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The quantum Fisher information matrix is a central object in multiparameter quantum estimation theory.
It is usually challenging to obtain analytical expressions for it because most calculation methods rely on the
diagonalization of the density matrix. In this paper, we derive general expressions for the quantum Fisher
information matrix that bypass matrix diagonalization and do not require the expansion of operators on
an orthonormal set of states. Additionally, we can tackle density matrices of arbitrary rank. The methods
presented here simplify analytical calculations considerably when, for example, the density matrix is more
naturally expressed in terms of nonorthogonal states, such as coherent states. Our derivation relies on
two matrix inverses that, in principle, can be evaluated analytically even when the density matrix is not
diagonalizable in closed form. We demonstrate the power of our approach by deriving novel results in the
timely field of discrete quantum imaging: the estimation of positions and intensities of incoherent point
sources. We find analytical expressions for the full estimation problem of two point sources with different
intensities and for specific examples with three point sources. We expect that our method will become
standard in quantum metrology.
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Quantum metrology deals with the estimation of
unknown parameters from the measurement outcomes of
quantum experiments. Naturally, the goal is to design
experiments and data-analysis strategies such that the
uncertainty in the estimated parameters is minimized. One
of the appeals of quantum metrology is that it promises
reduced uncertainties compared to what is possible with
comparable classical resources [1–5]. In order to under-
stand and quantify the advantage offered by quantum
metrology, we typically calculate the quantum Fisher
information (QFI) or, in the general case of simultaneous
estimation of multiple parameters, the QFI matrix (QFIM).
The inverse of the QFIM yields the quantum Cramér-Rao
bound (QCRB), a lower bound on the uncertainty of any
unbiased estimator of the parameters. In particular, analyt-
ical solutions for the QFIM are desirable, as they provide
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valuable insights into how the estimation error depends on
and scales with tunable parameters. Since the QFIM is a
function of the density matrix, existing general approaches
to compute the QFIM conventionally assume that the den-
sity matrix is expressed with respect to an orthogonal basis
[6] or even start with a density matrix in its diagonal-
ized form [7]. However, analytical matrix diagonalization
is typically limited to low dimensions. On top of that,
the density matrix often has a natural and elegant rep-
resentation with respect to some nonorthogonal basis. In
such cases, it is not only cumbersome to choose a suitable
orthogonal basis and to expand the density matrix in such
a basis but it also complicates the further computation of
the QFIM.

In this work, we address these problems and provide
a general and efficient method to analytically compute
the QFIM. Our approach is based on a new formal solu-
tion for the QFIM. Compared to previous methods, our
solution relies on a nonorthogonal-basis approach [8,9],
which allows us to express all matrices with respect to
an arbitrary, possibly nonorthogonal, basis. Further, our
solution does not rely on matrix diagonalization but on
matrix inversion. Our results improve over the analysis of
Refs. [8,9] by providing an expression for the QFIM that
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relies on the general solution of the associated Lyapunov
equations and, thus, avoids solving the Lyapunov equa-
tions for each parameter separately. In comparison with
Ref. [10], our expressions for the QFIM are general and do
not depend on particular properties of the problem under
consideration.

There are many situations in quantum metrology where
the natural representation of ρ involves a nonorthogonal
set of states, e.g., when coherent states are involved (such
as for noisy Schrödinger-cat states or entangled coherent
states [9]). In this work, we demonstrate the power of
our approach by deriving novel analytical results in the
field of discrete quantum imaging, a rapidly developing
branch of quantum metrology [11]. For the problem of
imaging two incoherent point sources of monochromatic
light in the paraxial regime, we provide a complete solution
for the QFIM when all parameters, i.e., the spatial loca-
tions and relative intensity of the sources, are estimated
simultaneously. Our method further allows us to derive
analytical results for some special arrangements of three
point sources, providing new insights into the imaging of
multiple sources.

The paper is organized as follows. In Sec. I, we provide
a precise formulation of the problem and discuss existing
approaches to compute the QFIM. In Sec. II, we present
our formal solution for multiparameter quantum estima-
tion with respect to nonorthogonal bases. In Sec. III, we
introduce quantum imaging and present our results for the
QFIM for two- and three-point sources. In Sec. IV, we dis-
cuss the computational requirements of our method and we
close the paper with some concluding remarks.

I. PRELIMINARIES

Let us consider the general case of simultaneously esti-
mating n parameters, θ = (θ1, . . . , θn). Further, let θ̂ =
(θ̂1, . . . , θ̂n) be an estimator of θ , with θ̂μ the estimator of
θμ. The uncertainty in the estimator θ̂ can be characterized

by the covariance matrix Cov
(
θ̂
)

and is lower bounded by
the QCRB [12,13]

Cov
(
θ̂
)

≥ 1
M

H−1, (1)

where M is the number of repetitions of the experiment
(i.e., the statistical ensemble size) and H is the QFIM.
We use the notation that vectors and matrices are printed
in bold while scalars and operators are not. Further, θj
denotes the j th coefficient of vector θ and Hμ,ν the (μ, ν)th
coefficient of matrix H. The QCRB represents a matrix
inequality in the sense that Cov

(
θ̂
)

− 1
M H−1 has to be a

positive semidefinite matrix. Instead of the matrix inequal-
ity given in Eq. (1), one often considers a lower bound

on the summed variances of each θ̂j which is obtained by
taking the trace on both sides of Eq. (1).

For a parameter-dependent density operator ρ, the coef-
ficients of the QFIM H are defined as

Hμ,ν = tr
(
Lμ∂νρ

)
, (2)

where ∂ν = ∂/∂θν is shorthand for the derivative by θν
and Lμ is the symmetric logarithmic derivative (SLD) for
the parameter θμ. In general, ρ, the SLDs, and the QFIM
depend on the parameters θ ; however, we drop any param-
eter dependence in our notation for the sake of brevity. The
SLDs are defined via the Lyapunov equations,

2∂μρ = ρLμ + Lμρ, (3)

and by inserting Eq. (3) for the derivative in Eq. (2) it
becomes apparent that H is a symmetric matrix.

Analytical solutions for the QFIM are usually obtained
based on the following classical result: for any density
operator ρ with nonzero eigenvalues, a formal solution for
Eq. (3) is given by [14]

Lμ = 2
∫ ∞

0
e−ρs (∂μρ

)
e−ρsds. (4)

Similarly, the QFIM can be written as [2]

Hμ,ν = 2
∫ ∞

0
tr
[
e−ρs (∂μρ

)
e−ρs (∂νρ)

]
ds. (5)

The most common method to solve the integral in Eq. (4)
relies on expanding ρ in its eigendecomposition ρ =∑d

j =1 λj |λj 〉 〈λj |, with nonzero eigenvalues λj and eigen-
vectors |λj 〉. Insertion of the solution of the integral given
in Eq. (4) into Eq. (2) yields the QFIM

Hμ,ν = 2
d∑

j ,k=1

Re
(〈λj |∂μρ|λk〉 〈λk|∂νρ|λj 〉

)

λj + λk
; (6)

for an overview of analytical results for the QFIM based
on the eigendecomposition of ρ, including formulas that
hold if ρ does not have full rank, see Ref. [7]. In particular,
Eq. (6) holds also for non-full-rank ρ if one restricts the
summation to indices for which λl + λm > 0 holds.

