons
(or holes), which thereby appears as an entanglement spec-
trum [65]. This connection has been exploited to quantify
entanglement between spatially separated regions in many-
body fermionic systems or generated by a quantum point
contact [66] but can indeed be applied to more general
decompositions of the full single-particle state in a sum of
two orthogonal components [67].

Finally, at nonzero temperature, the von Neumann
entropy is no longer the sole measure of entanglement
since the global state is not pure any more. For practical
use in experiments [9], the departure of the full many-body
state from a pure state can be quantified using a purity
indicator, which can also be expressed in terms of the
Floquet-Bloch electron and hole spectra [g(e)a (ν), g(h)b (ν)]
and of electron hole coherences g(eh)

ab (ν) for 0 ≤ ν < 2π f
as detailed in Appendix F.

V. ELECTRON SOURCE ANALYSIS

We now apply our signal-processing technique to
numerical data coming from a Floquet modelization of
periodic electron sources. Our goal is to use the Floquet-
Bloch spectrum to assess the quality of sources as single-
electron sources, along the lines discussed in the previous
section. Because of their experimental importance, the
mesoscopic capacitor [1] and the Leviton source [3,68]
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are discussed. The former offers the possibility to emit
single-electron excitations well separated from the Fermi
surface. The Leviton source exploits the fact that a suit-
able rearrangement of an infinite Fermi sea can lead to the
generation of purely electronic excitations [69] in a simple
way.

A. The mesoscopic capacitor

1. Model

The mesoscopic capacitor depicted on Fig. 2 is modeled
using Floquet scattering theory [70], since, in most exper-
imentally relevant regimes, interaction effects within the
capacitor itself can be neglected. Within this framework
[38,71], the mesoscopic capacitor is characterized by the
level spacing of the dot �, the transparency D of the QPC
(see Fig. 2) as well as by the voltage drive Vg(t). The Flo-
quet scattering matrix relating the outgoing fermionic field
to the incoming one is then expressed as [38,71]

S(t, t′) = exp
[

ie
�

∫ t

t′
Vg(τ )dτ

]
S0(t − t′), (44)

where S0 denotes the scattering matrix of the dot, which,
in the frequency domain, is given by

S0(ω) =
√

1 − D − e2iπ�(ω−ω0)/�

1 − √
1 − De2iπ�(ω−ω0)/�

, (45)

where ω0 comes from a dc bias applied to the dot. Adjust-
ing it so that ω0 = 0 ensures that a peak in the density of
states of the dot is located at the Fermi level in the absence
of external drive.

We now discuss the operating regimes of the meso-
scopic capacitor operated by a sinusoidal drive Vg(t) =
V sin (2π ft) at frequency f by computing the electron and
hole entanglement from the Floquet-Bloch spectrum for
the electronic excitations at fixed � and driving frequency
f in terms of the experimentally controlled parameters D
and V, the latter being the amplitude of the drive applied
to the mesoscopic capacitor. In the present case, we work
at fixed drive frequency and dot geometry so that �/hf �
20, which corresponds to experimentally realistic condi-
tions. Having in mind the original experiments [1,72],
results for a square drive are given in Appendix G.

2. Electron-hole entanglement entropy

Figure 5 presents a density plot of the entropy defined
by Eq. (43) as a function of D and eV/� at fixed �/hf =
20. There are shallow zones with minima in each square
eV/� ∈]n, n + 1] (n ∈ N) and 0 < D ≤ 1. A global mini-
mum can be found at eVopt/� slightly less than 0.24 and
Dopt ≈ 0.38 and the corresponding entropy is very low:
0.06 bit. This is a regime where the mesoscopic capaci-
tor behaves almost ideally, emitting exactly one electron
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0.0 0.5 1.0 1.5 2.0
eV/Δ

D

1

2

3

4

SvN

FIG. 5. Density plot of the electron-hole entanglement entropy
at zero temperature for the mesoscopic capacitor operated with a
sine drive at frequency f such that �/hf = 20 as a function of
eV/� and D. Crosses correspond to the five local minima of the
entropy (see Table I), where the source is the closest to an ideal
single-electron source. For the second local minimum, we choose
three values of D: the optimal one, one above, and one below
(round points) to discuss the effect of varying D for a fixed drive.

and one hole excitation per period. Decreasing D from
this value leads to a local maximum of the entropy (for
D � 0.11) before a decrease to zero when D → 0, corre-
sponding to a regime where the source emits nothing. For
each of the three points located at the same value of eV/�
and corresponding to D = 0.8, D = Dopt, and D � 0.11,
the full electronic Wigner distribution function is depicted
on Fig. 6. As for the square drive case, interference fringes,
characteristic from interperiod coherences as well as for
electron-hole coherences, are visible for D � 0.11 and to
a lesser extent for D = 0.8 whereas they are much more
discrete for D = Dopt.

The local minima on Fig. 5 correspond to quite low val-
ues of the electron-hole entanglement entropy. They can
also be seen on Fig. 7 presenting cuts for a fixed value of

FIG. 6. Density plots of the full Wigner distribution function
W(e)

S (t,ω) for the sine-drive case as a function of t/T and �ω/�

for the three round points appearing on Fig. 5.
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FIG. 7. Cuts of the entropy SvN in the sine-drive case for the
three horizontal lines corresponding to D = 0.11, D = Dopt, and
D = 0.8 on Fig. 5 as functions of eV/�.

D of SvN as functions of eV/�. By running a simplex mini-
mization algorithm, we can find position and entropy value
at each minimum as summarized on Table I.

There are also local minima in the second square where
1 < eV/� ≤ 2 but the corresponding entropy values are
higher (above 0.3 bit). In this zone, we send three electrons
and three holes per period. As such, it is not surprising that
the purity of the source is lower, since we expect to excite
more electron-hole pairs.

3. The Floquet-Bloch spectrum

Let us review the Floquet-Bloch spectra for the three
round points marked on Fig. 5. The middle and right panels
of Fig. 8 depict flat bands. The middle panel corresponds
to the absolute minimum of the entropy, showing one band
with an average very close to 1. This corresponds to the
best operating point as a single-electron source. Opening
the dot (D = 0.8, right panel) also leads to flat bands as
expected but we note that the eigenvalues for the first band
(which is the only one that is non-negligible) is only 0.83.

Going to a closed dot (D = 0.11, left panel) leads to
a curved first band with average 0.5. This point corre-
sponds to the local maximum of the entropy between

TABLE I. Positions in the (D, eV/�) plane and values of SvN
(in bits) for the entropy minima—crosses on Fig. 5—in the sine-
drive case for eV/� ≤ 1 (when about one electron per period is
emitted). At each of these operating points, the source emits a
single electronic atom of signal per period whose Wigner repre-
sentation is depicted Fig. 10. The associated hole atom of signal
is charge conjugated and shifted by a half-period.

D eV/� SvN

1 0.29 0.09 0.10
2 0.38 0.24 0.06
3 0.41 0.40 0.06
4 0.43 0.55 0.10
5 0.42 0.70 0.18

D = 0 and D = Dopt along eV = eVopt. At this point, the
entropy is equal to 0.85 bit. Starting from the optimal
point, decreasing D increases the escape time of the elec-
tron and hole excitations. In previous publications [29,38],
we had argued that, in a specific regime, the mesoscopic
capacitor emits a quantum superposition of nothing and of
an elementary electron-hole pair on top of the Fermi sea.
Decreasing D would increase the amplitude of the emis-
sion of the electron-hole pair from modulus very close to
one to modulus zero and this explains the behavior of the
entropy with decreasing D at fixed eV/�. However, when
D is decreased, interperiod coherences (or equivalently
band curvature) appear due electron and hole delocaliza-
tion over more than one half-period. This shows how our
analysis unravels what happens more precisely than the
previously used simple picture.

4. Electronic atoms of signal and coherences

Let us now discuss the electronic atoms of signal as
well as their coherence properties at the same three round
points. As shown on Fig. 9, for a widely open dot, there is
still one type of electronic atom of signal with no interpe-
riod correlations that is emitted per half-period, although
it is emitted with a probability less than 1. When clos-
ing the dot, we first encounter an optimal point (D ∼
Dopt) where only one is emitted almost certainly: the
mesoscopic capacitor behaves like an almost ideal single-
electron source [see Eq. (5)] and there are no interperiod
electronic coherences [see Eq. (6)]. Finally, when closing
the dot, the electronic escape time from the dot increases
beyond T/2 and, consequently, the elementary electron and
hole excitations emitted by the capacitor tends to delocal-
ize over more than one period. Moreover, electron-hole
coherences are generated and we encounter a point with a
local maximum of electron-hole entanglement (D � 0.11).
Analyzing the shape of the Wannier wave packets confirms
that closing the dot leads to longer wave packets.

Figure 10 presents the dominant electronic atoms of sig-
nal for the local optimal points in the quadrant 0 < D < 1

D = 0.11 D ≈ Dopt D = 0.8

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0

ν/2πf

g
( e

)
a

(ν
)

a

0

1

2

FIG. 8. Floquet-Bloch spectra for the three selected round
points in the sine-drive case appearing on Fig. 5. Only the first
three bands are represented, all the other ones being even closer
to zero.
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D = 0.11 D ≈ Dopt D = 0.8

−2−1 0 1 2 −2−1 0 1 2 −2−1 0 1 2
0.0
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)| a
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1
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FIG. 9. Modulus of the interperiod coherences |g(e)a (l)|
between the electronic atoms of signal of the a = 0, 1 and 2
Floquet-Bloch bands given by Eq. (19) as a function of l for the
three round points on Fig. 5 (sine-drive case).

and 0 < eV/� < 1. As we raise the drive amplitude, the
Wannier wave functions explore higher energies. For each
minimum, there is a corresponding number of negative
bumps in the Wigner representation. This suggests that
these optimal regimes correspond to a resonance between
the rising time of the drive voltage, the period and the
energy gap of the cavity.

In conclusion, this analysis demonstrates how the
Floquet-Bloch analysis can be used to find optimal operat-
ing points of single-electron sources and, more generally,
to characterize what is emitted by the source and to opti-
mize wave packets shaping strategies [73]. As such, it
can help improving the quantitative modeling of many
electron quantum optics experiments such as, for exam-
ple, electronic decoherence experiments [50]. Because the
electronic excitations emitted by the mesoscopic capaci-
tor are quite sensitive to this phenomenon, and also for
practical reasons, the Leviton sources built from a suitably
driven Ohmic contact [68] are very relevant. We now apply
our analysis to this very important source.

4 5

1 2 3

−0.5 0.0 0.5 1.0−0.5 0.0 0.5 1.0

−0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

t/T

ω
/Δ

0
1

W (e)

FIG. 10. Dominant electronic atoms of signals emitted by the
mesoscopic capacitor for the local minima of SvN appearing on
Fig. 5 (crosses) in the domain 0 < D < 1 and 0 < eV/� < 1.

B. Leviton trains

Let us now consider an Ohmic contact driven by
time-dependent voltage, which is a T-periodic train of
Lorentzian pulses of width τ0, each of them carrying an
electric charge q = −αe. The resulting time-dependent
voltage

V(t) = αhf
2e

sinh (2π f τ0)

sinh2(π f τ0)+ sin2(π ft)
(46)

has a dc component Vdc = αhf /e and an ac part Vac(t) =
V(t)− Vdc [68].

