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Although entanglement is necessary for observing nonlocality in a Bell experiment, there are entangled
states that can never be used to demonstrate nonlocal correlations. In a seminal paper Buscemi [Phys.
Rev. Lett. 108, 200401 (2012)] extended the standard Bell experiment by allowing Alice and Bob to be
asked quantum, instead of classical, questions. This gives rise to a broader notion of nonlocality, one
which can be observed for every entangled state. In this work we study a resource theory of this type of
nonlocality referred to as Buscemi nonlocality. We propose a geometric quantifier measuring the abil-
ity of a given state and local measurements to produce Buscemi nonlocal correlations and prove the
following results. First, we show that any distributed measurement that can demonstrate Buscemi non-
local correlations provides strictly better performance than any distributed measurement that does not
use entanglement in the task of distributed state discrimination, and that this advantage is quantified by
the geometric quantifier we propose, thus establishing its operational significance. Second, we prove a
quantitative relationship between Buscemi nonlocality, the ability to perform nonclassical teleportation,
and entanglement. In particular, we show that the maximal amount of Buscemi nonlocality that can be
generated using a given state is precisely equal to its entanglement content. Using this relationship, we
propose new discrimination tasks for which nonclassical teleportation and entanglement lead to an advan-
tage over their classical counterparts. Third, we interpret Buscemi nonlocality from the perspective of
information theory and show that it is related to a single-shot capacity of a quantum-to-classical bipartite
channel.
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I. INTRODUCTION

Quantum entanglement is one of the most char-
acteristic features of quantum theory [1]. During the
early years of its development, however, it was rec-
ognized mainly as a bizarre property that distinguished
it from classical physics. It was due to the discov-
ery of Bell nonlocality [2] and subsequent development
of Bell inequalities that allowed this distinction to be
formulated quantitatively and to verify the predictions
of quantum theory in an experimentally feasible setting.
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Bell nonlocality is today perceived as a phenomenon in
its own right and can be defined and tested irrespectively
of the underlying theory. In simple terms Bell nonlocality
refers to the situation when correlations shared between
spatially separated parties cannot be explained as arising
from a shared classical resource. The concept of Bell non-
locality is perhaps best understood in terms of a Bell exper-
iment, which is sometimes also called a “no-signaling
game.” In such a game, a referee distributes two physi-
cal systems to two spatially separated players, Alice (A)
and Bob (B). Upon receiving their systems, each player
is asked a question from a prearranged set of questions,
labeled x for Alice and y for Bob. Depending on which
of the questions was asked, Alice measures her system
locally and obtains an outcome a. Similarly, based on his
own question, Bob measures his share of the system and
obtains b. The data produced from the experiment can
be described using a conditional probability distribution
p(a, b|x, y), that is, the probability of producing outcomes
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a and b given the choice of measurements labeled by x
and y.

Importantly, not all entangled states can display
Bell nonlocality [3–5]. Quantum states can actually
demonstrate other forms of nonlocality that are not acces-
sible in a Bell experiment but that may become apparent in
different experimental settings. In a seminal work Buscemi
[6] generalized Bell’s original experiment by allowing
the referee to ask “quantum questions.” This amounts to
replacing the original set of classical (and therefore mutu-
ally orthogonal) questions {|x〉} with a set of quantum
states {|ωx〉} that need not be orthogonal. The correlation
data p(a, b|ωx, ωy) obtained in this modified experiment,
dubbed semiquantum nonsignaling games, differs signifi-
cantly from its archetypical counterpart. Perhaps the most
striking consequence is that the new experiment is pow-
erful enough to reveal the nonlocality of any entangled
quantum state, even the nonlocality that would be hidden
under a standard Bell test [6]. This semiquantum approach,
also called measurement-device independent (MDI), has
been a fruitful line of investigation during the last decade
[7–19].

In this work we propose interpreting the correlation data
obtained in a semiquantum nonsignaling game as an indi-
cator of a this type of nonlocality that we refer to as
Buscemi nonlocality. In order to formalize this notion, we
utilize the framework of quantum resource theories (QRTs)
[20,21]. This is a set of tools and techniques developed
to systematically quantify different properties of quan-
tum systems. QRTs can be classified in terms of objects
and resources studied in a given theory. Classification
of QRTs with respect to the object lead to the resource
theories of states [21], measurements [22–27], channels
[28–31], and boxes [32–35]. On the other hand, classify-
ing QRTs with respect to the type of the studied resource
leads to the resource theories of pure [36] and mixed-state
entanglement [37], coherence [38], purity [39,40], ather-
mality [41–46], nonlocality [47], asymmetry [48], mea-
surement incompatibility [49], teleportation [50,51], magic
[52], non-Markovianity [53–55] or non-Gaussianity [56],
amongst many more. Its worth mentioning that although
many QRTs use essentially the same mathematical formal-
ism, their physical implications can be genuinely different.
Hence, the wide applicability of the framework to oth-
erwise unrelated problems is a truly surprising aspect of
nature.

In this work, we focus on the quantum resource the-
ory of Buscemi nonlocality, which is an instance of the
resource theory from Refs. [34,35]. The natural object rel-
evant for this theory is a positive operator-valued measure
(POVM) performed by spatially separated parties that do
not communicate (distributed measurement). We investi-
gate a geometric measure that quantifies the amount of
Buscemi nonlocality contained within a given distributed
measurement termed robustness of Buscemi nonlocality

(RoBN). We then address Buscemi nonlocality as a prop-
erty of states, by considering the maximal amount of
Buscemi nonlocality that can be obtained using a given
state by any local set of measurements on Alice’s and
Bob’s side.

As our first and main result, we show that Buscemi
nonlocality has operational significance, by finding an
operational task for which Buscemi nonlocality is a natural
resource. This can be seen as akin to several seminal results
in the field of quantum information that showed the oper-
ational character of coherence [38], entanglement [56],
steering [57], or Bell nonlocality [58] in terms of experi-
mentally relevant information-processing tasks. Moreover,
our task gives rise to a complete family of monotones for
this resource theory, i.e., provides a sufficient and nec-
essary characterization of Buscemi nonlocality contained
in a distributed measurement. Consequently, the average
probability of guessing in these family of tasks can be
interpreted as a simple and complete set of “Buscemi
inequalities” that characterize nonlocality of distributed
measurements, in analogy with the celebrated Bell inequal-
ities characterizing nonlocality of states.

Our second main result concerns how Buscemi non-
locality relates to other types of nonclassical phenomena
studied in the literature: nonclassical teleportation and
entanglement. We show that the maximal value of RoBN
that can be achieved when Bob (Alice) is allowed to use
any measurement is precisely the so-called robustness of
teleportation (RoT) of a teleportation channel from Alice
(Bob) to Bob (Alice). On the other hand, optimizing RoBN
over all local measurements for both parties leads to the
robustness of entanglement of the state shared by Alice
and Bob. This result, despite its clarifying character being
of independent interest, leads to new operational tasks for
which both nonclassical teleportation and entanglement
are natural resources. These quantitative relationships fur-
ther expand the results presented in Refs. [47,56,59] by
proposing new discrimination tasks for which both entan-
glement and nonclassical teleportation provide advantage
over their classical (i.e., separable) counterparts.

As our third and final main result, we interpret Buscemi
nonlocality from the perspective of single-shot quantum
information theory. We show that Buscemi nonlocality,
when viewed as a property of a communication channel
between the sender (the referee) and receiver (Alice and
Bob), quantifies the maximal amount of information that
can be sent reliably when the channel is used only once (the
so-called single-shot capacity of a quantum channel). This
establishes an important link between Buscemi nonlocality
and quantum communication.

The paper is organized as follows. In Sec. II we cover
the relevant formalism, outline the idea of characterizing
nonlocality in terms of nonsignaling games, and recall the
robustness quantifier of Buscemi nonlocality. In Sec. II
B we find its operational interpretation in terms of the
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advantage in the task of distributed state discrimination
(DSD). In Sec. III A we explore the relationship between
Buscemi nonlocality and the concepts of nonclassical
teleportation and entanglement. Finally, in Sec. II B we
describe a tangential view of RoBN from the perspective of
single-shot information theory. We conclude with Sec. IV
where we summarize our findings and highlight several
open questions.

II. FRAMEWORK

In what follows we denote a local bipartite measure-
ment on Alice’s side (system AA′) with M

A = {M AA′
a },

where each M AA′
a is a positive semidefinite operator that

adds up to the identity (POVM). Similarly, we use M
AB

to indicate that the measurement is nonlocal, i.e., we treat
systems labeled with different letters, e.g., A and B, as
two spatially separated parties. We are interested in the
most general type of measurement that can be performed in
this bipartite scenario without the aid of classical or quan-
tum communication. This can be realized by (i) allowing
Alice and Bob to apply arbitrary bipartite measurements in
their labs, respectively denoted M

A = {M AA′
a } and M

B =
{M B′B

b }, where a ∈ {1, . . . , oA} and b ∈ {1, . . . , oB} denote
Alice’s and Bob’s outcomes, and (ii) allowing the two par-
ties to share a quantum state ρA′B′

. In this way Alice and
Bob can store and share all types of classical information
(e.g., classical memory or measurement strategy), as well
as quantum information (i.e., shared entanglement). We
denote such a measurement with M

AB = {M AB
ab }, where the

corresponding POVM elements are of the general form

M AB
ab = trA′B′[(M AA′

a ⊗ M B′B
b )(1A ⊗ ρA′B′ ⊗ 1B)]. (1)

Since the sets of all quantum states and quantum mea-
surements are both convex sets, it follows that the set of
measurements of the form (1) is also a convex set. We refer
to measurements of the form (1) as distributed measure-
ments and denote the set of all such measurements by RBN.
These measurements are the main (resourceful) objects of
the resource theory we consider here. Whenever the ele-
ments of measurement M

AB can be written as in Eq. (1) for
some choice of shared state and local measurements, we
write M

AB ∈ RBN. Later in Sec. II B we formally define
the set of free measurements of this resource theory, which
turn out to be distributed measurements with a separable
shared state. In Fig. 1 we illustrate a distributed mea-
surement and describe the relationship between different
subsystems. These types of objects appear naturally in a
wide range of contexts when studying nonlocal effects in a
MDI setting [6,8,14,60].

We now specify the most general class of operations that
the separated parties in A and B can perform, without com-
municating, to improve the properties of their distributed
measurement M

AB = {M AB
ij }, where indices i ∈ {1, . . . , oA}

FIG. 1. A schematic diagram of a distributed measurement
M

AB composed of local measurements for Alice M
A = {M AA′

a },
for Bob M

B = {M B′B
b }, and a state ρA′B′

shared between them.
This is the most general type of measurement that Alice and
Bob can perform in a distributed scenario that does not allow
for communication.

and j ∈ {1, . . . , oB} describe measurement outcomes. The
free operations for the QRT of Buscemi nonlocality are the
so-called local operations and shared randomness (LOSR)
[32–35]. There, Alice and Bob are allowed to share any
amount of classical memory described by a random vari-
able λ. Formally, this is specified by providing a prob-
ability distribution p(λ) that is available to both parties.
Moreover, before measuring their systems both parties are
allowed to locally perform any completely positive and
trace-preserving map, potentially conditioned on the value
of the shared memory, i.e., we allow for applying Eλ on
Alice’s and Nλ on Bob’s side. Finally, the parties are
allowed to postprocess their measurement outcomes using
arbitrary classical channels p(a|i, λ) and p(b|j , λ) to pro-
duce their final guesses. This procedure leads to the most
general type of LOSR operation that can be performed on a
measurement of form (1) [34,35]. In what follows we refer
to this as quantum simulation.

