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Resilience of Quantum Random Access Memory to Generic Noise
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Quantum random access memory (QRAM)—memory which stores classical data but allows queries
to be performed in superposition—is required for the implementation of numerous quantum algorithms.
While naive implementations of QRAM are highly susceptible to decoherence and hence not scalable,
it has been argued that the bucket-brigade QRAM architecture [Giovannetti et al., Phys. Rev. Lett. 100,
160501 (2008)] is highly resilient to noise, with the infidelity of a query scaling only logarithmically
with the memory size. In prior analyses, however, this favorable scaling followed directly from the use of
contrived noise models, thus leaving open the question of whether experimental implementations would
actually enjoy the purported scaling advantage. In this work, we study the effects of decoherence on
QRAM in full generality. Our main result is a proof that this favorable infidelity scaling holds for arbitrary
error channels (including, e.g., depolarizing noise and coherent errors). Our proof identifies the origin of
this noise resilience as the limited entanglement among the memory’s components, and it also reveals
that significant architectural simplifications can be made while preserving the noise resilience. We verify
these results numerically using a novel classical algorithm for the efficient simulation of noisy QRAM
circuits. Our findings indicate that QRAM can be implemented with existing hardware in realistically
noisy devices, and that high-fidelity queries are possible without quantum error correction. Furthermore,
we also prove that the benefits of the bucket-brigade architecture persist when quantum error correction is
used, in which case the scheme offers improved hardware efficiency and resilience to logical errors.
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I. INTRODUCTION

Numerous quantum algorithms have been proposed that
claim speedups over their classical counterparts. Such
algorithms typically require that classical data—consti-
tuting a classical description of the problem instance—be
made available to a quantum processor. Frequently, the-
oretical constructions called oracles (or black boxes) are
invoked to provide this access [1]. For example, oracles
can provide quantum access to classical descriptions of
Hamiltonians in quantum simulation algorithms [2–7], and
they are used to encode classical datasets into quantum
states in quantum machine learning algorithms [8–12]. In
practice, however, providing quantum access to classical
data can be nontrivial, and in order to claim a genuine
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quantum speedup, it is crucial that the details of how such
oracles are implemented be specified [13].

Quantum random access memory (QRAM) [14–19] is
a general-purpose architecture for the implementation of
quantum oracles. QRAM can be understood as a general-
ization of classical RAM; the classical addressing scheme
in the latter is replaced by a quantum addressing scheme in
the former. More precisely, in the case of classical RAM,
an address i is provided as input, and the RAM returns the
memory element xi stored at that address. Analogously, in
the case of QRAM, a quantum superposition of different
addresses |ψin〉 is provided as input, and the QRAM returns
an entangled state |ψout〉 where each address is correlated
with the corresponding memory element,

|ψin〉 =
N−1∑

i=0

αi |i〉A |0〉B

QRAM−−−→ |ψout〉 =
N−1∑

i=0

αi |i〉A |xi〉B , (1)
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where N is the size of the memory [20], and the super-
scripts A and B respectively denote the input and output
qubit registers. (In this work, we restrict our attention to
the case where the memory elements are classical, though
in principle QRAM can also be used to query quantum
data.) Remarkably, QRAM can perform operation (1) in
only O(log N ) time, albeit at the cost of O(N ) ancillary
qubits. The short query time, together with the generality
of operation (1), makes QRAM appealing for use in many
quantum algorithms, especially those that require O(log N )
query times in order to claim exponential speedups. Fur-
thermore, QRAM can serve as an oracle implementation
in quantum algorithms for machine learning [8–12,21–23],
chemistry [7,24], and a host of other areas [25–33].

The idea of QRAM has faced skepticism, however, and
the question of whether QRAM can be used to facilitate
quantum speedups, either in principle or in practice, has
not been definitively settled (see, e.g., Refs. [13,34], or
the excellent summary in Ref. [12]). A central practical
concern is the seemingly high susceptibility of QRAM to
decoherence [14,17]. As we discuss below, naive imple-
mentations of QRAM perform operation (1) with an infi-
delity that scales linearly with the size of the memory. Such
implementations are not scalable. As the memory size
increases, the infidelity grows rapidly without quantum
error correction, yet the overhead associated with error cor-
rection can quickly become prohibitive because all O(N )
ancillary qubits need to be corrected [18].

Giovannetti et al. [14,15] proposed the so-called
“bucket-brigade” QRAM architecture as a potential solu-
tion to this decoherence problem, though this solution has
also faced skepticism. Proponents argue that the bucket-
brigade QRAM is highly resilient to noise, in that it can
perform operation (1) with an infidelity that scales only
polylogarithmically with the size of the memory. This
favorable scaling could allow for high-fidelity queries of
large memories without the need for quantum error cor-
rection, thereby mitigating the aforementioned scalability
problem. This noise resilience, however, has only been
derived for contrived noise models that place severe con-
straints on the quantum hardware [14,15,17], thus casting
doubt on the viability of the bucket-brigade architecture.
Indeed, while several proposals for experimental imple-
mentations of QRAM have been put forth [15,16,35–37],
to our knowledge there has yet to be an experimental
demonstration of even a small-scale QRAM [38]. Absent
from this debate has been a fully general and rigorous
analysis of how decoherence affects the bucket-brigade
architecture.

In this work, we study the effects of generic noise on the
bucket-brigade QRAM architecture. Our main result is that
the architecture is far more resilient to noise than was pre-
viously thought (our main scaling results are summarized
in Table I). We rigorously prove that the infidelity scales
only polylogarithmically with the memory size even when

TABLE I. Infidelity scalings of QRAM architectures. Here N
denotes the size of the classical memory being queried, and
bucket brigade is abbreviated as BB. The first three architectures
have circuit depth O(log N ) and require O(N ) qubits. For the
hybrid architectures, M ≤ N is a tunable parameter that deter-
mines the circuit depth, O(M log N ), and the number of qubits,
O(N/M + log N ).

Architecture Infidelity scaling

Fanout QRAM (Sec. II) N log N
Standard BB QRAM (Secs. II, III) log2 N
Two-level BB QRAM (Sec. V) log3 N
Hybrid fanout (Sec. VI) N log N + M log2 N
Hybrid BB (Sec. VI) M log2 N

all components are subject to arbitrary noise channels, and
we verify this scaling numerically. Remarkably (and per-
haps counterintuitively), this scaling holds even for noise
channels where the expected number of errors scales lin-
early with the memory size. Our analysis reveals that this
remarkable noise resilience is a consequence of the lim-
ited entanglement among the memory’s components. We
leverage this result to show that significant architectural
simplifications can be made to the bucket-brigade QRAM,
and that so-called “hybrid” architectures [18,19,33,39],
which implement (1) with fewer qubits but longer query
times, can also be made partially noise resilient. We also
show that these benefits persist when quantum error cor-
rection is used. Importantly, the present work shows that
a noise-resilient QRAM can be constructed from real-
istically noisy devices, paving the way for small-scale,
near-term experimental demonstrations of QRAM.

This paper is organized as follows. In Sec. II, we give
a detailed review of QRAM architectures, and an intu-
itive explanation for the noise resilience of the bucket-
brigade scheme is provided. Our main result is presented
in Sec. III: we prove that the query infidelity of the bucket-
brigade architecture scales only polylogarithmically when
its components are subject to generic mixed-unitary error
channels (the full proof for arbitrary error channels is given
in Appendix D). Importantly, these proofs assume that
all components of the QRAM (both active and inactive)
are susceptible to decoherence, in contrast to prior works.
The remaining sections provide corollaries, generaliza-
tions, and numerical demonstrations of this main result. In
Sec. IV, we propose and implement an efficient classical
algorithm for the simulation of noisy QRAM circuits, and
we use this algorithm to confirm that the bucket-brigade
QRAM is resilient to realistic errors. Next, in Sec. V,
we show that the use of three-level memory elements in
the original bucket-brigade architecture is superfluous and
that the architecture can be significantly simplified (while
maintaining noise resilience) by instead using two-level
memory elements. In Sec. VI, we show that the bucket-
brigade architecture can also be employed to imbue hybrid
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architectures with partial noise resilience. In Sec. VII, we
prove that error-corrected implementations of the bucket-
brigade architecture are resilient to logical errors, and
we discuss the practical utility of error-corrected QRAM.
Finally, in Sec. VIII we conclude by discussing potential
applications.

II. QUANTUM RANDOM ACCESS MEMORY

In both classical and quantum random accesses memo-
ries, each location in memory is indexed by a unique binary
address. To read from the memory, an address is provided
as input, and the memory element located at that address
is returned at the output. In the classical case, transistors
are the physical building blocks of the addressing scheme:
they act as classical routers, directing electrical signals to
the memory location specified by the address bits. Anal-
ogously, in the quantum case, quantum routers are the
fundamental building blocks of the addressing scheme. As
shown in Fig. 1(a), a quantum router is a device that directs
incident signals along different paths in coherent super-
position, conditioned on the state of a routing qubit. For
example, if the routing qubit is in state |0〉 (|1〉) then a qubit
incident on the router is routed to the left (right). If the
routing qubit is in a superposition then the incident qubit is
routed in both directions in superposition, becoming entan-
gled with the routing qubit in the process. Quantum routers
can also be understood through the language of quantum
circuits [Fig. 1(b)]; the routing operation is a unitary that

can be implemented via a sequence of controlled-SWAP
gates (Fredkin gates).

In this section, we review two QRAM architectures
based on quantum routers: the fanout architecture [40] and
the bucket-brigade architecture [14,15]. The fanout archi-
tecture is highly susceptible to noise, and we discuss it in
order to illustrate how the lack of noise resilience funda-
mentally limits QRAM scalability. The noise resilience of
the bucket-brigade architecture is the main focus of this
work.

A. Fanout QRAM architecture

A QRAM can be constructed out of quantum routers as
shown in Fig 1(c) (see Chapter 6 of Ref. [40]). A collection
of routers is arranged in a binary tree, with the outputs of
routers at one level of the tree acting as inputs to the routers
at the next level down. The memory is located at the bot-
tom of the tree, with each of the N memory cells connected
to a router at the bottom level. To query the memory, all
routing qubits are initialized in |0〉, and a register of log N
address qubits is prepared in the desired state (in this work,
all logarithms are base 2). All routing qubits at level � of
the tree are then flipped from |0〉 to |1〉 conditioned on the
�th address qubit. To retrieve the memory contents, a so-
called bus qubit is prepared in the state |0〉 and injected into
the tree at the top node. The bus follows the path indicated
by the routers down to the memory. Upon reaching a mem-
ory cell, the contents of that memory cell are copied into
the state of the bus (see Appendix B for details). Note that

Incident qubit

Router

Left output Right output

Incident

Router

Left

Right

(a) (b)

(c) (d)

Route left Route right

FIG. 1. QRAM implementations. (a) Quantum router. The router directs an incident qubit |b〉 at its top port out of either the left or
right output port conditioned on the state |a〉 of the router. When |a〉 = |0〉 (|1〉), the incident qubit leaves out of the left (right) port. (b)
Example of a quantum circuit that implements the routing operation using two controlled-SWAP gates, one conditioned on the control
being |0〉 (open circle) and the other conditioned on the control being |1〉 (filled circle). (c) Fanout QRAM. Each address qubit controls
the states of all routers within the corresponding level of the binary tree. A bus qubit injected at the top node then follows the path
(blue) to the specified memory element. (d) Bucket-brigade QRAM, utilizing routers with three sates: wait |W〉, route left |0〉, and route
right |1〉. The address qubits themselves are routed into the tree, carving out a path to the memory.
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because we consider classical data, the data can be copied
without violating the no-cloning theorem. For simplicity,
we assume that each memory element xi is a single bit, in
which case a single bus qubit suffices to store the memory
element (higher-dimensional data can be retrieved using
multiple bus qubits). Finally, the bus is routed back out
of the tree via the same path, and all routers are flipped
back to |0〉 in order to disentangle them from the rest of the
system.

Importantly, because the routers operate coherently, the
above procedure allows one to query multiple memory ele-
ments in superposition, as in Eq. (1). If the address qubits
are prepared in a superposition of different computational
basis states, the bus is routed to a superposition of different
memory locations.

In this architecture, the total time required to perform a
query (or, equivalently, the circuit depth) is only O(log N ).
The ability to perform queries in logarithmic time can
be crucial for algorithms that invoke QRAM in order to
claim exponential speedups over their classical counter-
parts. However, this speed comes at the price of a high
hardware cost. To perform operation (1), both the fanout
and bucket-brigade architectures require O(N ) ancillary
qubits to serve as routers. We discuss practical concerns
associated with the high hardware cost more thoroughly
in Secs. VII and VIII. For context, we note that there is a
space-time trade-off in implementing operation (1). At the
other extreme, there are circuits that implement operation
(1) in O(N ) time using only O(log N ) qubits [5,41,42], and
several implementations that leverage this trade-off have
also been proposed [18,19,33,39]. We discuss the effect of
decoherence on these implementations in detail in Sec. VI.

The fanout architecture is impractical due to its high
susceptibility to decoherence. Each address qubit is maxi-
mally entangled with all routers at the respective level of
the tree (similar to a Greenberger-Horne-Zeilinger state),
so the decoherence of any individual router is liable to ruin
the query. As an example, suppose that the routers are sub-
ject to amplitude damping errors. The loss of an excitation
from any router at level � collapses all other level-� routers
and the �th address qubit to the |1〉 state. Any terms in
the superposition where the �th address qubit was in the
|0〉 state prior to the error are thus projected out, thereby
reducing the fidelity by a factor of 2 on average.

More generally, suppose that each router suffers an error
with probability ε at each time step during the query. The
final state � of the full system (address, bus, and routers)
can then be written as a statistical mixture

� = (1 − ε)T(N−1) �ideal + · · · , (2)

where �ideal is the error-free state, T = O(log N ) is the
number of time steps required to perform a query, and the
three center dots denote all states in the mixture where at
least one of the N − 1 routers has suffered an error. We

define the query fidelity as

F = 〈ψout|TrR(�)|ψout〉 , (3)

where TrR indicates the partial trace over the routers. The
routers are traced out because only the address and bus reg-
isters are passed on to whatever algorithm has queried the
QRAM; the routers are ancillae whose only purpose is to
facilitate the implementation of operation (1).

