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Despite being at the heart of the theory of the “Big Bang” and cosmic inflation, the quantum-field-theory
prediction of false vacuum tunneling has not been tested. To address the exponential complexity of the
problem, a table-top quantum simulator in the form of an engineered Bose-Einstein condensate (BEC) has
been proposed to give dynamical solutions of the quantum-field equations. In this paper, we give a numer-
ical feasibility study of the BEC quantum simulator under realistic conditions and temperatures, with an
approximate truncated Wigner phase-space method. We report the observation of false vacuum tunneling
in these simulations, and the formation of multiple bubble “universes” with distinct topological properties.
The tunneling gives a transition of the relative phase of coupled Bose fields from a metastable to a stable
“vacuum.” We include finite-temperature effects that would be found in a laboratory experiment and also
analyze the cutoff dependence of modulational instabilities in Floquet space. Our numerical phase-space
model does not use thin-wall approximations, which are inapplicable to cosmologically interesting mod-
els. It is expected to give the correct quantum treatment, including superpositions and entanglement during
dynamics. By analyzing a nonlocal observable called the topological phase entropy (TPE), our simulations
provide information about phase structure in the true vacuum. We observe a cooperative effect in which
true vacua bubbles representing distinct universes each have one or the other of two distinct topologies.
The TPE initially increases with time, reaching a peak as multiple universes are formed, and then decreases
with time to the phase-ordered vacuum state. This gives a model for the formation of universes with one
of two distinct phases, which is a possible solution to the problem of particle-antiparticle asymmetry.
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I. INTRODUCTION

The evolution of the early universe described by infla-
tion is now a standard model of cosmic evolution. This
theory is widely accepted because of the observational
evidence including the cosmic microwave background
radiation (CMB) detected in all directions. This evidence
points to a “Big Bang” origin as the beginning of the
Universe. One of the building blocks is a quantum-field-
theory (QFT) model that explains the origin of the early
universe and the observed temperature fluctuations in the
CMB. These effects originated in Coleman’s theory of
quantum tunneling of a scalar quantum field in an initially
metastable vacuum [1,2]. The validity of the thin-wall
approximations used in this theory and later variations are
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not yet verified. Quantum-field models are exponentially
complex and impossible to solve directly.

It is clearly not possible to repeat the start of the uni-
verse, so it has been proposed to verify the solutions
experimentally. Such experiments would effectively be an
analog quantum computer for the scalar-field dynamics
of the universe. Here we note that the geometry should
be multimode and have no boundaries, to allow free-
space nucleation. The proposal for a suitable quantum
analog computer uses a two-species Bose-Einstein conden-
sate (BEC) experiment in a one-dimensional uniform ring
configuration, similar to those studied in several laborato-
ries [3–5]. The Bose-Einstein condensate has a modulated
coupling between two spin components, which creates a
local minimum in the effective phase potential. This allows
an experimental study of models of false vacuum quan-
tum tunneling in relativistic scalar-field theories, with an
engineered scalar-field potential.

It is essential to also model the quantum simulator itself.
Firstly, this provides insight into the quantum equations
themselves, even if only in an approximation. Secondly,
it is necessary to understand the performance of the BEC
quantum simulator, and its realization in the laboratory
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as far as possible. In this paper, we employ numerical
phase-space methods to simulate the quantum dynamics
of the BEC quantum simulator under the conditions of
laboratory experiments for up to 1024 modes. Earlier anal-
yses have verified a false vacuum tunneling, but have not
accounted for the effects of finite temperatures and Flo-
quet instabilities in such experiments. Our results show
that a momentum cutoff is essential, and that a low initial
temperature is required.

A feature of this scalar-field model is the existence of a
spontaneously broken discrete phase symmetry. This leads
to nonlocal topological effects, which are uncovered using
phase-unwrapping image-processing analysis on the data.
There are two distinct types of quantum vacua created with
opposite phases. These are locally identical but globally
distinct. Similar models have been employed as possible
explanations of particle-antiparticle asymmetry [6–8]. We
show that such global topological effects can be quantified
using the concept of an observational phase entropy, which
can both increase and decrease with time.

Each true vacuum created from the decay of metastable
vacua can expand into a separate “universe” with differ-
ent topological phases, creating domains of vacuum with
boundaries. The result of nucleation includes the tunneling
rate, the fluctuations in density and temperature, and the
collision of domain walls. All play an important role in the
physical nature of the resulting universe formed. However,
theoretical work so far relies on a number of assumptions
which have not been tested in an experiment. False vacuum
decay in zero space dimensions has been recently simu-
lated using a quantum computer [9], but this uses many
orders of magnitude fewer qubits than are needed in a spa-
tial model. Here we simulate Coleman’s original model,
including multimode spatial effects, although without the
gravitational effects required in a full cosmological theory.

The present paper describes a numerical simulation,
whose purpose is to evaluate the feasibility of an exper-
iment and to predict likely outcomes. We use the most
successful dynamical phase-space representation for long
times, which is the truncated Wigner (TW) approximation
to QFT [10,11]. This uses a 1/N expansion for N bosons,
and has had previous success in first-principles predictions
of quantum dynamics in bosonic quantum fields. It gives
correct predictions of tunneling in small bosonic quantum
systems with shallow potentials, by comparison to exact
number state and positive-P representation methods [12].
Cosmological models also employ relatively flat potentials
[13], so this is not unrealistic.