Definition 1 (Quantum simulation). A quantum simulation
of a bipartite measurement M = {Mij } with a subroutine

S = {p(λ), p(a|i, λ), p(b|j , λ), Eλ,Nλ} (2)

is a transformation that maps the POVM elements of M

into

M ′
ab =

∑

i,j ,λ

p(λ)p(a|i, λ)p(b|j , λ)(E†
λ ⊗ N †

λ )[Mij ], (3)

where E† denotes the (unique) dual map to E .
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In other words, any action that can be performed by
Alice and Bob in their labs without access to commu-
nication can be described by some quantum simulation
subroutine.

Quantum simulation induces a natural preorder on the
set of all bipartite measurements. Formally, a preorder is
an ordering relation that is reflexive (a � a) and transi-
tive (a � b) and (b � c) implies (a � c). Here the preorder
induced by quantum simulation will be denoted by “�q,”
i.e., M �q M

′ if and only if there exists a subroutine S that
allows M to simulate M

′, i.e., for the two measurements M

and M
′, condition (3) in Definition 1 holds. The notion of

simulation will turn out to be relevant for the operational
tasks introduced later on.

A. Nonlocality from the perspective of no-signaling
games

Bell nonlocality can be best understood from the per-
spective of no-signaling games, which also provide an
intuitive understanding of Bell inequalities. Such games
have been extensively studied in computer science for a
long time, where they are a special instance of interactive
proof systems [61].

The standard scenario of a no-signaling game involves
two cooperating players (Alice and Bob) who play the
game against a third party, the referee. The referee chooses
a question x ∈ X for Alice and y ∈ Y for Bob according
to some probability distribution p(x, y) : X × Y → [0, 1],
where X and Y denote finite sets of questions. With-
out communicating, and, therefore, without knowing what
question the other player was asked, Alice (Bob) returns
an answer a ∈ A (b ∈ B) from a finite set of possible
answers A (B). Based on the questions asked and the
received answers, the referee determines whether the play-
ers win or lose the game, according to a prearranged set
of rules. Such rules are typically expressed using a func-
tion V : A × B × X × Y → [0, 1], where V(a, b, x, y) = 1
if and only if Alice and Bob win the game by answering a
and b for questions x and y.

Alice and Bob know the rules of the game, that is,
they know the function V and the distribution of ques-
tions p(x, y). Before the game starts they can agree on
any strategy that provides them with the best chances
of winning. However, once the game starts, they are not
allowed to communicate any more. In the classical setting
any strategy they can possibly devise can be encoded in
a classical memory system, represented by a shared ran-
dom variable λ and a probability distribution p(λ). In the
more general quantum case, any possible strategy can be
described by a shared quantum state ρ and a choice of local
measurements.

In order to relate the above game setting with Bell
inequalities, note that the referee’s questions x and y can
be thought of as labels for different measurement settings.

Similarly, the answers correspond to the outcomes of local
measurements. Any measurement strategy (be it classical
or quantum) leads to a conditional probability p(a, b|x, y)

that describes when Alice and Bob give answers a and b
for questions x and y, respectively. In the language of Bell
inequalities, p(a, b|x, y) determines the probability that
Alice and Bob obtain measurement outcomes a and b when
performing the measurements labeled by x and y. The aver-
age probability that Alice and Bob win, maximized over all
possible strategies, can be written as

pV
guess(G, M) =

∑

a,b,x,y

p(x, y)p(a, b|x, y)V(a, b, x, y), (4)

where G = {p(x, y), V} defines the game and the con-
ditional probabilities p(a, b|x, y) are related to the local
measurements {M A

a|x} for Alice and {M B
b|y} for Bob, via the

Born rule

p(a, b|x, y) = tr[(M A′
a|x ⊗ M B′

b|y)ρ
A′B′

]. (5)

With this in mind, Bell inequalities can be thought of
as upper bounds on the average guessing probability
pguess(G, M) with which Alice and Bob can win a nonlocal
game G using a classical strategy (i.e., when ρA′B′

is a sep-
arable state), optimized over all local measurements {M A′

a|x}
and {M B′

b|y}. A violation of a Bell inequality corresponds to
the situation when there is a quantum strategy that uses an
entangled shared state and outperforms the best classical
strategy in a particular game G.

Importantly, there are entangled states that can never
violate any Bell inequality [3–5]. In the language of no-
signaling games this means that there are states ρA′B′

that,
although entangled, can never outperform the best classi-
cal strategy. However, Buscemi [6] showed that, when we
modify the rules of the no-signaling game and allow the
referee to ask quantum instead of classical questions, then
all entangled states can outperform the best classical strat-
egy in some nonlocal game, or equivalently, violate the
corresponding Bell inequality.

Before going into the details, let us note that “asking
classical questions” can also be mathematically modeled
by sending states from a collection of orthogonal states
from a fixed basis, e.g., {|x〉} such that

∑
x |x〉〈x| = 1

and 〈x|x′〉 = δx,x′ and similarly for {|y〉}. Such states are
perfectly distinguishable and hence Alice and Bob, after
receiving their questions, may choose their measurements
unambiguously. This can be viewed as giving Alice and
Bob the ability to perform controlled bipartite measure-
ments M

AA′ = {M AA′
a } and M

B′B = {M B′B
b } with the POVM

elements

M AA′
a =

∑

x

|x〉〈x|A ⊗ M A′
a|x, (6)
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M B′B
b =

∑

y

M B′
b|y ⊗ |y〉〈y|B. (7)

If Alice and Bob share a quantum state ρA′B′
then effec-

tively they have access to a distributed measurement M
AB

of the form (1). This measurement is then applied to the
“questions” they receive, which we denote here by ωA

x =
|x〉〈x|A for Alice and ωB

y = |y〉〈y|B for Bob. Therefore,
their behavior p(a, b|ωx, ωy) can be written as

p(a, b|ωx, ωy) := tr[M AB
ab (ωA

x ⊗ ωB
y )]

= tr[M AB
ab (|x〉〈x|A ⊗ |y〉〈y|B)]

= tr[(M A′
a|x ⊗ M B′

b|y)ρ
A′B′

]

= p(a, b|x, y). (8)

With this in mind we can now formalize the process of
asking “quantum questions.” This happens precisely when
the states sent by the referee are chosen from an arbi-
trary collection of states {ωx}. Crucially, these states need
not be distinguishable and so each of them can be in a
superposition of different orthogonal states.

Note, however, that using quantum states as inputs to
the distributed measurement M

AB with local measurements
of the forms (6) and (7) can only lead to a probabilistic
version of the standard no-signaling game, i.e., Alice and
Bob randomize their choices of measurements according to
the respective overlaps p(x′|x) = 〈x′|ωx|x′〉 and p(y ′|y) =
〈y ′|ωy |y ′〉. Thus, in order to use the power of asking gen-
uinely quantum questions, one needs to allow for arbitrary
bipartite local measurements on both sides. This leads to
the general form of a distributed measurement (1) with the
local POVM elements {M AA′

a } and {M BB′
b } being now fully

general bipartite measurements, and therefore a Buscemi
behavior is of the form

p(a, b|ωx, ωy)

= tr[(M AA′
a ⊗ M B′B

b )(ωA
x ⊗ ρA′B′ ⊗ ωB

y )]. (9)

The above extension of a no-signaling game leads to a
novel type of nonlocality that was noticed for the first
time in Ref. [6]. Here we refer to this type of nonclassi-
cal correlation as Buscemi nonlocality. In this language the
main result of Ref. [6] states that all entangled states are
Buscemi nonlocal.

In what follows we present a consistent way of quantify-
ing Buscemi nonlocality. First we define a proxy quantity
that quantifies how much Buscemi nonlocality can be
evidenced using a fixed distributed measurement. This
provides a natural quantifier for the resource theory of
Buscemi nonlocality of distributed measurements, which
is our main focus here. Optimizing this quantity over all
choices of local measurements for Alice and Bob gives

rise to a quantity that measures the maximal degree of
Buscemi nonlocality that can ever be obtained using a
given quantum state.

B. Quantitative measure of Buscemi nonlocality

The fact that Alice and Bob may share entanglement
in Eq. (1) and use it to perform a measurement means
that the measurement is inherently nonlocal and can lead
to interesting correlations, even when measured on com-
pletely independent systems. Our central question then is
how to quantify this nonlocality present in a bipartite mea-
surement. To build a valid reference point, we first consider
the case when the measurement does not lead to any
type of quantum correlation. This means that the behavior
p(a, b|ωx, ωy) = tr[M AB

ab (ωA
x ⊗ ωB

y )] results from the mea-
surement {M AB

ab } formed using a separable shared state
ρA′B′ ∈ SEP, where SEP denotes the set of all separable
operators. Any separable state can be written as

ρA′B′ =
∑

λ

p(λ)ρA′
λ ⊗ ρB′

λ , (10)

where p(λ) is a classical probability distribution corre-
sponding to a shared random variable λ and {ρA′

λ } and {ρB′
λ }

are collections of local quantum states. The associated
distributed measurement from Eq. (1) takes the form

M AB
ab =

∑

λ

p(λ)M A
a|λ ⊗ M B

b|λ, (11)

where we have denoted M A
a|λ := trA′[M AA′

a (1A ⊗ ρA′
λ )] for

Alice and M B
b|λ := trB′[M B′B

b (ρB′
λ ⊗ 1B)] for Bob. This is

the most general classical measurement scheme that can
be realized if Alice and Bob have access only to classical
randomness λ and the ability to locally prepare quantum
states in their labs. The set of all measurements that can be
written as in Eq. (11) will be denoted by FBN. These mea-
surements are the most natural candidates for free objects
in the resource theory of Buscemi nonlocality. Note that
measurements from this set have POVM elements that
are all separable (SEP) and admit a quantum realization
(RBN), i.e., can be written as in Eq. (1) for some choice of
local measurements and shared state. Such measurements
can never demonstrate Buscemi nonlocality, regardless of
the state being measured.

In order to better understand the difference between the
sets RBN (all distributed measurements) and FBN (free-
distributed measurements), let us consider the following
simple example.

Example 1. Let Alice and Bob share a two-qubit Werner
state,

ρA′B′ = pφA′B′
+ + (1 − p)

1A′B′

4
, (12)
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where p ∈ [0, 1], the state φ+ = |φ+〉〈φ+|, and |φ+〉 :=
(1/

√
2)(|0〉|0〉 + |1〉|1〉) is a maximally entangled state.