As illustrated by the amplitude-damping example, the
problem with the fanout implementation is that the no-
error state �ideal is generally the only state in mixture (2)
with high fidelity. Neglecting the low-fidelity states, the
query infidelity scales as

1 − F ∼ εNT, (4)

to leading order in ε. We refer to this linear scaling
of the infidelity with the memory size as unfavorable
because error probabilities ε � 1/NT are required to per-
form queries with near-unit fidelity. This stringent require-
ment severely constrains the size of fanout QRAMs. For
example, error probabilities ε ∼ 10−3 would restrict the
maximum size of a high-fidelity fanout QRAM to less
than N ∼ 100 memory cells. While quantum error correc-
tion can be used to suppress the error rates in principle,
the additional hardware overhead can be prohibitive [18]
because all O(N ) routers must be error corrected (see
Sec. VII for a more detailed discussion of error correc-
tion and the associated overhead). Thus, because of its high
susceptibility to decoherence, the fanout architecture is not
regarded as scalable.

B. Bucket-brigade QRAM architecture

In Ref. [14], two modifications to the fanout architec-
ture were proposed, and it was argued that the modified
architecture, termed the “bucket brigade” [Fig. 1(d)], is
highly resilient to noise. The first modification is that the
two-level routing qubits are replaced with three-level rout-
ing qutrits. In addition to the |0〉 (route left) and |1〉 (route
right) states, each router also has a third state, |W〉 (wait).
We refer to the states |0〉, |1〉 as active, and the state |W〉
as inactive. We assume that all routers are initialized in
the |W〉 state, and that the action of the routing opera-
tion [Fig. 1(b)] is trivial when the routing qutrit is in the
|W〉 state. (In Sec. V, we show that these assumptions
may be relaxed, but we make them here for concreteness.)
Each router’s incident and output modes are also now
taken to be physical three-level systems, and each address
qubit is encoded within a two-level subspace of a physical
three-level system.

We have borrowed the terminology of active and inac-
tive routers from earlier works on QRAM [14,17]. While
these prior works assumed inactive routers to be free from
decoherence, we stress that we make no such assumption
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here. As is discussed further in Sec. II C, we assume that
routers are prone to decoherence regardless of whether
they are active or inactive. In this work, we define the terms
“active” and “inactive” only as labels for the different sub-
spaces of a router’s Hilbert space: active ≡ span(|0〉, |1〉)
and inactive ≡ span(|W〉). We do not assume that either of
these subspaces has any special properties (e.g., different
decoherence rates).

The second modification is that the address qubits are
themselves routed into the tree during a query. When an
address qubit encounters a router in the |0〉 (|1〉) state, it is
routed to the left (right) as usual. When an address qubit
encounters a router in the |W〉 state, the states of the router
and incident mode are swapped, so that the router’s state
becomes |0〉 (|1〉) when the incident address was |0〉 (|1〉).
The physical implementation described in Ref. [14] pro-
vides a helpful example to visualize how these operations
could be realized: the authors envisage the routers as three-
level atomic systems, with the address qubits encoded in
the polarization states of flying photons. (Note that the
two polarization states constitute a two-level subspace of a
physical three-level system, since the photonic mode may
also be in the vacuum state.) When a photon encounters
an atom in the |W〉 state, it is absorbed, and in the process
it excites the atom to the |0〉 or |1〉 state conditioned on
its polarization. When subsequent photons encounter the
excited atom, they are routed accordingly. These opera-
tions can also be described using the conventional quantum
circuit model, and in Appendix A we provide a full circuit
diagram.

To query the memory, the address qubits are sequentially
injected into the tree at the root node. The first address
qubit is absorbed by the router at the root node, exciting
it from |W〉 to the {|0〉, |1〉} subspace in the process. The
second address qubit is routed left or right, conditioned on
the state of the router at the root node. The state of the
first address qubit thereby dictates the routing of the sec-
ond. The second address is subsequently absorbed by one
of the routers at the second level of the tree. The process
is repeated, with the earlier addresses controlling the rout-
ing of later ones, carving out a path of active routers from
the root node to the specified memory element. Once all
address qubits have been routed into the tree, the bus qubit
is routed down to the memory and the data are copied as
before (see Appendix B). Finally, the bus and all address
qubits are routed back out of the tree in reverse order
to disentangle the routers. Here again, we emphasize that
multiple memory elements can be queried in superposition,
as in Eq. (1), because all routing operations are performed
coherently.

C. Noise resilience: overview and conceptual
explanation

The bucket-brigade architecture is clearly resilient to
certain types of noise. For example, Arunachalam et al.

[17] studied the bucket-brigade QRAM with routers sub-
ject to |0〉 ↔ |1〉 bit-flip errors, with the |W〉 states assumed
to be error free. In this case, the expected number of
errors is only ε log N , because only the log N active routers
are prone to errors [43]. The expected number of errors
also scales with log N for the error model considered in
Refs. [14–16], where gates involving inactive routers are
assumed to be error free.

For these error models, the query infidelity is

1 − F ∼ εT logα N (5)

to leading order in ε, where α is some constant, and we
recall that T = O(log N ) is the number of time steps. We
refer to this logarithmic scaling of the infidelity with the
memory size as favorable because queries can be per-
formed with near-unit fidelity so long as the error rate
satisfies ε � 1/T logα N . This is a much more forgiv-
ing requirement; memories of exponentially larger size
can be queried relative to the fanout architecture. Indeed,
the exponential improvement in scalability suggests that
quantum error correction is not required to query large
memories with high fidelity, provided physical error rates
are sufficiently low.

Unfortunately, the above error models can be poor
approximations of the noise in actual quantum hardware.
In these contrived models, inactive routers are assumed to
be completely free from decoherence. More realistically,
all routers will be prone to decoherence, independent of
whether they are active or inactive. For example, though
several proposals for experimental implementations of the
bucket-brigade scheme have been put forth [15,16,35–
37], none have proposed a method of engineering routers
that are free from decoherence when inactive. While one
can conceive of implementations in which inactive routers
have decoherence rates that are nonzero but far smaller
than those of active routers, it is not obvious whether such
implementations would enjoy the favorable infidelity scal-
ing. Indeed, Giovannetti et al. [14] conjectured that deco-
herence of inactive routers could significantly increase the
infidelity in this case, owing to the exponentially larger
number of inactive routers. Furthermore, in Refs. [14,17]
the favorable infidelity scaling is portrayed as a direct
consequence of the assumption that inactive routers are
decoherence free.

It is thus natural to ask whether the favorable scal-
ing still holds when inactive routers are not assumed
to be decoherence free. Relaxing this assumption causes
the expected number of errors to increase exponentially,
from O(log N ) to O(N ). Because the expected number
of errors in the fanout architecture is also O(N ), one
might naively expect that the favorable infidelity scaling
no longer holds. However, in the next section we prove
that this is not the case. Perhaps surprisingly, the infidelity
of the bucket-brigade architecture still scales favorably
despite the exponential increase in the expected number of
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+ + + + + ...

FIG. 2. Conceptual picture of noise resilience. Each ket represents the state of the QRAM when a different memory element is
queried, with the superposition of kets representing a superposition of queries to different elements. When a router r suffers an error (red
lightning bolt), it corrupts only the subset of queries where r is active (indicated by thick red kets); other queries in the superposition
succeed regardless. Because most routers are only active in a small fraction of queries, most queries succeed and the total infidelity is
low.

errors. Moreover, the favorable scaling holds for arbitrary
error channels.

The noise resilience of the bucket-brigade architec-
ture can be understood intuitively as a consequence of
the minimal entanglement among the routers; see Fig. 2.
Suppose that one queries all memory locations in equal
superposition. Then in both the fanout and bucket-brigade
architectures, all of the routers are entangled. However,
the degree to which each router is entangled with the rest
of the system is quite different between the two architec-
tures. This difference can be quantified by computing the
entanglement entropy for a given router

S(ρ) = −Tr[ρ log ρ], (6)

where ρ is the reduced density matrix of the router,
obtained by tracing out the rest of the system. In the fanout
architecture, each router is maximally entangled with the
rest of the system; the reduced density matrix is the max-
imally mixed state ρ = I/2 (recall that the fanout archi-
tecture employs two-level routers), for which S(ρ) = 1. In
contrast, in the bucket-brigade architecture, the entangle-
ment entropy of a router depends on its location within the
tree. A router at level � (0-indexed) of the tree is only active
in N2−� of the N different branches of the superposition.
As a result, the entanglement entropy decreases exponen-
tially with depth, S(ρ) ∼ 2−�. Routers deeper down in the
tree are nearly disentangled from the system, and their
decoherence only reduces the query fidelity by an expo-
nentially decreasing amount. Thus, despite the fact that
exponentially many such errors typically occur, the overall
fidelity can remain high. More precisely, if we posit that
the infidelity associated with an error in a router at level
� scales as approximately 2−� due to the limited entangle-
ment, and that εT 2� such routers suffer errors on average,
then the total infidelity scales as

1 − F ∼
log N∑

�=1

(2−�)(εT2�) = εT log N . (7)

The infidelity scales only logarithmically with N because
the exponential increase in the expected number of errors
with � is precisely canceled by the exponential decrease in

the infidelity associated with each. We rigorously justify
these claims in the next section.

III. PROOF OF NOISE RESILIENCE

In this section, we prove that the query infidelity of the
bucket-brigade architecture is upper bounded by

1 − F ≤ AεT log N , (8)

where T = O(log N ) is the time required to perform a
query, ε is the probability of error per time step, and A
is a constant of order 1. This bound holds even when all
N memory elements are queried in superposition, and it
holds for arbitrary error channels, including, e.g., depolar-
izing errors and coherent errors. Moreover, throughout this
paper, we assume no special structure in the classical data
xi, so our bounds hold independent of the data.

Our proof is based on a careful analysis of how errors
can propagate throughout the QRAM. Accordingly, we
begin by defining our error model. We suppose that each
routing qutrit is subject to an error channel in the form of a
generic completely positive trace-preserving map,

ρ → E(ρ) =
∑

i

KmρK†
m, (9)

where the Kraus operators Km obey the completeness rela-
tion

∑
m K†

mKm = I . The error channel is applied simulta-
neously to all routers at discrete time steps throughout the
query [see Eq. (15) below]. In Appendix D, we prove that
bound (8) holds for arbitrary error channels of the form
(9). For the sake of brevity and simplicity, however, here
we restrict our attention to channels where (i) there is a no-
error Kraus operator, K0, that is proportional to the identity,
and (ii) the remaining Kraus operators are proportional to
unitaries, K†

mKm ∝ I . Under these restrictions,

E(ρ) = (1 − ε)ρ +
∑

m>0

KmρK†
m (10)

for some ε ∈ [0, 1]. An operational interpretation of this
channel is that one of the errors Km>0 occurs with prob-
ability ε, and no error occurs with probability 1 − ε.
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Experimentally relevant examples include bit-flip, dephas-
ing, and depolarizing channels. The restriction to this form
of mixed-unitary channel allows us to make two assump-
tions that greatly simplify the proof: (i) the probability that
an error occurs is independent of the router state, and (ii)
the no-error backaction K0 ∝ I is trivial. We make no fur-
ther assumptions about the Kraus operators, and we stress
that they may act nontrivially on the inactive state |W〉,
meaning that inactive routers can decohere.

It is important to note that this error model only
describes decoherence of the routing qutrits; a router’s
incident and output modes may also decohere, and there
may be errors in the gates that implement the routing oper-
ation. At the end of this section, we prove that bound
(8) still holds when including these other errors, but we
neglect them for now to simplify the discussion.

The proof proceeds by direct calculation. To bound the
infidelity, we first write the final state � as a sum over
different error configurations,

� =
∑

c

p(c)�(c), (11)

where an error configuration c specifies which Kraus oper-
ator is applied to each router at each time step. Here,
p(c) is the probability of configuration c, and the pure
state�(c) = |�(c)〉 〈�(c)| is the corresponding final state
of the system (both quantities are defined more formally
below). The fidelity is thus given by

F =
∑

c

p(c)F(c), (12)

where

F(c) = 〈ψout|TrR�(c)|ψout〉 (13)

is the query fidelity of the state �(c). Our approach is to
place an upper bound on the infidelity by deriving an upper
bound on 1 − F(c).

Let us formally define �(c) and p(c). A QRAM query
consists of O(N ) routing operations [Fig. 1(b)] performed
in a predetermined sequence. By design, many of these
operations commute and can be performed in parallel, so
that the entire operation can be written as a quantum cir-
cuit with depth T = O(log N ) (see Appendix A for a circuit
diagram). More precisely, operation (1) can be written as

|ψout〉 |W〉 = UT · · · U2U1 |ψin〉 |W〉, (14)

where |W〉 = |W〉⊗(N−1) is the initial state of the routers
and Ut is a constant-depth circuit. Now, let Kc(r,t) denote
the Kraus operator applied to router r at time step t, and

(a) (b)

Good BadBad

FIG. 3. Error configurations. (a) Example composite Kraus
operator Kc(t). The single-router Kraus operators Kc(r,t) compris-
ing the tensor product Kc(t) are arranged geometrically according
to the routers on which they act. Branches of the tree are classi-
fied as either good or bad according to the locations of the errors
Km>0. (b) Query to an element k ∈ g(c). Routers are labeled with
their ideal, error-free states, and routers outlined in red suffer
errors. Because one of the active routers suffers an error, the
query is liable to fail.

define the composite Kraus operator Kc(t) = ⊗N−1
r=1 Kc(r,t)

[see Fig. 3(a)]. The final state |�(c)〉 is

|�(c)〉 = 1√
p(c)

[UTKc(T) · · · U1Kc(1)] |ψin〉 |W〉. (15)

The requirement that |�(c)〉 is normalized defines the
probability p(c) of obtaining state �(c) in mixture (11).
Note that

∑
c p(c) = 1 follows from the Kraus operators’

completeness relation.
For a given error configuration c, it is convenient to clas-

sify branches of the tree as either good or bad, depending
on whether errors Km>0 are ever applied to the routers in
the branch [Fig. 3(a)]. More precisely, let i denote the set
of all routers in the ith branch of the tree (corresponding
to address i), and let c denote the set of all routers that
have an error Km>0 applied to them at some time step. A
branch i is defined to be good if i ∩ c = ∅, and bad other-
wise. To keep the notation simple, we use g(c) to denote
the set of good branches. As illustrated in Fig. 3(b), queries
to addresses i ∈ g(c) are liable to fail because they rely on
routers that suffer errors.