However, the density operator ρ is usually not given
in its eigendecomposition and the diagonalization of ρ is
known to be a hard problem; it requires solving the char-
acteristic equation, i.e., a polynomial equation of order
d. Abel’s impossibility theorem [15] states that algebraic
solutions for polynomial equations with arbitrary coef-
ficients are impossible for dimension d ≥ 5. Therefore,
finding analytical solutions for the QFIM by expanding ρ
in its eigenbasis usually works only for low dimensions or
some special cases.
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An alternative to the formal solution given in Eq. (4) is
to expand the Lyapunov equations (3) in an orthonormal
basis and to vectorize the corresponding matrix equation,
which is a well-known approach in the mathematical lit-
erature [16] but has received little attention in quantum
metrology [6,10]. Using vectorization, the Lyapunov equa-
tions are transformed into a linear system that can be
solved without diagonalizing ρ. In particular, solving a
d-dimensional linear system can, in principle, be done ana-
lytically for any finite d and does not suffer from the same
limitations as solving polynomial equations of order d, i.e.,
computing eigenvalues of ρ. If there exists an orthonormal
basis, i.e., an orthonormal set of states supporting ρ and
its derivatives (by the parameters of interest) such that the
density matrix ρ (formed by the coefficients of ρ in that
basis) has full rank, Šafránek gives the following formal
solution for the QFIM [6]:

Hμ,ν = 2vec
(
∂μρ

)†
(ρ ⊗ 1 + 1 ⊗ ρ)−1 vec (∂νρ) , (7)

where ∂μρ (∂νρ) is the matrix formed by the coefficients
of ∂μρ (∂νρ) expanded in the orthonormal basis, 1 denotes
the identity matrix of the same dimension as ρ, A denotes
the complex conjugate of A, A† denotes the conjugate
transpose of A, and vec(A) is defined as a column vector
obtained by concatenating the columns aj of A,

vec(A) =

⎛
⎜⎜⎝

a1
a2
...

ad

⎞
⎟⎟⎠ . (8)

In the derivation of Šafránek’s formula [Eq. (7)], the
inverse matrix in Eq. (7) is part of the formal solution of
the Lyapunov equations. Compared to Eq. (6), Šafránek’s
formula has the advantage that it does not rely on matrix
diagonalization but instead uses the inverse of a d2 × d2

matrix; matrix inversion is equivalent to solving a linear
system and thus does not share the limitations of analytical
matrix diagonalization.

A drawback of Eq. (7) is that it requires ρ to be invert-
ible, i.e., ρ needs to be given with respect to an orthogonal
basis such that its matrix has full rank. If ρ does not have
full rank and, thus, is not invertible, one can replace ρ with
an invertible matrix ρs = (1 − s)ρ + s/d 1 such that the
QFIM is then given by [6]

Hμ,ν = 2 lim
s→0

vec
(
∂μρs

)† (
ρs ⊗ 1+1 ⊗ ρs

)−1 vec
(
∂νρs

)
.

(9)

However, Eq. (9) involves additional analytical compu-
tations and if the dimension d of ρ is much larger than
its rank, the matrix to be inverted is much larger than

necessary. Additionally, ρ is often given with respect to
nonorthogonal states that form a basis spanning the support
of ρ. Then, the matrix of ρ with respect to this nonorthog-
onal basis has a compact form and full rank. In such cases,
it is nontrivial to find a suitable orthogonal basis that spans
only the support of ρ. Instead, one often has to rely on
bases for the whole Hilbert space, which leads to an inef-
ficient representation of ρ if the rank of ρ is smaller than
the dimension of the Hilbert space.

In the following, we address these problems by deriv-
ing a general formal solution for the QFIM using a
nonorthogonal-basis approach [8,9]. Similarly to Eq. (7),
our solution does not rely on matrix diagonalization but
on matrix inversion and we will show that it can be seen
as a generalization of Šafránek’s formula to nonorthogonal
bases.

II. THE QUANTUM FISHER INFORMATION
MATRIX FOR GENERAL BASES

In this section, we will present our general expressions
for the QFIM and discuss some special cases. The deriva-
tion (see Appendix A) uses block vectorization, a variation
of standard vectorization, which allows us to separate a
basis into different parts, corresponding to different sub-
spaces. In this way, we define all relevant matrices on their
support such that they are invertible.

A. QFIM for general bases

Our general solution for the QFIM relies only on one
assumption, which is that the density operator ρ is given
with respect to a d-dimensional basis B = {|ψj 〉

}d
j =1,

where B is a set of linearly independent states |ψj 〉 span-
ning the support of ρ. Note that we do not assume that
the basis B is orthogonal. Then, ρ = ∑

j ,k=1 ρ
B
j ,k |ψj 〉 〈ψk|

can be represented by a full-rank Hermitian matrix ρB with
coefficients ρB

j ,k. In the following, we write AB for the
matrix representation of A with respect to the basis B.

Matrix equations can be rewritten for matrices that are
given with respect to a general nonorthogonal basis B
using the Gramian GB

j ,k = 〈ψj |ψk〉, defined with respect
to the basis B. Then, for matrices A and B, defined
with respect to an orthogonal basis, we have the follow-
ing replacements for the matrix product and the trace
operation [9]:

AB → ABGBBB, (10)

tr [A] → tr
[
ABGB] . (11)

Clearly, if B is orthonormal, then GB = 1 and we retrieve
the standard matrix operations. With this, the Lyapunov
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equation for the parameter θμ becomes

2
(
∂μρ

)Bμ = LBμ
μ GBμρBμ + ρBμGBμLBμ

μ , (12)

where Bμ denotes a basis that spans the support of ρ and
∂μρ and GBμ is the Gramian of Bμ.

Let us denote the (i, j )th matrix block of a matrix A as
Aij . In comparison, Ai,j denotes a matrix coefficient. In the
following, all matrices are divided into four blocks as fol-
lows: the A11 block is always of size |B| × |B|, where | • |
denotes cardinality and B the given basis spanning the sup-
port of ρ. The remaining blocks complete the total matrix.

For example, we have

ρBμ =
[
ρB 0
0 0

]
, (13)

where the zeros denote blocks of zeros such that ρBμ is of
size

∣∣Bμ
∣∣× ∣∣Bμ

∣∣. If the derivative of ∂μρ lies within the
support of ρ, all but the ρ

Bμ
11 = ρB block vanish.

In Appendix A, we use block vectorization to derive the
following general solution for the SLD:

LBμ
μ = 2

⎛
⎝mat

(
D−1vec

[(
∂μρ

)Bμ
11 − E − E†

])
C−1

(
∂μρ

)Bμ
12

(
∂μρ

)Bμ
21

(
C−1

)† 0

⎞
⎠ , (14)

where we define the matrices

C = ρ
Bμ
11 GBμ

11 , (15)

D = 1
Bμ
11 ⊗ C + C ⊗ 1

Bμ
11 , (16)

E = C−1 (∂μρ
)Bμ

12 GBμ
21 ρ

Bμ
11 , (17)

and where mat(·) is defined to take a vector of length n2

and rearrange its coefficients to a matrix of size n × n
by inserting the first n coefficients of the vector into the
first column of the matrix, the next n coefficients into the
second column, and so forth; for example, for n = 2,

a =

⎛
⎜⎝

a1
a2
a3
a4

⎞
⎟⎠ , mat (a) =

(
a1 a3
a2 a4

)
. (18)

All that remains to be done is to use Eq. (14) to cal-
culate the QFIM, which, using our replacement rules
[Eqs. (10)–(11)], is given by

Hμ,ν = tr
[
LBμ,ν
μ GBμ,ν (∂νρ)

Bμ,ν GBμ,ν
]

, (19)

where Bμ,ν is a basis spanning the support of ρ, ∂μρ, and
∂νρ. The matrix LBμ,ν

μ is obtained by padding the matrix
LBμ
μ in Eq. (14) with zeros, i.e., (LBμ,ν

μ )i,j = 0 if one (both)
of the states |ψi〉 and |ψj 〉 lies (lie) outside Bμ.