Previous work analyzed quantum bubble nucleation
using a 41K BEC interferometer [14–16] at zero temper-
ature. This proposed a condensate containing atoms of
the same element with two spin components coherently
coupled by a microwave field. The coupled BEC is ini-
tialized by a Rabi rotation into a metastable state, which
decays into a stable state through quantum tunneling. The

transition of the BEC from a metastable to a stable state
is an ideal experiment for the investigation of Coleman’s
original idea. It simulates the relativistic scalar field as
a relative phase between the spin components, with the
speed of light represented by the speed of sound in the
BEC. Related systems that have been studied include a
BEC model of cosmic inflation [17], and using the pres-
ence of a seeded vortex within the condensate to initiate
false vacuum decay [18].

Here we treat a finite-temperature theory, as will occur
in a real experiment. We utilize a variation of the Bogoli-
ubov method [19] for treating the quantum initial state,
which employs a nonlinear chemical potential to eliminate
divergences in the Bogoliubov theory [20]. We calculate
the effects of thermal noise on vacuum tunneling using the
truncated Wigner approximation, which has given success-
ful quantum coherence predictions [10,21–25]. We show
that finite temperatures can enhance tunneling, and study
how tunneling rates are modified at different initial lab-
oratory temperatures. These results include a momentum
cutoff to eliminate Floquet instabilities, and we show that
a cutoff is essential by analyzing the effects of changing the
cutoff.

We also treat the dynamics and time evolution of the
observable topological phase entropy, which has an intu-
itive, understandable interpretation. Tunneling events that
form the vacuum are disordered, leading to a peak entropy
as time evolves. The entropy nearly reaches the max-
imum possible for an appropriate choice of space and
phase bins. As a result, there is a predicted dynamical
reduction with time in the topological entropy, as true vac-
uum domains are formed. The final vacuum state is more
ordered, since the false vacuum is unoccupied. Domain-
wall formation is minimized at low temperatures, which is
important for cosmological interpretations [7], since it is
known that high-temperature domain-wall formation can
lead to anomalous CMB effects.

II. QUANTUM-STATE REPRESENTATION AND
HAMILTONIAN

A. Field equations

Bosonic quantum fields with internal degrees of freedom
[26–28] are used to describe the Higgs sector in the stan-
dard particle model. Global symmetries of the Hamiltonian
are broken while creating the low-energy ground state or
vacuum. The observation of the Higgs particle makes this
an important fundamental concept.

The theory of a metastable or “false” vacuum was devel-
oped by Coleman [1,2]. This used a simpler model, treating
the fundamental quantum dynamics of a scalar quantum
field with nonderivative self-interactions and a Lagrangian
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density (with a + − −− metric) of

L = 1
2
∂μφ∂

μφ − U (φ) . (1)

The local-field potential was defined to have two spatially
homogeneous, locally stable equilibrium states, φ = φ+
and φ = φ−. The first of these has a higher energy, with
U (φ+) > U (φ−). This is unstable to quantum corrections,
and is expected to decay to the true vacuum, φ−. A char-
acteristic predicted to occur in such decays is that a true
vacuum is formed by quantum tunneling at a particular
space-time point, and subsequently grows at the speed of
light.

The dynamics of the evolution of the system is described
by Heisenberg field equations of form

∂μ∂
μφ̂ + U′

(
φ̂
)

= 0. (2)

The fact that these are operator equations makes them
effectively insoluble, apart from approximations. Even
if all the eigenstates were known, as in some one-
dimensional theories, there are exponentially many terms
[29] in an expansion of generic initial states.

Coleman analyzed a scalar quantum-field theory of how
such a true vacuum would arise, given an initial metastable
state. This model also predicted the formation of individual
early universe “bubbles.” Such theories can be extended to
include gravitational effects, and have been used as a the-
ory of the early universe [30]. In these, the scalar field is
renamed the inflation field, and decay to a true vacuum
causes an inflationary expansion [13], creating the “Big
Bang.” More recent cosmological studies often focus on
postinflationary events [31], which are less sensitive to
quantum fluctuations.

The observation of the Higgs particle and evidence for
CMB density fluctuations, confirms the importance of such
quantum-field-theory models. Yet the original false vac-
uum energies are thought to be many orders of magnitude
greater than any possible experiment, possibly approxi-
mately 1015GeV [13]. The original event is also hidden
from direct observation. In addition to such experimental
problems, the quantum-field theory itself is exponentially
complex, and cannot be solved exactly. As a result, the
theory has mainly been analyzed using classical or per-
turbative approximations [32]. The inclusion of general
relativistic effects further complicates the analysis.

It is important to have a better understanding of at least
the simplest quantum-field-theory models. A feature of the
model we use is that it possesses a spontaneously broken
discrete symmetry, which is known to provide a poten-
tial solution to the particle-antiparticle asymmetry problem
[7]. Qualitative analysis of domain-wall formation at high
initial temperatures has led to objections to this idea [8],

related to CMB spectral observations. A full quantum-
dynamical treatment of the location of domain walls is
needed. Our simulations show that at high temperatures,
domain walls are prevalent. However, at low tempera-
tures, domain walls are restricted to universe boundaries
where they appear less likely to cause inhomogeneities
in the CMB spectrum. Observing domain walls in an
experimental setting would help to verify or refute this
analysis.

B. Approximations and interpretation

Since digital quantum computers are orders of magni-
tude too small, we propose to solve the equations using
an analog quantum computer: a laboratory BEC quan-
tum simulator. In order to obtain insight into the expected
performance of the simulator, the dynamics of the BEC
system will be solved numerically, but with approxima-
tions. Here, we give an outline of those approximations,
explaining where they will be expected to hold, and also
discuss the interpretation of the simulations.