It is widely known that the Werner state (12) is separa-
ble for all p ≤ 1

3 . Let {Ua} for a = 1, . . . , 4, be a set of
Pauli operators. Consider a measurement M

A = {M A′A
a }

with elements

M A′A
a = (UA′

a ⊗ 1A)φA′A
+ (UA′

a ⊗ 1A)†. (13)

Defining an analogous measurement for Bob M
B =

{M BB′
b } and using definition (1) allows us to write the dis-

tributed measurement M
AB = {M AB

ab } for Alice and Bob
as

M AB
ab = (UA′

a ⊗ UB′
b )ρA′B′

(UA′
a ⊗ UB′

b )† (14)

= pφA′B′
ab + (1 − p)

1A′B′

4
, (15)

where φA′B′
ab := (UA′

a ⊗ UB′†
b )φA′B′

+ (UA′
a ⊗ UB′†

b )†. Clearly,
φA′B′

ab is again a maximally entangled state and there-
fore each POVM element of M

AB is a Werner state, up
to local unitaries. Since entanglement is preserved under
local unitary operations, all elements of the distributed
measurement M

AB are entangled operators for p > 1
3 .

We can therefore conclude that, for p ≤ 1
3 , the dis-

tributed measurement M
AB can be written as in Eq. (11),

which, by definition, means that M
AB ∈ FBN. Moreover,

for p > 1
3 , we know that each M AB

ab /∈ SEP and therefore
M

AB /∈ FBN. This implies that this distributed measure-
ment is a resourceful measurement in the resource theory
of Buscemi nonlocality.

A natural question at this point is: given an arbitrary
bipartite measurement M

AB ∈ RBN, how can its nonlocal
properties be quantified, in particular its ability to gener-
ate Buscemi nonlocality? For this purpose, it is useful to
define the following quantity.

Definition 2 (Robustness of Buscemi nonlocality [14]).
The robustness of Buscemi nonlocality of a distributed
measurement M

AB = {M AB
ab } is the solution to the opti-

mization problem

RBN(MAB) = min r (16a)

such that M AB
ab + rN AB

ab = (1 + r)OAB
ab for all a, b,

(16b)

{OAB
ab } ∈ FBN, {N AB

ab } ∈ RBN. (16c)

Although this may not seem obvious at first sight, the
above is a convex optimization problem and hence can
be efficiently solved numerically [62–64] (see Appendix
A for details). Moreover, due to the duality of convex

optimization problems, the dual formulation of the above
has several nice properties that will be useful for our pur-
poses. Robustness-based quantifiers were introduced in
Refs. [37,65] as entanglement quantifiers and since then
successfully applied in a wide range of QRTs. The above
variant is closely related to the MDI-nonlocality robust-
ness introduced in Ref. [14] at the level of probabilities
(9). In particular, the two quantities are equivalent when
the sets of input states {ωx} and {ωy} are tomographically
complete. It is also worth mentioning that the quantity
defined in Definition 2 is not a particular case of the
robustness defined for general convex resource theories of
measurements [26,66]. In particular, in Definition 2 the
optimization is over all measurements {N AB

ab } and {OAB
ab }

that have a quantum realization in the no-signaling sce-
nario, whereas the quantifiers considered in [26] allow
for arbitrary measurements (in particular, also those that
require communication). In other words, the above general
approach is valid only for measurements performed in a
single location, whereas here we are explicitly interested in
a distributed, multipartite scenario. Hence, our robustness
measure is a genuinely different quantity than the gener-
alized robustness of measurements studied in the above
papers.

In Appendix A we derive the dual formulation of the
RoBN, which will be used to study its operational charac-
terization. Furthermore, we note that RoBN possesses the
following three natural properties that one would expect
from a reasonable measure of nonlocality.

(i) It is faithful, meaning that it vanishes if and only if
the measurement is classical, i.e.,

RBN(MAB) = 0 ⇐⇒ M
AB ∈ FBN. (17)

(ii) It is convex, meaning that having access to two dis-
tributed measurements M

AB
1 and M

AB
2 one cannot

obtain a better one by using them probabilistically,
i.e., for M

AB = pM1 + (1 − p)M2 with 0 ≤ p ≤ 1,
we have

RBN(MAB) ≤ pRBN(MAB
1 ) + (1 − p)RBN(MAB

2 ).
(18)

(iii) It is monotonic (nonincreasing) under all quantum
simulations. That is, if N

AB can be simulated by M
AB

using some quantum simulation strategy (2) then

RBN(NAB) ≤ RBN(MAB). (19)

These properties were proven in Ref. [35] for a more
general class of objects. For completeness, we give an
independent proof in Appendix B.

Finally, we introduce a quantity that measures how
much Buscemi nonlocality can be generated by using a
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fixed shared state. In this way we define the robustness of
Buscemi nonlocality of a state ρAB as

RBN(ρAB) := max
MA,MB

RBN(MAB), (20)

where the optimization ranges over all local measurements
on Alice’s and Bob’s side, M

AB is a distributed measure-
ment of the form (1), and RBN(MAB) is the robustness
quantifier defined in Eq. (16). In this way the quantity from
Eq. (20) is only a function of the shared state, rather than
the whole distributed measurement. It quantifies the maxi-
mal “amount” of nonlocality of the corresponding behavior
{p(a, b|ωx, ωy)} that can be generated using a fixed ρA′B′

,
arbitrary local measurements M

A, M
B, and arbitrary input

states {ωx}, {ωy}.

III. RESULTS

A. Operational characterization of RoBN

In the previous section we introduced a measure of
Buscemi nonlocality quantifying how “close” a given mea-
surement is to that which would arise from using only
local measurements and shared randomness, i.e., a mea-
surement of the form (11). In what follows we show that
RoBN quantifies the advantage offered by a fixed dis-
tributed measurement over all classical measurements in
a special type of state discrimination task relevant in the
distributed scenario.

Let us now consider a task that is a special case of the
no-signaling game described in Sec. II A. In this case we
choose the function V(a, b, x, y) = δax δby . This means that
Alice and Bob win if they both manage to guess the val-
ues of x ∈ X and y ∈ Y that were supplied to them by
the referee. This is a variation of the standard state dis-
crimination task in which a single player has to guess the
realization of a single random variable x. Interestingly, due
to the assumption that the players cannot communicate,
distributed state discrimination cannot be reduced to the
standard state discrimination task.

Task 1 (Distributed state discrimination). The task con-
sists of the following steps.

(1) The referee chooses a bipartite state from the
ensemble {p(x, y), σxy} according to p(x, y) and dis-
tributes it among parties by sending one part of it to
Alice and the other part to Bob.

(2) After receiving their systems, Alice and Bob can
preprocess them using arbitrary channels {EA

λ } and
{N B

λ }, potentially conditioned on a shared random-
ness λ.

(3) Alice and Bob apply fixed local measurements
M

AA′ = {M AA′
i } and M

B′B = {M AA′
j } to their shares

of the state σxy and a part of the shared state ρA′B′
.

They obtain outcomes i and j , respectively, which
they can postprocess to produce their guesses a and
b.

(4) Alice and Bob communicate their guesses a and b to
the referee and win the game if they both correctly
guess, i.e., when a = x and b = y.

Note that the second and third steps can also be formu-
lated as allowing Alice and Bob to apply any quantum
simulation (3) to their distributed measurement M

AB ∈
RBN. Hence, the two players are effectively simulating
a distributed measurement, denoted by N

AB ≺ M
AB. The

average probability of discriminating states in this dis-
crimination game as specified by G = {p(x, y), σxy} can be
expressed as

pDSD
guess(G, MAB)

= max
NAB≺qMAB

∑

a,b,x,y

p(x, y)tr[Nabσxy]δxaδyb, (21)

where the optimization ranges over all measurements
N

AB = {Nab} that can be quantum simulated using M
AB.

Let us now consider two different situations: (i) a clas-
sical scenario in which the distributed measurement per-
formed by Alice and Bob is classical, i.e., M

AB ∈ FBN,
and (ii) a quantum scenario in which the measurement per-
formed by Alice and Bob is genuinely quantum, i.e., it
cannot be written as in Eq. (11).

In the classical case (i) the optimal average probability
of guessing which state from the ensemble {p(x, y), σxy}
was provided can be expressed as

pDSD
guess(G) = max

NAB∈FBN

pDSD
guess(G, NAB). (22)

Note that the above optimization has to be performed over
the convex set of measurements of the form (11), which is
a subset of all separable measurements.

In the quantum case (ii) the above score can be further
improved by exploiting Buscemi nonlocality contained in
an entangled state that forms the distributed measurement
M

AB. The maximal amount by which quantum score out-
performs classical score can be quantified by studying the
ratio

max
G

pDSD
guess(G, MAB)

pDSD
guess(G)

. (23)

In Appendix C we show that the maximal advantage that
Alice and Bob can achieve when using M

AB ∈ RBN over
the best classical distributed measurement is precisely
equal to the robustness of Buscemi nonlocality defined in
Eq. (16). Formally, we have the following relation.
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Result 1. Let M
AB = {M AB

ab } be a distributed measure-
ment and let G = {p(x, y), σxy} be an ensemble of bipartite
states. Then

max
G

pDSD
guess(G, MAB)

pDSD
guess(G)

= 1 + RBN(MAB). (24)

This provides a direct operational meaning for Buscemi
nonlocality. The proof of Result 1 consists of three parts.
First, we use the primal formulation of problem (16) to
show that the advantage from Eq. (24) is always upper
bounded by the RoBN. Second, we identify a set of prop-
erties that characterize all distributed measurements and
add them to the optimization problem (16) as superfluous
constraints. Finally, using this characterization, we obtain
a dual formulation of the problem that, after some simplifi-
cations, allows us to extract the optimal ensemble of states
{p(x, y), σxy} that achieves the optimum in Eq. (24). The
full proof of this result is given in Appendix C.

The task of distributed state discrimination is a partic-
ular instance of a no-signaling game. In this respect we
can further consider an advantage (23), with the aver-
age score psucc(G, MAB) given by Eq. (4), and optimize it
over all ensembles G and scoring functions V(a, b, x, y).
This would allow us to find the largest possible advan-
tage that can be achieved in any possible nonsignaling
game. In this way Result 1 naturally leads to the following
corollary.

Corollary 1. Let M
AB and G be defined as above and let

V(a, b, x, y) : A × B × X × Y → [0, 1]. Then

max
V,G

pV
guess(G, MAB)

maxσ∈ SEP max
NA,NB pV

guess(G, NAB)
= 1 + RBN(MAB),

(25)

where the maximization in the denominator is over all dis-
tributed measurements N

AB that use a separable shared
state σ A′B′ ∈ SEP. In this way we can also interpret RoBN
as a quantifier of the Buscemi nonlocality contained within
a given distributed measurement.

B. Connecting Buscemi nonlocality with other notions
of nonclassicality

In this section we show that Buscemi nonlocality can be
viewed as a type of nonlocality that is strictly stronger than
two other well-known notions of nonlocal correlations:
entanglement and nonclassical teleportation.