The main observation underlying our proof is that the
propagation of errors is constrained when memory ele-
ments ∈ g(c) are queried. Roughly speaking, errors do not
propagate from bad branches into good branches. More
precisely, for any i, j ∈ g(c), errors do not propagate into
branch j during a query to element i. We illustrate this
fact with two examples, shown in Figs. 4(a) and 4(b). In
general, errors in the bad branches can propagate. They
can even propagate into an output mode of a router r in
branch j ∈ g(c), but they can never propagate into branch
j . Figure 4(a) shows an example of how such an error
propagates through r’s routing operation in the case where
a memory element i = j is queried. Because j ∈ g(c),
r’s routing qutrit suffers no errors and is thus in |W〉.
The action of the routing operation is trivial for a router
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Incident

Router

Left

Right

Incident

Router

Left

Right

(a)

(b)

Incident

Router

Left

Right

(c)

FIG. 4. Error propagation. (a),(b) Constrained propagation
during queries to elements ∈ g(c). The error in the leftmost router
can propagate upward into the left output of the router indi-
cated by the dashed box. The circuits on the left show that the
error does not propagate further, regardless of whether the router
is inactive (a) or active (b). In the circuit diagrams, red boxes
denote errors Km>0, and the red arrows indicate how the error
propagates (i.e., how the error transforms under conjugation by
the routing operation). (c) Error propagation is not constrained
during queries to elements ∈ g(c). Note that the state of the router
dictates how the error propagates in these examples.

in |W〉, so the error does not propagate to other modes.
(We reiterate that we are assuming error-free gates; gate
errors are discussed at the end of this section.) Similarly,
Fig. 4(b) shows an example of how errors propagate in the
case where j is queried. The error-free routing qutrit is in
|1〉, so the routing operation acts nontrivially on only the
incident and right output modes. The error in the left out-
put mode does not propagate upward. For comparison, in
Fig. 4(c) we illustrate that the propagation of errors is not
constrained in this way when memory elements k ∈ g(c)
are queried. As an aside, we note that the constrained
error propagation can be understood as a sort of error
transparency [44–46]: when elements ∈ g(c) are queried,
the errors in the bad branches commute with the routing
operations in the good branches.

The constrained propagation of errors has two important
consequences. The first is that a query to memory ele-
ment i ∈ g(c) always succeeds, meaning that the address
and bus registers are in the desired state |i〉A |xi〉B at the
end of the query. This follows from the fact that errors

cannot propagate to any of the routers in branch i. The
second consequence is that, if multiple memory elements
i, j , . . . ∈ g(c) are queried in superposition, the address
and bus registers are disentangled from the routers at the
end of the query. This follows from the fact that errors
are restricted to propagate within the bad branches, and
their propagation is unaffected by routers outside these
branches. Figures 4(a) and 4(b) provide an example. As
a result, even though errors can propagate nontrivially
among the bad branches during the query, the final state
of the routers is independent of which memory element in
g(c) is queried.

It follows that the final state |�(c)〉 can be written as

|�(c)〉 = |good(c)〉 + |bad(c)〉 (16)

with

|good(c)〉 =
( ∑

i∈g(c)

αi |i〉A |xi〉B
)

|f (c)〉R . (17)

Here, |f (c)〉R denotes the final state of the routers with
respect to the good branches, and |bad(c)〉 contains the
i ∈ g(c) terms. We now use expression (16) to place a
lower bound on F(c). First note that

F(c) ≥ |〈ψout, f (c)|�(c)〉|2 , (18)

which can be obtained by performing the partial trace
in Eq. (13) using a basis that contains the state |f (c)〉
and neglecting the contributions from other states. Then,
defining �(c) as the weighted fraction of good branches,

�(c) = 〈good(c)|good(c)〉 =
∑

i∈g(c)

|αi|2, (19)

we have

〈ψout, f (c)|good(c)〉 = �(c), (20)

|〈ψout, f (c)|bad(c)〉| ≤ 1 −�(c). (21)

To obtain inequality (21), we have used the fact that |�(c)〉
is normalized and that 〈good(c)|bad(c)〉 = 0. The latter
follows from the orthogonality of different initial address
states, 〈i|j 〉A = 0 for i = j , and the fact that all subsequent
operations, including the Kraus operators, are unitary and
thus preserve inner products (this follows from our earlier
restriction to mixed-unitary error channels; general chan-
nels are covered by the proof in Appendix D). Substituting
Eqs. (16), (20), and (21) into bound (18) and applying the
reverse triangle inequality allows us to bound the infidelity
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as a function of �(c):

F(c) ≥
{

[2�(c)− 1]2, �(c) ≥ 1/2,
0, �(c) < 1/2.

(22)

To proceed further, we compute the expected fraction of
good branches, E(�), where the expectation value is taken
with respect to the distribution of error configurations, i.e.,
E(f ) = ∑

c p(c)f (c). This expectation value can be com-
puted recursively for trees of increasing depth. Let Ed(�)

denote the expected fraction of good branches for a depth-d
tree. For a depth-1 tree, the expected fraction is equivalent
to the probability that the lone router never suffers an error,
E1(�) = (1 − ε)T. For deeper trees, the expected fraction
of error-free routers at each level is (1 − ε)T, so we have
the recursive rule

Ed+1(�) = (1 − ε)TEd(�). (23)

Applying this rule to the initial condition E1(�), we obtain

Elog N (�) = (1 − ε)T log N . (24)

We can now combine the above results to bound the
infidelity. We have

F = E(F) ≥ E(
√

F)2 (25)

≥ [2Elog N (�)− 1]2 (26)

= [2(1 − ε)T log N − 1]2, (27)

where the second inequality follows from Eq. (22)
under the assumption that E(�log N ) ≥ 1/2. Applying
Bernoulli’s inequality yields the desired result,

1 − F ≤ 4εT log N , (28)

which holds for εT log N ≤ 1/4. This bound is our main
result, and we stress that it holds even when all N elements
are queried in superposition, and that it is derived under the
assumption that all routers are susceptible to decoherence,
regardless of whether they are active or inactive.

We offer two additional remarks on the proof. First,
we reiterate that while the above proof holds only for
mixed-unitary error channels, in fact the favorable infi-
delity scaling holds for arbitrary error channels, which
we prove in Appendix D. Second, the favorable scaling
can be interpreted as a consequence of the limited entan-
glement among the routers, as discussed in Sec. II. This
limited entanglement manifests in Eqs. (16) and (17). The
fact that a router at level � is active in only N2−� of the
N branches implies both that the router’s entanglement
entropy decreases exponentially with �, and that only N2−�
branches are corrupted when it suffers an error.

We conclude this section by describing four simple
extensions of the proof that cover other cases of interest.

1. Initialization errors. Suppose that each router has
some probability ε of not being initialized to |W〉 prior to
the query. Such errors can be viewed as router errors of
the form (9) that occur during the 0th time step. As such,
they are also covered by the proof provided one replaces
T → T + 1 in the equations above. In Sec. V, we show
that, in fact, one can make an even stronger statement:
the infidelity scales favorably even when the QRAM is
initialized in an arbitrary state.

2. Gate errors. Faulty implementation of the routing
operation can be described without loss of generality as
a composition D ◦ R, of some error channel D followed
by the ideal routing operation R. Provided that D’s Kraus
operators are proportional to unitaries, and that there is a
no-error Kraus operator proportional to the identity, then
D can also be written in the form (10), and the proof
proceeds as above. Note that the propagation of errors
is still constrained in the case of gate errors because all
routing gates in good branches are error free by construc-
tion.

3. Alternate gate sets. We have defined the routing
operation as a sequence of two controlled-SWAP gates
[Fig. 1(b)], but this same operation could also be decom-
posed into other types of gates, e.g., into Toffolis, or
Clifford + T gates. Bound (28) holds for any choice of
gate decomposition. To see that the bound holds, con-
sider that any error that propagates nontrivially through a
given routing operation can be categorized as occurring
either before or during that operation. The propagation
of errors that occur before the operation is determined
solely by the conjugation of the error with the entire rout-
ing operation (Fig. 4), which is unaffected by the choice
of decomposition. In contrast, the propagation of errors
that occur during the operation will generally depend on
the choice of the decomposition. However, such errors
can equivalently be described as a faulty implementation
of the routing operation itself, so they do not spoil the
favorable error scaling by the argument in the previous
paragraph.

4. Correlated errors. The noise resilience also persists in
the presence of correlated errors that afflict a constant num-
ber of adjacent routers in the tree. The proof assumes that
if any error (correlated or otherwise) occurs in a branch
then that branch does not contribute to the fidelity. As
such, whether an error afflicts only a given router r or
also some of r’s child routers lower in the tree is irrele-
vant to the proof. The effects of correlated errors can thus
be incorporated simply by augmenting ε to also include the
probability that a router is among those afflicted by a corre-
lated error. For correlated errors afflicting only a constant
number of adjacent routers, the resulting increase in ε is
independent of N , so the query infidelity still scales only
polylogarithmically with N .
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IV. CLASSICAL SIMULATION OF NOISY QRAM
CIRCUITS

In this section, we verify bound (28) through numerical
simulation of noisy QRAM circuits. While full state vector
simulations require exp(N ) memory and quickly become
intractable as the QRAM size grows, our simulations are
enabled by a novel classical algorithm with space and time
complexity poly(N ).

The main observation underlying the algorithm is that
any quantum circuit consisting of the following elements
can be simulated efficiently classically: state preparation in
the computational basis, and gates from the set {SWAP, con-
trolled SWAP}. Such circuits are essentially classical—the
system begins in a definite computational basis state, and
the SWAP-type gates act only as permutations so that the
system remains in a computational basis state through
every step of the circuit. The simulation proceeds simply
by tracking the (classical) state of the system. Furthermore,
for initial states that are a superposition of polynomi-
ally many different computational basis states, it follows
from linearity that the action of any circuit composed of
these SWAP-type gates can also be efficiently simulated.
QRAM circuits can thus be efficiently simulated because
they consist of SWAP-type gates acting on O(N ) qubits
or qutrits, and the system is initialized in a superposi-
tion of only O(N ) computational basis states (one for each
address). In fact, QRAM circuits are examples of so-called
efficiently computable sparse (ECS) operations, whose
efficient classical simulation is described in Ref. [47].

For context, we note that this approach is similar in
spirit to the Gottesman-Knill theorem [48], which states
that any Clifford circuit with preparation and measurement
in the computational basis can be simulated classically
in polynomial time. Because QRAM circuits necessar-
ily employ non-Clifford gates (controlled SWAP), however,
the theorem does not directly apply. Still, the similari-
ties are apparent: restricting the allowed gates and state
preparations enables an efficient classical description of the
system, making efficient simulation possible.

In addition, for a wide variety of error models, noisy
QRAM circuits can be simulated efficiently using Monte

Carlo methods. To simulate noisy circuits, the space of
error configurations is randomly sampled according to
the distribution p(c). For each sampled configuration c
from a set of samples S, we compute the final system
state |�(c)〉, and we obtain the fidelity by averaging F =
(1/|S|)∑c∈S F(c). This sampling procedure is efficient
provided that two criteria are satisfied: first, that the state
|�(c)〉 is efficiently computable, and second, that sampling
from p(c) is efficient. A sufficient condition for satisfying
these two criteria is that the error channel maps compu-
tational basis states to other computational states, i.e., the
channel’s Kraus operators Km satisfy

Km |i〉 ∝ |i′〉 (29)

for all m, where |i〉 , |i′〉 ∈ {|0〉, |1〉, |W〉} are computational
basis states. The first criterion is satisfied because Eq. (29)
guarantees that a QRAM circuit interspersed with applica-
tions of the Kraus operators Km is still ECS. The second
criterion is satisfied because the distribution p(c) can be
sampled efficiently by applying errors independently to
each router (with appropriate probability) at each time step
as the simulation proceeds. In detail, suppose that at time
t the system is in a state |ψ(t)〉 that is a superposition of
polynomially many computational basis states,

|ψ(t)〉 =
∑

{i1,...,iN−1}∈C

αi |i1, i2, . . . , iN−1〉, (30)

where |ir〉 denotes the state of router r, and the cardinal-
ity of the set C is O(polyN ). The probability that a Kraus
operator Km is applied to router r is

Tr[K†
mKmρr], (31)

where ρr(t) = Trr̄[|ψ(t)〉 〈ψ(t)|] is the reduced density
matrix of router r, with Trr̄ denoting the partial trace over
the rest of the system. Equation (29) guarantees that this
probability is efficiently computable, so sampling from the
possible errors at time t is also efficient. This sampling pro-
cedure is repeated at each time step in order to sample from
the full error configuration.
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1 5 01

(c)
Dephasing

1 5 01
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FIG. 5. Favorable error scaling. For a variety of error channels, the query infidelity (black dots) is calculated numerically and plotted
as a function of the tree depth log N (note the logarithmic scaling on both axes). The region defined by upper bound (28) is shown in
gray in each plot. Plotted infidelities are averages over many randomly generated binary data sets {x0, . . . , xN−1}. Each such data set is
generated by randomly choosing each xi to be 0 or 1 with equal probability. Error bars are smaller than the dot size. The error rate for
all plots is ε = 10−4.
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We apply this algorithm in order to compute the query
infidelity for QRAM circuits with routers subject to a vari-
ety of noise channels. The results (Fig. 5) confirm that the
QRAM query infidelity scales favorably in the presence of
realistic noise channels acting on all of the memory’s com-
ponents. We stress that, for such channels, the expected
number of errors generally scales linearly with N . Results
for qutrit depolarizing, bit-flip, and dephasing channels
are shown in panels (a), (b), and (c), respectively (see
Appendix C for Kraus decompositions for each channel).
These channels are all of the form (10), so the query
fidelity is subject to bound (28). The numerical results are
all clearly consistent with this bound, and the expected
1 − F ∝ log2 N scaling is evident on the log-log scale. In
panels (d) and (e), we show numerical results for qutrit
decay and heating channels (Appendix C). We find that the
query fidelities for these channels also satisfy bound (28).
Note, however, that the decay and heating channels are not
mixed-unitary channels, so the query fidelities are subject
to the general bound derived in Appendix D, rather than
Eq. (28).

V. NOISE RESILIENCE WITH TWO-LEVEL
ROUTERS

In Sec. III, we proved that the query infidelity of the
bucket-brigade QRAM scales favorably, even when inac-
tive routers are subject to decoherence. It is thus natural
to ask whether distinguishing between active and inactive
routers is useful, and in fact whether the use of three-
level routers is necessary in the first place. In this section,
we show that the answer is no—the query infidelity still
scales only polylogarithmically for QRAMs constructed
from noisy two-level routers. As in Sec. III, the argument
presented to justify this claim is based on a careful anal-
ysis of how errors propagate. Furthermore, we show that
this same argument also reveals that noise resilience per-
sists when the QRAM is initialized in an arbitrary state,
and when the routing circuit [Fig. 1(b)] is modified. Taken
together, the results in this section show that the noise
resilience of the bucket-brigade scheme is a robust prop-
erty that is insensitive to implementation details. They
also show that existing experimental proposals [16,35]
employing two-level routers are noise resilient.

