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Many experiments in the field of quantum foundations seek to adjudicate between quantum theory and
speculative alternatives to it. This requires one to analyze the experimental data in a manner that does not
presume the correctness of the quantum formalism. The mathematical framework of generalized proba-
bilistic theories (GPTs) provides a means of doing so. We present a scheme for determining which GPTs
are consistent with a given set of experimental data. It proceeds by performing tomography on the prepa-
rations and measurements in a self-consistent manner, i.e., without presuming a prior characterization of
either. We illustrate the scheme by analyzing experimental data for a large set of preparations and mea-
surements on the polarization degree of freedom of a single photon. We first test various hypotheses for the
dimension of the GPT vector space for this degree of freedom. Our analysis identifies the most plausible
hypothesis to be dimension 4, which is the value predicted by quantum theory. Under this hypothesis, we
can draw the following additional conclusions from our scheme: (i) that the smallest and largest GPT state
spaces that could describe photon polarization are a pair of polytopes, each approximating the shape of
the Bloch sphere and having a volume ratio of 0.977 ± 0.001, which provides a quantitative bound on the
scope for deviations from the state and effect spaces predicted by quantum theory, and (ii) that the maximal
violation of the Clauser, Horne, Shimony, and Holt inequality can be at most 1.3% ± 0.1 greater than the
maximum violation allowed by quantum theory, and the maximal violation of a particular inequality for
universal noncontextuality can not differ from the quantum prediction by more than this factor on either
side. The only possibility for a greater deviation from the quantum state and effect spaces or for greater
degrees of supraquantum nonlocality or contextuality, according to our analysis, is if a future experiment
(perhaps following the scheme developed here) discovers that additional dimensions of GPT vector space
are required to describe photon polarization, in excess of the four dimensions predicted by quantum theory
to be adequate to the task.
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I. INTRODUCTION

Despite the empirical successes of quantum theory, it
may one day be supplanted by a novel, postquantum
theory [1]. Many researchers have sought to anticipate
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what such a theory might look like based on theoreti-
cal considerations, in particular, by exploring how various
natural physical principles narrow down the scope of pos-
sibilities in the landscape of all physical theories (see
Ref. [2] and references therein). In this paper, we consider
a complementary problem: how to narrow down the scope
of possibilities directly from experimental data.

Most experiments in the field of quantum foundations
aim to adjudicate between quantum theory and some spec-
ulative alternative to it. They seek to constrain (and per-
haps uncover) deviations from the quantum predictions.
Although a few proposed alternatives to quantum theory
can be articulated within the quantum formalism itself,
such as models that posit intrinsic decoherence [3–6],
most are more radical. Examples include Almost Quantum
Theory [7,8], theories with higher-order interference
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[9–14] (or of higher order in the sense of Ref. [15]), and
modifications to quantum theory involving the quaternions
[16–19].

In order to assess whether experimental data provides
any evidence for a given proposal (and against quantum
theory), it is clearly critical that one not presume the cor-
rectness of quantum theory in the analysis. Therefore, it
is inappropriate to use the quantum formalism to model
the experiment. A more general formalism is required.
Furthermore, it would be useful if rather than implement-
ing dedicated experiments for each proposed alternative to
quantum theory, one had a technique for directly determin-
ing the experimentally viable regions in the landscape of
all possible physical theories. The framework of general-
ized probabilistic theories (GPTs) provides the means to
meet both of these challenges.

This framework adopts an operational approach to
describing the content of a physical theory. It has
been developed over the past 20 years in the field of
quantum foundations (see Refs. [15,20–22], as well as
Refs. [8,23–30]), continuing a long tradition of such
approaches [31–34]. It is operational because it takes the
content of a physical theory to be merely what it predicts
for the probabilities of outcomes of measurements in an
experiment.

The GPT framework makes only very weak assump-
tions, which are arguably unavoidable if an operational-
ist’s conception of an experiment is to be meaningful.
One is that experiments have a modular form, such that
one part of an experiment can be varied independently
of another, such as preparations and measurements for
instance; another is that it is possible to repeat a given
experimental configuration in such a way that it constitutes
an i.i.d. source of statistical data. Beyond this, however,
it is completely general. It has been used extensively to
provide a common language for describing and compar-
ing abstract quantum theory, classical probability theory,
and many foils to these, including quantum theory over the
real or quaternionic fields [19], theories with higher-order
interference [35–37], and the generalized no-signaling the-
ory (also known as Boxworld) [20,27].

Using this framework, we propose a technique for ana-
lyzing experimental data that allows researchers to over-
come their implicit quantum bias—the tendency of view-
ing all experiments through the lens of quantum concepts
and the quantum formalism—and take a theory-neutral
perspective on the data.

Despite the fact that the GPT formalism is ideally suited
to the task, to our knowledge, it has not previously been
applied to the analysis of experimental data (with the
exception of Ref. [38], which applied it to an experimental
test of universal noncontextuality and which inspired the
present work).

In this paper, we aim to answer the question: given
specific experimental data, how does one find the set of

GPTs that could have generated the data? We call this the
“GPT inference problem.” Solving the problem requires
implementing the GPT analog of quantum tomography.
Quantum-tomography experiments that have sought to
characterize unknown states have typically presumed that
the measurements are already well characterized [39–45],
and those that have sought to characterize unknown mea-
surements have typically presumed that the states are
known [46,47]. If one has no prior knowledge of either
the states or the measurements, then one requires a tomog-
raphy scheme that can characterize them both based on
their interplay. We call such a tomographic scheme self-
consistent. To solve the GPT inference problem, we intro-
duce such a self-consistent tomography scheme within the
framework of GPTs.

We also illustrate the use of our technique with an exper-
iment on the polarization degree of freedom of a single
photon. For each of a large number of preparations, we
perform a large number of measurements, and we analyze
the data using our self-consistent tomography scheme to
infer a GPT characterization of both the preparations and
the measurements.

To clarify what, precisely, our analysis implies, we begin
by distinguishing two ways in which nature might deviate
from the predictions of quantum theory within the frame-
work of GPTs. The first possibility is that it exhibits a
deviation (relative to what quantum theory predicts for the
system of interest) in the particular shapes of the spaces of
GPT state vectors and GPT effect vectors but no deviation
in the dimensionality of the GPT vector space. The second
possibility is that it deviates from quantum expectations
even in the dimensionality.

From our experimental data, we find no evidence of
either sort of deviation. If nature does exhibit deviations
and these are of the first type (i.e., deviations to shapes
but not to dimensions), then we are able to put quanti-
tative bounds on the degree of such deviations. If nature
exhibits deviations of the second type (dimensional devi-
ations), then although our GPT inference technique may
fail to detect them in a given experiment, it does provide
an opportunity for doing so. In the next few paragraphs,
we try to explain the precise sense in which there is such
an opportunity.

If dimensional deviations from quantum theory hap-
pen to only be significant for some exotic new types
of preparations and measurements, then insofar as our
experiment only probes a photon’s polarization in con-
ventional ways (using wave plates and beam splitters),
there is nothing in its design ensuring that such deviations
are found. Nonetheless, it is still the case that our exper-
iment (and any other that implements our technique on
data obtained by probing a system in conventional ways)
has an opportunity to discover such deviations, even in the
absence of any knowledge of the type of exotic procedures
required to make such deviations significant. To see why

020302-2



EXPERIMENTALLY BOUNDING DEVIATIONS... PRX QUANTUM 2, 020302 (2021)

this is the case, note that there are two ways in which an
experiment might discover new physics: the “terra-nova”
strategy, wherein one’s experiment probes a new phe-
nomenon or regime of some physical quantity, and the
“precision” strategy, wherein one’s experiment achieves
increased precision for a previously explored phenomenon
or regime.

To illustrate the distinction, consider a counterfactual
history of physics, wherein the special theory of relativ-
ity was not discovered by theoretical considerations but
was instead inferred primarily from experimental discover-
ies. Imagine, for instance, that it began with the discovery
of corrections to the established (nonrelativistic) formulas
for properties of moving bodies, such as the expression
for their kinetic energy or the Doppler shift of the radi-
ation they emit. On the one hand, an experimenter who,
for whatever reason, had found herself investigating the
behavior of systems accelerated to speeds that were a sig-
nificant fraction of the speed of light (without necessarily
even knowing that the speed of light was a limit) would
have found significant deviations from various nonrela-
tivistic formulas. On the other hand, an experimenter who
probed systems at unexceptional speeds (i.e., speeds small
compared to the speed of light) but with a degree of pre-
cision much higher than had been previously achieved
could still have discovered the inadequacy of nonrelativis-
tic formulas by detecting small but statistically significant
deviations from these.

The experiment we report provides an opportunity to
discover a deviation (from quantum theory) in the dimen-
sion of the GPT vector space required to describe photon
polarization because it provides a precision characteri-
zation of a large set of preparations and measurements
thereon. If experimental setups designed to realize conven-
tional preparations and measurements inadvertently extend
some small distance into the space of exotic preparations
and measurements, say, by fluctuations or small systematic
effects, then our technique can reveal this fact by showing
that the expected dimensionality for the GPT vector space
does not fit the data. The full scope of possible preparations
and measurements for photon polarization might be radi-
cally different from what our quantum expectations dictate
(incorporating new exotic procedures), and yet one could,
by serendipity, experimentally realize a set of preparations
and measurements that are tomographically complete for
this full set rather than being merely sufficient for char-
acterizing the conventional procedures. In other words,
the realized set could manage to span the full postquan-
tum GPT vector space in spite of their not having been
designed to do so. In Sec. III A, we provide a more detailed
discussion of this point [48].

Applying our GPT inference technique to our experi-
mental data, we find that our experiment is best represented
by a GPT of dimension 4, which is what quantum the-
ory predicts to be the appropriate dimension for photon

polarization. In other words, we find no evidence for
a deviation in the dimension of the GPT vector space,
relative to quantum expectations, at the precision frontier
using conventional means of probing photon polarization.
We can therefore conclude that one of the following possi-
bilities must hold: (i) there are no dimensional deviations,
(ii) there are dimensional deviations, which exotic prepara-
tions and measurements would reveal, but the procedures
realized in our experiment contain strictly no exotic com-
ponent, (iii) there are dimensional deviations, which exotic
preparations and measurements would reveal, and the pro-
cedures realized in our experiment do contain some exotic
component, but the latter is not visible at the level of
precision achieved in our experiment.

We now describe what further conclusions we can draw
from our experiment supposing that the realized prepa-
rations and measurements in our experiment are tomo-
graphically complete, that is, supposing that they have
nontrivial components in all dimensions of the GPT vector
space describing photon polarization and that these com-
ponents are visible at the level of precision achieved in
our experiment. In other words, we now describe what
further conclusions we can draw from our experiment if
we suppose that it is possibility (i), rather than possi-
bilities (ii) or (iii), that holds. In this case, we are able
to place bounds (at the 1% level) on how much the
state and effect spaces of the true GPT might deviate
from those predicted by quantum theory. In addition, we
are able to draw explicit quantitative conclusions about
three types of such putative deviations, which we now
outline.

The no-restriction hypothesis [21] asserts that if some
measurement is logically possible (i.e., it gives positive
probabilities for all states in the theory) then it should be
physically realizable. It is true of quantum theory—indeed,
it is a popular axiom in many axiomatic reconstructions
thereof. A failure of the no-restriction hypothesis, there-
fore, constitutes a departure from quantum theory. We put
quantitative bounds on the possible degree of this failure,
that is, on the potential gap between the set of measure-
ments that are physically realizable and those that are logi-
cally possible. Recalling the scope of possible conclusions
(i)–(iii) above, the only way for any future experiment
to overturn this conclusion about deviations from the no-
restriction hypothesis is if it demonstrated the need for
dimensional deviations.

We can also put an upper bound on the amount by
which nature might violate Bell inequalities in excess of
the amount predicted by quantum theory. Specifically, for
the Clauser, Horne, Shimony, and Holt (CHSH) inequality
[49], we show that, for photon polarization, any greater-
than-quantum degree of violation is no more than 1.3% ±
0.1 higher than the quantum bound. To our knowledge,
this is the first proposal for how to obtain an experimental
upper bound on the degree of Bell inequality violation in
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nature. The only possibility for a future experiment on pho-
ton polarization to violate the quantum bound by more than
1.3% ± 0.1 is if it demonstrated the need for dimensional
deviations.

In a similar vein, we consider noncontextuality inequal-
ities. These are akin to Bell inequalities, but test the
hypothesis of universal noncontextuality [50] rather than
local causality. Here, our technique provides both an upper
and a lower bound on the degree of violation. For a par-
ticular noncontextuality inequality, described in Ref. [51],
we find that the true value of the violation is no more than
1.3% ± 0.1 higher and no less than 1.3% ± 0.1 lower than
the quantum bound. As with Bell inequalities, the only way
for any future experiment on photon polarization to find a
violation outside this range is if it demonstrated the need
for dimensional deviations.

Although we have not here sought to implement any
terra-nova strategy for finding deviations from quantum
theory, any future experiment that aims to do so can make
use of our GPT inference technique to analyze the data
and evaluate the evidence. Inasmuch as terra-nova strate-
gies, relative to precision strategies, provide a comple-
mentary (and presumably better) opportunity for finding
new physics, our GPT inference technique is also sig-
nificant insofar as it provides the means to analyze such
experiments.

II. THE FRAMEWORK OF GENERALIZED
PROBABILISTIC THEORIES

A. Basics

For any system, in any physical theory, there will in
general be many possible ways for it to be prepared, trans-
formed, and measured. Here, each preparation procedure,
transformation procedure and measurement procedure is
conceived as a list of instructions for what to do in the lab-
oratory. The different combinations of possibilities for each
procedure defines a collection of possible experimental
configurations. We here restrict our attention to experi-
mental configurations of the prepare-and-measure variety:
these are the configurations where there is no transforma-
tion intervening between the preparation and the measure-
ment and where the measurement is terminal (which is
to say that the system does not persist after the measure-
ment). We further restrict our attention to binary-outcome
measurements.

A GPT aims to describe only the operational phe-
nomenology of a given experiment. In the case of a
prepare-and-measure experiment, it aims to describe only
the relative probabilities of the different outcomes of each
possible measurement procedure when it is implemented
following each possible preparation procedure. For binary-
outcome measurements, it suffices to specify the probabil-
ity of one of the outcomes since the other is determined by
normalization. If we denote the outcome set {0, 1}, then it

suffices to specify the probability of the event of obtaining
outcome 0 in measurement M . This event is termed an
effect and denoted [0|M ].

Thus a GPT specifies a probability p(0|P, M ) for each
preparation P and measurement M . Denoting the car-
dinality of the set of all preparations (respectively, all
measurements) by m (respectively, n), the set of these prob-
abilities can be organized into an m × n matrix, denoted D,
where the rows correspond to distinct preparations and the
columns correspond to distinct effects,

D ≡

⎛
⎜⎝

p(0|P1, M1) p(0|P1, M2) · · · p(0|P1, Mn)

p(0|P2, M1) p(0|P2, M2) · · · p(0|P2, Mn)

· · · · · · · · ·
p(0|Pm, M1) p(0|Pm, M2) · · · p(0|Pm, Mn)

⎞
⎟⎠ .

We refer to D as the probability matrix associated to the
physical theory. Because it specifies the probabilities for all
possibilities for the preparations and the measurements, it
contains all of the information about the putative physical
theory for prepare-and-measure experiments [52].

Defining
k ≡ rank(D)

then one can factor D into a product of two rectangular
matrices,

D = SE, (1)

where S is an (m × k) matrix and E is a (k × n) matrix.
Denoting the ith row of S by the row vector sT

Pi
(where T

denotes transpose) and the j th column of E by the column
vector e[0|Mj ], we can write

D =

⎛
⎜⎜⎜⎝

sT
P1

sT
P2

· · ·
sT

Pm

⎞
⎟⎟⎟⎠
(

e[0|M1] e[0|M2] · · · e[0|Mn]
)

, (2)

so that

p(0|Pi, Mj ) = sPi · e[0|Mj ]. (3)

Factoring D in this way allows us to associate to each
preparation P a k-dimensional vector sP and to each effect
[0|M ] a k-dimensional vector e[0|M ] such that the proba-
bility of obtaining the effect [0|M ] on the preparation P is
recovered as their inner product, p(0|P, M ) = sP · e[0|M ].
The vectors sP and e[0|M ] are termed GPT state vectors and
GPT effect vectors, respectively. A particular GPT is spec-
ified by the sets of all allowed GPT state and effect vectors,
denoted by S and E , respectively.