Equations (14) and (19) represent our general solution
for the QFIM. The only nontrivial calculations are to find
the inverses of C and D, as given by Eqs. (15) and (16).
Similar methods have been used in Ref. [10], although
our result is more general because the result of Ref. [10]

depends on particular properties of the problem considered
in that work.

We proceed by expressing the compatibility conditions
[17] with respect to a nonorthogonal basis. This facilitates
the evaluation of the compatibility conditions if the QFIM
is computed using Eqs. (14) and (19) and in Sec. III, we
will discuss the compatibility conditions in the context of
discrete quantum imaging.

B. Compatibility conditions

When considering a “multiparameter scenario,” i.e., the
simultaneous estimation of n > 1 parameters, an interest-
ing question is how it compares to an (overly optimistic)
“separate scenario” where one assumes that each param-
eter can be estimated independently, i.e., that there is an
estimation scheme for each parameter, and for each indi-
vidual estimation scheme, one assumes that (i) all other
parameters are known and (ii) the same resources are avail-
able as for the multiparameter scenario. While such a
separate scenario is an idealization that usually cannot be
implemented (see Refs. [18,19] for a rigorous treatment
of quantum parameter estimation with nuisance parame-
ters), it represents a useful benchmark and performs at least
as well as the multiparameter scenario. If the so-called
compatibility conditions are fulfilled, the multiparameter
scenario matches the performance of the separate scenario
(while using only the resources of one of the estimation
schemes) [17]. The compatibility conditions consist of (i)
the commutation condition, �μ,ν = 0 for all μ �= ν, where

�μ,ν = Im
(

tr
[
ρBμ,νGBμ,νLBμ,ν

μ GBμ,νLBμ,ν
ν GBμ,ν

])
,

(20)
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(ii) the independence condition, Hμ,ν = 0 for all μ �= ν,
and (iii) the initial-state condition, i.e., that there exists a
single initial probe state that is optimal for every estimation
scheme in the separate scenario.

Note that the QFIM H and � can be seen as the real and
imaginary parts of the same quantity, since

Hμ,ν = Re
(

tr
[
ρBμ,νGBμ,νLBμ,ν

μ GBμ,νLBμ,ν
ν GBμ,ν

])
.

(21)

If the commutation condition is fulfilled, there exist opti-
mal measurements [20] such that the QCRB can be satu-
rated (although the estimators of the parameters might not
be independent). It is possible to find independent estima-
tors for the parameters if the independence condition is
fulfilled, i.e., if the off-diagonal coefficients of the QFIM
vanish. If, in addition to the commutation and indepen-
dence conditions, the initial-state condition is fulfilled, an
optimal multiparameter scenario can be constructed that
matches the performance of the corresponding separate
scenario.

The remainder of this section is devoted to showing
how to recover special cases of relevance from our general
results.

C. Retrieving Šafránek’s formula as a special case

In order to retrieve Šafránek’s formula, as given in
Eq. (7), from our general solution, we have to make the
additional assumption that the basis B, which spans the
support of ρ, is orthogonal and that the derivatives ∂μρ
are supported by B. Then, all matrices can be expressed
with respect to B and GB = 1. This means that C =
ρB, D = 1B ⊗ ρB + ρB ⊗ 1B, and E vanishes because
Bμ = B for all μ. The SLD is then given by LB

μ =
2 mat

(
D−1vec

[
∂μρB]) and the QFIM is found to be

Hμ,ν = tr
(
LB
μ∂νρ

B) (22)

= 2 tr
{
mat

[
D−1vec

(
∂μρB)] ∂νρ

B} (23)

= 2 vec
{
mat

[
D−1vec

(
∂μρB)]}†

vec
(
∂νρ

B) (24)

= 2 vec
(
∂μρB)†

(
1B ⊗ ρB + ρB ⊗ 1B

)−1

× vec
(
∂νρ

B) , (25)

where we use tr [AB] = vec (A)† vec (B) to get to Eq. (24)
and we use that the inverse of an invertible Hermitian
matrix is Hermitian to find Eq. (25), which is indeed iden-
tical to Eq. (7). Also, since Eq. (6) can be seen as a special
case of Eq. (7) [6], it is a special case of our general
solution as well.

D. Unitary parametrization with commuting
generators

Let us introduce a simple unitary parametrization
model using operator equations. The parameter-dependent
density operator is given by ρ = U(θ)ρ0U†(θ), where
ρ0 is an parameter-independent initial state, U(θ) =
exp

(
−i

∑n
μ=1 Kμθμ

)
is a unitary operator that encodes

the parameter dependence into ρ0, and we assume that the
generators Kμ commute.

It is then easy to show that the QFIM can be written as

Hμ,ν = tr
(
L′
μρ

′
ν

)
, (26)

where ρ ′
μ = [

Kμ, ρ0
]

replaces the derivative when com-
pared with Eq. (2) and L′

μ is given via

2ρ ′
μ = ρ0L′

μ + L′
μρ0. (27)

We can solve Eq. (27) with respect to a general basis in
the same way as we solve the Lyapunov equation above.
In particular, Eq. (14) becomes a solution for L′

μ
Bμ if we

replace
(
∂μρ

)Bμ with ρ ′
μ
Bμ and ρBμ with ρ

Bμ
0 in all expres-

sions on the right-hand side of Eq. (14), which, together
with Eq. (26) in matrix form, constitute a solution for the
QFIM for the special case of unitary parametrization. Note
that this solution does not depend on the parameters θ

[since it does not depend on U†(θ)] but only on the gener-
ators Kμ and the initial state ρ. This is in accordance with
known special cases for orthogonal bases [6] and solutions
based on matrix diagonalization [7].

E. Single-parameter estimation

It is worth noting that the presented method of analyt-
ically computing the QFIM also applies to the evaluation
of the QFI for single-parameter estimation. The QFI H for
estimation of a parameter θμ is the scalar special case of
the QFIM,

H = tr
[
LBμ
μ GBμ (∂μρ

)Bμ GBμ
]

. (28)

In particular, avoiding matrix diagonalization and mak-
ing use of a nonorthogonal basis can be advantageous for
computing the QFI as well as the QFIM. In some cases
of single-parameter estimation (or even for a few param-
eters), the analytical computation can be simpler if one
solves the linear system [see Eq. (A10) in Appendix A]
obtained from the Lyapunov equations explicitly for the
particular parameter of interest instead of using the general
solution given in Eq. (14), which holds for any parame-
ter. On the other hand, if one wants to estimate multiple
parameters, it will often be more convenient to compute
the general solution, i.e., to find the inverses of C and D
[Eqs. (15) and (16)] instead of solving the linear system
given in Eq. (A10) for each parameter.
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III. DISCRETE QUANTUM IMAGING

In the previous section, we derive a formal solution for
the QFIM without diagonalizing the density operator ρ and
without expressing ρ with respect to an orthogonal set of
states. We continue by showing, through the technologi-
cally relevant example of discrete quantum imaging, that
our formal solution can be very useful for finding novel
analytical expressions for the QFIM.

A. Introduction to quantum imaging

Quantum imaging is concerned with using quantum-
enhanced detection schemes to image point sources and
objects with the highest possible resolution and finding
ultimate bounds on the achievable resolution. Potential
applications of quantum imaging lie in astronomy, biol-
ogy, medicine, materials science, and in the semiconductor
industry [11].

In 1879, Lord Rayleigh formulated a criterion for the
limitations of traditional direct imaging based on classi-
cal wave optics: two incoherent point sources cannot be
resolved if their separation is significantly smaller than
their emission wavelength [21]. Since then, several super-
resolution techniques such as fluorescent microscopy [22]
have been introduced to overcome Rayleigh’s criterion.