To understand the underlying physics, let us remem-
ber what happens in the case of a single Lorentzian pulse
of duration τ0 and integer charge α = n > 0 at zero tem-
perature. In this case, the emitted many-body state is a
Slater determinant built by adding on the Fermi sea n
mutually orthogonal electronic single-electron excitations
whose wave functions are given in the frequency domain
by [74]

ϕn(ω) =
√

4πvFτ0 H(ω)Ln−1(2ωτ0)e−ωτ0 , (47)

where Ln denotes the nth Laguerre polynomial and H is
the Heaviside distribution. In the limit where Lorentzian
pulses are well separated ( f τ0 � 1), we expect the elec-
tronic atoms of signal, which we call Levitonoids, to have
a strong overlap with these mutually orthogonal wave
functions.

For a Leviton train (α = 1), one could naively expect
each Lorentzian voltage pulse to carry exactly one Levi-
ton excitation. Although the Levitonoid may tend to the
isolated Leviton in the limit τ0 � T, in the case where
the Lorentzian pulses start to overlap ( f τ0 � 1), the rela-
tion between the Levitonoid and the Leviton is nontriv-
ial because of the Pauli principle since single-Leviton
wave functions of width τ0 separated by T � τ0 are not
orthogonal.

To gain a better understanding of the way information
is encoded in such a compact electronic train, besides the
periodic train of Levitons, we consider in Sec. V B 2 a ran-
domized train of Lorentzian voltage pulses [45], obtained
by randomly choosing whether or not each Lorentzian
pulse is present in the drive or not. The single-electron
coherence associated with this statistical ensemble of volt-
age drives is still T-periodic and our analysis can be
applied.

1. Levitonic atoms of signals

Figure 11 shows the full Wigner distribution function
of the T-periodic train of unit-charge Lorentzian pulses for
different values of f τ0. Varying this parameter swipes from
a dilute train in which each Leviton is well separated from
each other, to a compact train in which the pulses are so
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τ0 = 1/20 τ0 = 1/10 τ0 = 1/5
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FIG. 11. Wigner distribution function of a Leviton train for
different ratio τ0/T for increasing values of τ0/T. As we raise
τ0/T, the duration of each Leviton becomes longer and longer
and, compared to the energy scale �/τ0, hf becomes larger. Once
τ0 is greater than T, the first band of width 2π f , which will have
no time dependance, is the only one to remain. We are thus left
with an almost stationary situation due to the raise of chemical
potential by δμ = hf .

spread over multiple periods that we see only the variation
of the chemical potential due to the dc part.

In the α = 1 case, Moskalets has obtained explicit
expressions for electronic atoms of signal associated with
such a Leviton train [47]. Each of them leads to a
Lorentzian current pulse of width τ0. This is manifestly
not the case for the electronic atoms of signal obtained
numerically whose Wigner representations are depicted
on Fig. 12. Our numerical algorithm produces wave
packets having the smallest spreading in time whereas
the analytical expressions obtained by Moskalets pos-
sess a Lorentzian current pulse of width τ0. As shown in
Appendix H, an analytical expression for the minimally
spread wave packets can be obtained:

ϕLev(ω) = 1√
N

H(ω)e−ωintτ0 , (48)

where N is a normalization factor and ωint = 2π f
�ω/2π f � is the frequency counted in multiples of 2π f .
This minimally spread Levitonoid is the following linear
combination of Martin-Landauer’s wave packets

|Lev〉 =
√

1 − e−4π f τ0

+∞∑
n=0

e−2πnf τ0 |MLn,0〉 . (49)

The details of this derivation can be found in Appendix H.
We check that this analytical form and the one found by
the algorithm match perfectly.

As can be seen from Fig. 12, the minimally spread
Levitonoid |Lev〉 tends, in the f τ0 → 0 limit, to the single-
Leviton state |ϕ1〉 obtained from Eq. (47): when lowering
f τ0, the steps of width 2π f in Eq. (48) become smaller,

τ0/T = 1/20 τ0/T = 1/10 τ0/T = 1/5
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0.0 0.5 1.0 1.5W (e)

FIG. 12. Electronic atoms of signal of a train of charge α
Lorentzian pulses for α = 1 and different values of f τ0. When
f τ0 � 1, the wave packet we obtain is very similar to a Leviton.
When f τ0 � 1, we recover a Martin-Landauer wave packet. The
atoms of signal found by our algorithm (lower panel) fit perfectly
the ones predicted analytically (upper panel).

thereby corresponding to an increasingly closer staircase
approximation of the decaying exponential in Eq. (47). A
measure of the distance between the minimal Levitonoid
|Lev〉 and the single-Leviton state |ϕ1〉 is given by the
overlap between these two single-particle states:

|〈Lev|ϕ1〉|2 = tanh(π f τ0)

π f τ0
, (50)

which, for f τ0 � 1, departs quadratically from unity.
In the regime where f τ0 � 1, the overlap between the

minimal Levitonoid and the single Leviton tends to zero
as 1/π f τ0. In this regime, it seems natural to compare our
Levitonoids to the Martin-Landauer wave packet |ML1,0〉
(compare the right panel of Fig. 12 to Fig. 4). This overlap
goes exponentially to one as f τ0 goes to infinity

∣∣〈Lev|ϕML0,0〉
∣∣2 = 1 − e−4π f τ0 . (51)

For the examples discussed above, when f τ0 = 1/5, the
overlap is around 92%. At f τ0 = 1, the overlap is unity
up to the sixth significant digit, making the differentiation
between a minimally spread Levitonoid and a Martin-
Landauer impossible in practice.

These behaviors shed light on the difference in
terms of typical temporal width between the minimally
spread Levitonoids and the wave packets introduced by
Moskalets. For Moskalets’ wave packets, the typical dura-
tion is always τ0. In our case, the typical duration is
τ0 when τ0 � T. However, when τ0 � T, the minimal
Levitonoid will have a duration of the order of T and, ulti-
mately, in the f τ0 → ∞ limit, tends to a Martin-Landauer
wave packet.
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2. The random train

In order to distinguish between the electronic wave
packets used to carry the information and the way they are
injected, we elaborate on the recent idea [45] of random-
izing the emission process itself. We consider nonperiodic
trains of electrons associated with infinite random binary
chains bk (k ∈ Z), which determines whether a Lorentzian
pulse centered at tk = kT is added to the driving voltage
(bk = 1 with probability p) or not (bk = 0 with probability

1 − p):

Vd(t) =
∑
k∈Z

bkVLev(t − kT) (52)

in which VLev(t) corresponds to a Lorentzian pulse of width
τ0 carrying a charge −e centered at t = 0. Even if pulse
emission is randomized, the ensemble average properties
of the electron stream are still T periodic because emission
is still centered on times tk = kT for k ∈ Z. The average
single-electron coherence in the time domain is evaluated
as [45]

G(e)Rp

(
t + τ

2

∣∣t − τ

2

)
= sin{π [ft − θp( f τ)]} sin{π [ft + θp(f τ)]}

sin
[
π f (t − iτ0 + τ

2 )
]

sin
[
π f

(
t + iτ0 − τ

2

)] G(e)F (τ ) (53)

in which the index Rp stands for “randomly emitted with
probability p”, G(e)F denotes the Fermi sea’s single-electron
coherence and

θp(x) =
√

x2

4
− ( f τ0)2 − i(1 − 2p)f τ0x. (54)

Eqs. (53) and (54) are the starting point for applying our
Floquet-Bloch analysis for finding the electronic atoms
of signals underlying the randomized train of Lorenztian
pulses. Remarkably, the analysis can be performed numer-
ically but also analytically, as explained in Appendix I.

The first important result is that the excess single-
electron coherence can be described in terms of minimal
Levitonoids, which are the appropriate electronic atoms of
signal for the nonrandom T-periodic train. This illustrates
quantitatively the motivation put forward in Ref. [45]: ran-
domization enables us to separate what is emitted from
the way it is emitted. Single-electron coherence is thus
described in terms of the same electronic atoms of signals
but with a different “quantum coherence score.”

More precisely, when the pulses are widely spaced
( f τ0 � 1), we can associate a single-electron excitation
(the minimal Levitonoid), which is very close to the Levi-
ton wave packet [see Eq. (50)] with each Lorentzian pulse.
Lowering p then just lowers the emission probability of
the corresponding single-electron excitation (see the left
panel of Fig. 13). In this regime, randomization just lowers
the intensity of the emission, as would be expected with a
classical (incoherent) ensemble of musicians choosing to
play, or not to play each note of the score, so that the total
intensity of each of them is decreased.

However, for the random Leviton train, lowering the
emission probability of each Lorentzian pulses can lead
to subtle effects when the Pauli principle starts to enter
the game, in the f τ0 ∼ 1 regime or above. This is the sec-
ond important result from our detailed analysis: although,

the excess single-electron coherence is still described in
terms of minimal Levitonoids, lowering p also introduces
interperiod coherences depicted on Fig. 13. At fixed p ,
they increase with f τ0 as seen by comparing the three
panels of Fig. 13. In this regime, the modification of the
“quantum coherence score” induced by lowering p is not
naively classical as in the f τ0 � 1 regime: interperiod
coherences are revealed. This can be understood as fol-
lows: the limit of a dense T-periodic train is recovered for
p → 1: one Levitonoid is then emitted per period without
any interperiod coherences. But then, decreasing p opens
some space on the adjacent periods: among all the classical
drives building the statistical ensemble underlying Rp , the
weight of those containing pulses separated by more than

fτ0 = 1/20 fτ0 = 1/5 fτ0 = 1

−2−1 0 1 2 −2−1 0 1 2 −2−1 0 1 2
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p 0.1 0.5 0.9

FIG. 13. Coherence between time-shifted Levitonoids for the
random train with emission probabilities p = 0.1, 0.5, 0.9 and a
width f τ0 = 1/20, 1/5, 1. The central peak has value p and we
clearly see the increase of interperiod coherences when increas-
ing f τ0 at fixed p and their spreading when decreasing p at fixed
f τ0.
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FIG. 14. Wigner representations of p-Glattlions for p = 0.1,
0.5, 0.9, 1 and a width f τ0 = 1/20, 1/5 and 1. The case p = 1
corresponds to the minimal Levitonoids introduced in Sec. V B 1.
Note that, on this figure, time is counted in units of τ0 so that we
clearly see how the p-Glattlion interpolates between a Leviton-
like Wigner representation of width τ0 for p = 1/10 to a minimal
Levitonoid one for p = 9/10.

T increases and this contributes to the increasing weight of
interperiod coherences. In the limit p → 0, we thus expect
to recover an excess electronic coherence spreading over
|τ | � τ0, very similar to the one of an isolated Leviton
because, in this limit, the weight of trajectories for which
an emitted Lorentzian pulse is separated from the nearest
other emitted pulses by more than τ0 goes to unity. This
explains the increasing interperiod coherences in the low
p , high f τ0 regime.

Remarkably, and this is the third result from our in-depth
analysis, these interperiod coherences can be recasted in
terms of normalized single-electron states, which we call
the p-Glattlion and which are

|Glap〉 =
∫ +∞

0

√
1 − e−4π f τ0

pf
e−ωintτ0

√
g(e)(ω) |ω〉 dω.

(55)

Using these single-particle states, the excess single-
electron coherence can be written as

�0G(e)
Rp

= p
∑
l∈Z

|Glap ,l〉 〈Glap ,l| (56)

in which |Glap ,l〉 = Tl
T |Glap〉 is the p-Glattlion translated

by lT. This rewriting resums the interperiod coherences
in the minimal Levitonoid basis into pure single-electron
states. Ultimately, such a rewriting reflects the coherence
of the voltage pulse trains used to build the random ensem-
ble Rp . The price to pay is that these states cannot be
viewed as electronic atoms of signals since they are not
mutually orthogonal between different periods [see Eq.
(I18)]. The Wigner representations of Glap for various
(p , f τ0) are plotted on Fig. 14. These single-particle states
interpolate between Leviton wave functions of width τ0 in
the limit f τ0 � 1 or p � 1 and the minimal Levitonoid
obtained for p = 1.

