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Ensuring the correct functioning of quantum error correction (QEC) circuits is crucial to achieve fault
tolerance in realistic quantum processors subjected to noise. The first checkpoint for a fully operational
QEC circuit is to create genuine multipartite entanglement (GME) across all subsystems of physical qubits.
We introduce a conditional witnessing technique to certify GME that is efficient in the number of subsys-
tems and, importantly, robust against experimental noise and imperfections. Specifically, we prove that
the detection of entanglement in a linear number of bipartitions by a number of measurements that also
scales linearly, suffices to certify GME. Moreover, our method goes beyond the standard procedure of sep-
arating the state from the convex hull of biseparable states, yielding an improved finesse and robustness
compared to previous techniques. We apply our method to the noisy readout of stabilizer operators of the
distance-three topological color code and its flag-based fault-tolerant version. In particular, we subject the
circuits to combinations of three types of noise, namely, uniform depolarizing noise, two-qubit gate depo-
larizing noise, and bit-flip measurement noise. We numerically compare our method with the standard, yet
generally inefficient, fidelity test and to a pair of efficient witnesses, verifying the increased robustness of
our method. Last but not least, we provide the full translation of our analysis to a trapped-ion native gate
set that makes it suitable for experimental applications.
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I. INTRODUCTION

The continued effort to control quantum systems with
ever increasing accuracy has led to various quantum pro-
cessors [1], comprising tens of qubits and, more recently,
to the demonstration of quantum supremacy [2]. How-
ever, in the mid and long term, an important goal towards
real-world applications of quantum computation is to
demonstrate fault tolerance (FT) with low resources [3,4].
Quantum error correction (QEC) [5–7] is a building block
of the FT theory [8,9] the purpose of which is to protect the
encoded information from the detrimental accumulation
of errors by detecting and correcting them along with the
computation. A current goal in this direction is to reach the
break-even point where FTQEC demonstrates advantage
over computations with bare physical qubits. An initial
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proposal to attest this benchmark in near-term devices was
to compare the performance of a family of QEC circuits
acting on logical qubits with the best-possible counterparts
using unencoded physical qubits [3]. We note, however,
that any attempt towards the rigorous demonstration of FT
must first ensure that QEC circuits function correctly.

While physical qubits and gates can be characterized
using different techniques, e.g., spectroscopic and inter-
ferometric methods extracting the coherence times [10],
and randomized benchmarking or process tomography
characterizing gate performances [11,12], an efficient char-
acterization for medium-sized registers and circuits that
implement QEC protocols is still lacking. Simulating such
circuits for general noise and nontrivial-size encondings
to demonstrate this break-even point is computationally
very demanding, even in the light of the recent result by
Beale and Wallman [13] wherein the computational cost of
effective-logical-noise simulation is significantly reduced.
Alternative milder criteria for a quantitative evaluation of
the performance of QEC circuits show that the require-
ments to demonstrate beneficial QEC are in the reach
of near-future quantum platforms, e.g., using trapped-ion
quantum processors [4,14,15]. Nonetheless, prior to the
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development of such optimal full codes for QEC, which
must function in the vicinity of FT thresholds, it would
be desirable to leverage the currently available noisier
devices, e.g., by analyzing the performance of building
blocks of QEC codes.

To achieve this goal, we note that the capacity to
generate entanglement lies at the very heart of QEC
protocols, since preparation circuits of encoded logical
states [16,17], and syndrome readout schemes [14,18,19],
generate genuinely multipartite entangled states. On the
same note, the necessity of unbounded genuine multipar-
tite entanglement (GME) to obtain an advantage in any
quantum-computation algorithm was noted by Jozsa and
Linden [20]. As a result, certifying GME serves as a partial
benchmark in the progress towards FT quantum computa-
tion with noisy quantum processors by proving the genuine
quantum-mechanical nature and functioning of the build-
ing blocks of larger QEC circuits in terms of their power
to generate GME.

In general, verifying GME is a daunting task, which
can be understood from the following four points. Theo-
retically, GME detection requires certifying entanglement
within all possible bipartitions of a multipartite system.
The number of bipartitions, however, grows exponentially
with the number of subsystems. This implies that, in gen-
eral, the required number of bipartite entanglement tests
increases exponentially with the addition of every subsys-
tem. Furthermore, certifying bipartite entanglement in its
own is known to be NP-hard [21,22]. From an experimen-
tal perspective, not every theoretically conceived measure-
ment can be implemented in practice, calling for the com-
pliance of entanglement certification methods with such
limitations. In addition, experiments suffer from imperfec-
tions that may reduce the capabilities of naive theoretical
schemes of entanglement detection considerably. It is thus
necessary to devise and continuously improve efficient
GME certification methods.

An elegant approach that addresses these four chal-
lenges to a reasonable extent is entanglement witnessing
[23–28]. An entanglement witness is an observable for
which a negative expectation value in a given state indi-
cates that the state is necessarily entangled. Interestingly,
entanglement witnesses can be constructed from local
and experimentally friendly observables [29,30], and fur-
ther optimized to show some degree of noise resilience
[25,31–33]. In particular, the guaranteed existence of a wit-
ness for each entangled state makes witnesses extremely
useful in experiments [23]. Nevertheless, in multipartite
scenarios, there seems to be a trade-off between the finesse
of entanglement witnesses and the number of measure-
ments needed to carry them out. Specifically, as discussed
in detail below, the standard method of GME certifica-
tion using a single witness [26,29], reduces the exponential
growth of the required number of bipartitions and measure-
ments to a linear one by trading the individual bipartitions

for the convex hull of all biseparable states, and detecting
those states outside this convex hull. This advantage comes
at a price, namely, a significant reduction in the robustness
of the witness against experimental imperfections.

In this work, we introduce conditional entanglement
witnessing, a witnessing technique that combines ideas
from localizable entanglement [34] with entanglement wit-
nessing, in order to reduce the exponential complexity of
the GME detection to a linear number of tests while, at
the same time, achieving a remarkable robustness against
noise and errors. Our approach facilitates the detection of
GME in quantum states that, although lying within the
convex hull of biseparable states, remain masked to the
single-witness approach.

We prove that the separation between any quantum state
and only a linear number of conditional biseparable sets
suffices for the purpose of certifying GME in that particular
state. Due to the fact that for each individual bipartition the
corresponding set of biseparable states is delimited closely
by the convex set of conditional biseparable states, our
conditional witnesses allow for a finer state discrimination
between GME and biseparable states even in the pres-
ence of noise and experimental imperfections. We show
the efficiency and robustness of conditional witnessing
by applying it to the output of non-FT and FT stabilizer
measurement circuits of a d = 3 topological QEC color
code [35] subjected to phenomenological, circuit-level,
and measurement noise models. We then numerically com-
pare the performance of our method against the standard
witnessing methods. Our results demonstrate that con-
ditional witnessing is simultaneously more efficient and
more robust in proving GME in noisy quantum systems.

The paper is organized as follows. In Sec. II, we give
an overview of the stabilizer formalism for the topologi-
cal QEC color code, together with the flag-based FTQEC
scheme. Section III discusses ideal non-FT and FTQEC
circuits. In Sec. IV, multipartite entanglement and its
standard witnessing are reviewed. We then introduce our
method of conditional entanglement witnessing. Section V
is devoted to the compilation of the QEC circuits into the
native trapped-ion gates. Next, phenomenological, circuit-
level, and measurement error models used in the simula-
tions are introduced. In Sec. VI we present our numerical
results for our conditional witnessing technique and some
of the best standard witnessing methods available applied
to noisy trapped-ion platforms. We discuss the robustness
of the methods based on results obtained for different noise
channels applied to non-FT and flag-based FT trapped-ion
circuits. Finally, in Sec. VII we provide the conclusions
and outlook of our work.

II. FLAG-QUBIT-BASED PROTOCOL FOR
FAULT-TOLERANT QEC

QEC promises to battle environmental decoherence and
experimental imperfections during a quantum computation
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by redundantly encoding quantum information in multi-
partite logical states [36]. In order to protect the infor-
mation that is stored redundantly, active QEC considers
performing certain types of measurements frequently to
detect and correct the error that has corrupted the state
without affecting the encoded information [5–7]. Many
leading QEC codes can be described within the stabilizer
formalism [37].

A [(n, k, d)] stabilizer quantum code, which encodes k
logical qubits into n physical qubits with a code distance
d, can correct up to t = �(d − 1)/2� errors. The stabiliz-
ers Si form an Abelian subgroup S of size |S| = 2G of the
n-qubit Pauli group Pn = {±1, ±i} × {I , X , Y, Z}⊗n where
I , X , Y, Z are the single-qubit Pauli matrices. Such a sub-
group is typically specified via a generating subset of G
linearly independent and mutually commuting Pauli oper-
ators, g := {gi}G

i=1, that are known as parity checks—or
subgroup generators—so that S = 〈g1, . . . , gG〉. The latter
means that any element of the stabilizer subgroup S ∈ S
can be obtained as a specific product of the generators of
the form

S =
⊗

i

gi with gi ∈ g. (1)

The measurement of a single stabilizer yields one of
its two possible eigenvalues λ = ±1, which is 2n−1-fold
degenerate. Since the parity checks form a set of compat-
ible observables, it is possible to unambiguously specify
a 2n−G-dimensional subspace of the n-qubit state space
through their common eigenspace with eigenvalue +1,

L = {|ψ〉 ∈ C
2n : S |ψ〉 = |ψ〉 , ∀S ∈ S}. (2)

The subspace L is known as the code space, which can
be used to embed (codify) the k = n − G logical qubits.
The logical generators {X L

� , ZL
� }k
�=1 are then elements of the

Pauli group Pn that commute with all stabilizers S ∈ S , but
which are not stabilizers themselves. Defining the central-
izer of S in Pn as C(S) = {P ∈ Pn : PS = SP, ∀S ∈ S},
logical operators lie within C(S) \ S . The key idea here is
that the logical operators transform the logical state within
the code space while leaving the code space as a whole
invariant.

It is central to the construction of a QEC code using
the stabilizer formalism that the measurements of parity
checks allow us to extract the so-called error syndrome
without altering the stored quantum information. This typ-
ically requires the use of ancillary qubits into which the
error syndrome is mapped through a sequence of entan-
gling gates followed by a projective measurement on them.
In practice, however, the syndrome measurements will also
be affected by decoherence and noise, thus introducing fur-
ther errors. This raises a crucial aspect of QEC, namely,
the notion of fault tolerance [38]—the circuits used for the

FIG. 1. The seven-qubit color code arranged in a three-
colorable planar lattice with qubits lying on the vertices, and
two types of parity checks per plaquette, hence G = 6. This code
yields a single logical qubit, k = 1, encoded in n = 7 data qubits,
distance d = 3, and can correct for t = 1 error.

syndrome readout and other operations must be designed
in such a way that errors do not proliferate in an uncon-
trolled manner, cascading into multiple errors that would
affect larger parts of the quantum register. In other words,
the QEC code should cope with errors stemming from both
the quantum computation and the syndrome extraction
even if the measurement process is faulty. Such FT cir-
cuit constructions are essential to harness the full potential
correcting power of the QEC code under consideration.

One of the most attractive strategies for active QEC
is based on topological codes where the physical qubits
are arranged on planar lattices and the stabilizers have a
local support, i.e., they involve only neighboring qubits
in the planar lattice [36]. In contrast to QEC codes based
on concatenation [7], the syndrome extraction for topolog-
ical codes requires only local measurements simplifying
in this way the experimental implementation of rounds of
QEC, i.e., syndrome extraction followed by the correction
of the most-likely error. For instance, for topological color
codes [35], physical qubits are arranged on the vertices of
a trivalent three-colorable planar lattice (see Fig. 1). The
parity-check operators are the following pair of operators
(X - and Z-type parity checks) per plaquette q of the lat-
tice, and have a local support on the qubits located at the
vertices of such plaquette

g(q)x =
⊗

i∈v(q)
Xi, g(q)z =

⊗

i∈v(q)
Zi, (3)

where v(q) is the set of vertices that belong to plaque-
tte q. Accordingly, there are G = 6 parity checks for the
smallest color code with n = 7 physical qubits each act-
ing locally on only four qubits so that the code space is
two-dimensional encoding k = n − G = 1 logical qubit.