An interesting consequence of all quantum models for
the universe is that the entire universe is described as a
single quantum state: there is no external observer. Quan-
tum measurement theory in the conventional Copenhagen
model requires an observer to collapse the wave function.
As a result, there are foundational problems in interpreting
the wave function itself. This leads to the question of what
can one identify in the simulation that will correspond to a
universe?

The numerical simulations of this paper give predictions
of the dynamics of the wave function for a model of the
universe according to a Hamiltonian treatment. As such
the averages taken over the simulations provide the ensem-
ble predictions for the laboratory experiment if repeated
many times. An interesting question is whether or how a
particular laboratory realization can relate to a particular
dynamical trajectory.

We use a mapping of the wave function to a Wigner
field distribution but with a simpler, approximate time-
evolution equation, which ensures a positive Wigner dis-
tribution throughout the dynamics. In this TW model,
stochastic equations are written for complex amplitudes αk
that represent modes k. These equations are solved numer-
ically, the quantum noise being modeled stochastically.
There is a direct correspondence between the observable
experimental moments of the field quadratures and the
moments of the real and imaginary parts of αk. The mea-
sured quantity of interest is the particle number, which,
once operator ordering is taken into account, corresponds
to |αk|2 up to an error of order approximately 1. The values
of |αk|2 encountered in the simulations are macroscopic,
and hence the difference between operator and simula-
tion moments is negligible. In this sense, a probabilistic
interpretation is possible, where the individual complex
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amplitudes’ trajectories correspond to an individual real-
ization. Vacuum fluctuations may be considered as real
events, and no additional collapse mechanism is required,
as discussed in greater detail in Sec. IV.

The dynamics of the TW distribution is approximate.
Even though the local evolution errors when using the
TW method are of order 1/N where N is the num-
ber of particles in each mode, these may grow during
time evolution to create macroscopic errors at later times
[12,33–35]. Such errors can increase during quantum tun-
neling. The TW method cannot describe the formation
of macroscopic superposition states [36–40], or predict
certain macroscopic Bell violations [41], because such
states cannot be described by a positive Wigner function.
Quantum squeezing and entanglement can be described
however.

As it is a feasibility study, we do not give exact results,
because the quantum-simulator experiment is intended to
do this. Nevertheless, it is important to ask how reliable
the TW phase-space method is. The TW distribution has
been used to predict both squeezing and entanglement
in systems of large particle number. Comparisons have
been made of TW and exact positive-P methods for the
dynamics of quantum squeezing in solitons [10,11,42],
with excellent agreement between both methods and with
experiments [21,22,43]. There is also good experimental
agreement for large-scale quantum BEC interferometry,
where fringe visibility decoherence times have been accu-
rately predicted. In this regime, quantum entanglement
in the form of Schrödinger’s quantum steering has been
inferred based on the simulations, for states of up to 40 000
atoms [25].

Other studies treated quantum tunneling in driven
nonequilibrium systems, which showed agreement between
TW and exact methods for shallow tunneling potentials
[12,33]. This agreement disappeared for deeper potential
wells, which is more likely to lead to macroscopic super-
position states requiring negative Wigner distributions.
Another quantum-field system with metastable behavior
is the quantum solitonic breather [29,42], for which TW
methods have shown good agreement with conservation
laws [24] and both exact positive-P representation and
integrable methods [44,45] during the early stages of
breather relaxation.

While Coleman’s original model proposed a deep poten-
tial, the models currently favored by many cosmolo-
gists do not. Instead, a shallow potential is thought to
be more realistic in an inflationary universe [13]. As a
result, it is reasonable to use a relatively flat quantum-
field internal potential, with a large particle number. In
this regime, the numerical simulation methods used here
appear reliable. Nevertheless, owing to the long time
scales involved—and possible error growth [46,47]—the
main goal is an experiment, regarded as an early universe
quantum simulation.

C. Two-species Hamiltonian

For a BEC system having two occupied hyperfine levels
with mass m, the Hamiltonian of the coupled-field system
includes an s-wave scattering potential [48]. It is impor-
tant in our model that there is a strong mixing between
the two spin species, without a phase separation. This
requires that the interspecies interaction is minimized, and
is assumed to be zero here. There will be losses due to spin-
changing inelastic collisions, but these dissipative effects
are neglected. The size of such effects is not known for the
41K Feshbach resonance of interest. This provides a lim-
itation on the accessible tunneling times, since the atoms
must tunnel before they are absorbed.

A general two-species Hamiltonian includes both intra-
and interspecies scattering. The interspecies scattering
length is often close to the intraspecies one, since differ-
ences in nuclear spin orientation do not strongly perturb
interatomic forces. However, this can change dramati-
cally at a magnetic Feshbach resonance. The required
tuning of the s-wave scattering interactions can therefore
be achieved with the external magnetic field chosen so that
cross-species scattering is suppressed. This is possible in
41K, as well as in other isotopes like 7Li.