Because the n GPT effect vectors associated to the set of
all measurement effects lie in a k-dimensional vector space,

020302-4



EXPERIMENTALLY BOUNDING DEVIATIONS... PRX QUANTUM 2, 020302 (2021)

only k of them are linearly independent. Any set of k mea-
surement effects whose associated GPT effect vectors form
a basis for the space is termed a tomographically complete
set of measurement effects. The terminology stems from
the fact that if one seeks to deduce the GPT state vector of
an unknown preparation from the probabilities it assigns to
a set of characterized measurement effects (the GPT analog
of quantum-state tomography) then this set of GPT effect
vectors must form a basis of the k-dimensional space. Sim-
ilarly, any set of k preparations whose associated GPT state
vectors form a basis for the space is termed tomograph-
ically complete because to deduce the GPT effect vector
of an unknown measurement effect from the probabilities
assigned to it by a set of known preparations, the GPT state
vectors associated to the latter must form a basis.

For any GPT, we necessarily have that the rank of D
satisfies k ≤ min{m, n}, but in general, we expect k to be
much smaller than m or n.

There is a freedom in the decomposition of Eq. (1).
Specifically, for any invertible (k × k) matrix R, we have
D = SE = (SR−1)(RE). Thus, there are many decompo-
sitions of D of the type described. The vectors {sPi}i
and {e[0|Mj ]}j depend on the specific decomposition cho-
sen. However, for any two choices of decompositions
SE and S′E′, the vectors {sPi}i and {s′

Pi
}i (and the vec-

tors {e[0|Mj ]}j and {e′
[0|Mj ]}j ) are always related by a linear

transformation.
Note that any basis of the k-dimensional vector space

remains so under a linear transformation, so the property
of being tomographically complete is independent of the
choice of representation.

It is worth noting that for any physical theory, the GPT
framework provides a complete description of its opera-
tional predictions for prepare-and-measure experiments. In
this sense, the GPT framework is completely general. Fur-
thermore, one can show that under a very weak assumption
it provides the most efficient description of the theory, in
the sense that it is a description with the smallest number
of parameters. The weak assumption is that it is possi-
ble to implement arbitrary convex mixtures of preparations
without altering the functioning of each preparation in the
mixture, so that for any set of GPT state vectors that are
admitted in the theory, all of the vectors in their convex hull
are also admitted in the theory. See Theorem 1 of Ref. [24]
for the proof.

We here make this weak assumption and restrict our
attention to GPTs wherein any convex mixture of prepara-
tion procedures is another valid preparation procedure, so
that the set of GPT state vectors is convex [15]. We refer to
the set S of GPT states in a theory as its GPT state space.
We also make the weak assumption that any convex mix-
ture of measurements and any classical postprocessing of
a measurement is another valid measurement. This implies
that the set of GPT effect vectors consists of the intersec-
tion of two cones, which can be described as follows: there

is some set of ray-extremal GPT effect vectors, such that
the first cone is the convex hull of all positive multiples of
these vectors, and the second cone is the set of vectors that
can be summed with a vector in the first cone to yield the
unit effect vector u (defined below). (This ensures that if a
given effect e is in the GPT, then so is the complementary
effect ē := u − e.) We use the term “diamond” to describe
this sort of intersection of two cones, and we refer to the
set E of GPT effects in a theory as its GPT effect space.

It is worth noting that GPTs that fail to be closed under
convex mixtures and classical postprocessing are of the-
oretical interest—there are interesting foils to quantum
theory of this type [50,53]—one does not expect them to
be candidates for the true GPT describing nature because
there seems to be no obstacle in practice to mixing or post-
processing procedures in an arbitrary way. To put it another
way, the evidence suggests that the GPT describing nature
must include classical probability theory as a subtheory,
thereby providing the resources for implementing arbitrary
mixtures and postprocessings.

Distinct physical theories (i.e., distinct GPTs) are distin-
guished by the shapes of the GPT state space and the GPT
effect space, where these shapes are defined up to a linear
transformation, as described earlier.

We end by highlighting some conventions we adopt in
representing GPTs. Define the unit measurement effect as
the one that occurs with probability 1 for all preparations
(it is represented by a column of 1s in D), and denote it by
u. Because each sP will have an inner product of 1 with
u (by normalization of probability), it follows that there
are only k − 1 free parameters in the GPT state vector. We
make a conventional choice (i.e., a particular choice within
the freedom of linear transformations) to represent the unit
effect by the GPT effect vector (1, 0, 0, . . .)T. This choice
forces the first component of all of the GPT state vectors to
be 1. In this case, one can restrict the search for factoriza-
tions D = SE to those for which the first column of S is a
column of 1s. It also follows that the projection of all GPT
state vectors along one of the axes of the k-dimensional
vector space has value 1, and consequently it is useful to
only depict the projection of the GPT state vectors into the
complementary (k−1)-dimensional subspace.

B. Examples

Some simple examples serve to clarify the notion of a
GPT. First, consider a two-level quantum system (qubit).
The set of all preparations is represented by the set of all
positive trace-one operators on a two-dimensional com-
plex Hilbert space, that is, ρ ∈ L(C2) with L denoting
the linear operators, such that ρ ≥ 0 and Tr(ρ) = 1. Each
measurement effect is associated with a positive operator
less than identity, 0 ≤ Q ≤ I. Each measurement effect and
each preparation can also be represented by a vector in a
real four-dimensional vector space by simply decomposing
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the operators representing them relative to any orthonor-
mal basis of Hermitian operators. The Born rule is repro-
duced by the vector space inner product because it is sim-
ply the inner product of the associated operators relative to
the Hilbert-Schmidt norm.

The most common example of such a representation
is the one that uses (a scalar multiple of) the four
Pauli operators, { 1

2I, 1
2σx, 1

2σy , 1
2σz}, as the orthonormal

basis of the space of operators. A preparation repre-
sented by a density operator ρ is associated with the
four-dimensional real vector s ≡ (s0, s1, s2, s3), via the
relation ρ = 1

2 s · σ , where σ ≡ (I, σx, σy , σz), or equiv-
alently, ρ = 1

2

(
s0I + s1σx + s2σy + s3σz

)
. The condition

Tr(ρ) = 1 implies that s0 = 1, and the conditions Tr(ρ) =
1 and ρ ≥ 0 together imply that

√
s2

1 + s2
2 + s2

3 ≤ 1. Con-

sequently, there is only a three-dimensional freedom in
specifying a quantum state. Geometrically, the possible
s describe a ball of radius 1, conventionally termed the
Bloch sphere [54] and depicted in Fig. 1(a)(i). A measure-
ment effect represented by an operator Q is associated with
the four-dimensional real vector e ≡ (e0, e1, e2, e3), via the
relation Q = e · σ . The conditions Q ≥ 0 and Q ≤ I imply

that 0 ≤ e0 ≤ 1,
√

e2
1 + e2

2 + e2
3 ≤ e0 and

√
e2

1 + e2
2 + e2

3 ≤
1 − e0, which constrains e to lie within the intersection
of two four-dimensional cones, which we refer to as the
Bloch diamond and depict via a pair of three-dimensional
projections in Fig. 1(a)(ii)–(iii) [55].

As noted in the discussion of the GPT framework, this
geometric representation of the quantum state and effect
spaces is only one possibility among many. If we define
a linear transformation of the state space by any invert-
ible 4 × 4 matrix and we take the corresponding inverse
linear transformation on the effect space, the new state
and effect spaces will also provide an adequate represen-
tation of all prepare-and-measure experiments on a single
qubit. (Note that implementing a linear transformation
of this form is equivalent to representing quantum states
and effects with respect to a different basis of Hermitian
operators.)

Classical probabilistic theories can also be formulated
within the GPT framework. Consider the simplest case
of a classical system with two possible physical states,
i.e., a classical bit, for which k = 2. The set of possi-
ble preparations of this system is simply the set of nor-
malized probability distributions on a bit, �μ = (μ0,μ1),
where 0 ≤ μ0,μ1 ≤ 1 and μ0 + μ1 = 1. The most general
measurement effect is a pair of probabilities, specifying
the probability of that effect occurring for each value of
the bit, that is, �ξ = (ξ0, ξ1), where 0 ≤ ξ0, ξ1 ≤ 1. The
probability of a particular measurement effect occurring
when implemented on a particular preparation is clearly
just the inner product of these, �μ · �ξ . The positivity and
normalization constraints imply that the convex set of state

(a)

(b)

(c)

(d)

(e)

FIG. 1. Some paradigm examples of GPTs. The solid shapes
represent the true state and effect spaces for that GPT, while
the black wireframe shapes represent the duals of these (for the
duality relation described in Sec. II C). (i) The true state space
(solid blue) and the space of logically possible states (wireframe).
(ii)–(iii) The true effect space (solid green) and the space of log-
ically possible effects (wireframe). For the cases where k = 4,
the effect spaces are four dimensional, and we depict them by
a pair of three-dimensional projections. (a) A qubit (k = 4). (b)
A classical bit (k = 2). (c) The k = 4 system in Boxworld. (d)
The convex closure of the Spekkens toy theory for the simplest
system (k = 4). (e) A generic GPT with k = 4, obtained from a
randomly generated rank-4 matrix of probabilities.

vectors describes a line segment from (1, 0) to (0, 1), and
the set of effect vectors is the square region with vertices
(0, 0), (1, 0), (0, 1), and (1, 1).

For ease of comparison with our examples of GPTs,
it is useful to consider a linear transformation of this
representation, corresponding geometrically to a rotation
by 45◦. We represent each preparation by a state vec-
tor s = (1, s1), where −1 ≤ s1 ≤ 1, and each measurement
effect by an effect vector e = (e0, e1), where −1/2 ≤ e1 ≤
1/2 and e0 ≥ |e1| and e0 ≤ 1 − |e1| (with the experimen-
tal probabilities still given by their inner product, s · e).
The convex set of these state vectors can then be depicted
as a horizontal line segment, and the set of effect vec-
tors by a diamond with a line segment at its base, as in
Fig. 1(b). This representation makes it clear that the state
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and effect spaces of a classical bit are contained within
those of a qubit (as the quantum states and effects whose
representation as operators are diagonal in some fixed basis
of the Hilbert space).

One can also consider GPTs that are neither classical
nor quantum. In the GPT known as “Boxworld” [20,27]
(originally called “generalized no-signaling theory”), cor-
relations can be stronger than in quantum theory, violating
Bell inequalities by an amount in excess of the maxi-
mum quantum violation. The k = 3 system in Boxworld,
known as the “generalized no-signaling bit,” has received
a great deal of attention. A pair of such systems can gen-
erate the stronger-than-quantum correlations known as a
Popescu-Rohrlich box [56] from which the name Box-
world derives. These achieve a CHSH inequality violation
equal to the algebraic maximum. Such correlations are
achievable in Boxworld because there are some states that
respond deterministically to multiple effects, and there are
also some effects that respond deterministically to multi-
ple states. Boxworld also has a k = 4 system, which shares
features of the generalized no-signaling bit and is, in cer-
tain respects, more straightforward to compare to a qubit.
It is the latter that we depict in Fig. 1(c).

Another alternative to classical and quantum theories is
the toy theory introduced by one of the authors [57]. We
here consider a variant of this theory, wherein one closes
under convex combinations. The simplest system has k =
4 and has the state and effect spaces depicted in Fig. 1(d)
[58].

Finally, Fig. 1(e) illustrates a generic example of a
GPT with k = 4. We construct this GPT by generating
a rank-4 matrix of random probabilities, and found GPT
representations of the state and effect spaces from that.

In this paper, we describe a technique for estimating
the GPT state and effect spaces that govern nature directly
from experimental data. The examples described above
illustrate the diversity of forms that the output of our
technique could take.

C. Dual spaces

Finally, we review the notion of the dual spaces of GPT
state and effect spaces. We call a vector s ∈ Rk a log-
ically possible state if it assigns a valid probability to
every measurement effect allowed by the GPT. Mathemati-
cally, the space of logically possible states, denoted Slogical,
contains all s ∈ Rk such that ∀e ∈ E : 0 ≤ s · e ≤ 1 and
such that s · u = 1. From this definition, it is clear that
Slogical is the intersection of the geometric dual of E and
the hyperplane defined by s · u = 1; as a shorthand, we
refer to Slogical simply as “the dual of E ,” and denote the
relation by Slogical ≡ dual(E). Analogously, the set of log-
ically possible effects, denoted Elogical, contains all e ∈ Rk

such that ∀s ∈ S : 0 ≤ s · e ≤ 1. Defining the set of sub-
normalized states by Ŝ ≡ {ws : s ∈ S , w ∈ [0, 1]}, Elogical

is the geometric dual of Ŝ . For simplicity, we refer to
Elogical simply as “the dual of S ,” and denote the relation
by Elogical ≡ dual(S).

GPTs in which Slogical = S and Elogical = E (the two
conditions are equivalent) are said to satisfy the no-
restriction hypothesis [21]. In a theory that satisfies the
no-restriction hypothesis, every logically allowed GPT
effect vector corresponds to a physically allowed measure-
ment, and (equivalently) every logically allowed GPT state
vector corresponds to a physically allowed preparation.
In theories wherein Slogical 
= S and Elogical 
= E , by con-
trast, there are vectors that do not correspond to physically
allowed states but nonetheless assign valid probabilities to
all physically allowed effects, and there are vectors that
do not correspond to physically allowed effects but are
nonetheless assigned valid probabilities by all physically
allowed states.

For each of the examples in Fig. 1, we depict the dual
to the effect space alongside the state space and the dual
of the state space alongside the effect space, as wire-
frames. Quantum theory, classical probability theory, and
Boxworld provide examples of GPTs that satisfy the no-
restriction hypothesis, as illustrated in Figs. 1(a)–1(c),
while the GPTs presented in Figs. 1(d) and 1(e) are
examples of GPTs that violate it.

D. The GPT inference problem

The true GPT state and effect spaces, S and E , are the-
oretical abstractions, describing the full set of GPT state
and effect vectors that could be realized in principle if one
could eliminate all noise. However, the ideal of noiseless-
ness is never achieved. Therefore, the GPT state and effect
vectors describing the preparation and measurement effects
realized in any experiment are necessarily bounded away
from the extremal elements of S and E . Geometrically, the
realized GPT state and effect spaces are contracted relative
to their true counterparts.

There is another way in which the experiment necessar-
ily differs from the theoretical abstraction: it may be impos-
sible for the set of experimental configurations in a real
experiment to probe all possible experimental configura-
tions allowed by the GPT. For instance, for quantum theory
there are an infinite number of convexly extremal prepa-
rations and measurements even for a single qubit, while
a real experiment can only implement a finite number of
each.

Because we assume convex closure, the realized GPT
state and effect spaces are polytopes. If the experiment
probes a sufficiently dense sample of the preparations and
measurements allowed by the GPT, then the shapes of
these polytopes ought to resemble the shapes of their true
counterparts.

We term the convex hull of the GPT states that are
actually realized in an experiment the realized GPT state
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space, and denote it by Srealized. Because every preparation
is noisier than the ideal version thereof, this will necessar-
ily be strictly contained within the true GPT state space S .
Similarly, we term the diamond defined by the GPT mea-
surement effects that are actually realized in an experiment
the realized GPT effect space, and denote it Erealized. Again,
we expect it to be strictly contained within E . By dualiza-
tion, Srealized defines the set of GPT effect vectors that are
logically consistent with the realized preparations, which
we denote by Econsistent, that is, Econsistent ≡ dual(Srealized).
Similarly, the set of GPT state vectors that are logi-
cally consistent with the realized measurement effects is
Sconsistent ≡ dual(Erealized).

Suppose one has knowledge of the realized GPT state
and effect spaces Srealized and Erealized for some experiment.
What can one then infer about S and E? The answer is
that S can be any convex set of GPT states that lies strictly
between Srealized and Sconsistent. For every such possibility
for S , E could be any diamond of GPT effects that lies
between Erealized and dual(S) ⊂ Econsistent. These inclusion
relations are depicted in Fig. 2.