To detect the errors that may have corrupted the logi-
cal qubit, one must measure all four-qubit parity checks
using a FT scheme and infer the location of the most-likely
error from the classical information obtained from the
sequence of ±1 parity-check outcomes known as the error
syndrome. In this particular example, the parity-check
information is extracted via projective measurements on
an ancillary syndrome qubit. In Fig. 2(a), we show a cir-
cuit for the readout of an X -type parity check of a single
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(a)

(b)

FIG. 2. Error syndrome extraction circuits in the color code
for (a) the non-FT and (b) the flag-based FT readouts of the X -
type parity check g(q)x in Eq. (3) of any plaquette q in Fig. 1.
The physical and data qubits correspond to the corresponding
four physical qubits of this plaquette with indexes i1, i2, i3, i4 ∈
{d1, d2, d3, d4, d5, d6, d7}. These qubits are sequentially coupled
via CNOT entangling gates to the syndrome qubit, which must
be initialized in a specific state, and then measured in the corre-
sponding basis. In the flag-based scheme, an additional ancillary
qubit is appropriately initialized, coupled, and measured to reveal
crucial information to attain FT.

plaquette of the seven-qubit color code. We note, how-
ever, that since all four plaquette qubits are coupled to
the same ancillary qubit through the sequential two-qubit
gates, single-qubit errors can proliferate and create errors
with a larger support. Following the syndrome measure-
ment approach using a single ancilla, any such error will
result in a logical error, thereby violating the FT design
principle.

A recent proposal for an efficient recovery of FT dur-
ing the syndrome extraction is the flag-based stabilizer
readout [39–41]. As shown in Fig. 2(b), this technique
uses a single additional ancillary qubit, the flag qubit,
which is coupled to the syndrome qubit. We note that, in
general, even if more flag qubits are required for larger-
distance codes [40], these are not required to be initially
prepared in a multipartite entangled Greenberger-Horne-
Zeilinger (GHZ) [42] state, which must also be verified
to avoid a non-FT proliferation of errors [43,44]. This
brings about significant advantage compared to cat-state
ancillary methods [43,44]. In the case of the seven-qubit
color code, as shown in Fig. 2(b), the flag qubit is coupled
to the syndrome qubit to detect whether or not multiple
errors might have cascaded onto the data qubits. We note
that the flag qubit by itself does not suffice to correct for
such higher-weight errors. However, when combined with
the subsequent parity-check measurements using the syn-
drome qubit, it can be used to unequivocally identify and

correct these dangerous errors achieving the desired fault
tolerance [39,45].

III. IDEAL PLAQUETTE CIRCUIT

We are interested in evaluating the correct functioning
of the plaquette readout circuits, as they are the smallest
building blocks of the circuitry for the topological color
code [35]. To do that, it is useful to first work out the
details of the ideal circuits shown in Fig. 2. Here, by ideal
we mean circuits that are free from state preparation and
measurement (SPAM) and gate errors. This is done in the
following section. We emphasize that, here, we focus only
on the gx generator. Nevertheless, a similar procedure can
be implemented using the gz generator as presented in
Appendix A.

A. Ideal non-FT plaquette circuit

Let us start our analysis with the simplest example of
the ideal plaquette circuit in Fig. 2(a). In a full QEC code,
the syndrome qubit can be prepared in |+〉s = (|0〉s +
|1〉s)/

√
2, while the data qubits {i1, i2, i3, i4} are, in gen-

eral, part of a larger logical state. After applying the circuit,
the syndrome qubit would contain the Z-type error infor-
mation. This information could then be extracted via a
projective measurement of the syndrome qubit. In order
to evaluate the performance of the color-code blocks, how-
ever, we do not need to read out the syndrome. In this case,
our interest lies in the characterization of the corresponding
circuit from the perspective of GME. To do so, it turns out
to be sufficient to assume that data qubits are initialized in
|0〉⊗4. Next, four CNOT gates are sequentially applied with
the syndrome as the common control qubit while the data
qubits play the role of the corresponding targets. Recall
that a CNOT gate between the control and the target qubits,
c and t, respectively, can be written in terms of Pauli opera-
tors as CNOTc,t = {(Ic + Zc)It + (Ic − Zc)Xt}/2. After some
algebra, the output state obtained is

|ψout〉 = |0〉⊗5 + |1〉⊗5

√
2

= |GHZ⊗5
+ 〉 . (4)

The resulting five-qubit GHZ state of Eq. (4) can be under-
stood as the one-dimensional code space of the stabilizer
subgroup

SGHZ
5q = 〈g1 = Z1Z2, g2 = Z2Z3, g3 = Z3Z4, g4 = Z4Z5, g5

= X1X2X3X4X5〉, (5)
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and thus, it can be recast as the product of the projections
onto the common +1 eigenspace of S5q, namely

�out = |GHZ⊗5
+ 〉 〈GHZ⊗5

+ | =
5∏

i=1

(
Ii + gi

2

)
= 1

25

25∑

i=1

Si.

(6)

Let us now briefly analyze the effect of a dangerous
error in the syndrome qubit. Consider, for example, the
case wherein the syndrome suffers from a Pauli-X error
between the second and third CNOT gates; see Fig. 3(a).
Using the standard propagation of errors across CNOT gates
[8], it is easy to calculate the output state as

|ψout〉 = XsX3X4 |GHZ⊗5
+ 〉 = X1X2 |GHZ⊗5

+ 〉 . (7)

It is evident from Eq. (7) that the syndrome qubit carries no
information about the error and that the single-qubit error
has turned into a weight-2 error showcasing the non-FT
aspect of this circuit. Importantly, even in the case of a
coherent rotation error exp (iφX ) of the syndrome qubit,
as depicted in Fig. 3(b), a simple calculation results in the
output state

|ψout〉 = cosφ |GHZ⊗5
+ 〉 + i sinφXsX3X4 |GHZ⊗5

+ 〉 , (8)

which again represents the fact that a projective X mea-
surement of the syndrome qubit does not reveal the error.
This brings us to the FT scheme of the next section.

B. Ideal flag-based plaquette circuit

We now consider the FT flag-based circuit presented in
Fig. 2(b). Similar to the noiseless non-FT plaquette circuit
of Sec. III A, we assume the syndrome qubit is initialized in
the state |+〉s and the data qubits {i1, i2, i3, i4} in the product
state |0〉⊗4. The flag qubit, on the other hand, is prepared
in |0〉f . The main difference between the flag-based and
the non-FT circuits is that the two additional CNOT gates
between the syndrome and the flag propagate the potential
error in the syndrome qubit to the flag qubit while this does
not corrupt the resulting state in the event of an ideal error-
free realization. This enables one to infer about the error
in the syndrome qubit that propagates to multiple errors
on the data by a projective measurement of the flag qubit.
When there are no errors in the syndrome, it is expected
from the ideal circuit to yield the output state

|ψout〉 = (|0〉⊗5 + |1〉⊗5) |0〉f√
2

= |GHZ⊗5
+ 〉 |0〉f . (9)

However, if the syndrome qubit suffers from a single Pauli-
X error happening between the two CNOTs, as shown in

(a)

(b)

(c)

(d)

FIG. 3. Introduction of dangerous errors in noisy plaquette cir-
cuits for (a),(b) the non-FT and (c),(d) the flag-based FT readouts
of the gx generator. (a) A single Pauli-X error occurring on the
syndrome qubit in a dangerous position leads to a cascade of
errors in the data qubits. (b) Coherent-rotation errors in the syn-
drome qubit also lead to multiple undetectable errors in the data
qubits. In (c), in contrast to the non-FT cases, outcomes of the
measurement on the flag qubit reveals the cascade of errors from
the syndrome qubit to the data. Similarly in (d), the coherent-
rotation error is detected through measurement outcomes of the
flag qubit.

Fig. 3(c), it will propagate to the flag qubit as a bit flip.
This is reflected in the output state

|ψout〉 = XsX3X4 |GHZ⊗5
+ 〉 |1〉f . (10)

As a result, in contrast to the non-FT scenario of Sec.
III A, the −1 measurement outcome of the flag indicates
the propagation of a correlated weight-2 error in the syn-
drome and data. Note that there are other events in a noisy
experimental realization of the circuit, for example, a mea-
surement error on the flag qubit, which could also trigger
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the flag. Therefore, to construct one FTQEC cycle, fur-
ther measurements of the stabilizers would be required to
discriminate between these cases [45].

Finally, if the syndrome qubit suffers from the coherent-
rotation error exp (iφX ) between the second and third
syndrome-data CNOT gates shown in Fig. 3(d), then the
output state of the ideal circuit becomes

|ψout〉 = cosφ |0〉f |GHZ⊗5
+ 〉

+ i sinφ |1〉f XsX3X4 |GHZ⊗5
+ 〉 . (11)

Here again, the flag unveils a cascaded error in the syn-
drome and data qubits.

Having understood the working principles and the ideal
outputs of each plaquette in both non-FT and flag-based
FT scenarios, we are ready to introduce our main tool for
characterizing the performance of these circuits, namely,
the conditional entanglement witnessing.

IV. CONDITIONAL ENTANGLEMENT
WITNESSING

A. Multipartite entanglement and its witnesses

In this section we review the well-established theory of
multipartite entanglement witnessing [26,46]. The readers
familiar with these details might skip this section and move
on to Sec. IV B. We identify the subsystems of an n-partite
system using an index set I := {1, 2, . . . , n} so that, given
the Hilbert space Hi associated with each subsystem, the
Hilbert space of the total system is given by HI = ⊗i∈IHi.
Evidently, it is possible to group the subsystems in many
different ways. Calling each possible grouping a partition-
ing, they correspond to partitionings of the index set I.
An m partitioning (I1|I2| · · · |Im) is thus a specific group-
ing of subsystems such that ∪xIx = I and Ix ∩ Iy = ∅ for
any x = y. It is customary to call two partitionings bipar-
titions. We also denote the Hilbert space associated with
each party by HIj = ⊗x∈Ij Hx.

Recall that each quantum system is described by a den-
sity operator �, which is a unit-trace positive member of
the set of all bounded linear transformations Lin(H) on
the Hilbert space H assigned to the system. The set of all
quantum states of a system is denoted by St ⊂ Lin(H),
which is a compact convex set. Applying these rules to
the multipartite scenario for a presumed m partitioning
(I1| · · · |Im), the state space of each party Ij is denoted by
StIj ⊂ Lin(HIj ), while the state space of the total system
is identified as StI ⊂ Lin(HI). Now, imagine that parties
in (I1| · · · |Im) are spatially separated and all they can do
is perform local operations on their possessed quantum
systems and possibly communicate classical messages,
known as the local operation and classical communication

(LOCC) paradigm, and ask what quantum states of the
total system can the parties prepare. It can be shown that
the quantum states that the parties can achieve in this
setting are of the form [47]:

� =
∑

i

pi�I1;i ⊗ · · · ⊗ �Im;i, (12)

wherein �Ix ;i ∈ StIx for any x ∈ {1, . . . , m} and {pi} is a
probability distribution. The quantum states of this form
are called m-separable states with respect to the partition-
ing (I1| · · · |Im) and their collection forms a closed convex
set denoted by SepI1|···|Im . The set of m-separable states
for any given partitioning is also dense and convex. Most
importantly, however, is that SepI1|···|Im � StI, i.e., there
are quantum states of the total system that cannot be pre-
pared by the m parties using LOCC. Such states are called
entangled with respect to the m partitioning (I1| · · · |Im).

Entanglement in an n-partite system has a complex
structure because the possibilities of choosing the parti-
tioning grow exponentially with the number of subsystems
[26,48]. A particularly interesting class of multipartite
entangled states, however, is the one formed by states
that are entangled within all possible bipartitions. These
states are called genuinely multipartite entangled (GME),
or—sometimes—fully inseparable [46,49]. Henceforth we
use the former name for such states. This is the strongest
form of multipartite entanglement as it can be shown to
imply entanglement within all possible k partitionings of
the system [26,48].

Let us remark that the certification of GME in an
n-partite system requires verification of entanglement
in Nb = (1/2)

∑n−1
i=1

(n
i

) = 2n−1 − 1 different bipartitions,
showing the exponential increase in both analytical and
practical complexity of this task. Certifying entanglement
of an arbitrary quantum state, be it bipartite or multipar-
tite, is also known to be very hard from the perspective
of complexity theory [21,22]. This is because determining
whether a given quantum state is entangled or not is equiv-
alent to deciding whether it is inside or outside of a suitable
convex set of separable states. However, any such set is not
a simplex, meaning that it does not have a finite number
of “straight border lines” to be checked for the separation
of the state under consideration [50]. Nevertheless, it is
possible to obtain many sufficient (but maybe not neces-
sary) conditions for entanglement of quantum states [27],
a very large class of which are entanglement witnesses
[23–25,51].