In order to understand the ultimate fundamental limits
of imaging, Tsang et al. have developed a quantum metro-
logical framework based on the QCRB that relies on a
full quantum description of the imaging process [18,23].
A key result of Tsang et al. has been that there exist detec-
tion schemes such as spatial-mode demultiplexing [23] that
resolve two incoherent point sources with an error inde-
pendent of their separation and, thus, completely bypass
Rayleigh’s principle. This has been corroborated by sev-
eral proof-of-concept experiments [24–33]. More detailed
studies have shown that for any type of nonadaptive mea-
surement, one- and two-dimensional images of multiple
sources in the subdiffraction limit remain unaffected by
Rayleigh’s criterion only up to the second moment, while
for the estimation of higher-order moments a quantum

version of Rayleigh’s principle reappears [34,35]. Other
research has addressed the problem of optimal detection
schemes and measurements [36,37] and the implications
of practical imperfections such as a misalignment of the
detection apparatus [38,39] or noisy detectors [40]; for a
review of recent progress, see Ref. [11].

Here, we address the problem of deriving analytical
expressions for the QFIM for discrete quantum imag-
ing, i.e., for imaging a discrete set of incoherent point
sources. In a series of works, analytical expressions for the
QFIM have been found for localizing the arbitrary three-
dimensional positions of two incoherent point sources of
known and possibly unequal brightness [8,41–44]. Here,
we go beyond those results by considering the arguably
most general detection problem of two incoherent point
sources: the joint estimation of their positions and rela-
tive intensity, a total of seven parameters. To the best of
our knowledge, we are the first to deliver a fully ana-
lytical solution to this problem. Moreover, we note that,
when considering more than two sources, the results have
been of numerical nature so far [10]. Using our previ-
ously derived expressions for the QFIM, we are able to
obtain analytical solutions for some classes of estimation
problems involving three incoherent point sources.

Let us consider the problem of imaging NS weak inco-
herent pointlike light sources with intensities {Ij }NS

j =1 and

positions {rs = (xs, ys, zs)}NS
s=1. The light emitted by the

sources is collected in the collection plane (see Fig. 1).
Conventional methods of collecting light use an aperture
in the collection plane, for example, a circular aperture.
More generally, we can imagine that light is collected at
NC points in the collection plane where arbitrary apertures
can be retrieved by taking a continuous limit [45]. Let
{cj = (vj , wj )}NC

j =1 be the collection coordinates of the NC
collection points.

We follow the formulation of discrete quantum imaging
as given by Lupo et al. [45] (for a detailed derivation, see
Appendix B). We assume that at most one photon is col-
lected per collection window, known as the limit of weak

ImageIncoherent
sources

Interferometric 
scheme

Quantum
detectors

Processing
unit

z
y

x
w

v

Collection
plane

y
x

z

FIG. 1. A schematic illustration of discrete quantum imaging. The emitted photons from NS incoherent point sources are collected
at NC points in the collection plane. The photons are detected only after an interferometric postprocessing.
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sources. Further, we consider the paraxial regime where
the distance z0 of the sources from the collection plane is
much larger than the source and collection coordinates, i.e.,
xs, ys, zs, vj , wj 
 z0 (cf. Fig. 1). For multiple sources, the
state of a photon impinging on the collection plane is given
by [45]

ρ(p, r) =
NS∑
s=1

ps |ψ(rs)〉 〈ψ(rs)| . (29)

The statistical mixture in Eq. (29) takes into account
that the photon must have been emitted by one of the
NS sources. The probability pj that the photon has been
emitted by source j is given by the relative intensity of
the j th source, pj = Ij /Itot, with the total intensity Itot =∑NS

j =1 Ij . The vectors of probabilities and source locations
are defined as p = (p1, . . . , pNS ) and r = (r1, . . . , rNS ),
respectively.

The photon states in the collection plane |ψ(rs)〉 emitted
by the sources at rs can be parametrized as

|ψ(rs)〉 = U(rs) |ψ(0)〉 , (30)

where

|ψ(0)〉 = 1√
NC

NC∑
j =1

|j 〉 (31)

is a reference state in the collection plane that contains the
information about the location of the NC collection points
and the unitary operator

U(rs) = e−i Gxxs−i Gy ys−i Gzzs (32)

is defined via the operators

Gx = kV
z0

, Gy = kW
z0

, Gz = k
(
V2 + W2

)

2z2
0

, (33)

which generate a commutative group. Here, V and W are
position operators in the collection plane such that V |j 〉 =
vj |j 〉 and W |j 〉 = wj |j 〉 for all j = 1, . . . , NS.

After a photon has been collected at the collection plane,
it is processed coherently in a general interferometer (for
details, see Ref. [45]) before it is measured using photode-
tection (cf. Fig. 1). Since the interferometer corresponds
to a unitary transformation that is assumed to be indepen-
dent of the source parameters, it does not change the QFIM
[7] and we can proceed with calculating the QFIM from
Eq. (29). Potential parameters of interest are the relative
intensities of the sources, i.e., the probabilities ps, and the
positions of the sources rs, which are parameters of the
unitary transformation in Eq. (32).

B. Analytical results for discrete quantum imaging

Calculation of the QFIM with our formal solution,
Eqs. (14)–(19), is a matter of tedious but straightforward
algebra. We choose the basis B = {|ψ(rs)〉}NS

s=1, with basis
states as given in Eq. (30), such that we can express the
density operator given in Eq. (29) by a diagonal matrix
ρB(p, r), where ρB

s,s(p, r) = ps. If we want to estimate
one of the probabilities ps—for example, θμ = p1—the
corresponding basis Bμ is identical to B because ∂μρ is
supported by B. On the other hand, if we want to estimate
one of the position parameters, e.g., θν = x1, we extend B
by ∂ν |ψ(rs)〉 to obtain Bν . Note that ∂ν |ψ(rs)〉 is linearly
independent from all vectors in B only for almost all values
of the parameters (for more details, see Appendix C).

1. Compatibility conditions

In Sec. II B, we formulate the compatibility conditions
with respect to nonorthogonal bases. In the case of discrete
quantum imaging, the emission properties of the sources
cannot be changed and therefore the initial state is fixed
for all estimation schemes. Then, the compatibility con-
ditions reduce to (i) the commutation condition, �μ,ν = 0
for all μ �= ν, where � is given in Eq. (20), and (ii) the
independence condition, Hμ,ν = 0 for all μ �= ν. In the
following, we will refer to the commutation and indepen-
dence conditions in order to interpret the results for two-
and three-point sources.

2. Two sources

Here, we consider the general problem of imaging two
sources, i.e., the estimation of their positions and their rel-
ative intensity. The collected photon state is then given by

ρ =
2∑

s=1

ps |ψ(rs)〉 〈ψ(rs)| . (34)

It is convenient to reparametrize ρ using centroid and
relative coordinates for the two sources: we define the rel-
ative coordinates as θ4 = (x1 − x2) /2, θ5 = (y1 − y2) /2,
and θ6 = (z1 − z2) /2 and the centroid coordinates as θ1 =
(x1 + x2) /2, θ2 = (y1 + y2) /2, and θ3 = (z1 + z2) /2.
This means that we want to estimate seven parameters:
the centroid and relative coordinates of the sources and
θ7 = p1. Note that p2 is fixed due to normalization, p1 +
p2 = 1, and p1 = I1/Itot indeed corresponds to the relative
intensity. For example, if we know Itot, e.g., from an inde-
pendent intensity measurement, we directly obtain I1 from
estimating p1.