The larger the gap between Srealized and Sconsistent, the
more choices of S and E there are that are consistent
with the experimental data. An example helps illustrate
the point. Suppose that one found Srealized and Erealized to
be the GPT state and effect spaces depicted in Fig. 1(d).
In this case Srealized is represented by the blue octahedron
in Fig. 1(d)(i), and Erealized is the green diamond with an
octahedral base depicted in Fig. 1(d)(ii)–(iii). The wire-
frame cube in Fig. 1(d)(i) is the space of states Sconsistent
that is the dual of Erealized, and the wireframe diamond with
a cubic base in Fig. 1(d)(ii)–(iii) is the space of effects
Econsistent that is the dual of Srealized. Which GPTs are can-
didates for the true GPT in this case? The answer is those

whose state space contains the blue octahedron and is con-
tained by the wireframe cube in Fig. 1(d)(i) and whose
effect space contains the green diamond with the octohe-
dral base in Fig. 1(d)(ii)–(iii) (the consistency of the effect
space with the state space is a given if one grants that the
pair is a valid GPT). By visual inspection of Figs. 1(a)
and 1(c), it is clear that the GPTs representing both quan-
tum theory and Boxworld are consistent with this data.
The GPT for a classical four-level system [i.e., the k = 4
generalization of the classical bit in Fig. 1(b) [29] ] is
as well.

When there is a large gap between Srealized and Sconsistent,
it is important to consider the possibility that this is due
to a shortcoming in the experiment and that probing more
experimental configurations will reduce it. For instance, if
an experiment on a two-level system is governed by quan-
tum theory, but the experimenter considers only experi-
mental configurations involving eigenstates of Pauli oper-
ators, then Srealized and Erealized would be precisely those
of the example we describe [depicted in Fig. 1(d)], imply-
ing many possibilities besides quantum theory for the true
GPT. However, further experimentation would reveal that
this seemingly large scope for deviations from quantum
theory is merely an artifact of probing a too-sparse set of
configurations. Only if one continually fails to close the
gap between Srealized and Sconsistent, in spite of probing the
greatest possible variety of experimental configurations,
should one consider the possibility that in fact S � Srealized
and E � Erealized and that the true GPT fails to satisfy the
no-restriction hypothesis. By contrast, if the gap between
Srealized and Sconsistent is very small, the experiment has
found a tightly constrained range of possibilities for the
true GPT, and it successfully rules out a large class of
alternative theories.

(a) (b) (c)
Sconsistent

Slogical

Srealized

S

Econsistent

Elogical

Erealized

E

FIG. 2. Illustration of the inclusion relations among the different spaces of states and effects considered in this work. We use a
generic k = 3 example for ease of depicting set inclusions. (a) The different spaces of states. (b),(c) The two-dimensional projections
of the different spaces of effects. The GPT specifies a space of true states, S , and effects, E . From these, one can find the sets of
logically possible states, Slogical, and effects Elogical. Elogical is the dual of S , and it represents all effects that return probabilities between
0 and 1 when applied to every possible state in S . Similarly, Slogical is the dual of E . The logical state (effect) space must always
contain the true state (effect) space. The spaces Srealized and Erealized are the GPT representations of the preparations and measurement
effects actually realized in the experiment. As any real experiment necessarily contains a finite amount of noise, Srealized will always
be contained within S , and Erealized will always be contained within E . Econsistent is the dual of Srealized (and thus will always contain
Elogical), and it represents all effects that are logically consistent with the set of states realized in the experiment. Similarly, Sconsistent
will always contain Slogical as it is the dual of Erealized.
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III. SELF-CONSISTENT TOMOGRAPHY IN THE
GPT FRAMEWORK

We see from the above that any real experiment defines
a set of realized GPT states, Srealized, and a set of realized
GPT effects, Erealized, and it is from these that one can infer
the scope of possibilities for the true spaces, S and E , and
thus the scope of possibilities for deviations from quantum
theory.

But how can one estimate Srealized and Erealized from
experimental data? In other words, how can one imple-
ment tomography within the GPT framework? This is the
problem whose solution we now describe. The steps in our
scheme are outlined in Fig. 3.

A. Tomographic completeness and the precision
strategy for discovering dimensional deviations

In the introduction, we distinguish two ways in which
the true GPT describing a given degree of freedom might
deviate from quantum expectations. The first possibility
for deviations is in the shapes of the state and effect spaces,
assuming no deviation in the dimension of the GPT vector
space in which these are embedded. The second possibil-
ity is more radical—a deviation in the dimension. In this
section, we evaluate what sort of evidence one can obtain
about the dimension of GPT required to model a given
degree of freedom.

We presume that there is a principle of individuation
for different degrees of freedom, which is to say a way to
distinguish what degree of freedom an experiment is prob-
ing. For instance, we presume that we can identify certain
experimental operations as preparations and measurements
of photon polarization and not of some other degree of
freedom.

As noted earlier, the dimension of the GPT vector space
associated to a degree of freedom is the minimum cardi-
nality of a tomographically complete set of preparations
(or measurements) for that degree of freedom. Therefore,
for the dimension implied by our data analysis to be the
true dimension, the sets of preparations and measurements
that are experimentally realized must be tomographically
complete for that degree of freedom.

Because one cannot presume the correctness of quantum
theory, however, one does not have any theoretical grounds
for deciding which sets of measurements (preparations)
are tomographically complete for a given system. Indeed,
whatever set of preparations (measurements) one considers
as a candidate for a tomographically complete set, one can
never rule out the possibility that tomorrow a novel variety
of preparations (measurements) will be identified whose
statistics are not predicted by those in the putative tomo-
graphically complete set, thereby demonstrating that the
set was not tomographically complete after all. As such,
any supposition of tomographic completeness is always
tentative.

FIG. 3. Overview of the self-consistent GPT tomography pro-
cedure. We begin with the experimental data, finite-run relative
frequencies for each configuration realized in the experiment,
and arrange it into a matrix, F , which is a noisy version of the
matrix of true probabilities, Drealized. To estimate the dimension,
k, of the data, we find the rank-k matrix that best fits F for a set
of values of k. We call this set of best-fit rank-k matrices the can-
didate model set. A statistical analysis on the candidate model
set (using the χ2 goodness-of-fit test and the Akaike information
criterion) determines the value of k that gives us the best fit, and
therefore which of the candidate models is the best approxima-
tion to Drealized. We denote this best approximation by D̃realized.
We find a decomposition D̃realized = S̃realizedẼrealized, in order to
estimate the spaces of states and effects realized in the experi-
ment. Each row of S̃realized is a GPT state vector representing one
of the preparation procedures in the experiment, and each col-
umn of Ẽrealized is a GPT effect vector representing one of the
measurement procedures. This completes the GPT tomography
procedure.

As Popper emphasized, however, all scientific claims
are vulnerable to being falsified and therefore have a ten-
tative status [59]. We are therefore recommending to treat
the hypothesis that a given set of measurements and a given
set of preparations are tomographically complete as Popper
recommends treating any scientific hypothesis: one should
try one’s best to falsify it and as long as one fails to do so,
the hypothesis stands.
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FIG. 4. Experimental setup. Pairs of polarization-separable
single photons are created via spontaneous parametric down-
conversion. The herald photon is sent to a detector. The signal
photon’s polarization travels through a polarizer then a quarter-
and half-wave plate, which prepares its polarization state. The
photon is then coupled into single-mode fiber, which removes
any information that may be encoded in the photon’s spatial
degree of freedom. Three static wave plates undo the polar-
ization rotation caused by the fiber. Two wave plates and a
polarizing beam splitter with detectors in each output port per-
form a measurement on the photon. One output port is labeled
“0,” and the other is labeled “1.” Coincident detections between
the herald detector, Dh, and the detector in the transmitted port,
Dt, are counted, as well as coincidences between Dh and the
reflected-port detector Dr. PPKTP, periodically poled potassium
titanyl phosphate; PBS, polarizing beam splitter; GTPBS, Glan-
Thompson polarizing beam splitter; IF, interference filter; HWP,
half-wave plate; QWP, quarter-wave plate.

As noted in the introduction, it is useful to distinguish
between two types of opportunities for falsifying a hypoth-
esis about what sets of preparations and measurements are
tomographically complete: terra-nova strategies and preci-
sion strategies. In this paper, we pursue the latter approach.
To explain how a precision strategy provides an opportu-
nity for detecting deviations from the quantum prediction
for the dimension of the GPT vector space, we offer an
illustrative analogy.

Suppose that the GPT describing the world is indeed
quantum theory. Now consider an experiment on photon
polarization wherein the experimentally realized prepara-
tions and measurements are restricted to a real-amplitude
subalgebra of the full qubit alebra, that is, a rebit subalge-
bra.

In this case, the realized GPT state and effects cor-
respond, respectively, to a restriction of the Bloch ball
in Fig. 1(a)(i) to an equatorial disc and to a restric-
tion of the ball-based diamond in Fig. 1(a)(ii)–(iii) to the
diamond with the disc as its base [which is the three-
dimensional projection, depicted in Fig. 1(a)(ii), of the full
four-dimensional qubit effect space].

Suppose an experimenter did not know the ground truth
about the GPT describing photon polarization, which by
assumption in our example is the GPT associated to the
full qubit algebra. If they mistakenly presumed that the
preparations and measurements realized in the rebit exper-
iment were tomographically complete, they would be led
to a false conclusion about the GPT describing photon

polarization. Nonetheless, and this is the point we wish
to emphasize, high-precision experimental data provides
them with an opportunity for recognizing their mistake.

The key observation is that the only case in which the
experimental data contains strictly no evidence of states
and effects beyond the restricted subalgebras is if the real-
ized preparations and measurements obey the restriction
exactly. However, any real implementation of experimen-
tal procedures is necessarily imperfect, and certain types
of imperfections (e.g., systematic errors) will result in
preparations and measurements that do extend into the
higher-dimensional space—in our example, from the rebit
spaces into the full qubit spaces, hence from dimension 3
to dimension 4. For instance, they might lead to prepa-
rations that were not strictly restricted to an equatorial
disc but rather a fattened pancake-shaped subset of the
Bloch ball, and similarly for the measurements. The real-
ized preparations and measurements in this case would still
be very far from sampling the full qubit state and effect
spaces, but they would nonetheless attest to the need for
a GPT vector space of dimension 4 rather than one of
dimension 3. Of course, if the deviation is small, then
one requires a correspondingly small degree of statistical
error in the characterization of the state and effect spaces
in order to detect it. Hence the need for precision in the
characterization of the states and effects.

If, in our imagined example, an experimentalist detected
a deviation from their expectations regarding dimensional-
ity in this fashion, they would be prompted to look for new
preparations and measurements that might extend further
into this fourth dimension. We can easily imagine that, via
such a precision-based discovery of an anomaly, the exper-
imentalist could come to learn that what at first appeared
to be a rebit was in fact a qubit.

We can now draw the analogy between this sort of exam-
ple and the experiment we analyze here. Despite the fact
that we did not intentionally seek to do anything exotic in
our preparations and measurements of photon polarization,
it could nonetheless be the case that the GPT vectors rep-
resenting these had small components in additional dimen-
sions of GPT vector space, beyond the four dimensions
that quantum theory stipulates as sufficient for model-
ing photon polarization. In this case, our scheme would
find that the data is only fit well by a GPT of dimension
greater than 4. To the extent that one was confident that the
experimental procedures did not inadvertently probe some
additional degrees of freedom beyond photon polarization,
this would constitute evidence for postquantum physics.

We turn now to describing the self-consistent GPT
tomography procedure.

B. Inferring best-fit probabilities from finite-run
statistics

We suppose that, for a given system, the experimenter
makes use of a finite number m of preparation procedures
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(Pi, i ∈ {1, . . . , m}) and a finite number, n, of binary-
outcome measurement procedures (Mj , j ∈ {1, . . . , n}).
We denote the outcome of each measurement by a ∈ {0, 1}.
For each choice of preparation and measurement, (Pi, Mj ),
the experimenter records the outcome of the measurement
in a large number of runs and computes the relative fre-
quency with which a given outcome a occurs, denoted
f (a|Pi, Mj ). For the binary-outcome measurements under
consideration, it is sufficient to specify f (0|Pi, Mj ) for
each pair (Pi, Mj ), because f (1|Pi, Mj ) is then fixed by
normalization.

The set of all experimental data, therefore, can be
encoded in an m × n matrix F , whose (i, j )th component
is f (0|Pi, Mj ).

The relative frequency f (0|Pi, Mj ) one measures will
not coincide exactly with the probability p(0|Pi, Mj ) from
which it is assumed that the outcome in each run is sampled
[60]. Rather, f (0|Pi, Mj ) is merely a noisy approximation
to p(0|Pi, Mj ). The statistical variation in f (0|Pi, Mj ) can,
however, be estimated from the experiment.

It follows that the matrix F extracted from the experi-
mental data is merely a noisy approximation to the matrix
Drealized that encodes the predictions of the GPT for the
mn experimental configurations of interest. Because of the
noise, F will generically be full rank, regardless of the rank
of Drealized [61]. Therefore, the experimentalist is tasked
with estimating the m × n probability matrix Drealized given
the m × n data matrix F , where the rank of Drealized is a
parameter in the fit.

We aim to describe our technique in a general manner, so
that it can be applied to any experiment. However, in order
to provide a concrete example of its use, we intersperse
our presentation of the technique with details about how
it is applied to the particular experiment we conduct. We
begin, therefore, by providing the details of the latter.

C. Description of the experiment

To illustrate the GPT tomography scheme, we perform
an experiment on the polarization degree of freedom of
single photons (Fig. 4). Pairs of photons are created via
spontaneous parametric down-conversion, and the detec-
tion of one of these photons, called the herald, indicates
the successful preparation of the other, called the signal.
We manipulate the polarization of the signal photons with a
quarter- and half-wave plate before they are coupled into a
single-mode fiber; each preparation is labeled by the angles
of these two wave plates.

Upon emerging from the fiber, the signal photons
encounter the measurement stage of the experiment, which
consists of a quarter- and half-wave plate followed by a
polarizing beam splitter with single-photon detectors at
each of its output ports. Each measurement is labeled by
the angles of the two wave plates preceding the beam
splitter.

The frequency of the 0 outcome is defined as the ratio
of the number of heralded signal photon detections in
the 0 output port to the total number of heralded detec-
tions. We ignore experimental trials in which either the
herald or the signal photon is lost by postselecting on
coincident detections, so that our measurements are only
performed on normalized states. This is akin to making
a fair-sampling assumption, that is, we assume that the
statistics of the detected photons are representative of the
statistics we would have measured if our experiment had
perfect efficiency. Postselecting on coincident detections
has the additional benefit of allowing us to filter out back-
ground counts that are caused by, for example, stray room
light or “dark” counts from our detectors.

We choose m = 100 wave-plate settings for the prepa-
rations, and n = 100 wave-plate settings for the settings,
corresponding to mn = 104 experimental configurations in
all, one for each pairing.

We choose m = n so that the GPT state space and the
GPT effect space are equally well characterized. We detect
coincidences at a rate of approximately 2250 counts/s, and
count coincidences for each preparation-measurement pair
for a total of 8 s, allowing us to achieve a standard devia-
tion on each data point below the 1% level. Because of the
additional time it takes to mechanically rotate the prepara-
tion and measurement wave plates, it takes approximately
84 h to acquire data for 104 preparation-measurement
pairs.

Our method of selecting which 100 wave-plate set-
tings to use is described in Appendix B. Note that
although the choice of these settings is motivated by our
knowledge of the quantum formalism, our tomographic
scheme does not assume the correctness of quantum the-
ory: our reconstruction scheme could have been applied
equally well if the wave-plate settings had been chosen at
random [62].

The raw frequencies are arranged into the data matrix
F . Entry Fij is the frequency at which the 0 outcome is
obtained when measurement Mj is performed on a photon
that is subjected to preparation Pi. As noted in Sec. II A, we
adopt a convention wherein M1 is the unit measurement,
implying that the first column of F is a column of 1s. The
data matrix for our experiment is presented in Fig. 5. As
expected, we find that F is full rank.

D. Estimating the probability matrix Drealized

We turn now to the problem of estimating from F the
m × n probability matrix Drealized. The first item of business
is to estimate the rank of Drealized, which is equivalent to
estimating the cardinality of the tomographically complete
set of preparations (or measurements) of the GPT model of
the experiment.