It is worth mentioning that the authors of Ref. [34]
also studied the relationship between Buscemi nonlocality,
nonclassical teleportation, and entanglement by studying a
partial order between objects representing these resources:
distributed measurements for Buscemi nonlocality. tele-
portation instruments for nonclassical teleportation, and

bipartite states for entanglement. Here we address an anal-
ogous problem using a more direct approach: we relate
robustness quantifiers of these resource theories and find
a direct and simple relationship between them.

Recall that a distributed measurement is composed of
two local bipartite measurements and a shared state. This
setting is very similar to the teleportation protocol in which
Alice locally measures an input state provided by the ref-
eree and a part of an entangled state that she shares with
Bob. Since the resource used in the teleportation task is
effectively “contained” in the resource that is used in the
task of distributed state discrimination, it is natural to ask
if we can see some connection between these two tasks.
In particular, how is the ability of performing nonclas-
sical teleportation related to the ability of demonstrating
Buscemi nonlocality? Furthermore, since teleportation is
intrinsically related with entanglement [51], Buscemi non-
locality should also be quantitatively related to the entan-
glement content of a state. In the next section we show
that in fact these three notions of nonclassical correlations
are inherently connected and all describe different types of
nonlocality.

1. Buscemi nonlocality and nonclassical teleportation

Quantum teleportation is one of the most important
and thought-provoking discoveries in the whole quantum
information theory. In the ideal version of the teleporta-
tion protocol proposed by Bennett et al. [67] two players,
Alice and Bob, share a maximally entangled state. A third
party, the referee, gives Alice an unknown quantum state.
She then performs a Bell-state measurement on that sys-
tem and her share of the entangled state and communicates
her measurement result to Bob. With this new information,
Bob applies an appropriate correcting unitary to his share
of the entangled state, transforming it into the state that
was initially given to Alice. This protocol can be naturally
generalized to more realistic scenarios in which the shared
entangled state and measurements performed by Alice are
arbitrary.

A teleportation experiment can also be viewed as a way
of testing nonlocality of a pair of objects: a state and
measurement. In particular, the “teleportation resource”
in that case is the teleportation channel or, more pre-
cisely, a collection of subchannels that form a teleportation
instrument constructed using the shared state and Alice’s
measurement. Recall that an instrument E = {Ea} for {a =
1, . . . , oA} is a collection of oA completely positive and
trace nonincreasing linear maps Ea, so-called subchannels,
such that

∑oA
a=1 Ea is a channel. It was recently shown

that the nonlocality present in a teleportation instrument
can be exploited in several quantum-information theoretic
tasks [59]. In order to relate nonclassical teleportation with
Buscemi nonlocality, we first introduce the notion of a
teleportation instrument.
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Definition 3 (Teleportation instrument). A teleportation
instrument ΛA→B′

from Alice to Bob is a collection of
subchannels {�A→B′

a } defined as

�A→B′
a [ωA] = trAA′[(M AA′

a ⊗ 1B′
)(ωA ⊗ ρA′B′

)]. (26)

The above notion fully captures the type of channel
obtained during the generalized teleportation experiment.
For some applications, it may be easier to work with states
rather than subchannels. In that case for a collection of
input states {ωA

x } one can consider the so-called teleporta-
tion assemblages (teleportages) {τB′

a|x}, where the elements
of the assemblage are given by τB′

a|x := �A→B′
a [ωA

x ].
Note that any teleportation instrument satisfies its own

“no-signaling” constraint, which now reads
∑

i �i
A→B′

[ωA]
= trA′[ρA′B′

] for all input states ωA. In fact, it can also
be shown that teleportation instruments are the most gen-
eral type of no-signaling instruments acting between two
parties [59]. A teleportation instrument ΛA→B′

is said to
be classical (or free) if it describes a teleportation experi-
ment performed using a separable shared state. We can find
a general form of a classical teleportation instrument by
taking ρA′B′ = ∑

λ pλρ
A′
λ ⊗ ρB′

λ . The associated (classical)
teleportation instrument reads

�c
a(ωx) =

∑

λ

pλtrAA′[(M AA′
a ⊗ 1B)(ωA

x ⊗ ρA′
λ ⊗ ρB′

λ )]

=
∑

λ

pλp(a|x, λ)ρB′
λ , (27)

where p(a|x, λ) = tr[M AA′
a (ωA

x ⊗ ρA′
λ )]. This is the most

general classical teleportation scheme that can be realized
if Alice and Bob have access only to classical randomness
λ and the ability to locally prepare quantum states in their
labs. In what follows we denote the set of all instruments
that can be written as in Eq. (27) by FT. If a teleporta-
tion instrument cannot be written in this way, we refer to
it as “nonclassical” and denote the set of all such instru-
ments by RT. The quantity that quantitatively measures
the amount of nonclassicality associated with a given tele-
portation instrument is called robustness of teleportation
[51]. For a teleportation instrument ΛA→B′ = {�A→B′

a }, it is
defined as

RT(Λ
A→B′

) = min
r,{
A→B′

a },{�A→B′
a }

r (28a)

such that �A→B′
a + r�A→B′

a = (1 + r)
A→B′
a for all a,

(28b)

{
A→B′
a } ∈ FT, {�A→B′

a } ∈ RT. (28c)

It turns out that the above is also a convex optimiza-
tion problem that can be seen by formulating the con-
straints using the Choi-Jamiołkowski isomorphism (see

Appendix D for details). With the above notation we can
now address our next result that relates Buscemi nonlocal-
ity with nonclassical teleportation.

Result 2. Let M
AB be a distributed measurement com-

posed of local bipartite measurements M
A and M

B and
a shared state ρA′B′

. Then

max
MB

RBN(MAB) = RT(Λ
A→B′

), (29)

where the optimization is over all local measurements
M

B = {M B′B
b } for Bob. An analogous result holds for a

teleportation instrument ΛB→A′
if we instead optimize the

left-hand side of Eq. (29) over all local measurements for
Alice.

The proof of this result is given in Appendix D. Let us
now use this result to show a new operational interpretation
of the above teleportation quantifier.

Consider a task involving two players, Alice and Bob,
who have access to a teleportation instrument ΛA→B′

con-
necting their labs. Let the referee be in possession of an
ensemble of bipartite quantum states G = {p(x, y), σxy}.
Just as before, the players may discuss their strategy before
the game begins. This means that they may use a shared
classical memory λ with a corresponding distribution p(λ)

and, conditioning on it, Alice may apply one of the chan-
nels {EA

λ } to the input of the teleportation instrument and
Bob may apply {N B′

λ } to the output. The crucial difference
here between the standard teleportation protocol is that
Bob does not know Alice’s measurement outcome and so
his correction cannot depend on it. The task posed between
Alice and Bob is the following.

Task 2 (Teleportation-assisted state discrimination [TSD]).
The task consists of the following steps.

(1) The referee chooses a bipartite state from the
ensemble G = {p(x, y), σxy} according to p(x, y)

and distributes it among parties by sending one part
of it to Alice and the other part to Bob.

(2) Alice sends her part of the state to Bob using a tele-
portation instrument ΛA→B′

. She is also allowed to
preprocess her part of the state conditioned on the
classical randomness λ using a collection of chan-
nels {N A

λ }. Based on the outcome of the teleporta-
tion instrument i and potentially λ, she produces a
guess a via p(a|i, λ).

(3) Bob applies a correction {EB′
λ } conditioned on

the value of a shared random variable λ to the
teleported state he received from Alice. He then
measures both parts of the system using an arbi-
trary measurement M

B = {M BB′
b } and produces a

guess b.
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(4) Alice and Bob win the game if they both simultane-
ously guess x and y.

The average probability of guessing in the above dis-
crimination task can be expressed as

pTSD
guess(G, ΛA→B′

)

= max
MB

max
Φ≺qΛ

∑

a,b,x,y

p(x, y)tr[M B′B
b (�A→B′

a ⊗ idB)σ AB
xy ]δxaδyb,

(30)

where the optimization ranges over all measurements
M

B = {M B′B
b } on Bob’s side and all teleportation instru-

ments ΦA→B′ = {�A→B′
a } that can be quantum simulated

using the instrument ΛA→B′ = {�A→B′
i }. The elements of

such a simulated instrument are of the form

�A→B′
a [·] =

∑

i,λ

p(λ)p(a|i, λ) ◦ N A
λ ◦ �A→B′

i ◦ EB′
λ [·]

(31)

for some choice of local channels {EB′
λ }, {N A

λ } and proba-
bilities p(a|i, λ), p(λ).

The optimal average probability of guessing that can be
achieved using only classical resources (i.e., a separable
shared state, meaning that the teleportation instrument is
classical) can be written as

pTSD
guess(G) = max

FA→B′ ∈FT

pTSD
guess(G, FA→B′

), (32)

where F
A→B′

stands for a classical teleportation instrument
from Alice to Bob. The maximal advantage that can be
offered by any resourceful teleportation instrument ΛA→B′

in the task of TSD is precisely equal to the quantifier
of nonclassical teleportation defined in Eq. (28). This is
captured by the following result.

Result 3. Let ΛA→B′ = {�A→B′
a } be a teleportation instru-

ment from Alice to Bob and let G = {p(x, y), σxy} be an
ensemble of bipartite states. Then the following statement
holds:

max
G

pTSD
guess(G, ΛA→B)

pTSD
guess(G)

= 1 + RT(Λ
A→B). (33)

Proof. Consider maximizing both sides of Eq. (24) over all
measurements M

B on Bob’s side. Because of Result 2, the
right-hand side of Eq. (24) is equal to 1 + RT(ΛA→B′

). On
the other hand, note that we can interchange maximization

over G with maximization over M
B. Since pDSD

guess(G) does
not depend on M

B, the left-hand side of Eq. (24) becomes

max
G

maxMB pDSD
guess(G, MAB)

pDSD
guess(G)

= max
G

pTSD
guess(G, ΛA→B′

)

pDSD
guess(G)

= max
G

pTSD
guess(G, ΛA→B′

)

pTSD
guess(G)

,

(34)

where the last equality follows since

pDSD
guess(G) = max

FAB∈FBN

pDSD
guess(G, FA→B′

)

= max
FA→B′ ∈FT

max
MB

pTSD
guess(G, FA→B′

)

= pTSD
guess(G). (35)

This completes the proof. �

2. Buscemi nonlocality and entanglement

Let us now explore the link between Buscemi nonlocal-
ity, which we defined as a property of a bipartite state and
local measurements, and entanglement (a property of the
state only). Among the large variety of known entangle-
ment quantifiers [1,68–74], we are going to choose the one
that most naturally relates to the RoBN—the so-called gen-
eralized robustness of entanglement (RoE), denoted here
by RE(ρ). This entanglement quantifier was considered for
the first time in Ref. [37] and generalized in Ref. [65] and
since then proved to be useful in several different contexts,
e.g., in proving that all entangled states can demonstrate
nonclassical teleportation [47], in exploring the connection
between entanglement and permutation symmetry [75], or
in studying the effects of local decoherence on multiparty
entanglement [76]. This quantifier also has two interest-
ing operational interpretations: it quantifies the maximal
advantage that can be achieved in a bipartite subchannel
discrimination task [77] and the maximal advantage in
the task of local subchannel discrimination with a quan-
tum memory [59]. It is defined in terms of the convex
optimization problem

RE(ρAB) = min
r,ηAB,σAB

r (36a)

such that ρAB + rηAB = (1 + r)σ AB, (36b)

ηAB ≥ 0, trηAB = 1 (36c)

σ AB ∈ SEP, trσ AB = 1. (36d)

Using this definition, we can now address our next result
that relates Buscemi nonlocality with entanglement.
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Result 4. Let M
AB be a distributed measurement com-

posed of local measurements M
A and M

B and a shared
state ρA′B′

. Then

max
MA,MB

RBN(MAB) = RE(ρA′B′
), (37)

where the optimization is over all local measurements for
Alice M

A = {M AA′
a } and for Bob M

B = {M B′B
b }.