Simply speaking, an entanglement witness is a quantum
observable whose expectation value is bounded for all sep-
arable states. This bound, however, can be violated by suit-
able entangled states. More precisely, for every entangled
state with respect to a specific m partitioning (I1| · · · |Im),
� /∈ SepI1|···|Im , there exists a bounded Hermitian operator
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WI1|···|Im such that

∀σ ∈ SepI1|I2|···|Im Tr
(
WI1|···|Imσ

) ≥ 0,

Tr
(
WI1|···|Im�

)
< 0.

(13)

Importantly, the existence of the witness operator WI1|···|Im
is guaranteed by the Hahn-Banach separation theorem
[51]. Finding a witness operator with properties in Eq. (13)
may seem to be difficult. Thankfully, using the affine prop-
erties of the space of bounded linear operators on Hilbert
spaces, it was shown [25,26,51,52] that every entangle-
ment witness can be constructed from a bounded linear test
operator, henceforth denoted by L, so that

WI1|···|Im = lI1|···|ImI − LI1|···|Im , (14)

in which the so-called separability bound is

lI1|···|Im = sup
σ∈SepI1|···|Im

Tr
(
LI1|···|Imσ

)
. (15)

While the optimization in Eq. (15) seems demanding, it is
known that entanglement witnessing is efficiently decid-
able [53,54]. Now, according to Eq. (13), any state � for
which Tr

(
LI1|···|Im�

)
> lI1|···|Im is entangled with respect to

the partitioning (I1| · · · |Im).
The program of entanglement witnessing thus proceeds

as follows. It is assumed that some information about the
entangled state to be detected is available a priori, e.g., the
quantum state that results from an ideal noiseless circuit
is known. The goal is to devise an experimentally friendly
observable, i.e., one that can be measured with relatively
low cost, for instance, in the number of settings, based
on the given information, which is also resilient against
the state preparation and measurement imperfections. We
note that, in general, different witnesses are required for
different partitionings [26,48]. In this paper, however, we
are interested in GME witnessing and shall thus focus on
bipartitions.

Let us give a simple example of how the standard GME
witnessing can be performed. Consider the circuit shown
in the top panel of Fig. 2. We show in Sec. III A that the
ideal output of this circuit is the five-qubit GHZ state,

|ψout〉 = |GHZ⊗5
+ 〉 = |0〉⊗5 + |1〉⊗5

√
2

. (16)

To show that this state is genuinely multipartite entangled,
we have to check the entanglement in all Nb = 15 possible
bipartitions. Let us focus on one of them, say (s|1, 2, 3, 4)
where we use the symbol s for the the syndrome qubit. It
is easy to see that, with respect to this bipartition, the GHZ

state is equivalent to a bipartite Bell state, i.e.,

|ψout〉 = |GHZ⊗5
+ 〉 = |00〉 + |11〉√

2
, (17)

where |0〉 = |0〉⊗4 and |1〉 = |1〉⊗4. Consider now the test
operator

L =
(|00〉 + |11〉) (〈00| + 〈11|)

2
= |GHZ⊗5

+ 〉 〈GHZ⊗5
+ | .

(18)

Using the similarity with the Bell state it is easy to compute
the supremum expectation value of this test operator over
all biseparable states Seps|1,2,3,4 obtaining the separability
bound of Eq. (15) with respect to this bipartition as

ls|1,2,3,4 = sup
σ∈Seps|1,2,3,4

Tr (Lσ) = 1
2

. (19)

Consequently, one can define an entanglement witness
with respect to this bipartition as

Ws|1,2,3,4 = 1
2

I − L, (20)

so that Tr
(
Ws|1,2,3,4σ

) ≥ 0 for all biseparable states σ ∈
Seps|1,2,3,4, while there exist quantum states for which
Tr

(
Ws|1,2,3,4�

)
< 0. Clearly, the five-qubit GHZ state

itself is an example of the latter. It then follows that
|GHZ⊗5

+ 〉 〈GHZ⊗5
+ | /∈ Seps|1,2,3,4, which must be read as

“the five-qubit GHZ state is entangled with respect to the
bipartition (s|1, 2, 3, 4).” For this example, due to the sym-
metries of the test operator L in Eq. (18) with respect to
different bipartitions, it is easy to show that the maximum
expectation value of the test operator for all bipartitions is
indeed the same and equal to 1/2. As a result, we find that
the witness operator of Eq. (20) is in fact capable of detect-
ing the entanglement of the five-qubit GHZ state within all
possible bipartitions and thus serves as a faithful witness
of GME.

We emphasize, however, that this is not generally the
case for arbitrary quantum states, generic test operators,
and arbitrary bipartitions. In the most general case of cer-
tifying entanglement using a single test operator, a given
quantum state is GME if the expectation value of the test
operator for that state is larger than the maximum of the
separability bounds Eq. (15) for all bipartitions [26], i.e.,

� is GME if 〈L〉 = Tr (L�) > max
B∈B

lB, (21)

where the maximum is taken over the set of all bipar-
titions B, which has |B| = Nb elements. Now, sup-
pose that � and σ are two biseparable states with
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Conditional witnesses A standard witnesses

Conv

FIG. 4. Heuristic comparison between standard GME witness-
ing and conditional GME witnessing technique of Sec. IV C.
The light-blue dashed ovals, say O0, represent separable states
with respect to a specific individual bipartition, also known as
biseparable sets. Given n subsystems there exist an exponential
number, i.e., Nb = 2n−1 − 1, of biseparable sets. The closed con-
vex hull of all biseparable sets is denoted as conv. The inner
circle C0 is the set of fully separable states. The dark-blue ovals,
say O1, represent the conditional biseparable states with respect
to individual bipartitions, i.e., states for which entanglement can-
not be localized between any two subsystems from parties of
the bipartition. Evidently, O0 � O1. The circle C1 represents the
intersection of all conditional biseparable sets. The black dashed
line represents a standard GME witness. It is clear that there
exist quantum states, e.g., the red dot, that are GME and yet lie
within the convex hull conv. Using Theorem 1 or Theorem 2 of
Sec. IV B, it is enough to certify the entanglement of states with
respect to only a linear number, i.e., n − 1, of conditional biparti-
tions. We use n − 1 witnesses (green solid lines) for this purpose.
The intersection of detected states using such witnesses are also
GME entangled states. Thus, the shaded yellow area highlights
the advantage obtained using our conditional GME witnessing as
discussed in Sec. IV C.

respect to two bipartitions B1 and B2, respectively. Thus,
we have Tr (L�) ≤ maxB∈B lB and Tr (Lσ) ≤ maxB∈B lB,
which implies Tr{L[p� + (1 − p)σ ]} ≤ maxB∈B lB, ∀p ∈
[0, 1]. As this holds for any choice of B1 and B2, we
conclude that the inequality 〈L〉 > maxB∈B lB can be geo-
metrically interpreted as a test that serves to identify points
that lie outside the closed convex hull of all biseparable
states. In other words, any standard GME witness using a
single witness is only capable of detecting GME states that
lie outside the closed convex hull of all biseparable states;
see Fig. 4.

Nevertheless, an important aspect of the above construc-
tion is its potential experimental feasibility, depending on
our choice of the test operator. First, to obtain the expec-
tation value of the witness, it is enough to measure only
the expectation value of the test operator. Second, the
expectation value of the test operator of Eq. (18) can, in
our particular case, be obtained by local measurements of

the 32 stabilizers of the five-qubit GHZ state as given in
Eq. (6). Hence, it is in practice possible to obtain the wit-
ness value and thus test the entangled nature of the state
generated by the actual circuit. We note, however, that the
number of stabilizers grows exponentially with the number
of qubits, which makes this method practically challenging
to implement. When using a single witness, this problem
can cleverly be avoided by trading noise robustness for
efficiency in the number of measurements as shown by
Tóth and Gühne in Ref. [29]. We also emphasize that the
latter difficulty must be distinguished from the obstacle due
to the exponential growth in the number of bipartitions.

B. Efficient certification of GME

As we see, entanglement witnessing is meant to be an
experimentally friendly technique to certify entanglement.
Interestingly, there exist techniques to push witnessing to
its limits so that a given witness delivers an impressive per-
formance even in the presence of severe noise and errors
[25,31,32,55]. In multipartite scenarios, however, we face
a different problem, namely the scaling of the number of
partitions with the input size, which seems to be persistent
for any method of entanglement certification.

In the scenario of certifying GME that is relevant to
our purpose an n-partite system contains Nb = 2n−1 − 1
bipartitions to be tested for entanglement the exponential
growth of which is a major challenge for large systems. We
note that, by choosing the witnessing method for entangle-
ment certification and using the construction of Eqs. (19)
and (20), one might construct Nb witnesses for each bipar-
tition using a single test operator L. Nevertheless, in gen-
eral, there is an exponential number of optimizations as per
Eq. (15) that must be performed [26]. One way to circum-
vent this practical limitation is to choose a test operator L
for which a suitable positive real number l is known—by
other means—such that l is larger than the separability
bound of Eq. (21) for all bipartitions. One such technique
was adopted by Tóth and Gühne in Ref. [29]. However,
the ease does not come for free: (i) the obtained witnesses
are not the finest ones [25], as there may exist genuinely
multipartite entangled states that cannot be detected by
any such single witness, (ii) there is no general recipe
for their construction, and (iii) they are limited to certain
types of witnesses and systems as the value l cannot be
deduced for an arbitrary test operator without performing
the optimizations.

In the following, we exploit the concept of localizable
entanglement (LE) [34,56] to introduce a general solution
to this challenge that collapses the exponential complexity
of GME witnessing to a linear growth for all system types
in all dimensions. The price to pay, however, is that our
technique provides only a sufficient condition for detect-
ing GME, i.e., not every genuine multipartite entangled
state can be detected using our approach. We emphasize,
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however, that for many operational scenarios including
measurement-based quantum computation and quantum
communication in which LE is a necessary resource [57,
58], our sufficient condition becomes necessary as well,
hence providing a necessary and sufficient condition for
practical purposes.

Let us begin with a simple example. Suppose that two
parties Alice and Bob are holding quantum systems A and
B, respectively. In addition, Alice is holding an ancillary
system C. Hence, we effectively have a tripartite system
shared between two parties in the bipartition (AC|B). We
denote the quantum state of the total system with respect
to this bipartition by �AC|B, and the amount of entangle-
ment shared between Alice and Bob by E(�AC|B). We ask
how that is related to the entanglement between subsys-
tems A and B. This is, in general, a difficult question to
answer. Nevertheless, it is clear that if Alice performs a
measurement on C and, conditioned on the ith outcome
of this measurement, she finds out that the corresponding
conditional state �A|B:i is entangled, then the original state
�AC|B prior to the measurement must have been entangled
with respect to the bipartition (AC|B). The reason for this
conclusion is that we know entanglement cannot increase
via LOCC. If �AC|B was to be separable with respect to the
bipartition (AC|B), then it would be impossible for Alice to
create entanglement by a local measurement (i.e., her mea-
surement on C) and classically communicating the result
(i.e., her ith outcome) to Bob. We thus see that entan-
glement between A and B conditioned on measurements
on C implies entanglement within the bipartition (AC|B).
Similarly, if we assume that Bob is holding the subsys-
tem C, then we arrive at the conclusion that entanglement
between A and B conditioned on measurements on C also
implies entanglement within the bipartition (A|BC), hence
the following lemma [59].

Lemma 1. Consider a tripartite state �ABC. Given that the
conditional state �B|A:i for the ith outcome of some mea-
surement on the subsystem C is entangled, this implies
that �ABC is entangled within both bipartitions (AC|B) and
(A|BC).