In these cases, near the Feshbach resonance, one can
write the Hamiltonian as

Ĥ =
2∑

j =1

Ĥj + Ĥc. (3)

Here, writing �̂j ≡ �̂j (x, t) for brevity for the j th Bose
field, the individual spin-species Hamiltonians are

Ĥj =
∫

dx
(

−�̂†
j
�2∇2

2m
�̂j + g

2
�̂

†2
j �̂

2
j

)
, (4)

and the microwave coupling Hamiltonian, Ĥc, is

Ĥc = −ν (t)
∫

dx
(
�̂

†
2 �̂1 + �̂

†
1 �̂2

)
. (5)

The components �̂j are the coupled-field operators cor-
responding to different nuclear spin states, and the sub-
scripts j , k = 1, 2 are the spin indices. These operators
have commutation relations

[
�̂j (x, t) , �̂

′
k

(
x′, t

)] = 0 and[
�̂j (x, t) , �̂

′†
k

(
x′, t

)] = δjkδM (x′ − x). Here δM (x′ − x) is
a restricted δ function [49] that includes a momentum
cutoff, restricting the field to a lattice for numerical sim-
ulation.

The coefficient g is the s-wave scattering interacting
strength between the atoms, which for a three-dimensional
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system, g3D, is given by

g3D = 4π�2a
m

, (6)

where a is the s-wave scattering length.
If the atoms are confined by a transverse harmonic trap

with frequency ω⊥, where the transverse trapping energy
�ω⊥ is much higher than the thermal energy, the Bose
gas reaches a one-dimensional regime [50]. In this regime,
the atoms are confined tightly within an effective s-wave
cross section As = 2π(l⊥)2, where l⊥ = √

�/mω⊥ is the
transverse harmonic oscillator length [51–53]. The coeffi-
cient g for a one-dimensional system is hence expressed as
g = g3D/As, which gives

g = 2�2a
ml2⊥

= 2�aω⊥. (7)

We neglect microwave spontaneous emission effects, as
these are very weak for such microwave transitions.

D. Stephenson-Kapitza pendulum term

The coupling ν describes a microwave field that rotates
the nuclear spin by resonantly coupling two hyperfine lev-
els with a frequency separation of 
HF in the external
magnetic field. This is modulated in time in order to induce
metastability using Stephenson’s concept of a modulated
pendulum [54,55], later popularized by Kapitza [56,57].
The depth of the field potential in the metastable state is
determined by the dimensionless variable δ.

We work in a rotating frame such that this energy sepa-
ration is removed from the Hamiltonian, using a different
reference energy for each spin component. Here ν (t), the
coupling strength between the spin components, is modu-
lated [54–58] as a sinusoidal time-dependent variable with
an additional modulation frequency ω, so that

ν (t) = ν + δ�ω cosωt. (8)

Provided the modulation is at a high frequency, this Hamil-
tonian is equivalent to the Coleman model of a relativistic
scalar quantum field with an engineered quartic potential.
Here the phonon velocity corresponds to the speed of light
[14,16]. Modulation amplitudes are relatively large, so
that the excitation is nearly bichromatic [59,60], or double
sideband.

The result of including this term is an engineered poten-
tial U (φa) for an effective scalar field φa, which physically
is the phase difference between the two coexisting Bose-
Einstein condensates with phases φj . We define the atomic
phase difference as φa = φ1 − φ2 − π , so that the false
vacuum is at φa = 0 and the true vacua are at φa = ±π .
In the limit of strong particle-particle repulsion, this obeys

FIG. 1. The engineered potential for Eq. (9), with λ =
1.0, 1.2, 1.5, showing a local minimum for λ > 1. Here ω0 = 1
for purposes of illustration.

the relativistic field Eq. (2), where the speed of light, c, is
replaced by the phonon velocity, c = √

gρ0/m in the BEC.
The atom number density is ρ0 =

〈
�̂

†
j �̂j

〉
, which is equal

for the two species.
The potential equation is given by [16]

U (φa) = ω2
0

[
cos (φa)+ λ2

2
sin2 (φa)

]
, (9)

where ω0 = 2
√
νgρ0/� and λ = δ

√
2gρ0/ν. This poten-

tial can be varied by the experimentalist by changing λ, as
shown in Fig. 1, with a local minimum occurring if λ > 1.

It is known that instabilities can form due to effects
caused by the modulation frequency and high-frequency
phonon modes [61,62]. Such effects therefore require the
use of high enough modulation frequencies to move the
instability region above any physical cutoff in momentum.

We assume that there is a physical mechanism to remove
high-momentum phonon modes. An example of this would
be the use of a spatially modulated potential to introduce a
band gap. A second possibility is the use of a swept mod-
ulation frequency to reduce parametric gain by changing
the unstable momenta. Ultimately, as pointed out by earlier
workers, the inverse scattering length provides an intrinsic
cutoff, ultimately at 1/a.

An experimental mechanism to achieve this is via an
optically modulated trap potential. Instabilities were not
observed in our previous numerical simulations, due to the
use of a finite lattice that includes a momentum cutoff.
An analysis of modulational instabilities in experiments
with larger numbers of modes and higher phonon momenta
is given in the Appendix, where typical parameters are
presented.

We conclude that such instabilities are generally present,
but can be suppressed in the proposed experiment by
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FIG. 2. Example of a single trajectory decay to a true vacuum,
starting in a 1D false vacuum initialized with finite-temperature
effects. The false vacuum is seen to decay to two distinct topo-
logical phases φa(̃x) for the true vacuum, indicated by yellow and
light-blue regions. The bubbles of true vacuum expand in dimen-
sionless space x̃ until they meet each other. At dimensionless
long time scales t̃, the universes are separated by domain walls
of false vacuum, indicated by the color green. Dimensionless
parameters are τ = 10−5, ν̃ = 7 × 10−3, λ = 1.2, ω̃ = 50, and
ρ̃ = 200. The definition of the parameters is given in Sec. III C.

using high enough modulation frequencies combined with
a momentum cutoff, as shown in Fig 2.