The proof of this result is given in Appendix E. Note
that the above relationship allows us to directly infer that
the maximal amount of Buscemi nonlocality that can ever
be generated using a given state, defined in Eq. (20), is
precisely equal to its entanglement content. Therefore, we
may write

RBN(ρAB) = RE(ρAB). (38)

Relationship (37) along with Result 1 also allows us to
find a new operational interpretation of the RoE. Con-
sider again the task of DSD with the relaxation that Alice
and Bob may now apply arbitrary local measurements in
their labs. The goal for Alice and Bob remains the same:
to guess which state from the ensemble G = {p(x, y), σxy}
was prepared, under the assumption that no communica-
tion is allowed. In this way the task posed between Alice
and Bob is the following.

Task 3 (Entanglement-assisted state discrimination [ESD]).
The task consists of the following steps.

(1) The referee chooses a bipartite state from the
ensemble G = {p(x, y), σxy} according to p(x, y)

and distributes it among parties by sending one part
of it to Alice and the other part to Bob.

(2) Alice and Bob apply arbitrary local measurements
M

A and M
B to the states they received and their

part of the shared state ρA′B′
and receive outcomes

a and b, respectively.
(3) Alice and Bob win the game if they both guess which

state was provided, i.e., guess both x and y.

The average probability of guessing in this task can be
expressed as

pESD
guess(G, ρA′B′

)

= max
MA,MB

∑

a,b,x,y

p(x, y)tr[M AB
ab σ AB

xy ]δxaδyb, (39)

where the optimization ranges over all measurements
M

A = {M AA′
a } on Alice’s and M

B = {M B′B
b } on Bob’s side

with measurement M AB
ab of the form (1).

The best average probability of guessing in the classical
scenario (i.e., when the shared state is separable) is given
by

pESD
guess(G) = max

σA′B′ ∈ SEP
pESD

guess(G, σ A′B′
)

= max
NAB∈FBN

pESD
guess(G, NAB)

= pDSD
guess(G). (40)

The maximal advantage that can be offered by an entangled
state ρA′B′

in the ESD task can be quantified using the RoE.
This is the content of our next result.

Result 5. Let ρA′B′
be a bipartite state shared between

Alice and Bob and let G = {p(x, y), σxy} be an ensemble
of bipartite states. Then the following statement holds:

max
G

pESD
guess(G, ρA′B′

)

pESD
guess(G)

= 1 + RE(ρA′B′
). (41)

Proof. The proof of Result 5 proceeds similarly to the case
of nonclassical teleportation. Let us maximize both sides
of Eq. (24) over all measurements on Alice’s and Bob’s
side, i.e., over all M

A and M
B. Because of Result 4, the

right-hand side of Eq. (24) is equal to 1 + RE(ρA′B′
). On

the other hand, due to Eq. (40) we can write the left-hand
side of Eq. (24) as

max
G

max
MA,MB pDSD

guess(G, MAB)

pDSD
guess(G)

= max
G

pESD
guess(G, ρA′B′

)

pESD
guess(G)

.

(42)

This completes the proof. �
Finally, let us note that entanglement-assisted state dis-

crimination is a particular instance of a no-signaling game
in which we fix V(a, b, x, y) = δxaδby and allow for opti-
mizing over local measurements. This exactly corresponds
to the average score studied in Ref. [6]. Using this realiza-
tion, we can now consider the maximal advantage in the
task of entanglement-assisted state discrimination (41) and
optimize it not only over ensembles G, but also over all
predicates V(a, b, x, y), in a manner exactly similar as in the
case of Corollary 1. This therefore yields the largest pos-
sible advantage that can be achieved in any no-signaling
game. In this way Result 5 naturally leads to the following
corollary.

Corollary 2. Let M
AB and G be defined as before and let

V(a, b, x, y) : A × B × X × Y → [0, 1]. Then

max
V,G

max
MA,MB pV

guess(G, MAB)

maxσ∈SEP max
NA,NB pV

guess(G, NAB)
= 1 + RE(ρA′B′

),

(43)
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where N
AB = {N AB

ab } with the POVM elements defined as
Nab := trA′B′[(N AA′

a ⊗ N B′B
b )(1A ⊗ σ A′B′ ⊗ 1B)].

In this way we can now interpret the RoE as a quanti-
fier of the Buscemi nonlocality contained within a given
state. This not only rederives the main result of Ref. [6],
but also makes it significantly stronger; the RoE can now
be seen as the quantifier of the maximal advantage in any
no-signaling game, therefore providing a completely new
interpretation for this well-known entanglement quantifier.

3. Complete sets of monotones for quantum simulation

We finish this section by showing that the average guess-
ing probability in the task of DSD completely describes
the preorder induced by quantum simulation on distributed
measurements M

AB. Formally, this means that the aver-
age guessing probability pDSD

guess(G, MAB) when viewed as a
function of G forms a complete set of monotones for quan-
tum simulation of M

AB. This is captured by the following
result.

Result 6. Any distributed measurement M
AB can quan-

tum simulate another measurement N
AB if and only if, for

all ensembles G = {p(x, y), σxy}, the following statement
holds:

pDSD
guess(G, MAB) ≥ pDSD

guess(G, NAB). (44)

In other words, quantum simulation (or LOSR) can
never improve the discrimination ability of any dis-
tributed measurement. The proof of this result is given in
Appendix F.

C. RoBN as a quantifier in single-shot information
theory

We now address another way of interpreting RoBN from
the point of view of single-shot quantum information the-
ory. In particular, in Appendix G we show that RoBN
also quantifies the entanglement-assisted min-accessible
information of a quantum-to-classical bipartite channel
(i.e., a channel with quantum inputs and classical outputs).
This connection parallels analogous results from the liter-
ature that correspond to single party quantum-to-classical
channels [22,66].

We start by noting that any distributed measurement
M

AB can be seen as an entanglement-assisted quantum-to-
classical channel

N AB→XY[ωA ⊗ ωB]

=
∑

a,b

p(a, b|ωx, ωy)|a〉〈a|X ⊗ |b〉〈b|Y, (45)

with p(a, b|ωx, ωy) as in Eq. (9). In quantum informa-
tion theory the standard quantifier of the maximal amount
of classical information that can be reliably sent through
a quantum channel is the accessible information that is
defined for an arbitrary quantum channel R as

I acc(R) = max
E,D

I(X : G), (46)

where E = {p(x), σx} is an ensemble of states that encode
classical random variable X distributed according to
p(x), D = {Dg} is the decoding POVM that produces
an outcome g with probability p(g|x) := tr[Dg R(σx)],
and I(X ; G) = H(X ) − H(X |G) is the mutual information
of the distribution p(x, g) := p(x)p(g|x). In the single-
shot case a more relevant quantity is the min-accessible
information I acc

min(R) that is defined as [78]

I acc
min(R) = max

E,D
[Hmin(X ) − Hmin(X |G)], (47)

where the optimization ranges over the same encodings
and decodings as before and the single-shot entropies are
given by [79]

Hmin(X ) = − log max
x

p(x), (48)

Hmin(X |G) = − log
[∑

g

max
x

p(x, g)

]
. (49)

Let us now consider an encoding of a bipartite ran-
dom variable X × Y, i.e., E = {p(x, y), σxy} and the
associated decoding D = {Dg} for g = 1, . . . , |X | · |Y|.
In Appendix G we show that, for this particular set-
ting, RoBN quantifies the min-accessible information of
the channel N AB→XY. Formally, we have the following
result.

Result 7. Let N AB→XY be a quantum-to-classical channel
of the form (45). Then the following statement holds:

I acc
min(N AB→XY) = log[1 + RBN(MAB)]. (50)

The proof of this result is given in Appendix G. The
above result provides an alternative way of interpreting
RoBN as the maximal amount of min-mutual informa-
tion that can be obtained between the input and output of
channel (45) when using it only once.

IV. CONCLUSIONS

In this work we have studied the notion of Buscemi non-
locality when it is formalized as a quantum resource theory
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of distributed measurements. This formulation allows us
to establish a direct operational interpretation of Buscemi
nonlocality in terms of a practical information-theoretic
task called distributed state discrimination (Result 1).
We have shown that the average guessing probability
in this task provides a complete set of monotones for
the partial order of distributed measurements induced by
quantum simulation (Result 6). This also gives rise to
a simple and complete family of “Buscemi inequalities”
that quantify nonlocal properties of distributed measure-
ments.

This operational link is derived using a geometric quan-
tity measuring the strength of nonlocal correlations gen-
erated using a given distributed measurement (RoBN). By
connecting this quantifier with other measures of nonlocal-
ity we infer a quantitative relationship between distributed
measurements, nonclassical teleportation, and quantum
entanglement, a realization that we believe to be of inde-
pendent interest. In particular, we have shown that the
robustness of Buscemi nonlocality optimized over all local
measurements for one party is equal to the robustness of
nonclassical teleportation (Result 2). Similarly, optimiz-
ing RoBN over local measurements for both parties gives
the robustness of entanglement (Result 4). This naturally
leads to new operational interpretations for both of these
quantifiers, in terms of appropriately tailored state discrim-
ination tasks of teleportation-assisted state discrimination
(Result 3) and entanglement-assisted state discrimination
(Result 5).

We have also shown that the maximal amount of non-
locality that can ever be generated using a fixed bipartite
state is directly proportional to its entanglement content.
The entanglement content in this case is characterized by
the robustness of entanglement, a widely known entangle-
ment quantifier with direct operational significance. Impor-
tantly, this not only rederives the main result of Ref. [6],
but also makes it significantly stronger; the generalized
robustness of entanglement can now be seen as the quan-
tifier of the maximal advantage in any no-signaling game
(Corollaries 1 and 2).

As our last result, we have interpreted Buscemi nonlo-
cality from the perspective of single-shot quantum infor-
mation theory (Result 7). In particular, we have shown
that Buscemi nonlocality, when viewed as a property of
a communication channel between the sender (the ref-
eree) and receiver (Alice and Bob), quantifies the maximal
amount of information that can be sent reliably when
the channel is used only once (the so-called single-shot
capacity of a quantum channel). We have shown that the
RoBN can be viewed as the maximal single-shot capacity
offered by a bipartite quantum-to-classical channel. This
establishes an important link between Buscemi nonlocal-
ity and the single-shot theory of quantum communica-
tion.