For a given hypothesis k about the value of the rank,
and for a given data matrix F , we find the rank-k
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FIG. 5. The raw frequencies at which outcome a = 0 is
obtained for every pair of preparation and measurement settings.
The maximum standard deviations in the data are approximately
4 × 10−3. Every entry in the left-most column is equal to 1—this
represents the unit measurement effect, which returns a = 0
regardless of the state of the input. The striped pattern of the
data is simply an artefact of the order in which we choose
to implement the preparations and measurements (described in
Appendix B).

matrix D̃realized that is the maximum-likelihood estimate
of the rank-k probability matrix Drealized that generates
F . In other words, D̃realized is the rank-k matrix that
minimizes the weighted χ2 statistic, defined as χ2 ≡
∑

i
∑

j

[(
D̃realized

ij − Fij

)2
/
(
�Fij

)2
]

, where
(
�Fij

)2 is the

statistical variance in Fij . This minimization problem is
known as the weighted low-rank approximation problem,
which is a nonconvex optimization problem with no ana-
lytical solution [63,64]. Nonetheless, one can use a fitting
algorithm based on an alternating-least-squares method
[64]. In the algorithm, it is important to constrain the
entries of D̃realized to lie within the interval [0, 1] so that
they may be interpreted as probabilities. Full details are
provided in Appendix C.

To estimate the rank of the true model underlying the
data, one must compare different candidate model ranks.
(For our experiment, we consider k ∈ {2, 3, . . . , 10}.) For
each candidate rank k, one first computes the χ2 of the
maximum-likelihood model of that rank, denoted χ2

k , in
order to determine the extent to which each model might
underfit the data. Second, one computes, for the max-
likelihood model of each rank, the Akaike information
criterion (AIC) score [65,66] in order to determine the rel-
ative extent to which the various models either underfit or
overfit the data.

We begin by describing the method by which one finds
the rank-k probability matrix D̃realized, which minimizes χ2.
Note that an m × n matrix with rank k is specified by a set
of rk = k(m + n − k) real parameters [67], thus if the true
probability matrix Drealized is rank k, then we expect that
χ2

k is sampled from a χ2 distribution with mn − k(m + n −
k) = (m − k)(n − k) degrees of freedom [68].

For our experiment, we calculate the variances (�Fij )
2

in the expression for χ2 by assuming that the number of
detected coincident photons follows a Poissonian distri-
bution. Figure 6(a) displays the interval containing 99%
of the probability density for a χ2 distribution with (m −
k)(n − k) degrees of freedom, as well as χ2

k , for each value
of k ∈ {2, 3, . . . , 10}. For k < 4, χ2

k lies far outside the
expected 99% range, and we rule out these models with
high confidence.

The Akaike information criterion assigns a score to
each model in a candidate set, termed its AIC score.
The Kullback-Leibler (KL) divergence is a measure of
the information lost when some probability distribution f
is used to represent some other distribution g [69], and
the AIC score of a candidate model is a measure of the
KL divergence between the candidate model and the true
model underlying the data. Since the true model is not
known, the KL divergence cannot be calculated exactly.
What each candidate model’s AIC score represents is its
KL divergence from the true model, relative to all models
in the candidate set. The candidate model with the lowest
AIC score is closest to the true model (in the KL sense),
and thus it is the most likely representation of the data
among the set of candidates.

The AIC scores can be used to determine which model
among a set of candidate models is the most likely to
describe the data. If AICk denotes the AIC score of the
kth model, and �k denotes the difference between this
score and the minimum score among all candidate models,
�k := AICk − mink′AICk′ , then its AIC weight is defined
as wk := e−(1/2)�k/

∑10
k=2 e−(1/2)�k [69]. The AIC weight

wk represents the likelihood that the kth model is the model
that best describes the data, relative to the other models in
the set of candidate models.

In our experiment, the candidate models differ by rank,
and the AIC score of a rank-k candidate model is defined
as AICk = χ2

k + 2rk [69]. The first term rewards models
in proportion to how well they fit the data, and the second
term penalizes models in proportion to their complexity,
as measured by the number of parameters. For our exper-
iment, the set of candidate models is the set of best-fit
rank-k models for k ∈ {2, . . . , 10}. We plot the AIC values
for each candidate model in Fig. 6(b). AICk is minimized
for k = 4, and we conclude that the true model underlying
our dataset is most likely rank 4. The relative likelihood
of each candidate model is shown in Fig. 6(c). We find
w4 = 0.9998, w5 = 1.99 × 10−4, and wk < 10−12 for other
values of k.
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FIG. 6. Determining the true rank of the model underlying the datasets for our two experiments. (a)–(c) is data for the first experi-
ment, in which we characterize 100 preparation and measurement procedures. (d)–(f) The second experiment, in which we characterize
1006 preparation and measurement procedures. (a),(d) Comparison of the fitted χ2 value to the expected value for a good fit, for var-
ious model ranks. Black circles are χ2 values returned by our fitting routine. Light red bars indicate the interval in which we expect
(with 99% confidence) the χ2 value to lie, under the assumption that the true model underlying the data is rank k. Models with k < 4
do not fit either dataset well. (b),(e) AIC scores for each candidate model of best fit. For both datasets the rank-4 model has the lowest
AIC score, and therefore is most likely the best model among the set of candidate models. (c),(f) Relative likelihood of each model in
the set of candidate models (each model without a bar has a relative likelihood less than 10−25). For both datasets, the rank-4 model is
most likely to describe the data.

The χ2 goodness-of-fit test indicates that the max-
likelihood rank-4 model fits the data well, and the AIC
test indicates that this same model is the most likely of
all nine candidate models to have generated the data, with
relative probability 0.9998. We conclude with high confi-
dence that the GPT that best describes our experiment has
dimension 4.

Recall that it is still possible that the true GPT describing
photon polarization has dimension greater than 4 because it
is possible that the sets of preparations and measurements
we implement in our experiment are not tomographically
complete for photon polarization.

Nonetheless, the focus of much of the rest of this section
and the focus of all of Sec. IV is to describe what additional
conclusions can be drawn from our experimental data if
we adopt the hypothesis that the preparations and mea-
surements we realize are, in fact, tomographically com-
plete for photon polarization, with the understanding that
this hypothesis could in principle be overturned by future
experiments that achieved higher precision or realized an
exotic new variety of preparations and measurements for

photon polarization. These additional conclusions con-
cern the possibility of deviations from quantum theory
in the shape of the state and effect spaces, rather than
in the dimension of the vector space in which these are
embedded.

E. Estimating the realized GPT state and effect spaces

The realized GPT state space, Srealized and the real-
ized GPT state space, Erealized define the probability matrix
Drealized from which the measurement outcomes in the
experiment are sampled.

As noted above, the matrix D̃realized for the rank-4 fit
provides our best estimate of the true probability matrix
Drealized. To obtain an estimate of the realized GPT state
and effect spaces from D̃realized, we must decompose it in
the manner described in Sec. II A, that is, as D̃realized =
S̃realizedẼrealized.

Recall that this decomposition is not unique. A con-
venient choice is a modified form of the singular-value
decomposition, where one constrains the first column of
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S̃realized to be a column of ones, and one constrains the other
columns of S̃realized to be orthogonal to the first (a detailed
description of this decomposition is given in Appendix D).

If quantum theory is the correct theory of nature, then
the experimental data should be consistent with the GPT
state space being the Bloch ball and the GPT effect space
being the Bloch diamond [depicted in Fig. 1(a)], up to a
linear invertible transformation.

Our estimate of the realized GPT state space, S̃realized, is
simply the convex hull of the rows of the matrix S̃realized.
In the case of the effects, we can again take convex mix-
tures, but because one also has the freedom to postprocess
measurement outcomes, our estimate of the realized GPT
effect space is slightly more complicated.

There are two classes of convexly extremal classi-
cal postprocessings that can be performed on a binary-
outcome measurement. We call the first class of convexly
extremal postprocessings the outcome-swapping class. In
such a postprocessing, the outcome returned by a mea-
surement device is deterministically swapped to the other
outcome. The outcome-swapping of the outcome-0 effect
for a specific measurement procedure, e[0|M ], is represented
by that measurement’s outcome-1 effect, e[1|M ], which is
the complement of e[0,M ] relative to the unit effect, e[1|M ] :=
u − e[0,M ].

We call the second class of convexly extremal post-
processings the outcome-fixing class. In such a postpro-
cessing, the outcome returned by a measurement device is
ignored, and deterministically replaced by a fixed outcome,
0 or 1. For the case where the outcome is replaced by 0, the
image of this postprocessing is the unit effect u, and for the
case where it is replaced by 1, the image is the complement
of the unit effect (represented by the zero vector).

The full set of postprocessings is obtained by taking all
convex mixtures of these extremal ones. Hence Ẽ realized

is the closure under convex mixtures and classical post-
processing of the vectors defined by the columns of the
matrix Ẽrealized. As we already include the unit measure-
ment effect in D̃realized, it is represented in Ẽrealized as well.
Therefore, Ẽrealized is the convex hull of the union of the set
of column vectors in the matrix Ẽrealized and the set of their
complements.

Our estimate of the realized GPT state space, S̃realized,
and our estimate of the realized GPT effect space, Ẽrealized,
are displayed in Figs. 7(a)–7(c). Omitting the first column
of S̃realized (because it contains no information), we visu-
alize the realized GPT state space by plotting the convex
hull of the vectors defined by the last three entries of each
row of S̃realized in a three-dimensional space [the solid light
blue polytope in Fig. 7(a)]. As all four entries of each col-
umn of Ẽrealized contain information, the convex hull of the
vectors defined by these is four-dimensional. To visual-
ize the realized GPT effect space, therefore, we plot two
three-dimensional projections of it, namely, the projections

e → (e0, e1, e2) and e → (e1, e2, e3) [the solid light green
polytopes in Figs. 7(b) and 7(c), respectively] [70]. Qual-
itatively, Srealized is a ball-shaped polytope, and Ẽrealized
is a four-dimensional diamond with a ball-shaped poly-
tope as its base. Note that they are qualitatively what one
would expect if quantum theory is the correct description
of nature.

Next, we compute the duals of these spaces. How this
is done is described in detail in Appendix E. Our esti-
mate of the set of GPT state vectors that are consistent
with the realized GPT effects, S̃consistent = dual(Ẽrealized),
is plotted alongside S̃realized in Fig. 7(a) as a wireframe
polytope. Similarly, our estimate of the set of GPT effect
vectors consistent with the realized GPT states, Ẽconsistent =
dual(S̃realized), is plotted as a wireframe alongside Ẽrealized
in Figs. 7(b) and 7(c).

The smallness of the gap between S̃realized and S̃consistent
implies that the possibilities for the true GPT are quite
limited. Obviously, our results easily exclude all of the
nonquantum examples of GPTs presented in Fig. 1.

Our results can be used to infer limits on the extent to
which the true GPT might fail to satisfy the no-restriction
hypothesis. One way of doing so is by bounding the vol-
ume ratio of S to Slogical. From the discussion in Sec. II D,
it is clear that this is upper bounded by the volume ratio of
Srealized to Sconsistent. Given our estimates of the latter two
spaces, we can compute an estimate of this ratio. We find
it to be 0.9229 ± 0.0001.

The error bar is the standard deviation in the volume
ratio from 100 Monte Carlo simulations. We begin each
simulation by simulating a set of coincidence counts. Each
set of counts is found by sampling each count from a
Poisson distribution with mean and variance equal to the
number of photons counted in the true experiment [71].
To our knowledge, this is the first quantitative limit on the
extent to which the GPT governing nature might violate
the no-restriction hypothesis.

F. Increasing the number of experimental
configurations

Because the vertices of the polytopes describing S̃realized
in Figs. 7(a)–7(c) are determined by the finite set of prepa-
rations and measurement effects that are implemented, the
observed deviation from sphericity is obviously an artifact
of an insufficiently dense set of experimental configura-
tions, and not evidence for any lack of smoothness of
the true GPT state and effect spaces. A higher density of
experimental configurations probed in both S̃realized and
S̃consistent would imply a more constrained set of possibil-
ities for S and Slogical. For instance, with a denser set of
experimental configurations, the volume ratio of S̃realized to
S̃consistent would provide a tighter upper bound on the vol-
ume ratio of S to Slogical [72]. As such, having a much
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FIG. 7. GPT states and effects for the preparations and measurements realized in our two experiments and their duals. (a)–(c) First
experiment, in which we characterize 100 preparation and 100 measurement procedures. (d)–(f) Second experiment, in which we
characterize 1006 preparation and 1006 measurement procedures. (a),(d) For each experiment, the estimated space of realized GPT
states, S̃realized is the convex polytope depicted in blue, while the wireframe convex polytope, which surrounds it is the estimated space
of logically possible GPT states, S̃consistent, calculated from the realized GPT effects. The true state space of the GPT describing nature
must lie somewhere in between S̃realized and S̃consistent, modulo experimental uncertainty. The gap between these two spaces is smaller
for the second set of data, and hence this dataset does a better job at narrowing down the possibilities for the state space. (b),(e),(c),(f)
Solid green shapes are each a different three-dimensional projection of our estimates of the four-dimensional realized effect spaces,
Ẽrealized. The wireframe convex polytopes are three-dimensional projections of the estimated effect space consistent with the realized
preparations, Ẽconsistent.

denser set of experimental configurations would allow one
to put a stronger bound on possible deviations from quan-
tum theory, and in particular on possible deviatons from
the no-restriction hypothesis.

There is therefore a strong motivation to increase the
number m of different preparations and the number n of
different measurement effects that are probed in the exper-
iment. It might seem at first glance that doing so is infea-
sible, on the grounds that it implies a significant increase
in the number, mn, of preparation-measurement pairs that
need to be implemented and thus an overwhelmingly long
data-acquisition time.

However, this is not the case; one can probe more
preparations and measurements by not implementing every
measurement on every preparation. The key insight is that
in order to characterize the GPT state vector associated
to a given preparation, one need not find its statistics on
every measurement effect in the set being considered: it
suffices to find its statistics on a subset thereof, namely, any
tomographically complete subset of measurement effects.
Similarly, in order to characterize the GPT effect vector

associated to a given measurement effect, one need not
implement it on the full set of preparations being consid-
ered, but just a tomographically complete subset thereof.
The first experiment provided evidence for the conclusion
that the tomographically complete sets have cardinality
4. It follows that one should be able to characterize m
preparations and n measurements with just 4(m + n − 4)
experimental configurations, rather than mn.

Despite the good evidence about the cardinality from
the first experiment, we deemed it worthwhile to perform
the second experiment in such a manner that the analysis
of the data did not rely on any evidence drawn from the
first experiment. Furthermore, we are motivated to have
the second experiment provide an independent test of the
hypothesis that the cardinality of the tomographically com-
plete sets is indeed 4. Given that the closest competitors to
the rank-4 model on either side are those of ranks 3 and 5,
we decide to restrict our set of candidate models to those
having ranks in the set k ∈ {3, 4, 5}. In order for the exper-
imental data to be able to reject the hypothesis of rank k
as a bad fit, it is necessary that one have at least k + 1
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measurements implemented on each preparation, and at
least k + 1 preparations on which each measurement is
implemented; otherwise, one can trivially find a perfect fit.
To be able to assess the quality of fit for a rank-5 model,
therefore, we need to choose at least six measurements
that are jointly tomographically complete to implement on
each of the m preparations and at least six preparations that
are jointly tomographically complete on which each of the
n measurements is implemented. We choose to use pre-
cisely six in each case, yielding a total of 6(m + n − 6)
experimental configurations. Without exceeding the bound
of approximately 104 experimental configurations being
probed (implied by the data acquisition time), we are
able to take m = n = 1000 and thereby probe a factor of
10 more preparations and measurements than in the first
experiment.

We refer to the set of six measurement effects (prepa-
rations) in this second experiment as the fiducial set. Our
choice of which six wave-plate settings to use in each of
the fiducial sets is described in Appendix B. Our choice
of which 1000 wave-plate settings to pair with these is
also described there. Our choices are based on our expec-
tation that the true GPT is close to quantum theory and
the desire to densely sample the set of all preparations and
measurements. (Note that although our knowledge of the
quantum formalism informed our choices, our analysis of
the experimental data does not presume the correctness of
quantum theory.) In the end, we also implement each of our
six fiducial measurement effects on each of our six fiducial
preparations, so that we have m = n = 1006.