The above example is reminiscent of the idea that, in
a multipartite system, it might be possible to concentrate
entanglement within a smaller set of subsystems by per-
forming measurements on the remaining subsystems—and
communicating the outcome—as first considered by Ver-
straete, Popp, and Cirac [34]. The maximum amount of
entanglement that can be concentrated between Alice and
Bob by such local measurements on average is dubbed as
the “localizable entanglement.” More precisely, suppose
that E denotes an entanglement measure of quantum states
that cannot be increased via LOCC. Given n quantum sys-
tems in the state �, the LE of the bipartition (sx|sy) for

sx, sy ∈ {s1, . . . , sn} after local measurements on subsys-
tems {sx, sy}c := {s1, . . . , sn} \ {sx, sy} with outcomes {i} is
given by

LEx|y(�) = sup
M∈C

∑

i

piE(�x|y:i), (22)

in which �x|y:i is the joint conditional state of subsystems
sx and sy given the outcome i, with probability pi, of the
local measurement M on subsystems {sx, sy}c. Moreover,
the supremum is taken over the set C of all (n − 2)-partite
local measurements. For our example, it thus follows
that LEA|B > 0 implies entanglement in both bipartitions
(AC|B) and (A|BC) as presented in Lemma 1.

Our main observation is that the implications of
Lemma 1, in light of the concept of LE, can in fact be
extended to any bipartition of any number of systems.
Denote a generic bipartition of the n-partite system as
(s1, . . . , sj |sj +1, . . . , sn). According to Lemma 1, entangle-
ment in this bipartition is certified once the entanglement
between two subsystems sx and sy from each party, i.e.,
with x ≤ j and y ≥ j + 1, conditioned on appropriate mea-
surement outcomes of the remaining n − 2 subsystems, is
verified. Naively, given the j (n − j ) choices of the pair sx
and sy for each bipartition on top of the fact that there are
yet 2n−1 − 1 bipartitions to be considered, there still seems
to be an exponentially large number of entanglement cer-
tifications to be performed. Our central result stated in the
following theorem shows that there is a huge redundancy
in this process. Leveraging this redundancy allows us to
reduce the exponential number of bipartitions to a linear
one, hence making the GME detection efficient.

Theorem 1. Given an n-partite quantum system of any
dimension, certification of entanglement between the sub-
systems s1 and sx for all sx ∈ {s1}c conditioned on an
outcome i of suitable local measurements on the remain-
ing n − 2 subsystems is sufficient for the certification of
GME of the system. The number of bipartitions needed to
be checked is thus n − 1.

Proof. To prove the theorem, let us first introduce a nota-
tion that simplifies and clarifies the procedure. For any pair
of subsystems sx and sy , on which we want to localize
entanglement, we can denote by (SL, [sx|sy], SR) a bipar-
tition with respect to which the entanglement is being cer-
tified. Here, SL and SR are the collection of all subsystems
except sx and sy that belong to the left and right parties,
respectively, and on which the conditioning takes place.
We also call the block [sx|sy] the conditional bipartition.

By using Lemma 1, for a fixed choice of subsystems sx
and sy , the localizable entanglement of any such bipartition
is equivalent to that of the unique bipartition ([sx|sy], S′

R)

where S′
R = SR ∪ SL. This follows directly by assuming

that Alice is holding the subsystem A = sx while Bob holds
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B = sy ∪ SL ∪ SR and is able to make local measurements
on C = S′

R.
Thus, one can think of the fixed block [sx|sy] sliding

through to generate bipartitions of the form (SL, [sx|sy], SR)

without changing the entanglement properties of the result-
ing bipartition. We symbolically denote this equivalence of
bipartitions in terms of their localizable entanglement as
([sx|sy], S′

R)
∼= (SL, [sx|sy], SR).

Now, consider the bipartition (SL, [sx|sy], SR). Since
we are interested only in a sufficient condition, we can
safely do the replacement sx �→ s1 obtaining the bipartition
(S′

L, [s1|sy], SR) with S′
L = {s1, . . . , sj } \ {s1}.

It is thus immediate that (SL, [sx|sy], SR) ∼= (S′
L, [s1|sy],

SR). Next, recalling that the measurements are local,
we can combine S′

L with SR and write (S′
L, [s1|sy], SR) ∼=

([s1|sy], S′
L ∪ SR), hence (SL, [sx|sy], SR) ∼= ([s1|sy],

S′
L ∪ SR).

It follows from the above argument that bipartitions{
([s1|sy], SR) : ∀sy ∈ {s2, . . . , sn}

}
cover the set of all pos-

sible bipartitions, in the sense that detection of their con-
ditional entanglement is sufficient to certify entanglement
in all possible bipartitions, and hence GME. Since this set
has n − 1 elements corresponding to the n − 1 pairings of
s1 with other subsystems, the detection of GME requires
only a linear number of bipartitions. �

It is worth mentioning that, despite the systematic reduc-
tion in the number of bipartitions needed for the certi-
fication of GME, in general, there exist GME states the
entanglement of which cannot be detected through localiz-
ing procedure as described in Theorem 1. In particular, it
was shown by Mičuda et al. [60] that there exist three-qubit
mixed states that are genuinely multipartite entangled and,
yet, no measurement on any of the subsystems leads to a
bipartite entangled state of the remaining subsystems. An
example state with this property is the Werner state [47]

�W = 1 − p
8

I + p |GHZ⊗3
+ 〉 〈GHZ⊗3

+ | (23)

for 1/5 < p ≤ 1/3. Moreover, very recently, a related
result within the context of device-independent GME certi-
fication was obtained independently by Zwerger et al. [61].
There, it was shown that all pure GME states contain con-
ditional bipartite entanglement. As a corollary, one can say
that if a pure state is GME, then its GME can necessarily
be certified using our conditional GME witnessing tech-
nique. Interestingly, it is possible to reformulate Theorem 1
in terms of neighboring subsystems of an n-partite system.

Theorem 2. Consider an n-partite quantum system of
any dimension. Then, the certification of entanglement in
all conditional bipartitions [sx|sx+1(mod n)], with 1 ≤ x ≤ n,
conditioned on an outcome i of suitable local measure-
ments on the remaining n − 2 subsystems is sufficient for

FIG. 5. Schematic of the bipartition (s1, . . . , sj |sj +1, . . . , sn) in
neighboring subsystems for n qubits arranged on a circle. The
placements of separators P1 and P2 suffice to specify any given
bipartition of the system.

the certification of GME of the system. The number of
bipartitions needed to be checked is thus n − 1.

Proof. It is possible to give an intuitive pictorial proof
of this theorem. Suppose that, as shown in Fig. 5, the
n subsystems are arranged on a circle so that sub-
systems s1 and sn are neighbors. A given bipartition
(s1, . . . , sj |sj +1 . . . , sn) can be identified with the place-
ments of two separators P1 and P2. Now, suppose that P1
is placed between two subsystems sj and sj +1 and suppose
that, conditioned on local measurements on the remain-
ing subsystems, we find that sj and sj +1 are entangled. It
is immediate, using Lemma 1, that due to the locality of
measurements the placement of the separator P2 is irrel-
evant, so that a nonzero LE between sj and sj +1 implies
entanglement within all bipartitions that can be obtained
by displacing separator P2.

Finally, since the placements of P1 and P2 are sufficient
to specify all bipartitions, we conclude that the only rele-
vant degree of freedom is the placement of P1. Finally, the
latter can be done in n − 1 ways, hence the result. �

Lastly, let us note that in Theorems 1 and 2 we focus
on local measurements. However, it is possible to derive
variants of them in which joint entangled measurements on
specific subsystems are allowed. Due to the fact that joint
measurements generally increase the localization power, it
is expected to obtain more powerful but rather complicated
entanglement criteria from such considerations.

C. Conditional entanglement witnessing

Given an n-partite system, there are many ways to ver-
ify the entanglement localized between two subsystems by
measuring the rest, and then using either Theorem 1 or 2
to show GME. Additionally, we require the detection of
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each nonzero LE to be efficient for each bipartition. A par-
ticular approach to do the latter is witnessing [62,63]. The
collection of all quantum states with unlocalizable entan-
glement with respect to a specific conditional bipartition
[sx|sy] form a closed convex set denoted by Sep [sx |sy ]. It is
worth emphasizing that the states in Sep [sx |sy ] are not nec-
essarily biseparable states, rather they are states that reduce
to separable bipartite states upon any local measurements
on {sx, sy}c. It thus follows that Sep [sx |sy ] ⊃ SepI1|I2

for
any I1 � sx and any I2 � sy . For every n-partite state � /∈
Sep [sx |sy ], that is a state with LE with respect to the condi-
tional bipartition [sx|sy], there exists a bounded Hermitian
operator W[sx |sy ] of the form

W[sx |sy ] = Wsx |sy

⊗

z∈{sx ,sy }c

Msz :i, (24)

with Msz :i being the effect corresponding to the outcome i
of some specific measurement on the subsystem sz, such
that

∀σ ∈ Sep [sx |sy ] Tr
(
W[sx |sy ]σ

) ≥ 0,

Tr
(
W[sx |sy ]�

)
< 0.

(25)

We call the operator W[sx |sy ] a conditional entanglement
witness, the existence of which is guaranteed by (i) the
assumption that � contains LE between sx and sy , namely
� /∈ Sep [sx |sy ], and (ii) as described in Sec. IV A, by the
Hahn-Banach separation theorem, there exists a witness
Wsx |sy for the entanglement concentrated between these
two subsystems. Furthermore, for each pair sx and sy , the
bipartite witness Wsx |sy can be constructed from a test oper-
ator Lsx |sy using the approach delineated in Sec. IV A. It
is worth emphasizing that, determining the separability
bound for the test operator Lsx |sy to be used in the con-
struction of Wsx |sy in Eq. (24) requires an optimization over
biseparable states of systems sx and sy . Hence, the com-
plexity of determining this bound is the same as generic
entanglement witnessing, i.e., it is efficiently decidable
[53,54]. Combining conditional entanglement witnessing
with either of Theorems 1 and 2 thus gives an efficient
technique for verification of GME that maintains the prac-
ticality of the entire process with additional robustness. We
call this approach conditional GME witnessing.

In the rest of this paper, we apply the conditional GME
witnessing to QEC stabilizer measurement circuits to char-
acterize their performance in terms of their power for the
creation of GME states in the presence of errors, different
sources of noise and inefficiencies. We show that with a
linear (in the number of qubits) increase in the complex-
ity of the approach, we obtain significant noise robustness
in our technique compared to the standard single-witness
entanglement tests [29]. Our claim can be pictorially
understood as shown in Fig. 4. Any standard GME witness

can detect only GME states that do not belong to the closed
convex hull of sets of separable states with respect to each
bipartition. There, however, exist GME states that belong
to this convex hull. Using conditional GME witnessing, in
general, we use a linear number of witnesses to detect such
GME states and obtain a higher resolution in the detection
of GME.

V. NOISY TRAPPED-ION CIRCUITS

Starting with the pioneering proposal of Cirac and Zoller
for universal quantum computation using the internal states
of trapped ions as qubits, and the vibrational modes as
a quantum bus to mediate entangling gate operations
[64,65], systems of trapped atomic ions in radio-frequency
potentials are nowadays considered to be among the most
promising quantum-information processors [1,66]. Over
the years, various quantum protocols have been realized
in different trapped-ion platforms [66,67], including small-
scale QEC algorithms [68,69], a topologically encoded
qubit based on the seven-qubit color code [16], fault-
tolerant error detection [14], deterministic correction of
qubit loss [70], and the first entangling gate at the level of
logical qubits [71]. One of the current quests in trapped-ion
quantum computing is to scale up these prototype proces-
sors towards larger-scale systems capable of taking full
advantage of QEC routines of FT [4,15,45,72–74].

A. Compilation into native ion-trap gates and
operations

Whilst a large-scale FT implementation of QEC for uni-
versal quantum computations is beyond the reach of near-
term devices, small-scale FTQEC protocols can already be
run on some of the current trapped-ion platforms. Even
though they still consist of a reduced number of qubits
where some decoherence is unavoidable, they deliver long
coherence times [75,76] and high-fidelity single and two-
qubit gates [77–80] that are essential to test the perfor-
mance of small-distance FTQEC codes or its building
blocks. We thus focus on this platform to demonstrate the
robustness and efficiency of our entanglement characteri-
zation method.