Finally, we emphasize that while we focus exclusively
on quantifying Buscemi nonlocality using a robustness-
based measure, our results can be easily extended to
address the so-called weight-based resource quantifiers
[80,81]. These geometric measures find their opera-
tional meaning in the so-called exclusion tasks [24,82].
Consequently, the resource quantifiers of the weight of
Buscemi nonlocality, the weight of nonclassical teleporta-
tion, and the weight of entanglement are quantifiers char-
acterizing distributed state exclusion (DSE), teleportation-
assisted state exclusion (TSE), and entanglement-assisted
state exclusion (ESE), respectively.

We believe that the results presented in this work will
shed new light on the complex structure of different types
of nonclassical effects observed in nature, as well as on
their practical relevance for physically motivated tasks.

This work also provides an example of a multiob-
ject quantum resource theory that cannot be reduced to a
theory of either measurements, states, channels, or state-
measurement pairs [83]. This also means that the compos-
ite objects we study here constitute genuine multiobject
quantum resources. It is an interesting open question to see
if one can find additional examples of multiobject resource
theories that address such irreducible resources. This is in
sharp contrast to a recently introduced multiobject resource
theory of state-measurement pairs, where the resources
independently contribute to the benefit of the operational
task of discrimination and exclusion of subchannels [83].

One of the standard questions addressed by quantum
resource theories is determining when and at what rate
a large number of copies of one resource can be con-
verted into another. The fact that multiobject QRTs cannot
be seen as resource theories of constituent objects leads
to the natural question of whether this can be used to
improve the existing asymptotic protocols. For example,
in the resource theory of nonclassical teleportation one
can ask whether n uses of the teleportation instrument can
lead to a better teleportation than using n copies of the
shared state. Similarly, we can ask whether access to n uses
of a distributed measurement can be advantageous over
using bipartite measurements and n copies of the shared
state.
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APPENDIX A: EQUIVALENT FORMULATION FOR THE ROBUSTNESS OF BUSCEMI NONLOCALITY

By definition, RoBN is a conic program. This means that we can use the tools of convex optimization theory to find
its dual and from that obtain useful information about the primal problem. We assume knowledge of the tools of conic
programming, and direct the interested reader to Ref. [62]. Let us start from the formulation given in the main text and
substitute Ñ AB

ab = rN AB
ab and ÕAB

ab = (1 + r)OAB
ab . After this substitution the primal problem can be written as

RBN(MAB) = min r (A1)

such that M AB
ab + Ñ AB

ab = ÕAB
ab for all a, b, (A2)

{ÕAB
ab } ∈ FBN, {Ñ AB

ab } ∈ RBN, (A3)

where the optimization is performed over r, {Ñ AB
ab }, and {ÕAB

ab }. Note that any collection of operators inside RBN or FBN =
FSEP ∩ RBN satisfies its own “no-signaling” constraint that can be easily deduced from the definition of the set RBN.
Moreover, any operator in FBN is separable. In this way, for any {X AB

ab } ∈ FBN, we can write

∑

a

X AB
ab = 1A ⊗ X B

b for all b,
∑

b

X AB
ab = X A

a ⊗ 1B for all a, X AB
ab ∈ SEP, (A4)

∑

b

X B
b = 1B and

∑

a

X A
a = 1A. (A5)

Now we are going to add a family of such redundant constraints to our optimization problem. Note that we can always do
that since adding constraints that are automatically satisfied by any operator in the feasible set does not change the optimal
value of the program. Moreover, we can also relax constraint (A2) to an inequality M AB

ab + Ñ AB
ab ≤ ÕAB without changing

the optimal value of the conic program. To see why this is the case, suppose that we have solved the relaxed problem using
variables rrel, {Ñ AB,rel

ab }, {ÕAB,rel
ab }, and X AB,rel

ab ≥ 0 and such that, for all a and b, we have M AB
ab + Ñ AB,rel

ab = ÕAB,rel
ab − X AB,rel

ab .
Then the optimal value of the relaxed program becomes

RBN
rel(MAB) = −1 + 1

d2

∑

ab

trÕAB,rel
a = −1 + 1

d2

∑

ab

tr[M AB
ab + Ñ AB,rel

ab + X AB,rel
ab ]

≥ −1 + 1
d2

∑

ab

tr[M AB
ab + Ñ AB,rel

ab ]

≥ −1 + 1
d2

∑

ab

tr[M AB
ab + Ñ ′

ab]

≥ −1 + 1
d2

∑

ab

tr[M AB
ab + Ñ AB

ab ] = RBN(MAB), (A6)

where {Ñ ′
ab} is a set of dual variables feasible for our initial problem (A1). In this way the conic program defining RoBN

becomes

RBN(M) = min r (A7)

such that M AB
ab + Ñ AB

ab ≤ ÕAB
ab for all a, b, (A8)

∑

a

ÕAB
ab = 1A ⊗ ÕB

b for all b,
∑

b

ÕB
b = (1 + r)1B, (A9)

∑

b

ÕAB
ab = ÕA

a ⊗ 1B for all a,
∑

a

ÕA
a = (1 + r)1A, (A10)

{ÕAB
ab } ∈ FBN, OAB

ab ∈ SEP, {Ñ AB
ab } ∈ RBN, for all a, b, (A11)

where the minimization is performed over r, {ÕAB
ab }, {ÕA

a }, {ÕB
b }, and {Ñ AB

ab }.
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In what follows we denote a dual cone to R using R∗, that is, R∗ := {X |trXQ ≥ 0 for all Q ∈ R}. We now write the
dual formulation of the above problem. To do so, we first write the
associated Lagrangian using dual Hermitian variables associated with a corresponding set of constraints: {AAB

ab } such
that AAB

ab ≥ 0 for all a, b, {BAB
b }, {CAB

a }, DA ≥ 0, EB ≥ 0, {FAB
ab } ∈ F∗

BN, meaning that
∑

ab tr[FAB
ab X AB

ab ] ≥ 0 for all
{X AB

ab } ∈ FBN, GAB
ab ∈ F∗

SEP for all a, b, meaning that tr[GAB
ab X AB] ≥ 0 for all a, b and all separable operators X AB ∈ FSEP,

and, finally, {H AB
ab } ∈ R∗

BN. With this, the Lagrangian function of the conic program (A7—A11) becomes

L = r +
∑

ab

trAAB
ab [M AB

ab + Ñ AB
ab − ÕAB

ab ] +
∑

b

trBAB
b

[∑

a

ÕAB
ab − 1A ⊗ ÕB

b

]

+
∑

a

trCAB
a

[ ∑

b

ÕAB
ab − ÕA

a ⊗ 1B
]

+ trDA
[ ∑

a

ÕA
a − (1 + r)1A

]

+ trEB
[∑

b

ÕB
b − (1 + r)1B

]
−

∑

a,b

tr[FAB
ab ÕAB

ab ] −
∑

a,b

tr[GAB
ab ÕAB

ab ] −
∑

a,b

tr[H AB
ab Ñ AB

ab ]

= r[1 − trDA − trEB] +
∑

a,b

trÑab[AAB
ab − H AB

ab ] +
∑

a,b

trÕab[−AAB
ab + BAB

b + CAB
a − FAB

ab − GAB
ab ] +

∑

a

trOA
a [DA − CA

a ]

+
∑

b

trOB
b [EB − BB

b ] +
∑

ab

tr[AAB
ab M AB

ab ] − trDA − trEB. (A12)

By demanding that the terms in the square brackets that appear along with the dual variables vanish we can ensure that
L ≤ r. This leads to the (dual) conic program

RBN(MAB) = max
∑

ab

tr[AAB
ab M AB

ab ] − 1 (A13)

such that

CAB
a + BAB

b = AAB
ab + FAB

ab + GAB
ab for all a, b, (A14)

AAB
ab = H AB

ab for all a, b, CA
a = DA for all a, BB

b = EB for all b, (A15)

AAB
ab ≥ 0 for all a, b, {H AB

ab } ∈ R∗
BN, {FAB

ab } ∈ F∗
BN, trDA + trEB = 1.

Note now that the set FBN ∈ FSEP, which implies that the dual sets satisfy F∗
SEP ∈ F∗

BN. Hence, without loss of gen-
erality, we can assume that GAB

ab = 0 for all a and b. In this way we can express the above program in the following
way:

1 + RBN(MAB) = max
∑

ab

tr[AAB
ab M AB

ab ] (A16)

such that CAB
a + BAB

b − AAB
ab = FAB

ab ∈ F∗
BN for all a, b, (A17)

CA
a = DA for all a, CA

a , DA ≥ 0 for all a, (A18)

AAB
ab ≥ 0 for all a, b, trDA + trEB = 1. (A19)

Using both primal (A1) and dual (A16) formulations, we can now describe some basic properties of the RoBN.

APPENDIX B: BASIC PROPERTIES OF THE RoBN

Here we prove the three basic properties of RoBN highlighted in the main text.
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1. Faithfulness

If M
AB ∈ FBN then we can always choose a feasible r = 0 in the primal form (A1). Since the solution is always

nonnegative, r = 0 is also optimal.

2. Convexity

Let {N 1
ab, O1

ab} be optimal primal variables for RBN(M1) and similarly let {N 2
ab, O2

ab} be primal optimal for RBN(M2).
Define M

′ = {M ′
ab} as a convex combination of the two measurements, that is, M ′

ab = p M 1
ab + (1 − p) M 2

ab for each a
and b. We can construct a set of feasible variables for RBN(M′) in the following way: N ′

ab = p N 1
ab + (1 − p) N 2

ab and
O′

ab = p O1
ab + (1 − p) O2

ab. Substituting N ′
ab and O′

ab into the constraints of the primal form for RBN(M) shows that this
choice is feasible. In this way we obtain an upper bound on RBN(M′):

RBN(M′) ≤ tr
∑

a,b

N ′
ab = ptr

∑

a,b

N 1
ab + (1 − p)tr

∑

a,b

N 2
ab = p R(M1) + (1 − p)R(M2). (B1)

3. Monotonicity

Let us start with the assumption that there is a subroutine

S = {p(λ), p(a|i, λ), p(b|j , λ), Eλ,Nλ},

which allows us to simulate M
′ using M, i.e., M �q M

′. This means that the POVM elements {Mab} of M can be mapped
into

M ′
ab =

∑

i,j ,λ

p(λ)p(a|i, λ)p(b|j , λ)(E†
λ ⊗ N †

λ )[Mij ].