We also add the unit measurement effect to our set of
effects. We thereby arrange our data into a 1006 × 1007
frequency matrix F , with the big difference to the first
experiment being that F now has a 1000 × 1000 submatrix
of unfilled entries.

We perform an identical analysis procedure to the one
described in Sec. III D: for each k in the candidate set of
ranks, we seek to find the rank-k matrix D̃realized of best
fit to F . For the entries in the 1000 × 1000 submatrix of
D̃realized corresponding to the unfilled entries in F , the only
constraint in the fit is that each entry be in the range [0, 1],
so that it corresponds to a probability. The results of this
analysis are presented in Figs. 6(d)–6(f).

The χ2 goodness-of-fit test [Fig. 6(d)] rules out the rank-
3 model, and therefore all models with rank less than 3
as well. Calculating the AIC scores for the maximum-
likelihood rank-3, rank-4, and rank-5 models shows that
the rank-4 model is the one among these that is most likely
to describe the data [Figs. 6(e) and 6(f)]. Indeed the relative
probability of the rank-5 model is on the order of 10−414.

The reason that the likelihood of the rank-5 model is so
low is because the number of parameters required to spec-
ify a rank-k m × n matrix is rk = k(m + n − k), and since
m = n ∼ 1000, the rank-5 model requires approximately
2000 more parameters than the rank-4 model. The number

of model parameters is multiplied by a factor of 2 in the
formula for the AIC score, and the difference between χ2

5
and χ2

4 is only approximately 2000. This means that if the
AIC score is used to calculate the likelihood of each model,
the rank-5 model is approximately e−2000/2 ∼ 10−414 as
likely as the rank-4 model.

The AIC formula we use is derived in the limit where
the number of data points is much greater than the number
of parameters in the model. In our second experiment the
number of data points is roughly equal to the number of
parameters in each model, and thus any conclusions which
derive from use of the AIC formula must be taken with
a grain of salt. We should instead use a corrected form
of the AIC, called AICC [69]. However, the formula for
AICC depends on the specific model being used, and to the
best of our knowledge a formula has not been found for
the weighted low-rank approximation problem. However,
every AICC formula that we find for different types of mod-
els increases the amount by which models are penalized
for complexity [69]. Hence we hypothesize that the proper
AICC formula would lead to an even smaller relative like-
lihood for the rank-5 model, and thus that we have strong
evidence that a rank-4 model should be used to represent
the second experiment. Finding the correct AICC formula
for the weighted low-rank approximation problem is an
interesting problem for future consideration.

Modulo this caveat, the second experiment corroborates
the conclusion of the first experiment, namely, that our best
estimate of the dimension of the GPT governing single-
photon polarization is 4 [73].

We decompose the rank-4 matrix of best fit and plot our
estimates of the realized state space, S̃realized, and the real-
ized effect space, Ẽrealized, in Figs. 7(d)–7(f). The realized
GPT state and effect spaces reconstructed from the second
experiment are smoother than those from the first, and the
gap between S̃realized and S̃consistent is smaller as well.

The volume ratio of S̃realized to S̃consistent is found to be
0.977 ± 0.001, where the error bar is calculated from 100
Monte Carlo simulations. Compared to the first experi-
ment, this provides a tighter bound on any failure of the
no-restriction hypothesis.

IV. BOUNDING DEVIATIONS FROM QUANTUM
THEORY IN THE SHAPE OF THE STATE AND

EFFECT SPACES

A. Consistency with quantum theory

We now check to see if the possibilities for the true GPT
state and effect spaces implied by our experiment include
the quantum state and effect spaces.

As noted in Sec. II D, because it is in practice impos-
sible to eliminate all noise in the experimental procedures,
we expect that under the assumption that all of our realized
preparations are indeed represented by quantum states,
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they will all be slightly impure (that is, their eigenval-
ues are bounded away from 0 and 1). Their GPT state
vectors should therefore be strictly in the interior of the
Bloch sphere. Similarly, we expect such noise on all of
the realized measurement effects (with the exception of
the unit effect and its outcome-swapped counterpart, which
are theoretical abstractions), implying that their GPT effect
vectors are strictly in the interior of the four-dimensional
Bloch diamond. This, in turn, implies that the extremal
GPT state vectors in Sconsistent are strictly in the exterior of
the Bloch sphere. The size of the gap between Srealized and
Sconsistent, therefore, is determined by the amount of noise
in the preparations and measurements.

Naïvely, one might expect that for the quantum state and
effect spaces for a qubit to be consistent with our experi-
mental results, Squbit must fit geometrically between our
estimates of Srealized and Sconsistent, up to a linear trans-
formation. That is, one might expect the condition to be
that there exists a linear transformation of Squbit that fits
geometrically between S̃realized and S̃consistent.

However, noise in the experiment also leads to statisti-
cal discrepancies between the vertices of S̃realized and those
of Srealized, and between the vertices of Ẽrealized and those
of Erealized. This noise could lead to estimates of the real-
ized GPT state and effect vectors being longer than the
actual realized GPT state and effect vectors. If the esti-
mates of any of these lie outside the qubit state and effect
spaces, then one could find that it is impossible to find a
linear transformation of Squbit that fits between S̃realized and
S̃consistent, even if quantum theory is correct!

We test the above intuition by simulating the first exper-
iment under the assumption that quantum theory is the
correct theory of nature. We assume that the states we
actually prepare in the lab are slightly depolarized ver-
sions of the set of 100 pure quantum states that we are
targeting, and that the measurements we actually per-
form are slightly depolarized versions of the set of 100
projective measurements we are targeting. We estimate
the amount of depolarization noise from the raw data,
and use the estimated amount of noise to calculate the
outcome probabilities for each depolarized measurement
on each depolarized state. We arrange these probabili-
ties into a 100 × 100 table and use them to simulate
1000 sets of photon counts, then analyze each of the
1000 simulated datasets with the GPT tomography proce-
dure.

We find that, for every set of simulated data, we are
unable to find a linear transformation of Squbit that fits
between the simulated S̃realized and S̃consistent, confirming
the intuition articulated above.

Nonetheless, we can quantify the closeness of the fit
as follows. We find that if, for each simulation, we artifi-
cially reduce the length of the GPT vectors in the simulated
S̃realized and Ẽrealized by multiplying them by a factor slightly

less than 1, then we can fit a linearly transformed Squbit

between the smaller S̃realized and larger S̃consistent. On aver-
age, we find we have to shrink the vectors making up
S̃realized and Ẽrealized by 0.11% ± 0.02%, where the error
bar is the standard deviation over the set of simulations.
To perform the above simulations we use CVX, a software
package for solving convex problems [74,75].

We quantify the real data’s agreement with the sim-
ulations by performing the same calculation as on the
simulated datasets. We first notice that there is no lin-
ear transformation of Squbit that fits between S̃realized and
S̃consistent, as in the simulations. Furthermore, we find that
we can achieve a fit if we shrink the vectors making up
S̃realized and Ẽrealized by 0.14%, which is consistent with the
simulations. Thus the spaces S̃realized and Ẽrealized recon-
structed from the first experiment are consistent with what
we expect to find given the correctness of quantum theory.

When analyzing data from the second experiment it
takes approximately 4 h to run the code that solves the
weighted low-rank approximation problem. It is therefore
impractical to perform 1000 simulations of this experi-
ment. Instead, we extrapolate from the simulation of the
first experiment.

We note two significant ways in which the second
experiment differs from the first. First, we perform approx-
imately 10 times as many preparation and measurement
procedures in the second experiment than in the first, yet
accumulate roughly the same amount of data. Hence, each
GPT state and effect vector in the second experiment is
characterized with approximately 10 times fewer detected
photons than in the first experiment, and so we expect
the uncertainties on the second experiment’s reconstructed
GPT vectors to be approximately

√
10 times larger than the

same uncertainties in the first experiment. We expect this√
10 increase in uncertainty to translate to a

√
10 increase

in the amount we need to shrink S̃realized and Ẽrealized before
we can fit a linearly transformed Squbit between S̃realized and
S̃consistent. Second, S̃realized and Ẽrealized each contain 1006
GPT vectors, a factor of 10 more than in the first exper-
iment. Since there are a greater number of GPT vectors
in the second experiment it is likely that the outliers (i.e.,
the cases for which our estimate differs most from the true
vectors) in the second experiment will be more extreme
than those in the first experiment. This should also lead to
an increase in the amount we need to shrink the vectors in
S̃realized and Ẽrealized before we can fit a linearly transformed
Squbit between S̃realized and S̃consistent.

We find that, for the data from the second experiment,
we need to shrink S̃realized and Ẽrealized by 0.65%, a factor
only 4 times greater than the 0.14% of the first experi-
ment, which seems reasonable given the estimates above.
We therefore conclude that the second experiment gives us
no compelling reason to doubt the correctness of quantum
theory.
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The arguments presented above also support the notion
that our experimental data is consistent with quantum the-
ory according to the usual standards by which one judges
this claim: if we had considered fitting the data with quan-
tum states and effects rather their GPT counterparts (which
one could accomplish by doing a GPT fit while constrain-
ing the vertices of the realized and consistent GPT state
spaces to contain a sphere between them, up to linear trans-
formations), we would have found that the quality of the fit
was good.

B. Upper and lower bounds on violation of
noncontextuality inequalities

One method we use to bound possible deviations from
quantum theory is to consider the maximal violation of a
particular noncontextuality inequality [51]. From our data
we infer a range in which the maximal violation can lie,
and compare this to the quantum prediction. We briefly
introduce the notion of noncontextuality, then discuss the
inferences we make. The notion of noncontextuality was
introduced by Kochen and Specker [76]. We here consider
a generalization of the Kochen-Specker notion, termed
universal noncontextuality, defined in Ref. [50].

Noncontextuality is a notion that applies to an ontolog-
ical model of an operational theory. Such a model is an
attempt to understand the predictions of the operational
theory in terms of a system that acts as a causal medi-
ary between the preparation device and the measurement
device. It postulates a space of ontic states �, where the
ontic state λ ∈ � specifies all the physical properties of the
physical system according to the model. For each prepa-
ration procedure P of a system, it is presumed that the
system’s ontic state λ is sampled at random from a prob-
ability distribution p(λ|P). For each measurement M on a
system, it is presumed that its outcome O is sampled at ran-
dom in a manner that depends on the ontic state λ, based
on the conditional probability p(O|λ, M ). It is presumed
that the empirical predictions of the operational theory are
reproduced by the ontological model,

p(O|M , P) =
∑
λ∈�

p(O|λ, M )p(λ|P). (4)

We can now articulate the assumption of noncontextuality
for both the preparations and the measurements.

Preparation noncontextuality. If two preparation proce-
dures, P and P′, are operationally equivalent, which in the
GPT framework corresponds to being represented by the
same GPT state vector, then they are represented by the
same distribution over ontic states:

sP = sP′ =⇒ p(λ|P) = p(λ|P′). (5)

Measurement noncontextuality. If two measurement
effects, [O|M ] and [O′|M ′], are operationally equivalent,

which in the GPT framework corresponds to being rep-
resented by the same GPT effect vector, then they are
represented by the same distribution over ontic states:

e[O|M ] = e[O′|M ′] =⇒ p(O|λ, M ) = p(O′|λ, M ′). (6)

To assume universal noncontextuality is to assume non-
contextuality for all procedures, including preparations and
measurements [77].

There are now many operational inequalities for testing
universal noncontextuality. Techniques for deriving such
inequalities from proofs of the Kochen-Specker theorem
are presented in Refs. [78–80]. In addition, there exist
other proofs of the failure of universal noncontextuality
that cannot be derived from the Kochen-Specker theorem.
The proofs in Ref. [50] based on prepare-and-measure
experiments on a single qubit are an example, and these
too can be turned into inequalities testing for universal
noncontextuality (as shown in Refs. [38] and [81]).

We here consider the simplest example of a noncontex-
tuality inequality that can be violated by a qubit, namely
the one associated to the task of two-bit parity-oblivious
multiplexing (POM), described in Ref. [51]. Bob receives
as input from a referee an integer y chosen uniformly
at random from {0, 1} and Alice receives a two-bit input
string (z0, z1) ∈ {0, 1}2, chosen uniformly at random. Suc-
cess in the task corresponds to Bob outputting the bit
b = zy , that is, the yth bit of Alice’s input. Alice can send
a system to Bob encoding information about her input, but
no information about the parity of her string, z0 ⊕ z1, can
be transmitted to Bob. Thus, if the referee performs any
measurement on the system transmitted, he should not be
able to infer anything about the parity. The latter constraint
is termed parity obliviousness [82].

An operational theory describes every protocol for
parity-oblivious multiplexing as follows. Based on the
input string (z0, z1) ∈ {0, 1}2 that she receives from the ref-
eree, Alice implements a preparation procedure Pz0z1 , and
based on the integer y ∈ {0, 1} that he receives from the
referee, Bob implements a binary-outcome measurement
My , and reports the outcome b of his measurement as his
output. Given that each of the eight values of (y, z0, z1) are
equally likely, the probability of winning, denoted C, is

C ≡ 1
8

∑
b,y,z0,z1

δb,zy p(b|Pz0z1 , My), (7)

where δb,zy is the Kronecker delta function. The parity
obliviousness condition can be expressed as a constraint
on the GPT states, as

1
2

sP00 + 1
2

sP11 = 1
2

sP01 + 1
2

sP10 . (8)

This asserts the operational equivalence of the parity-0
preparation (the uniform mixture of P00 and P11) and
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the parity-1 preparation (the uniform mixture of P01 and
P10), and therefore it implies a nontrivial constraint on
the ontological model by the assumption of preparation
noncontextuality [Eq. (5)], namely,

1
2

p(λ|P00)+ 1
2

p(λ|P11) = 1
2

p(λ|P01)+ 1
2

p(λ|P10). (9)

It was shown in Ref. [51] that if an operational theory
admits of a universally noncontextual ontological model,
then the maximal value of the probability of success in
parity-oblivious multiplexing is

CNC ≡ 3
4

. (10)

We refer to the inequality

C ≤ CNC (11)

as the POM noncontextuality inequality [83].
It was also shown in Ref. [51] that in operational quan-

tum theory, the maximal value of the probability of success
is

CQ ≡ 1
2

+ 1

2
√

2
� 0.8536, (12)

which violates the POM noncontextuality inequality,
thereby providing a proof of the impossibility of a non-
contextual model of quantum theory and demonstrating
a quantum-over-noncontextual advantage for the task of
parity-oblivious multiplexing. A set of four quantum states
and two binary-outcome quantum measurements that sat-
isfy the parity-obliviousness condition of Eq. (8) and that
lead to success probability CQ are illustrated in Fig. 9.

For a given GPT state space S and effect space E , we
define

C(S,E) ≡ max
{sPz0z1

}∈S
{eb|My }∈E

1
8

∑
b,y,z0,z1

δb,zy sPz0z1
· eb|My , (13)

where the optimization must be done over choices of
{sPz0z1

} ∈ S that satisfy the parity-obliviousness constraint
of Eq. (8). If S and E are the state and effect spaces of a
GPT, then sPz0z1

· eb|My is the probability p(b|Pz0z1 , My) and
C(S,E) has the form of Eq. (7) and defines the maximum
probability of success achievable in the task of parity-
oblivious multiplexing for that GPT. (We see below that
it is also useful to consider C(S,E) when the pair S and E do
not define the state and effect spaces of a GPT.)

As discussed in Sec. II D, no experiment can specify S
and E exactly. Instead, what we find is a set of possibil-
ities for (S , E) that are consistent with the data, and thus
are candidates for the true GPT state and effect spaces. We

denote this set of candidates by GPTcandidates. To determine
the range of possible values of the POM noncontextuality
inequality violation in this set, we need to determine

Cmin ≡ min
(S,E)∈GPTcandidates

C(S,E), (14)

and

Cmax ≡ max
(S,E)∈GPTcandidates

C(S,E). (15)

See Fig. 8(a) for a schematic of the relation between the
various C quantities we consider.
Cmin and Cmax are each defined as a solution to an opti-

mization problem. As noted in Sec. II D, there is a large
freedom in the choice of S given Srealized and Sconsistent, and
there is a large freedom in the choice of E for each choice
of S . Finally, for each pair (S , E) in this set, one still needs
to optimize over the choice of four preparations and two
measurements defining the probability of success.