The native trapped-ion entangling gates in current
designs are not CNOT gates [8]. Rather, they are based on
state-dependent dipole forces and effective spin-spin inter-
actions [81–84]. In this work, we are concerned with the
so-called Z-state-dependent forces, which give rise to the
entangling ZZ gates [78,79,84], namely

UZZ
ij (θ) = e−i θ2 ZiZj , (26)

in which Zi and Zj are the Pauli matrices of the correspond-
ing ith and j th qubits involved in the gate, respectively,
and θ is the corresponding pulse area. In addition to ZZ
gates, which are fully entangling for θ = π/2, i.e., they
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FIG. 6. Correspondence between the standard and trapped-ion
universal gate sets enabling quantum computation. The solid line
that joins two filled circles represents the ZZ gate UZZ

ij (π/2) in
Eq. (26).

map product states onto GHZ-type entangled states, we
also consider single-qubit rotations. In particular, rotations
of the form

RZ
i (θ) = e−i θ2 Zi (27)

are obtained by local ac-Stark shifts [85]. The parallel rota-
tions of ion states within the equatorial plane of the Bloch
sphere are obtained by a simultaneous driving of the carrier
transition of the ions in the laser focus,

R⊥
φ,i(θ) = e−i θ2

∑
i(cosφXi+sinφYi), (28)

where R⊥
0,i(θ) and R⊥

π/2,i(θ) correspond to rotations around
x and y axes of the Bloch sphere, respectively. For
instance, by setting φ = 0 and θ = π , Eq. (28) represents
single-qubit π pulses applied to all illuminated ions. We
note that, although these rotations act on all illuminated
ions, the equatorial rotations can be applied to a particu-
lar set of ions by using spin-echo-type refocusing pulses
that interleave these rotations with the addressable Z-type
rotations [86].

Although this collection of gates is not the standard one
in quantum computation [8], it is a universal gate set so
that any quantum algorithm can be decomposed into a
sequence of these elementary operations [86,87]. In Fig. 6,
we show the correspondence between the standard univer-
sal gate set and certain sequences of native trapped-ion
gates. In Fig. 7, on the other hand, we present the com-
piled circuit of Fig. 2(a) into the native trapped-ion gate
set.

The entangling ZZ gates for θ = π/2 between the
ith and j th qubit can be written as UZZ

i,j (π/2) = (I −
iZiZj )/

√
2. Similarly one can write the single-qubit rota-

tions for qubit ith as R⊥
π/2,i(±π/2) = (I ∓ iYi)/

√
2 and

FIG. 7. Non-FT circuit using the native trapped-ion gates.

R⊥
0,i(−π/2) = (I + iXi)/

√
2. After some algebra, the out-

put state of the circuit in Fig. 7 is obtained as

|ψout〉 = |0〉⊗5 + |1〉⊗5

√
2

= |GHZ⊗5
+ 〉 , (29)

which, as expected, is identical to the five-qubit GHZ state
in Eq. (4) generated with the circuit comprising CNOT
gates. Similarly to the non-FT scenario with CNOT gates,
we may analyze the propagation of a dangerous single X
error from the syndrome qubit to the data qubits through
the ZZ gates, the details of which are given in Appendix
D. It follows that, in this case too, the syndrome read-
out will not reveal any information about the propagation
of the error. This leads us to the flag-based circuit shown
in Fig. 8, which is the compiled version of Fig. 2(b) into
the native trapped-ion gate set. It is straightforward to
calculate the output of this circuit as

|ψout〉 = (|0〉⊗5 + |1〉⊗5) |+〉f√
2

= |GHZ⊗5
+ 〉 |+〉f . (30)

One realizes that the sequential application of two ZZ
gates between the syndrome qubit s and the flag qubit f ,
UZZ

sf (π/2)U
ZZ
sf (π/2) |−〉s |−〉f , leaves the two qubits in the

product state |+〉s |+〉f . A dangerous Pauli X error in the
syndrome that produces a cascade of errors in the data,
however, will flip the flag back into |−〉f . Hence, a read-
out of the qubit f “flags” the propagation of multiple errors
that would not be possible in a non-FT scheme.

In parallel with Fig. 3(d), whenever the syndrome qubit
suffers from a coherent-rotation error exp (iφX ) between
the second and third syndrome-data ZZ gates, as shown in
Fig. 9, the ideal output state can be easily computed as

|ψout〉 = cosφ |+〉f |GHZ⊗5
+ 〉

+ i sinφ |−〉f YsX3X4 |GHZ⊗5
+ 〉 . (31)

A projective measurement of the flag again unveils a cas-
caded error in the syndrome and data qubits. A similar
procedure can be implemented using the gz generator as
presented in Appendix C.
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FIG. 8. Flag-based FT circuit using the native trapped-ion
gates.

B. Noise models

Recall from Sec. IV A that, in general, the output of
an ideal plaquette is a GME state. Hence, to assess the
robustness of the conditional GME witnessing method
in a trapped-ion platform, we implement different noise
models into the circuit, and compare the performance of
conditional GME witnessing against the standard single-
witness (i.e., fidelity measurement) approach in detecting
the potential GME output state.

In this regard, we use two different circuit-noise mod-
els and one measurement error scheme as leading errors
in the stabilizer circuits for each of the non-FT and flag-
based FT scenarios. As the first circuit noise model we use
a simplified and phenomenological one in which the prepa-
ration of the input state and all the gates are assumed to be
perfect while the decoherence of qubits is simulated by an
independent single-qubit depolarizing channel [8] applied
to each qubit right before their measurements. Our sec-
ond noise model is motivated by the realistic experimental
details discussed in Ref. [79] wherein shuttling techniques
are employed to carry out the two-qubit gates. Thus, we
consider the case wherein the preparation of the input state
is perfect while the two-qubit gates in the circuit suffer
from independent depolarizing noise.

FIG. 9. Flag-based FT stabilizer measurement circuit using the
native trapped-ion gates. Here, a coherent-rotation error eiφX is
injected in a specific position to create a six-qubit entangled state
in the flag-based FT stabilizer measurement.

The measurement errors, modeled as independent clas-
sical bit-flip errors in the measured bits, are present in
both scenarios and for all qubits. We assume that dephas-
ing effects in idle qubits are depreciated compared to the
two-qubit errors in entangling gates. This is a realistic
assumption given the recent experiments on the use of sta-
ble magnetic fields, which lead to a negligible dephasing of
the qubits during the idle-time intervals [88]. Moreover, in
the considered experimental layout [79], single-qubit gates
also have a negligible error in comparison to the two-qubit
and measurement errors, and can be thus neglected. We do
assume here that the error rates per two-qubit gate increase
with the depth of the circuit as a consequence of the
shuttling-based approach used in quantum charge-coupled
devices [89–91].

1. Independent depolarizing noise

This error channel is used only for the phenomenologi-
cal model. It consists of independent depolarizing channels
of the form

ε
dip
i (�) = (1 − p)� + p

3

∑

σ∈{X ,Y,Z}
σi�σi, (32)

acting on each of the qubits at the end of the circuit
sequence and just before the measurements. Here, p is
probability for a depolarizing error to occur on the ith qubit
and we consider it to be the same for all qubits.

2. Two-qubit depolarizing noise

In a trapped-ion platform, ions can be shuttled in and out
of the laser interaction zone in which the quantum opera-
tions and readouts are carried out [79]. This process may
excite the ions’ vibrational modes that affect the fidelity of
the two-qubit gates depending on their order in the shut-
tling sequence or, equivalently, the time step at which the
gate is applied. This detrimental effect can be modeled in
a conservative manner by a two-qubit depolarizing noise
after the application of each two-qubit entangling gate UZZ

ij .
For each pair of ions involved in a ZZ gate, they may

undergo 15 possible one- and two-qubit Pauli errors so that
the total error channel is described as

ε
dip
i,j (�) = [1 − p(r, t)]� + p(r, t)

15

∑

σ ,κ∈{I ,X ,Y,Z}
σiκj �κj σi,

(33)

where i and j with i = j denote the active ions involved in
each two-qubit entangling gate, p is the error probability,
and the sum on the right runs over the six nontrivial single-
qubit and the nine nontrivial two-qubit Pauli operators.
We assume a time- (or circuit depth-) dependent expo-
nential growth in the error probability defined as p(r, t) =
p(1 + r)t, where r and t are the error-growth rate per gate
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and the time step at which ZZ-entangling gates are applied,
respectively. It is worth to clarify that t is not the actual
elapsed physical time in an experimental implementation
rather it is an index taking values t ∈ N specifying the
order of entangling gates in the circuit. Hence, we assume
the time increment between every two entangling gate to
be �t = 1. Upon using this model, we also consider three
error-growth rates of r = 0, r = 0.1, and r = 0.2, noting
that an r = 0.2 implies that the fourth and sixth two-qubit
gates are about 2 and 3 times worse than the first one,
respectively.

3. Bit-flip measurement errors

Entanglement witnessing procedures with and without
conditioning involve Pauli measurements of both data and
ancillary qubits, which may also suffer from imperfec-
tions. We use a simple model for measurement errors,
namely independent bit flips. In a measurement of a single-
qubit Pauli operator σ ∈ {X , Y, Z} the corresponding error-
free positive operator-valued measure (POVM) [8] is
specified by the set of operators {Eσ+ = (I + σ)/2, Eσ− =
(I − σ)/2}. For each measurement outcome, a bit-flip
error taking place with probability pME thus gives rise to
the POVM effects

eσ+ = (1 − pME)Eσ++pMEκ
σEσ+κ

σ ,

= (1 − pME)Eσ++pMEEσ−, (34)

and

eσ− = (1 − pME)Eσ−+pMEκ
σEσ−κ

σ ,

= (1 − pME)Eσ−+pMEEσ+. (35)

Here, κσ ∈ {X , Y, Z} is the (measurement-dependent) error
operator such that κσEσ+κ

σ = Eσ− and κσEσ−κ
σ = Eσ+. It

is also obvious that the effect of measurement errors can
instead be described by a quantum channel acting on the
individual qubits such that

εσi (�) = (1 − pME)� + pMEκ
σ�κσ . (36)

VI. ROBUSTNESS OF CONDITIONAL GME
WITNESSING

The experimental implementation of any entanglement
witnessing technique—in fact, any experimental charac-
terization approach relying on surpassing some threshold
value—comes with experimental error bars resulting from
standard statistical uncertainty due to a finite number of
measurements and possibly systematic errors from exper-
imental miscalibrations. It is the standard practice to call
the witnessing inconclusive when the separability bound
lies within the confidence region of the experimental esti-
mation. Refuting this problem is possible in two ways:

by reducing statistical errors with larger sets of data and
improving the quality of the measurement elements, or by
using a more robust witnessing method to amplify the vio-
lation of the threshold such that, for a fixed confidence
interval associated to the measured data, one obtains a
reliable witness value.

We are now ready to examine the robustness and effi-
ciency of our conditional GME witnessing technique com-
pared to the standard GME certification approaches used
within the literature. To this end, we consider noisy non-
FT and flag-based FT plaquette measurement circuits and
witness the resulting entangled state using imperfect mea-
surements in three different ways: (i) standard witnessing
with a GHZ projector (i.e., a single witness) requiring an
exponential number of measurements, that is, by measur-
ing fidelity to the ideal output state, (ii) standard-linear
witnessing (SL) with a single witness that relies on only a
linear number of measurements using the proposed wit-
nesses of Tóth and Gühne [29], and (iii) our proposed
conditional GME witnessing requiring a linear number of
witnesses and measurements.

A. Conditional GME witnessing in the noisy non-FT
plaquette circuit

Consider the five-qubit non-FT gx circuit from Fig. 7.
We implement each noise model of Sec. V B on the cir-
cuit and witness the output entangled state using the three
above-mentioned techniques. Beginning with the standard
witnessing, it is shown in Sec. IV A [cf. Eq. (18)] that
the five-qubit GHZ projector is a possible test operator for
GME,

LGHZ⊗5 = |GHZ⊗5
+ 〉〈GHZ⊗5

+ | . (37)

It is also shown in Eq. (20) that the detection bound for
this test operator is 1/2 for any bipartition, i.e., given any
state �, an expectation value satisfying Tr(�LGHZ⊗5) > 1/2
implies the entanglement of � with respect to all bipar-
titions and thus its GME. We also show in Eq. (6) that
the five-qubit GHZ projector can be written in terms of
its 25 stabilizers. Combining the two, we observe that the
expectation value of LGHZ⊗5 for any state is given by

〈
LGHZ⊗5

〉 = Tr(�LGHZ⊗5) = 1
25

25∑

i=1

〈Si〉 . (38)

It is also worth pointing out that
〈
LGHZ⊗5

〉
equates to the

fidelity of the state ρ with the ideal output state of the five-
qubit non-FT plaquette circuit derived in Eq. (4). For the
standard witnessing of GME using the five-qubit GHZ pro-
jector LGHZ⊗5 , it is thus sufficient to locally measure the
stabilizers at the output of the plaquette circuit the number
of which would in general scale exponentially with the size
of the register.
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The second approach we consider is the SL witnessing
of GME using a witness constructed out of the five gener-
ators of the five-qubit stabilizer subgroup given in Eq. (5).
Two test operators introduced by Tóth and Gühne [29] for
this purpose are, after normalization,

LTG1 = 1
2

I + g5

2
+ 1

2

4∏

i=1

I + gi

2
(39)

and

LTG2 = 1
5

5∑

i=1

gi. (40)

The GME bounds for these witnesses are lTG1 = 3/4 and
lTG2 = 4/5, respectively [29]. Noting the form of the stabi-
lizer generators, the obvious advantage of these witnesses
is that they require only two measurement settings.