Suppose now that we solved the dual problem for RBN(M′) using the optimal dual variables {A′
ab}, {B′

b},{C′
a}, D′, E′, and

{F ′
ab}. Using these, we construct an educated guess for RBN(M) in the following way:

A∗
ij =

∑

a,b,λ

p(λ)p(a|i, λ)p(b|j , λ)(Eλ ⊗ Nλ)[A′
ab], B∗

j =
∑

b,λ

p(λ)p(b|j , λ)(Eλ ⊗ Nλ)[B′
b], (B2)

C∗
i =

∑

a,λ

p(λ)p(a|i, λ)(Eλ ⊗ Nλ)[C′
a], D∗ =

∑

λ

p(λ)Eλ[D′], (B3)

E∗ =
∑

λ

p(λ)Nλ[E′], F∗
ij =

∑

a,b,λ

p(λ)p(a|i, λ)p(b|j , λ)(Eλ ⊗ Nλ)[F ′
ab]. (B4)

It can be verified that the above choice of variables is feasible for dual problem (A16). In particular, note that by construc-
tion we have C∗

i + B∗
j − A∗

ij = F∗
ij for all i, j since the primed dual variables satisfy the constraints of dual problem (A16).

Furthermore, since trB(Eλ ⊗ Nλ) [X AB] = Eλ[X A], we can infer that trBC∗
i = D∗ and trAB∗

j = E∗. Moreover, as separable
maps preserve both positivity and separability, we also have A∗

ij ≥ 0 for all i, j and {F∗
ij } ∈ F∗

BN. Using the proposed set
of dual variables, we find the lower bound

1 + RBN(M) ≥
∑

i,j

tr[Mij A∗
ij ]

=
∑

a,b,i,j ,λ

p(λ)p(a|i, λ)p(b|j , λ)tr{Mij (Eλ ⊗ Nλ)[Aab]}

=
∑

a,b,i,j ,λ

p(λ)p(a|i, λ)p(b|j , λ)tr{(E†
λ ⊗ N †

λ )[Mij ] Aab}

=
∑

a,b

tr[MabAab]

= 1 + RBN(M′). (B5)

This proves that RoBN is monotonic under quantum simulation.
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APPENDIX C: PROOF OF RESULT 1

In this section we prove that RoBN can be seen as a quantifier of the advantage a given distributed measurement
provides in the task of distributed state discrimination. To simplify the notation in this section, we omit subsystem labels
whenever it is clear from the context. Let us recall that the average guessing probability in the task of distributed state
discrimination using a distributed measurement M can be expressed as

pDSD
guess(G, M) = max

N≺qM

∑

a,b,x,y

p(x, y)tr[Nab σxy]δxaδyb, (C1)

where the optimization ranges over all measurements N = {Nab} that can be quantum simulated using M = {Mij }, where

Mij = trAB[(M A′A
i ⊗ M BB′

j )(1A′ ⊗ ρAB ⊗ 1B′
)] (C2)

is a distributed measurement and G = {p(x, y), σxy} is an ensemble of bipartite states. Suppose that we have solved the
dual problem for RoBN (A16) using the set of dual variables {Aab}, {Ca}, {Bb}, D, E, and {Gab}. Note also that, due to
the constraints in RoBN (A16), the matrix Aab is positive semidefinite for all values of a and b. Let us now consider a
particular game setting G∗ = {p∗(x, y), σ ∗

xy} defined as

C =
∑

x,y

trAxy , p∗(x, y) = trAxy

C
, σ ∗

xy = Axy

trAxy
, (C3)

where x = 1, . . . , oA, y = 1, . . . , oB, and oA, oB are the numbers of outcomes of local measurements performed by A and
B. The best average guessing probability that can be achieved in the game G∗ using a distributed measurement M is given
by

pDSD
guess(G∗, M) = max

N≺qM

∑

a,b,x,y

p∗(x, y)tr[Nabσ
∗
xy]δxaδyb

≥
∑

x,y

trAxy

C
tr
[

Mxy
Axy

trAxy

]

= 1
C

∑

x,y

tr[MxyAxy]

= 1
C

[1 + RBN(MAB)], (C4)

where the inequality in the second line follows from choosing a particular subroutine S with p(λ) = 1/|λ|, p(a|i, λ) = δai,
p(b|j , λ) = δbj , and Eλ = Nλ = id. Let us now look at the corresponding classical (i.e., without access to entanglement)

020301-17



LIPKA-BARTOSIK, DUCUARA, PURVES, and SKRZYPCZYK PRX QUANTUM 2, 020301 (2021)

probability of guessing:

pDSD
guess(G∗) = max

N∈FBN
pDSD

guess(G∗, N) = max
N∈FBN

∑

x,y

p∗(x, y)tr[Nxyσ
∗
xy]

= 1
C

max
N∈FBN

∑

x,y

tr[NxyAxy]

= 1
C

max
N∈FBN

∑

x,y

tr[Nxy(Cx + By − Fxy)]

= 1
C

max
N∈FBN

( ∑

x

tr[(Nx ⊗ 1)Cx] +
∑

y

tr[(1 ⊗ Ny)By] −
∑

x,y

tr[NxyFxy]
)

≤ 1
C

max
N∈FBN

( ∑

x

tr[NxD] +
∑

y

tr[NyE]
)

= 1
C

(trD + trE)

= 1
C

, (C5)

where the inequality follows since, for all N ∈ FBN, we have
∑

xy tr[NxyFxy] ≥ 0. Combining bounds (C4) and (C5) leads
to

max
G

pDSD
guess(G, M)

pDSD
class (G)

≥ pDSD
guess(G∗, M)

pDSD
class (G∗)

≥ 1 + RBN(M). (C6)

In order to prove the upper bound, note that the first line of constraints in the primal formulation for RoBN (A1) implies
that, for all a, b,

M ′
ab = Õ′

ab − Ñ ′
ab, (C7)

where Õ′
ab = [1 + RBN(M)]O′

ab for all a, b and {O′
ab} ∈ FBN. This allows us to write

pDSD
guess(G, M) = max

M′≺qM

∑

a,b,x,y

p(x, y)tr[M ′
abσxy]δxaδyb

= max
M′≺qM

∑

a,b,x,y

p(x, y)tr[(Õ′
ab − Ñ ′

ab)σxy]δxaδyb

≤ max
M′≺qM

∑

a,b,x,y

p(x, y)tr[Õ′
abσxy]δxaδyb

= max
M′≺qM

[1 + RBN(M′)]
∑

a,b,x,y

p(x, y)tr[O′
abσxy]δxaδyb

≤
{

max
M′≺qM

[1 + RBN(M′)]
}{

max
{Oab}∈FBN

∑

a,b,x,y

p(x, y) tr[Oabσxy]δxaδyb

}

≤ [1 + RBN(M)]pDSD
guess(G), (C8)

where the last inequality follows from the monotonicity of RoBN under quantum simulation. Combining bounds (C6) and
(C8) yields

max
G

pDSD
guess(G, M)

pDSD
guess(G)

= 1 + RBN(M). (C9)
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APPENDIX D: PROOF OF RESULT 2

Before proving the result we recall the primal and dual formulation of the RoT quantifier. Let Λ = {�a} be a
teleportation instrument whose elements are defined as

�A→B′
a [ω] := trAA′[(M AA′

a ⊗ 1B)(ωA ⊗ ρA′B′
)] (D1)

for some measurement M AA′
a and a shared state ρA′B′

. We denote the set of Choi-Jamiołkowski states corresponding to
these subchannels by {J VB′

a }, i.e., each J VB′
a := (idV ⊗ �A→B′

a )[φVA
+ ] with system V isomorphic to A. With these definitions,

the RoT for a teleportation instrument ΛA→B′
can be written as

RT(Λ
A→B′

) = min tr̃σ B′ ⇐⇒ max
∑

a

tr[AVB′
a J VB′

a ] − 1

such that J VB′
a ≤ FVB′

a for all a, BVB′ − AVB′
a = WVB′

a ∈ F∗
SEP for all a,

∑

a

FVB′
a = 1V

d
⊗ σ̃ B′

, BB′ = 1B′
, AVB′

a ≥ 0 for all a,

FVB′
a ∈ FSEP for all a, σ̃ B′ ≥ 0.

Let us now proceed with the proof of Result 2.

Proof of Result 2. As before, the proof consists of two steps. First we show that RT(ΛA→B′
) lower bounds RBN(MAB) for

a particular choice of local measurement M
B′B. Then we show that, for any choice of local measurements on Bob’s side,

RBN(MAB) is never larger than the teleportation quantifier RT(ΛA→B′
).

Let AVB′
a ≥ 0, WVB′

a ∈ F∗
SEP, and BVB′

be optimal dual variables for RT(ΛA→B′
). Let {UB

b } for b ∈ {1, . . . , d2} be a set of
Pauli operators with respect to a basis {|i〉B}. Consider the following measurement with oB = d2 outcomes:

M B′B
b = (idB′ ⊗ UB

b )[φB′B
+ ]. (D2)

Here Ub[·] := Ub(·)U†
b. We are interested in the lower bound for RT(ΛA→B′

). Let us choose a set of dual variables in
Eq. (A16) inspired by the optimal dual variables for RT(ΛV→B′

):

AAB
ab = [idA ⊗ (U†

b )B][(AAB
a )T], FAB

ab = [idA ⊗ (U†
b )B][(WAB

a )T], BAB
b = 1

d
[idA ⊗ (U†

b )B][(BAB)T],

CAB
a = 0, DB = 1

d
1B, EA = 0.
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It can be verified by direct substitution that the above choice is feasible. In particular, the above choice for {FAB
ab } is feasible

as F∗
SEP ∈ F∗

BN and both sets are invariant under local unitaries. This leads to the following chain of inequalities:

1 + max
MB

RBN(MAB) ≥
∑

ab

tr[AAB
ab M AB

ab ]

=
∑

ab

tr{[idA ⊗ (U†
b )B][(AAB

a )T]trA′B′[(M AA′
a ⊗ M B′B

b )(1A ⊗ ρA′B′ ⊗ 1B)]}

=
∑

ab

tr{[idA ⊗ (U†
b )B][(AAB

a )T]trA′B′[(M AA′
a ⊗ (idB′ ⊗ UB

b )[φB′B
+ ])(1A ⊗ ρA′B′ ⊗ 1B)]}

=
∑

ab

tr{1A′B′ ⊗ [idA ⊗ (U†
b )B][(AAB

a )T][(M AA′
a ⊗ (idB′ ⊗ UB

b )[φB′B
+ ])(1A ⊗ ρA′B′ ⊗ 1B)]}

=
∑

ab

tr{[1A′B′ ⊗ (AAB
a )T](M AA′

a ⊗ φB′B
+ )(1A ⊗ ρA′B′ ⊗ 1B)}

= 1
d2

∑

ab

tr{AVB′
a trAA′[(1V ⊗ M AA′

a ⊗ 1B′
)(φVA

+ ⊗ ρA′B′
)]}

=
∑

a

tr[AVB′
a J VB′

a ]

= 1 + RT(Λ
V→B′

). (D3)

We now prove the upper bound. Note that, for any distributed measurement M
AB, we can construct M

VB := {M VB
ab } such

that M VB
ab := dtrA[(1V ⊗ M AB

ab )(φVA
+ ⊗ 1B)]. This in turn can be written as

M VB
ab := dtrAA′B′[(1A ⊗ M AA′

a ⊗ M B′B
b )(φVA

+ ⊗ ρA′B′ ⊗ 1B)] = dtrB′[(1V ⊗ M B′B
b )(J VB′

a ⊗ 1B)]. (D4)

Note that we can always write J VB′
a ≤ [1 + RT(ΛA→B′

)]FVB′
a , where {FVB′

a } are Choi-Jamiołkowski operators of some
classical teleportation instrument. This allows us to further rewrite Eq. (D4) as

M VB
ab ≤ d[1 + RT(Λ

A→B′
)]trA[(1V ⊗ M AB

ab )(φVA
+ ⊗ 1B)] = [1 + RT(Λ

A→B′
)]OVB

ab , (D5)

where {OVB
ab } is a free-distributed measurement. Hence, M AB

ab ≤ [1 + RT(ΛA→B′
)] OAB

ab for some free-distributed measure-
ment {OAB

ab } also. This finally allows us to write

max
MB

RBN(MAB) ≤ [1 + RT(Λ
A→B′

)] max
MB

∑

ab

tr[AAB
ab OAB

ab ] ≤ [1 + RT(Λ
A→B′

)]. (D6)

This proves the lemma. �

APPENDIX E: PROOF OF RESULT 4

Let us recall that the conic program formulation of RoE is given by

RE(ρA′B′
) = min tr̃σ A′B′ ⇐⇒ max

∑

a

tr[AA′B′
ρA′B′

] − 1 (E1)

such that ρA′B′ ≤ σ̃ A′B′
, 1A′B′ − AA′B′ = WA′B′ ∈ F∗

SEP,

σ̃ A′B′ ∈ FSEP, AA′B′ ≥ 0.