VI. CONCLUSION AND PERSPECTIVES

In this work, we introduce a representation of the single-
electron coherence of a periodic electron source in terms of
perfectly distinguishable normalized single-particle wave
functions associated with each period, which we call “elec-
tronic atoms of signals” [29]. This description, which
is the counterpart of the Karhunen-Loève decomposition
for classical signals [75], enables us to obtain a simple
description of the single-particle content emitted by the
source in discrete terms. The electronic atoms of signal
are the building blocks of the single-electron coherence,
which are emitted according to their emission probabil-
ities and quantum coherences. Such a decomposition is
very reminiscent of the way music can be described in
terms of notes arranged along a specific score: the emis-
sion probability being analogous of the strength at which
the note is played whereas the coherences are specifi-
cally quantum. This type of decomposition, generalized
to nonperiodic quantum electrical currents is a conve-
nient way to represent general single-electron quantum
signals exactly as a music score represents a generically
nonperiodic piece of music. This is the appropriate frame-
work to discuss the encoding and decoding of the quan-
tum information embedded within a quantum electrical
current.

Being able to access the single-particle content of a
quantum electric current suggests that a very high degree
of control may be envisioned in the near future. This is
particularly important for the potential applications of elec-
tron quantum optics to quantum sensing of electromagnetic
fields on a submicrometric space and subnanosecond time
scale.

In particular, our study of electron sources also shows
that, generically, an electron source emits several electron
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or hole wave functions. The multiplicity of emitted excita-
tions is enhanced by nonzero temperature as shown in the
recent experimental study [9]. From a signal-processing
point of view, this means that in general, electron quantum
optics sources and detectors, respectively, emit and detect
many different electron and hole excitations. In this sense,
they are quantum counterparts to MIMO multiple-input
multiple-output (MIMO) classical microwave devices such
as advanced radars and WiFi routers, which make use of
many (spatial) modes to improve transmission or detec-
tion performances. In the long run, the representation of
electronic coherence in terms of electronic atoms of sig-
nal will be instrumental for characterizing and improving
the performances of quantum-sensing devices based on
quantum electric currents, exactly as MIMO is now used
in radar technology [76]. It may as well help quantifying
and maybe improving quantum-information flow within
these devices, as was done in classical signal processing
[77].

This decomposition may also bring new insights on
physical phenomena such as electron fractionalization
[74,78], the effect of temperature on trains of multipar-
ticle states [79] and interaction-induced electronic deco-
herence [50,80]. Since the Floquet-Bloch decomposition
provides a zero-order guess for the many-body state from
single-particle coherence in the absence of interactions, it
is the perfect starting point for a more refined descrip-
tion of the many-body states based, for example, on
the adaptation to electron quantum optics of the unitary
coupled cluster method now used in variational quan-
tum eigensolvers [81]. Such an ansatz would reproduce
deviations from Wick’s theorem at higher and higher-
order coherences, thereby providing a clear insight of
the electronic coherences in terms of the many-body
state.

Finally, our quantum analyzer may also offer a way to
access to the recently studied electron-hole entanglement
[82–84] and, supplemented by other measurements [28],
to quantify more precisely the importance of interaction-
induced higher-order quantum correlations as well as of
thermal fluctuations [85,86].

The general quantum signal-processing method pre-
sented here is also directly relevant for electron quantum
optics in other systems such as topological insulators [87]
and, with some adaptation, in strongly correlated 1D quan-
tum edge channels such as fractional quantum Hall edges
[88] where it might shed some light on recently pre-
dicted correlation effects within trains of Lorentzian pulses
[89]. Finally, it can establish a bridge between electron
and microwave quantum optics [90–93], by probing the
electronic content of microwave photons injected from a
transmission line into a quantum conductor. However, this
requires establishing a bridge between the coherence prop-
erties of electrons and the quantum optical coherence of
the emitted radiation extending the work of Ref. [94].
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APPENDIX A: NORMALIZATIONS

The single-particle states |t〉 and |ω〉, normalized as

〈t|t′〉 = v−1
F δ(t − t′), (A1a)

〈ω|ω′〉 = δ(ω − ω′) (A1b)

are related by

|t〉 = 1√
2πvF

∫
dω eiωt|ω〉, (A2a)

|ω〉 =
√
vF

2π

∫
dt e−iωt|t〉. (A2b)

Using the expression of the fermion field operator

ψ(t) =
∫

R

c(ω) e−iωt dω√
2πvF

(A3)

in terms of fermionic annihilation and creation operators
c(ω) and c†(ω) obeying the canonical anticommutation
relations {c(ω), c†(ω′)} = δ(ω − ω′), the G(e) operator is
expressed in the |ω〉 base as

G(e) =
∫

R2
|ω+〉〈c†(ω−)c(ω+)〉ρ〈ω−|dω+ dω−. (A4)

APPENDIX B: FLOQUET-BLOCH THEORY

1. Diagonalizing the electron part

Let us introduce the projectors �± on the space of pos-
itive (respectively, negative) energy single-particle states.
The projections G(e)

ε,ε = �εG(e)�ε (ε = ±1) of the single-
electron coherence operator contain information on elec-
tronic excitations for ε = + and on hole excitations for
ε = −. These correspond to the electron and hole quad-
rants of Fig. 3. In the same way, the off-diagonal parts
G(e)
ε,−ε = �εG(e)�−ε couple the electron and hole parts of

the single-particle state and encode electron-hole coher-
ences.
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Note that G(e)
++ contains all the electronic excitations,

even the thermal ones that are present at nonzero tem-
perature when the source is switched off. Keeping these
is essential for having positive operators to diagonalize.
Denoting by�0G(e) = G(e) − G(e)

F = G(e) −�−, we have

G(e) = �− + G(e)
++ +�0G(e)

−− + G(e)
+− + G(e)

−+, (B1)

where G(e)
−− = �− +�0G(e)

−− and G(e)
++ = �0G(e)

++ (same
for +− and −+).

The first step consists in diagonalizing the electron part
of the excess single-electron coherence G(e)

++. Since G(e)

is Hermitian as well as �+, G(e)
++ is also Hermitian. Since

[�+, TT] = 0, G(e)
++ commutes with TT and we also know

that it is a positive operator bounded by 1. Therefore, G(e)
++

and TT can be diagonalized simultaneously. Exactly as in
solid-state theory, the diagonalization is performed on each
of the eigenspaces of TT, which consist in quasiperiodic
single-particle states associated with a quasienergy 0 ≤
ν < 2π f (f = 1/T) and corresponding to the eigenvalue
e−iνT of TT. The spectrum for G(e)

++ has a band struc-
ture with eigenvalues g(e)(ν) ∈ [0, 1] for 0 ≤ ν < 2π f .
We can, therefore, find an orthogonal basis of eigenvectors
|ψ(e)

a,ν 〉 ∈ H+ such that

TT |ψ(e)
a,ν 〉 = e−iνT |ψ(e)

a,ν 〉 , (B2a)

G(e)
++ |ψ(e)

a,ν 〉 = g(e)a (ν) |ψ(e)
a,ν 〉 . (B2b)

These eigenvectors are called the electronic Floquet-Bloch
vectors and we can choose them to satisfy the normaliza-
tion conditions

〈ψ(e)
a,ν |ψ(e)

a′,ν′ 〉 = 2πδa,a′δ(ν − ν ′), (B3)

which is the same as the
√

2π |ω〉 states. The explicit form
of the eigenvalue equations used in the numerical com-
putation is discussed in Appendix B 4. It relies on the
decomposition of each Floquet-Bloch state as a sum of
plane waves whose energies differ by a multiple of hf :

|ψ(e)
a,ν 〉 =

+∞∑
n=0

u(n)a,ν |ν + 2πnf 〉 . (B4)

The main difference with the usual Bloch theory in solid-
state physics comes from the fact that, here, the sum is
restricted to n ∈ N because we are considering electronic
excitations.

2. Hole excitations and electron-hole coherences

Having discussed the electronic part of the single-
electron coherence, let us discuss the hole part as well as
the electron-hole part. We can introduce a hole operator
G(h) defined by replacing G(e)ρ,x(t, t′) in Eq. (11) by

G(h)ρ,x(t, t′) = tr
[
ψ†(x, t)ρψ(x, t′)

]
. (B5)

This operator satisfies the same mathematical properties as
G(e). This can be easily shown by using the anticommuta-
tion relations of fermionic operators to relate electron and
hole coherence operators:

G(h) = 1 − CG(e)C†, (B6)

where C is the antiunitary involution that transforms elec-
trons in holes and vice versa, defined in the time basis
by complex conjugation: 〈t|Cψ〉 = 〈t|ψ〉∗. We then have
G(h) = �− − C�0G(e)C† and, therefore, holes can be
dealt with along the same lines as electronic excitations.

However, rather than focusing on the restriction of G(h)

to the positive frequencies quadrant, it turns out to be more
convenient to focus on �0G(e)

−− defined as the restriction
to the negative frequencies’ quadrant of �0G(e) = G(e) −
�−. Taking differences with respect to the μ = 0 Fermi
sea ensures that all excitations, including thermal ones, are
taken into account. Then �0G(e)

−− contains eigenfunctions
of holes at negative frequencies, with eigenvalues that are
the opposite of hole occupation numbers.

Exactly as G(e)
++, G(e)

−− can be diagonalized simultane-
ously with TT. We thus introduce an eigenbasis of hole
single-particle states |ψ(h)

b,ν 〉 ∈ H− such that

�0G(e)
−− = −

∑
b

∫ 2π f

0
g(h)b (ν) |ψ(h)

b,ν 〉 〈ψ(h)
b,ν |

dν
2π

. (B7)

Using the completion relation

�− =
∑

b

∫ 2π f

0
|ψ(h)

b,ν 〉 〈ψ(h)
b,ν |

dν
2π

, (B8)

the hole part G(e)
−− is then diagonal in the |ψ(h)

b,ν 〉 basis with
respective eigenvalues 1 − g(h)b (ν):

G(e)
−− =

∑
b

∫ 2π f

0

[
1 − g(h)b (ν)

]
|ψ(h)

b,ν 〉 〈ψ(h)
b,ν |

dν
2π

. (B9)

This convention for the hole Floquet-Bloch spectrum
ensures that G(h)

++ is diagonalized by the eigenvectors
C|ψ(h)

b,ν 〉 with respective eigenvalue g(h)b (ν). Let us notice
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that, for 0 ≤ ν < 2π f , the hole eigenstate decomposition
into plane wave takes the form

|ψ(h)
b,ν 〉 =

+∞∑
n=1

v
(n)
b,ν |ν − 2π fn〉 (B10)

in order to include only negative-energy plane waves.
The final step for deriving Eq. (15) is to introduce the
electron-hole coherences in the basis of electronic-hole
Floquet-Bloch eigenstates:

〈ψ(e)
a,ν |G(e)|ψ(h)

b,ν′ 〉 = 2πδ(ν − ν ′) g(eh)
ab (ν), (B11a)

〈ψ(h)
b,ν |G(e)|ψ(e)

a,ν′ 〉 = 2πδ(ν − ν ′) g(he)
ba (ν). (B11b)

3. Floquet-Bloch eigenvalues as occupation numbers

The normalization condition, Eq. (14), for the eigen-
states |ψ(e)

a,ν 〉 is the same as the one of plane waves except
for the fact that, in the present case, ν is a quasimomentum
living in R/2π f Z. The destruction operator associated
with such an excitation is thus defined by direct analogy
with the operator c(ω):

ψ[ψ(e)
a,ν ] = vF√

2π

∫ +∞

−∞
ψ(e)

a,ν (t)
∗ψ(t)dt, (B12)

where the normalization factor ensures the canonical anti-
commutation relation

{ψ[ψa,ν],ψ†[ψa′,ν′]} = δa,a′δ(ν − ν ′). (B13)

It then follows that

〈ψ†[ψ(e)
a′,ν′]ψ[ψ(e)

a,ν ]〉 = δa,a′δ(ν − ν ′) g(e)a (ν). (B14)

This equation is analogous to the expression of the single-
electron coherence of a stationary state in the basis of
fixed-energy single-particle states |ω〉 in terms of the
electron distribution function fe(ω):

〈c†(ω′)c(ω)〉 = δ(ω − ω′)fe(ω). (B15)

The eigenvalues g(e)a (ν) can thus be interpreted as the occu-
pation numbers of the single-particle states |ψ(e)

a,ν 〉. We can,
therefore, interpret the spectrum of G(e)

++ as bands of occu-
pation numbers for the Floquet-Bloch states |ψ(e)

a,ν 〉 as a
function of their quasienergy ν ∈ R/2π f Z. In the same
way, the bands ν 
→ g(h)(ν) can be interpreted as giving
the occupation numbers for the hole excitations C |ψ(h)

b,ν 〉,
which are quantum superpositions of single-particle states
with energies hf − �ν shifted by positive multiples of hf .