Finally, we implement our proposed conditional GME
witness and show through this example that it is technically
simple and, at the same time, powerful. Using Theorem 1,
we focus merely on the four conditional bipartitions [s|1],
[s|2], [s|3], and [s|4] and introduce the conditional test
operators

L[s|x] = |Bell〉s|x 〈Bell| ⊗ |+〉〈+|⊗3 (41)

for x ∈ {1, 2, 3, 4}. Here, |Bell〉s|x 〈Bell| is the projection
of the qubit pair s and x onto the Bell state |Bell〉 =
(|00〉 + |11〉)/√2 and |+〉〈+|⊗3 denotes the projector of
the remaining three qubits {s, x}c. The bounds on the con-
ditional test operators are easy to compute as we are
effectively dealing with two-qubit systems. For the case of
interest here, it is known that

ls|x = sup
σ∈Seps|x

Tr
(
σ |Bell〉s|x 〈Bell|) = 1

2
, (42)

where the supremum is taken over the set of all bipartite
separable states of qubits s and x. Consequently, for any
conditional bipartition [s|x] with x ∈ {1, 2, 3, 4} and any
given five-qubit state �, an expectation value

〈
L[s|x]

〉
> 1/2

for all x ∈ {1, 2, 3, 4} implies GME of the quantum state
�. Importantly for us, the Bell state is the one-dimensional
code space of the stabilizer generators {XX , ZZ}. Similar
to Eq. (6) we thus have

|Bell〉s|x 〈Bell| = IsIx + XsXx − YsYx + ZsZx

4
, (43)

implying that conditional GME witnessing can be per-
formed solely by local Pauli measurements on the qubits.
Furthermore, for the implementation of conditional GME
witnessing using L[s|x] of Eq. (41) we need three settings

per bipartition, hence a total of 12 measurement settings.
It is also noteworthy that, while we consider only the
projection onto |+〉〈+|⊗3, we can consider other outcome
combinations of the X measurements on these three qubits
that give rise to either the same Bell state or the one
orthogonal to it, namely (|00〉s|x − |11〉s|x)/

√
2, that can be

witnessed seamlessly with the same measurement settings.
In experimental implementations of the conditional GME
witnessing, in general, more than one of the conditioning
events can thus be used to keep the overall witnessing pro-
cedure efficient costing at most a linear overhead in the
number of settings.

We now turn to evaluating the robustness of our tech-
nique versus other witnessing approaches in the literature.

1. Phenomenological depolarizing noise model

The contour plots of Fig. 10 present our results for the
four witnessing techniques applied to the five-qubit non-
FT plaquette readout circuit (see Fig. 7) subjected to the
noise channel of Eq. (32) and the measurement noise of
Eq. (36). From left to right, the four subfigures represent
the results obtained for (a) the standard witness of Eq.
(37), (b) the SL witness of Eq. (39), (c) the SL witness
of Eq. (40), and (d) our conditional witness of Eq. (41) for
x = 1. The dark blue shaded areas in all plots represent
states in which their GME, if any, cannot be detected by
the corresponding witness. One can thus clearly appreciate
the significant increase in the noise tolerance of condi-
tional GME witnessing compared to the other witnessing
methods that can be found in the previous literature.

In particular, for pME = 0, the highest depolarizing
error probability p that can be afforded before losing
the GME witnessing capabilities for the standard method
[Fig. 10(a)] is p ≈ 0.13. For the first [Fig. 10(b)] and
the second [Fig. 10(c)] SL witness we find p ≈ 0.09 and
p ≈ 0.07, respectively. These values demonstrate the typ-
ical trade-off between the number of measurements and
the robustness of witnesses. For our conditional GME wit-
ness [Fig. 10(d)], however, the error tolerance goes up to
p ≈ 0.2. We thus observe the counterintuitive fact that a
linear number of measurements does not necessary imply
a loss of robustness in GME detection. Similarly, by fix-
ing p = 0 for the depolarizing noise, we notice that the
measurement probability error pME also reaches its highest
threshold value for our conditional witnessing with pME ≈
0.2 compared to pME ≈ 0.1 for the standard method. We
see the lowest robustness for the first and the second SL
witness with pME ≈ 0.07 and pME ≈ 0.05, respectively.

Recall that, in the conditional GME witnessing method
for the five-qubit circuit, according to Theorem 1, it is
needed to test entanglement in a total of four bipartitions.
In the top panel of Fig. 11, we present the behavior of the
expectation value

〈
L[s|x]

〉
with respect to the depolarizing

error probability p for different xs at the fixed measurement
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FIG. 10. GME witnessing plots in a five-qubit non-FT plaquette readout circuit under the phenomenological depolarizing noise
model. Each contour plot represents, for different values of depolarizing-noise probability p and measurement-error probability pME,
the expectation values of (a) the standard GME witness LGHZ⊗5 of Eq. (38), (b) the first SL witness, LTG1 in Eq. (39), (c) the second
SL witness LTG2 in Eq. (40), and (d) the worst-case conditional witnessing using L[s|x] in Eq. (41) for x = 1. The colormap sidebars
represent the witness bounds for each method. In all cases, the dark blue region identifies the noise values for which the GME tests are
inconclusive.

error probability pME = 0. It is evident that for this noise
model the four bipartitions behave identically, as expected
from the symmetries of the ideal state, the noise model
exploited, and the conditional GME test used. Therefore,
in this case, all the bipartitions would exhibit the same
threshold values as in Fig. 10(d).

2. Two-qubit depolarizing noise model

As mentioned earlier, the depolarizing noise model of
Sec. V B is an oversimplification. Hence, in this section,
we assume a five-qubit non-FT readout circuit for the pla-
quette that suffers from the more realistic circuit noise
of Eq. (33). As discussed in Sec. V B, this error model
introduces a two-qubit depolarizing channel after each
entangling gate. Recall that, in this model, the two-qubit
gate error probability p(r, t) grows exponentially with the
gate time step t at which ZZ-entangling gates are applied at
the rate r. Hence, the model takes into account the fact that
the fidelity of gates can be affected by the depth of the cir-
cuit due to the accumulated decoherence and noise effects.
As before, we also include the measurement noise effects
as per Eq. (36).

Figure 12 represents the resulting contour plots of the
expectation values of (a) the standard witness of Eq. (37),
(b) the SL witness of Eq. (39), (c) the SL witness of Eq.
(40), and (d) our conditional witness of Eq. (41) for x = 1.
Our choice of the conditional bipartition in Fig. 12(d) is
due to the fact that, here, in contrast to the phenomeno-
logical noise, the expectation values

〈
L[s|x]

〉
are not equal

for x = 1, 2, 3, 4, as shown in the lower panel of Fig. 11.
In this case, the conditional bipartition [s|1] is the one
in which the conditional GME witnessing performs the
worst, providing thus the most stringent conditions for
the detection of GME. Notably, the latter counterintuitive
observation suggests that the depolarizing noise processes
before a two-qubit gate are more detrimental than those
taking place after it to the correlation created by that gate
between the target qubit and all the previously entangled

qubits. This could be due to the loss of the input coherence
that is necessary for correlating the qubits [92]. As such,
qubit 3, for instance, becomes less correlated with qubits
(s, 1, 2) than qubit 2 with qubits (s, 1), meaning that con-
ditioning on qubit 3 is less informative than conditioning
on qubit 2. Hence, the conditional bipartition [s|3] con-
ditioned on the more informative qubits 1, 2 and the less
informative qubit 4 performs better compared to the condi-
tional bipartition [s|2] conditioned on the more informative
qubits 1 and the less informative qubits 3, 4.

In Fig. 12 the dark blue shaded area again indicates the
states for which each of the witnessing techniques is incon-
clusive [93]. We observe that with increasing error-growth
rate r the threshold for p decreases. However, even in the
worst-case scenario, our conditional GME witnessing rep-
resented in Fig. 12(d) shows significant robustness com-
pared to the previously studied entanglement witnesses for
each r.

It is also interesting to compare the effect of the two dif-
ferent noise models shown in Figs. 10 and 12. We notice a
higher threshold of detectable GME states when the two-
qubit depolarizing noise model is applied. This means that
the phenomenological model may underestimate the per-
formance of entanglement witnessing methods whilst the
more realistic two-qubit depolarizing noise model predicts
a higher robustness of our conditional GME detection.
Nevertheless, it is evident from our analysis here that for
both noise models the GME witnessing by conditioning
method introduced in this text is not only efficient in the
number of qubits, but also robust against noise.

B. Conditional GME witnessing in noisy flag-based FT
plaquette circuit

We now consider the flag-based FT readout circuit for
a single plaquette and implement each noise model of
Sec. V B on the circuit evaluating the different GME wit-
nesses on the output entangled state. We use again the
three mentioned techniques: (i) standard witnessing with
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(a)

(b)

FIG. 11. Expectation values of the conditional test operator of
Eq. (41) for four conditional bipartitions when the phenomeno-
logical depolarizing noise model (top panel) or the two-qubit
depolarizing noise model (bottom panel) is applied to the non-FT
readout of the plaquette. The y axes are represented in log-scale
whilst the x axes represent the different error probabilities of the
two depolarizing error models. In both cases the measurement
error probability pME is assumed to be zero. In the bottom panel
we assume an error-growth rate per gate of r = 0.2. For the phe-
nomenological depolarizing noise, due to the full symmetry of
the error channel and the test operator with respect to different
conditional bipartitions, the choice of the conditional biparti-
tion is irrelevant. For the two-qubit depolarizing noise, on the
other hand, the lowest performance belongs to the qubit pair that
are involved in the first two-qubit gate, i.e., [s|1] (see the main
text).

an ideal entangled logical state projector onto the ideal
target state, Eq. (31), requiring an exponential number of
measurements, (ii) efficient witnessing using the second
SL witness method proposed in Ref. [29] requiring in this
case a linear number of measurements, and (iii) conditional
GME witnessing requiring a linear number of witnesses
and measurements.

As discussed above, the six-qubit FT flag-based circuit
presented in Fig. 9 is the trapped-ion version of the cir-
cuit presented in Fig. 3(d) compiled to the particular set
of trapped-ion native gates (see Fig. 6). The role of the
flag qubit in FTQEC circuits is to detect cascades of errors
from the syndrome qubit to the data qubits after measuring
it and extracting the syndrome. In the majority of cases the

flag remains disentangled from the syndrome and there-
fore from the rest of data qubits. However, under some
circumstances, such as coherent-rotation syndrome errors
of the form exp (iφX ), the entire plaquette will end up in
an entangled state of Eq. (31). We remark here that, in
this case, we artificially introduce the coherent rotation
error to create six-qubit GME and thus, to qualitatively
characterize the FT six-qubit QEC building block. Prov-
ing six-qubit genuine multipartite entanglement is thereby
a way to guarantee that the expected quantum correla-
tions between data, syndrome and flag qubits are built up,
and that consequently, such dangerous errors propagate as
expected through the circuit and can therefore be detected
and corrected for.