The proof is based on three parts. First we use Result 2 to connect RoBN to the RoT. Then we essentially parallel the steps
taken in the proof of Result 2 to link the RoT to the RoE. It is worth mentioning that the link between the RoT and RoE
was obtained some time ago in Ref. [51]. Here, for convenience, we state an independent proof.
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Proof. Let us begin by noting that Result 2 implies that

max
MA,MB

RBN(MAB) = max
MA

[
max
MB

RBN(MAB)
]

= max
MA

RT(Λ
A→B′

). (E2)

Let AA′B′ ≥ 0, WA′B′ ∈ F∗
SEP be optimal dual variables for RE(ρA′B′

). Let {UA′
a } for a ∈ {1, . . . , d2} be a set of Pauli

operators with respect to a basis {|i〉A′ }. Consider the following measurement with oA = d2 outcomes:

M AA′
a = (idA ⊗ UA′

a )[φAA′
+ ]. (E3)

We are interested in the lower bound for RE(ρA′B′
). Let us construct a set of (potentially suboptimal) dual variables in

maximization (E1) using the optimal set of dual variables for RT(ΛV→B′
), i.e.,

AVB′
a = [(U†

a )V ⊗ idB′
][AVB′

], WVB′
a = [(U†

a )V ⊗ idB′
][WVB′

], BVB′ = 1
d
1VB′

. (E4)

It can be verified by direct substitution that the above choice is feasible. This leads to the following chain of inequalities:

1 + max
MA

RT(Λ
A→B′

) ≥
∑

a

tr[AVB′
a J VB′

a ]

=
∑

a

tr{[(U†
a )V ⊗ idB′

][AVB′
a ] trAA′[(1V ⊗ M AA′

a ⊗ 1B′
)(φVA

+ ⊗ ρA′B′
)]}

=
∑

a

tr{[(U†
a )V ⊗ idB′

][AVB′
a ]trAA′[{1V ⊗ (idA ⊗ UA′

a )[φAA′
+ ] ⊗ 1B′ }(φVA

+ ⊗ ρA′B′
)]}

=
∑

a

tr{1AA′ ⊗ [(U†
a )V ⊗ idB′

][AVB′
a ] {1V ⊗ (idA ⊗ UA′

a )[φAA′
+ ] ⊗ 1B′ }(φVA

+ ⊗ ρA′B′
)}

= 1
d2

∑

a

tr{[(U†
a )A′ ⊗ idB′

]AA′B′
(UA′

a ⊗ idB′
)ρA′B′ }

= tr[AA′B′
ρA′B′

]

= 1 + RE(ρA′B′
). (E5)

We now prove the upper bound. Note that any teleportation instrument ΛA→B′
expressed using Choi-Jamiołkowski

operators {J VB′
a } satisfies

J VB′
a := trVA[(M VA

a ⊗ 1B′
)(φA

+ ⊗ ρA′B′ ⊗ 1B)]

≤ [1 + RE(ρA′B′
)]trVA[(M VA

a ⊗ 1B′
)(φA

+ ⊗ σ A′B′ ⊗ 1B)]

= [1 + RE(ρA′B′
)]OVB′

a (E6)

for some state σ A′B′ ∈ FSEP and corresponding (classical) teleportation operators {OVB′
a }. In this way we can write

max
MA

[1 + RT(Λ
A→B′

)] = max
MA

max
{AVB′

a }

∑

a

tr[AVB′
a J VB′

a ]

≤ [1 + RE(ρA′B′
)]

∑

a

tr[AVB′
a OVB′

a ]

≤ [1 + RE(ρA′B′
)]. (E7)

This completes the proof of the lemma. �
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APPENDIX F: PROOF OF RESULT 6

In this section, unless explicitly specified, all bipartite operators act on subsystems A and B. We begin by assuming that
a distributed measurement M can be used to simulate M

∗, that is, M �q M
∗. We have

pDSD
guess(G, M) = max

M�qM′

∑

a,b

p(a, b) tr[M ′
abσab]

≥ max
M∗�qM′

∑

a,b

p(a, b)tr[M ′
ab σab]

= pDSD
guess(G, M∗), (F1)

since the set {M′|M∗ �q M
′} is a subset of {M′|M �q M

′}. Now we are going to assume that pDSD
guess(G, M) ≥ pDSD

guess(G, M∗)
holds for all games G = {p(x, y), σxy} and show that there always exist a subroutine S that allows us to simulate M

∗ using
M. We thus have, for all G,

max
M′≺qM

∑

a,b

p(a, b) tr[M ′
abσab] − max

M′′≺qM∗

∑

a,b

p(a, b) tr[M ′′
abσab] ≥ 0. (F2)

Let us now choose a particular subroutine in the second maximization, i.e., S∗ = {p(λ) = δλ0, p(a|i, λ) =
δai, p(b|j , λ) = δbj , Uλ = Vλ = 1}. In this way Eq. (F2) implies that, for all G,

max
M′≺qM

∑

a,b

p(a, b)tr[(M ′
ab − M ∗

ab) σab] ≥ 0. (F3)

Let �ab := M ′
ab − M ∗

ab. Since both M ′
ab and M ∗

ab are measurements, we have
∑

a,b �ab = 0. This also means that only one
of the two situations can hold: either (i) �ab = 0 for all a, b or (ii) there exists at least one �ab with at least one negative
eigenvalue.

We now show by contradiction that (ii) cannot be true. Let us assume that (ii) holds and label the negative eigenvalue
λa∗b∗ and the associated eigenvector |λa∗b∗〉. Then, since Eq. (F3) holds for all games G, it also holds for a particular game
G∗ = {p(a, b) = δaa∗δbb∗ , σab = |λa∗b∗〉〈λa∗b∗ |}. Hence, Eq. (F3) implies that

〈λa∗b∗ | �a∗b∗ |λa∗b∗〉 = λa∗b∗ < 0, (F4)

which is a contradiction. Hence, we infer that (ii) cannot be true and the only possibility is that each operator �ab is
identically zero. This means that

M ∗
ab = M ′

ab :=
∑

i,j ,λ

p(λ)p(a|i, λ)p(b|j , λ)(U†
λ ⊗ V†

λ)Mij (Uλ ⊗ Vλ), (F5)

i.e., M
∗ can be simulated using M.

APPENDIX G: PROOF OF RESULT 7

The accessible min-information I acc
min(N ) of a channel N is defined as [31]

I acc
min(N ) = max

E,D
[Hmin(X ) − Hmin(X |G)], (G1)

where the optimization is over all encodings E = {p(x), σx} and decodings D = {Dg} and the min-entropies are defined as

Hmin(X ) = − log max
x

p(x), (G2)

Hmin(X |G) = − log
[∑

g

max
x

p(x, g)

]
, (G3)
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and p(x, g) is the probability distribution induced by channel N , i.e.,

p(x, g) = p(x)p(g|x) = p(x)tr[N [σx]Dg]. (G4)

Consider now encoding a bipartite random variable X × Y in an ensemble of bipartite quantum states, i.e., E =
{p(x, y), σ AB

xy } and D = {DA′B′
g } for g = 1, . . . , oA · oB. Moreover, consider the channel N = N AB→A′B′

to be a quantum-
to-classical measurement channel, which can be written as

N AB→A′B′
(ρAB) =

∑

a,b

tr[M AB
ab ρAB]|a〉〈a|A′ ⊗ |b〉〈b|B′ , (G5)

where M = {M AB
ab } is a distributed measurement. We have

I acc
min(N AB→A′B′

) = max
E,D

log
{ ∑

g

max
x,y

p(x, y)tr[N AB→A′B′
(σ AB

xy )DA′B′
g ]

}
− log max

a,b
p(a, b)

= max
E,D

log
{ ∑

g

∑

a,b

max
x,y

p(x, y)tr(M AB
ab σ AB

xy )tr(DA′B′
g |a〉〈a|A′ ⊗ |b〉〈b|B′)

}

− log max
a,b

p(a, b)

= log
{∑

a,b

max
E

max
x,y

p(x, y)tr[M AB
ab σ AB

xy ]
}

− log max
a,b

p(a, b). (G6)

Note now that we can always express the optimization over (x, y) as

max
x,y

p(x, y)tr[M AB
ab σ AB

xy ] = max
p(x|a)

max
p(y|b)

∑

x,y

p(x|a)p(y|b)p(x, y)tr[M AB
ab σ AB

xy ]

= max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑

x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)tr[M AB
ab σ AB

xy ]. (G7)

Note further that if we carry out the optimization of the above expression over E we can additionally write

max
E

max
x,y

p(x, y)tr[M AB
ab σ AB

xy ]

= max
E

max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑

x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)tr[M AB
ab σ AB

xy ]

= max
E

max
{Eλ},{Fλ}

max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑

x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)tr[M AB
ab (EA

λ ⊗ FB
λ )(σ AB

xy )]

= max
E

max
N≺M

∑

x

p(x, y)tr[N AB
ab σ AB

xy ]. (G8)
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Hence, we can further continue from Eq, (G6) and write

I acc
min(N AB→A′B′

) = log
[ ∑

a,b

max
E

max
N≺M

p(a, b)tr(N AB
ab σ AB

ab )

]
− log max

a,b
p(a, b)

= max
E

log
[

max
N≺M

∑

a,b

p(a, b)tr(M AB
ab σ AB

ab )

]
− max

a,b
p(a, b)

= max
E

log[pDSD
guess(G, MAB)] − log[pDSD

guess(G)]

= log
[

max
E

pDSD
guess(G, MAB)

pguess(G)

]

= log[1 + RBN(MAB)]. (G9)
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