Consider a QRAM constructed from routers with only
two states: |0〉 (route left) and |1〉 (route right). Routers
are thus always active. For concreteness, we suppose that
the routing operation is implemented using the circuit in
Fig. 1(b), and that all routers are initialized in |0〉, though
these assumptions can be relaxed. Unfortunately, the proof
from Sec. III cannot be directly applied to show that the
query fidelity also scales favorably in this case. The proof
fails in the case of two-level routers because the propaga-
tion of errors is no longer so highly constrained. Recall that
in the case of three-level routers, errors do not propagate

(a)

(b)

Incident

Router

Left

Right

Incident

Router

Left

Right

FIG. 6. Error propagation with two-level routers. (a) A query
to memory element j ∈ g(c), with an error Km>0 applied to the
red-outlined router. The circuit on the left shows how the error
propagates through the router indicated by the dashed box. In
this case, the error does not propagate into branch j . (b) A query
to a different memory element i ∈ g(c). In this case, the error
propagates upward into branch j , in contrast to the situation in
(a).

from bad branches into good branches. More precisely,
for any i, j ∈ g(c), errors do not propagate into branch j
when branch i is queried. This is not the case for two-level
routers: while errors do not propagate into branch i when
branch i is queried, they can propagate into other branches
j , as illustrated in Fig. 6. Because of this difference, when
multiple memory elements i, j , . . . ∈ g(c) are queried in
superposition, it is not guaranteed that the address and bus
registers will be disentangled from the routers at the end of
the query. Thus, Eqs. (16) and (17) no longer hold. Instead,
the final state |�(c)〉 is given by

|�(c)〉 =
∑

i∈g(c)

αi |i〉A |xi〉B |fi(c)〉R + |bad(c)〉, (32)

where |fi(c)〉 denotes the now address-dependent final state
of the routers, and |fi(c)〉 = |fj (c)〉 in general. As a result,
the i, j ∈ g(c) terms are no longer guaranteed to be in
coherent superposition after tracing out the routers. Rather,
the final state of the address-bus system is liable to contain
an incoherent mixture of these terms. That is, the final den-
sity matrix can contain terms of the form |i, xi〉 〈i, xi| and
|j , xj 〉 〈j , xj | without |i, xi〉 〈j , xj | or |j , xj 〉 〈i, xi| terms. This
loss of coherence reduces the fidelity.

We now proceed to estimate this reduction in fidelity.
We find that the reduction is mild, such that the infidelity
still scales only polylogarithmically with the memory size.
Our approach is to isolate the subset of branches in g(c)
for which the sort of damaging error propagation described
above does not occur. Explicitly, we define the subset
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g̃(c) ⊆ g(c) as the largest subset such that, for any i, j ∈
g̃(c), errors do not propagate into branch j during a query
to element i. We then have |fi(c)〉 = |fj (c)〉 by the same
argument as given in Sec. III. It follows that, if multiple
memory elements in g̃(c) are queried in superposition, the
address and bus registers will be disentangled from the
routers at the end of the query.

Having defined g̃(c) as the subset of good branches
without damaging error propagation, we are free to define
all other branches as bad and then proceed exactly as in
Sec. III. In particular, we analogously define

�̃(c) =
∑

i∈g̃(c)

|αi|2 (33)

as the weighted fraction of good branches, and

F ≥ [2E(�̃)− 1]2 (34)

follows as the analog of inequality (26). Because g̃(c) ⊆
g(c), we have

E(�̃) = (1 − δ)E(�) (35)

for some δ ∈ [0, 1] to be determined. Proceeding as in
Sec. III, it follows that the infidelity satisfies the bound

1 − F ≤ 4εT log N + 4δ, (36)

assuming that εT log N + δ ≤ 1/4.
We can estimate δ by computing the average proba-

bility that errors propagate from bad branches into good
branches. More specifically, we compute the probability
that an error propagates into a branch i ∈ g(c) when some
other branch j ∈ g(c) is queried. Suppose that a router r
suffers an error at time step t, and let Pr→i(t) denote the
probability of this error propagating into branch i. Then, to
leading order in ε,

δ = ε
∑

r,t

Pr→i(t)+ O(ε2), (37)

which can be understood as the total probability that an
error occurs and propagates into branch i. To compute

∑
r,t Pr→i(t) to leading order, we observe that errors are

generally free to propagate from a router’s left output to its
input, as illustrated in Fig. 6(b). This is because, by default,
all routers are initialized in |0〉, for which the routing oper-
ation swaps the states at the incident and left ports. In
contrast, for an error to propagate upward from a router’s
right output, an additional error would be required to flip
the router from |0〉 to |1〉. Thus, only the errors that can
reach branch i by propagating upward exclusively through
the left outputs of routers contribute to

∑
r,t Pr→i(t) to lead-

ing order in ε. A conservative overestimate is thus obtained
by first enumerating all routers r that are connected to i
through the left ports of other routers, then pessimistically
taking Pr→i(t) = 1 for each. There are at most log2 N such
routers, so

δ ≤ εT log2 N + O(ε2). (38)

Substituting this expression into Eq. (36), we obtain

1 − F � 4εT(log N + log2 N ). (39)

Here we use the symbol “�” to contrast this bound with
Eq. (28); we proved bound (28) rigorously, while we
have obtained Eq. (39) through a scaling argument. As
such, it is appropriate to focus only on the scaling of
Eq. (39). We see that the infidelity still scales only poly-
logarithmically with the memory size, indicating that a
bucket-brigade QRAM constructed from noisy two-level
routers also exhibits noise resilience. Note, however, that
the infidelity here scales with log3 N [recall that T =
O(log N )], as opposed to log2 N in the case of three-
level routers. Both scalings are still favorable according
to our definition, but the discrepancy indicates that three-
level routers impart better noise resilience than two-level
routers.

We simulate noisy QRAM circuits with two-level
routers in order to verify this noise resilience. Simula-
tion results are shown in Fig. 7. For all noise channels
simulated, the query infidelity is observed to scale polylog-
arithmically with the memory size, as expected. Moreover,

10–2

10–1

10–3

10–4

Bit flip Dephasing Damping Heating

1 5 01

(a)
Depolarizing

Slope = 2.42

1 5 01

(b)

1 5 01

(c)

1 5 01

(d)

1 5 01

(e)

Slope = 2.57

Depth Depth Depth Depth Depth

Slope = 1.97 Slope = 1.86 Slope = 2.68

FIG. 7. Favorable error scaling with two-level routers. For a variety of error channels, the query infidelity (black dots) is calcu-
lated numerically and plotted as a function of the tree depth log N . Linear fits for each data set are shown as dashed lines, with the
corresponding slopes given on each plot. Fits are performed only on data points with log N ≥ 3 so that the slopes are not skewed by
finite-size effects at small log N . Slopes less than or equal to 3 are consistent with the scaling argument in the text. The error rate for
all plots is ε = 10−4.

020311-12



RESILIENCE OF QUANTUM RANDOM ACCESS MEMORY... PRX QUANTUM 2, 020311 (2021)

the observed scaling exponents are less than or equal to 3
in all cases, consistent with the pessimistic 1 − F ∼ log3 N
scaling given above.

It is interesting to note that two-level routers are more
resilient to certain noise channels than others, as quan-
tified by the observed differences in scaling exponents.
For example, the infidelity under the dephasing channel is
observed to scale approximately as 1 − F ∼ log2 N . This
relatively mild scaling can be explained as follows. When
the dephasing errors are propagated through the QRAM
circuit, they may act nontrivially on the final state of the
address and bus registers, but they act trivially on the final
state of the routers (the all-|0〉 state). As a result, the final
state of the routers is the same for every address: |fi(c)〉 =
|fj (c)〉 for all i, j . Hence, g̃(c) = g(c), and the bound from
Sec. III applies. For the other channels, g̃(c) = g(c) in gen-
eral, consistent with observed scaling exponents greater
than 2. The case of amplitude damping is also interesting to
consider: the expected number of errors for this channel is
only εT log N because only log N excitations are injected
into the tree. Because T = O(log N ), one expects the infi-
delity to scale with log2 N . The observed slope of 1.86 is
somewhat smaller owing to the fact that, in our simula-
tions, excitations are only susceptible to damping while
they reside in the tree.

The scaling argument presented in this section also suf-
fices to show that the noise resilience persists in two other
interesting situations: when the QRAM is initialized in an
arbitrary state, and when the routing circuit is modified.
Regarding initialization, observe that the above argument
is straightforwardly modified to cover the case where all
routers are initialized in |1〉 rather than |0〉. Indeed, such
an argument holds regardless of whether a given router
is initialized in |0〉 or |1〉. It follows that the query infi-
delity scales favorably when the QRAM is initialized in
an arbitrary state [49] (though some additional care must
be taken when copying data to the bus—see Appendix B
for details). This observation has great practical utility, as
it means that QRAM can be constructed even from phys-
ical components that cannot reliably be initialized to a
particular state.

Regarding modifications to the routing circuit, it is help-
ful to consider an example. In Ref. [35] a modified routing
circuit was proposed in which one of the controlled-SWAP
gates in Fig. 1(b) is replaced by a SWAP gate. This mod-
ification has nontrivial effects on how errors propagate.
With the modified circuit, errors can propagate from bad
branches into good branches even when three-level routers
are used. However, this is the same sort of damaging error
propagation as is illustrated in Fig. 6. Indeed, from the per-
spective of error propagation, the effect of this modification
to the routing circuit is equivalent to replacing three-level
routers with two-level routers. Accordingly, the argument
above can be directly applied to show that the favorable
scaling persists with the modified circuit. This example

demonstrates that noise resilience is not a specific feature
of the routing circuit [Fig. 1(b)].

Taken together, the results from this section demonstrate
that the noise resilience of the bucket-brigade architecture
is a robust property that is insensitive to implementation
details. This observation affords a great deal of freedom to
experimentalists in deciding how the routers and routing
operations could be implemented in practice.

VI. HYBRID ARCHITECTURES

The bucket-brigade architecture allows one to perform
queries in O(log N ) time using O(N ) qubits. This allo-
cation of resources represents one extreme; at the other
extreme are architectures [5,41,42] that perform queries
in O(N log N ) time using O(log N ) qubits. In fact, there
exists a family of architectures that interpolate between
these two extremes to leverage this space-time trade-off
[18,19,33,39]. We refer to these as hybrid architectures,
and in this section we study their noise resilience. We find
that hybrid architectures can be imbued with a partial noise
resilience when they employ the bucket-brigade QRAM
as a subroutine. As a result, these hybrid bucket-brigade
architectures can have significantly higher query fidelities
than other architectures that require the same resources.

One of the primary benefits of the bucket-brigade archi-
tecture is that queries can be performed in only O(log N )
time. These fast query times are essential for algorithms
that must rapidly load large classical data sets in order to
claim exponential speedups over their classical counter-
parts, e.g., quantum machine learning algorithms [8–12].
However, the O(N ) hardware overhead that enables such
fast queries is practically daunting, and not all algorithms
require such fast queries in the first place. In algorithms
that only require comparatively small data sets to be
loaded, e.g., simulating local Hamiltonians [2–7], slower
query times can be sufficient. Circuits that use fewer qubits
at the price of longer query times are better suited for such
algorithms.

Figure 8 provides a straightforward example of such a
circuit. To query a memory of size N , a sequence of N
multiply controlled Toffoli gates is applied, where each
gate has log N controls (the address qubits) and one target

0 1 2 3 4 5 6 7

Add.

Bus

FIG. 8. QROM circuit. The circuit implements operation (1)
by iterating over all N possible states of the address register. The
j th gate flips the state of the bus qubit if the address register
(Add.) is in state |j 〉 and xj = 1; otherwise, the gate acts trivially.
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(the bus qubit). The circuit sequentially iterates over all N
possible addresses, flipping the bus qubit conditioned on
the corresponding classical data. The circuit requires only
O(log N ) qubits, but it has depth O(N log N ), since each
multiply controlled Toffoli gate can be performed in depth
O(log N ) [50]. Adopting the nomenclature introduced in
Ref. [5], we refer to such circuits as quantum read-only
memory (QROM). We note that this circuit can be fur-
ther optimized to reduce the depth, as shown in Ref. [5].
We omit these optimizations for simplicity, as they do not
affect our main conclusions concerning the effects of noise.

More generally, circuits can be constructed that trade
longer query times for fewer qubits by combining QROM
and QRAM, as shown in Fig. 9. We introduce a tunable
parameter M ≤ N , defined to be a power of 2. That is,
M = 2m, with m an integer in the interval [0, log N ]. The
idea is to divide the full classical memory into M blocks,
each with N/M entries. These blocks are queried one-
by-one using a QRAM of size N/M concatenated with
a QROM-like iteration scheme. The total hardware cost
of the scheme is O(log N + N/M ), comprising O(log N )
qubits for the address and bus registers and O(N/M )

ancillary qubits for the QRAM. The total circuit depth is
O(M log N ) because each of the M iterations in the circuit
can be performed in depth O(log N ). Therefore, by tuning
the parameter M , one can interpolate between large-width,
small-depth circuits like QRAM, and small-width, large-
depth circuits like QROM. The hybrid circuit reduces to
QRAM for M = 1 and to QROM for M = N . We note
that the circuits we introduce in Fig. 9 are very similar
to those in Refs. [18,19,33,39]. The main difference is
that our circuits explicitly invoke QRAM as a subroutine,
which makes the analysis of their noise resilience more
straightforward.

Let us consider the effects of noise on these circuits.
We first consider QROM, then turn to the hybrid circuits.

One can easily observe that QROM does not possess any
intrinsic noise resilience. For example, when all memory
elements are queried in equal superposition [αi = 1/

√
N

in Eq. (1)], a single dephasing error at any location in the
QROM circuit reduces the query fidelity to 0. The effects
of bit flips are similarly detrimental, assuming there is no
contrived redundancy in the classical data. More gener-
ally, we can follow the approach of Sec. III and express
the QROM query fidelity as F = ∑

c p(c)F(c), where the
error configuration c specifies which Kraus operators are
applied at each location in the circuit, and F(c) is the
final state fidelity of the address and bus registers given
configuration c. In the case of QROM, only the error con-
figuration with no errors is guaranteed to have unit or
near-unit fidelity in general [51]. There are O(N log2 N )
possible error locations, so it follows that the QROM query
infidelity scales as

1 − FQROM ∼ εN log2 N , (40)

to leading order. Therefore, QROM is not noise resilient,
since near-unit query fidelities generally require ε � 1/N ,
neglecting logarithmic factors.

