
PRX QUANTUM 2, 010351 (2021)

Character Randomized Benchmarking for Non-Multiplicity-Free Groups With
Applications to Subspace, Leakage, and Matchgate Randomized Benchmarking

Jahan Claes ,1,2,3 Eleanor Rieffel,1 and Zhihui Wang 1,2,*

1
Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field,

California 94035, USA
2
USRA (RIACS), Mountain View, California 94043, USA

3
Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA

 (Received 10 November 2020; revised 1 February 2021; accepted 8 March 2021; published 25 March 2021)

Randomized benchmarking (RB) is a powerful method for determining the error rate of experimen-
tal quantum gates. Traditional RB, however, is restricted to gatesets, such as the Clifford group, that
form a unitary 2-design. The recently introduced character RB can benchmark more general gates
using techniques from representation theory; up to now, however, this method has only been applied to
“multiplicity-free” groups, a mathematical restriction on these groups. In this paper, we extend the original
character RB derivation to explicitly treat non-multiplicity-free groups, and derive several applications.
First, we derive a rigorous version of the recently introduced subspace RB, which seeks to characterize
a set of one- and two-qubit gates that are symmetric under SWAP. Second, we develop a new leakage RB
protocol that applies to more general groups of gates. Finally, we derive a scalable RB protocol for the
matchgate group, a group that like the Clifford group is nonuniversal but becomes universal with the addi-
tion of one additional gate. This example provides one of the few examples of a scalable non-Clifford RB
protocol. In all three cases, compared to existing theories, our method requires similar resources, but either
provides a more accurate estimate of gate fidelity, or applies to a more general group of gates. In conclu-
sion, we discuss the potential, and challenges, of using non-multiplicity-free character RB to develop new
classes of scalable RB protocols and methods of characterizing specific gates.
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I. INTRODUCTION

Advances in accurate and scalable methods for char-
acterizing the performance of quantum gates are critical
for the realization of large-scale reliable quantum com-
puters. Quantum process tomography can, in theory, com-
pletely characterize an unknown quantum channel [1–4],
but requires resources that scale exponentially in the num-
ber of qubits [4]. In addition, any tomographic approach
will also include the effect of state preparation and mea-
surement (SPAM) errors, which may be of the same order
as the gate error that is being characterized.

Randomized benchmarking (RB) [5–8] provides a
method to scalably characterize gates that form a group
G with the additional mathematical property of being a
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“unitary 2-design” [9], most frequently the Clifford group
[10–12]. Rather than completely characterizing a noise
channel, RB determines the average fidelity, a standard
measure of gate quality that can be related to other com-
mon measures such as entanglement and process fidelity
[13,14] and used to bound the gate error rate [15]. RB
works by experimentally measuring the overall fidelity of a
random circuit as a function of the number of applied gates
U ∈ G and fitting this to an exponential decay. The param-
eters of the decay then determine the average fidelity of
a single gate. Unlike tomographic methods, RB provides
an estimate for the average fidelity that is independent of
SPAM errors.

Standard RB, however, is limited to groups that form
a unitary 2-design and whose elements can be efficiently
compiled (i.e., decomposed) into elementary gates. This
limitation prevents standard RB from characterizing any
set of quantum gates that are large enough to be univer-
sal for quantum computation [11,12], and also prevents
standard RB from characterizing smaller subgroups of 2-
designs. There are ongoing efforts to extend RB to a larger
class of gates. Interleaved RB was proposed to characterize
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individual Clifford group elements [16] as well as the T
gates needed for universal quantum computation [17], but
these methods are specific to the gates considered and pro-
duce only bounds on the fidelity. Reference [18] developed
a method to extract the fidelity of the dihedral group on one
qubit, which is not a unitary 2-design and includes the T
gate, while Ref. [19] proposed a method of extending dihe-
dral RB to an arbitrary number of qubits. References [20,
21] extended this work by deriving decay formulas for the
fidelity of random circuits of arbitrary groups, but these
formulas involved fitting sums of multiple exponentials,
and the decay parameters could not be related to the aver-
age fidelity. Reference [22] introduced character RB to
address these limitations, providing a method that requires
only fitting a single exponential decay and directly predicts
the average fidelity. However, this was only explored for
“multiplicity-free” groups, a mathematical limitation on
the group’s representations (see below).

In this work, we provide a generalization of charac-
ter RB that applies to groups with multiplicity, which
we underpin with rigorous derivations. This rigor enables
us to provide conditions under which instantiations of
the framework yield practical RB protocols. We illustrate
our generalized approach with applications to three dis-
tinct situations of practical interest: benchmarking of gates
with subspace-preserving properties, characterization of
leakage, and benchmarking of the matchgate group.

Our main contributions include:

(a) We provide a derivation of character RB for non-
multiplicity-free groups G. This RB method allows
us to directly predict the average fidelity of the gates
in G as in Ref. [22] but unlike Refs. [20,21]. For
non-multiplicity-free groups, our method potentially
requires fitting a sum of multiple exponentials rather
than a single exponential; however, the number of
exponentials is significantly reduced compared to
Refs. [20,21].

(b) As a primary motivation for this generalization, we
improve the recently introduced subspace RB [23]
designed to characterize gates that preserve a sub-
space of the full Hilbert space. Our generalization,
and its rigorous derivations, has immediate appli-
cation to near-term quantum processors, including
to benchmarking the gates implemented on the ion-
trap quantum processor benchmarked in Ref. [23].
Gates that preserve a proper subspace can never
form a 2-design, and are never multiplicity-free,
necessitating a generalized RB procedure. The orig-
inal work on subspace RB established decay for-
mulas for the fidelity of certain random circuits but
could only give loose bounds on the average fidelity
of the gates; our method, in contrast, allows us to
directly estimate the average fidelity using a similar
number of experiments as the original subspace RB.

While we illustrate our approach for the UZZ gate
seen in Ref. [23], the method can be applied directly
to other gates with the same SWAP symmetry as the
UZZ gate. It also provides grounding for benchmark-
ing gates with other subspace-preserving symme-
tries, though creativity will be required to determine
when and how these gates can be combined with
single-qubit gates to obtain a group with the prop-
erties that yield a practical character RB protocol.
The rigorous derivations underlying our approach
enables us to provide examples of noise under which
the estimated fidelity yielded by Ref. [23] deviates
substantially from the exact fidelity provided by our
method.

(c) We present a new protocol for leakage RB [24–
26], a benchmarking protocol designed to character-
ize qubits that can “leak” into a noncomputational
section of the Hilbert space. Our approach reduces
the assumptions on control in the leakage subspace
required by the original leakage RB work [26]. Such
control is frequently unrealistic for quantum hard-
ware. Our approach can be applied immediately to
determine certain leakage channel error rates in, for
example, quantum-dot architectures, though further
research will need to be done to obtain a leakage RB
protocol that enables the determination of more gen-
eral parameters including the average fidelity on the
computational subspace.

(d) We introduce a new scalable RB procedure for the
matchgate group [27], a class of quantum circuits
that, like the Clifford group, is efficiently simula-
ble [27–30] but is very close to universal [29–35].
This procedure necessarily requires the full non-
multiplicity-free character RB, and represents, along
with the dihedral group [19,22], one of the few non-
Clifford groups that can be scalably benchmarked.

Non-multiplicity-free character RB is a general frame-
work for benchmarking groups of quantum gates. It pro-
vides a method for characterizing individual gates when
the gates can be combined into operations that form a
group, as we illustrate in the case of subspace RB. This
RB framework also expands the family of groups that
can be scalably benchmarked, as we demonstrate with
the matchgate group. Scalable benchmarking protocols are
necessary to measure gate quality in large quantum proces-
sors, especially in the presence of nonlocal errors such as
crosstalk. While we provide one new example of a scal-
able benchmarking protocol, we expect the framework of
non-multiplicity-free character RB will lead researchers to
develop further scalable examples. Benchmarking multiple
overlapping groups (or subgroups of groups) may allow
more accurate error characterization. While it remains an
art to find the groups and constructions that yield practical
character RB protocols, we expect the grounding that our
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work provides to support the discovery of practical proto-
cols for various gate sets in a variety of quantum devices
in the years to come.

Our paper is organized as follows. Section II provides
mathematical background on the Liouville representation
and the definition of average fidelity. Section III outlines
the full non-multiplicity-free RB protocol, and proves that
it correctly estimates the average fidelity of the gates. The
next sections consist of applications. Section IV demon-
strates how our method can be used to rigorously esti-
mate the fidelity of gate sets that preserve subspaces,
such as those studied in Ref. [23]. Section V applies
our framework to formulate a leakage RB protocol with
fewer assumptions than the current state of the art [26].
Section VI reviews the matchgate group, and describes
how our method can be used to derive a scalable RB
protocol for this group. Each of our applications are
accompanied by computer simulations of benchmarking
experiments; all our computer simulations can be repro-
duced in under a day on a standard laptop. We conclude
in Sec. VII with discussion of possible extensions of our
work, including some of the challenges. We relegate tech-
nical details to appendices, including Appendix A, which
demonstrates that our method is robust to gate-dependent
errors, and Appendix B, which provides a self-contained
and straightforward proof that generalizations of the Clif-
ford group to qudits for d prime form a unitary 2-design,
which may be of independent interest.

II. MATHEMATICAL PRELIMINARIES

In this paper, we use the Liouville representation of
quantum channels. In the Liouville representation, given
some fixed basis {|i〉} of our Hilbert space H, a density
matrix ρ =∑ij ρij |i〉〈j | is represented by a column vec-
tor |ρ〉〉 =∑ij ρij |i〉 ⊗ |j 〉, where we use a double bracket
|·〉〉 to distinguish elements of H ⊗ H from elements of H.
In the case of a pure state ρ = |ψ〉〈ψ | we also sometimes
write |ψ〉〉 in place of |ρ〉〉. A quantum channel �(ρ) =∑

i AiρA†
i is represented by a matrix �̂ =∑i Ai ⊗ A∗

i . In
this representation, matrix multiplication corresponds to
composition

̂�1 ◦�2 = �̂1�̂2,

matrix-vector multiplication corresponds to applying a
quantum channel

�̂|ρ〉〉 = |�(ρ)〉〉,

and the inner product of two vectors corresponds to the
Hilbert-Schmidt inner product of the corresponding den-
sity matrices

〈〈σ |ρ〉〉 = Tr(σ †ρ).

In particular, if M is a projector into some measurement
outcome, the overlap 〈〈M |ρ〉〉 gives the probability of mea-
suring M from a state ρ. For a more detailed treatment of
the Liouville representation, see Ref. [36].

Given a unitary group G acting on our Hilbert space H,
the natural action of U ∈ G on density matrices is given
by U(ρ) = UρU†. In the Liouville representation, such an
operator is represented by Û = U ⊗ U∗. The map φ : U �→
U ⊗ U∗ forms a representation [37] of the group G on H ⊗
H that we refer to as the natural representation of G. We
can also define the G twirl of a quantum channel � as

�̂G = 1
|G|
∑

U∈G

Û†�̂Û, (1)

where |G| is the order of the group. We can also define
the G twirl by compact groups by replacing the discrete
average by the integral over the Haar measure. As we see,
�G has properties similar to the original channel �, but
it has a simpler structure that makes it more tractable to
study.

If a noisy implementation of a gate U results in apply-
ing the channel (� ◦ U), we want to characterize how
close the noise channel � is to the identity. We focus on
one common measure of noise, the average fidelity F�,
given by

F� :=
∫

dψ〈〈ψ |�̂|ψ〉〉. (2)

Here, dψ is the unitary-invariant Haar or Fubini-Study
measure on H. The integrand 〈〈ψ |�̂|ψ〉〉 is the probabil-
ity of preserving a state |ψ〉 after the noise operator � is
applied. The average fidelity is then simply the average of
this probability over all possible input states.

III. THE GENERALIZED CHARACTER
RANDOMIZED BENCHMARKING PROCEDURE

Let G be the unitary group on H that we wish to bench-
mark. We assume G is either finite or compact, so that
every unitary representation decomposes into irredicible
representations. Let φ : G → L(H ⊗ H) be the natural
representation of G, which decomposes into irreducible
representations as φ 
 a1φ1 ⊕ · · · ⊕ aIφI , where ai ∈ Z

+
is the multiplicity of the irrep φi. Let H ⊗ H 
⊕iC

ai ⊗
Hi be the corresponding decomposition of Hilbert space,
such that each φi acts nontrivially only on a single copy
of Hi. We make the standard RB assumption that the
gate error � associated with U ∈ G is independent of U,
although this can be relaxed [22,38–40] (see Appendix A).