III. INITIAL STATE AT FINITE TEMPERATURE

Our initial state includes quantum and thermal fluc-
tuations. We combine the Bogoliubov method [19] with
the Wigner representation, so that both the initial ther-
mal excitations and vacuum noise are taken into account.
In this approximation, the system is assumed to have a
macroscopic condensate mean population Nc, with initial
density ρc = 2ρ0 for one of the spin indices, say j = 1.
Experimentally, this is produced using evaporative cooling
methods [63–65].

The ground-state field operator �̂1 is nearly equal to
the square root of the condensate density,

√
ρc, which is

assumed constant over the ring. This is valid for typi-
cal ultracold BEC experiments below threshold, provided
trapping potential noise is small. There are zero momen-
tum divergences in applying the Bogoliubov expansion to
finite systems, which are removed here using a nonlinear
chemical potential [20].

Initially, the microwave coupling ν is turned off, and
the second spin species operator �̂2 is in the vacuum
state. The BEC is prepared in a single species condensate
with one spin component populated at a temperature T.
While it is possible to achieve temperatures well below the
condensate critical temperature, these are still not at zero

temperature. The condensate has thermal phonon excita-
tions, which can change the tunneling time. These also
induce phase fluctuations and finite temperatures in the
effective scalar field.

This is expected to give modified tunneling compared to
a metastable quantum field without extra noise. Since the
exact quantum state prior to the Big Bang is not known
precisely, our goal here is to determine the effect of ther-
mal noise on a laboratory experiment. Even this may not
capture the full effects of evaporative cooling, which is a
complex dynamical process [66].

A. Nonlinear chemical potential

To model a finite-temperature experiment, we assume
that the initial density matrix is in a grand canonical
ensemble ρ̂GC at temperature T for j = 1, and a vacuum
state for j = 2, so that

ρ̂GC = e−βK̂ |0〉 〈0|2 . (10)

Here K̂ is the “Kamiltonian,” which includes a chemical
potential to give a finite particle number in the thermal
state, so that

K̂ = Ĥ − μ
(

N̂
)

, (11)

where μ
(

N̂
)

is the chemical potential for an initial popu-

lation N̂ in one of the spin configurations. This can be any
nonlinear function of N̂ [20], so that, including terms up to
second order

μ
(

N̂
)

= μ1N̂ + μ2

2
: N̂ 2 : . (12)

The chemical potential has no effect on the dynamics if
ν = 0, since

[
Ĥ ,μ

(
N̂

)]
= 0. Such a nonlinear chemical

potential is useful for describing thermal fluctuations in a
BEC. The utility of this method is that on linearizing the
total Kamiltonian, K̂ , the zero-frequency divergence of the
Bogoliubov expansion [19] is eliminated with a suitable
choice of the quadratic coefficient μ2.

For number-conserving interferometric measurements
of relative phase, the initial coherent phase φc of the origi-
nal condensate is completely uncertain, and the system can
be viewed equivalently as having a statistical mixture of
either condensate phase or atom number [20]. To allow
an expansion around a well-defined coherent state phase,
we suppose that ρ̂ is an ensemble average of condensates
ρ̂ (φc) with a coherent phase φc, so that

ρ̂GC = 1
2π

∫
dφρ̂ (φc) . (13)

This ensemble corresponds to a number-averaged ensem-
ble of states with Poissonian number fluctuations around
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Nc, which is more realistic than using a fixed-particle
number. The actual number fluctuations in experiments
are often super-Poissonian, and these additional number
fluctuations can be included if required.

All phase choices give identical observables. It is there-
fore sufficient to include a single member of the phase
ensemble with φc = 0, following similar methods used
in laser physics [67–69]. There are other techniques
for obtaining convergent Bogoliubov expansions [70,71].
These generally involve operator expansions having non-
standard commutators, and do not readily permit Wigner
phase-space expansions. We emphasize that in all phase-
sensitive BEC experiments, such as the one that we pro-
pose here, it is the relative phase between two conden-
sates that has a measurable value, with nontrivial quantum
dynamics including phase diffusion and tunneling.

B. Regularized Bogoliubov theory

The grand canonical Hamiltonian, K̂ , is obtained from
a Bogoliubov expansion [19,72,73] of the single-species
field operator at time t = 0, assuming a condensate phase
of φ1 = 0. This is given by

�̂1(x, 0) = ψc + δ�̂1. (14)

Here ψc = √
ρc, which is the initial condensate density,

and the field fluctuations are expanded as a sum over
phonon momenta k:

δ�̂1 = 1√
L

∑
k

[
ukb̂keikx − vkb̂†

ke−ikx
]

. (15)

For a complete unitary transformation, all modes must be
included, including the zero-momentum mode. Next, we
introduce the condensate quadrature operator P̂ as

P̂ ≡
∫

dx
(
δ�̂1 + δ�̂

†
1

)
/
√

2. (16)

The number operator N̂ can be written to second order in
the quantum-field fluctuations, giving

N̂ = Nc + P̂
√

2ρc +
∫

dxδ�̂†δ�̂. (17)

Expanding the grand canonical Hamiltonian in δ�̂1, the
choice of μ1 = 0 and μ2 = g/L eliminates all first-order
terms as well as terms in P̂2, which would cause phase
divergences and unphysical phase diffusion in equilibrium.
The resulting convergent Bogoliubov expansion has u0 =
1 and v0 = 0 for the zero-momentum terms with k = 0,
rather than the divergent expression usually found.