Similarly, the hybrid circuits do not exhibit noise
resilience when the QRAM subroutines are implemented
with the fanout architecture. Recall from Sec. II that
the fanout architecture is not noise resilient; only the
fanout’s no-error configuration is guaranteed to have high
fidelity in general. Because neither QROM nor the fanout
QRAM are noise resilient, only the no-error configuration
of the hybrid fanout circuit is guaranteed to have high
fidelity. Since the number of possible error locations is
O[M log N (log N + N/M )], the query fidelity scales as

1 − Fhybrid,fanout ∼ ε(N log N + M log2 N ), (41)

QRAM QRAM

Add.

Bus ...

FIG. 9. Hybrid circuit. All M = 2m possible states of the first m address qubits are iterated over sequentially, as in QROM. Con-
ditioned on these qubits, the remaining address qubits are used to query an (N/M )-cell classical memory via QRAM. In the circuit
shown, log N = 4 and m = 2. The boxes labeled QRAM implement operation (1), using either the fanout or bucket-brigade archi-
tecture. At the j th iteration (j ∈ [1, M ]), the data elements {x[(j −1)N/M ], . . . , x[j (N/M)−1]} are queried by the QRAM. Only the first two
iterations are shown. The circuit depth is O(M log N ), and the circuit uses O(N/M + log N ) qubits, which includes the O(N/M )

ancillary qubits required by the QRAM (not shown). The initial state of the QRAM can be arbitrary (see Sec. V).
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to leading order. Here again, error rates ε � 1/N are
required for near-unit query fidelity, neglecting logarithmic
factors.

In contrast, the hybrid circuits do exhibit partial noise
resilience when the QRAM subroutines are implemented
with the bucket-brigade architecture. Because the bucket-
brigade QRAM is resilient to noise, error configurations
with errors occurring exclusively in the QRAM subrou-
tines can still have high fidelities. We can obtain a lower
bound on the query fidelity by neglecting all other config-
urations. Doing so allows us to bound the query fidelity by
a product of two factors:

Fhybrid,BB � (1 − ε)O(M log2 N ) × (1 − ε)O(M log N log N/M ).
(42)

The first factor is simply the probability that no errors
occur outside the QRAM. The second factor is the
expected fraction of error-free branches within the QRAM
[each branch contains log N/M routers, and there are
T = O(M log N ) possible time steps at which errors may
occur]. We have related this expected fraction to Fhybrid−BB
by the same argument as in Sec. III. Thus, to leading order,

1 − Fhybrid,BB � εM log N (log N + log N/M ),

∼ εM log2 N . (43)

Note that we have not kept track of prefactors since we
are only interested in how the infidelity scales; a strict
upper bound could be rigorously derived following the
approach of Sec. III. Near-unit query fidelities only require
error rates ε � 1/M , neglecting logarithmic factors (cf.
the ε � 1/N requirement for the other cases). Because
M ≤ N , the infidelity of the hybrid bucket-brigade archi-
tecture scales more favorably than both QROM and the
hybrid fanout architecture. Of course, the extent of the
scaling advantage depends on M . For example, if one
chooses M = √

N , so that the number of qubits and cir-
cuit depth are comparable, then the hybrid bucket-brigade
architecture yields a quadratic improvement in the infi-
delity scaling. Note that we assume three-level routers
above for simplicity; for two-level routers, one should
replace log N/M → log2 N/M in the above expressions,
in accordance with the argument from Sec. V.

VII. ERROR-CORRECTED QRAM

In this section, we show that the benefits of the bucket-
brigade scheme persist when quantum error correction is
used. When the bucket-brigade QRAM is implemented
using error-corrected routers and fault-tolerant routing
operations [40,52], the logical query infidelity scales only
polylogarithmically with the memory size. Thus, error-
corrected implementations of the bucket-brigade scheme
can offer improved fidelity or reduced overhead relative

to other implementations. In practice, these improvements
may be tempered by the overhead associated with the fault-
tolerant implementation of the routing operations, and we
discuss the utility of the bucket-brigade architecture in
light of such considerations.

While we have shown that the query infidelity of the
bucket-brigade scheme scales favorably with the mem-
ory size, strategies to further suppress the infidelity are
desirable, and quantum error correction provides one pos-
sible approach. Indeed, error correction may be required
in cases where the physical error rate cannot be made
sufficiently small, or when many queries must be per-
formed in sequence. For example, Arunachalam et al. [17]
argued that error correction is likely to be needed for
any algorithm that requires a number of QRAM queries
that scales superpolynomially in log N , e.g., Grover’s
algorithm [25].

It is thus natural to ask whether an error-corrected
bucket-brigade QRAM offers any advantages over other
architectures. Indeed, this question was previously consid-
ered in Ref. [17], where the authors argue in the negative.
Their argument is based on the canonical attribution [10,
12,14–17] of the bucket-brigade’s noise resilience to the
limited number of active routers. Error-corrected routers
must be considered active, they argue, and so the number
of active routers is the same in both the fanout and bucket-
brigade schemes. Hence, the bucket-brigade scheme was
not believed to provide any advantage if error correction
were used.

As we have shown, however, the noise resilience of the
bucket-brigade scheme is not a function of the number of
active routers, but rather a function of the limited entangle-
ment among the routers. As a direct corollary of this result,
we find that, in fact, the benefits of the bucket-brigade
scheme do persist when error correction is used. The proof
from Sec. III is agnostic to whether the routers are com-
posed of uncorrected physical qubits or error-corrected
logical qubits, provided that uncorrectable logical errors
occur independently with some probability εL (which can
be guaranteed by implementing the routing operations fault
tolerantly). Physical errors occurring with probability ε

can simply be replaced by logical errors occurring with
probability εL, and one obtains the corresponding bound

1 − FL ≤ 4εLTL log N , (44)

where FL is the query fidelity of the logical QRAM cir-
cuit and TL is the circuit depth. Thus, when implemented
fault tolerantly, the logical bucket-brigade circuits possess
an intrinsic resilience to logical errors, in that the logical
infidelity scales only polylogarithmically with the size of
the memory [this scaling assumes that TL = O(log N ); see
the further discussion at the end of this section].
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To provide further exposition, we give a concrete exam-
ple of an error-corrected quantum router. Consider a quan-
tum error-correcting code, with logical codewords |0L〉 and
|1L〉 satisfying the Knill-Laflamme conditions [40,53],

PK†
i Kj P = hij P, (45)

where P is the projector onto the code space, the {Ki} are
the set of correctable errors, and h is a Hermitian matrix.
A logical two-level quantum router then constitutes a sin-
gle logical qubit (similarly, a logical three-level quantum
router can be constructed from a pair of logical qubits,
for example). Crucially, the logical routers comprising the
QRAM can be corrected without revealing any informa-
tion about which memory elements are being accessed.
This is because conditions (45) guarantee that errors can
be corrected without revealing any information about the
encoded state. Even when the logical router is in a super-
position of different states, or entangled with other routers,
syndrome measurements do not reveal information about
the router state. Note that conditions (45) also guaran-
tee that information is not leaked to the environment; the
states |0L〉 and |1L〉 necessarily have equal probability of
suffering errors.

Because of the favorable logical error scaling, Eq. (44),
error-corrected implementations of the bucket-brigade
scheme can offer improved fidelity or reduced overhead
relative to other implementations. For instance, if the same
error-correcting code is used in fault-tolerant implemen-
tations of the bucket-brigade and fanout QRAMs, the
logical infidelity of the bucket-brigade QRAM will be
lower than the logical infidelity of the fanout QRAM by
a factor of approximately 1/N in general. Alternatively,
if a given application requires that QRAM have a logical
infidelity below some threshold, the error-correction over-
head required to realize such high-fidelity queries can be
significantly smaller for the bucket-brigade scheme rela-
tive to the fanout scheme. Indeed, even if the reduction in
error-correction overhead is fairly small for each router,
the total overhead reduction considering all N routers can
be significant. Such reductions could be of significant
practical benefit. For context, we note that detailed over-
head estimates for fault-tolerant QRAM using the surface
code were made in Ref. [18]; these overheads can poten-
tially be improved by exploiting the bucket-brigade’s noise
resilience.

We conclude this section with an important caveat
concerning fault-tolerant QRAM. The routing operation
[Fig. 1(b)] is non-Clifford, so magic state distillation [54,
55] is required to implement the routing fault tolerantly in
the usual Clifford+T fault-tolerance model. In total, O(N )
magic states are required to perform a query. If queries are
to be performed in time TL = O(log N ), these magic states
must be distilled in parallel, so O(N ) magic state facto-
ries are required. The additional overhead associated with

these factories could be prohibitive for large N , however,
potentially limiting the extent to which such parallelism
can be exploited. That said, it should be noted that, though
the routing operation is non-Clifford, it is also not univer-
sal for quantum computing. An important open question
concerning fault-tolerant QRAM is thus whether fault-
tolerant implementations of this specific operation can be
designed that are more efficient than generic fault-tolerant
operations. Schemes for pieceable fault-tolerance [56] or
noise-bias preserving gates [57–59] may prove useful in
this regard.

VIII. DISCUSSION

We have shown that the bucket-brigade QRAM archi-
tecture possesses a remarkable resilience to noise. Even
when all O(N ) components comprising the QRAM are
subject to arbitrary error channels, the query infidelity
scales only polylogarithmically with the memory size. As
a result, the bucket-brigade architecture can be used to
perform high-fidelity queries of large memories without
the need for quantum error correction, provided physical
error rates are low. Importantly, we prove that this noise
resilience holds for arbitrary error channels, demonstrat-
ing that a noise-resilient QRAM can be implemented with
realistically noisy devices.

In the near term, this noise resilience could facilitate
experimental demonstrations and benchmarking of numer-
ous quantum algorithms. We are presently in the noisy,
intermediate-scale quantum era [60], when making more
qubits is easier than making better qubits. The same is
likely to be true even in the era of early fault tolerance.
In these eras, the bucket-brigade architecture—with its
larger overhead and noise resilience—could actually prove
to be more practical than alternatives like QROM (see
Sec. VI) that have a lower overhead but are less toler-
ant to noise. The bucket-brigade architecture thus more
readily enables small-scale, near-term implementations of
algorithms, and important practical insights are likely to
be gained from such demonstrations. Schemes to further
suppress the query fidelity without resorting to full error
correction [61] could prove useful in this effort.

In the long term, this noise resilience may prove use-
ful in facilitating speedups for certain quantum algorithms,
but it is important that the required resources be care-
fully assessed before a speedup via QRAM is claimed.
Consider an oracle-based algorithm that requires n qubits
(not including ancillary qubits needed to implement the
oracle). As we show in Table II, such algorithms can be
conveniently classified according to how the size of the
classical memory being queried, N , and the total number
of queries, Q, scale with n. Assuming that poly(n) query
times are required, the memory size N dictates whether
QRAM (as opposed to QROM or a hybrid architecture)
is required to implement the oracle. The number of queries
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TABLE II. Algorithm categorization. Algorithms are sorted based on how the size of the classical memory, N , and the number of
queries, Q, scale with the number of qubits, n. When N = exp(n), QRAM is the only suitable architecture, assuming that poly(n) query
times are required. When Q = poly(n), quantum error correction may not be required, depending on the physical error rates. For the
examples in the last two rows, Q also depends on the particular algorithm used and the desired precision; we assume that these are
chosen such that Q = poly(n). We omit the case of N = poly(n) and Q = exp(n), for which the query complexity is exponential in the
problem size.

Applicable QEC
N Q architectures required? Paradigmatic example

exp(n) exp(n) QRAM Yes Searching an unstructured database [25]
exp(n) poly(n) QRAM Maybe not Solving linear systems of equations [30]

(sparse, well-conditioned systems)
poly(n) poly(n) QRAM, QROM, hybrid Maybe not Simulating local Hamiltonians [62]

Q dictates whether error correction is necessarily required
[17]. The noise resilience of the bucket brigade has the
biggest potential impact in the case of N = exp(n) and
Q = poly(n). In this case, QRAM is required, and the noise
resilience of the bucket-brigade architecture, together with
the comparatively small number of queries, allows for the
possibility that the QRAM could be implemented without
error correction. Of course, the noise resilience can also
be advantageous in the other cases, where hybrid architec-
tures may be employed (Sec. VI) or when error correction
is used (Sec. VII).

Finally, it is worth emphasizing that the results in
this paper constitute general statements about the bucket-
brigade architecture, independent of its application to par-
ticular algorithms. In fact, the architecture may prove
useful in applications other than facilitating algorithmic
speedups. For example, Giovannetti et al. [29] employed
the bucket-brigade architecture in a quantum cryptographic
protocol. The architecture may similarly prove useful for
quantum communication or metrology. Exploring appli-
cations of the bucket-brigade architecture—and the utility
of its noise resilience—in these other contexts represents
an interesting direction for future research. In particular,
applications involving quantum queries of quantum data
remain largely unexplored.
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APPENDIX A: BUCKET-BRIGADE QRAM
CIRCUIT

Figure 10 shows a circuit diagram for the bucket-
brigade QRAM in the case of an N = 8 cell memory.
In contrast to the T = O(log2 N ) depth circuits described
implicitly in Refs. [14,15,17], the circuit depth here is
only T = O(log N ). The quadratic speedup is due to addi-
tional parallelization of the routing operations that we now
describe.

In Refs. [14,15,17], address qubits are routed into the
tree one at a time; the (�+ 1)th address qubit is only
injected into the tree once the �th address qubit has taken
its position at level � of the tree. If each routing operation
takes one time step then one waits � time steps between
the injection of the �th and (�+ 1)th address qubits. The
total circuit depth is obtained by summing the number
of time steps that it takes for each address to reach the
corresponding level,

T ∼
log N−1∑

�=0

� = O(log2 N ). (A1)

However, it is not necessary to wait for an address qubit
to reach its destination before subsequent address qubits
are sent into the tree, and this realization enables the cir-
cuit depth to be reduced to O(log N ). Note that the routing
operations for routers located at even levels of the tree
act on mutually disjoint qubits and hence mutually com-
mute (the same is true for the odd levels). Thus, all routing
operations at either even or odd levels can be performed
in parallel. In practice, then, once an address qubit has
reached level � = 2, the next address qubit can be sent into
the tree at level � = 0, and the two can be routed in parallel.
This way, the wait time between the injection of subse-
quent address qubits into the tree is constant [cf. the O(�)
wait time above]. Exploiting this additional parallelism,
the total circuit depth is reduced to T = O(log N ).