The matrices that must be inverted are the matrix C [see
Eq. (15)], which is of size 2 × 2, and the matrix D [see
Eq. (16)], which is of size 4 × 4. We find
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H = 4

⎛
⎜⎜⎝

Cov(g) (2p1 − 1)Cov(g) 2 [〈g(δ · g)〉 − 〈g〉 〈δ · g〉]
(2p1 − 1)Cov(g) Cov(g) 0

2 [〈gᵀ(δ · g)〉 − 〈gᵀ〉 〈δ · g〉] 0
Var (δ · g)
p1(1 − p1)

⎞
⎟⎟⎠ , (35)

where g = (Gx, Gy , Gz)
ᵀ and δ = (θ1, θ2, θ3)

ᵀ summarize
the generators and relative source coordinates in vec-
tor notation, 〈·〉 = 〈ψ(0)| · |ψ(0)〉 denotes the expectation
value with respect to the reference state |ψ(0)〉, the covari-
ance of the generators is defined as Cov(g)j ,k = 〈gj gk〉 −
〈gj 〉 〈gk〉, and the variance is defined as Var(A) = 〈A2〉 −
〈A〉2.

The first two columns (rows) in Eq. (35) each consist
of three columns (rows), summarized using matrix and
vector notation, such that the QFIM is actually a seven-
dimensional matrix. The j th row and column correspond
to the parameter θj . Since we are in the paraxial regime,
Eq. (35) includes only the lowest-order nonzero terms [46]
in the rescaled source coordinates δj /z0.

By fixing certain parameters, we recover known results:
if we set θ7 = p1 = 1/2, i.e., we consider sources of equal
intensity, the upper-left 6 × 6 block corresponding to the
centroid and relative coordinates becomes block diagonal,
which reproduces the well-known result that, according
to the independence condition, centroid and relative coor-
dinates can be estimated independently from each other.
On the other hand, the estimation errors among different
centroid coordinates are not independent (the same holds
for different relative coordinates) [8,43,45]. Further, from
the zero blocks in Eq. (35), it follows that the relative
coordinates can be estimated independently of the rela-
tive intensity of the sources. This is in agreement with
the results for two sources constrained to one dimension
[41]. Finally, Eq. (35) generalizes the result for the esti-
mation of centroid and relative coordinates of two sources
of known unequal brightness [44]. We also reproduce the
result of Ref. [44] that for unequal source brightness, the
estimation of centroid and relative coordinates is no longer
independent; in particular, since the upper-left 6 × 6 block
is proportional to Cov(g), there exists no collection pattern
or aperture that makes the off-diagonal vanish while the
diagonal blocks are nonzero.

We note that the QFIM is independent of the centroid
coordinates, i.e., the information content of the collected
light does not change by jointly moving the sources or
the collection instrument as a whole. Further, the covari-
ance Cov(g) that characterizes the QFIM for relative and
centroid coordinates shows that distributions of collection
points with a large variance along an x axis (y axis) are
better suited to estimate the corresponding source coordi-
nates along the x (y) direction, while the variance along
the x and y axes contributes equally for the estimation

of source coordinates along the z direction. Similarly, a
better precision in estimating the relative intensity can be
achieved if the collection points exhibit a larger variance
along the x axis (y axis) if the sources have a larger sep-
aration along the x axis (y axis) compared to the y axis
(x axis), because the variances in H7,7 are scaled with the
squared sources separation along the corresponding direc-
tion; if the sources are only separated along the z axis, the
variances of the source coordinates along the x and y axes
contribute equally. For example, for a circular aperture of
diameter D, the variance along the x or y axis is propor-
tional to D2, i.e., the diagonal elements of the QFIM scale
as D2.

To answer the question of the existence of optimal mea-
surements, we compute the matrix �. Using the same block
partitioning as for the QFIM in Eq. (35), we find

� = 4

⎛
⎝

0 �12 �13

−�
ᵀ
12 0 �23

−�
ᵀ
13 −�

ᵀ
23 0

⎞
⎠ , (36)

where

�23 = 2
[〈g (δ · g)2〉 − 〈g〉 〈(δ · g)2〉 + 2 〈g〉 〈δ · g〉2

− 2 〈g (δ · g)〉 〈δ · g〉] , (37)

�13 = (2p1 − 1)�23, (38)

�12 = 2p1(p1 − 1)�23 [〈gᵀ (δ · g)〉 − 〈gᵀ〉 〈δ · g〉] /
× Var (δ · g) . (39)

Similarly to the lowest-order approximation of the QFIM,
the coefficients of � are given at the lowest nonvanish-
ing order with respect to the rescaled source coordinates
δj /z0. We find that the diagonal blocks of � vanish. Thus,
there exist optimal measurements for the estimation of
centroid or relative coordinates (but not for the combi-
nation of both) and the QCRB can be saturated although
the estimators for different centroid or relative coordinates
are generally correlated since the QFIM is not diagonal.
Further, we note that �23 and �13 are second order with
respect to δ/z0 while �12 is first order. This means that
in the paraxial regime �23 and �13 are approximately
zero and there exist optimal measurements for the relative
intensity and the relative coordinates or the relative inten-
sity and the centroid coordinates. We can infer from the
zeros in Eq. (35) that one centroid coordinate and the rela-
tive intensity can be jointly estimated optimally, i.e., with
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independent estimators and measurements that saturate the
QCRB.

Important examples of apertures are the circular aper-
ture, studied, for example, in Refs. [42–44], and the
Gaussian-beam assumption [8,10], which corresponds to
a Gaussian distribution of collection points. Since we find
a general solution for any aperture or distribution of col-
lection points, we can make more general statements. For
example, for any distribution of collection points that is
radially symmetric around the optical axis, i.e., such that
for any collection point at position (v, w) there exists
another collection point at (−v, −w), we find that Eq. (36)
becomes � = 0, i.e., the QCRB can, in principle, be sat-
urated. Clearly, this includes the aforementioned cases of
a circular aperture or a Gaussian distribution of collection
points.

3. Three sources

We further consider two examples with three equidis-
tant sources. We assume that the three sources are aligned
along the x axis, i.e., x1 = cx − δx, x2 = cx, and x3 = cx +
δx, with known centroid coordinate cx. First, let us con-
sider the problem of estimating the distance δx, where we
assume that the relative intensities are known. In lowest
order with respect to δx/z0, the QFI is then obtained as

H = 4 (1 − p2)Var (gx) , (40)

where p1 + p2 + p3 = 1. In accordance with our results for
two sources, we find that a nonzero variance in the collec-
tion points in the x direction is crucial for the estimation
of the relative intensity if the sources are aligned along the
x axis. For comparison, in the distance estimation of two
sources of known (unequal) relative intensity along the x
axis, i.e., x1 = cx − δx/2, and x2 = cx + δx/2, with known
centroid coordinate cx, one finds H = Var (gx) for the QFI.
At first sight, this is surprising because it does not seem to
match Eq. (40), which yields H = 4p3 Var (gx) if we set
p1 to zero. However, the two estimation problems are dif-
ferent: in case (i), the three-sources problem with p1 = 0
corresponds to a situation where the position of source 2
is known, while the position of source 3 has to be esti-
mated (if δx is varied, only source 3 moves). Accordingly,
the QFI equals the QFI for the position estimation of a sin-
gle source rescaled with its relative intensity p3; source 2
effectively acts as a source of noise, which reduces the rel-
evant signal. On the other hand, in case (ii), the problem of
the two sources placed symmetrically around a known cen-
troid coordinate requires a joint estimation of the sources in
order to estimate their distance (if δx is varied, both sources
move).