The mode coefficients of the single-species field for k 	=
0 are expressed in terms of the excitation energy εk and the
free-particle energy Ek, as

uk = εk + Ek

2
√
εkEk

,

vk = εk − Ek

2
√
εkEk

,
(18)

where Ek = �2k2/ (2m) is the free-particle energy and

εk =
√

Ek(Ek + 2gρc) (19)

is the excitation energy. Due to periodic boundary con-
ditions on a ring trap, the allowed values of momenta
are

kj = 2π j
L

, (20)

for j = (1 − M ) /2, . . . (M − 1) /2 for M momentum
modes, assuming an odd mode number. The resulting
effective Kamiltonian describing thermal excitations of the
BEC is given by

K̂ (2) =
∑

εkb̂†
k b̂k. (21)

Here, the phonon operators b̂†
k , b̂k describe the creation and

annihilation of a quasiparticle in an excited state k. The
resulting excitation in each mode with k 	= 0 is a propa-
gating phonon. This expansion is particularly useful for
the finite-temperature system we are interested in here.
Phonon excitations with k 	= 0 are populated according to
the bosonic thermal distribution,

〈n̂k〉 = 〈b̂†
k b̂k〉 ≡ nk = 1

exp(βεk)− 1
, (22)

where β = 1/kBT.
For k = 0, we assume a vacuum state with n0 = 0, since

this operator cannot be coupled to an energy-exchange pro-
cess, owing to number conservation. This choice gives
Poissonian number fluctuations. As discussed above, it
may be necessary in modeling experiments to include even
larger number fluctuations due to technical noise occurring
in the evaporative cooling process [23].

After the initial preparation, a microwave pulse is used
to rotate the Bose gas occupations so that the two spin
species have an equal occupation, which is equivalent to
a linear beam splitter. We denote �̂ ′

j (x, 0) as the initial
quantum fields after the BEC is split into the two states.
The two initial spin states after rotation have equal density
ρ0 = ρc/2 and a relative phase of π .
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This corresponds to a rotation matrix acting on the
quantum fields �̂1 and �̂2:

(
�̂ ′

1
�̂ ′

2

)
=

(
cos θ2 −ie−iφsin θ2−ieiφsin θ2 cos θ2

) (
�̂1

�̂2

)
, (23)

where θ = π/2 and φ = −π/2. The system is then
assumed to evolve according to the Hamiltonian (3) with
a cw microwave coupling field present. This carrier has
an appropriate phase relationship with the microwave
pulse field so that the quantum system is initially in the
metastable high-energy state.

C. Dimensionless parameters

The equation of motion and quantum operators can
be transformed into dimensionless form by introducing
dimensionless time, distance, and frequency:

t̃ = tω0,

x̃ = x/x0 = xω0/c,

ω̃ = ω/ω0.

(24)

The speed of sound in a weakly interacting BEC is given
by c = √

gρ0/m, and the initial temperature of quantum
degeneracy is Td [74]. We define a characteristic length,
temperature and frequency as

x0 = �

2
√

mν
,

Td = �2ρ2
c

2mkB
,

ω0 = 2
√
νgρ0

�
.

(25)

The field amplitude in dimensionless coordinates is �̃j =
�̂j

√
x0, and the density in dimensionless form is given by

ρ̃0 = ρ0x0. This gives a characteristic energy scale that is
the geometric mean of the mean-field energy gρ0 and cou-
pling energy ν, as used previously. The six dimensionless
parameters that define the physical system are therefore:

ρ̃0 = ρ0x0,

L̃ = L/x0,

τ = T/Td,

λ = δ�ω0/
√

2ν,

ω̃ = ω/ω0,

ν̃ = ν/gρ0,

(26)

where L̃ is the dimensionless length of the simulation, T is
the temperature of the initial BEC field with density ρc =

2ρ0, and λ is the effective depth of the modulation. The
corresponding dimensionless Hamiltonian is

H̃j =
∫ L̃/2

−L̃/2
d̃x

(
−

√
ν̃�̃

†
j ∇̃2�̃j + g̃

2
�̃

†2
j �̃

2
j

)

H̃c = −1
2

√
ν̃

(
t̃
) ∫ L̃/2

−L̃/2
d̃x

(
�̃

†
2 �̃1 + �̃

†
1 �̃2

)
. (27)

Here g̃ = 1/(2ρ̃0
√
ν̃), the effective nonlinearity, depends

on the other parameters. The chemical potential has no
effect on dynamics, and is required only to remove singu-
larities in the linearization of the initial state.

IV. PHASE-SPACE REPRESENTATIONS AND
ENTROPY

To investigate vacuum nucleation at finite tempera-
ture, we take both quantum and thermal fluctuations into
account. This is achieved by performing stochastic numer-
ical simulations in the Wigner representation of the full
quantum model of the two-component BEC system. These
numerical simulations are not exact, and indeed there is
no exact method known. Such large-scale quantum-field
calculations are exponentially complex. This lack of an
exact solution is the motivation for a quantum-simulation
experiment. However, we can use stochastic methods to
investigate realistic conditions and expected results.

The effect of quantum and thermal fluctuations results
in a wide range of nucleation times. Numerical methods,
which are not limited to short simulation time, are desirable
to simulate the Coleman theory. Here we choose the TW
approach [10,11,75]. It has a sampling error that remains
well controlled over a long simulation time. This method
gives the first quantum corrections in an M/N expansion
[76], where M is the number of modes and N is the number
of atoms. To give reliable results, it is therefore necessary
that M/N << 1. This has been confirmed in comparisons
with exact positive-P and complex-P simulations that do
not use truncations [10,44].