The circuit diagram in Fig. 10 illustrates how such T =
O(log N ) bucket-brigade QRAM circuits are structured.
The circuit is a sequence of T constant-depth circuits Ut.
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Address

Bus

Input

Routers

FIG. 10. Bucket-brigade QRAM circuit for N = 8. The bus and address register are indicated by rails at the top of the diagram, and
the routers are indicated by the rails below. The “input” rail is an extra ancilla, included only to simplify the circuit diagram. For each
router shown on the left, there are three rails: one for the router’s internal state, and two for the router’s two output modes. All rails
represent qubits (qutrits) when the variant of the bucket-brigade architecture with two-level (three-level) routers is used; the circuit
is the same in either case. To simplify the circuit, we use a shorthand notation for the routing operation (top right). Each orange box
contains routing operations for a subset of routers in the tree, with routing operations for the even levels first (white background),
followed by the odd levels (gray background). Though only a subset of the possible routing operations are actually applied at each
time step, in principle all routing operations at even (odd) levels can be applied in parallel. The first part of the circuit, U3U2U1,
routes the addresses into the tree, as in Fig. 1(d). The next part, U5U4, routes the bus to the appropriate memory cell. The path of the
bus is highlighted in blue for the case where the three address qubits are initialized to |010〉. The last layer of gates copy data into
the state of the bus (see Appendix B). To route the addresses and bus out of the tree and complete the query, the inverse operation,
(U5U4U3U2U1)

†, must subsequently be applied (not shown).

During each block Ut, a subset of the possible routing
operations is performed (orange boxes in the figure), with
routing operations at even levels performed before routing
operations at odd levels. Importantly, because the opera-
tions at even levels can be performed in parallel (similarly
for odd levels), each orange box constitutes only two layers
of parallel gates. In principle, a new address qubit can then
be injected into the tree at the beginning of each orange
box, with routing performed in parallel whenever multiple
address qubits are being routed through the tree. The case
of N = 8 shown in the figure is too small to demonstrate
this parallelism, but to see how the parallelism would man-
ifest at larger memory sizes, note that it would be possible

to inject another qubit into the tree during U5 and route this
qubit (at level � = 0) in parallel with one at level � = 2.

APPENDIX B: COPYING DATA TO THE BUS

In this section, we explicitly describe how classical data
can be copied into the state of the bus. Slightly different
procedures are required depending on whether the QRAM
is implemented with two-level or three-level systems, and
whether the QRAM is initialized in a known state or in
some arbitrary state (see Sec. V).

We begin with the case where the QRAM is imple-
mented with two-level routers, as described in Sec. V.
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Output

Data

Output

Data

(a) (b)

QRAM QRAM
Add.

Bus

(c)

FIG. 11. Circuits for copying classical data. (a) Two-level cir-
cuit. The bus qubit is encoded within a physical two-level system
and initialized in |+〉. A Z gate flips the bus to |−〉 conditioned
on the classical data. (b) Three-level circuit. The bus qubit is
encoded within a two-level subspace of a physical three-level
system and initialized in |0〉. The X̃ gate (see the text) flips the
bus to |1〉 conditioned on the classical data. (c) Query circuit
for QRAM initialized in an arbitrary state. The circuits assumes
three-level routers, so the bus is initialized in |0〉 and circuit (b) is
employed within each QRAM block to copy data to the bus. An
analogous circuit can be constructed for two-level routers. The
ancillary qubits comprising the QRAM’s routers (not shown) can
be initialized in an arbitrary state.

Each router’s incident and output modes are also taken
to be physical two-level systems. All routers and their
respective modes are initialized to |0〉. For reasons that will
become apparent shortly, we suppose that the bus qubit is
initialized to |+〉 ≡ (|0〉 + |1〉)/√2 prior to the query. Dur-
ing the query, this bus qubit is routed down the tree, to an
output mode of some router at the bottom level. At this
point, classical data are encoded into the state of the bus
qubit by applying classically controlled Z gates, as illus-
trated in Fig. 11(a). If the memory element being queried
is 1, a Z gate is applied, and the state of the bus is flipped
from |+〉 to |−〉 ≡ (|0〉 − |1〉)/√2. If the memory element
queried is 0, no Z gate is applied, and the bus remains in
|+〉. In this way, the classical bit is encoded in the |±〉 basis
of the bus qubit. Note, however, that because the location
of the bus is not known, classically controlled Z gates must
be applied to the output modes of all routers at the bottom
level of the tree.

This data copying operation has a crucial property,
which we call no extra copying: in the absence of errors,
the copying operation acts trivially on all modes that do not
contain the bus qubit. In the above case, all modes that do
not contain the bus are in |0〉, so they are unaffected by the
Z gates; hence, why we use the |±〉 basis for the bus [35].
The no extra copying property is crucial because it guar-
antees that the final state of the tree is the same across all
good (error-free) branches, as required by the arguments in
the main text. Were this property not to hold, the final state
of the tree would depend on which element was queried,
so the bus would remain entangled with the routers after
the query, even in the absence of errors.

Now let us consider the case where the QRAM is imple-
mented with three-level routers, as described in Secs. II
and III. Each router’s incident and output modes are taken
to be physical three-level systems, whose basis states we
also label as |0〉, |1〉, and |W〉. The address and bus qubits
are encoded within the |0, 1〉 subspace of such three-level
systems. Prior to the query, all routers, as well as their inci-
dent and output modes, are initialized to |W〉, and the bus
is initialized to |0〉. During the query, the bus is routed to
an output mode of some router at the bottom level of the
tree. Data are copied into the bus by applying classically
controlled X̃ gates to the output modes [Fig. 11(b)], where

X̃ = |1〉 〈0| + |0〉 〈1| + |W〉 〈W|. (B1)

If the memory element being queried is 1, the X̃ gate is
applied, and the state of the bus is flipped from |0〉 to |1〉.
If the memory element queried is 0, no X̃ gate is applied,
and the bus remains in |0〉. In this way, the classical bit is
encoded in the |0, 1〉 basis of the bus qubit (one could also
choose to encode the information in the |±〉 basis by con-
structing an analogous Z̃ gate). Here again, the classically
controlled gates must be applied to the output modes of
all routers at the bottom of the tree. This operation satis-
fies the no extra copying property because, in the absence
of errors, all modes not containing the bus are in |W〉, on
which X̃ acts trivially.

In order to enforce the no extra copying property, both of
the above data copying operations rely on the fact that the
routers, as well as their input and output modes, are initial-
ized to some known state. When the QRAM is initialized
in an arbitrary state (see Sec. V), however, additional care
must be taken to ensure this property still holds. The chal-
lenge is that the mode that actually contains the bus must
somehow be distinguished from all the other modes, which
may have been initialized in the same state as the bus. This
problem is solved by the circuit in Fig. 11(c). The QRAM
is queried twice, and the no extra copying property is guar-
anteed by the fact that the entire QRAM unitary operation
is idempotent. In particular, even if the process of copying
data during the first query acts nontrivially on modes not
containing the bus, these modes are always reset to their
initial states by the second query. In fact, even the bus is
reset to its initial state by the second query. Thus, the infor-
mation stored in the bus is copied to an ancillary qubit
in between the two queries, then swapped back into the
bus after the second query. We emphasize that the query
fidelity of this circuit scales favorably, which can be shown
by simply replacing T → 2T in the scaling argument from
Sec. V to account for the fact that the QRAM is called
twice.

As an aside, let us distinguish between our observa-
tion that QRAM is resilient to noise even when initialized
in an arbitrary state (Sec. V), and the observation of
Refs. [33,39] that the ancillary qubits used to perform a
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query can be “dirty.” The latter states that circuits can be
designed such that, in the absence of errors, any ancillary
qubits used during the query are returned to their initial
state after the query, regardless of what the initial state was
[note that the circuit in Fig. 11(c) has this property]. In con-
trast, our observation concerns what happens when errors
occur during the query: the query infidelity of the circuit
in Fig. 11(c) scales favorably even when the QRAM is
initialized in an arbitrary state.

APPENDIX C: ERROR CHANNEL KRAUS
DECOMPOSITIONS

In this appendix, we give the Kraus decompositions for
the channels used in our simulations. We specify a generic
channel E via a list of its Kraus operators as

E = {K0, K1, K2, . . .}. (C1)

1. Qubit error channels

Let X , Y, Z denote the Pauli matrices. The decomposi-
tions of the qubit error channels are

depolarizing =
{√

1 − εI ,
√
ε

3
X ,

√
ε

3
Y,

√
ε

3
Z
}

, (C2)

bit flip = {√1 − εI ,
√
εX }, (C3)

dephasing = {√1 − εI ,
√
εZ}, (C4)

damping = {|0〉 〈0| + √
1 − ε |1〉 〈1| ,

√
ε |0〉 〈1|},

(C5)

heating = {|1〉 〈1| + √
1 − ε |0〉 〈0| ,

√
ε |1〉 〈0|}.

(C6)

2. Qutrit error channels

We follow the definitions for qutrit depolarizing, bit-flip,
and dephasing channels given in Refs. [63], [17], and [64],
respectively. Define the operators

A1 =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , A2 =
⎛

⎝
1 0 0
0 ω 0
0 0 ω2

⎞

⎠ , (C7)

where the matrices are written in the {|W〉, |0〉, |1〉} basis
and ω = ei2π/3. The decompositions of the qutrit error
channels are

depolarizing =
{√

1 − εI ,
√
ε

8
A1,

√
ε

8
A2,

√
ε

8
A2

1,
√
ε

8
A2

2,
√
ε

8
A1A2,

√
ε

8
A2

1A2,
√
ε

8
A1A2

2,
√
ε

8
A2

1A2
2

}
, (C8)

bit flip = {√1 − εI ,
√
ε(|0〉 〈1| + |1〉 〈0|)}, (C9)

dephasing =
{√

1 − εI ,
√
ε

2
A2,

√
ε

2
A2

2

}
, (C10)

damping = {|W〉 〈W| + √
1 − ε(|0〉 〈0| + |1〉 〈1|), √ε |W〉 〈0| ,

√
ε |W〉 〈1|}, (C11)

heating =
{

|0〉 〈0| + |1〉 〈1| + √
1 − ε |W〉 〈W| ,

√
ε

2
|0〉 〈W| ,

√
ε

2
|1〉 〈W|

}
. (C12)

APPENDIX D: PROOF OF NOISE RESILIENCE
FOR ARBITRARY ERROR CHANNELS

In this appendix, we prove that, for arbitrary error
channels, the QRAM query infidelity satisfies the bound

1 − F ≤ AεT log N , (D1)

where A is a constant of order 1 (defined below). We
begin by defining the error model and introducing some
convenient notation.

1. Error model

We suppose that at each time step, every router in the
QRAM is subject to an error channel E of the form

ρ → E(ρ) =
∑

m

KmρK†
m. (D2)

One could also consider situations where different routers
are subject to different error channels; the proof straight-
forwardly extends to such situations. For the moment, we
make two additional assumptions that simplify the proof.
First, we restrict our attention to channels with Kraus rank
two, i.e., channels that can be expressed with only two
nonzero Kraus operators, K0 and K1. Second, we assume
that each router is subjected to the error channel E only
once, at the time step t∗ after all addresses have been routed
into place and immediately before the bus enters the tree
(this time step is the one illustrated in Figs. 1 and 2). We
relax both of these assumptions later on.
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Let us define the error rate, ε. For a generic state |ψ〉,
we may write

K0 |ψ〉 = aψ |ψ〉 + bψ |ψ⊥〉, (D3)

where 〈ψ |ψ⊥〉 = 0, and aψ ,bψ are complex numbers. We
define ε as the smallest positive real number such that, for
any |ψ〉, we have

|bψ | ≤ √
ε, (D4)

and, for any collection of arbitrary states |ψi〉, we also have

Re
[ m∏

i=1

aψi

]
≥ (1 − ε)m/2 foranym ≤ log N . (D5)

This definition is unconventional, so let us emphasize that
ε can be understood as quantifying the distance between
E and the identity channel. Specifically, for any given
ε0 ∈ [0, 1], there always exists some δ ∈ [0, 1] such that,
whenever |E − I | < δ according to some distance metric,
then ε < ε0.

We adopt this definition of ε because it turns out to be
very convenient for the proof. For example, it follows that

〈ψ |K†
0 K0|ψ〉 ≥ 1 − ε, (D6)

〈ψ |K†
1 K1|ψ〉 ≤ ε, (D7)

and, for a generic product state |ξm〉 = ⊗m
i=1 |ψi〉,

K⊗m
0 |ξm〉 = aξm |ξm〉 + bξm |ξ⊥

m 〉, (D8)

where it follows from Eqs. (D4) and (D5) that

Re(aξm) ≥ (1 − ε)m/2, (D9)

|bξm | ≤ εm/2, (D10)

for m ≤ log N .

2. Notation

We now define some convenient notation. As in the
main text, we use the shorthand

Kc ≡
⊗

r=1

N−1
Kc(r) (D11)

to denote the composite Kraus operator acting on all
routers in the tree. Here, Kc(r) ∈ {K0, K1} denotes the Kraus
operator applied to router r at time t∗ as specified by the
error configuration c. For the ith branch of the tree, we also

define the operator Kc ∈i as that obtained by taking Kc and
replacing Kc(r) → I for any router r in branch i:

Kc ∈i ≡
⊗

r=1

N−1
{

I , r ∈ i,
Kc(r), otherwise.

(D12)

Similarly, for a pair of branches i and j , we analogously
define

Kc ∈i,j ≡
⊗

r=1

N−1
{

I , r ∈ i ∪ j ,
Kc(r), otherwise,

(D13)

where r ∈ i ∪ j denotes the set of routers in either branch i
or j .

Additionally, we define |Ri〉 to be the ideal state of the
routers at time t∗, assuming that the ith memory element is
queried. Specifically, |Ri〉 is a computational basis state for
which all routers r ∈ i are in the state |W〉, and routers r ∈ i
are in either |0〉 or |1〉 and carve out a path to the memory
element i. As examples, |R101〉 is illustrated in Fig. 1(d),
and the superposition

|R000〉 + |R010〉 + |R011〉 + |R101〉 + |R110〉

is illustrated in Fig. 2.
Finally, throughout the proof, it will be convenient to

work with unnormalized quantum states. We distinguish
between normalized states |ψ〉 and unnormalized states
|ψ〉 with an overbar.