Let G ⊆ G be a subgroup of our unitary group with natu-
ral representation φ 
 a1φ1 ⊕ · · · ⊕ aIφI and correspond-
ing decomposition H ⊗ H 
⊕iC

ai ⊗ Hi. We choose G
such that for every i ∈ {1, . . . , I}, there exists a correspond-
ing i ∈ {1, . . . , I} such that Cai ⊗ Hi ⊆ Cai ⊗ Hi. One

010351-3



CLAES, RIEFFEL, and WANG PRX QUANTUM 2, 010351 (2021)

may satisfy this condition by choosing G = G, but we see
below that for this procedure to scale with the number of
qubits we must choose G � G. We denote the character of
the irrep φi by χi(U) := Tr

[
φi(U)

]
.

Our RB procedure consists of the following steps:

1. For each i ∈ {1, . . . , I}, choose an initial state
|ρi〉〉 and measurement projector |Mi〉〉 such that
|〈〈Mi|P̂i|ρi〉〉| is large as possible (see Sec. III C
below), where P̂i is the projector onto Hi.

2. For a given N , choose unitaries U0 ∈ G and
U1, . . . , UN ∈ G randomly and uniformly (note ele-
ments can be repeated). In the case of a compact
group rather than a finite group, choose elements
according to the Haar measure. Compute UN+1 =
U†

1 · · · U†
N .

3. Prepare the state |ρi〉〉. Apply the gates (U1U0), U2,
. . . , UN+1 sequentially, where (U1U0) is compiled
as a single element of G.

4. Perform a measurement of the observable Mi.
5. Repeat steps 2–4 many times, to estimate the

character-weighted survival probability

Si(N ) = 1
|G|N+1

∑

U0∈G
U1,...,UN ∈G

χ∗
i (U0)PrU0,...,UN+1 (3)

for each i, where PrU0,...,UN+1 is the proba-
bility of measuring |Mi〉〉 after applying gates
(U1U0), . . . , UN+1 to |ρi〉〉, including the effect of
gate and SPAM errors.

6. Repeat steps 2–5 for different values of N .
7. Fit each character-weighted survival probability to a

function of the form

Si(N ) =
ai∑

j =1

Ci,j λ
N
i,j , (4)

where the Ci,j and λi,j are (possibly complex) fit-
ting parameters independent of N . Note that if χi is
complex we may have Si complex, but if χi is real
the Ci,j and λi,j are restricted to be real or come in
complex-conjugate pairs.

8. Estimate the average fidelity of the gate error � as

F� =
∑I

i=1

[
dim(Hi)

∑ai
j =1 λi,j

]
+ d

d2 + d
, (5)

where d := 2n is the dimension of Hilbert space.

A similar RB procedure was first proposed in Ref. [22]
for groups with all ai = 1, the so-called multiplicity-
free groups. In this case, each character-weighted survival
probability becomes a single exponential decay. Character

RB had been previously proposed for the multiplicity-free
dihedral group on one qubit [18], and a related approach
has been used to simplify standard RB [41].

We note if we omit the initial gate U0 and the character-
weighting χ∗

i
(U0), we get the method of Refs. [19–21]; in

this case, we get a single survival probability S(N ) that
is given by S(N ) =∑i,j Ci,j λ

N
i,j . Determining the λi,j then

requires fitting all the parameters Ci,j and λi,j simultane-
ously, and quickly becomes infeasible for a modestly large
number of parameters. We see that while both our method
and the method of Ref. [19–21] involve simultaneously fit-
ting multiple exponential decays, our method significantly
reduces the number of parameters in each fit. For example,
if φ 
 2φ1 ⊕ φ2 ⊕ φ3, our method requires fitting three
functions, corresponding to φ1, φ2, and φ3, where the first
function is a sum of two exponential decays and the latter
two functions are single exponential decays. In contrast,
Refs. [19–21] require fitting a single exponential function
that is the sum of four exponential decays, one for each
copy of each irrep. In addition, the method of Refs. [19–21]
cannot determine F�, because it is not possible to match
the observed parameters {λi,j } to their corresponding Hi in
order to use Eq. (5).

The remainder of this section is devoted to deriving this
procedure, for groups that are not necessarily multiplicity-
free. Much of this is a straightforward extension of the
derivation of Ref. [22], although the generalization to
gate-dependent noise (Appendix A) is much less straight-
forward.

A. Deriving the decays

To derive the form of the character-weighted survival,
Eq. (4), we need two facts from representation theory.
Fact 1 (Schur’s lemma): Let φ : G → L(V) be a repre-
sentation of a group G on a vector space V, which decom-
poses into irreducible representations as φ 
 a1φ1 ⊕ · · · ⊕
aIφI , where ai ∈ Z

+ are positive integers. The correspond-
ing decomposition of V is V 
⊕iC

ai ⊗ Vi. In terms of
this decomposition, any linear map η̂ ∈ L(V) satisfying
η̂φ(U) = φ(U)η̂ for all U ∈ G is of the form

η̂ 

⊕

i

Q̂i ⊗ 1̂i (6)

where Q̂i is some ai × ai matrix for each i.
Fact 2 (Projection formula): Let φ and V be as above.
Given an irrep φi : G → L(Vi), define the character χi :
G → C of φi as χi(U) := Tr [φi(U)]. Then we can write
the projector onto Cai ⊗ Vi as

P̂i = dim(Vi)

|G|
∑

U∈G

χi(U)∗φ(U). (7)

For proofs of both facts, see Refs. [37].
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Given these results, we can prove the key property of G
twirls that allows us to compute the average fidelity.
Theorem 1 (Form of G twirls): If G is any unitary group
acting on H, let φ 
 a1φ1 ⊕ · · · ⊕ aIφI be the decom-
position of the natural representation into irreps, and let
H ⊗ H 
⊕iC

ai ⊗ Hi be the corresponding decomposi-
tion of H ⊗ H. If � is any quantum channel, the G twirl
of � is of the form

�̂G 

⊕

i

Q̂i ⊗ 1̂i, (8)

where Qi is defined as in Fact 1.

Proof. We apply Eq. (1) to observe that

�̂GÛ = 1
|G|

∑

U′∈G

Û′†�̂Û′Û,

= 1
|G|

∑

U′∈G

ÛÛ†Û′†�̂Û′Û,

= Û
1

|G|
∑

(U′U)∈G

(Û′Û)†�̂(Û′Û) = Û�̂G

for any U ∈ G. We can then apply Fact 1. �
We are now ready to derive the formula for the

character-weighted survival probability Si(N ). This proof
follows the logic of Ref. [22], adapted for non-multiplicity-
free groups. Our notation assumes finite groups; for com-
pact groups, one simply replaces the discrete average over
the group with an integral over the Haar measure. Writing
out Eq. (3) explicitly, including the effect of preparation
and measurement errors �P and �M , we have

Si(N ) = 1

|G|N |G|
∑

U0,...,UN

χ∗
i (U0)

P̂i

× 〈〈Mi|�̂M �̂ÛN+1�̂ÛN · · · �̂Û2�̂Û1 Û0

P̂i

�̂P|ρi〉〉.

The sum over U0 gives the projection |G|P̂i/dim(Hi)

according to Eq. (7). To do the sum over U1, . . . , UN ,
we can define new group elements D1, . . . , DN by Di =
Ui · · · U1. In terms of the Di, we then have Ui = DiD

†
i−1,

with the convention that DN+1 = 1. Note that summing
over U1, . . . , UN is the same as summing over D1, . . . , DN .
We therefore may write

Si(N ) = 1

dim(Hi)|G|N
∑

D1,...,DN ∈G

〈〈Mi|�̂M �̂ D̂†
N �̂D̂N︸ ︷︷ ︸
�̂G

· · · D̂†
2�̂D̂2︸ ︷︷ ︸
�̂G

D̂†
1�̂D̂1︸ ︷︷ ︸
�̂G

P̂i�̂P|ρi〉〉.

We can now easily perform the sum over the Di, since each
sum just gives a G twirl according to Eq. (1). Performing
this sum, and using Theorem 1, gives

Si(N ) = 1

dim(Hi)
〈〈Mi|�̂M �̂

(
�̂G

)N
P̂i�̂P|ρi〉〉,

= 1

dim(Hi)
〈〈Mi|�̂M �̂

(⊕
i′
Q̂i′ ⊗ 1i′

)N
P̂i�̂P|ρi〉〉,

= 1

dim(Hi)
〈〈Mi|�̂M �̂

(
Q̂N

i ⊗ 1i

)
P̂i�̂P|ρi〉〉,

where in the last line, we use the fact that the range of
P̂i is included in Cai ⊗ Hi. We see that the effect of the
character weighting is to produce a projector that restricts
our attention to a single i. If we diagonalize Q̂i as Q̂i =∑ai

j =1 |ei,j 〉〉λi,j 〈〈ei,j | with 〈〈ei,j |ei,j ′ 〉〉 = δj ,j ′ , then Q̂N
i =∑ai

j =1 |ei,j 〉〉λN
i,j 〈〈ei,j |, and we may write the final form of

Si(N ) as

Si(N ) =
ai∑

j =1

〈〈Mi|�̂M �̂
(
|ei,j 〉〉〈〈ei,j | ⊗ 1i

)
P̂i�̂P|ρi〉〉

dim(Hi)
λN

i,j ,

which is precisely the form given in Eq. (4). Notice
that the λi,j depend only on the gate error �, and not
the SPAM errors �P,�M , which are absorbed into the
constant prefactor.

B. Computing the fidelity

Finally, we prove the fidelity can be estimated according
to Eq. (5). This was first derived in Ref. [21], although we
adopt a simpler proof here using techniques introduced in
Refs. [13,14]. The key realization is that both the fidelity
and the trace of a channel are invariant under twirling by
an arbitrary group: F� = F�G and Tr(�̂) = Tr(�̂G) [see
Eq. (1)]. In particular, if we choose G to be the full unitary
group it is known that the full twirl of a channel is simply
a depolarizing channel [13,14,42]:

�̂G :=
∫

dU Û†�̂Û = p1 + (1 − p)
1
d
|1〉〉〈〈1|. (9)

In terms of the parameter p , we can directly compute
F�G = p + (1 − p)/d. Similarly, we can also directly
compute Tr(�̂G) = pd2 + (1 − p). Combining these equa-
tions gives

F� = Tr(�̂)+ d
d2 + d

. (10)
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To complete the proof, we note that Tr(�̂) can be written
in terms of the matrices Q̂i in Eq. (8) as

Tr(�̂) =
I∑

i=1

[
dim(Hi)Tr(Q̂i)

]
=

I∑

i=1

⎛

⎝dim(Hi)

ai∑

j =1

λi,j

⎞

⎠,

which, combined with Eq. (10), gives Eq. (5) as desired.

C. Scaling and feasibility

We note that experimentally determining Si(N ) requires
Monte Carlo sampling of U0, U1, . . . , UN . Each term in
this sample is bounded by maxU0∈G(|χi(U0)|) = dim(Hi).
Therefore, the standard deviation of the samples is
bounded by dim(Hi), and the sample mean has uncer-
tainty bounded by dim(Hi)/

√
no. samples. To determine

the relative uncertainty, we consider Si(N ) ≈∑ai
j =1 Ci,j ,

which is given by

ai∑

j =1

Ci,j =
ai∑

j =1

〈〈Mi|�̂M �̂
(
|ei,j 〉〉〈〈ei,j | ⊗ 1i

)
P̂i�̂P|ρi〉〉

dim(Hi)

≈ 〈〈Mi|P̂i|ρi〉〉
dim(Hi)

where we approximate �,�M ,�P ≈ 1. The relative
uncertainty in Si(N ) is therefore bounded by

σi

|Si(N )| � dim(Hi)
2

|〈〈Mi|P̂i|ρi〉〉|
√

no. samples
.

We see that to efficiently benchmark a group G, we must
have I , ai, and dim(Hi) all small. I must be small so that
we only need to estimate a small number of character-
weighted survival probabilities Si(N ), ai must be small so
that we may fit a function with a small number of param-
eters, and dim(Hi) must be small for our Monte Carlo
estimation of Si(N ) to converge quickly. Note that for any
G the natural representation satisfies

∑I
i=1 ai dim(Hi) =

4n where n is the number of qubits, so that choosing G = G
will not suffice if the number of qubits is large. In partic-
ular, to scalably benchmark a group, we must choose G
so that the number of irreps I grows slowly with n, the
multiplicity ai of each irrep is bounded by a small con-
stant, and G has corresponding irreps Hi whose dimension
grows slowly with n. These scaling considerations are sim-
ilar to those discussed in Ref. [22] for multiplicity-free RB,
except in our case we allow ai to be bounded rather than
strictly 1.