Both cases can be summarized in one formula by
parametrizing the two sources as x1 = cx + δx(q − 1/2)
and x2 = cx + δx(q + 1/2), where q ∈ R is an additional
scaling parameter such that we obtain case (i) for q = 1/2

and case (ii) for q = 0. Then, we find for the QFI in lowest
order with respect to δx/z0,

H = [
1 + 4q2 + 4q (2p2 − 1)

]
Var (gx) . (41)

Note that H grows quadratically with q, a typical effect
when parameters are rescaled because scaling factors
increase the sensitivity with respect to changes of the
parameters. Finally, it is worth noting that we can find ana-
log results for the QFI in Eqs. (40) and (41) if the sources
are aligned along the y axis (z axis), where Var (gx) is
replaced with Var

(
gy
)

(Var [gz]).
For our next example, we again consider three equidis-

tant sources of unequal brightness along the x axis, x1 =
cx − δx, x2 = cx, and x3 = cx + δx, with a known centroid
coordinate. This time, we assume that their distance is
known and we estimate p1 and p2, while p3 is determined
by p3 = 1 − p1 − p2. In lowest order with respect to δx/z0,
the QFIM is found to be

H (p1, p2) = δ2
x Var (gx)

(1 − p2) (4p1 + p2)− 4p2
1

×
(

16 (1 − p2) 4 (1 + 2p1 − p2)

4 (1 + 2p1 − p2) (1 + 8p1)

)
.

(42)

The QFIM is proportional to δ2
x Var (gx), which means that

a nonzero source separation as well as a nonzero separation
of collection points along the x axis is necessary to estimate
the relative intensities. The fact that source 2 has a special
place as the middle source breaks the symmetry between
sources 1 and 2. This is reflected in the asymmetry between
the diagonal coefficients of the QFIM that correspond to
the estimation of p1 and p2. For example, if we evaluate
the QFIM for equal source intensities, p1 = p2 = 1/3 (i.e.,
p3 = 1/3), the asymmetry persists:

H
(

1
3

,
1
3

)
= δ2

x Var (gx)

(
16 8
8 11

2

)
. (43)

Further, note that there are statistical correlations between
the estimators of p1 and p2 because the off-diagonal coef-
ficients in Eq. (42) are nonzero for sources of finite bright-
ness. We find that � is zero up to second order with
respect to the rescaled source coordinates (while there are
nonzero higher-order terms). This means that in the parax-
ial regime, there exist optimal measurements for the joint
estimation of the relative intensities.

IV. DISCUSSION AND CONCLUSION

In this paper, we obtain fully general solutions for the
QFI and the QFIM [see Eqs. (14) and (19)], which are
figure of merits of core importance in quantum metrology.
Based on these solutions, we provide a general method to
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analytically calculate the QFI and QFIM. Our solutions
generalize previous results [9,10] and we show in partic-
ular that Šafránek’s QFIM expression [6] is a special case
of our solution for orthogonal bases.

Compared to the conventional method of calculating the
QFIM, which relies on matrix diagonalization, our method
does not share the rather strict limitations of analytical
matrix diagonalization. Instead, our method relies on the
computation of matrix inverses, which amounts to solving
linear systems. Then, finding analytical solutions is usu-
ally only limited by our ability to handle long algebraic
expressions (for more details, see Appendix E).

While Šafránek’s QFIM expression [6] shares the afore-
mentioned advantages from avoiding matrix diagonaliza-
tion, our method has the additional advantage that it does
not rely on expanding operators in an orthogonal basis.
This can be very convenient when the density operator
is given in a nonorthogonal basis. In such cases, good
choices for an orthogonal basis for analytical computations
are often hard to find and lead to an inefficient representa-
tion, which hampers analytical computation of the QFIM.
In particular, switching to an orthogonal basis often leads
to larger matrices that do not have full rank. Our method
accepts any density matrix with respect to any given, pos-
sibly nonorthogonal, basis where the only requirement is
that the density matrix has full rank in this basis. Then, our
method keeps the dimension of matrices as low as possible,
which facilitates the analytical computations significantly.
While our method avoids diagonalization, it requires the
computation of two inverse matrices of dimension d and
d2, where d is the rank of the density matrix. Since matrix
inversion is simpler than diagonalization in many respects,
our method should be applied whenever it is impossible to
diagonalize the density matrix. We remark once more that
our method and the above considerations apply to the ana-
lytical evaluation of the QFIM. A detailed discussion about
numerical computation is provided in Appendix D.

We demonstrate the usefulness of our method by deriv-
ing new analytical solutions for discrete quantum imaging
that generalize existing results for two-point sources and
provide insights about selected problems with three-point
sources. Due to its generality and its advantages over pre-
vious methods when the density operator is given in a
nonorthogonal basis, we expect that our method of com-
puting analytical solutions for the QFI and the QFIM will
find widespread application and can become a standard
tool in quantum metrology.
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APPENDIX A: DERIVATION OF THE QFIM FOR
GENERAL BASES

In this appendix, we derive general expressions for the
QFIM. The derivation involves four steps: (i) we write the
Lyapunov equation for matrices defined with respect to an
arbitrary (nonorthogonal) basis, (ii) we rewrite the Lya-
punov equations using block vectorization, (iii) we derive a
formal solution for the SLD, and (iv) we insert the solution
in the expression for the QFIM.

We would like to refer to the main text [from the begin-
ning of Sec. II A up to but not including Eq. (14)] for the
Lyapunov equations expressed in a general (nonorthog-
onal) basis and for some notation that is used in the
following. We continue by deriving a formal solution of
the Lyapunov equations. We start by introducing more
notation. For a given block decomposition of matrix A,
vecb(A) denotes a block-wise vectorization:

A =
[

A11 A12
A21 A22

]
, vecb(A) :=

⎛
⎜⎝

vec (A11)

vec (A21)

vec (A12)

vec (A22)

⎞
⎟⎠ . (A1)

Note that vecb depends on the particular partitioning of
matrix A. We use the notation that Aij denotes the (i, j )th
block of A, in contrast to Ai,j , which denotes the (i, j )th
coefficients of matrix A. In particular, we apply a conven-
tion for dividing matrices in blocks that is introduced in the
main text (Sec. II A).

Next, we rewrite the SLD equations using an important
identity for block vectorization (see Ref. [47, p. 49]; see
also Ref. [48, Lemma 4]):

vecb (ABC) = (Cᵀ  A)vecb (B) , (A2)

where Cᵀ denotes the transpose of matrix C and  denotes
the Tracy-Singh product, a generalization of the tensor
product for block-partitioned matrices. For two partitioned
matrices A and B, it is defined as

A  B =

⎛
⎜⎝

A11 ⊗ B11 A11 ⊗ B12 A12 ⊗ B11 A12 ⊗ B12
A11 ⊗ B21 A11 ⊗ B22 A12 ⊗ B21 A12 ⊗ B22
A21 ⊗ B11 A21 ⊗ B12 A22 ⊗ B11 A22 ⊗ B12
A21 ⊗ B21 A21 ⊗ B22 A22 ⊗ B21 A22 ⊗ B22

⎞
⎟⎠ .