3. Proof

Our proof of QRAM’s noise resilience for generic error
channels follows the same outline as the proof for mixed-
unitary error channels given in the main text. We again
begin by defining the final state of the system � as an
incoherent mixture over final states for different error
configurations c,

� =
∑

c

�(c) (D14)

in analogy to Eq. (11). Here, the final system state
given error configuration c is�(c) = |�(c)〉 〈�(c)|, where
|�(c)〉 is the unnormalized state

|�(c)〉 = V
[

|0〉A |0〉B Kc

( ∑

i

αi |Ri〉R
)]

, (D15)

where the superscripts A, B, R denote the addresses, bus,
and routers, respectively. In accordance with the error
model described in Appendix D 1, the quantity in square
brackets is the ideal state of the system at time t∗ with
errors Kc subsequently applied to the routers. The uni-
tary V comprises all operations performed after time t∗.
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Namely, V routes the bus to memory, copies data into the
bus, then routes the bus and all address qubits out of the
tree. Note that Kc is not unitary, and the states |�(c)〉 are
not normalized. The probability p(c) of error configuration
c occurring is

p(c) = Tr[�(c)]. (D16)

The query fidelity is given by

F =
∑

c

F(c), (D17)

where

F(c) = 〈ψout|TrR�(c)|ψout〉 (D18)

in analogy to Eqs. (12) and (13). As in the main text, we
proceed by placing a lower bound on F(c). To do so, we
write

|�(c)〉 = |good(c)〉 + |bad(c)〉, (D19)

in analogy to Eq. (16), and where the definitions of
|good(c)〉 and |bad(c)〉 will be given shortly.

Let us recall the definition of good and bad branches
given in the main text. There, a branch i was defined to be
good if and only if i ∩ c = ∅, where i is the set of routers
in the ith branch of the tree and c is the set of routers that
have Km>0 applied to them according to error configuration
c. We retain this definition here. Now, in main text we con-
sidered the case of mixed-unitary error channels, for which
K0 ∝ I , and for these channels, we have

Kc |Ri〉 = Kc ∈i |Ri〉 forK0 ∝ Iandalli ∈ g(c), (D20)

where g(c) denotes the set of good branches. In words,
Eq. (D20) says that the effect of the of no-error operators
on the active routers is trivial. However, in the present case
of general channels, for which K0 = I in general, the no-
error backaction associated with K0 can alter the states of
active routers. In particular,

Kc |Ri〉 = Kc ∈i(aRi |Ri〉 + bRi |R⊥
i 〉) for generalK0

× andalli ∈ g(c), (D21)

where |R⊥
i 〉 denotes an orthogonal state, 〈Ri|R⊥

i 〉 = 0. It
follows from Eqs. (D8) to (D10) that the coefficients aRi
and bRi satisfy

Re(aRi) ≥ (1 − ε)log N/2, (D22)

|bRi | ≤ εlog N/2. (D23)

In words, Eq. (D21) says that the effect of the no-error
operators on the active routers is nontrivial and places the

active routers in a superposition of the ideal state and some
orthogonal state. Equations (D22) and (D23) bound the
coefficients in this superposition; in the relevant regime of
ε log N � 1, this nontrivial, no-error backaction is small,
and the state Kc |Ri〉 is close to Kc ∈i |Ri〉.

Now, let us define |good(c)〉 and |bad(c)〉 in Eq. (D19).
Given Eq. (D21), it will be convenient to separate the
ideal and nonideal components of Kc |Ri〉, retaining only
the ideal components in |good(c)〉. We thus define

|good(c)〉 ≡ V
[

|0〉A |0〉B
∑

i∈g(c)

αiaRiKc ∈i |Ri〉R
]

(D24)

in analogy to Eq. (17), and

|bad(c)〉 ≡ |�(c)〉 − |good(c)〉

= V
[

|0〉A |0〉B
( ∑

i∈g(c)

αibRiKc ∈i |R⊥
i 〉R

+
∑

j ∈g(c)

αj Kc |Ri〉R
)]

. (D25)

Note that |bad(c)〉 not only contains a contribution from
the bad branches, j ∈ g(c), but also from the no-error
backaction in the good branches, i ∈ g(c).

We now seek to prove analogous statements to Eqs. (20)
and (21) (given by Lemmas 2 and 3 below). To do so, we
first show that the overlap of |good(c)〉 and the ideal state
is large in the following sense.

Lemma 1. The overlap between |good(c)〉 and the ideal
final state, |ψout, f (c)〉, satisfies the bound

Re[〈ψout, f (c)|good(c)〉] ≥
√

q(c)�(c)
(

1 − ε

1 − εW

)(3/2) log N

,

(D26)

where �(c) = ∑
i∈g(c) |αi|2 is the weighted fraction of

good branches, |f (c)〉 is some fixed final state of the
routers (defined below), and

q(c) ≡ (1 − εW)
(N−1)−|c|ε|c|

W (D27)

with εW ≡ 1 − 〈W|K†
0 K0|W〉 and |c| the number of Kraus

operators Km>0 in the composite Kraus operator Kc, i.e.,
|c| is the number of errors.
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Proof. Consider a good branch i ∈ g(c). We have

V[|0〉A |0〉B Kc ∈i |Ri〉R] = |i〉A |xi〉B |f i(c)〉
R

, (D28)

because all active routers in Kc ∈i |Ri〉R are in their ideal
states, so the query succeeds. Here,

|f i(c)〉 = 〈i|A 〈xi|B V[|0〉A |0〉B Kc ∈i |Ri〉R] (D29)

is the unnormalized final state of the routers associated
with branch i. Consider a second good branch, j ∈ g(c),
with j = i. In general, the final state of the routers with
respect to branch j may be different from the final state
with respect to branch i, i.e., |f i(c)〉 = |f j (c)〉. As a result,
the routers may be entangled with the address and bus in
|good(c)〉.

We now show however that the overlap 〈f i(c)|f j (c)〉 is
large, such that the routers are nearly disentangled from
the address and bus in |good(c)〉. Recall the definition of
Kc ∈i,j [Eq. (D13)] as the operator obtained by taking Kc and
replacing all Kraus operators acting on routers in branches
i and j with the identity. Observe that

Kc ∈i |Ri〉 = Kc ∈i,j (a′
Ri

|Ri〉 + b′
Ri

|R⊥
i 〉), (D30)

where it follows from Eqs. (D8)–(D10) that

Re(a′
Ri
) ≥ (1 − ε)log N/2, (D31)

|b′
Ri

| ≤ εlog N/2. (D32)

Now, the overlap is given by

〈f i(c)|f i(j )〉 = [(〈0|A 〈0|B 〈Ri|R K†
c ∈i)V

† |i〉A |xi〉B][〈j |A 〈xj |B V(|0〉A |0〉B Kc ∈j |Rj 〉)]
= (a′

Ri
)∗a′

Rj
[(〈0|A 〈0|B 〈Ri|R K†

c ∈i,j )V
† |i〉A |xi〉B][〈j |A 〈xj |B V(|0〉A |0〉B Kc ∈i,j |Rj 〉)], (D33)

= (a′
Ri
)∗a′

Rj

∣∣Kc ∈i,j |Ri〉
∣∣2 . (D34)

To obtain equality (D33), we have used the fact that

〈i|A 〈xi|B V(|0〉A |0〉B Kc ∈i,j |R⊥
i 〉R

) = 0 (D35)

because, by definition, Kc ∈i,j |R⊥
i 〉 has at least one active

router in an orthogonal state relative to |Ri〉, so that after
the application of V the final address state is necessarily
perpendicular to |i〉. To obtain Eq. (D34), we have used
the fact that the two states in brackets in equality (D33)
are in fact the same. This is because both Kc ∈i,j |Ri〉 and
Kc ∈i,j |Rj 〉 have routers in branches i and j in their ideal
states. As articulated in the main text and illustrated in
Fig. 5, it follows that the propagation of errors is con-
strained in such a way that the final states of the routers
(the states in brackets) are the same.

Continuing with our calculation of 〈f i(c)|f j (c)〉, note

that the norm
∣∣Kc ∈i,j |Ri〉

∣∣2 can be computed straightfor-
wardly using the fact that both Kc ∈i,j and |Ri〉 are tensor
products over the different routers. We obtain

∣∣Kc ∈i,j |Ri〉
∣∣2 = ε

|c|
W (1 − εW)

(N−1)−2 log N−|c|, (D36)

where |c| is the number of Kraus operators Km>0 in the
composite Kraus operator Kc, i.e., |c| is the number of
errors. We have used the definition 〈W|K†

1 K1|W〉 = εW,

which implies that 〈W|K†
0 K0|W〉 = 1 − εW. Thus, combin-

ing Eqs. (D31), (D34), and (D36) the real part of the
overlap can be bounded as

Re[〈f i(c)|f j (c)〉]
≥ (1 − ε)log Nε

|c|
W (1 − εW)

(N−1)−2 log N−|c|

= (1 − ε)log N

(1 − εW)2 log N q(c), (D37)

where q(c) is defined in Eq. (D27). More convenient for
our purposes is the equivalent bound

Re[〈fi(c)|f j (c)〉] ≥ (1 − ε)log N

(1 − εW)(3/2) log N

√
q(c), (D38)

where |fi(c)〉 is the normalized version of |f i(c)〉, and we
have used the fact that 〈f i(c)|f i(c)〉 = q(c)/(1 − εW)

log N .
Now, for any i ∈ g(c), consider the overlap
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〈ψout, fi(c)|good〉 =
[∑

j

α∗
j 〈j |A 〈xj |B 〈fi(c)|R

]
V
[ ∑

k∈g(c)

αkaRk |0〉A |0〉B Kc ∈k |Rk〉R
]

=
[∑

j

α∗
j 〈j |A 〈xj |B 〈fi(c)|R

][ ∑

k∈g(c)

αkaRk |k〉A |xk〉B |f k(c)〉
R
]

=
∑

j ∈g(c)

|αj |2aRj 〈fi(c)|f j (c)〉, (D39)

where the second line follows from Eq. (D28). Using
Eqs. (D22) and (D38), we can bound the real part of this
overlap as

Re[〈ψout, fi(c)|good(c)〉] ≥
√

q(c)�(c)
(

1 − ε

1 − εW

)(3/2) log N

,

(D40)

completing the proof. �
The result of Lemma 1 is not precisely analogous to

Eq. (20). Rather, the analogous statement is Lemma 2
(see below), which also incorporates detrimental effects of
|bad(c)〉. To incorporate these effects, it is convenient to
write

|bad(c)〉 = |bad(c)
‖〉 + |bad(c)

⊥〉, (D41)

where

|bad(c)
⊥〉 ≡ |bad(c)〉 − 〈good(c)|bad(c)〉

〈good(c)|good(c)〉 |good(c)〉 ,

(D42)

|bad(c)
‖〉 ≡ |bad(c)〉 − |bad(c)

⊥〉 (D43)

are the components of |bad(c)〉 perpendicular and parallel
to |good(c)〉, respectively. We proceed by first quantifying
the detrimental effects of |bad(c)

‖〉.

Lemma 2. The overlap of |good(c)〉 + |bad(c)‖〉 with the
ideal state can be bounded as

Re[〈ψout, f (c)| (|good(c)〉 + |bad(c)‖〉)]

≥ (1 − Bε2)
√

q(c)�(c)
(

1 − ε

1 − εW

)(3/2) log N

(D44)

with B ≈ 1 in the relevant limit of ε log N � 1.

Proof. We prove the result by showing that the overlap of
|bad(c)〉 and |good(c)〉 is small relative to the magnitude
of |good(c)〉. Specifically, we prove that

∣∣〈good(c)|bad(c)〉∣∣
〈good(c)|good(c)〉 ≤ Bε2. (D45)

Then, because |good(c)〉 + |bad(c)
‖〉 is parallel to|good(c)〉,

and because its magnitude is bounded from below by
(1 − Bε2)|||good(c)〉||, the lemma follows.

First, we consider the magnitude of |good(c)〉,
〈good(c)|good(c)〉 =

∑

i,j ∈g(c)

(αiaRi)
∗αj aRj 〈Ri|K†

c ∈iKc ∈j |Rj 〉

=
∑

i∈g(c)

|αiaRi |2 〈Ri|K†
c ∈iKc ∈i|Ri〉.

(D46)

Using Eq. (D22) together with the fact that 〈Ri|K†
c ∈iKc ∈i|Ri〉

= q(c)/(1 − εW)
log N , we can bound this overlap as

〈good(c)|good(c)〉 ≥ q(c)�(c)
(

1 − ε

1 − εW

)log N

. (D47)

Next, we consider the overlap of |good(c)〉 and |bad(c)〉,
given by

〈good(c)|bad(c)〉

=
[ ∑

i∈g(c)

(αiaRi)
∗ 〈Ri| K†

c ∈i

]

×
[ ∑

j ∈g(c)

αj bRj Kc ∈i |R⊥
j 〉 +

∑

k ∈g(c)

αkKc |Rk〉
]

=
∑

i∈g(c)

∑

j ∈g(c), j =i

(αiaRi)
∗αj bRj 〈Ri|K†

c ∈iKc ∈j |R⊥
j 〉

+
∑

i∈g(c)

∑

k ∈g(c)

(αiaRi)
∗αk 〈Ri|K†

c ∈iKc|Rk〉, (D48)

where we enforce j = i in the third line by noting that
〈Ri|K†

c ∈iKc ∈i|R⊥
i 〉 = 0. �
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Remark 1. A subtle, but important point is that we can
actually further enforce

j =
{

i + 1 foroddi,
i − 1 foreveni,

(D49)

in summation indexed by j in Eq. (D48). This is because,
for even i, branches i and i + 1 share the same active
routers, and can be grouped together when using Eq. (D21)
to define |good(c)〉 and |bad(c)〉. With these slightly modi-
fied definitions, |good(c)〉 contains the state Kc ∈i(αi |Ri〉 +
αi+1 |Ri+1〉), and |bad(c)〉 contains the orthogonal state
Kc ∈i(αi |Ri〉 + αi+1 |Ri+1〉)⊥. It follows that the j = i + 1
terms vanish in Eq. (D48) for even i. The j = i − 1 terms
vanish for odd i by the same argument. To keep the nota-
tion simple, however, we continue to simply write j =
i and reference this remark whenever this distinction is
relevant.