Note that the optimal |ρi〉〉 with largest |〈〈Mi|P̂i|ρi〉〉|
is necessarily a pure state, since any mixed state |ρi〉〉 =

∑
γ pγ |ψγ 〉〉 has

|〈〈Mi|P̂i|ρi〉〉| ≤
∑

γ

pγ |〈〈Mi|P̂i|ψγ 〉〉|

≤ max
γ

|〈〈Mi|P̂i|ψγ 〉〉|.

Reference [22] considered the case of mixed initial states,
and included a protocol for sampling from a mixed state
|ρi〉〉 =∑γ pγ |ψγ 〉〉 provided one can efficiently prepare
the states {|ψγ 〉〉}. However, we see that it suffices to take
the initial state to be one of the efficiently preparable |ψγ 〉〉,
which simplifies initial state preparation.

Our scaling estimates are based on the typical case; how-
ever, there are a few worst-case failure modes. First, the
noise may have some symmetry that restricts 〈〈ei,j |P̂ī ≈ 0
for some (i, j ). In this case, the corresponding λi,j will not
be accurately estimated by the fitting function. To remedy
this, one may choose a set of projectors

{
P̂i,1, . . . , P̂i,k

}

such that each 〈〈ei,j | has overlap with at least one P̂i,α . This
requires at most ai projectors. We can then define

P̂i =
∑

α

P̂i,α χi =
∑

α

χi,α .

The modified character-weighted survival probability will
require taking additional data to achieve the same rel-
ative uncertainty, since the corresponding dim(Hi) =∑

α dim(Hi,α) will be larger, but is otherwise identical.
The fitting procedure may also have difficulty fitting

multiple exponential decays [43,44], especially if the
decay rates are similar [44]. In the case of similar decays,
the fit might have numerous local minima; worse, the fit-
ting function might simply set the coefficient of one of the
decays to zero and the corresponding decay rate to some
arbitrary value, and fit the curve using fewer exponential
decays. This can be detected during the fitting procedure,
and corrected by either taking more data to more closely
constrain the fit or by simply fitting fewer exponential
decays. For a detailed discussion of methods used to fit
multiexponential decays and their failure modes, we refer
to Refs. [45–47].

IV. APPLICATION: SUBSPACE RANDOMIZED
BENCHMARKING

As an application of the general character RB method,
we can improve on the recently introduced subspace ran-
domized benchmarking method [23]. Subspace RB char-
acterizes the error associated with a group of gates G that
preserve a subspace of the Hilbert space. In Ref. [23],
a benchmarking procedure is introduced that yields two
decay parameters that are functions of the noise channel,
but the procedure does not give an estimate for the average
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fidelity or other quantities with simple physical interpre-
tations. The multiplicity-free character RB of Ref. [22]
is not directly applicable to this situation, as we see that
any group that preserves subspaces necessarily decom-
poses into irreps with multiplicity. However, using our
method we can easily characterize the average fidelity of
such gates.

To simplify our discussion, we focus on the partic-
ular case discussed in Ref. [23]. The system consid-
ered in Ref. [23] can implement arbitrary symmetric sin-
gle qubit gates U1 := U ⊗ U as well as the two-qubit
entangling gate UZZ := exp{−iπ4 Z ⊗ Z}. The symmetric
single-qubit gates have negligible error compared to the
entangling gate, so the goal of the experiment is to charac-
terize the fidelity of UZZ . This is accomplished by combin-
ing the elementary gates into elements of a benchmarking
group G, using a fixed number of the relevant gate UZZ , and
then designing an RB procedure to benchmark elements of
G. It is straightforward to see that any U ∈ G made up of
products of U1 and UZZ operators preserves the triplet and
singlet subspaces

HT := span
{
|00〉, |01〉 + |10〉√

2
, |11〉

}
,

HS := span
{ |01〉 − |10〉√

2

}
.

This implies that every gate U ∈ G decomposes as U =
UT ⊕ US, with UT and US acting on the triplet and singlet
spaces, respectively.

Our method differs from the original in several ways.
Most notably, we combine the elementary gates into ele-
ments U ∈ G such that G forms a group. This requires a
moderate increase in complexity of the combined gates;
Ref. [23] combined their gates into unitaries involving
three UZZ gates, while our construction requires four.
However, in return for this increased complexity, our
method offers several advantages. Rather than estimate
decay parameters with no clear physical interpretation, our
method produces direct estimates of the average fidelity.
In addition, the derivation of the form of the exponential
decays in Ref. [23] required assumptions on the relative
phases of UT and US that could not actually be realized on
their experimental platform. In contrast, our method yields
rigorous decays thanks to the underlying group structure
of G.

The original subspace RB can be extended to sets of
gates G that preserve some arbitrary splitting of H into
subspaces H = H1 ⊕ H2 provided the set G can be written
as

G = {U1,b1 ⊕ σU2,b2 : σ = ±, (b1, b2) ∈ B1 × B2},
where G1 := {U1,b1 : b1 ∈ B1} and G2 := {U2,b2 : b2 ∈ B2}
are groups and unitary 2-designs [48] (see below for the

definition of a 2-design) acting on H1 and H2, respec-
tively (here, B1 and B2 are just index sets for the groups
G1 and G2). However, it is difficult to construct such a G
in a way that is experimentally relevant; indeed, Ref. [23]
could not do this for the simple case of two qubits, and
we avoid attempting such a construction here. A more
useful approach, which mirrors our approach below, is to
construct an arbitrary group out of the elementary gates
and perform character RB on whatever irreps result. This
method can likely be used to benchmark other two-qubit
gates that are symmetric under SWAP besides UZZ , and may
also prove useful for gates that preserve other subspaces.

A. Constructing the benchmarking group

Reference [23] constructed their benchmarking set G
using a generalization of the Clifford group [11,12] to a
d-level system [49]. We follow a similar procedure, mod-
ified to ensure G forms a group. For a d-level system,
analogs of the X and Z qubit operators are defined as [50]

X |z〉 = |z + 1〉 Z|z〉 = ωz|z〉,

where ω := e2π i/d and addition is performed modulo d.
These generalized X and Z operators are unitary but not
Hermitian, and the set {X aZb : a, b ∈ Zd} forms a (com-
plex) orthogonal basis for the set of all d × d matrices.
Note that for d = 2 we recover the usual Pauli matrices.

Specializing to d = 3, define the generalized Pauli group
as P := {ωηX aZb : η, a, b ∈ Zd}. The fact that P is a
group follows from the commutation relation ZX = ωXZ.
The generalized Clifford group is defined to be the set of
all unitaries that stabilize P [49]:

GT = {U : UPU† = P}.

An element U ∈ GT is defined (up to a global phase) by
its action on X and Z. Defining UXU† = ωηx X ax Zbx and
UZU† = ωηz X az Zbz , and noting

ZX = ωXZ,

UZU†UXU† = ωUXU†UZU†,

ωηx+ηz X az Zbz X ax Zbx = ω1+ηx+ηz X ax Zbx X az Zbz ,

ωaxbz X ax+az Zbx+bz = ω1+azbx X ax+az Zbx+bz

we see that we must have axbz − azbx =3 1, where =3
denotes equality mod 3. This is the only restriction on
ηx, ηz, ax, az, bx, bz [49], leading to a total of 216 elements
of GT. We can find the action of U ∈ GT on a general
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FIG. 1. The elements of the benchmarking group G are con-
structed by composing elementary gates as shown above to
implement elements of GT on the triplet subspace. Each group
element contains exactly four entangling gates.

element X aZb by

UX aZbU† = (UXU†)a(UZU†)b,

= ωPX aax+baz Zabx+bbz ,

where

P := ηxa + ηzb + 2(a2 − a)axbx + 2(b2 − b)azbz + abbxaz.

The action of U on a general density matrix then follows
by linearity.

Our benchmarking group G is constructed by combin-
ing the elementary symmetric gates to act as GT on the
triplet subspace, where the three levels |0〉, |1〉, |2〉 corre-
spond to the triplet basis |00〉, (|01〉 + |10〉)/√2, |11〉. The
most general composite gate is formed by alternatively
applying U1 and UZZ gates to our qubits. A straightfor-
ward calculation shows that if such a circuit applies an
operator UT to the triplet subspace, its action on the sin-
glet subspace is necessarily given by (−1)nzωη det(UT)

1/3,
where nz is the number of entangling UZZ gates. By vary-
ing the single-qubit unitaries U1, we find computationally
that all elements of GT and all relative phases ωη can be
generated by circuits of exactly four UZZ gates, as shown
in Fig. 1 [51]. In total, then, the benchmarking group is
given by

G := {UT ⊕ ωη det(UT)
1/3 : UT ∈ GT, η = 0, 1, 2},

where the first summand acts on the triplet subspace and
the second acts on the singlet subspace. Note that every
group element contains exactly four entangling gates, so
the average fidelity of G gives a useful measure of the
fidelity of the entangling gate.

B. Irreps of the benchmarking group

For G given above, the natural representation decom-
poses into the irreps HT0, HS0, HT⊥, HTS, and HST, which
are described in Table I. These are all clearly subrepresen-
tations of the natural representation; for proof that they
are in fact irreducible, we use the concept of a unitary
t-design [9].

Let S be a set of unitaries acting on a space H. A bal-
anced polynomial of degree t is a polynomial in the matrix

TABLE I. Subrepresentations of the standard representation for
groups that preserve the triplet and singlet subspaces, and their
corresponding projectors and characters.

Subrep Projector χi(UT ⊕ US)

HT0 P̂T0 = 1
3 |1T〉〉〈〈1T| 1

HS0 P̂S0 = |1S〉〉〈〈1S|
HT⊥ P̂T⊥ = 1T − P̂T0 |Tr(UT)|2 − 1
HTS P̂TS = Projector onto HT ⊗ HS Tr(UT)Tr(US)

∗

HST P̂ST = Projector onto HS ⊗ HT Tr(UT)
∗ Tr(US)

elements of U and U∗, where each term in the polynomial
has degree d < t in the elements of U and degree d in the
elements of U∗. S is a unitary t-design if for balanced poly-
nomial p(U, U∗) of degree t, averaging p(U, U∗) over S is
the same as averaging over all unitaries on H (weighted by
the Haar measure)

1
|S|
∑

U∈S

p(U, U∗) =
∫

dU p(U, U∗).

A classic example is the Clifford group, which forms a
unitary 3-design [9,52,53].

The group GT forms a unitary 2-design [54] (see
Appendix B for a proof). This allows us to prove the rep-
resentations in Table I are irreducible, using the following
fact:

Fact 3 (Schur normalization): Let χ be the character of
a representation. The representation is irreducible if and
only if

1
|G|
∑

U∈G

|χ(U)|2 = 1.

For a proof, see Ref. [37].
The representations HT0 and HS0 are one dimensional,

and thus irreducible. For the representation HT⊥, we have

1
|G|
∑

U∈G

|χT⊥(U)|2 = 1
3|GT|

∑

UT∈GT
η=0,1,2

|χT⊥(UT)|2,

= 1
|GT|

∑

GT

[|Tr(UT)|2 − 1
]2

,

=
∫

dUα

[|Tr(Uα)|2 − 1
]2

,

= 1,

where the second equality follows from the unitary
2-design property, and the third follows from the fact that
HT⊥ is an irrep of the natural representation of the full
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unitary group on HT. Finally, for HTS and HST we have

1
|G|
∑

U∈G

|χST(U)|2 = 1
3|GT|

∑

UT∈GT
η=0,1,2

|Tr(UT)|2,

=
∫

dUT |Tr(UT)|2,

= 1,

where the second equality follows from the unitary 2-
design property and the third follows from the fact that
the direct representation of the full unitary group on HT
is irreducible.

Note that HT0 and HS0 are two irreducible copies of
the trivial representation, so that G is necessarily non-
multiplicity-free [55]. The remaining irreps are all unique,
since they have different character functions.

C. Benchmarking G

The form of the decay curves corresponding to each
irrep is given by

S0(N ) = C0λ
N
0 + B,

STS(N ) = CTSλ
N
TS,

SST(N ) = CSTλ
N
ST,

ST⊥(N ) = CT⊥λN
TS.

(11)

Note that from our general form Eq. (4) we would expect
that S0(N ) is the sum of two exponential terms, with each
λ0,j corresponding to an eigenvalue of �̂G restricted to
H0. However, we know that for trace-preserving noise
〈〈1|�̂G = 〈〈1|, which implies that one of the eigenvalues
is 1.