There have been successful predictions of measured
quantum squeezing in solitons [10,21,22,43,77], propa-
gation effects in BEC lattices [78], and fringe visibility
in finite temperature BEC interferometers [11,25]. These
also indicate that the technique is reliable. Hence the TW
method should be able to simulate these experiments given
a large number of atoms. Truncation errors can build up at
long times [34]. This means that the numerical simulations
are expected to be correct if tunneling is not too slow. The
ultimate goal is an experiment.

Tunneling phenomena are a stringent test of numerical
quantum-field simulations. Earlier comparisons of trun-
cated Wigner quantum tunneling with exact methods have
shown that it is correct for relatively shallow potentials
[12,33]. This is also the regime of most interest in many
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cosmological models. As a result, we expect that this
method will give good indications of the effects of thermal
and quantum noise in the regimes of most interest.

Using this approach, the quantum state is represented
by a stochastic phase-space distribution of trajectories fol-
lowing the Gross-Pitaevskii equation. In a thermal state,
the Wigner representation of the initial state has a com-
plex Gaussian distribution. We perform our simulations
for a one-dimensional system, whose equation of motion
are obtained from Eq. (4). A typical example is shown in
Fig. 2.

The general approach described here is well tested in
comparisons to experiment in other BEC systems, includ-
ing one-dimensional lattice simulations [78], and espe-
cially in three-dimensional interferometry measurements
[23,25], where it has given excellent agreement with low-
temperature quantum-limited BEC experiments.

A. Wigner representation

We require that the dynamics of the system is evolved
quantum dynamically, hence quantum fluctuations must be
taken into account. To do this, we transform the phonon
operators using the Wigner-representation correspondence
[10,11,24,49]. Since the initial state is approximately
Gaussian before phase averaging, the corresponding initial
Wigner representation is also Gaussian [78,79].

Each initial phonon mode is represented as a complex
Gaussian variable, i.e., b̂k ∼ βk and b̂†

k ∼ β∗
k . Thermal fluc-

tuations are included in the modes with k 	= 0. A detailed
explanation of how this is obtained using the nonlinear
chemical potential method is explained elsewhere [20].
The Wigner representation of the initial quantum den-
sity matrix ρ̂ (0), after evaporative cooling, is a complex
Gaussian distribution given by

W [ψ] = W1 [ψ1] W2 [ψ2] . (28)

Here, W1 [ψ1] is a representation of a thermal state with
finite temperature, and W2 [ψ2] is a vacuum state. These
are positive distributions that can be sampled probabilisti-
cally, with samples given after evaporative cooling by

ψ1 = ψc + 1√
L

∑
k

(
ukβkeikx − vkβ

∗
k e−ikx) ,

ψ2 = 1√
L

∑
k

αkeikx,
(29)

with αk and βk defined as independent complex Gaus-
sian random variables in each vacuum mode and phonon
mode, respectively. These have mean values such that
〈α2

k 〉 = 〈αk〉 = 0, 〈β2
k 〉 = 〈βk〉 = 0. The only nonvanishing

moments are

〈|αk|2〉 = 1
2

,

〈|βk|2〉 = nk + 1
2

.
(30)

B. Reduction to dimensionless parameters

In dimensionless form, Eq. (29) for the condensate after
cooling and before rotation, is given by

ψ̃1 = ψ̃c + 1√
L̃

∑(
ũkβ̃keĩk̃x − ṽkβ

∗
k̃ e−ĩk̃x

)
,

ψ̃2 = 1√
L̃

∑
α̃keĩk̃x,

(31)

where |ψ̃c|2 = ρ̃c = 2ρ̃0 is the mean-field density of the
single-species condensate before rotation. The first term is
an inverse Fourier transform of the collective excitations
in Wigner representation. The resulting values for u, v are

uk̃ = ε̃̃k + Ẽ̃k

2
√
ε̃̃kẼ̃k

,

vk̃ = ε̃̃k − Ẽ̃k

2
√
ε̃̃kẼ̃k

,

(32)

where ε̃̃k = εk/�ω0 is the Bogoliubov excitation energy in
dimensionless form, so that, in dimensionless units

Ẽ̃k =
√
ν̃k̃2,

ε̃̃k =
√
ν̃k̃2

(
k̃2 + 2

ν̃

)
. (33)

C. Metastable state generation and detection

Assuming that the thermal phonons effectively behave
as a canonical ensemble of free bosons, the thermal fluc-
tuations for k̃ 	= 0 are represented by the complex Wigner
amplitude

β̃k = η1,̃k√
2tanh(̃ε̃k/8

√
ν̃ρ̃2

0τ)

,

α̃k = η2,̃k√
2

, (34)

where ηi,̃k is a complex Gaussian noise in dimensionless
space, with 〈ηi,̃kη

∗
j ,̃k′ 〉 = δij δ̃k̃k′ . As a result,

〈|β̃k|2〉 = ñk + 1
2

,

〈|α̃k|2〉 = 1
2

.
(35)
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To create the metastable state described in Coleman the-
ory in our proposed experiment, a radio-frequency field
with shifted phase of π/2 is applied to the single-species
BEC. This prepares a superposition of initial states |1〉 and
|2〉, where the two-component condensate corresponds to
the initial metastable state, together with finite-temperature
thermal fluctuations.