(a)

(b)

(c)

FIG. 8. Bounding maximal inequality violations with GPT
tomography. (a) Relation between the true value of the maxi-
mal violation of the POM inequality for the true GPT describing
our experiment, C(S ,E), and the bounds that we place on it.
The interval [Cmin, Cmax] is the range of possible values for
C(S ,E) that one can in principle infer from an experiment, and
the interval [LB(Cmin),UB(Cmax)] is a conservative estimate of
[Cmin, Cmax]. (b) The interval [LB(Cmin),UB(Cmax)] inferred from
our data (area labeled “consistent with experiment”). The true
value C(S ,E) differs from the quantum prediction, CQ by at
most ±1.3 ± 0.1%. Our data violates the POM inequality. (c)
The interval [LB(Bmin),UB(Bmax)] inferred from our data (area
labeled “consistent with experiment”). The true value B(S ,E) is
at most 1.3 ± 0.1% greater than the maximal quantum violation,
CQ. Error bars are too small to be visible on the plots.
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It turns out that the choice of (S , E) that determines Cmin
is easily identified. First, note that the definition in Eq. (13)
implies the following inference:

S ′ ⊆ S , E ′ ⊆ E =⇒ C(S′,E ′) ≤ C(S,E). (16)

Given that Srealized ⊆ S and Erealized ⊆ E for all (S , E) ∈
GPTcandidates, it follows that

C(Srealized,Erealized) ≤ Cmin. (17)

And given that (Srealized, Erealized) is among the GPT candi-
dates consistent with the data, we conclude that

Cmin = C(Srealized,Erealized). (18)

However, calculating C(Srealized,Erealized) still requires solving
the optimization problem defined in Eq. (13), which is
computationally difficult.

Much more tractable is the problem of determining a
lower bound on Cmin, using a simple inner approximation
to Srealized and Erealized. This is the approach we pursue here.
We denote this lower bound by LB(Cmin).

Let Sw
qubit denote the image of the qubit state space Squbit

under the partially depolarizing map Dw, defined by

Dw(ρ) ≡ wρ + (1 − w)
1
2
I Tr(ρ), (19)

with w ∈ [0, 1]. Similarly, let Ew′
qubit denote the image of

Equbit under Dw′ .
Consider the two-parameter family of GPTs defined by

{(Sw
qubit, Ew′

qubit) : w, w′ ∈ (0, 1)}. These correspond to quan-
tum theory for a qubit but with noise added to the states and
to the effects. Letting w1 be the largest value of the parame-
ter w such that Sw

qubit ⊆ Srealized and letting w′
1 be the largest

value of the parameter w′ such that Ew
qubit ⊆ Erealized, then

Sw1
qubit and Ew′

1
qubit provide inner approximations to Srealized

and Erealized, respectively, depicted in Fig. 9. From these,
we get the lower bound

LB(Cmin) = C
(Sw1

qubit,E
w′

1
qubit)

. (20)

A subtlety that we avoid mentioning thus far is that the
depolarized qubit state and effect spaces are only defined
up to a linear transformation, so that in seeking an inner
approximation, one could optimize over not only w but
linear transformations as well. To simplify the analysis,
however, we take Sw

qubit to be a sphere of radius w and Ew′
qubit

to be a diamond with a base that is a sphere of radius w′,
and we optimize over w and w′. (Optimizing over all lin-
ear transformations would simply give us a tighter lower
bound.)

(a) (b)

FIG. 9. Depictions of the rescaled qubit state and effect spaces,
which provide our inner and outer approximations to the esti-
mated realized GPT state and effect spaces. We also depict the
states and effects that achieve the maximum probability of suc-
cess in parity-oblivious multiplexing in quantum theory (orange
squares), and those that achieve our lower (magenta circles) and
upper (yellow triangles) bounds. The left figure depicts the GPT
state vectors of the four preparations, labeled by the possible val-
ues of the pair of bits Alice must encode, and the right figure
depicts the GPT effect vectors of each outcome of each of the
pair of measurements.

For the GPT (Sw
qubit, Ew′

qubit), a set of four preparations
and two binary-outcome measurements that satisfy the
parity-obliviousness condition of Eq. (8) and that yield the
maximum probability of success are the images, under the
partially depolarizing maps Dw and Dw′ respectively, of
the optimal quantum choices. These images are depicted
in Fig. 9.

For this GPT, one finds that the probability of success
in parity-oblivious multiplexing is the quantum value with
probability ww′, and 1/2 the rest of the time,

C
(Sw

qubit,Ew′
qubit)

= ww′
(

1
2

+ 1

2
√

2

)
+ (1 − ww′)

1
2

,

= 1
2

+ ww′ 1

2
√

2
. (21)

From our estimates of the realized GPT state and effect
spaces, S̃realized and Ẽrealized, we obtain an estimate of w1 by
identifying the largest value of w such that Sw

qubit ⊆ S̃realized

and we obtain an estimate of w′
1 by identifying the largest

value of w′ such that Ew′
qubit ⊆ Ẽrealized.

Determining these estimates from the data of the first
experiment, then substituting into Eq. (21) and using
Eq. (20), we infer the lower bound LB(Cmin) = 0.8303 ±
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0.0002. A similar analysis for the second experiment yields
an even tighter bound,

LB(Cmin) = 0.8427 ± 0.0005. (22)

This provides a lower bound on the interval of C values
in which the true value could be found, as depicted in
Fig. 8(b) [84].

We now turn to Cmax. Given that for all (S , E) ∈
GPTcandidates, S ⊆ Sconsistent, and E ⊆ Econsistent, it follows
from Eq. (16) that Cmax ≤ C(Sconsistent,Econsistent) [85]. We can
therefore compute an upper bound on Cmax using outer
approximations to Sconsistent and Econsistent. We choose outer
approximations consisting of rescaled qubit state and effect
spaces, defined as before, but where the parameter w can
now fall outside the interval [0, 1].

Letting w2 be the smallest value of the parameter w such
that Sconsistent ⊆ Sw

qubit and letting w′
2 be the smallest value

of the parameter w′ such that Econsistent ⊆ Ew′
qubit, then Sw2

qubit

and Ew′
2

qubit provide outer approximations to Sconsistent and
Econsistent ,respectively, and so we get an upper bound

UB(Cmax) = C
(Sw2

qubit,E
w′

2
qubit)

. (23)

Even though we are now allowing supernormalized state
and effect vectors, via w and w′ values outside of [0, 1], a
simple calculation shows that C

(Sw
qubit,Ew′

qubit)
is still given by

Eq. (21).
Our estimates S̃consistent and Ẽconsistent for the state and

effect spaces of the first experiment imply estimates for w2
and w′

2 [86] and substituting these into Eqs. (23) and (21),
we infer UB(Cmax) = 0.8784 ± 0.0002. The same analysis
on the second experiment yields

UB(Cmax) = 0.8647 ± 0.0005. (24)

This provides an upper bound on the interval of C val-
ues in which the true value could be found, as depicted
in Fig. 8(b).

Recalling that the quantum value is CQ � 0.8536, it fol-
lows from Eqs. (22) and (24) that the scope for the true
GPT to differ from quantum theory in the amount of con-
textuality it predicts (relative to the POM inequality) is
quite limited: for the true GPT, the maximum violation
of the POM noncontextuality inequality can be at most
1.3% ± 0.1 less than and at most 1.3% ± 0.1 greater than
the quantum value.

C. Upper bound on violation of Bell inequalities

Bell’s theorem famously shows that a certain set of
assumptions, which includes local causality, is in contra-
diction with the predictions of operational quantum theory
[87]. It is also possible to derive inequalities from these

assumptions that refer only to operational quantities and
thus can be directly tested experimentally.

The CHSH inequality [49] is the standard example. A
pair of systems are prepared together according to a prepa-
ration procedure PAB, then one is sent to Alice and the
other is sent to Bob. At each wing of the experiment, the
system is subjected to one of two binary-outcome mea-
surements, M A

0 or M A
1 on Alice’s side and M B

0 and M B
1 on

Bob’s side, with the choice of measurement being made
uniformly at random, and where the choice at one wing is
spacelike separated from the registration of the outcome at
the other wing. Denoting the binary variable determining
the measurement choice at Alice’s (Bob’s) wing by x (y),
and the outcome of Alice’s (Bob’s) measurement by a (b),
the operational quantity of interest, the “Bell quantity” for
CHSH, is defined as follows (where a, b, x, y ∈ {0, 1}, and
⊕ is addition modulo 2)

B ≡ 1
4

∑
a,b,x,y

δa⊕b,xyp(a, b|M A
x , M B

y , PAB). (25)

The maximum value that this quantity can take in a model
satisfying local causality and the other assumptions of
Bell’s theorem is

Bloc ≡ 3
4

, (26)

so that such models satisfy the CHSH inequality

B ≤ Bloc. (27)

Meanwhile, the maximum quantum value is [88]

BQ ≡ 1
2

+ 1

2
√

2
� 0.8536. (28)

Experimental tests have exhibited a violation of the
CHSH inequality [89] and various loopholes for escaping
this conclusion have been sealed experimentally [90–95].
These experiments provide a lower bound on the value of
the Bell quantity, which violates the local bound.

It has not been previously clear, however, how to derive
an upper bound on the Bell quantity. Doing so is necessary
if one hopes to experimentally rule out postquantum corre-
lations such as the Popescu-Rohrlich box [56,88]. We here
demonstrate how to do so.

First note that the probability for obtaining outcomes a
and b given settings x and y, which appears in Eq. (25),
can be expressed in the GPT framework as

p(a, b|M A
x , M B

y , PAB) = sPAB · (ea|MA
x

⊗ eb|MB
y
), (29)

where sPAB is the GPT state on the composite system AB
representing the preparation PAB (it is said to be entangled
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if it cannot be written as a convex mixture of states that
factorize on the vector spaces of the components [30]), and
where ea|MA

x
(eb|MB

y
) is the GPT effect on A (B) representing

the outcome a (b) of measurement M A
x (M B

y ). Learning that
the M A

x measurement is implemented on the preparation
PAB and yielded the outcome a can be conceived of as a
preparation for system B, which we denote by PB

a|x. The
GPT state representing this remote preparation, which we
denote by sPB

a|x
, is defined by

pa|xsPB
a|x

:= (ea|MA
x

⊗ I B)TsPAB , (30)

where we introduce the shorthand pa|x ≡ p(a|M A
x , PAB),

and where I B represents the identity operator on system
B. Given this definition, one can re-express the probability
appearing in the Bell quantity as

p(a, b|M A
x , M B

y , PAB) = pa|xsPB
a|x

· eb|MB
y

, (31)

which involves only GPT states and GPT effects on system
B. In this case, one is conceptualizing the Bell experi-
ment as achieving one of a set of remote preparations
of the state of Bob’s system—commonly referred to as
“steering”—followed by a measurement on Bob’s system.

The assumption of spacelike separation implies that
there is no signaling between Alice and Bob, and this con-
strains how Bob’s system can be steered. Since pa|x is the
probability that Alice obtains outcome a given that she
performs measurement M A

x on the preparation PAB, the
marginal GPT state of Bob’s subsystem when one does not
condition on a is given by

∑
a pa|xsPB

a|x
. The no-signaling

assumption forces this marginal state to be independent of
Alice’s measurement choice x. In the CHSH scenario the
no-signaling constraint is summarized with the following
equation:

p0|0sPB
0|0

+ p1|0sPB
1|0

= p0|1sPB
0|1

+ p1|1sPB
1|1

. (32)

Because we are assuming that the true GPT includes clas-
sical probability theory as a subtheory (see Sec. II A), it
follows that the local value, Bloc, is a lower limit on the
range of possible values of the Bell quantity among exper-
imentally viable candidates for the true GPT. This is a
trivial lower limit. In order to obtain a nontrivial lower
limit on this range (i.e., one greater than Bloc), one would
need to perform an experiment involving two physical sys-
tems such that one can learn which GPT states for the
bipartite system are physically realizable (in particular,
whether there are any entangled states that are realized)
and thus which steering schemes are physically realizable.
Because our experiment is on a single physical system, it
cannot attest to the physical realizability of any bipartite
states and hence cannot attest to the physical realizability
of any particular instance of steering.

Nonetheless, our experiment can attest to the logical
impossibility of particular instances of steering, namely,
any instance of steering wherein the ensemble on Bob’s
system contains one or more GPT states outside of
Sconsistent, because such states by definition assign values
outside [0, 1]—which cannot be interpreted as probabili-
ties—to some physically realized GPT effects (i.e., some
GPT effects in Erealized). This in turn implies the nonex-
istence of any bipartite GPT state (together with a GPT
measurement on Alice’s system), which could be used
to realize such an instance of steering, even though the
experiment probes only a single system rather than a pair.

Therefore, we can use our experimental results to deter-
mine an upper limit on the range of values of the Bell
quantity among experimentally viable candidates for the
true GPT.

The maximum violation of the CHSH inequality achiev-
able if Bob’s system is described by a state space S and an
effect space E , is

B(S,E) ≡ max
{pa|x}

{sPB
a|x

}∈S
{eb|MB

y
}∈E

1
4

∑
a,b,x,y

δa⊕b,xypa|xsPB
a|x

· eb|MB
y

, (33)

where one varies over {pa|x}, {sPB
a|x

} that satisfy the no-
signaling constraint, Eq. (32). If the pair S and E together
form a valid GPT, then pa|xsPB

a|x
· eb|MB

y
is a probability and

we recover Eq. (25).
The upper limit on the range of possible values of

the CHSH inequality violation among the theories in
GPTcandidates, which we denote by Bmax, is defined analo-
gously to Cmax in Eq. (15).

Calculating Bmax is a difficult optimization problem
that involves varying over every pair (S , E) consistent
with the experiment, and for each pair implementing the
optimization in Eq. (33).

Instead of performing this difficult optimization, we
derive an upper bound on Bmax, denoted UB(Bmax). This
is achieved in the same manner that the upper bound on
Cmax is obtained in the previous section, namely, using a
qubitlike outer approximation.

For qubitlike state and effect spaces, it turns out that the
maximum violation of the CHSH inequality is the greater
of 3

4 or the value given for the probability of success in
POM in (21). The proof is provided in Appendix F.

Thus, we infer from Eq. (24) that

UB(Bmax) = 0.8647 ± 0.0005. (34)

This provides an upper bound on the interval of B values
in which the true value of the maximal CHSH inequality
violation lies, as depicted in Fig. 8(c). As noted ear-
lier, our experiment provides only the trivial lower bound
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LB(Bmin) = Bloc. Nontrivial lower bounds have, of course,
been provided in previous Bell experiments using photon
polarization, such as Ref. [96].

V. DISCUSSION

We describe a scheme for constraining what GPTs can
model a degree of freedom on which one has statistical data
from a prepare-and-measure experiment. It proceeds by a
tomographic characterization of the GPT states and effects
that best represent the preparations and measurements real-
ized in the experiment. By computing the duals of these,
one constrains the possibilities for the true GPT state and
effect spaces. The tomographic scheme is self-consistent in
the sense that it does not require any prior characterization
of the preparations and measurements.

The rank of the GPT describing the preparations and
measurements realized in our experiment can be deter-
mined with very high confidence by our method. Because
the models we consider have k(m + n − k) parameters,
where k is the rank of the model, m is the number of prepa-
rations and n is the number of measurements, increasing
the rank of the model by 1 increases the parameter count
by hundreds in the first experiment and by thousands in the
second. For this reason, the Akaike information criterion
can deliver a decisive verdict against models that have a
rank higher than the smallest rank that yields a respectable
χ2 on the grounds that such higher-rank models grossly
overfit the data.

Our experimental results are consistent with the con-
clusion that in prepare-and-measure experiments, photon
polarization acts like a two-level quantum system, corre-
sponding to a GPT vector space of dimension 4.

As emphasized in the introduction and Sec. III A, how-
ever, any hypothesis concerning the tomographic com-
pleteness of a given set of preparations or measurements is
necessarily tentative. Our experiment provided an oppor-
tunity for discovering that the cardinality of a tomograph-
ically complete set of preparations (measurements) for
photon polarization (or equivalently the dimension of the
GPT describing them) deviated from our quantum expec-
tations, but it found no evidence of such a dimensional
deviation.