We define two different subgroups G1, G2 ⊆ G for our
benchmarking procedure. We use G1 to construct S0(N )
and ST⊥(N ), and G2 to construct STS(N ) and SST(N ).
We define

G1 := {X aZb ⊕ ωη : a, b, η = 0, 1, 2},
G2 := {Zb ⊕ ωη : b, η = 0, 1, 2}.

For G1, we can define the following character functions
and their corresponding projectors:

χ0(X
aZb ⊕ ωη) = 1,

P̂0 = 1
3
|1T〉〉〈〈1T| + |1S〉〉〈〈1S|,

χT⊥(X
aZb ⊕ ωη) = ω−a,

P̂T⊥ = 1
3
|Z〉〉〈〈Z|.

We see that P̂0 projects into 2H0 ⊆ 2H0 and P̂T⊥
projects into HT⊥ ⊆ HT⊥, as required. We also see that
dim(HT⊥) = 1, so that ST⊥(N ) will have the best possible
relative error (see Sec. III C).

For G2, we can define the character functions and
corresponding projectors

χTS(Z
b ⊕ ωη) = ωb−η,

P̂TS = |T〉|S〉〈T|〈S|,
χST(Z

b ⊕ ωη) = ω−b+η,

P̂ST = |S〉|T〉〈S|〈T|,

where |T〉 := (|01〉 + |10〉)/√2 is the triplet state satisfy-
ing Z|T〉 = ω|T〉 and |S〉 := (|01〉 − |10〉)/√2 is the sin-
glet state. We again see that PTS projects into HTS ⊆ HTS

and dim(HTS) = 1, so that STS(N ) will also have the best
possible relative error.

As our initial states, we choose

|ρi〉〉 =
{|00〉〉, i = 0, T ⊥
|01〉〉, i = TS, ST .

Here, we restrict ourselves to initial states that are a
mixture of Z-basis product states, for ease of preparation.

As our measurement projectors, we choose

|Mi〉〉 =
{|00〉〉 + |11〉〉, i = 0, T ⊥
|01〉〉, i = TS, ST .

Here, we restrict our measurement projectors to correspond
to Z measurements, for ease of measuring.

With these choices, the Si(N ) are approximately

Si(N ) ≈ 〈〈Mi|P̂i|ρi〉〉
dim(Hi)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
3

, i = 0

e−iπ/3

3
, i = T ⊥

1
4

, i = TS, ST

.

Note that λST = λ∗
TS, so it is unnecessary to compute both

STS(N ) and SST(N ). Note also that λ0 and λT⊥ are both
necessarily real, as are C0 and B. The remaining parameters
are complex. For convenience, we rotate ST⊥(N ) by eiπ/3

so that ST⊥(N ) is approximately real.
We demonstrate our method by generating random error

channels and simulating our RB procedure. To generate a
random error channel � on a d-dimensional Hilbert space,
we generate a random unitary on a (d2 + d)-dimensional
Hilbert space and trace out d2 auxiliary degrees of free-
dom; to adjust the fidelity, we take a convex combination
of the resulting channel with the identity channel. All
channels generated by this method are guaranteed to be
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FIG. 2. The predicted and measured character-weighted sur-
vival probability for a random error channel. The exact decay
(green) is an exponential decay given by Eq. (11). We estimate
Si(N ) by applying random gates and measuring the final state
(blue points). The data is fit to an appropriate function (orange)
from which we estimate the fidelity.

completely positive trace preserving (CPTP), thus valid
error channels, and every CPTP channel can be gener-
ated via this method [36]. For each error channel, we take
data at 15 different values of N , and sample unitary oper-
ators at each value of N until we apply a total of 150 000
unitary operators in total. For each string of unitary oper-
ators, we perform full state-vector simulation to apply the
RB sequence of operators, and then generate a measure-
ment outcome of 0 or 1 using the appropriate probability,
and compute the character-weighted average. In Fig. 2, we
show the exact value of Si(N ), the data we take to estimate
Si(N ), and the fit to Si(N ) according to Eq. (11) for a single
random error channel �.

From the fit data, we can estimate F� by applying
Eq. (5):

F� = 1 + λ0 + 8λT⊥ + 3λTS + 3λST + 4
20

. (12)

Note that the imaginary parts of λTS and λST always can-
cel to give a real F� as expected. We use this formula to
estimate the fidelity of our randomly generated error chan-
nels, and compare our estimate to the true fidelity in Fig. 3.
We see that the true fidelity and the estimated fidelity agree
within the error bars set by the uncertainty of our fits.

We can directly compare this with the original sub-
space RB method [23]. That method served to estimate

E
st

im
at

ed
 fi

de
lit

y

Exact fidelity

FIG. 3. The exact and estimated fidelity for a selection of ran-
domly generated error channels. Each estimate is based on data
taken over 15 different lengths N . Each estimate is arrived at by
applying a total of 150 000 benchmarking group elements. This is
the same number of elements applied in the experiment described
in Ref. [23]. The diagonal line denotes the points where the exact
and estimated fidelities are equal. The data agree with the line
with a reduced χ2 value of .9, indicating good agreement. Note
that the error bars are derived from statistical uncertainty in the
data, and vanish in the limit of an infinite number of data points.

only λ0 and λT⊥ (t and r in their notation), and they could
form only a measure of gate fidelity using these quantities.
They defined a so-called “extended subfidelity” F̃�, which
they obtained by replacing λST and λTS with the weighted
average of the other eigenvalues: λST + λTS ≈ 2 1+λ0+8λT⊥

10 .
Explicitly, the extended subfidelity is given by [56]

F̃λ = 16λT⊥ + 2λ0 + 7
25

.

It is obvious that if F� → 1, F̃� → 1 as well, but the
reverse is not necessarily true. We can compare the
extended subfidelity to the exact fidelity for the various
noise sources explored in Ref. [23]. We consider intensity
errors, which correspond to an overrotation e−iεZZ ; opti-
cal pumping errors, which cause amplitude damping on
each qubit; inhomogenous fields, which cause phase damp-
ing on each qubit; and SWAP errors, which interchange the
qubits. The results are shown in Fig. 4. We see that while
for most error sources F� ≈ F̃�, there exist worse-case
errors, such as SWAP, that cannot be detected by F̃�. This
was also noted in Ref. [23] as a limitation of their method.

Our work also improves upon the original work
in the mathematical assumptions needed to derive the
benchmarking decays. Reference [23] derived their decay
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(a) (b) (c)

FIG. 4. (a) The extended subfidelity F̃� of Ref. [23] versus the exact fidelity F� that we can estimate in our paper, for a selection
of error channels of varying strengths: intensity errors, which correspond to an overrotation e−iεZZ ; optical pumping errors, which
cause amplitude damping on each qubit; inhomogeneous fields, which cause phase damping on each qubit; and SWAP errors, which
interchange the qubits. This plot corresponds to the exact value of both F� and F̃� that one estimates in an experiment. Note that
while the F̃� agrees with F� in the limit F� → 1, in general the two do not agree, and there exists worst-case errors such as SWAP that
F̃� cannot detect. (b),(c) Simulation of an experiment that estimates F� versus F̃� for a total of 300 000 unitaries, in the case of (b)
intensity and (c) SWAP errors of varying strengths. These plots correspond to experiments that estimate the exact values shown in (a).
We see that the difference between F� and F̃� can be discerned in a realistic experiment.

formulas under the assumption that their benchmarking set
was of the form {UT ⊕ σφUT : UT ∈ GT, σ = ±}, where
φUT is some uncontrolled phase that occurs on the singlet
space and σ is a controllable phase between the singlet and
triplet spaces. However, in practice they could not con-
trol σ using a constant number of UZZ gates. Instead, they
implemented only {UT ⊕ φUT : UT ∈ GT} and assumed the
form of the decay would not change. In our work, by con-
trast, we rigorously derive decay formulas for a group
of gates that can be directly compiled into elementary
symmetric gates using a constant number of UZZ .

We note that our method does require one additional
capability that was not required in the original work: in
order to estimate STS(N ), it is necessary to initialize and
measure the |01〉 state. This requires additional experi-
mental overhead to individually address and measure each
qubit at the beginning and end of the benchmarking pro-
cedure. However, such overhead contributes only to the
SPAM errors �P,�M , and does not affect our estimates
of the entangling error. In any case, our method to mea-
sure λ0 and λT⊥ does not require individual addressing,
and can be viewed as a mathematically rigorous method to
extract these parameters with no additional experimental
requirements.

V. APPLICATION: LEAKAGE RANDOMIZED
BENCHMARKING

We may also use our generalized character RB to
improve the leakage RB introduced in Ref. [26]. In leak-
age RB, like subspace RB, one is given a group G that

preserves the splitting of the Hilbert space into subspaces
H = H1 ⊕ H2. In leakage RB, however, H1 ⊕ H2 does
not represent the computational Hilbert space, and the goal
is not to compute the average fidelity of the group opera-
tions. Instead, H1 represents the computational space of
a quantum system (e.g., the two lowest-level states that
encode a qubit), while H2 represents the leakage space
outside the computational space. Leakage RB determines
the average probability of “leaking” from H1 to H2 or
“seeping” from H2 to H1. Noting that the probability of a
state |ρ〉〉 being in subspace α = 1, 2 is given by 〈〈1α|ρ〉〉,
define the leakage L and seepage S by

L :=
∫

dψ1〈〈12|�̂|ψ1〉〉 = 1
d1

〈〈12|�̂|11〉〉, (13)

S :=
∫

dψ2〈〈11|�̂|ψ2〉〉 = 1
d2

〈〈11|�̂|12〉〉. (14)

In addition, leakage RB determines the average fidelity
restricted to the subspace H1

F�,1 =
∫

dψ1〈〈ψ1|�̂|ψ1〉〉, (15)

which is the appropriate measure of gate quality, since all
computations take place in H1. Leakage RB is relevant for
any system in which qubits are encoded in the subspace
of a larger Hilbert space, which includes superconducting
qubits [57,58], quantum dots, [59–63], and trapped ions
[64–66].
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The original leakage RB could only be applied to a
group

G = {U1,b1 ⊕ σU2,b2 : (b1, b2) ∈ B1 × B2, σ = ±1}
(16)

such that G1 = {U1,b1 : b1 ∈ B1} and G2 = {U2,b2 : b2 ∈
B2} form 2-designs on their respective subspaces [67].
This is a very stringent condition, as it requires being able
to independently control the computational and leakage
subspaces. In many experimental implementations such
control is not realistic; an experimental implementation of
a gate U1,b on the computational subspace will naturally
implement some U2,b on the leakage subspace. It is there-
fore desirable to develop a leakage RB that can be applied
to more general groups.

Using our method, we can derive a leakage RB pro-
cedure that is more general than the one described in
Ref. [26]. Let G be a group of unitary gates that pre-
serve the subspaces of H, and let � be their shared error
channel. To estimate L and S, we require that the only
trivial representations of G are |11〉〉 and |12〉〉, while to
estimate F�,1 we additionally require that the subrepresen-
tation H1⊥ ⊆ H1 ⊗ H1 orthogonal to |11〉〉 is an irrep of
multiplicity 1.

If we write our group G as

G = {Ub,σ : b ∈ B, σ = ±1},
= {U1,b ⊕ σU2,b : b ∈ B, σ = ±1}.

then the first condition is satisfied provided {U1,b : b ∈ B}
and {U2,b : b ∈ B} are unitary 1-designs, while the second
condition is satisfied if provided these groups are uni-
tary 2-designs with dimensions d1 �= d2 (see Appendix C
for proofs). Note that our requirements are significantly
weaker than the original leakage RB, as we are only assum-
ing the ability to implement an independent phase on the
leakage space.

We outline our procedure for determining L, S, and
F�,1 for such groups G. Our procedure, like the original
leakage RB, requires that SPAM errors do not mix the sub-
spaces H1 and H2, or at least that such mixing is negligible
compared to the gate errors. In our derivations we assume
�̂M = �̂P = 1̂, although the generalization to errors that
act only within the subspaces is trivial.

Our modified leakage RB procedure consists of the
following steps:

1. Choose an initial state |ρ〉〉 ∈ H1 and measurement
projector |M 〉〉 = |11〉.

2. For a given N , choose unitaries U0, U1, . . . , UN ∈
G randomly and uniformly. Compute UN+1 =
U†

1 · · · U†
N .

3. Prepare the state |ρ〉〉. Apply the gates (U1U0), U2,
. . . , UN+1 sequentially, where (U1U0) is compiled
as a single element of G.