The first term in Eq. (D48) can be simplified using the
relation

bRj Kc ∈j |R⊥
j 〉 = Kc |Rj 〉 − aRj Kc ∈j |Rj 〉, (D50)

which is equivalent to Eq. (D21). Inserting this expression
into Eq. (D48) yields

〈good(c)|bad(c)
‖〉 =

∑

i∈g(c)

∑

j =i

(αiaRi)
∗αj 〈Ri|K†

c ∈iKc|Rj 〉,

(D51)

which we have simplified using the fact that 〈Ri|K†
c ∈iKc ∈j |Rj 〉

= δij . Equation (D51) may be equivalently expressed as
an inner product between two N -dimensional complex
vectors, αg and Mα,

〈good(c)|bad(c)
‖〉 = 〈αg , Mα〉, (D52)

where the ith entry of the vector α is αi, the ith entry of
αg is

αg,i =
{

aRiαi for i ∈ g(c),
0 for i ∈ g(c),

(D53)

and M is an N × N complex matrix with entries Mij =
〈Ri|K†

c ∈iKc|Rj 〉 (1 − δij ).
Consider the quantity 〈Ri|K†

c ∈iKc|Rj 〉, with i ∈ g(c) and
j = i. Since all states and operators involved are tensor
products, this term is a product of N − 1 matrix elements,
one for each of the N − 1 routers. We now enumerate
these matrix elements, first assuming that j ∈ g(c). Of the
N − 1 matrix elements, (N − 1)− 2 log N − |c| elements
are 〈W|K†

0 K0|W〉 = 1 − εW, corresponding to error-free

routers outside both branches i and j . [There may be addi-
tional such elements, depending on how many routers i and
j share; see Eq. (D54) below.] With j ∈ g(c), additional
|c| matrix elements are 〈W|K†

1 K1|W〉 = εW, corresponding
to routers that suffer errors. The remaining 2 log N matrix
elements can be enumerated as follows. For a given state
|Ri〉, let |R(�)i 〉 denote the corresponding state of the router
at level � (1-indexed) in branch i of the tree. Additionally,
let �ij denote the smallest value � for which 〈R(�)i |R(�)j 〉 = 0.
At each level � of the tree, there are two remaining matrix
elements—associated with routers at level �—that we have
not yet enumerated. These matrix elements are

〈R(�)i |K0|R(�)j 〉 〈W|K†
0 K0|W〉 for � ≤ �ij , (D54)

〈R(�)i |K0|W〉 〈W|K†
0 K0|R(�)j 〉 for � > �ij . (D55)

The absolute values of these products can be bounded
using Eqs. (D4) and (D5),

| 〈R(�)i |K0|R(�)j 〉 〈W|K†
0 K0|W〉 |

≤
{
(1 − εW) for � = �ij ,
(1 − εW)

√
ε for � = �ij ,

(D56)

| 〈R(�)i |K0|W〉 〈W|K†
0 K0|R(�)j 〉 | ≤ εW

√
ε, (D57)

where the bound on the first line is tighter for � = �ij

because 〈R(�ij )
i |R(�ij )

j 〉 = 0 by definition. We can thus bound
the product

| 〈Ri|K†
c ∈iKc|Rj 〉 |

≤ (1 − εW)
[(N−1)−2 log N−|c|+�ij ]ε

(|c|+log N−�ij )
W

× ε(1+log N−�ij )/2 fori ∈ g(c)andj = i. (D58)

We have only shown that bound (D58) holds for j ∈ g(c).
In fact, though, it also holds for j ∈ g(c). The calculation
of the bound in this case proceeds almost identically, with
the only difference being that we also utilize the bound

|〈R(�)i |K0|W〉 〈W|K†
1 K1|R(�)j 〉| ≤ εW

√
ε. (D59)

We now proceed to bound the norm of the vector Mα. We
do so by first bounding the maximum absolute value col-
umn and row sum norms, ||M ||1 and ||M ||∞, respectively.
To bound ||M ||∞, observe that
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||M ||∞ = max
i

∑

j

|Mij |

= max
i

∑

j =i

|〈Ri|K†
c ∈iKc|Rj 〉|

≤
∑

j =i

(1 − εW)
[(N−1)−2 log N−|c|+�ij ]ε

(|c|+log N−�ij )
W ε(1+log N−�ij )/2, (D60)

where the third line follows from Eq. (D58). To perform the sum, note that there are at most 2(log N−�) branches j for which
�ij = �. Grouping such branches together, we have

||M ||∞ ≤
log N−1∑

�=1

2(log N−�)(1 − εW)
[(N−1)−2 log N−|c|+�]ε(|c|+log N−�)

W ε(1+log N−�)/2

= q(c)
log N−1∑

�=1

(1 − εW)
[−2 log N+�](2εW)

(log N−�)ε(1+log N−�)/2

≤ 2q(c)ε2/(1 − 2ε3/2), (D61)

where the summation does not include an � = log N term
as a consequence of Remark 1. The inequality on the last
line is obtained by applying the bounds 1 − εW ≤ 1 and
εW ≤ ε, evaluating the sum, then further simplifying the
result by assuming that ε ≤ 1/2. By a nearly identical cal-
culation, we find that ||M ||1 obeys the same upper bound
as ||M ||∞. Because ||O||22 ≤ ||O||1||O||∞ for arbitrary O,
it follows that ||M ||2 obeys this upper bound as well.
Therefore,

||Mα||2 ≤ ||M ||2||α||2 ≤ q(c)ε2/(1 − 2ε3/2), (D62)

as ||α||2 = 1.
We can now finally bound |〈good(c)|bad(c)

‖〉|. By the
Cauchy-Schwarz inequality,

|〈good(c)|bad(c)
‖〉| = |〈αg , Mα〉| ≤ ||αg||2 ||Mα||2.

(D63)

Using Eqs. (D47) and (D62) together with the fact that
||αg||2 = �(c), we thus obtain

|〈good(c)|bad(c)
‖〉| ≤ ε2q(c)�(c)/(1 − 2ε3/2)

≤ Bε2 〈good(c)|good(c)〉, (D64)

where we have defined

B ≡ 1
1 − 2ε3/2

(
1 − εW

1 − ε

)log N

. (D65)

This inequality is equivalent to Eq. (D45), so the proof is
complete. �

Lemma 2, which incorporates the detrimental effects of
|bad(c)

‖〉, is analogous to Eq. (20). It remains to quantify
the detrimental effects of |bad(c)

⊥〉, and we do so in the
following lemma.

Lemma 3. The overlap of |bad(c)⊥〉 with the ideal state
can be bounded as

|〈ψout, f (c)|bad(c)⊥〉| ≤
√

p(c)

− (1 − Bε2)
√

q(c)�(c)
(

1 − ε

1 − εW

)(3/2) log N

, (D66)

where p(c) is the probability of error configuration c,
defined in Eq. (D16).

Proof. The proof is a direct application of the identity

|〈ψ |φ⊥〉| ≤ (〈φ|φ〉 + 〈φ⊥|φ⊥〉)1/2 − |〈ψ |φ〉|, (D67)

which holds for arbitrary |ψ〉 and unnormalized, orthog-
onal states |φ〉 and |φ⊥〉. Taking |φ〉 = |good(c)〉 +
|bad(c)

‖〉 and |φ⊥〉 = |bad(c)
⊥〉, we have

|〈ψout, f (c)|bad(c)⊥〉| ≤ 〈�(c)|�(c)〉1/2

− |〈ψout, f (c)| (|good(c)〉 + |bad(c)‖〉)|, (D68)

where we have used the fact that |�(c)〉 = |good(c)〉 +
|bad(c)

‖〉 + |bad(c)
⊥〉. The proof is completed by leverag-

ing the result of Lemma 2 and recognizing the first term on
the right-hand side as

√
p(c). �
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Lemmas 2 and 3 are the analogies of Eqs. (20) and (21), respectively. Following the main text, we can then write the
analogy of Eq. (22) using the reverse triangle inequality

F(c) ≥
{

[2(1 − C)�(c)
√

q(c)− √
p(c)]2 for 2(1 − C)�(c)

√
q(c) ≥ √

p(c),
0 otherwise,

(D69)

where, to simplify notation, we have defined

1 − C ≡ (1 − Bε2)

(
1 − ε

1 − εW

)(3/2) log N

. (D70)

Now, recall that the query fidelity is given by F =∑
c F(c). We can equivalently express the query fidelity as

an expectation value with respect to the distribution q(c) as

F = E

(
F
q

)
≡

∑

c

q(c)
(

F(c)
q(c)

)
. (D71)

The utility of expressing F this way will be made apparent
shortly. Analogously to Eqs. (25) and (26) in the main text,
we can then bound the query fidelity as

F ≥ E

(√
F/q

)2

=
[∑

c

√
q(c)F(c)

]2

≥ [
2(1 − C)E(�)− E

(√
p/q

)]2, (D72)

where the third line follows from Eq. (D69) under the
assumption that 2(1 − C)E(�) ≥ E(

√
p/q). Let us now

consider the two expectation values. We have

E(
√

p/q) =
∑

c

√
q(c)p(c) ≤ 1, (D73)

where the inequality follows from recognizing the sum as
the Bhattacharyya distance between the distributions p and
q. We also have

E(�) =
∑

c

q(c)�(c) = (1 − εW)
log N , (D74)

which follows from a recursive calculation nearly identical
to that described in the main text. Thus, we find that

F ≥ [2(1 − C)(1 − εW)
log N − 1]2 (D75)

in analogy to Eq. (27). Employing Bernoulli’s inequality,
we obtain

F ≥ [2(1 − C)(1 − εW log N )− 1]2

≥ 1 − 4εW log N − 4C(1 − εW log N ), (D76)

assuming that εW log N + 4C(1 − εW log N ) ≤ 1/4.
Equivalently,

1 − F ≤ 4εW log N + 4C(1 − εW log N ). (D77)

Let us simplify this bound on the infidelity so that the scal-
ing with N is evident. We use Bernoulli’s inequality again
to obtain the bound

C = 1 − (1 − Bε2)

(
1 − ε

1 − εW

)(3/2) log N

(D78)

≤ 3
2

log N
ε − εW

1 − εW
(1 + Bε2). (D79)

Inserting this bound into Eq. (D77), and using the
definition of B, we find that

1 − F ≤ Aε log N , (D80)

where we have defined

A ≡ 4
εW

ε
+ 6

1 − εW/ε

1 − εW

[
1 + ε2

1 − 2ε3/2

(
1 − εW

1 − ε

)log N ]

× (1 − εW log N ). (D81)

In the relevant limit of ε log N � 1, the coefficient A
is well approximated by keeping only the leading order
terms,

A ≈ 6 − 2
εW

ε
. (D82)

Note that, for mixed-unitary error channels, for which
εW = ε, we have A ≈ 4, in agreement with the proof in the
main text.

This concludes the proof of the favorable error scaling,
Eq. (D80). Recall, however, that we have made two sim-
plifying assumptions. As described in Appendix D 1, we
have assumed that errors are only applied at one time step
and that the error channel has a Kraus rank of 2. It remains
to relax these assumptions, and we do so in the following
subsections.
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4. Error channels with Kraus rank �= 2
The proof can be straightforwardly adapted to handle the

case of channels with Kraus rank = 2. First, let us consider
the Kraus rank = 1 case, for which the error channel con-
tains a single unitary Kraus operator K0. This case can be
understood as describing coherent errors in the routers and
is actually already covered by the above proof. One simply
sets K1 = 0, and bound Eq. (D80) holds.

Next we consider the Kraus rank > 2 case. We define
two error configurations, c and c′, to be similar if and only
if Kc(r,t) = K0 ⇐⇒ Kc′(r,t) = K0. That is, error configu-
rations are similar if errors occur at the same locations,
though which error Km>0 occurs at a given location can
differ. We further define c’s similar set as the set of all
configurations c′ that are similar to c.

Let |cm| denote the number of errors Km>0 in configura-
tion c. We generalize the definition of q(c) as

q(c) = (〈W|K†
0 K0|W〉)(N−1)−|c| ∏

i>0

(〈W|K†
mKm|W〉)|cm|,

(D83)

where |c| = ∑
m |cm|. Recall that εW ≡ 1 − 〈W|K†

0 K0|W〉.
Then, because

∑

i>0

〈W|K†
i Ki|W〉 = 1 − εW, (D84)

as a consequence of the Kraus operators’ completeness
relation, the total probability of obtaining any configura-
tion from c’s similarity set is

(1 − εW)
(N−1)−|c|ε|c|

W . (D85)

This quantity matches the definition of q(c) for the Kraus
rank = 2 case. Therefore, by grouping all error configura-
tions in the same similarity set together, the proof proceeds
exactly as above. In other words, the proof is agnostic to
the kind of errors that occur; so long as the total probability
of any error occurring is fixed, the result is the same.

5. Errors at all time steps

The core idea of the proof still holds in the case when
errors occur at all time steps. In particular, the arguments
above can be iterated at each time step in order to isolate
the component of the final state that lies along the ideal
state. Accordingly, we define

|good(c)〉 =
∑

i∈g(c)

αiãi |i〉A |xi〉B |f i(c)〉, (D86)

which differs from the definition of |good(c)〉 given above
only in the coefficients ãi. These coefficients are associated
with the repeated application of Eq. (D21), which we now

apply T times to each of the log N routers in branch i. We
extend the definition Eq. (D5) to

Re
[ m∏

i=1

aψi

]
≥ (1 − ε)m/2 foranym ≤ T log N , (D87)

from which it follows that Re ãi ≥ (1 − ε)(1/2)T log N .
Lemma 1 is then generalized simply by replacing log N →
T log N . Conceptually, the idea is that each time the no-
error operator K0 is applied to an active router, we pay the
price of an approximate (1 − ε)1/2 prefactor in order to iso-
late the ideal component resultant state. When we repeat
this procedure T times for each of the log N routers, these
prefactors multiply, giving a total prefactor of approxi-
mately (1 − ε)(1/2)T log N .

Next consider the generalization of Lemma 2, which
asserts that |〈good(c)|bad(c)〉|/ 〈good(c)|good(c)〉 =
O(ε2). Observe that the proof of Lemma 2 does not actu-
ally depend on the time step when the errors are applied.
For example, at time t < t∗, the QRAM has active routers
in only the first < log N levels of the tree. One can equiv-
alently view this state as the state of a QRAM with <
log N levels at time step t∗, and so the proof of Lemma 2
directly applies. When errors occur at multiple time steps,
it follows that

|〈good(c)|bad(c)〉| ≤ B′ε2 〈good(c)|good(c)〉 (D88)

for some B′. In general, B′ = B, though B′ ≈ 1 in the
limit ε log N � 1. An equivalent statement of this result
is that, regardless of when errors occur, the overlap of the
good and bad states always contains sufficiently many off-
diagonal matrix elements (like 〈ψ |K†

0 K0|ψ⊥〉 ∼ ε) such
that 〈good(c)|bad(c)〉 ∼ ε2 to leading order.

Having generalized Lemmas 1 and 2, the generaliza-
tion of Lemma 3 follows straightforwardly. One simply
replaces log N → T log N and B → B′ in the bound.

With these generalizations in hand, one can use the
same argument as above to show that the fidelity can be
expressed in terms of E(�), where the expectation is now
taken with respect to error configurations with errors at
multiple time steps. The expectation E(�) was already
computed with respect to such configurations in the main
text. Applying the same calculation, we obtain

E(�) = (1 − εW)
T log N . (D89)

Proceeding as above, we then find that

1 − F ≤ A′εT log N , (D90)

where, in the limit ε log N � 1, the coefficient A′ can be
well approximated by

A′ ≈ 6 − 2
εW

ε
. (D91)

In general, A′ = A since B = B′.
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