Of course, this raises the question of the band structure
that can occur in this type of problem. In order to get a
hint on this question, we must have a closer look at the
underlying eigenvalue problems.

4. Eigenvalue equations

The diagonalization problem that leads to the spectrum
[ga(ν)]a,ν and to the Floquet-Bloch eigenfunctions is best
expressed in the frequency domain [38,40]. Exactly as
in Bloch’s theory, we introduce T-periodic dimensionless
functions ua,ν such that ψa,ν(t) = e−iνtv

−1/2
F ua,ν(t). Choos-

ing a representative of the quasienergy ν ∈ [0, 2π f [, we
decompose ua,ν(t) in Fourier series

ua,ν(t) =
+∞∑
n=0

u(n)a,νe
−2iπnft, (B16)

where the sum goes from n = 0 to n = +∞ since we are
looking for purely electronic wave functions so each ν +
2πnf is positive. The eigenvalue equation G(e)

++|ψa,ν〉 =
g(e)a (ν)|ψa,ν〉 can then be rewritten in terms of the single-
electron coherence projected onto the electron quadrant.
With our choice of a representative ν ∈ [0, 2π f [ for the
quasienergy, the eigenvector equation for g(e)a (ν) is

∑
p∈N

W(e)
++,n−p [ν + π f (n + p)]u(p)a,ν = g(e)a (ν)u(n)a,ν , (B17)

where, because of T periodicity, we decompose the Wigner
distribution function W(e)

++(t,ω) associated with G(e)
++ as a

Fourier series:

W(e)
++(t,ω) =

∑
n∈Z

e−2π inftW(e)
++,n(ω). (B18)

Note that, because we are considering the projection onto
the electronic quadrant, W(e)

++,n(ω) = 0 for ω − π |n|f < 0
and equal to W(e)

n (ω) the nth harmonic of the full Wigner
function, for ω − π |n|f ≥ 0. Equation (B17) is solved
numerically to determine the spectrum of the single-
electron coherence restricted to the electronic quadrant. We
can also see it as the diagonalization of the matrix M (ν),
defined for each ν ∈ [0, 2π f [ as

Mnp(ν) = W(e)
++,n−p [ν + π f (n + p)] (B19)

for (n, p) ∈ N2 This matrix is thus derived from the energy
representation of the first-order coherence as graphically
pictured on Fig. 15.

The eigenvalues for the hole Floquet-Bloch matrix are
obtained in the same way starting from Eq. (B10) and
following the same step very precisely. This leads to the
eigenvalue equation (0 ≤ ν < 2π f and n ∈ N∗):

+∞∑
p=1

W(e)
−−,p−n[ν − π f (n + p)]v(p)b,ν = [1 − g(h)b (ν)]v(n)b,ν

(B20)

in which
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ν

Ω

ω

πf

πf

FIG. 15. Graphical representation of the matrix M (ν). The
first-order coherence in energy representation takes values for δν
being an integer multiple of π f . The matrix we extract at a given
frequency ν is the one given by the value of the blue dots, that are
spaced by integer multiples of 2π f in both ω± directions. Shift-
ing the frequency ν by δν corresponds to vertically translating all
blue dots by δν.

W(e)
−−(t,ω) =

∑
n∈Z

e−2π inftW(e)
−−,n(ω) (B21)

is the Wigner distribution function associated with G(e)
−−

and, therefore, W(e)
−−,n(ω) = 0 for ω + π |n|f > 0 and is

equal to W(e)
n (ω) as soon as ω + π |n|f ≤ 0.

5. The case of a voltage drive at zero temperature

A specific feature of the case of a time-dependent classi-
cal drive is that, at zero temperature, the energy coherence
is piecewise constant, the width of each step being 2π f .
If we consider a purely ac drive, the discontinuities do not
appear when we extract the matrix M (ν) for ν ∈ [0, 2π f [
(see Fig. 16, left). As such, the eigenvalues will be inde-
pendent on the quasienergy, and the eigenvectors of differ-
ent quasienergy can be deduced by a frequency translation.
It implies notably that it is possible to find a set of Floquet-
Wannier functions that are piecewise constant in energy,
with discontinuities happening every 2π f . Consequently,
the electronic atoms of signal are linear combinations of
Martin-Landauer wave packets, a point already noticed in

Ref. [3], and there are no interperiod coherences due to
band flatness.

If we add a dc part to the voltage, then it will shift the
whole energy coherence by μ/� (see Fig. 16, right). In this
case, there are two possibilities:

(a) If μ/hf is an integer, we are back to the ac case,
since the discontinuity will not happen for ν ∈
[0, 2π f [.

(b) If μ/hf is not an integer, then the matrix M (ν)

will be piecewise constant, with a step at ν =
μ/� [2π f ]. Similarly, the eigenvectors for ν ∈
[0,ωs[ can be deduced by translating the eigenvec-
tors at ν = 0 in energy. The eigenvectors for ν ∈
[ωs, 2π f [ can be deduced by translating the eigen-
vectors at ωs. In this case, we can find a set of
Floquet-Wannier functions that are piecewise con-
stant in energy, with steps happening at 2πnf and
2πnf + ωs.

If we consider a small, nonzero temperature, such that
kBTel � hf , the steps will be smoothed out over a scale
kBTel/�. We can thus expect that the property mentioned
above remains true, except at the neighborhood of discon-
tinuities.

This example demonstrates that, contrary to the case
of bands in solid-state physics, the Floquet-Bloch bands
we are considering here may exhibit discontinuities that,
indeed, may play a crucial role. For example, this is the
case when applying a dc-voltage bias corresponding to a
noninteger multiple of −ef dc current to an ac voltage
drive or, more generally, to a purely ac source. An example
is a periodic train of Lorentzian voltage pulses carrying a
noninteger charge in units of −e.

APPENDIX C: FLOQUET-WANNIER FUNCTION
AMBIGUITIES

In this appendix, we discuss the ambiguities in the deter-
mination of electronic atoms of signals and propose a

ωω

Ω Ω

FIG. 16. Matrices for a voltage drive at zero temperature. On the left, the case of an ac voltage drive. In this case, the coherence is
constant for all ν ∈ [0, 2π f [. The eigenvalue problem does not depend any more on the quasienergy. On the right, we consider that
there is a dc part on top of the ac voltage. In this case, the matrix M (ν) will be piecewise constant, with a step at ν = μ/� (mod 2π f ).
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minimal-spreading principle for selecting a specific choice
of electronic atoms of signals.

1. Origin of the ambiguities

Ambiguities in the choice of Floquet-Wannier wave
functions can always be traced back to degenerate common
eigenspaces for G(e)

++ and TT. Let us introduce a uni-
tary transformation U that keeps G(e)

++ eigenspaces stable:
[U, G(e)

++] = 0, then using the U|ψa,ν〉 states in Eq. (16),
we obtain a new orthonormal family of Wannier functions,
which we denote by

∣∣∣ϕ[U]
a,l

〉
. Equation (17) becomes

TT

∣∣∣ϕ[U]
a,l

〉
=

∣∣∣∣ϕ[TTUT†
T]

a,l+1

〉
. (C1)

In order to satisfy the time-translation property of Wan-
nier wave functions, Eq. (17), we require that U preserves
each eigenspace of TT and we then discuss what happens
depending on the structure of the common eigenspaces of
TT and G(e)

++.
Preserving the eigenspaces of TT immediately implies

that U preserves quasienergy eigenspaces. Assuming that
it leaves each of them invariant, this means that it reduces
to a unitary transformation operating on the space gener-
ated by all the Floquet-Bloch states at a given quasienergy.
Let us now analyze what happens depending on the
eigenspaces of G(e)

++ at fixed quasienergy.
In the case where the Floquet-Bloch bands are nonde-

generate and do not cross, each common eigenspace is
one dimensional and the only possibility for redefining
the Floquet-Bloch eigenstates is to introduce quasienergy-
dependent phases:

|ψa,ν〉 
→ eiθa(ν)|ψa,ν〉. (C2)

Such quasienergy-dependent phases θ(ν) fall into differ-
ent topological sectors, which are labeled by the winding
number

nW = 1
2π

∫ 2π f

0

dθ(ν)
dν

dν. (C3)

For example θn(ν) = nTν has winding number n ∈ Z and
Eq. (16) implies that

∣∣∣ϕ[eiθn ]
a,l

〉
= |ϕa,l+n〉. (C4)

Consequently, a topologically nontrivial phase has the
same effect as combining a translation by an integer
number of periods with a topologically trivial energy-
dependent phase.

In the case of n degenerate Floquet-Bloch bands over the
whole quasienergy interval, the above phases are replaced

by a quasienergy-dependent unitary transformation U(ν) ∈
U(n) for 0 ≤ ν < 2π f so that, considering Aα the set of n
band indexes, the new Wannier functions are defined by

∣∣∣ϕ[U]
a,l

〉
= 1√

f

∫ 2π f

0

∑
b∈Aα

Ua,b(ν) |ψb,ν〉 dν
2π

. (C5)

Such transformations are directly relevant when a source
emits n single-electron excitations on top of the Fermi sea.
In this case ga(ν) = 1 for several values of a. The topo-
logical sectors of such quasienergy-dependent unitaries are
classified by the topological sectors of the overall phase
since all groups SU(n ≥ 2) are simply connected. Let us
now discuss in more detail the properties of the Floquet-
Bloch band structure to see which situation is more likely
to be encountered.

A first observation is that bands may have discontinu-
ities. From our observations for classical voltage drives
and for the mesoscopic capacitor driven by a sinusoidal
or square voltage, it seems that such discontinuities appear
when temperature is nonzero, for purely ac sources.

Finally, since physical states are defined up to a phase,
we have an extra possibility for defining electronic atoms
of signals in the case of flat bands. For example, one could
replace Eq. (17) by its projective version, that is introduc-
ing a phase in front of |ϕa,l+1〉. Combining this with Eq.
(C1) leads to

U
|ψa,ν〉 = |ψa,ν+
〉, (C6)

where the addition is considered modulo 2π f (
 ∈ R/

2π f Z). Substituting this into Eq. (16) leads to

∣∣∣ϕ[U
]
a,l

〉
= ei
T

∣∣ϕa,l+1
〉
. (C7)

The time-translation property, Eq. (17), is satisfied up to a
phase.