4. Perform a measurement of the observable M to
determine if the state is still in H1.

5. Repeat steps 2–4 many times, to estimate the trivial
character-weighted survival probability

S0(N ) = 1
|G|N+1

∑

U0,...,UN ∈G

PrU0,...,UN , (17)

where PrU0,...,UN+1 is the probability of remaining in
H1 after applying gates (U1U0), . . . , UN+1 to |ρ〉〉.

6. Repeat steps 2–5 for different values of N .
7. Fit the survival probability to a function of the form

S0(N ) = AλN + B, (18)

where A, B, and λ are independent of N .
8. Estimate L and S as

L = (1 − B)(1 − λ), (19)

S = B(1 − λ). (20)

9. Use the original character RB (Sec. III) to mea-
sure the character-weighted survival probability S1⊥
associated to the irrep H1⊥. Fit

S1⊥(N ) = CλN
1⊥

to estimate λ1⊥.
10. Estimate F�,1 as

F�,1 = (d2
1 − 1)λ1⊥ + (d1 + 1)(1 − L)

d2
1 + d1

. (21)

In the remainder of this section, we prove the correctness
of this procedure and provide an example of such leakage
RB.

A. Deriving L and S

Written out explicitly, the zeroth character-weighed sur-
vival probability is

S0(N ) = 〈〈11|�̂�̂N
GP̂0|ρ〉〉,

where P̂0 is the projector onto the trivial irrep, and we make
the same substitutions as in Sec. II A to reduce the sum
over {U0, . . . , UN } to G twirls and a projector. We know
from Theorem 1 that �̂G has a block-diagonal form �̂G =⊕

iQ̂i ⊗ 1̂i, where i indexes the irreps. Because �̂G is mul-
tiplied by the projector P̂0 in Eq. (17), we may ignore all
terms except Q̂0 ⊗ 10. In terms of the eigendecomposition
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of Q̂0, we may write Q̂0 ⊗ 10 = |e0〉〉〈〈e0| + λ|e1〉〉〈〈e1|,
so that

S0(N ) = 〈〈11|�̂|e0〉〉〈〈e0|ρ〉〉 + 〈〈11|�̂|e1〉〉〈〈e1|ρ〉〉λN ,

where we use the fact, noted in Sec. IV, that one eigenvalue
of Q̂0 is always 1. This justifies the fit Eq. (18).

So far, we simply repeat the steps in Sec. II A with
slight modifications. However, in order to estimate L and
S we need to explicitly determine the eigendecomposition
of Q̂0 ⊗ 10. We first note that the P̂0 subspace is spanned
by the orthonormal vectors

1√
d1

|11〉〉 := |1̂1〉〉 1√
d2

|12〉〉 := |1̂2〉〉.

Thus in terms of these basis vectors, we may write

Q̂0 ⊗ 10 = |1̂α〉〉Qαβ〈〈1̂β |

for some constants Qαβ . Noting that Mαβ = 〈〈1̂α|�̂G|1̂β〉〉
= 〈〈1̂α|�̂|1̂β〉〉, we can use the definitions of L and S
[Eqs. (13) and (14)] to determine the constants Qαβ :

Qαβ =
⎛

⎝1 − L
√

d2
d1

S
√

d1
d2

L 1 − S

⎞

⎠

αβ

.

From the explicit form of Qαβ , we can determine the eigen-
decomposition of Q̂0 ⊗ 10 via straightforward algebra [23,
26]:

|e0〉〉 = S√
d1(L + S)

|1̂1〉〉 + L√
d2(L + S)

|1̂2〉〉,

|e0〉〉 =
√

d1|1̂1〉〉 +
√

d2|1̂2〉〉,
|e1〉〉 =

√
d2|1̂1〉〉 −

√
d1|1̂2〉〉,

|e1〉〉 = L√
d2(L + S)

|1̂1〉〉 − S√
d1(L + S)

|1̂2〉〉,

λ = 1 − L − S.

Putting this together, we can evaluate the zeroth character-
weighted survival probability as

S0(N ) = S
L + S

+ L
L + S

(1 − L − S)N+1.

We then have that B = S/(L + S), which can be com-
bined with λ = 1 − L − S to immediately give Eqs. (19)
and (20).

B. Deriving F�,1

To establish Eq. (21), we first prove the following:

F�,1 = Tr(�̂P̂11)+ d1(1 − L)
d2

1 + d1
, (22)

where P̂11 is the projector onto H1 ⊗ H1. We use a simi-
lar method as in our proof of Eq. (10). We first note that
the restricted average fidelities of �̂ and P̂11�̂P̂11 := �̂11

are equal. �̂11 is an error channel restricted to the H1 sub-
space. We can twirl �̂11 by the full unitary group on H1 to
get a depolarizing channel

(�11)G = p11 + q
1
d1

|11〉〉〈〈11|.

Note that we have p and q rather than p and (1 − p) as
in Eq. (9); this is because �̂11 is not necessarily trace
preserving. We can directly compute F(�11)G = p + q

d1
.

Similarly, we can also directly compute Tr
[
(�̂11)G

]
=

pd2
1 + q. Finally, we can directly compute p + q =

1/d1〈〈11|(�̂11)G|11〉〉 = 1/d1〈〈11|�̂|11〉〉 = 1 − L. Com-
bining these three equations gives Eq. (22).

To estimate Tr(�̂P̂11), we can divide this trace up into
two pieces:

Tr(�̂P̂11) = 〈〈1̂1|�̂|1̂1〉〉 + Tr(�̂P̂1⊥)

= (1 − L)+ Tr(�̂P̂1⊥),

where P̂1⊥ is the projector onto H1⊥. The latter trace is
simply (d2

1 − 1)λ1⊥. Plugging this in to Eq. (22) gives
Eq. (21) as desired.

C. Example: Two-qubit logical encodings

Here, we illustrate the advantages of our leakage RB
over the original leakage RB of Ref. [26] via a single-qubit
example where Ref. [26] is not applicable. We consider an
encoding of a single logical qubit into the Sz = 0 subspace
of two physical qubits. This encoding is frequently used in
quantum-dot qubits [60–62]. The computational space H1
is spanned by

|0〉 := |01〉 − |10〉√
2

, |1〉 := |01〉 + |10〉√
2

and the leakage space H2 is spanned by

|2〉 := |00〉, |3〉 := |11〉.
Let us assume we implement single-qubit rotations on our
computational space by the operators

RX = XC ⊕ ZL RZ = ZC ⊕ XL + ZL√
2

,
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where implementing an X or Z rotation on the compu-
tational space naturally induces a specific rotation on the
leakage space.

We take our benchmarking group to be the group gener-
ated by these two rotations, G = 〈RX , RZ〉. This group has
a total of 16 elements. It cannot be written as a direct sum
of a group acting on H1 and a group acting on H2 as in
Eq. (16), so the leakage RB of Ref. [26] does not apply.
However, elementary calculation shows that the natural
representation of this group contains exactly two trivial
irreps, spanned by |11〉〉 and |12〉〉, and we can therefore
use our procedure to estimate L and S.

We illustrate this method by generating random error
channels and simulating the RB procedure. In Fig. 5, we
show the exact value of S0(N ), the data we take to esti-
mate S0(N ), and the fit to S0(N ) according to Eq. (18). In
Fig. 6, we repeat the same fitting procedure for a set of
randomly generated error channels, and estimate L and S
using Eq. (19). We see that the true values of L and S and
our estimate for L and S agree within the error bars set by
the uncertainty in our fits.

We cannot apply our method to find F�,1 because in
this example H2⊥ and H1⊥ share an irrep. This reflects
the overall difficulty in applying leakage RB to physi-
cally realistic circumstances. While this work provides the
most widely applicable method for leakage RB currently

FIG. 5. The predicted and measured S0(N ) for a single ran-
domly generated error channel. The actual decay (green) is
an exponential decay given by Eq. (18). We estimate S0(N )
by applying random gates and measuring the final state (blue
points). The data is fit to a function of the form of Eq. (18), from
which we estimate L and S.

FIG. 6. The exact and estimated leakage and seepage for a
selection of randomly generated error channels. Each estimate
is based on data taken over 15 different lengths N . Each estimate
is arrived at by applying a total of 300 000 unitary group ele-
ments. The diagonal line denotes the points where the exact and
estimated fidelities are equal. The data agree with this line with a
reduced χ2 value of 1.3, indicating good agreement.

available, more work is needed to develop a truly general
procedure.

VI. APPLICATION: MATCHGATE RB

We can also use our method to introduce a new proce-
dure for scalably benchmarking circuits made of match-
gates. Matchgates are two-qubit gates of the form

G(A, B) =

⎛

⎜⎝

a11 0 0 a12
0 b11 b12 0
0 b21 b22 0

a21 0 0 a22

⎞

⎟⎠ ,

with det(A) = det(B). In other words, a matchgate acts as
A on the even parity subspace spanned by {|00〉, |11〉} and
as B on the odd-parity subspace spanned by {|01〉, |10〉}.
Without loss of generality we may assume det(A) =
det(B) = 1. The set of matchgates acting on a line of
nearest neighbors is efficiently simulable [27–30]. How-
ever matchgates acting on next nearest neighbors [30] or
acting on any nontrivial connectivity graph [31,34] are
universal, as are matchgates plus arbitrary one-qubit gates
[29,32], matchgates plus a single G(A, B) with det(A) �=
det(B) [33], matchgates acting on entangled input states
[35], and matchgates plus adaptive measurements [35].
Implementations of arbitrary matchgates have been pro-
posed for trapped atom systems [68] and have been
experimentally demonstrated in photonic systems [69].
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We derive a benchmarking procedure that determines
the average fidelity of circuits composed of matchgates
using a number of experiments that scales polynomially in
the number of qubits. Our method is the matchgate equiv-
alent of traditional Clifford RB, which characterizes the
average fidelity of circuits composed of Hadamard, phase,
and CNOT gates, and also requires a number of experiments
that scales polynomially in the number of qubits. However,
we see that benchmarking matchgate circuits requires the
full machinery of non-multiplicity-free character RB.

A. The matchgate group

Consider a line of n qubits with nearest-neighbor con-
nectivity. Let G be the matchgate group on n qubits,
the group of all unitaries generated from nearest-neighbor
matchgates. Naively, G could contain arbitrarily long cir-
cuits of matchgates. However, one can prove that every
element of G can be realized using circuits of at most
4n3 nearest-neighbor matchgates [30, Theorems 5]. We
provide a simplified proof of this fact below.

Following Refs. [29,30], our primary tool to understand
G will be the Jordan-Wigner transformation [70]. Define
2n Majorana operators {ci} as

c2k−1 = Z1 · · · Zk−1Xk,

c2k = Z1 · · · Zk−1Yk

for k = 1, . . . , n. The {cm} are Hermitian operators sat-
isfying {c�, cm} = 2δ�m. Polynomials in the {cm} form a
Hermitian basis for the space of all density matrices, so
a unitary U is defined by its action on the {cm} up to
a potential phase. Because of our restriction det(A) =
det(B) = 1, there is no phase freedom on the matchgates
or any product of matchgates, so the action of U ∈ G is
entirely determined by its action on the {cm}. We make two
claims [30]:
Claim 1: Every U ∈ G in the matchgate group acts on the
Majorana operators as a proper rotation. In other words,
there exists some R ∈ SO(2n) such that Uc�U† = R�mcm.
Claim 2: Any unitary operator U ∈ U(2n) that acts on the
Majorana operators as a proper rotation is in the matchgate
group G. In particular, such a U can be decomposed into a
product of at most 2n3 nearest-neighbor matchgates.

These two claims together imply that the matchgate
group is isomorphic to SO(2N ), and that every element
of the matchgate group can be efficiently implemented in
a quantum circuit. In particular, this shows that the match-
gate group is a compact group, thus we can apply character
RB.

1. Proof of claims

Proof of Claim 1. We provide a simplification of the proof
in Ref. [30]. We prove that a nearest-neighbor matchgate

acting on qubits k and k + 1 acts as a rotation mixing c2k−1,
c2k, c2k+1, and c2k+2, and that all such rotations are real-
ized by matchgates. It then follows that all products of
matchgates also act as rotations on the Majorana operators.

Without loss of generality, we can restrict ourselves to
k = 1, so our Majorana operators are given by

c1 = X1c3 = Z1X2,

c2 = Y2c4 = Z1Y2.