(A3)

An important special case of Eq. (A2) is vec (ABC) =
(Cᵀ ⊗ A)vec (B). In block-vectorized form, the Lyapunov
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equation for LBμ
μ reads

2vecb
(
∂μρ

) = vecb
(
LμGρ + ρGLμ

)
. (A4)

All matrices in Eq. (A4) are given with respect to the basis
Bμ; however, for better readability, we drop the super-
scripts Bμ in Eq. (A4) in the following until we reach
Eq. (A14). With the identity given in Eq. (A2), and using
that ρ and G are Hermitian, we find

2vecb
(
∂μρ

) = vecb
(
LμGρ

)+ vecb
(
ρGLμ

)
(A5)

= vecb
(
1LμGρ

)+ vecb
(
ρGLμ1

)
(A6)

= (Gρ)ᵀ  1vecb
(
Lμ
)+ 1  (ρG)

× vecb
(
Lμ
)

(A7)

= ρG  1vecb
(
Lμ
)+ 1  (ρG)

× vecb
(
Lμ
)

(A8)

=
[
ρG  1 + 1  (ρG)

]
vecb

(
Lμ
)

, (A9)

where A denotes the complex conjugate of A. By decom-
posing ρ and G in blocks as stated below Eq. (13), Eq. (A9)
becomes (all matrices still with respect to Bμ)

2

⎛
⎜⎜⎜⎝

vec
[(

∂μρ
)

11

]

vec
[(

∂μρ
)

21

]

vec
[(

∂μρ
)

12

]

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

111 ⊗ (
ρ11G11

)+ ρ11G11 ⊗ 111 111 ⊗ (
ρ11G12

)
ρ11G12 ⊗ 111 0

0 ρ11G11 ⊗ 122 0 ρ11G12 ⊗ 122

0 0 122 ⊗ (
ρ11G11

)
122 ⊗ (

ρ11G12
)

0 0 0 0

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

vec
[(

Lμ
)

11

]

vec
[(

Lμ
)

21

]

vec
[(

Lμ
)

12

]

vec
[(

Lμ
)

22

]

⎞
⎟⎟⎟⎠ , (A10)

where it follows from the chain rule of differentiation that
vec

[(
∂μρ

)
22

]
is zero.

We continue by solving Eq. (A10) for the SLD Lμ. Note
that the big matrix of block matrices in Eq. (A10) is already
upper triangular and that the bottom row contains only zero
blocks, indicating that Lμ is underdetermined. We pick a
solution for Lμ by setting vec

[(
Lμ
)

22

] = 0. This yields
the following solution for the SLD:

vec
[(

Lμ
)

11

] = 2 D−1vec
[(

∂μρ
)

11 − E − E†] , (A11)

vec
[(

Lμ
)

21

] = 2 vec
[(

∂μρ
)

21

(
C−1)†

]
, (A12)

vec
[(

Lμ
)

12

] = 2 vec
[
C−1 (∂μρ

)
12

]
, (A13)

vec
[(

Lμ
)

22

] = 0, (A14)

where we use identity (A2) for vectorization and the
matrices C, D, and E are defined in the main text [see
Eqs. (15)–(17)].

Equations (A11)–(A14) constitute a general solution to
the Lyapunov equations (12) with respect to the basis Bμ.
In particular, using identity (A2) and the mat(·) operation
[defined in the main text, cf. Eq. (18)], we can write the
solution for Lμ in matrix form, where we keep in mind

that all matrices starting from Eq. (A4) up to the following
equation are given with respect to Bμ, though we drop the
superscript Bμ for better readability. The solution of Lμ in
matrix form is given in Eq. (14) in the main text, where we
also explain how to obtain the QFIM [Eq. (19)].

An alternative representation of the QFIM to Eq. (19)
can be obtained by writing the QFIM in vectorized form,

Hμ,ν = tr
[
LBμ,ν
μ GBμ,ν (∂νρ)

Bμ,νGBμ,ν
]

(A15)

= tr
[
GBμ,ν (∂νρ)

Bμ,νGBμ,νLBμ,ν
μ

]
(A16)

= vecb
[
GBμ,ν (∂νρ)

Bμ,νGBμ,ν
]† vecb

(
LBμ,ν
μ

)
,

(A17)

where we use the cyclic property of the trace and tr [AB] =
vecb (A)† vecb (B). The block-vectorized solution given in
Eqs. (A11)–(A14) can be extended to the basis Bμ,ν by
padding with zeros and can then be plugged into Eq. (A17).

APPENDIX B: A QUANTUM FORMULATION OF
DISCRETE QUANTUM IMAGING

In this appendix, we reproduce the formulation of dis-
crete quantum imaging as given by Lupo et al. [45]. We
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assume that at most one photon is collected per collection
window, known as the limit of weak sources. Then, a gen-
eral single-mode photon state emitted by a source at rs and
collected in the collection plane can be expressed as

|ψ(rs)〉 =
NC∑
j =1

γ
(
cj , rs

) |j 〉 . (B1)

The orthonormal states |j 〉 contain the information about
the location of the collection points, where j labels the
collection points, and γ

(
cj , rs

)
are general complex ampli-

tudes that must fulfill normalization,
∑

j

∣∣γ (cj , rs
)∣∣2 = 1.

The relative phases

ϕ
(
cj , rs

) = arg γ
(
cj , rs

) = kl
(
cj , rs

)
(B2)

depend on the wave number k and the path length l
(
cj , rs

)
from the source at rs to the collection point cj ,

l
(
cj , rs

) =
√(

xs − vj
)2 + (

ys − wj
)2 + (zs + z0)

2 (B3)

= z0

√(
x′

s − v′
j

)2
+
(

y ′
s − w′

j

)2
+ (

z′
s + 1

)2, (B4)

where, in the second line of Eq. (B4), the distance z0 of
the sources from the collection plane (cf. Fig. 1) has been
factored out and the primed variables equal the unprimed
ones scaled by a factor 1/z0.

We consider the paraxial regime, where the dis-
tance of the sources from the collection plane is much
larger than the source and collection coordinates, i.e.,
xs, ys, zs, vj , wj 
 z0; this means that we can expand
ϕ
(
cj , rs

)
for all primed variables around zero. In order to

obtain nontrivial terms for each of the source coordinates,
we compute a multivariate Taylor expansion up to the third
order:

ϕ
(
cj , rs

) � kz0

⎡
⎣(z′

s − 1
) (

x′
sv

′
j + y ′

sw
′
j

)
− z′

s

v′
j

2 + w′
j

2

2
+ 1 + z′

s +
(

x′
s
2 + y ′

s
2
) (

1 − z′
s

)+ v′
j

2 + w′
j

2

2

⎤
⎦ . (B5)

Note that we can drop terms that depend only on the
collection-plane coordinates (and not on the source coor-
dinates) because those terms can be absorbed in the
definition of |j 〉 and the phases that depend only on the
source coordinates correspond to trivial phase factors that
are canceled out when writing down the density operator
[cf. Eq. (29)]. Then, we find

ϕ
(
cj , rs

) � kz0

[(
z′

s − 1
) (

x′
sv

′
j + y ′

sw
′
j

)
− z′

s

v′
j

2 + w′
j

2

2

]
.

(B6)

Note that the only nontrivial z′
s term in Eq. (B6) is of third

order with respect to the variables z′
s, v

′
j , and w′

j , which is
the reason why we have to compute the multivariate Taylor
expansion up to the third order.

Since xs, ys, zs, vj , wj 
 z0 and since the sources are
incoherent, we can assume that a photon is detected with
equal probability at one of the collection points, such that

γ
(
cj , rs

) = 1√
NC

eiϕ(cj ,rs). (B7)

By introducing position operators V and W in the collection
plane such that V |j 〉 = vj |j 〉 and W |j 〉 = wj |j 〉 for all j ,
we can define a unitary operator that generates the relative

phases by acting on a reference state |ψ(0)〉 that does not
depend on the source coordinates:

|ψ(rs)〉 = U(rs) |ψ(0)〉 , (B8)

where

|ψ(0)〉 = 1√
NC

NC∑
j =1

|j 〉 . (B9)

By replacing the collection plane coordinates in Eq. (B6)
with the position operators V and W and keeping only first-
order terms in the source coordinates [49], we obtain the
unitary operator

U(rs) = e−i Gxxs−i Gy ys−i Gzzs , (B10)

where we define the operators

Gx = kV
z0

, Gy = kW
z0

, Gz = k
(
V2 + W2

)

2z2
0

, (B11)

as the generators of a commutative group.
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For multiple sources, the state of a photon impinging on
the collection plane is given by

ρ(p, r) =
NS∑
s=1

ps |ψ(rs)〉 〈ψ(rs)| . (B12)

The statistical mixture in Eq. (B12) takes into account that
the photon must have been emitted by one of the NS inco-
herent sources. The probability ps that the photon has been
emitted by source j is given by the relative intensity of
the j th source, pj = Ij /Itot with the total intensity Itot =∑NS

j =1 Ij . The vectors of probabilities and source locations
are defined as p = (p1, . . . , pNS ) and r = (r1, . . . , rNS ).