2. Minimal-spreading principle

Let us now discuss the general method used to deter-
mine suitable electronic atoms of signals. Exactly as in
solid-state physics, a natural idea is to look for maximally
localized Wannier functions [53]. Let us consider ϕa such
a wave function, the spreading 〈(�t)2〉ϕa is defined as

〈(�t)2〉ϕa = vF

∫
R

t2|ϕa,0(t)|2 dt

−
[
vF

∫
R

t |ϕa,0(t)|2dt
]2

. (C8)

Let us consider directly the case of n degenerated
bands ga(ν) = pα(ν) for all 0 ≤ ν < 2π f and a ∈ Aα .
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We then have a quasienergy-dependent unitary transforma-
tion ambiguity described by Eq. (C5). Maximally localized
Wannier wave functions are now found by minimizing the
quadratic functional

S[U] =
∑
a∈Aα

〈
(�t)2

〉
|ϕ[U]

a 〉 (C9)

over U(ν) ∈ U(n) for 0 ≤ ν < 2π f . Note that the right-
hand side of Eq. (C8) may be divergent due to the large
time behavior of |ϕa,0(t)|2 as, for example, in the case of
a Leviton train. In such a case, we should, therefore, reg-
ularize it by subtracting the same quantity for a reference
choice of the unitary operator such as U(ν) = 1.

Numerically, the implementation of the minimization
process is straightforward in the case of a nondegenerate
band. Since there is a natural cutoff for the length of the
wave packet, in this case it is easy to compute the func-
tional, Eq. (C8), from an arbitrary phase, Eq. (C2). More
importantly, it is also easy to compute the gradient, giving
access to all efficient gradient-based minimization algo-
rithms. In our case, we rely on the GNU Scientific Library
(GSL) implementation of the Fletcher-Reeves algorithm
[95]. It consists in a succession of line minimizations. We
begin at a given point (which can either be a random phase
or a null phase), and the first direction of minimization is
given by the gradient. Then, at each iteration, a new direc-
tion is chosen, depending on the previous search direction,
the gradient of current iteration and the norm of the gra-
dient of previous iteration. The iteration ends when the
gradient is orthogonal to the line of search.

For the degenerate case, Eq. (C5), there are several dif-
ficulties. First, we need to parametrize the unitary matrices
U(ν). For this, we introduce �(ν), Hermitian matrices
such that

U(ν) = exp[i�(ν)]. (C10)

The main difficulty here is that, since U(n ≤ 2) is a non-
commutative group, it becomes hard to compute the gra-
dients of the functional S[U]. However, it is still easy to
compute them if we consider a starting point at U = 1. In
the following, we denote |ψA,ν〉 the vector containing every
wave function |ψa,ν〉 with a ∈ A, A being the degenerate set
of bands we want to minimize on. The matrix U(ν) acts on
this vector space, mixing wave functions. At each iteration
n > 1 of the algorithm, we now replace the wave functions
|ψ(n−1)

A,ν 〉 by the wave functions

∣∣∣ψ(n)
A,ν

〉
= eixnHn(ν)

∣∣∣ψ(n−1)
A,ν

〉
, (C11)

Hn being the search direction and xn the real parame-
ter that minimize this search direction. This allows us to
always start the line-minimization process from U = 1.

To determine the minimum, we check whether our search
direction is orthogonal to the local gradient computed by
shifting eixnHn(ν) to identity. What makes everything work
is that all quantities needed to compute the new direc-
tion of minimization are either invariant on the point of
the U(n) group we consider them (norm of the previous
gradient), computed locally (the new gradient) or trivially
transported (previous search direction, which is parallel to
the transport). After N iterations, we end up with

∣∣∣ψ(N )
A,ν

〉
= ei�N (ν) · · · ei�1(ν)

∣∣∣ψ(0)
A,ν

〉
, (C12)

emphasizing the noncommutative character of the group
we are minimizing on.

APPENDIX D: HBT AND HOM CURRENT NOISE

1. Explicit expressions

The outgoing current correlation S(out)
11 (t, t′) = 〈i1out(t)

i1out(t′)〉 − 〈i1out(t)〉〈i1out(t′)〉 after a quantum point contact
whose scattering matrix is

(√
R i

√
T

i
√
T

√
R

)

has been computed in Ref. [38] in terms of the incoming
current correlators and single-electron coherences:

S(out)
11 (t, t′) = R2S(in)11 (t, t′)+ T 2S(in)22 (t, t′)+ RT Q(t, t′)

(D1)

in which

Q(t, t′) = e2v2
F

{
G(e)1 (t′, t)G(h)2 (t′, t)+ [1 ↔ 2]

}
(D2)

encodes two-particle interference effects between the two
incoming channels. The excess current noise is, therefore,
given by

�S(out)
11 (t, t′) = R2�S(in)11 (t, t′)+ T 2�S(in)22 (t, t′) (D3a)

+ RT �Q(t, t′). (D3b)

Hanbury Brown and Twiss experiments correspond to
one of the sources being switched on and the other one
being switched off. From now on, let us assume that both
sources S1 and S2 are identical and synchronized. Under
this hypothesis, �S(in)11 = �S(in)22 = �SS is the excess noise
generated by the source.

At zero temperature, the HBT excess zero frequency
current noise can be expressed using the Floquet-Bloch
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spectrum as RT �QHBT where

�QHBT = e2
∫ 2π f

0

[∑
a

g(e)a (ν)+
∑

b

g(h)b (ν)

]
dν
2π

(D4)

in which �QHBT [see Eq. (D3b)] arises from the par-
titioning of electron and hole excitations at the QPC
not contained in the partitioning of the incoming current
noises [rhs of Eq. (D3a) at zero frequency]. This leads to
Eq. (29a).

When both sources are switched on, a Hong-Ou-Mandel
experiment is performed. Using Eq. (D3), the correspond-
ing excess noise is the sum of the excess noise of the two
possible HBT experiments

�S(out)
11 = �S(HBT)

1 +�S(HBT)
2 + RT �QHOM (D5)

and of a two-excitations interference contribution involv-
ing the two sources S1 and S2, which can be expressed
as

�QHOM = −2e2
∫ 2π f

0

[∑
a

g(e)a (ν)2 +
∑

b

g(h)b (ν)2

]
dν
2π

− 4e2
∑
a,b

∫ 2π f

0

∣∣∣g(eh)
ab (ν)

∣∣∣2 dν
2π

(D6)

using the Floquet-Bloch analysis of the single-electron
coherence emitted by the source S1, identical to S2 here.
Adding twice the rhs of Eq. (D4) (one for each source) to
the rhs of Eq. (D6) leads to the total contribution (R2 +
T 2)�SS to the zero-frequency current noise that comes
on top of the partitioning of the sources intrinsic excess
current noise �SS. In the end, as shown on Fig. 17, the
final expression (28c) for the excess zero frequency current
noise at the HOM dip is the sum of the excess current noise
of the sources transmitted by the two sources (which is
always positive), to which is added the total two-excitation
interference contribution given by Eq. (29b).

2. The HOM dip

Let us now use this to discuss the depth of the HOM dip
defined as the difference between the HOM excess noise
given by Eq. (D5) and the sum of the two HBT noises.
Counting the dip’s depth positively, its expression is

[
�Sdip

] = −RT �QHOM, (D7)

where �QHOM is given by Eq. (D6).
It is interesting to rewrite these expressions in terms

of physically more appealing quantities. For this, let us

Δt

ΔS
(out)
11

Injected background

No electron and
hole coherence

HOM curve
2ΔSHBT

ΔSdip

FIG. 17. Depth of the HOM dip at zero temperature: in a HOM
experiment, the excess low-frequency current noise is above
the background noise (R2 + T 2)�SS injected by the sources.
When the sources, which emit localized excitations, are suffi-
ciently desynchronized, the current noise is expected to reach
�SHBT = e2f RT (N e + N h) exceeding this background noise
by 2�SHBT. At fixed Floquet-Bloch spectra [g(e)a (ν), g(h)b (ν)], the
depth of the HOM dip has a lower bound, which translates into
an upper bound for the excess noise equal to 2e2f RT [(�Ne)

2
W +

(�Nh)
2
W] above the injected background noise (light blue zone).

This bound is reached for vanishing electron-hole coherences.

introduce an infrared regularization to compute traces of
T-periodic operators. Let

X =
∑

a

∫ 2π f

0
Xa(ν)

dν
2π

|ψ(e)
a (ν)〉 〈ψ(e)

a (ν)| (D8)

be a diagonal operator in the basis of electronic Floquet-
Bloch eigenstates. The trace of this operator, which is
defined and acts on H+ is divergent. Nevertheless, we can
regularize it. Inverting Eq. (16), its expression in the basis
formed by the electronic atoms of signals is

X =
∑

a

∑
(l+,l)∈Z2

Xa(l+−l−) |ϕa,l+〉 〈ϕa,l−| . (D9)

in which Xa(l) is related to Xa(ν) by Eq. (19). Taking the
trace over a subspace generated by the electronic atoms of
signal over a range of N periods gives

TrN (X) = N
∑

a

∫ 2π f

0
Xa(ν)

dν
2π f

. (D10)

This leads to the definition of the per-period regularized
trace as X = TrN (X)/N . With this definition, the aver-
age number of electronic and hole excitations emitted per
period are given by

N e =
∑

a

∫ 2π f

0
g(e)a (ν)

dν
2π f

, (D11a)
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N h =
∑

b

∫ 2π f

0
g(h)b (ν)

dν
2π f

. (D11b)

The quadratic terms in the eigenvalues or in the electron-
hole coherences appearing in Eq. (D6) correspond to what
would be obtained, assuming Wick’s theorem be valid.
Therefore, we denote these quantities with a “W” index.
Using Wick’s theorem with G(e) as single-electron coher-
ence, the second moments of the numbers of excitations
emitted per periods would be given by

(�Ne)
2
W =

∑
a

∫ 2π f

0
g(e)a (ν)[1 − g(e)a (ν)]

dν
2π f

, (D12a)

(�Nh)
2
W =

∑
b

∫ 2π f

0
g(h)b (ν)[1 − g(h)b (ν)]

dν
2π f

, (D12b)

Cov(Ne, Nh)W =
∑
a,b

∫ 2π f

0

∣∣∣g(eh)
ab (ν)

∣∣∣2 dν
2π f

. (D12c)

Let us stress that, in the presence of interactions, these
are not the actual moments of the numbers of electronic
and hole excitations. The actual values differ from these
Wick values by a contribution arising from the difference
between the intrinsic excess second-order coherence intro-
duced in Ref. [28] and its expected value from Wick’s
theorem.

The absolute upper bound of the depth of the HOM
dip is given by the HBT contribution

[
�S(max)

dip

]
=

2e2f RT N tot, where N tot = N e + N h represents to average
total number of excitations emitted per period. Using the
above notations, the difference between the maximum dip
and the actual dip is then equal to

[
�S(max)

dip

]
− [
�Sdip

]

= 2e2f RT
[
(�Ne)

2
W + (�Ne)

2
W − 2Cov(Ne, Nh)W

]
.

(D13a)

The rhs is, therefore, directly proportional to the fluctua-
tion (�Q)2W of the excess charge emitted per period by the
source. In units of −e, the excess charge operator is given
by

Q̂ =
∫

R

: c†(ω) c(ω) : dω, (D14)

where the fermionic normal ordering is relative to the
reference Fermi sea at chemical potential μ = 0. Conse-
quently, the ratio of the dip to its absolute upper bound is

given by
[
�Sdip

]
[
�S(max)

dip

] = 1 − (�Q)2W
N tot

. (D15)

If the many-body state does satisfy Wick’s theorem, which
is the case whenever interactions can be neglected, then
having a maximally deep HOM dip corresponds to the
actual vanishing charge fluctuations.