We can write an infinitesimal matchgate as U = 1 − iεM ,
where M must be of the form

α12Z1 − α13Y1X2 − α14Y1Y2 + α23X1X2

+ α24X1Y2 + α34Z2,

with αab ∈ R. One can directly check that U satisfies

Uc1U† = c1 + 2εα12c2 + 2εα13c3 + 2εα14c4,

Uc2U† = −2εα12c1 + c2 + 2εα23c3 + 2εα24c4,

Uc3U† = −2εα13c1 − 2εα23c2 + c3 + 2εα34c4,

Uc4U† = −2εα14c1 − 2εα24c2 − 2εα34c3 + c4,

so that UciU† = Rij cj with

R = 1 + 2ε

⎛

⎜⎝

0 α12 α13 α14
−α12 0 α23 α24
−α13 −α23 0 α34
−α14 −α24 −α34 0

⎞

⎟⎠ .

We therefore see that infinitesimal matchgates generate the
whole Lie algebra so(4) of real antisymmetric matrices. By
exponentiating the infinitesimal matchgates, we generate
the full set of matchgates; in this process, we generate the
full group SO(4) as well. �

Proof of Claim 2. We note, following Ref. [30], that every
R ∈ SO(2n) can be decomposed into n(2n − 1) rotations
that act as the identity on all but two basis elements c�, cm
by the Hoffman algorithm [71,72]. In turn, a rotation mix-
ing c� and cm with � < m can be decomposed into a prod-
uct of s := (�m/2� − ��/2� − 1) rotations that exchange
(c� ↔ c�+2), (c�+2 ↔ c�+4),. . . , (c�+2s−2 ↔ c�+2s), fol-
lowed by a rotation that mixes c�+2s and cm, followed by
s rotations that exchange (c�+2s ↔ c�+2s−2), (c�+2s−2 ↔
c�+2n−4),. . . , (c�+2 ↔ c�). Each of these rotations involve
only Majorana operators associated to neighboring qubits,
and thus can be written as a matchgate. Thus, R can be real-
ized as the product of a total of n(2n − 1)(2s + 1) < 4n3

matchgates, as claimed. �
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We note that an arbitrary rotation between two Majorana
operators

(
c�
cm

)
→
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
c�
cm

)

is generated by the unitary U = e(θ/2)c�cm . In the case where
|�m/2� − ��/2�| ≤ 1, this U is a nearest-neighbor match-
gate. For example, if � = 3, m = 5, then we have U =
e−i(θ/2)Y2X3 . Thus, the above decomposition of R into< 4n3

two-Majorana rotations gives an explicit formula for the
matchgates needed to construct R. We provide Python code
to realize the Hoffman decomposition of R into elemen-
tary rotations, as well as the reduction of R to a matchgate
circuit, at Ref. [73].

B. Irreps of the matchgate group

We want to understand how the natural representation
of G decomposes into irreps. This is most convenient in
the basis of polynomials of {cm}. Note that c2

m = 1, so our
polynomials are at most degree 1 in any given cm and there
are 4N such polynomials. Explicitly, an orthonormal basis
of H ⊗ H is given by

1
2N/21 :=|1̂〉〉
1

2N/2 cm1 :=|m1〉〉 1 ≤ m1 ≤ 2n

1
2N/2 cm1cm2 :=|m1m2〉〉 1 ≤ m1 < m2 ≤ 2n

...
...

|m1 · · · m2n−1〉〉 1 ≤ m1 < · · · ≤ 2n

|1 · · · 2n〉〉.

Define Hi := span{|m1 · · · mi〉〉} to be the space spanned
by degree-i basis elements, for each i = 0, . . . , 2n. Then
Hi 
∧iC2n, the i-fold wedge product of C2n. It is clear
that Û preserves each Hi, so that each Hi is a subrepresen-
tation. On H1, Û acts as the rotation operator R associated
to U:

Û|i1〉〉 = Ri1j1 |j1〉〉.

On general Hi, Û acts as the wedge product of the rotation
operator:

Û|�1 · · · �i〉〉 =
∑

m1<···<mi
σ∈Si

(−1)σR�1mσ1 · · · R�imσ i |m1 · · · mi〉〉.

Claim 3: The natural representation of the matchgate
group decomposes into the irreps

H0 ⊕ H1 ⊕ · · · ⊕ Hn,1 ⊕ Hn,2 ⊕ · · · ⊕ H2n−1 ⊕ H2n,

where Hn = Hn,1 ⊕ Hn,2. Explicitly, we have

Hn,1 = span{|�1 · · · �n〉〉 + in(−1)σ(�,m)|m1 · · · mn〉〉},
Hn,2 = span{|�1 · · · �n〉〉 − in(−1)σ(�,m)|m1 · · · mn〉〉},

where {ma} is the complement of {�a} and σ(�, m)
is the permutation that takes (�1, . . . , �n, m1, . . . , mn) �→
(1, . . . , 2n). Note that if n is even these are real represen-
tations, while for n odd these representations are complex
conjugates of each other. The irreps Hi and H2n−i are iso-
morphic for i �= n, but no other irreps are isomorphic to
each other.

Proof. Define the Hodge star operator ∗ : Hi → H2n−i by

∗|�1 · · · �i〉〉 = (−1)σ(�,m)|m1 · · · m2n−i〉〉,

where {ma} is the complement of {�a} and σ(�, m) is
the permutation that takes (�1, . . . , �i, m1, . . . , m2n−i) �→
(1, . . . , 2n). It is straightforward to show that ∗ commutes
with the action of U, and thus provides the isomorphism
of representations Hi 
 H2n−i when i �= n. We defer the
proof that the Hi, Hn,1, and Hn,2 are in fact irreducible to
Chapter 4 of Ref. [74]. �

C. Benchmarking the matchgate group

Let G ⊂ G be the subgroup of the matchgate group gen-
erated by R ∈ SO(2n)with R diagonal. Such an R is always
of the form R = diag{σ1, . . . , σ2n} with σ1σ2 · · · σ2n = 1.
The action on a state |m1 · · · mi〉〉 ∈ Hi is given by

Û|m1 · · · mi〉〉 = σi1 · · · σim |m1 · · · mi〉〉

and therefore the states |i1 · · · im〉〉 are the irreps of the
natural representation of G. Because of the constraint
σ1σ2 · · · σ2N = 1, each irrep has multiplicity two, with
the irrep spanned by |m1 · · · mi〉〉 isomorphic to the irrep
spanned by |�1 · · · �2n−i〉〉 with {�a} the complement of
{ma}. For each i = 0, . . . , n, we can define a character
function and corresponding projector

χi(R) = σ1 · · · σi,

P̂i = |1 · · · i〉〉〈〈1 · · · i|
+ |(i + 1) · · · 2n〉〉〈〈(i + 1) · · · 2n|.

These projectors project into the multiplicity-two irreps
Hi ⊕ H2n−i for i = 0, . . . , (n − 1), and project into the two
inequivalent irreps Hn,1 ⊕ Hn,2 for i = n.
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As our initial state, for each i = 0, . . . , n we choose

|ρi〉〉 =
{|0 · · · + · · · 0〉〉, i = 2k − 1
|0 · · · 0〉〉, i = 2k.

where the kth qubit is in the + state of the X operator for
i = 2k − 1. Provided we can prepare both X -basis and Z-
basis single qubit states, we can prepare |ρi〉〉.

As our measurement projector, for each i = 0, . . . , n we
choose

|Mi〉〉 =

⎧
⎪⎨

⎪⎩

1
2
(Xk + 1), i = 2k − 1

1
2
(∏

α>n−k Zα + 1
)

, i = 2k.

For i = 2k − 1, this corresponds to a measurement of the
kth qubit in the X basis, while for i = 2k this corresponds
to a measurement of the product of the last k qubits in the
Z basis.

With these choices, the Si(N ) are approximately

Si(N ) ≈ 〈〈Mi|P̂i|ρi〉〉
dim(Hi)

=
{

1, i = 0
1
2

, 1 ≤ i ≤ n

FIG. 7. The predicted and measured character-weighted sur-
vival probability for a random error channel. The exact decay
(green) is an exponential decay given by one of Eq. (23). We
estimate Si(N ) by applying random gates and measuring the final
state (blue points). The data is fit to an appropriate function
(orange) from which we estimate the fidelity.
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Exact fidelity

FIG. 8. The exact and estimated fidelity for a selection of ran-
dom errors. Each estimate is based on data taken over 15 different
lengths N . Each estimate is arrived at by applying a total of
300 000 unitary group elements. The diagonal line denotes the
points where the exact and estimated fidelities are equal. The
data agree with the line with a reduced χ2 value of 1.0, indicating
good agreement.

and the relative uncertainty does not depend on the number
of qubits. This is therefore a scalable method to benchmark
the matchgate group.

The form of the decay is given by

Si(N ) =
{

C0λ
N
0 + B, i = 0

Ci,1λ
N
i,1 + Ci,2λ

N
i,2, 1 ≤ i ≤ n.

(23)

For each i, either λi,1, λi,2, Ci,1, Ci,2 ∈ R, or λi,1 = λ∗
i,2 and

Ci,1 = C∗
i,2, since Si(N ) is always real. For the case of i =

n, we know that the former case holds when n is even and
the latter when n is odd, by Claim 3. For 1 ≤ i < n, one
should assume whichever case gives the best fit. Note that
in all cases, we fit at most four real parameters.

As an example, we simulate a noisy implementation of
the matchgate group on n = 3 qubits. In Fig. 7, we show
the exact value of Si(N ), the data we take to estimate Si(N ),
and the fit to Si(N ) according to Eq. (23) for a single ran-
dom error channel �. In Fig. 8, we do the same fitting
procedure for a set of randomly generated error channels,
and estimate their fidelity. We see that the true fidelity and
the estimated fidelity agree within the error bars set by the
uncertainty of our fits.

VII. CONCLUSION AND DISCUSSIONS

In this work, we extend the recently introduced charac-
ter RB of Ref. [22] to groups with multiplicity. Compared
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to earlier work on benchmarking arbitrary groups [20,21],
our method allows us to accurately determine the fidelity
and fit fewer exponentials to experimental data. The gen-
eralization to non-multiplicity-free groups is essential to
derive a rigorous version of subspace RB and a scalable RB
protocol for the matchgate group. This generalization also
allows us to develop an improved leakage RB protocol.

While we derive the character RB procedure in more
generality than Ref. [22], our generalization still requires
groups of small multiplicity, since the multiplicity of the
group determines the number of exponential decays in
our fit function. Robustly fitting a sum of many exponen-
tial decays is challenging, especially when the decay rates
are roughly equal [43,44]. It is likely straightforward to
benchmark groups in which the trivial irrep has multiplic-
ity three, as the corresponding decay S0(N ) = A + BλN

0,1 +
CλN

0,2 has only five real parameters. An irrep of multiplicity
three with a real character function χ has a decay with six
parameters, which may be feasible with sufficient data. A
general irrep of multiplicity three, however, requires fit-
ting nine real parameters, which is likely unfeasible for
realistic amounts of data. Higher-multiplicity irreps are
correspondingly more difficult. All of the groups we con-
sider in the examples in this paper decompose into irreps
with multiplicity at most two.

All our applications involve a group that preserves some
subspace of the Hilbert space. In the case of subspace RB,
the group preserves the triplet and singlet subspaces; in the
case of leakage RB, the computational and leakage sub-
spaces; and in the case of matchgate RB, the even- and
odd-parity subspaces. Any group that preserves subspaces
necessarily has multiplicity, since there is always a copy
of the trivial irrep in each subspace. It is an open ques-
tion whether non-multiplicity-free character RB has useful
applications to groups that do not preserve subspaces but
nonetheless have multiplicity.

One group related to the matchgate group that
would be of immediate experimental interest is the
XY group, the subgroup of the matchgate group gen-
erated by only nearest-neighbor XY mixers UXY(θ) =
exp {iθ(X1 ⊗ X2 + Y1 ⊗ Y2)}. Unlike general matchgates,
XY mixers can be naturally realized on superconduct-
ing qubits [75,76], and they are a necessary ingredient in
extensions of the QAOA algorithm [77–79]. In addition,
XY mixers are efficiently simulable on a line but become
universal on nontrivial graphs, just like the full match-
gate group [31]. However, XY mixers on N qubits preserve
the (N + 1) subspaces of definite Hamming weight; this
implies that the trivial representation of the XY group must
have multiplicity (N + 1). Thus, our method cannot be
used to scalably benchmark the XY group; even N = 2
qubits is likely infeasible. On the other hand, Ref. [80]
recently introduced a compilation of general two-qubit
matchgates into products of four XY mixers and single-
qubit gates. Using this decomposition, the average fidelity

of the resulting two-qubit matchgates can be used as a
proxy for the fidelity of the XY mixers. This method is
similar to the benchmarking framework in our Sec. IV,
where we compile group elements into a fixed number
of gates of interest (in our case, UZZ), with the modifica-
tion that [80] allows the gate of interest XY(θ) to vary.
It is an open question if there is a generalization of this
compilation to the matchgate group on N > 2 qubits.