The ideal six-qubit GME output state of Eq. (31) can
now be used to evaluate the experimental quality of the
plaquette measurement circuit. Beginning with the stan-
dard witnessing, to show that this state is GME, we check
the entanglement in all 31 possible bipartitions. Let us
focus on one of them, say (f |s, 1, 2, 3, 4), where we use
the symbol f for the flag qubit and s for the the syndrome
qubit. It is easy to see that, for instance, setting φ = π/4
the output state can be read off as the following bipartite
state:

|ψout〉 = |GHZ⊗5
+ 〉 |+〉f + |G̃HZ

⊗5
+ 〉 |−〉f√

2
, (44)

where we denote |G̃HZ
⊗5
+ 〉 = (|00111〉 − |11000〉)/√2

with 〈GHZ⊗5
+ |G̃HZ

⊗5
+ 〉 = 0. Consider now the test operator

L = |ψout〉 〈ψout| . (45)

For the separability bound with respect to this bipartition,
we are effectively dealing with a two-qubit system again,
which allows us to obtain

lf |s,1,2,3,4 = sup
σ∈Sepf |s,1,2,3,4

Tr(Lσ) = 1
2

. (46)

We note, however, that with respect to different bipartitions
we may get different bounds. For each of the 31 biparti-
tions we evaluate the bounds and exhaustively list them in
Table I of Appendix B. In each case, we either get a bound
of 1/2 or 1/4. In the standard GME witnessing approach
using a single test operator we must choose the largest
value [see Eq. (21)], which, in this case, corresponds to
1/2. Consequently, we can define a GME entanglement
witness as

W = 1
2

I − L, (47)

so that Tr(Wσ) ≥ 0 for all states that are separable with
respect to at least one of the bipartitions, while there exist
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FIG. 12. GME witnessing plots in a five-qubit non-FT plaquette readout circuit subject to the two-qubit depolarizing noise model.
In each row i (i = 1, 2, 3) the contour plots represent, for different values of depolarizing-noise probability p and measurement-error
probability pME, the expectation values of (a.i) the standard GME witness LGHZ⊗5 in Eq. (38), (b.i) the first SL witness LTG1 in Eq. (39),
(c.i) the second SL witness LTG2 in Eq. (40), and (d.i) the worst-case conditional witnessing L[s|x] of Eq. (41) for x = 1. In each row
i = 1, 2, and 3, the error-growth rate per gate values are r = 0, 0.1, and 0.2, respectively. The colormap sidebars represent the witness
bounds for each method. In all cases, the dark blue region identifies the noise values for which the GME tests are inconclusive.

quantum states for which Tr(W�) < 0. Given any state
� an expectation value Tr(�L) > 1/2 thus implies the
entanglement of � with respect to all bipartitions, i.e., its
GME.

In Eq. (6), it is shown that a GHZ-like projector can
be written in terms of its 2n stabilizers with n the num-
ber of physical qubits. Following the same procedure for
the state in Eq. (44), the expectation value of the six-qubit
test operator is

〈L〉 = Tr�L = 1
26

26∑

i=1

〈Si〉 , (48)

where the stabilizer subgroup is now given by

S6q = 〈g1 = Z1X3X4X5Z6, g2 = Z2X3X4X5Z6,

g3 = Z3Z5, g4 = Z4Z5,

g5 = −X1X2Z5Z6, g6 = X3X4Y5Y6〉. (49)

For the standard witnessing of GME using the six-qubit
projector L, it is thus sufficient to locally measure the

stabilizers at the output of the plaquette circuit, com-
bine their statistics according to Eq. (48), and verify that
〈L〉 > 1/2.

The second approach we consider is the SL witnessing
of GME [29]. In this occasion, the first SL test operator
is not applicable to the six-qubit state in Eq. (44) due to
the lack of required symmetries in stabilizer generators in
Eq. (49). The simplest witness we can get is by summing
up all the generators as in the second SL witness

LTG2 = 1
6

6∑

i=1

gi. (50)

The GME bound for this witness is lTG2 = 5/6 [29]. In
contrast to the five-qubit case, due to the form of the six-
qubit stabilizer generators, this witness would require more
than two, yet a linear number of, measurement settings.

Finally, we implement our conditional GME witness.
Using Theorem 1, we need to test five conditional bipar-
titions [f |1], [f |2], [f |3], [f |4], and [f |s]. In this case, we
need to distinguish two different conditional test operators
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to cover all the five conditional bipartitions. We introduce
the first set of conditional test operators as,

L1
[f |x] = |B̃ell〉f |x 〈B̃ell| ⊗ |0〉1,2 〈0|⊗2 ⊗ |+〉{f ,x,1,2}c 〈+|⊗2

(51)

for x ∈ {3, 4, s}, in which |B̃ell〉f |x 〈B̃ell| is the projection
of the qubit pair f and x onto the Bell state |B̃ell〉 =
(|0+〉 + |1−〉)/√2. This conditioning choice is not appli-
cable to x ∈ {1, 2} since it would not lead to any Bell
state including the flag qubit. Thus, we use a second set
of conditional test operators for the remaining x ∈ {1, 2}
conditional bipartitions,

L2
[f |x] = |B̃ell〉f |x 〈B̃ell| ⊗ |+〉{f ,s,x,3,4}c 〈+| ⊗ |0〉s,3,4 〈0|⊗3 .

(52)

As the conditioned two-qubit states are identical for both
test operators L1

[f |x] and L2
[f |x], the bounds are the same,

l1,2
f |x = sup

σ∈Sepf |x
Tr

(
σ |B̃ell〉f |x 〈B̃ell|) = 1

2
, (53)

where the supremum is taken over the set of all bipar-
tite separable states of qubits f and x. Consequently, for
any conditional bipartition [f |x] with x ∈ {1, 2, 3, 4, s} and
any given six-qubit state �, an expectation value satisfy-
ing

〈
L1,2

[f |x]

〉
> 1/2 for all x ∈ {1, 2, 3, 4, s} implies GME of

the quantum state �. Importantly for us, the |B̃ell〉 state is
the one-dimensional code space of the stabilizer generators
{XZ, ZX },

|B̃ell〉f |x 〈B̃ell| = If Ix + Xf Zx + Zf Xx + Yf Yx

4
, (54)

implying that conditional GME witnessing can be per-
formed solely by local Pauli measurements on qubits.

Furthermore, for the implementation of conditional GME
witnessing we need three settings per bipartition, hence a
total of 15 measurement settings.

1. Phenomenological depolarizing noise model

The contour plots of Fig. 13 present the results of the
three witnessing techniques with the four test operators to
the six-qubit FT plaquette that suffers from the circuit noise
of Eq. (32) and the measurement noise of Eq. (36) for a
coherent error angle of φ = π/4. From left to right, the
four columns of subfigures represent the results obtained
for (a) the standard witness of Eq. (48), (b) the efficient
witness of Eq. (50), (c) our conditional witness of Eq.
(51) for x = s and (d) the conditional witness of Eq. (52)
for x = 2. For this error model the expectation values of
L1

[f |x] and L2
[f |x] behave equally for x = 3, 4, s and x = 1, 2,

respectively; see the top panel of Fig. 15. This is due to the
symmetry of the error channel with respect to each individ-
ual qubit, hence our choices of x in Figs. 13(c) and 13(d).
In all plots the dark blue shaded areas represent states for
which tests result values below the separability bounds and
no GME is detected. As we can see, the increase in the
noise tolerance of conditional GME witnessing compared
to the standard methods is remarkable.

Setting φ = π/4, we find that for pME = 0 our con-
ditional witnessing method shows the highest robustness
against the depolarizing noise up to p ≈ 0.21 and p ≈ 0.26
as shown in Figs. 13(c) and 13(d), respectively. With the
standard method [Fig. 13(a)] the noise resilience drops to
p ≈ 0.11 and its lowest value is seen for the second SL
method [Fig. 13(b)] at p ≈ 0.04. Here again, we clearly
observe that linearizing the number of measurements typ-
ically results in a reduction of the robustness. Similarly,
by fixing the probability of depolarizing error to p = 0,
one notices that the measurement-error probability pME
also reaches its highest threshold value for our conditional

(a) (b) (c) (d)

p M
E

p M
E

p M
E

p M
E

FIG. 13. GME witnessing plots in a six-qubit flag-based FT plaquette readout circuit under the phenomenological depolarizing noise
model of Sec. VI B 1. The coherent-noise angle is set to φ = π/4. Each contour plot represents, for different values of depolarizing-
noise probability p and measurement-error probability pME, the expectation values of (a) the standard GME witness L of Eq. (48),
(b) the second SL witness, LTG2 in Eq. (50), (c) the worst-case conditional witnessing using L1

[f |x] for x = s from Eq. (51), and (d)
the worst-case conditional witnessing using L2

[f |x] in Eq. (52) for x = 2. The colormap sidebars represent the witness bounds for each
method. In all cases, the dark blue region identifies the noise values for which the GME tests are inconclusive.
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FIG. 14. GME witnessing plots in a six-qubit flag-based FT plaquette subject to the two-qubit depolarizing noise model of Sec.
VI B 2. The coherent-noise angle is set to φ = π/4. In each row i (i = 1, 2, 3) the contour plots represent, for different values of
depolarizing-noise probability p and measurement-error probability pME, the expectation values of (a.i) L in the standard GME witness
L in Eq. (48), (b.i) the second SL witness LTG2 in Eq. (50), (c.i) the worst-case conditional witnessing using L1

[f |x] for x = s from Eq.
(51) and (d.i) the worst-case conditional witnessing using L2

[f |x] in Eq. (52) for x = 2. In each row i = 1, 2, and 3, the error-growth rate
per gate values are r = 0, 0.1, and 0.2, respectively. The colormap sidebars represent the witness bounds for each method. In all cases,
the dark blue region identifies the noise values for which the GME tests are inconclusive.

witnessing methods both close to 0.2. For the standard wit-
nessing method we get a threshold of pME ≈ 0.08 whilst
it reaches its lowest values for the second SL witness at
pME ≈ 0.04.

2. Two-qubit depolarizing noise model

We now assume that the six-qubit FT plaquette suffers
from the more realistic circuit noise of Eq. (33), which
applies a two-qubit depolarizing channel after each entan-
gling gate. As before, we also include the measurement
noise effects as per Eq. (36). Figure 14 represents the
resulting contour plots of the expectation values for φ =
π/4 of (a) the standard witness of Eq. (48), (b) the SL wit-
ness of Eq. (50), (c) our conditional witness of Eq. (51)
for x = s, and (d) our conditional witness of Eq. (52) for
x = 2. The conditional bipartitions [f |s] and [f |2] chosen
here are the ones in which the conditional GME witnessing
performs the worst as shown in the bottom panel of Fig. 15.

We observe that with increasing error-growth rate r the
threshold for p decreases. However, even for the worst-
case scenario, the conditional GME witnessing represented
in Figs. 14(c) and 14(d) show significant robustness com-
pared to the standard witnesses for each r. By comparing
the effects of the two different noise models shown in
Figs. 13 and 14, one notices again that the more realistic
two-qubit depolarizing noise results in higher thresholds of
detectable GME states than the phenomenological noise.
Within both error models, the conditional GME witness-
ing methods are not just more efficient in the number of
measurement settings, but also more robust against errors
compared to their standard counterparts.

VII. CONCLUSIONS AND OUTLOOK

We introduce conditional entanglement witnessing as
a robust and efficient technique to test GME in multi-
partite quantum systems. We prove that, to show GME
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(a)

(b)

FIG. 15. Expectation values of the conditional test operators
of Eqs. (51) and (52) for five conditional bipartitions for the phe-
nomenological depolarizing noise model (top panel) and for the
two-qubit depolarizing noise model (bottom panel) applied to the
flag-based FT plaquette. The y axes are represented in log scale
whilst the x axes represent the different error probabilities of the
two depolarizing error models. In both cases the measurement-
error probability pME is assumed to be zero. In the bottom panel
we assume an error-growth rate per gate of r = 0.2. For both
noise models, the lowest performance of the test operators L1

[f |x]

and L2
[f |x] corresponds to x = s and x = 2, respectively.

in a n-partite system it is sufficient to conditionally ver-
ify entanglement in just n − 1 conditional bipartitions. We
then introduce the conditional GME witnessing technique
and apply it to non-FT and FT readout circuits for stabilizer
operators. This enables us to characterize the performance
of these circuits as building blocks of larger topological
QEC codes in terms of their power for generating GME
entanglement.