Under the assumption that the set of preparations and
measurements we realize are tomographically complete,
the technique we describe provides a means of obtaining
experimental bounds on how the shapes of the state and
effect spaces might deviate from those stipulated by quan-
tum theory. We focus in this paper on three examples of
such deviations, namely, the failure of the no-restriction
hypothesis, supraquantum violations of Bell inequalities,
and supraquantum or subquantum violations of noncontex-
tuality inequalities.

Modifications of quantum theory that posit intrinsic
decoherence imply unavoidable noise and thereby a failure

of the no-restriction hypothesis. We focus on the volume
ratio of Slogical to S as a generic measure of the failure
of the no-restriction hypothesis, and we obtain an upper
bound on that measure via the volume ratio of Sconsistent
to Srealized. This provides an upper bound on the degree of
noise in any intrinsic decoherence mechanism.

If one makes more explicit assumptions about the deco-
herence mechanism, one can be a bit more explicit about
the bound. Suppose that the noise that arises from intrin-
sic decoherence in a prepare-and-measure experiment on
photon polarization corresponds to a partially depolarizing
map D1−ε [Eq. (19)] where ε is a small parameter describ-
ing the strength of the noise, then GPT tomography would
find Srealized ⊆ Svqubit and Erealized ⊆ Ev′qubit, where vv′ = 1 −
ε. The best qubitlike inner approximations to Srealized and

Erealized, denoted by Sw1
qubit and Ew′

1
qubit in our paper, define a

lower bound on vv′, namely, w1w′
1 ≤ vv′, and thereby an

upper bound on ε, namely, ε ≤ 1 − w1w′
1. From our sec-

ond experiment, we obtain the estimate w1w′
1 = 0.969 ±

0.001, which implies that ε ≤ 0.031 ± 0.001.
We also provide experimental bounds on the amount by

which the system we study could yield Bell and noncon-
textuality inequality violations in excess of their maximum
quantum value.

Because violation of each of the inequalities we con-
sider is related to an advantage for some information-
processing task—specifically, parity-oblivious multiplex-
ing and the CHSH game—it follows that our experimental
upper bounds on these violations imply an upper bound on
the possible advantage for these tasks. More generally, our
techniques can be used to derive limits on advantages for
any task that is powered by nonlocality or contextuality.

Our results also exclude deviations from quantum theory
that have some theoretical motivation. For instance, Bras-
sard et al. [97] have shown that communication complexity
becomes trivial if one has CHSH inequality violations of
1
2 + 1/

√
6 � 0.908 or higher. If one assumes that this is

the actual threshold at which communication complexity
becomes nontrivial (as opposed to being a nonstrict upper
bound) and if one endorses the nontriviality of commu-
nication complexity as a principle that the true theory of
the world ought to satisfy, then one has reason to spec-
ulate that the true theory of the world might achieve a
CHSH inequality violation somewhere between the quan-
tum bound of 0.8536 and 0.908. Our experimental bound,
however, rules out most of this range of values.

Our experiment also provides a test (and exclusion)
of the hypothesis of universal noncontextuality. In this
capacity, it represents a significant improvement over the
best previous experiment [38] especially vis-a-vis what
was identified in Ref. [38] to be the greatest weakness
of that experiment, namely, the extent of the evidence
for the claim that a given set of measurements or prepa-
rations should be considered tomographically complete.
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Recall that every assessment of operational equivalence
among two preparations (measurements)—from which one
deduces the nontrivial consequences of universal noncon-
textuality—rests upon the assumption that one has com-
pared their statistics for a tomographically complete set of
measurements (preparations).

The experiment reported in Ref. [38] implemented eight
distinct effects and eight distinct states on single-photon
polarization and consequently it had the opportunity to dis-
cover that a GPT of dimension 4 did not provide a good
fit to the data. In other words, the experiment reported in
Ref. [38], just like the experiment reported here, had the
opportunity to discover that the cardinality of the tomo-
graphically complete sets of effects and states for photon
polarization (hence the dimension of the GPT) was not
what quantum theory would lead one to expect, via the sort
of precision strategy for detecting dimensional deviations
described in the introduction and in Sec. III A. Conse-
quently, it had an opportunity to discover that quantum
expectations regarding operational equivalences were also
violated.

The experimental test of noncontextuality reported in
the present article, however, improves on that of Ref. [38]
insofar as it provided a much better opportunity for detect-
ing dimensional deviations from quantum theory and
hence a much better opportunity for uncovering violations
of our quantum expectations regarding what sets of prepa-
rations and measurements are tomographically complete,
the grounds for all assessments of operational equiva-
lences. In particular, instead of probing just eight states
and effects, we probe 100 of each in the first experiment
and 1000 in the second, and then we explicitly explore the
possibility that GPT models with rank greater than 4 might
provide a better fit to the data. In particular, we use the
Akaike criterion, which incorporates not only the quality
of fit of a model (χ2) but also the number of parameters
it requires to achieve this fit, to determine which rank of
model is most likely given the data.

It is important to recall that our experiment probes only
a single type of system: the polarization degree of freedom
of a photon. A question that naturally arises at this point is:
to what extent can our conclusions be ported to other types
of systems?

Consider first the question of portability to other types
of two-level systems (by which we mean systems that are
described quantumly by a two-dimensional Hilbert space).
If it were the case that different two-level systems could
be governed by different GPTs, this would immediately
lead to a thorny problem of how to ensure that the dif-
ferent restrictions on their behaviors were respected even
in the presence of interactions between them. Indeed, the
principle that every n-level system has the same GPT state
and effect spaces as every other has featured in many
reconstructions of quantum theory within the GPT frame-
work (see, e.g., the subspace axiom in Ref. [15], and its

derivation from other axioms in Ref. [98]) and is taken to
be a very natural assumption. This suggests that there are
good theoretical grounds for thinking that our experimen-
tal constraints on possible deviations from quantum theory
are applicable to all types of two-level systems.

It is less clear what conclusions one might draw for
n-level systems when n 
= 2. For instance, although quan-
tumly the maximum violation of a CHSH inequality is the
same regardless of whether Bob’s system is a qubit or a
qutrit, this might not be the case for some nonquantum
GPT. Therefore, although there are theoretical reasons for
believing that our upper bound on the degree of CHSH
inequality violation (assuming no dimensional deviation)
applies to all two-level systems, we cannot apply those rea-
sons to argue that violations will be bounded in this way
for n-level systems. Nonetheless, if one does assume that
all two-level systems are described by the same GPT, then
we have constraints on the state and effect spaces of every
two-level system that is embedded (as a subspace) within
the n-level system. This presumably restricts the possibil-
ities for the state and effect spaces of the n-level system
itself. How to infer such restrictions—for instance, how
to infer an upper bound on the maximal CHSH inequality
violation for a three-level system from one on a two-level
system—is an interesting problem for future research.

There is evidently a great deal of scope for further exper-
iments of the type described here. An obvious direction
for future work is to apply our techniques to the charac-
terization of higher-dimensional systems and composites.
Another interesting extension would be to generalize the
technique to include GPT tomography of transformations,
in addition to preparations and measurements. This is the
GPT analog of quantum process tomography, on which
there has been a great deal of work due to its application
in benchmarking experimental implementations of gates
for quantum computation. It is likely that many ideas in
this sphere can be ported to the GPT context. A partic-
ularly interesting case to consider is the scheme known
as gate set tomography [99–101], which achieves a high-
precision characterization of a set of quantum gates in a
self-consistent manner.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Photon source

The 20-mm-long PPKTP crystal is pumped with 0.29
mW of continuous-wave laser light at 404.7 nm, produc-
ing pairs of 809.4-nm photons with orthogonal polariza-
tions. We detect approximately 22% of the herald photons
produced, and approximately 9% of the signal photons pro-
duced. In order to characterize the single-photon nature
of the source we perform a g2(0) measurement [102] and
find g2(0) = 0.001 84 ± 0.000 03. This low g2(0) mea-
surement implies that the ratio of double pairs to single
pairs produced by the source is approximately 1 : 2000.
We find that if we increase the pump power then a rank-
4 model no longer fits the data well. This is because
the two-photon state space has a higher dimension than
the one-photon state space. The avalanche photodiode
single-photon detectors we use respond nonlinearly to the
number of incoming photons [103]; this makes our mea-
surements sensitive to the multipair component of the
down-converted light and ultimately limits the maximum
power we can set for the pump laser.

2. Measurements

After a photon exits the measurement PBS, the proba-
bility that it is detected depends on which port of the PBS
it exited from. This is because the efficiencies of the two
paths from the measurement PBS to the detector are not
exactly equal, and also because the detectors themselves
do not have the same efficiency. To average out the two
different efficiencies we perform each measurement in two
stages.

We use language from quantum mechanics to explain
our procedure. Say we want to perform a projective mea-
surement in the |ψ〉-|ψ⊥〉 basis, for some polarization |ψ〉
and its orthogonal partner |ψ⊥〉. We first rotate our mea-
surement wave plates so they rotate |ψ〉 to the horizontal
polarization, |H 〉 (and thus, |ψ⊥〉 is rotated to the verti-
cally polarized state |V〉). In each output port, we record
the number of photons detected in coincidence with the
herald, over an integration time of 4 s. We label detec-
tions in the transmitted port with “0” and detections in
the reflected port with “1.” Second, we rotate the measure-
ment wave plates such that |ψ〉 → |V〉 and |ψ⊥〉 → |H 〉.
We then swap the labels on the measurement outcomes
such that the reflected port corresponds to outcome “0” and
the transmitted port to “1.” We again record the number of
coincidences between each output port and the herald for 4
s. Finally, we sum the total number of “0” detections, and
also the total number of “1” detections over the total 8-s
measurement time. The measured frequency at which we

obtain outcome “0” is then the total number of “0” detec-
tions divided by the sum of the total number of “0” and “1”
detections.

a. Threefold coincidences

Sometimes, all three detectors in the experiment fire
within a single coincidence window. These events are
most likely caused by either a multipair emission from the
source, or the successful detection of both photons in a sin-
gle pair in conjunction with a background count at the third
detector. We choose to interpret each threefold coincidence
as a pair of pairwise coincidences; one between the herald
and transmitted port detectors, and one between the herald
and reflected port detectors.

Since we are only interested in characterizing the single-
pair emissions from our source (and not multipair ones),
we could have chosen to instead discard all threefold-
coincidence events completely. We note that if we had
done this, the raw frequency data to which we fit our GPT
would change, on average, by an amount that is only 0.01%
of the statistical uncertainty on these frequencies. Using
the Akaike information criterion, we would still have con-
cluded that the GPT most likely to describe the data is
rank 4. Finally, the probabilities in the rank-4 GPT of best
fit would be essentially unchanged, and the shapes of the
reconstructed GPT state and effect spaces (and therefore
also the inferences made about the achievable inequality
violations) would not be affected in any significant way.

APPENDIX B: CHOICE OF PREPARATION AND
MEASUREMENT SETTINGS

We choose the preparation and measurement settings in
our experiment with the aim of characterizing the largest
volume of the state and measurement effect spaces as pos-
sible. The state and effect spaces in any GPT are convex,
and thus fully characterizing the boundaries of these spaces
fully determines the full spaces. Thus our aim is to find
preparation and measurement settings that map out the
boundaries of the state and effect spaces as best we can,
given the finite number of settings we are able to perform.

We use quantum theory to inform our choice of settings.
We expect the GPT describing our experiment to be equal
to (or very closely approximated by) the GPT for a qubit.
The surface of the Bloch sphere (i.e., the space of pure
qubit states) determines the qubit state space, and prepar-
ing a set of states that are evenly distributed around the
surface of the Bloch sphere should do a good job at char-
acterizing the GPT state space describing our experiment.
The qubit effect space is characterized by the surface of the
sphere representing projective measurement effects, plus
the unit effect, I, and its complement, the zero effect. Thus,
we aim to perform a set of measurements whose effects are
evenly distributed on the outside of the sphere of projective
effects.

020302-25



MAZUREK, PUSEY, RESCH, and SPEKKENS PRX QUANTUM 2, 020302 (2021)

(a) (b)

FIG. 10. Quantum description of the target states created and
measurements performed in our experiment. An evenly dis-
tributed set of points lying on a spiral was used to choose
the settings for (a) the 100 preparations and measurements
characterized in the first experiment and (b) the 1000 nonfidu-
cial preparations and measurements characterized in the second
experiment. Each red dot corresponds to a quantum state |ψi〉,
and the wave-plate angles (i.e., preparation settings) are chosen
as those which, under the assumption of the correctness of quan-
tum theory, would prepare those states. Each red dot also defines
an effect |ψi〉〈ψi|, which is part of the projective measurement
{|ψi〉〈ψi|, I − |ψi〉〈ψi|}.

To choose the preparation settings we first find a set
of pure quantum states labeled with |ψi〉 that are approxi-
mately evenly distributed around the surface of the Bloch
sphere. We then find the quarter- and half-wave plate
angles necessary to create each of those states, and each
pair of quarter- and half-wave plate angles is one prepa-
ration setting. The space of projective effects is also
determined by the Bloch sphere, since every projective

(a) (b)

FIG. 11. Quantum description of the fiducial states and mea-
surement effects performed in the second experiment. (a) Red
dots represent the six fiducial states used to characterize the 1000
measurements in Fig. 10(b). These correspond to the +1 and
−1 eigenstates of the three Pauli operators σx, σy , and σz . (b)
Red dots represent the six fiducial measurement effects used to
characterize each of the states in Fig. 10(b). These effects lie
on six of the twelve vertices of an icosahedron, and they cor-
respond to the outcome-“0” effect of a projective measurement.
Each outcome-“0” effect has a corresponding outcome-“1” effect;
each outcome-“1” effect is represented by one of the other six
vertices on the icosahedron.

effect |ψi〉〈ψi| can be associated with the state to which it
responds deterministically, |ψi〉. The measurement settings
are the wave-plate angles that implement the projective
measurements {|ψi〉〈ψi|, I − |ψi〉〈ψi|}.

We use a method due to Rakhmanov, Saff, and Zhou
[104] to find the set of approximately uniformly distributed
points on the surface of the Bloch sphere. The points lie
on a spiral that begins at the south pole of the sphere,
and winds up around the sphere and ends at the north
pole. The quantum states corresponding to each of the
100 preparation settings in the first experiment are shown
in Fig. 10(a), and the 1000 states corresponding to each
preparation setting in the second experiment are displayed
in Fig. 10(b).

In the second experiment, we also implement a set of six
fiducial preparations, which we use to characterize each
of the 1000 effects in Fig. 10(b), and a set of six fidu-
cial measurements, which we use to characterize each of
the 1000 states in Fig. 10(b). The fiducial preparation and
measurement sets are shown in Fig. 11.

APPENDIX C: FINDING THE RANK-k MATRIX D̃
THAT BEST FITS THE FREQUENCY MATRIX F

In this section we explain the algorithm we use to find a
low-rank matrix that best fits the matrix of raw frequency
data.

For an m × n matrix of frequency data, F , we define the
rank-k matrix of best fit, D̃, as the one that minimizes the
weighted χ2 value:

χ2 =
m∑

i=1

n∑
j =1

(
Fij − D̃ij

�Fij

)2

, (C1)

where the weights �Fij are the uncertainties in the mea-
sured frequencies, which are calculated assuming Poisso-
nian error in the counts (in cases where we did not collect
data for the preparation-measurement pair corresponding
to entry Fij , we set �Fij = ∞). Since D̃ represents an
estimate of the true probabilities underlying the noisy fre-
quency data, we need to ensure that D̃ contains only entries
between 0 and 1. Hence the matrix of best fit is the one
which solves the following minimization problem:

minimize
D̃∈Mmn

χ2,

subject to rank(D̃) ≤ k

0 ≤ D̃ij ≤ 1 ∀ i, j ,

(C2)

where Mmn is the space of all m × n real matrices. The
entries in the column of 1s (representing the unit measure-
ment effect) that we include in F are exact, meaning that
they have an uncertainty of 0. As D̃ is defined as the matrix
that minimizes χ2, this enforces that the entries in the same
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column of D̃ will also remain exactly 1. Otherwise, χ2

would be undefined.
To enforce the rank constraint, we use the parameteriza-

tion D̃ = S̃Ẽ, where S̃ has size m × k and Ẽ is k × n. This
minimization problem as stated is NP hard [63], and cannot
be solved analytically. However, if either S̃ or Ẽ remains
fixed, optimizing the other variable is a convex prob-
lem, which can be solved with quadratic programming.
We minimize χ2 by performing a series of alternating
optimizations over S̃ and Ẽ [64].