While our leakage RB necessitates the fewest assump-
tions to date, it is still too restrictive for many experimental
implementations. Most notably, our RB requires the set
of gates to be a group, which may be unrealistic; often,
the gates will form only a group modulo rotations in the
leakage space. In experimental implementations of leakage
RB, this problem is usually simply ignored and an expo-
nential decay is posited to exist with the usual relation to
the leakage rate [58,63]. It is worth exploring whether the
methods used here can be further extended to such sets
of gates that are only groups in the computational sub-
space, modulo rotations in the leakage subspace, to provide
a more rigorous foundation for leakage RB experiments.

There are two obvious directions for further applica-
tions of character RB, with or without multiplicity. First,
character RB has the potential to drastically expand the
family of groups that can be scalably benchmarked. This
requires both finding a group G that can be efficiently com-
piled into elementary gates whose multiplicity is bounded
as the number of qubits n increases, as well as find-
ing a subgroup G ⊆ G whose irreps have slowly growing
dimension. As a simple example, the subgroups of the
Clifford group considered in Ref. [20] likely have a scal-
able protocol based on character RB, with G given by the
Pauli group. Increasing the number of groups that can be
scalably benchmarked gives new ways of characterizing
compiled gates, especially non-Clifford gates.

Second, character RB can be used to characterize spe-
cific elementary gates by combining these gates into a
group, as we did in Sec. IV for subspace RB. This requires
finding a group that can be implemented by combining a
fixed number of the gate to be characterized with known
high-fidelity gates. Constructing these groups is a nontriv-
ial task, as we see in the case of the UZZ operator above. We
leave the exploration of such applications to future work.
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Note added.—Recently, Ref. [80] was posted to arXiv,
which also proposes a matchgate RB. Their method relies
on enlarging the matchgate group with additional uni-
taries to avoid representations with multiplicity, but is
otherwise similar to ours. As we mention in this paper,
our character RB does not apply to the group generated
by nearest-neighbor XY gates. While Ref. [80] does not
propose a method to benchmark the group generated by
nearest-neighbor XY mixers, they do demonstrate a method
to compile two-qubit matchgate elements using a fixed
number of XY mixers and additional single-qubit gates,
allowing the matchgate RB to be used to characterize XY
mixers, as discussed above.

APPENDIX A: GATE-DEPENDENT ERRORS

In this appendix, we extend the work of Refs. [22,39,40]
on gate-dependent errors to the case of non-multiplicity-
free character RB. Reference [22] had previously general-
ized Ref. [39] to establish that multiplicity-free character
RB is robust to gate-dependent errors. Rather than follow
the method of Refs. [22,39] we use the Fourier transform
method of Ref. [40], which is more natural for groups with
multiplicity. Our ultimate goal is the following theorem:
Theorem 2: Let G be a benchmarking group, and let i
be an irrep of the natural representation with multiplic-
ity ai. Assume each gate U ∈ G is realized as a noisy
operator η(U), but do not assume we can write η(U) =
�̂Û for some U-independent noise channel �. Then the
character-weighted survival probability is given by

Si(N ) =
ai∑

j =1

Ci,j λ
N
i,j + εN ,

where εN is an error term satisfying |εN | < δ1δ
N
2 and δ1, δ2

are both small for high-fidelity gates. Since we know that
λi,j ≈ 1 for high-fidelity gates, εN is negligible compared
to Si(N ) for moderately large N .

This theorem implies we may safely use the RB pro-
tocols even in the presence of gate-dependent errors,
although we see the interpretation of the estimated fidelity
is slightly modified.

In what follows, we use the notation E [·] for the
average 1

|G|
∑

U∈G (·) or
∫

G dU (·) to make our equations
cleaner. We also use the shorthand di for dim(Hi).

1. The generalized Fourier transform and its
application to character RB

We first define a generalization of the Fourier transform
to matrix-valued functions of a group G [81,82]. For any
group G we define G̃ to index the irreps of G, and we

assume without loss of generality that the irreps are uni-
tary. Given a function η : G → L(CD), for each i ∈ G̃ we
define the Fourier transform η̃(i) ∈ L(CD)⊗ L(Hi) to be

η̃(i) = E
[
η(U)⊗ φ∗

i (U)
]

, (A1)

where φi : G → L(Hi) is the ith irrep.
Given two matrix-valued functions η, ξ : G → L(CD),

we can also define the convolution (η ∗ ξ) by

(η ∗ ξ)(U0) = E
[
η(U†)ξ(UU0)

]
. (A2)

The generalized Fourier transform shares many properties
with the usual Fourier transform; in particular, we use the
following identities [40,82]:

(˜η ∗ ξ)(i) = η̃(i)̃ξ (i), (A3)

E
{
Tr
[
η(U)ξ †(U)

]} =
∑

i

diTr
[
η̃(i)̃ξ †(i)

]
, (A4)

η(U) =
∑

i

diTri
{
[1 ⊗ φT

i (U)]̃η(i)
}

,

(A5)

where in the last line, Tri {·} is the partial trace over
Hi. Equation (A3) is the analog of the usual convolution
identity for Fourier transforms, Eq. (A4) is the analog of
Parseval’s identity, and Eq. (A5) gives the inverse Fourier
transform.

The generalized Fourier transformation is useful
because it allows us to express the result of a character RB
experiment in a simpler form. A character RB experiment
estimates a matrix element of the operator

Ôi := E
[
η(U†

1 · · · U†
N )η(UN ) · · · η(U2)η(U1U0)χ

∗
i (U0)

]
,

where the expectation value is over all U0 ∈ G,
U1, . . . , UN ∈ G. Through the change of variables Ui →
UiUi−1 · · · U1 for i = 1, . . . , N , we can rewrite this expres-
sion as a convolution:

Ôi = E
[
η(U†

N )η(UN U†
N−1) · · · η(U2U†

1)η(U1U0)χ
∗
i (U0)

]
,

= E

⎡

⎣(η ∗ · · · ∗ η)︸ ︷︷ ︸
(N+1) times

(U0)χ
∗
i (U0)

⎤

⎦ .

Using the inverse Fourier transform [Eq. (A5)] we can
write (η ∗ · · · ∗ η)(U0) in terms of ( ˜η ∗ · · · ∗ η)(i′), while
the convolution identity [Eq. (A3)] allows us to simplify
( ˜η ∗ · · · ∗ η)(i′) = η̃(i′)N+1. In total, we find

Ôi =
∑

i′
di′Tri′

({
1 ⊗ E

[
χ∗

i (U0)φi′(U0)
]T}

η̃(i′)N+1
)

.

We now use the projection formula (Fact 2) to note that
diE

[
χ∗

i
(U0)φi′(U0)

]
is just the projection of φi′ onto the
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irrep i of G. By assumption, the irrep φi is a subrepresenta-
tion of only φi, and not a subrepresentation of any φi′ with
i′ �= i. Therefore,

Ôi = di

di
Tri

[(
1 ⊗ P̂T

i

)
η̃(i)N+1

]
.

We therefore see that the outcome of a character RB exper-
iment, Si(N ), can be described by the Fourier transform of
η via

Si(N ) = 〈〈Mi|�̂M Ôi�̂P|ρi〉〉,

= di

di
〈〈Mi|�̂M Tri

[(
1 ⊗ P̂T

i

)
η̃(i)N+1

]
�̂P|ρi〉〉,

(A6)

and the decay of Si(N ) is determined by the eigenvalues
of η̃(i).

2. Simplifying the decay

In the case of ideal gates ηideal(U) = Û, we have that
η̃ideal(i) is given by

η̃ideal(i) = E
[
Û ⊗ φi(U)

]
.

This can be simplified by noting that the map ηideal ⊗
φi : U �→ Û ⊗ φi(U) is a representation of G, and
E
[
Û ⊗ φi(U)

]
is the projection of this representation onto

the copies of the trivial irrep (Fact 2). We can count the
multiplicity of the trivial irrep in (ηideal ⊗ φi) using the
following fact:

Fact 4 (Schur orthonormality): If χ is the character of
an arbitrary representation φ, and χi is the character of an
irrep φi, the multiplicity ai of φi is

ai = 1
|G|
∑

U∈G

χ∗
i (U)χ(U).

For a proof, see Ref. [37].
Since the trivial irrep has χi(U) = 1, we have that the

multiplicity of the trivial irrep in (ηideal ⊗ φi) is given by

E
{

Tr
[
Û ⊗ φ∗

i (U)
]}

= E
[
χ∗

i (U)Tr
(

Û
)]

= ai.

In other words, η̃ideal(i) is a rank-ai projector.
We can explicitly find the form of η̃ideal(i) by con-

structing ai trivial irreps of (ηideal ⊗ φi). Let {|ψ i
n〉〉} be an

orthonormal basis for Hi, and let {|ψ i,j
n 〉〉} be the corre-

sponding basis for the j th copy of Hi inside H ⊗ H. It is

straightforward to show that

|� i,j 〉〉 := 1√
di

di∑

n=1

|ψ i,j
n 〉〉 ⊗ |ψ i

n〉〉

spans an irrep for each j = 1, . . . , ai. Therefore,

η̃ideal(i) =
ai∑

j =1

|� i,j 〉〉〈〈� i,j |. (A7)

A realistic experiment will have gates described by a func-
tion η(U) that is some small perturbation from ηideal(U).
Perturbing ηideal(U) by a small amount will perturb η̃ideal(i)
by a small amount, since the Fourier transform is a linear
operation. Thus η̃(i) is a perturbation of a rank-ai projector
for high-fidelity gates, so that η̃(i) has ai eigenvalues close
to 1, which we denote by λi,j , and the remaining eigenval-
ues close to 0. This is sufficient to make Si(N ) dominanted
by ai exponential decays, corresponding to the ai largest
eigenvalues [see Eq. (A6)]. This proves Theorem 2.

3. Computing the average fidelity

If we define η(U) = �̂UÛ, with �U the gate-dependent
error channel, then we can define an average fidelity

Fav =
E
[
Tr(�̂U)

]
+ d

d2 + d
. (A8)

Comparing to Eq. (10), we see that this is simply the
average of the individual fidelities F�U .

We can express Fav in terms of the ai largest eigenvalues
of η̃(i) as follows. We first note that we may write

E
[
Tr
(
�̂U

)]
= E

{
Tr
[
η(U)η†

ideal(U)
]}

,

=
∑

i

diTr
[
η̃(i)η̃†

ideal(i)
]

,

=
I∑

i=1

ai∑

j =1

di〈〈� i,j |η̃(i)|� i,j 〉〉,

where in the second line we use the Parseval identity
[Eq. (A4)] to move to Fourier space, and in the third line
we use the explicit form of η̃ideal(i) [Eq. (A7)]. To first
order in [η̃(i)− η̃ideal(i)], we have that

ai∑

j =1

〈〈� i,j |η̃(i)|� i,j 〉〉 ≈
ai∑

j =1

λi,j .

Therefore, we can rewrite Eq. (A8) as

Fav ≈
∑I

i=1 di
∑ai

j =1 λi,j + d

d2 + d
,
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which is the same form as Eq. (5) in the case of gate-
independent noise.

APPENDIX B: THE GENERALIZED CLIFFORD
GROUP IS A UNITARY 2-DESIGN

In this appendix, we prove the generalized Clifford
group considered in Sec. IV B is a unitary 2-design. We
give a fully general treatment for arbitrary sets of n qudits
with d > 2 prime, although we need only the case of n = 1,
d = 3 for our subspace benchmarking above. This result
can be inferred from results proven in Ref. [54], but we
give a direct proof below. We first review the construc-
tion of the generalized Clifford groups as introduced in
Ref. [49].

For a d-level system, define analogs of the X and Z qubit
operators [50]:

X |z〉 = |z + 1〉 Z|z〉 = ωz|z〉,

where ω := e2π i/d and addition is performed modulo d.
These generalized X and Z operators are unitary and
satisfy ZX = ωXZ.

For a set of n qudits, define the d-dimensional general-
ization of the Pauli group as (this only holds for d odd; see
Ref. [49] for the definition for d even):

P := {ωηX a1
1 Zb1

1 · · · X an
n Zbn

n : η, ai, bi ∈ Zd}.

We write a general element of the Pauli group as

ωηX a1
1 Zb1

1 · · · X an
n Zbn

n := ωηXZ(�v), �v := ( �a
�b
)

.