APPENDIX E: MANY-BODY STATE AND
FLOQUET SCATTERING THEORY

1. The floquet-bloch many-body state

In this appendix, we discuss the connection between our
approach and the T-periodic single-electron scattering the-
ory that transforms the Fermi sea at chemical potential
μ = 0 into a pure many-body state. This corresponds to
writing down the explicit form of the many-body operator
S whose action corresponds to single-particle scattering

ψout(t) = Sψin(t)S† =
∫

S(t, t′)ψin(t′)dt, (E1)

where S(t, t′) denotes the T-periodic single-particle scat-
tering matrix in the time-domain representation. Without
lack of generality, we consider here the case of an ac Flo-
quet source, that is a single-particle scattering operator S
leading to a vanishing average dc current.

Finding an expression for S is important for two rea-
sons: first it gives insights on the action of Floquet sources
on the incoming equilibrium state at the many-body level,
then is enables us to connect the form of the many-body
operator to the Floquet-Bloch spectrum and eigenstates
and electron-hole coherences between them.

a. Two modes

Let us first discuss the simple two-mode case where only
one electron mode ϕe and one hole mode ϕh are considered.
At zero temperature, the incoming hole mode ϕh is filled
and contains exactly one electron whereas the incoming
electron mode ϕe is empty. The Floquet source will scatter
the mode ϕh into a linear combination of ϕe and ϕh.

We show that the operator S can be written as

S = SdSp , (E2)

Sd = exp
(
λψ†[ϕe]ψ[ϕh] − λ∗ψ†[ϕh]ψ[ϕe]

)
, (E3)

Sp = exp
(
i{θe(ψ

†ψ)[ϕe] + θh(ψ
†ψ)[ϕh]}) . (E4)

In this decomposition, Sd is a displacement-like operator,
with complex parameter λ. It corresponds to the scattering
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processes of between the electron and hole modes. Sp is
a phase-shifting operator, that independently the phases of
the incoming electron and hole modes. Since we can reab-
sorb the phase of λ by changing the relative phase between
the wave functions ϕe and ϕh, we consider λ ∈ R+.

Let us first focus on the displacement-like operator. The
exponential can be expanded using the following identity:

− (
ψ†[ϕe]ψ[ϕh] − ψ†[ϕh]ψ[ϕe]

)2

= ne(1 − nh)+ nh(1 − ne) = �odd, (E5)

where ne/h = (ψ†ψ)[ϕe/h] denotes the number operator for
the corresponding ϕe/h mode and �odd is the projector on
the one-particle sector. If we also introduce the orthogo-
nal projector�even that projects on the zero or two-particle
sector, a simple expression for the many-body scattering
operator follows:

Sd = �even +�odd{cos λ

+ sin λ
(
ψ†[ϕe]ψ[ϕh] − ψ†[ϕh]ψ[ϕe]

)}. (E6)

Applying the operator S to the creation operators leads to

Sψ†[ϕe]S = cos λeiθeψ†[ϕe] − sin λeiθhψ†[ϕh],

Sψ†[ϕh]S = cos λeiθhψ†[ϕh] + sin λeiθeψ†[ϕe].
(E7)

The outgoing creation operators are thus linear combina-
tions of the incoming creation operators. The correspond-
ing linear operator involved is indeed unitary and any

unitary operator can be brought in that form by tuning the
phase between the wave functions ϕe and ϕh.

b. The many-mode case

To understand the full many-body case, we first recast
our Floquet-Bloch analysis in terms of the scattering oper-
ator. For this, we split the scattering operator into two
parts. The first one rearranges electrons and holes inde-
pendently and is described by a unitary matrix ei[�(h)+�(e)],
where �(h) and �(e) are Hermitian matrices acting on the
hole and electron subspaces, respectively. These operators
generalize the phases θh and θe of the previously discussed
two-mode example. Their action on the Fermi sea is, as we
see, to add a global phase to the many-body state. The sec-
ond part involves a two-mode scattering process, in which
each pair of modes is scattered according such that

Sψ†[ϕe]S† = uψ†[ϕe] + vψ†[ϕh],

Sψ†[ϕh]S† = uψ†[ϕh] − vψ†[ϕe],
(E8)

with u, v ∈ R+. The mathematical details for such a
decomposition of general unitary operators can be found
in Appendix E 2.

The final result of this procedure is an expression
of the full many-body scattering operator as a prod-
uct of uncoupled elementary two-mode operators, with
a prefactor that scatters electron and hole subspaces
independently:

S = exp

(∑
a∈N

∫ 2π f

0
λa(ν)

{
ψ†[ψ(e)

a,ν ]ψ[ψ(h)
a,ν ] − ψ†[ψ(h)

a,ν ]ψ[ψ(e)
a,ν ]

) dν
2π

)
(E9a)

× exp

⎛
⎝i

∑
a,b∈N

∫ 2π f

0

{
�
(e)
ab (ν)ψ

†[ψ(e)
a,ν ]ψ[ψ(e)

b,ν ] +�
(h)
ab (ν)ψ

†[ψ(h)
a,ν ]ψ[ψ(h)

b,ν ]
} dν

2π

⎞
⎠ . (E9b)

Furthermore, when the bands are flat, we can reorganize
a combination of Floquet-Bloch modes as a combination
of electronic atoms of signals directly at the many-body
level. Of course the choice of Floquet-Wannier functions in
the electron quadrant will constrain the choice of Floquet-
Wannier functions in the hole quadrant. Namely, we have

∫ 2π f

0
ψ† [ψ(e)

a,ν

]
ψ

[
ψ(h)

a,ν

] dν
2π

=
∑
l∈Z

ψ†
[
ϕ
(e)
a,l

]
ψ

[
ϕ
(h)
a,l

]
.

(E10)

2. Splitting unitary matrices

In this appendix, we introduce a decomposition for uni-
tary matrices useful when we partition equally the Hilbert
space in two. In what remains, we consider a matrix S ∈
U(2n), acting on a Hilbert space H = H+ ⊕ H−, where
dimH+ = dimH− = n. The goal here is to show that
there exists an orthogonal change of basis P = P−P+ that
acts independently on H+ and H− in which we can write

PSP† =
(

u v

v −u

)
ei(�−+�+), (E11)
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where u, v ∈ Mn are positive real diagonal matrices, �±
are Hermitian matrices of size n. The first block column
corresponds to the Hilbert space H− and the second one
corresponds to H+.

Generically, one can write the S matrix as

S =
(

S−− S−+
S+− S++

)
. (E12)

For the sake of simplicity, we consider that each subma-
trix is invertible. Other cases would correspond to either
fully scattered modes or fully reflected modes, which can
be separated from the start without many problems.

We first introduce the polar decomposition of S−− =
H−−eiθ− , where θ− is Hermitian and H−− is a positive
semidefinite Hermitian matrix. This allows us to rewrite
S as

S =
(

H−− S−+
S+−e−iθ− S++

)
eiθ− . (E13)

H−− being positive semidefinite, we can write it as H−− =
P†

−uP−, where u is a diagonal, real-valued, positive matrix.
This leads us to

P−SP†
− =

(
u S′

−+
S′

+− S++

)
ei�− , (E14)

where �− = P−θ−P†
−, S′

+− = P−S+−e−iθ− and S′
−+ =

S−+P†
−. The first matrix of the rhs must be unitary. Since u

is diagonal, it imposes that each column of S′
+− is orthog-

onal to each other. As such, we can rewrite this matrix as
a product of a unitary matrix and a diagonal positive real
matrix, S′

+− = P†
+v. Noting P = P−P+, we show

PSP† =
(

u S′′
−+

v S′
++

)
ei�− , (E15)

where S′′
−+ = S′

−+P†
+, S′

++ = P+S++P†
+.

We can now use the Hermitian properties of unitary
matrices to build explicitly the constraints between u, v,
S′

++, and S′′
−+. The orthogonality constraint gives us

S′
++ = −(u/v)S′′

−+, (E16)

where u/v is the diagonal matrix formed by uv−1. Con-
versely, the normalization conditions give us

S′
++

†[1n + (u/v)2]S′
++ = 1. (E17)

Since u2 + v2 = 1, this shows that v−1S′
++ = ei�+ , where

�+ is a Hermitian matrix. Putting everything together, we
have

PSP† =
(

u v

v −u

)
ei(�−+�+). (E18)

This is the property we want to show.

3. Many-body state at nonzero temperature

At nonzero temperature, all terms of Eq. (E9) will play a
role. The contribution Eq. (E9b), arising from the separate
rearrangement of electron and hole modes will have a non-
trivial contribution to the total state. This contribution may
scatter electrons deep into the Fermi sea compared to the
thermal scale into the thermal fluctuations. It will as well
scatter holes from the thermal fluctuations deeper into the
Fermi sea. It is also possible to rearrange wave functions
inside the thermal band. Similar processes appear in the
electron subspace. Notably, this term will explicitly cou-
ple different bands. The contribution Eq. (E9a) will also
act differently, since sectors of even parities are expected if
one of the Floquet-Bloch waves possesses thermal fluctu-
ations at this point. We expect that the atoms of signal, as
well as their respective coherences to be modified by this
term.

Remarkably, the description in terms of Floquet-Bloch
waves at zero temperature allows us to give a many-
body description up to the two Hermitian operators �(e)

and �(h). This is interesting since it gives a way to
see which processes will occur when “heating” an ideal
single-electron source. Our approach may thus lead to new
insights on the effect of nonzero temperatures on electronic
correlations studied in Refs. [85,86].

APPENDIX F: THE PURITY INDICATOR

Wick’s theorem is valid whenever the many-body state
ρ of the electron fluid is Gaussian

ρ = e−ψ†·K·ψ

ZK
, (F1)

where ZK = Tr(e−ψ†·K·ψ) is the corresponding partition
function. The K operator is related to the single-electron
coherence through

G(e) = (1 + eK)−1. (F2)

The many-body “unregularized” purity indicator P(un)
ρ =

Tr(ρ2) can then be formally rewritten as a quotient on
infinite-dimensional determinants over the single-particle
space of states H1p. Using Eq. (F2), it can then be con-
veniently expressed in terms of the total single-electron
coherence:

P
(un)
ρ = Det

(
1 + e2K

)
Det

(
1 + eK

)2 (F3a)

= Det
(
1 + 2{[G(e)]2 − G(e)}) . (F3b)

We can now use the decomposition of the total
single-electron coherence G(e) = �h +�0G(e), where �h
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denotes the projection onto the space of hole excitations
and

�0G(e) =
(

ge geh
ghe −gh

)
(F4)

is the excess single-electron coherence with respect to the
Fermi sea to obtain an expression for the purity indica-
tor only in terms of data that can be reconstructed by the
single-electron tomography protocol. These are ge, gh and
the off-diagonal parts geh and ghe. This finally leads to

P
(un)
ρ =

∣∣∣∣1 − 2 [ge(1 − ge)− gehghe] 2 [gehgh − gegeh]
2 [ghghe − ghege] 1 − 2 [gh(1 − gh)− ghegeh]

∣∣∣∣ . (F5)

The final step involves using the fact that, for a T-
periodic sources, all these operators are block diagonal
with respect to the decomposition of the single-particle
state into subspaces indexed by the quasienergy ν ∈
[0, 2π f [. Let us consider a block-diagonal one-particle
operator M block diagonal with respect to the quasienergy
ν. Its determinant can be approximated by discretizing the
first Floquet-Brillouin zone [0, 2π f [:

ln

[
N−1∏
n=0

Det
(

M 2πnf
N

)]
� N

∫ 2π f

0
Tr[ln(Mν)]

dν
2π f

(F6)

in which Mν precisely denotes the restriction of M to the
subspace of single-particle state with quasienergy ν. Such
a discretization corresponds to juxtaposing N periods of
duration T and considering states with periodic boundary
conditions on this interval, thereby introducing a formal IR
regularization.