APPENDIX C: CRITICAL POINTS AND THE
REDUCTION OF THE QFIM TO LOWER-ORDER

TERMS

Our approach to calculating the QFIM makes use of
nonorthogonal bases. By definition, this implies that all
basis vectors are linearly independent. However, since the
basis vectors can depend on the parameters of interest,
it can happen that for special values of those parame-
ters, which we call critical points, the set of basis vectors
is no longer linearly independent and, thus, it no longer
constitutes a valid basis. This typically happens when we
choose the parameters such that the dimensionality of
the problem reduces; for example, when setting the dis-
tance of two sources to zero, the two sources effectively
become one source. For such critical points, our method
can still be applied but a smaller basis has to be used. Typ-
ically, the coefficients of the QFIM are well-defined and
smooth functions with respect to the parameters. Only at
the critical points, we find removable singularities that can
be eliminated by separately calculating the QFIM at the
critical points using a reduced set of basis vectors.

When we try to reduce a higher-order expression for
the QFIM in Sec. III to first or second order, the prob-
lem of critical points becomes relevant if we try to expand
around such points. In order to calculate a Taylor expan-
sion around such removable singularities, we take the
limit toward the singularity. The limit can be calculated
by repeatedly making use of L’Hôpital’s rule. The only
drawback of this method is that iterating L’Hôpital’s rule
requires us to take higher orders of derivatives, which leads
to even longer expressions. In some cases, this turns out to
be a computational bottleneck.

APPENDIX D: NUMERICAL COMPUTATION OF
THE QFIM

Our main focus in this work is on the analytical com-
putation of the QFIM. At the same time, the introduction
of a new expression for the QFIM, as given in Eqs. (14)
and (19), might raise questions regarding its usefulness

for numerical computations. However, the challenges of
analytical and numerical computation are very different.

On the one hand, as we discuss in Sec. I, analyti-
cal matrix diagonalization is notoriously hard and usually
impossible for matrices of rank larger than 4. On the other
hand, when it comes to numerics, it has been shown that
most standard linear algebra operations, including matrix
diagonalization, matrix inversion, and the solution of Lya-
punov equations, can be done numerically in a stable way
and asymptotically as fast as matrix multiplication [50].
The complexity of matrix multiplication is not known.
Naive algorithms multiply two d × d matrices in approx-
imately O(d3) time. From all known algorithms, the one
with the best asymptotic complexity takes approximately
O(d2.37) time [51]. However, due to a large constant factor
hidden by the O notation, this and other algorithms with a
similar complexity are not practical.

This means that in terms of computational complexity,
there is no difference between solving a Lyapunov equation
or diagonalizing the density matrix in order to calculate
the QFIM and either way of computing the QFIM for a d-
dimensional density matrix will typically take O(d3) time.
Additionally, the run time will scale linearly with the num-
ber of parameters to be estimated, because for n parameters
we need to solve n Lyapunov equations or diagonalize
n + 1 density matrices in order to compute the derivative
of ρ for each parameter.

We believe it is preferable to use one of the follow-
ing two methods for the numerical computation of the
QFIM. By far the most common method is to diagonalize
the density matrix and to use one of the many expres-
sions for the QFIM based on the eigendecomposition of
ρ [7]. Alternatively, one could numerically solve the Lya-
punov equations with the Bartels-Steward algorithm [52]
for complex matrices: first, ρ is reduced to Schur form and
then a linear system equivalent to Eq. (3) has to be solved.
The algorithm requires O(d3) operations, where d is the
dimension of ρ. However, the expressions in Eqs. (14)
and (19) are not particularly suited for numerically com-
puting the QFIM because they involve the inverse of a
d2 × d2 matrix.

APPENDIX E: COMPUTATIONAL LIMITATIONS
OF THE ANALYTICAL CALCULATION OF THE

QFIM

One of the main advantages of our method for calcu-
lating the QFIM, over methods based on matrix diagonal-
ization, is that our method is based on matrix inversion
(or, equivalently, the solution of a linear system). This can,
in principle, be carried out analytically for any dimension.
For example, in the case of discrete quantum imaging, any
dimension means any number of light sources. However,
when using computer-algebra systems such as MATHEMAT-
ICA, with higher dimensions the computation can become
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very time consuming and the analytical expressions can
become extremely long.

Roughly speaking, there are two challenges: matrix
inversion (or, equivalently, the solution of linear systems)
and the symbolic simplification of the resulting expres-
sions. The success of analytical matrix inversion and the
simplification of the resulting expressions for the QFIM
typically depend on the available run time and on the avail-
able memory (RAM). In our example of discrete quantum
imaging, we restrict ourselves to computations that con-
sume less than 30 GB of RAM and do not take more than a
few hours. Further, for some examples of quantum imaging
with three sources, it is possible to compute a long analyt-
ical expression for the QFIM, however, the reduction to
first- or second-order terms turns out to be difficult (see
Appendix C).

In general, the computational limitations of our method
also depend on the details of the estimation problem under
consideration. For instance, our problem of discrete quan-
tum imaging is a particularly challenging one because it
involves a nontrivial Taylor expansion (see Appendix C).
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patibility in multiparameter quantum metrology, Phys. Rev.
A 94, 052108 (2016).

[18] M. Tsang, F. Albarelli, and A. Datta, Quantum Semipara-
metric Estimation, Phys. Rev. X 10, 031023 (2020).

[19] J. Suzuki, Y. Yang, and M. Hayashi, Quantum state estima-
tion with nuisance parameters, J. Phys. A: Math. Theor. 53,
453001 (2020).

[20] In general, joint measurements of multiple copies of ρ(p, r)
might be necessary to asymptotically saturate the QCRB
[17].

[21] L. Rayleigh, XLVI. Investigations in optics, with special
reference to the spectroscope, The London, Edinburgh, and
Dublin Philos. Mag. J. Sci. 8, 403 (1879).

[22] L. Möckl, D. C. Lamb, and C. Bräuchle, Super-resolved flu-
orescence microscopy: Nobel Prize in chemistry 2014 for
Eric Betzig, Stefan Hell, and William E. Moerner, Angew.
Chem. Int. Ed. 53, 13972 (2014).

[23] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of
Superresolution for Two Incoherent Optical Point Sources,
Phys. Rev. X 6, 031033 (2016).

[24] Z. S. Tang, K. Durak, and A. Ling, Fault-tolerant and finite-
error localization for point emitters within the diffraction
limit, Opt. Express 24, 22004 (2016).

[25] F. Yang, A. Tashchilina, E. S. Moiseev, C. Simon, and A.
I. Lvovsky, Far-field linear optical superresolution via het-
erodyne detection in a higher-order local oscillator mode,
Optica 3, 1148 (2016).

[26] M. Paúr, B. Stoklasa, Z. Hradil, L. L. Sánchez-Soto, and J.
Rehacek, Achieving the ultimate optical resolution, Optica
3, 1144 (2016).

[27] W.-K. Tham, H. Ferretti, and A. M. Steinberg, Beating
Rayleigh’s Curse by Imaging Using Phase Information,
Phys. Rev. Lett. 118, 070801 (2017).

[28] M. Parniak, S. Borówka, K. Boroszko, W. Wasilewski,
K. Banaszek, and R. Demkowicz-Dobrzański, Beating the
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