Each iteration begins with an estimate for Ẽ, and we
then consider a variation over the m × k matrix S̃ such that
the m × n matrix D̃ = S̃Ẽ minimizes the χ2. Next, we fix
S̃ to be the one that achieved the minimum in this vari-
ation and we consider a variation over the k × n matrix
Ẽ such that D̃ = S̃Ẽ minimizes the χ2. This is the end
of one iteration, and the matrix Ẽ that achieved the mini-
mum becomes the Ẽ for the beginning of the next iteration.
The algorithm runs until a specific convergence threshold
is met (i.e., if �χ2 < 10−6 between successive iterations),
or until a maximum number of iterations (we choose 5000)
is reached.

We now show that optimization over S̃ or Ẽ is convex
(given that the other variable is fixed). For what follows,
we make use of the vec(·) operator, which takes a matrix
and reorganizes its entries into a column vector with the
same number of entries as the original matrix. For exam-
ple, given an m × n matrix A, vec(A) is a vector of length
mn, and the first m entries of vec(A) are equal to the first
column of A, entries m + 1 through 2m are equal to the
second column of A, and so on. We also define a diagonal
mn × mn matrix of weights, W, to encode the uncertainties
(1/�Fij )

2. These values appear along the diagonal of W,
and they are appropriately ordered such that we can rewrite
χ2 in the more convenient form:

χ2 = vec(F − S̃Ẽ)TW vec(F − S̃Ẽ), (C3)

= vec(S̃Ẽ)TW vec(S̃Ẽ)− 2 vec(S̃Ẽ)TW vec(F)

+ vec(F)TW vec(F), (C4)

where we also make the substitution D̃ = S̃Ẽ.
Defining Im as the m × m identity matrix, we can use the

identity vec(S̃Ẽ) = (ẼT ⊗ Im) vec(S̃) to write

χ2 = vec (S̃)
T
(Ẽ ⊗ Im)W(ẼT ⊗ Im) vec (S̃)

− 2 vec (S̃)
T
(Ẽ ⊗ Im)W vec(F)

+ vec(F)TW vec(F), (C5)

and we now see that the minimization over P can be
written as

minimize
S̃∈Mmk

vec (S̃)
T
(Ẽ ⊗ Im)W(ẼT ⊗ Im) vec (S̃)

− 2 vec (S̃)
T
(Ẽ ⊗ Im)W vec(F),

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j .

(C6)

We ignore the third term of Eq. (C4) as it is a constant, and
depends neither on S̃ nor Ẽ. Since W is a diagonal matrix
consisting of only positive elements, (Ẽ ⊗ Im)W(ẼT ⊗ Im)

is positive definite. This means that Eq. (C6) is a con-
vex quadratic program [105], which can be solved in
polynomial time.

The optimization over Ẽ takes a similar form, which
can be found by applying the identity vec(S̃Ẽ) = (In ⊗
S̃) vec(Ẽ) to Eq. (C4):

minimize
Ẽ∈Mkn

vec(Ẽ)T(In ⊗ S)TW(In ⊗ S̃) vec(Ẽ)

− 2 vec(Ẽ)T(In ⊗ S̃)TW vec(F),

subject to 0 ≤ (S̃Ẽ)ij ≤ 1 ∀ i, j .

(C7)

APPENDIX D: DECOMPOSITION OF THE
FITTED MATRIX OF PROBABILITIES

As discussed in Sec. III E in the main paper, we find a
decomposition D̃realized = S̃realizedẼrealized in order to char-
acterize the estimates of the spaces realized by the exper-
iment, S̃realized and Ẽrealized. Here, D̃realized has size m × n,
S̃realized is m × k and Ẽrealized is k × n. In this appendix
we describe the method we use to perform the above
decomposition.

We choose the decomposition to ensure that the first
column of S̃realized is a column of 1s, which allows us to
represent S̃realized in k − 1 dimensions. (In our experiment
we find k = 4, but we use the symbol k in this appendix for
generality.) We achieve this by ensuring that the leftmost
column in D̃realized is a column of 1s representing the unit
measurement, such that D̃realized takes the form:

D̃realized =

⎛
⎜⎝

1 p(0|P1, M2) · · · p(0|P1, Mn)
...

...
. . .

...
1 p(0|Pm, M2) · · · p(0|Pm, Mn)

⎞
⎟⎠ .

(D1)

We then proceed to perform the QR decomposition [106]
D̃realized = QR, where R is an m × n upper-right triangular
matrix and Q an m × m unitary matrix. Because D̃realized

has the form of Eq. (D1), each entry in the first column of Q
is equal to some constant c. We define Q′ = Q/c and R′ =
cR, which ensures that the first column of Q′ is a column
of 1s.
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Next, we partition Q′ and R′ as Q′ = (Q0 Q1) and R′ =(
R0
R1

)
, where Q0 is the first column of Q′, Q1 is all remain-

ing columns of Q′, R0 is the first row of R′, and R1 is all
remaining rows of R′. We take the singular value decompo-
sition Q1R1 = U�VT. Q1R1 is rank-(k − 1), and thus only
has (k − 1) nonzero singular values. Hence we can parti-
tion U, �, and V as U = (Uk−1 U(k−1)⊥), � = (

�k−1 0
0 0

)
,

and V = (Vk−1 V(k−1)⊥). Here �k−1 is the upper-left (k −
1)× (k − 1) corner of �, and Uk−1 and Vk−1 are the left-
most (k − 1) columns of U and V, respectively. Finally, we
define S̃realized and Ẽrealized as S̃realized = (Q0 Uk−1

√
�k−1)

and Ẽrealized =
( R0√

�k−1VT
k−1

)
.

The procedure described above ensures that S̃realized and
Ẽrealized take the forms:

S̃realized =

⎛
⎜⎜⎜⎜⎜⎝

1 s(1)1 · · · s(1)k−1

1 s(2)1 · · · s(2)k−1
...

...
. . .

...
1 s(m)1 · · · s(m)k−1

⎞
⎟⎟⎟⎟⎟⎠

, (D2)

and

Ẽrealized =

⎛
⎜⎜⎜⎜⎜⎝

1 e(2,0)
0 · · · e(n,0)

0

0 e(2,0)
1 · · · e(n,0)

1
...

...
. . .

...
0 e(2,0)

k−1 · · · e(n,0)
k−1

⎞
⎟⎟⎟⎟⎟⎠

, (D3)

where s(u)t is the tth element of the GPT state vector repre-
senting the uth preparation, and e(v,0)

t is the tth element of
the GPT effect vector representing the 0th outcome of the
vth measurement.

1. Convex closure under convex mixtures and classical
postprocessing of Ẽrealized

As discussed in Sec. III E, Ẽrealized is obtained by con-
sidering the convex closure under convex mixtures and
classical postprocessing of Ẽrealized. We perform only two-
outcome measurements in our experiment, and thus the full
set of effects in Ẽrealized is the convex hull of the outcome-
0 effects of all measurement procedures implemented in
the experiment (i.e., the matrix Ẽrealized) and of all the
outcome-1 effects of all the implemented measurements
(i.e., the matrix 1-Ẽrealized).

If we chose to, we could simply take the Ẽrealized returned
by the decomposition of D̃realized that we described above,
and define the larger matrix (Ẽrealized 1 − Ẽrealized), and
the convex hull of the vectors in this larger matrix would
define our estimate, Ẽrealized, of the space of GPT effects
realized in the experiment.

However, in an attempt to treat the outcome-0 and
outcome-1 effect vectors on equal footing, we instead
define the larger matrix D̃R = (D̃realized 1 − D̃realized). We
then find a decomposition D̃R = S̃realizedẼR using the
method described above. This ensures that ẼR has the
form:

ẼR =

⎛
⎜⎜⎜⎜⎜⎝

1 e(2,0)
0 · · · e(n,0)

0 0 e(2,1)
0 · · · e(n,1)

0

0 e(2,0)
1 · · · e(n,0)

1 0 e(2,1)
1 · · · e(n,1)

1
...

...
. . .

...
...

...
. . . · · ·

0 e(2,0)
k−1 · · · e(n,0)

k−1 0 e(2,1)
k−1 · · · e(n,1)

k−1

⎞
⎟⎟⎟⎟⎟⎠

.

(D4)

APPENDIX E: CALCULATION OF DUAL SPACES

The spaces S̃consistent and Ẽconsistent are the duals of the
realized spaces Ẽrealized and S̃realized, respectively. Here we
discuss how we calculate the consistent spaces from the
realized ones.

We start with the calculation of S̃consistent. By definition,
S̃consistent is the intersection of the geometric dual of Ẽ and
the set of all normalized GPT states; specifically, the set of
s ∈ Rk such that ∀e ∈ Ẽrealized : 0 ≤ s · e ≤ 1 and such that
s · u = 1. This definition (called an inequality represen-
tation) completely specifies S̃consistent. However, in order
to perform transformations on the space or calculate its
volume, it can be useful to have its vertex description as
well, which is a list of vertices that completely specify the
space’s convex hull. Finding a convex polytope’s vertex
representation given its inequality representation is called
the vertex enumeration problem [107].

To find the vertex representation of S̃consistent, we first
simplify its inequality representation. Since Ẽrealized is a
convex polytope, we do not need to consider every e in
Ẽrealized, but only the vertices of Ẽrealized. If we denote the
set of vertices of Ẽrealized by vertices

(
Ẽrealized

)
, then we can

replace the ∀e ∈ Ẽrealized in the definition of S̃consistent with
∀e ∈ vertices

(
Ẽrealized

)
. Calculation of vertices

(
Ẽrealized

)

is performed with the pyparma [108] package in Python
2.7.6. The calculation of the vertex description of S̃consistent
is performed with an algorithm provided by Avis and
Fukuda [107]. We use functions in pyparma [108], which
call the cdd library [109] to find the vertex description of
S̃consistent.

Finding the vertex description of Ẽconsistent from S̃realized

is done in an analogous way. Ẽconsistent is defined as the
geometric dual of the space that is the subnormalization
of S̃realized, {ws : s ∈ S̃realized, w ∈ [0, 1]}. The subnormal-
ization of S̃realized is also the convex hull of the union of the
GPT state vectors that make up the rows of S̃realized and the
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GPT state vector with s0 = · · · = sk−1 = 0 that represents
the state with normalization zero.

APPENDIX F: MAXIMAL CHSH INEQUALITY
VIOLATIONS WITH QUBITLIKE STATE SPACES

We here provide a proof of the fact that the optimal value
of the CHSH inequality when Bob’s system is described by
a qubitlike state and effect space is the same as the value
of the POM noncontextuality inequality for the same case,
provided that the latter is at least 3

4 , that is,

B
(Sw

qubit,Ew′
qubit)

= max
{

3
4

, C
(Sw

qubit,Ew′
qubit)

}
. (F1)

We begin with a geometric charachterization of Sw
qubit and

Ew′
qubit. Recalling the Bloch representation of Squbit and Equbit

from Sec. II B, and noting that the maximally mixed state
is represented by (1, 0, 0, 0), applying Dw from Eq. (19)
gives Sw

qubit as a ball of radius w, i.e., (1, s1, s2, s3) with√
s2

1 + s2
2 + s2

3 ≤ w. Similarly Ew′
qubit is a “Bloch diamond”

with radius w′, i.e., (e0, e1, e2, e3) with 0 ≤ e0 ≤ 1 and√
e2

1 + e2
2 + e2

3 ≤ w′ min{e0, 1 − e0}.
In particular, Ew′

qubit is the convex hull of (0, 0, 0, 0),
(1, 0, 0, 0) and effects of the form

( 1
2 , e1, e2, e3

)
with√

e2
1 + e2

2 + e2
3 = 1

2 w′. Thus this GPT shares with a qubit
the feature that all binary-outcome measurements are con-
vex combinations of (the analog of) projective measure-
ments. Specifically, the extremal binary-outcome measure-
ments consist of the trivial binary-outcome measurement
with effects (0, 0, 0, 0) and (1, 0, 0, 0), and the nontrivial
binary-outcome measurements with effects

( 1
2 , e1, e2, e3

)

and
( 1

2 , −e1, −e2, −e3
)

with
√

e2
1 + e2

2 + e2
3 = 1

2 w′.
Recall from Eq. (33) that we are interested in

maximizing

1
4

∑
a,b,x,y

δa⊕b,xypa|xsPB
a|x

· eb|MB
y

, (F2)

over {pa|x}, {sPB
a|x

} that satisfy the no-signaling constraint,
Eq. (32), and over {eb|MB

y
}.

For each b, Eq. (F2) is convex-linear in Bob’s effects
eb|MB

y
. Hence it suffice to maximize Eq. (F2) over the

convexly extremal binary-outcome measurements. In par-
ticular, Bob’s optimal strategy is one of two possibilities:
at least one of his measurements is trivial, or both of his
measurements are nontrivial.

First, consider the case where the optimum is achieved
when one of Bob’s measurements is trivial, i.e., has effects
(0, 0, 0, 0) and (1, 0, 0, 0). Clearly this measurement can be
implemented jointly with any other measurement, regard-
less of whether this other measurement is trivial or not. But

violating a bipartite Bell inequality such as CHSH requires
that both parties use incompatible measurements [110].
Hence the maximum value of Eq. (F2) for this case cannot
exceed Bloc = 3

4 . Indeed this value can be achieved with
both of Bob’s measurements being trivial, for example by
having Alice and Bob always output a = b = 0. Therefore,
in this case

B
(Sw

qubit,Ew′
qubit)

= 3
4

. (F3)

Now consider the case where the optimum is achieved
when both of Bob’s measurements are nontrivial, i.e., for
each (b, y), eb|MB

y
= ( 1

2 , e1, e2, e3
)

with
√

e2
1 + e2

2 + e2
3 =

1
2 w′. If we define ẽb|MB

y
:= (1/w′)(e1, e2, e3), then ẽb|MB

y
is a

vector of length 1
2 , which—according to the convention we

are using in this paper [55]—is what one has quantumly.
Similarly, because for each (a, x), sPB

a|x
= (1, s1, s2, s3)with√

s2
1 + s2

2 + s2
3 ≤ w, if we define s̃PB

a|x
:= 1

w (s1, s2, s3), then
s̃PB

a|x
has length at most 1, which is what one has quantumly.

Noting that
∑

a,b,x,y δa⊕b,xypa|x = ∑
a,x,y pa|x = ∑

x,y 1 = 4,
we have that Eq. (F2) becomes

1
2

+ ww′ 1
4

∑
a,b,x,y

δa⊕b,xypa|x s̃PB
a|x

· ẽb|MB
y

. (F4)

Furthermore, the no-signaling constraint Eq. (32) can be
written as

p0|0s̃PB
0|0

+ p1|0s̃PB
1|0

= p0|1s̃PB
0|1

+ p1|1s̃PB
1|1

. (F5)

In the case ww′ = 1, we recover the usual problem of
maximizing the CHSH value where Bob does projective
measurements on a qubit, for which the maximum value
BQ is given in Eq. (28). (The fact that we can optimize
over the ensembles of states to which Alice steers rather
than optimizing over the bipartite state and Alice’s mea-
surements follows from the Schrödinger-HJW theorem
[111,112].) Since the only place that w and w′ appear in the
problem is before the sum in Eq. (F4), and since ww′ > 0,
it is clear that an optimal strategy for our problem will
use the same pa|x, s̃PB

a|x
and ẽb|MB

y
as in the ww′ = 1 case.

Hence, if the optimal strategy uses a pair of nontrivial
measurements, then

(
B
(Sw

qubit,Ew′
qubit)

− 1
2

)
= ww′

(
BQ − 1

2

)
, (F6)

giving

B
(Sw

qubit,Ew′
qubit)

= 1
2

+ ww′ 1

2
√

2
(F7)

= C
(Sw

qubit,Ew′
qubit)

, (F8)

where we use Eq. (21).
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It follows that the optimal strategy achieves the maxi-
mum of Eq. (F3) and Eq. (F8), which establishes Eq. (F1).
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