In particular, we pick a gx syndrome-readout plaquette
of the d = 3 topological color code and its flag-based FT
version adapted to a shuttling-based trapped-ion platform.
We demonstrate the efficiency and robustness of the con-
ditional witnessing compared to the standard witnessing
method when the plaquette circuit undergoes phenomeno-
logical and two-qubit gate depolarizing noise and mea-
surements suffer from bit-flip errors. In terms of efficiency,
for the five-qubit non-FT scheme, in general, the number
of measurement settings needed in the standard fidelity
witnessing is 31, whilst the SL approach of Ref. [29]

needs two settings, at the expense of a higher fragility in
the presence of noise. Our conditional witnessing requires
12 settings, but we note that its growth remains linear
in the number of qubits in contrast to the exponentially
increasing complexity of the fidelity witness.

For the six-qubit FT scheme, the number of measure-
ment settings for the standard fidelity witness rises to 63
whereas our conditional witnessing requires only 15 where
one can already observe the exponential versus linear
advantage. In this case, one SL witness worked at the cost
of a significant drop in the noise robustness. With regards
to the robustness of these methods, the conditional GME
witness hereby proposed yields a significant increase in
the noise tolerance compared to both the standard fidelity
estimate, and SL witnesses.

We are convinced that, with the current technology
where the addition of each qubit amplifies the unavoid-
able noise and errors, it is beneficial to use our con-
ditional entanglement witnessing scheme to certify the
entangling power of quantum processors wherein the out-
put states are generic mixed states far from ideal expected
output states. We note that certification of entanglement
can also help benchmark building blocks and gadgets
of logical qubits and gate operations, as demonstrated
for trapped ions in recent works [94,95], towards fault-
tolerant quantum computation. Moreover, our witnessing
technique can be applied to any multipartite quantum sys-
tem, independently of the nature of its qubits, as long
as sufficient control (single- and two-qubit gates, Pauli
measurements) is available. It can therefore be applied
to benchmark the capabilities of entanglement generation
in other quantum-processing platforms, including super-
conducting qubits [96], neutral atoms [97], spin qubits
[98], Nitrogen-Vacancy centers [99], and photonic systems
[100]. Lastly, it can be used in a broad variety of pro-
tocols where efficient entanglement certification plays an
important role [101–104]. Last but not least, an interesting
direction for further research is to evaluate and compare
the performance of the witnessing methods discussed here
under more refined microscopic noise models.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with experimen-
tal colleagues J. Hilder, D. Pijn, U. Poschinger, and
F. Schmidt-Kaler from Johannes Gutenberg Univer-
sität Mainz, Germany, as well as with colleagues from
the eQual and AQTION collaborations. We gratefully
acknowledge support by the EU Quantum Technology
Flagship Grant AQTION 820495. A.R.B. acknowledges
support by the Universidad Complutense de Madrid-
Banco Santander Predoctoral Fellowship. A.B. acknowl-
edges support from the Ramón y Cajal Program RYC-
2016-20066, and CAM/FEDER Project S2018/TCS- 4342
(QUITEMAD-CM) and the Plan Nacional Generación de

020304-21



RODRIGUEZ-BLANCO, BERMUDEZ, MÜLLER, and SHAHANDEH PRX QUANTUM 2, 020304 (2021)

Conocimiento PGC2018-095862-B-C22. M.M. acknowl-
edges support by the ERC Starting Grant QNets 804247,
and also by U.S.A.R.O. through Grant No. W911NF-14-1-
010. F.S. acknowledges support and resources provided by
the Royal Commission for the Exhibition of 1851.

APPENDIX A: Z-TYPE PARITY-CHECK CIRCUIT
WITH CNOT GATES

Here we provide the Z-type parity-check circuits in par-
allel with the X -type parity check of Sec. III. It is assumed
that the circuits are ideal and free from state preparation
and measurement and gate errors. We provide the output
states from these circuits and their stabilizer generators
from which all the entanglement witnesses presented in the
text can be obtained.

1. Non-FT circuit

Starting by the ideal plaquette circuit depicted in
Fig. 16(a) representing the non-FT gz readout circuit, we
initialize the data qubits {i1, i2, i3, i4} in |+〉⊗4 and the syn-
drome qubit in |0〉s. This is expected to produce the output
state

|ψout〉 = |GHZ⊗5
X +〉 = |+〉⊗5 + |−〉⊗5

√
2

. (A1)

The resulting five-qubit GHZ state (in the X basis) in Eq.
(A1) can be understood as the one-dimensional code space
of the stabilizer subgroup

SX ,5q = 〈g1 = X1X2, g2 = X2X3, g3 = X3X4,

g4 = X4X5, g5 = Z1Z2Z3Z4Z5〉. (A2)

2. Flag-based FT circuit

We now consider the FT version of the Z-type parity
check by adding a flag qubit as shown in Fig. 16(b). As
in the previous case, the data and the syndrome qubits are
initialized in |+〉⊗4 and |0〉s, respectively, whereas the flag
qubit is prepared in |+〉f . The expected output state is then
given by

|ψout〉 = (|+〉⊗5 + |−〉⊗5) |+〉f√
2

= |GHZ⊗5
X +〉 |+〉f . (A3)

As discussed in the main text, in this scheme the flag qubit
will detect the presence of a single error on the syndrome
qubit that propagates to multiple errors on the data qubits,
thus enabling the preservation of the encoded informa-
tion. For example, if a single Pauli Z error occurs between
the second and the third data-to-syndrome CNOT gates in

(a)

(b)

FIG. 16. Error syndrome extraction circuits in the color code
for (a) the non-FT and (b) the flag-based FT readouts of the gen-
erators g(q)z [Eq. (3)] of the plaquette q in Fig. 1. The data qubits
i1, i2, i3, i4 correspond to the four physical qubits of this plaquette.

Fig. 16(b), it leads to the state

|ψout〉 = ZsZ3Z4 |GHZ⊗5
X +〉 |−〉f , (A4)

where the flag has been flipped. A final projective measure-
ment on the flag qubit thus reveals the error.

APPENDIX B: EXHAUSTIVE LIST OF
SEPARABILITY BOUNDS FOR STANDARD

WITNESSING IN THE FLAG-BASED FT CIRCUIT

In Sec. VI B we use the test operator

L = |ψout〉 〈ψout| , (B1)

wherein

|ψout〉 = |GHZ⊗5
+ 〉 |+〉f + |G̃HZ

⊗5
+ 〉 |−〉f√

2
, (B2)

with |G̃HZ
⊗5
+ 〉 = (|00111〉 − |11000〉)/√2. Here, we give

the exhaustive list of separability bounds for L,

lB = sup
σ∈SepB

Tr(Lσ), (B3)

with respect to each bipartition B within the set of all 31
possible bipartitions B and show that they are either 1/2 or
1/4.

In the most general form, the solution to Eq. (B3) is
obtained by solving a set of coupled nonlinear eigen-
value equations called multipartite separability eigenvalue

020304-22



GME CERTIFICATION IN QEC CIRCUITS. . . PRX QUANTUM 2, 020304 (2021)

TABLE I. Separability values for the test operator of Eq. (45)
with respect to all 31 bipartitions.

Bipartition B lB

(f |s, 1, 2, 3, 4) 1/2
(s|f , 1, 2, 3, 4) 1/2
(1|f , s, 2, 3, 4) 1/2
(2|f , s, 1, 3, 4) 1/2
(3|f , s, 1, 2, 4) 1/2
(4|f , s, 1, 2, 3) 1/2
(f , s|1, 2, 3, 4) 1/4
(f , 1|s, 2, 3, 4) 1/4
(f , 2|s, 1, 3, 4) 1/4
(f , 3|s, 1, 2, 4) 1/4
(f , 4|s, 1, 2, 3) 1/4
(s, 1|f , 2, 3, 4) 1/4
(s, 2|f , 1, 3, 4) 1/4
(s, 3|f , 1, 2, 4) 1/2
(s, 4|f , 1, 2, 3) 1/2
(1, 2|f , s, 3, 4) 1/2
(1, 3|f , s, 2, 4) 1/4
(1, 4|f , s, 2, 3) 1/4
(2, 3|f , s, 1, 4) 1/4
(2, 4|f , s, 1, 3) 1/4
(3, 4|f , s, 1, 2) 1/2
(f , s, 1|2, 3, 4) 1/4
(f , s, 2|1, 3, 4) 1/4
(f , s, 3|1, 2, 4) 1/4
(f , s, 4|1, 2, 3) 1/4
(f , 1, 2|s, 3, 4) 1/2
(f , 1, 3|s, 2, 4) 1/4
(f , 1, 4|s, 2, 3) 1/4
(f , 2, 3|s, 1, 4) 1/4
(f , 2, 4|s, 1, 3) 1/4
(f , 3, 4|s, 1, 2) 1/4

equations [26,48]. This is a highly nontrivial problem to
solve in general. Nevertheless, in some cases, including
the example at hand, we can obtain the bounds without
directly solving these equations and by merely relying on
the properties of |ψout〉. In particular, the property we use
here is the following. Consider a bipartite pure state of the
form

|ψ〉AB = 1√
n

n∑

i=1

|i〉A |ψi〉B , (B4)

such that 〈i|j 〉 = δij and 〈ψi|ψj 〉 = δij . Using techniques
from Refs. [26,48], we infer that the maximum separability
bound is

lAB = sup
σ∈SepAB

Tr |ψ〉〈ψ |σ = 1
n

. (B5)

In other words, biorthogonality properties of the local
Schmidt bases allow us to read the separability values off
the Schmidt rank of |ψ〉. It turns out that we can use this
result in the specific case of |ψout〉 in Eq. (B2). We skip

FIG. 17. The non-FT circuit using the native trapped-ion gates.

writing down Schmidt decompositions with respect to indi-
vidual bipartitions, as this is straightforward, and merely
list the separability bounds in Table I. Nevertheless, to give
an example, we notice that |ψout〉 in Eq. (B2) is written in
its Schmidt decomposition with respect to the bipartition
(f |s, 1, 2, 3, 4) with an Schmidt rank of 2 and it is of the
form of Eq. (B4), hence lf |s,1,2,3,4 = 1/2.

APPENDIX C: Z-TYPE PARITY-CHECK
CIRCUITS USING NATIVE TRAPPED-ION GATES

We now translate the Z-type parity-check circuits of
Appendix A into the trapped ions’ native gates using the
relations given in Fig. 6. We also provide the output states
from these circuits and their stabilizer generators by means
of which the entanglement witnesses given in the main text
can be constructed.

1. Non-FT circuit

In Fig. 17 the circuit for Z-type syndrome readout using
the native trapped-ion language is shown. We start by ini-
tializing the data qubits in |−〉⊗4 and the syndrome qubit
in |+〉s. Similar to the CNOT-based circuit, this is expected
to produced the output state

|ψout〉 = |GHZ⊗5
X +〉 = |+〉⊗5 + |−〉⊗5

√
2

, (C1)

with the same stabilizer generators as given in Eq. (A2).
This means that |ψout〉 in Eq. (C1) is a +1 eigenstate of the
five generating stabilizers gi from Eq. (A2) and all their
possible combinations.

FIG. 18. The flag-based FT circuit using the native trapped-ion
gates. The eiφX error is injected to create a six-qubit entangled
state in the flag-based FT stabilizer measurement.
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FIG. 19. Error propagation through ZZ gates. A Pauli X (Y)
error propagates as a Y (X ) error and a Z error onto the second
qubit. An incoming single Z error commutes with the ZZ gate
and therefore does not propagate onto the second qubit.

2. Flag-based FT circuit

Here, we present the flag-based gz readout circuit using
the trapped-ion native gate set. Recall that, to generate
entanglement between the flag, syndrome, and data qubits
we need to inject an error of the form exp(iφX ) in a con-
trollable way; see Fig. 18. In this occasion we initialize the
data qubits in |−〉⊗4, the syndrome in |−〉s, and the flag
qubit in |−〉f . The output state is then

|ψout〉 = cosφ |+〉f |GHZ⊗5
X +〉

+ i sinφ |−〉f YsZ3Z4 |GHZ⊗5
X +〉 , (C2)

where the stabilizer subgroup is given by

SX̃ ,6q = 〈g1 = X1Z3Z4Z5Z6, g2 = X2Z3Z4Z5Z6,

g3 = X3X5, g4 = X4X5,

g5 = −Z1Z2X5Z6, g6 = −Z3Z4Y5Y6〉. (C3)

APPENDIX D: ERROR PROPAGATION
THROUGH ZZ GATES

In Fig. 19 we give the Pauli-error propagation rules
through the ZZ-entangling gates of trapped-ion platforms.
These come in handy in calculating the output states,
e.g., that of Eq. (31).
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