This finally gives us the following compact expression
for the many-body purity indicator:

Pρ = exp
(∫ 2π f

0
ln{1 − 2A(ν)[1 − A(ν)]

− 2B(ν)[1 − B(ν)]} dν
2π f

)
(F7)

in which

A(ν) = g(ee)(ν)[1 − g(hh)(ν)] − |g(eh)(ν)|2 (F8)

B(ν) = g(hh)(ν)[1 − g(ee)(ν)] − |g(eh)(ν)|2 (F9)

are computed in terms of the eigenvalues g(ee)(ν) and
g(hh)(ν) obtained from our diagonalization algorithm (see
Sec. III) and of the corresponding electron-hole coherences
g(eh)(ν). Discussion of the conditions for unit purity can be
found in Ref. [9]: it corresponds to a pure many-body state

of the form

|�〉 =
∏

0≤ν<2π f

{
u(ν)+ v(ν)ψ†[ϕ(e)ν ]ψ[ϕ(h)ν ]

} |F〉, (F10)

where |u(ν)|2 + |v(ν)|2 = 1 for all 0 ≤ ν < 2π f .

APPENDIX G: MESOSCOPIC CAPACITOR: CASE
OF A SQUARE DRIVE

In the case of a square drive used to demonstrate single-
electron emission by the mesoscopic capacitor [1], the
T-periodic voltage drive is defined by Vg(t) = −V/2 for
−T/2 ≤ t < 0 and Vg(t) = V/2 for 0 < t < T/2.

1. Electron-hole entanglement

Figure 18 presents a density plot of the entropy defined
by Eq. (43) as a function of D and eV/� at fixed
�/hf = 20. There are shallow zones with minima in each
square eV/� ∈]n, n + 1] (n ∈ N) and 0 < D ≤ 1. In the
single-electron sector, a global minimum can be found
at eVopt/� ≈ 0.37 and Dopt ≈ 0.47 and the corresponding
entropy is 0.20 bit. As we see, this is the regime where
the mesoscopic capacitor behaves almost ideally, emitting
exactly one electron and one hole excitation per period.

The minimal entropy reached here is higher than in the
sine-drive case, thereby meaning that we are a bit fur-
ther away from the ideal single-electron and hole-source
regime than for the sine-drive case. However, one should
keep in mind that the square and the sine drive emit quite
different electronic wave functions as discussed below.
This means that these different drives are indeed relevant
for different applications.

There is also a minimum in the second square where
1 < eV/� ≤ 2 but the zone is further from zero. In this
zone, three electrons are emitted during the first half period
and three holes during the other one, due to the fact that
at zero voltage, there is a level at the Fermi energy. It is
not surprising that in this zone the deviation from the ideal
regime is greater than in the previous case, since we expect
a generation of more electron-hole pairs.
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FIG. 18. Density plot of the electron-hole entanglement
entropy at zero temperature for the mesoscopic capacitor oper-
ated with a square drive of frequency f such that �/hf = 20 as
a function of eV/� and D.

A surprising feature are the substructures that appear
within each shallow zone (see Fig. 19). At the time of this
writing, we do not yet understand this fact. Further numer-
ical exploration will be necessary, especially to see if the
ratio �/hf plays a role in these substructures.

In order to understand more precisely the electron and
hole entanglement properties described by this plot, we
choose specific points for which we push the analysis
further. The corresponding electronic Wigner distribution
functions are plotted on Fig. 20.

2. The Floquet-Bloch spectrum

Let us review the Floquet-Bloch spectrum for the three
points that are marked in Fig. 18. Figure 21 presents
the corresponding bands as functions of the dimension-
less quasienergy ν/2π f and orders them according to
their averages, the a = 0 band being one with the highest
average.

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0
eV/Δ

S
vN

D

0.12

Dopt

0.8

FIG. 19. Cuts of the entropy SvN for a square voltage drive
depicted on Fig. 18 as functions of eV/� for D = 0.12, D =
Dopt, and D = 0.8.

FIG. 20. Density plot of the full Wigner distribution function
W(e)

S (t,ω) for the square-voltage driven mesoscopic capacitor as a
function of t/T and �ω/� for the three selected points appearing
on Fig. 18.

Opening the dot (D = 0.8, right panel) leads to flat
bands as expected since at D = 1 it is really what is
expected but we note that the eigenvalues are almost unity
and that the a = 1 band has value 0.02, thus showing that
we are departing from the ideal single-electron regime.

Closing the dot (D = 0.12, left panel) mostly changes
the shape of the a = 0 band, which shows some curva-
ture. Its average is equal to 0.57, which shows that strong
electron-hole coherences are expected.

3. Electronic atoms of signals and coherences

In order to get a clearer view of the electronic state emit-
ted by the source, let us now extract the corresponding
electronic atoms of signal. Figure 22 presents the elec-
tronic atoms of signal associated with the a = 0 Floquet-
Bloch band for the three operating points considered
before.

As expected, the duration of each wave packet increases
with decreasing D reflecting the fact that the escaping time
from the dot is longer at low QPC transparency. At the
optimal value Dopt, we expect the source to emit a wave

D = 0.12 D ≈ Dopt D = 0.8

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0

ν/2πf

g
( e

)
a

(ν
)

a

0

1

2

FIG. 21. Floquet-Bloch spectrum for the three selected points
appearing on Fig. 18, in the case of a square-voltage mesoscopic
capacitor. Only the first three bands are represented, all the other
ones being even closer to zero.
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FIG. 22. Wigner distribution functions for the Floquet-
Wannier electronic atoms of signal corresponding to the a = 0
Floquet-Bloch band represented as a function of t/T and �ω/�

for the three operating points of Fig. 18 in the case of a square
voltage drive.

packet of the form

ϕ̃e(ω) = Ne H(ω)
ω − ωe − iγe/2

, (G1)

where Ne ensures normalization and γe denotes the elec-
tron escape rate from the quantum dot, which is given
by γe = D�/h(1 − D/2) [46,96]. The square drive thus
leads, as expected, to wave functions that are better sepa-
rated from the Fermi sea than the ones emitted with a sine
drive. These are better suited for studying electronic deco-
herence of wave packets with a given average energy since
this can be adjusted via a dc voltage applied to the top
gate of the dot in the mesoscopic capacitor [72]. On the
other hand, the sine-drive wave packets may be relevant
for metrological applications but discussing this would go
beyond the scope of the present paper.

We note that for D = 0.12, the electronic wave packet
remains limited to the first half period 0 � t � T/2. At
very low D, we expect this wave packet to be the projection
on the space of single-particle states with positive energy
of the dual of the Martin-Landauer wave packet, that is of
an electronic wave function constant on a time interval.

D = 0.12 D ≈ Dopt D = 0.8
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0.0
0.2
0.4
0.6
0.8
1.0

l

|g( e
)

a
(l

)| a

0
1
2

FIG. 23. Temporal coherences pn(�l) between the electronic
atoms of signal of the a = 0, 1, and 2 Floquet-Bloch bands given
by Eq. (19) as a function of �l for the three operating points of
Fig. 18 in the case of a square drive.

Since the bands are flat for D = Dopt and D = 0.8, no
interperiod coherence is expected as can be seen from the
middle and right panels of Fig. 23. However, when clos-
ing the dot (D ≈ 0.12, left panel), interperiod coherences
for the electronic excitations start to unfold, an expected
consequence of the delocalization of the emitted electronic
excitations over more than a half period. This shows that
the electronic coherence time is given by the electronic
escape time which, in this case, exceeds the duration of
an electronic atom of signal.

APPENDIX H: WAVE FUNCTIONS WITHIN A
LEVITON TRAIN

We define a Levitonoid as a normalized wave function
ψ(t) such that their time translations by multiples of T are
mutually orthogonal and

∑
l∈Z
ψ(t − lT)ψ∗(t′ − lT) is the

excess electronic first-order coherence generated by a T-
periodic train of Lorentzian pulses. As we see, this wave
function is not unique but, in the case of a T-periodic Levi-
ton train, an analytical expression for the minimally spread
Levitonoids can be obtained.

1. The Moskalets atoms of signal

In a recent work [47], Moskalets has identified one
possible Levitonoid as

ψ(t) =
√
τ0

π

1
t − iτ0

∞∏
n=1

t + nT + iτ0

t + nT − iτ0
, (H1)

where T = 1/f is the period and τ0 is the typical time
width of the excitation. This wave function has a spatial
extension given by τ0.

To discuss its energy content, let us use the identity

�(z) = 1
z

∞∏
n=1

(
1 + 1

n

)z

1 + z
n

(H2)

to rewrite the infinite product as a ratio of � functions, up
to a global phase

�[(t − iτ0)/T]
�[(t + iτ0)/T]

= t + iτ0

t − iτ0

∞∏
n=1

(
1 + 1

n

)−2iτ0
(H3a)

×
∞∏

n=1

t + nT + iτ0

t + nT − iτ0
. (H3b)

Then, up to a global phase factor, we can rewrite

ψ(t) =
√
τ0

π

1
t + iτ0

�[(t − iτ0)/T]
�[(t + iτ0)/T]

. (H4)
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Fourier transforming this wave packet gives, up to global
phase factor

ψ(ω) = 1√
N

H(ω)
(

2 sin
νT
2

)2iτ0/T

e−ωintτ0 , (H5)

where ω = ωint + ν, with ν ∈ [0, 2π f [ and thus ωint =
2π f �ω/2π f �. Here, N = f /vF(1 − e−4πτ0/T) is a nor-
malization factor and H the Heaviside step function. We
can then rewrite the wave function as a real part and a
periodic phase:

ψ(ω) = 1√
N

H(ω)eiθ(ω)e−ωintτ0 , (H6)

with the phase satisfying the condition θ(ω + 2π f ) =
θ(ω). This expression shows that the electronic distribu-
tion function of this Levitonoid is the staircase approxi-
mation of an exponential decay, with step widths given by
2π f as expected from T periodicity. Note that the elec-
tronic distribution function does not depend on the phase
θ(ω).

2. The minimally spread atoms of signal

The Moskalets Levitonoids having a spreading τ0, they
are naturally expected to be among the minimally spread
atoms of signals when f τ0 � 1, that is when the Levi-
ton spacing is large compared to their duration. But in the
opposite limit f τ0 � 1, this is certainly not the case. Let us
search for other Levitonoids that could be spread over the
period T and clarify the relation between our algorithm and
Moskalets work [47].

If a quantum electrical current has a time-reversal sym-
metry, which is the case for a Leviton train, then there
must be a set of Wannier wave functions that possess
this symmetry. Consequently, there is a set of real-valued
Wannier functions in the frequency domain: ϕLev(ω) ∈ R.
Assuming that ϕLev(ω) ≥ 0, the time-spreading minimiza-
tion problem becomes trivial and we find that, up to time
translation by T, the minimal wave functions are the ones
that possess the time-reversal symmetry.