Multiplication of general elements of the Pauli group is
given by

XZ(�v)XZ(�w) = ω�vTQ�wXZ(�v + �w),

where Q is defined by Q = ( 0 0
1 0

)
. This demonstrates that

P is indeed a group.
The generalized Clifford group is defined to be the set of

all unitaries that stabilize P :

G = {U : UPU† = P}.

An element U ∈ G is defined (up to a global phase) by its
action on Xi and Zi. We define the matrix M and vector �h

such that for each unit vector êi ∈ Z2d
d we have

UXZ(êi)U† = ωhiXZ(Mêi).

It then follows that a general element XZ(a) is transformed
as

UXZ(�v)U† = ωηXZ(M �v)

η :=
(

�h − diag(M TQM )

2

)T

�v

+ �vT (M TQM − Q
) �v

2
.

(B1)

Not every matrix M can be realized by a unitary operator.
To derive a restriction on M , we consider the commutation
relation (where we define P = Q − QT):

XZ(�v)XZ(�w) = ω�vTP �wXZ(�w)XZ(�v),
UXZ(�v)XZ(�w)U† = ω�vTP �wUXZ(�w)XZ(�v)U†,

XZ(M �v)XZ(M �w) = ω�vTP �wXZ(M �w)XZ(M �v),
ω�vTM TPM �wXZ(M �w)XZ(M �v) = ω�vTP �wXZ(M �w)XZ(M �v),

where we ignore phase factors common to both sides.
We see that we must have P = M TPM ; such an M is
called a symplectic matrix. This is the only restriction on
M , h, as Ref. [49] demonstrated how to explicitly construct
unitaries to implement any M , h provided M is symplectic.

To prove G forms a unitary 2-design, we need to show
(see Sec. IV B of the main text)

1
|G|
∑

U∈G

p(U, U∗) =
∫

dU p(U, U∗)

for any balanced polynomial p(U, U∗) of degree at most
2 in the elements of U and U∗. Any such p(U, U∗) can
be written as a linear combination of terms of the form
UAU†BUCU† and UDU†, where A, B, C, D are matrices.
We are thus reduced to proving

1
|G|
∑

U∈G

UAU†BUCU† =
∫

dU UAU†BUCU†, (B2)

1
|G|
∑

U∈G

UDU† =
∫

dU UDU† (B3)

for arbitrary matrices A, B, C, D.
In the following, we make repeated use of an elementary

identity of complex roots of unity.
Fact 5: If �w ∈ Z2n

d \ {0} is any nonzero vector, then
∑

�v
ω�vT �w = 0.
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1. Degree-1 polynomials

Let us start by proving Eq. (B3). Without loss of general-
ity, we can assume D = XZ(�v), since such matrices form a
basis. The right side of Eq. (B3), R, is invariant under con-
jugation by arbitrary unitaries; thus, it must be proportional
to the identity matrix. Noting that Tr(R) = Tr(D) and that
Tr [XZ(�v)] = 0 whenever �v �= 0, we find

R =
{
1, �v = 0
0, else.

We evaluate the left side, L, of Eq. (B3) by using Eq. (B1)
for the conjugation of a general Pauli element:

L = 1
|G|
∑

U∈G

UXZ(�v)U†,

= 1
|G|

∑

M ,�h
MTPM=P

ωηXZ(M �v).

We note that η = �hT �v + (· · · ), where (· · · ) denotes terms
that do not depend on �h. We see by Fact 5 that for fixed M
the sum over �h gives zero unless �v = 0, while when �v = 0
it is clear L = 1. This proves Eq. (B3).

2. Degree-2 polynomials

We now turn to Eq. (B2). We prove this using meth-
ods from Ref. [9], who proved the case d = 2. First, we
note that the right side, R, of Eq. (B2) is covariant in B:
sending B → UBU† sends R → URU† for any unitary U.
The only covariant linear functions of B are Tr(B)1/dn and
[B − Tr(B)1/dn], so the R must be of the form [5]

R = q
(

B − Tr(B)1
dn

)
+ p

Tr(B)1
dn . (B4)

To determine p we plug in B = 1 and note that

R =
∫

dU UACU† = Tr(AC)
dn 1,

while simultaneously according to Eq. (B4),

R = p1

so p = Tr(AC)/dn. To determine q, we consider plug-
ging in B = |i〉〈j |. Denoting the result when plugging in

B = |i〉〈j | as (R)ij , we can evaluate

∑

i,j

〈i|(R)ij |j 〉 =
∑

i,j

∫
dU 〈i|UAU†|i〉〈j |UCU†|j 〉,

= Tr(A)Tr(C).

On the other hand, Eq. (B4) gives

∑

i,j

〈i|(R)ij |j 〉 = (d2n − 1)q + p

so q = [dn Tr(A)Tr(C)− Tr(AC)]/dn(d2n − 1). Thus in
total, we have

R = dn Tr(A)Tr(C)− Tr(AC)
dn(d2n − 1)

(
B − Tr(B)1

dn

)

+ Tr(AC)Tr(B)1
d2n . (B5)

Without loss of generality, we can specialize to the
case where A = XZ(�vA), B = XZ(�vB), and C = XZ(�vC),
whence Eq. (B5) gives

R =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

XZ(�vB), �vA = �vC = 0

ω−�vT
AQ�vA1, �vA = −�vC �= 0, �vB = 0

−ω
−�vT

AQ�vA

d2n − 1
XZ(�vB), �vA = −�vC �= 0, �vB �= 0

0, else.

We now need to evaluate the left side, L, of Eq. (B2) for
each of the four cases above. In the first case, we find

L = 1
|G|
∑

U∈G

XZ(�vB) = XZ(�vB).

In the second case, we use Eq. (B1) to simplify each
summand in the L

UXZ(�vA)U†UXZ(�vC)U†,

= ωηA+ηCXZ(M �vA)XZ(M �vC),

= ωηA+ηC+�vT
AMTQM �vC1,

= ω�vT
A(M

TQM−Q)�vA−�vT
AMTQM �vA1,

= ω−�vT
AQ�vA1.

Therefore, the average over the group G gives ω−�vT
AQ�vA1.

010351-22



CHARACTER RANDOMIZED BENCHMARKING. . . PRX QUANTUM 2, 010351 (2021)

In the third case, we again simplify each summand using
Eq. (B1), but with an additional B in between:

UXZ(�vA)U†XZ(�vB)UXZ(�vC)U†,

= ωηA+ηCXZ(M �vA)XZ(�vB)XZ(M �vC),

= ωηA+ηC+�vT
AMTQ�vB−�vT

BQM �vA−�vT
AMTQM �vAXZ(�vB),

= ω�vT
AMTP�vB−�vT

AQ�vAXZ(�vB).

The average over �h does not affect this sum, so we only
need to consider the average over M . We evaluate the aver-
age by realizing that if d is prime, the Clifford group sends
every nonidentity Pauli string to every other nonidentity
Pauli string uniformly. Thus, letting M run over all sym-
plectic matrices makes M �vA run uniformly over all vectors
M �vA ∈ Z2n

d \ {0}. Therefore, the L is given by

L = 1
d2n−1

∑

�v �=0

ω�vTP�vB−�vT
AQ�vAXZ(�vB),

= −ω
−�vT

AQ�vA

d2n−1 XZ(�vB)

[
1 −

∑

�v
ω�vTP�vB

]
,

= −ω
−�vT

AQ�vA

d2n−1 XZ(�vB),

where in the final step, we use Fact 5.
In the last case, we have that each summand is of the

form

UXZ(�vA)U†XZ(�vB)UXZ(�vC)U†,

= ωηA+ηC+�vT
AMTQ�vB−�vT

BQM �vA−�vT
AMTQM �vAXZ(�vB),

= ω
�hT(�vA+�vC)+(··· )XZ(�vB),

where (· · · ) represents terms that are independent of �h.
We can again apply Fact 5 to find that the sum over �h
gives zero. We thus prove L = R for each of the four cases,
which establishes Eq. (B2).

APPENDIX C: LEAKAGE RB IRREPS

Let G be a unitary group indexed by b ∈ B,

G = {Ub,σ : b ∈ B σ = ±1},
= {U1,b ⊕ σU2,b : b ∈ B, σ = ±1},

where G1 = {U1,b : b ∈ B} and G1 = {U2,b : b ∈ B} are
each unitary 1-designs on their respective subspaces. First,
we prove that |11〉〉 and |12〉〉 are the only trivial irreps of
the natural representation of G. Next, we prove that if G1
and G2 are in addition unitary 2-designs and d1 �= d2 then
H1⊥ is irreducible and multiplicity-free.

We start with the trivial irreps. It is clear that both |11〉〉
and |12〉〉 are trivial irreps. The trivial irrep has χ0(U) = 1,
so Fact 4 gives

a0 = 1
|G|
∑

U∈G

χ(U),

= 1
2|B|

∑

b∈B
σ=±

Tr(Ub,σ ⊗ U∗
b,σ ),

= 1
2|B|

∑

b∈B
σ=±

(
Tr(U1,b ⊗ U∗

1,b)+ σ Tr(U1,b ⊗ U∗
2,b)

+σ Tr(U2,b ⊗ U∗
1,b)+ Tr(U2,b ⊗ U∗

2,b)

)
,

= 1
|B|
∑

b∈B

[
Tr(U1,b ⊗ U∗

1,b)+ Tr(U2,b ⊗ U∗
2,b)
]

,

=
∫

dU1 Tr(U1 ⊗ U∗
1)+

∫
dU2 Tr(U2 ⊗ U∗

2),

where in the last line we use the fact that G1 and G2 are
unitary 1-designs. These integrals just give the number
of trivial irreps of the full unitary group on H1 and H2,
respectively, which are known to be 1. Thus, there are only
two trivial irreps of the full unitary group.

Now, we consider H1⊥. First, we show H1⊥ is
irreducible by using Fact 3. Noting χ1,⊥(Ub,±) =[| Tr(U1,b)|2 − 1

]
, we have

1
|G|
∑

U∈G

|χ1⊥(U)|2 = 1
2|B|

∑

b∈B
σ=±

[| Tr(U1,b)|2 − 1
]2

,

= 1
|B|
∑

b∈B

[| Tr(U1,b)|2 − 1
]2

,

=
∫

dU1
[| Tr(U1)|2 − 1

]2
,

= 1,

where the third equality follows from the unitary 2-design
property, and the fourth follows from the fact that H1⊥
is an irrep of the natural representation of the full unitary
group on H1 ⊗ H1. Thus, we have H1⊥ irreducible.

To finish, we must prove that no other irrep of the natu-
ral representation is isomorphic to H1⊥. Every irrep of the
natural representation is a subrepresentation of H1 ⊗ H1,
H1 ⊗ H2, H2 ⊗ H1, or H2 ⊗ H2, since these subspaces
are all invariant under the action of G. We know that
the decomposition of H1 ⊗ H1 into irreps is H1 ⊗ H1 

H10 ⊗ H1⊥, by our work above, and thus no irreps inH1 ⊗
H1 can be isomorphic to H1⊥ besides H1⊥ itself. Simi-
larly, we know that the decomposition of H2 ⊗ H2 into
irreps is H2 ⊗ H2 
 H20 ⊗ H2⊥. We can ensure H1⊥ �

H2⊥ by requiring d1 �= d2, as in the main text. We then
have that no isomorphic representation exists in H2 ⊗ H2.
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For H1 ⊗ H2, and similarly for H2 ⊗ H1, we note that
the character of the subrepresentation H1 ⊗ H2 is given
by χ12(Ub,σ ) = σ Tr(U1,b)Tr(U2,b)

∗, and use Fact 4:

1
|G|
∑

U∈G

χ∗
1⊥(U)χ12(U)

= 1
2|B|

∑

b∈B
σ=±

σ [|Tr(U1,b1)|2 − 1] Tr(U1,b)Tr(U2,b)
∗,

= 0,

which shows that H1⊥ is an irrep with multiplicity 1.
Note that we could also consider a group

G′ = {Ub,φ : b ∈ B} = {U1,b ⊕ (eiφU2,b) : b ∈ B},
with an arbitrary phase between subspaces 1 and 2 rather
than simply a ±1 phase; the proof is identical. Many exper-
imental platforms can easily implement a random phase
between two subspaces, especially if the leakage subspace
is at a different energy than the computational subspace,
making this group potentially easier to sample from. We
can also still compute F�,1 with {U2,a} only a unitary
1-design, provided H2 ⊗ H2 does not contain an irrep iso-
morphic to H1⊥. Finally, in the case that d1 = d2, we can
instead simply require that there exists some b ∈ B such
that |Tr(U1,b)|2 �= |Tr(U2,b)|2, a much weaker condition
that still suffices to ensure H1⊥ �
 H2⊥.
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