In the case of Levitonoids, Eq. (H6) shows that the wave
functions can be written as the product of a real part and
a phase part, the phase part being periodic in time. Thus
the minimization of Eq. (C8) is realized when the mini-
mal wave function has a constant phase. Setting this global
phase to zero, we have the following wave function:

ϕLev(ω) = 1√
N

H(ω)e−ωintτ0 , (H7)

which is time-reversal invariant. In this case, the current
of one pulse is different from the current of one Leviton

of duration τ0. The time-domain expression for this wave
packet is

ϕLev(t) = i√
N ′

1
t

1 − e−2iπ ft

1 − e−2π f (τ0+it) . (H8)

The corresponding average current iLev(t) = −vF |ϕ(t)|2
(in units of −e) is then

iLev(t) ∝ sinc2(π ft)
1 − cos(2π ft)/cosh(2π f τ0)

. (H9)

The overlap between this wave packet and a unique Levi-
ton ϕ1 is given by

|〈ϕLev|ϕ1〉|2 = 1
π f τ0

1 − e−2π f τ0

1 + e−2π f τ0
. (H10)

The behavior when f τ0 � 1 is approached by

|〈ϕLev|ϕ1〉|2 � 1 − (π f τ0)
2

6
(H11)

making the Leviton approximation a fairly good approxi-
mation in this case. When f τ0 � 1, we have a rather slow
decay:

|〈ϕLev|ϕ1〉|2 � 1
π f τ0

. (H12)

3. Obtention from Martin-Landauer’s wave packets

As noticed in Ref. [68, Appendix 5], at zero temperature,
the effect of a T-periodic classical drive Vd is to reshuffle
the Martin-Landauer wave packets associated with a given
period through a unitary transformation of the following
form:

|MLn,l〉 
→
∑
k∈Z

pk[Vd] |MLn+k,l〉 (H13)

in which |MLn,l〉 denotes the time translated to period l
of the single-particle state defined by Eq. (24) and pk[Vd]
is the photoassisted transition amplitude associated with
this drive. In the case of a Leviton train, the photoassisted
amplitudes pk are known and given by [68]

pk<−1 = 0, (H14a)

p−1 = e−2π f τ0 , (H14b)

pk≥0 = (1 − e−4π f τ0)e−2πkf τ0 . (H14c)

Consequently, introducing β = e−2π f τ0 for compacity, for
all states with the Fermi sea (n ≤ −1):

|ML−n,l〉 
→ −β |ML−(n+1),l〉

+ (1 − β2)

n∑
k=1

βn−k |ML−k,l〉 (H15a)
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+ (1 − β2)βn
+∞∑
q=0

βq |MLq,l〉 (H15b)

in which we separate what remains into the Fermi sea
(first line) from what emerges from the Fermi sea (sec-
ond line). This shows that, as expected, the projection of
the single-particle scattering from the space generated by
the Martin-Landauer wave packets of negative energy and
given period onto the space of state generated by the ones
of positive energy is of rank one. This is sufficient to obtain
an electronic atom of signal for the Leviton associated with
the period l is

|Levl〉 =
√

1 − β2
+∞∑
p=0

βp |MLp ,l〉 . (H16)

Since the Martin-Landauer wave packet MLn,l=0 has
a nonzero constant wave function over 2πnf ≤ ω <

2π(n + 1)f and zero for ω ≥ 2π(n + 1)f or ω < 2πnf ,
the wave function of |Lev1〉 in the frequency domain is
exactly given by Eq. (H7), therefore, showing that it is
indeed the minimally spread Levitonoid!

APPENDIX I: RANDOM EMISSION

1. Expression in the frequency domain

Let us start from the excess coherence of a random train
of −e charge Lorentzian pulse

�G(e)(t + τ/2, t − τ/2)

= G(e)F (τ )
cos[2πθp(f τ)] − cos [2π f (τ/2 − iτ0)]

cos [2π f (τ/2 − iτ0)] − cos(2π ft)
.

(I1)

This expression is periodic in t with a period T = 1/f . The
nth harmonics An(τ ) of its Fourier series expansion is then
given by

An(τ ) = −iGF(τ )
cos[2πθp(f τ)] − cos[2π f (τ/2 − iτ0)]

sin[2π f (τ/2 − iτ0)]

× e−2π |n|f τ0e−iπ |n|f τ . (I2)

Performing the Fourier transform along the variable τ

leads to the energy representation of the first-order coher-
ence. Let us notice that the Fourier transform is found
to be zero when ω < π |n|, meaning that the first-order
coherence is nonzero only in the electronic quadrant, as

expected. By looking at the electronic quadrant, we derive

G(e)++,n(ω) = H(ω − π f |n|) e−2ωτ0Fp(ω + πnf ), (I3)

where Fp(ω) is a 2π f -periodic real-valued function
defined by the sum

Fp(ω) = i
π

∑
k∈Z

cos[χp(k)] − 1
k + 2if τ0

eiωkT, (I4)

where χp(x) = 2πθp(2if τ0 + k)− πk. In order to eval-
uate numerically this expression, we decompose Fp =
F (sing)

p + F (reg)
p , where F (sing)

p contains singularities due to
the slow decay (approximately 1/k) at infinity. We have

F (sing)
p (ω) = i

π

∑
k∈Z

cosh(4πpτ0)− 1
k + 2if τ0

eiωkT, (I5)

F (reg)
p (ω) = i

π

∑
k∈Z

cos[χp(k)] − cosh(4πpτ0)

k + 2if τ0
eiωkT. (I6)

The singular part then contributes to the single-electron
coherence by

G(e,sing)
+,n (ω) = 4 H(ω − π f |n|)sinh2(2π fpτ0)

e4π f τ0 − 1
e−2ωnτ0 ,

(I7)

where ωn = 2π f �ω/2π f � if n is even and ωn =
2π f �ω/2π f − 1/2� + π f if n is odd. The regular part
can then be evaluated numerically by direct summation.
To be more precise, we can bound the truncation error on
the regular part, when using K terms on the sum. Using an
asymptotic expansion, we find that the error scales as

ε = 16p(1 − p)(f τ0)
2 sinh(4πpf τ0)

K
. (I8)

On top of the polynomial scaling, we notice an exponen-
tial scaling in p and in f τ0. Actually, as we will see later,
we can use a symmetry in p ↔ 1 − p , to ensure that all
the computations are done at p ≤ 1/2. Using this, it is
reasonable to compute the sum for τ � 1.

When p = 1, the regular contribution cancels out, and
we find the usual expression for a Leviton train. When
p → 0, it is the singular contribution that disappears first
(scaling as p2) leaving only the regular contribution (scal-
ing as p). When p � min(1, f τ0), Fp(ω) = 4π fpτ0 is
constant. Each harmonics of the first-order coherence is
thus an exponential decay

G(e)++,n(ω) = 4π fp H(ω − π |n|f )τ0 e−2ωτ0 . (I9)
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2. Electronic atoms of signal

The electronic atoms of signal describing the random
train’s first-order coherence are obtained by following the
method presented in Sec. III. The projection of the single-
electron coherence on the electronic quadrant has nonzero
matrix elements only for ω± = ν + 2πn±f in which 0 ≤
ν < 2π f and n± are positive integers. This corresponds
to ω = (ω+ + ω−)/2 = ν + π f (n+ + n−) and 
 = ω+ −
ω− = 2π(n+ − n−)f . Then, using Eq. (I3) and the peri-
odicity of Fp(
) in 
 → 
+ 2π f , the excess first-order
electronic coherence can be rewritten as

�0G(e) =
∫ 2π f

0
e−2ντ0Fp(ν)M(ν)

dν
2π f

, (I10a)

M(ν) =
∑

n±∈N

e−2π(n++n−)f τ0 |ν + 2π fn+〉 〈ν + 2π fn−| .

(I10b)

We thus have to diagonalize the operator M(ν) for each
0 ≤ ν < 2π f . We have already seen how to diagonalize it:
for each ν, this operator has rank one and its eigenvector
is the one obtained in Eq. (H16). This immediately shows
that we have the same Floquet-Bloch states (only one band
here) and, therefore, the same electronic atoms of signals
than for the periodic Leviton train (p = 1, Appendices H 2
and H 3).

Only the eigenvalue is modified by randomness:

g(e)(ν) = (
1 − e−4π f τ0

)−1
e−2ντ0Fp(ν). (I11)

When p = 1, the periodic Leviton train with its flat band
with g(e)(ν = 1) is recovered but for p < 1, the band is not
flat anymore. This means that for p < 1, the emission prob-
ability of emission of the Levitonoid is lower than unity
but this also leads to interperiod coherences between the
Levitonoids. A numerical evaluation of the rhs of Eq. (I11)
is shown on Fig. 24, which confirms these features.

Finally, using this last expression, we can rewrite the
zeroth-harmonic of the first-order coherence as

G(e)0 (ω) = (1 − e−4π f τ0)e−2π f � ω
2π f �τ0g(e)(ω). (I12)

By performing the inverse Fourier transform on this
expression, we can thus express the coherences between
the time-shifted Levitonoids as g(e)(l) = TA0(−lT). Thus,
we find

g(e)(l = 0) = p , (I13)

g(e)(l �= 0) = i
2π l

cosh(2π f τ0)− (−1)l cos[2πθp(−l)]
sinh 2π f τ0

.

(I14)

fτ0 = 1/20 fτ0 = 1/5 fτ0 = 1
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FIG. 24. Floquet-Bloch spectrum for the random train of
Lorentzian pulses (it has only one band) for width f τ0 = 1/10,
1/5, and 1 for three different values of p (1/10, 1/2, and 9/10).
Bands are more and more flat when decreasing f τ0 as expected
since, in this limit, one recovers the random emission of a sin-
gle electronic atom of signal per period with probability p . When
p goes to unity, we see the band getting closer to a flat band at
value one, which corresponds to the T-periodic train of Levitons.

This expression satisfies g(e)p (l �= 0) = −g(e)1−p(l)
∗, which

leads to the symmetry property

g(e)p (ω) = 1 − g(e)1−p(−ω). (I15)

We use this symmetry to perform all the numerical compu-
tations at p ≤ 1/2.

3. Resumming interperiod coherences

In Appendix I 2, we see that it is possible to decom-
pose the signal on Levitonoids. In a sense, Levitonoids
are proper atoms of signals, because they do not overlap
when they are time shifted by an integer number of peri-
ods. However, when p < 1, coherences appear between
time shifted Levitonoids.

Remarkably, is it possible to express the excess single-
electron coherence G(e)

Rp
in terms of wave functions associ-

ated with each period (and obtained by applying the trans-
lation operator TT), each of them emitted with probability
p , without any interperiod coherence:

�0G(e) = p
∑
l∈Z

|Glap ,l〉 〈Glap ,l| (I16)

in which |Glap ,l〉 = Tl
T |Glap〉 is obtained by a time trans-

lation by l periods from

|Glap〉 =
∫ +∞

0

√
1 − e−4π f τ0

pf
e−ωintτ0

√
g(e)(ω) |ω〉 dω

(I17)

020314-33



ROUSSEL, CABART, FÈVE, and DEGIOVANNI PRX QUANTUM 2, 020314 (2021)

in which ωint = 2π f �ω/2π f �. We call such a single-
particle state a p-Glattlion in reference to [45]. However,
the overlap of adjacent p-Glattlions is nonvanishing and is
related to the electronic coherences between two different
periods in the minimally spread Levitonoids:

p 〈Glap ,0|Glap ,l〉 =
∫ 2π f

0
g(e)(ν)eiνlT dν

2π f
= g(e)(l).

(I18)

In other words, the coherences between the Levitonoids
are given by the overlap between time-shifted p-Glattlions,
which, therefore, cannot be considered as electronic atoms
of signals. Despite this nonvanishing overlap, it is quite
remarkable that the excess single-electron coherence for
the random train of Levitons can be rewritten in such a
simple form.

Finally, it is worth noting that the 1-Glattlion is nothing
else than the minimal Levitonoid. On the other hand, when
p → 0, a p-Glattlion becomes close to isolated Levitons.
This is related to the fact that when p is small, pulses are
emitted as if they are isolated: the probability for a single
pulse to be separated by a distance at least k from the pre-
vious and the next one is (1 − p)2k, which goes to unity
when p → 0. As such, they do not exhibit Pauli exclusion
principle between pulses.
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