We denote ψ̃
′
1,0 and ψ̃

′
2,0 as the initial Wigner fields

after the BEC is Rabi rotated into the two hyperfine lev-
els. These initial states are required to have equal density
ρ̃0 with a relative phase of π , which corresponds to a rota-
tion matrix identical to that used for the Heisenberg fields,
but now applied to the Wigner fields ψ̃1 and ψ̃2:

(
ψ̃

′
1
ψ̃

′
2

)
=

(
cos θ2 −ie−iφsin θ2−ieiφsin θ2 cos θ2

) (
ψ̃1
ψ̃2

)
, (36)

where θ = π/2 and φ = −π/2.
A sample dynamical trajectory in the Wigner phase-

space representation satisfies the equation:

∂ψj

∂t
= − i

�

[
−�2∇2ψj

2m
+ gψj |ψj |2 − ν (t) ψ3−j

]
. (37)

Here we ignore the chemical potential term, which is
identical for both components and has no effect on the
relative phase dynamics. Transforming Eq. (37) into this
dimensionless form, the time evolution of the Wigner field
trajectory is given by [16]

dψ̃j

d̃t
= −i

[
−

√
ν̃∇̃2ψ̃j + g̃ψ̃j |ψ̃j |2

]

+ i

√
ν̃

2

[
1 +

√
2λω̃cos(ω̃̃t)

]
ψ̃3−j . (38)

Increasing the modulation so that λ > 1 gives a local
minimum in the corresponding effective potential. The cor-
responding dimensionless effective potential in the phase
difference φa is

Ũ (φa) = cos (φa)+ λ2

2
sin2 (φa) . (39)

Using the fields ψ̃
′
1 and ψ̃

′
2 as initial conditions, one can

propagate the Wigner fields in real time, using the equation
of motion, Eq. (38). The atomic relative phase then evolves
approximately according to the relativistic field Eq. (2), so
that

[
∂2

∂ t̃2
− ∇̃2

]
φa + Ũ′ (φa) = 0. (40)

The relative phase of the two spin components is dynam-
ically evolved, which includes quantum-tunneling effects.

Since we wish to evaluate the laboratory experiment, the
full atomic equations are evolved, rather than just the
reduced phase equations. We detect vacuum formation at
a finite time by rotating to measure the relative phase
from the resulting hyperfine populations, and the results
are compared at different temperatures. A typical single
trajectory is shown in Fig. 2. This shows tunneling events
occurring at isolated space-time points. As expected, the
true vacuum regions grow at the speed of light (c̃ = 1).
Full details are given in Sec. V.

D. Topological entropy

Entropy is an important phenomenon in all physical sys-
tems. It is one of the foundations of thermodynamics, and
can be interpreted as a measure of disorder or random-
ness of a system. For a quantum system undergoing unitary
evolution, such as the entire universe in this model, the
von Neumann entropy is invariant. While von Neumann
entropy can increase when the contributions for different
entangled parts of the universe are summed, the overall
von Neumann entropy for the universe is static. Alterna-
tive definitions of entropy have emerged that are based on
measurement properties [80–84]. This leads to the ques-
tion of which entropy measure can be used to quantify the
disorder of an early universe simulator, and how it can be
calculated and measured.

Here we investigate the disorder of the simulated uni-
verse using an observational macroscopic entropy that can
be calculated and measured. This is based on a well-known
quantum entropy measure, the Wehrl entropy [85],

SQ = −
∫

Q(α) ln [Q(α)] d2Mα, (41)

where Q(α) = 〈α| ρ̂ |α〉 /πM is the Husimi function [86].
The Q function is a positive, probabilistic representation,
defined for all quantum states. It can be used to link the
simulations and an interpretation of the quantum universe,
based on the Q function [87]. In this interpretation, the
universe simply corresponds to a particular sample of a
Q-function probability.

It is nontrivial to simulate the Q-function dynam-
ics, since it does not satisfy a Fokker-Planck equation.
Consequently, rather than solving for the Q function
directly—which would be equivalent to quantum-field
dynamics—we have utilize a closely related method, the
TW approximation [10,11,75]. This has much simpler
dynamical equations.

Measurements that correspond to a Q-function trajec-
tory are antinormally ordered, so that averages over the
symmetrically ordered TW simulations do not directly cor-
respond to those of a Q-function trajectory. These two dis-
tributions corresponding to two different representations,
one approximate, the other accurate. In any experiment on
a large BEC, the difference between the truncated Wigner
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and the Q distribution is microscopic, and has a negli-
gible effect on macroscopic observables like the average
phase difference. Since the ordering introduces differences
of only a microscopic order, either can have the interpre-
tation of macroscopic reality [88]. The retrocausal nature
of the individual trajectories and their relationship to quan-
tum measurement theory is treated in detail elsewhere [87].
In this interpretation, no additional collapse mechanism is
required.

If we consider a mesoscopic observable, one can
approximate the Q-function distribution by the Wigner
function used here, since the two are related by a micro-
scopic convolution of order � [89]:

Q(α) = 1
πM

∫
W(α′)e−2|α′−α|2

d2Mα′. (42)

However, even the Wehrl entropy measure, though simpler
than the von Neumann entropy, is not readily measurable
in a multimode system, as it requires an exponentially com-
plex set of measurements. To resolve this problem, the idea
of an observational entropy has been recently put forward,
which uses a finite set of measurements to define entropy
[90].

We use an observational version of the Wehrl entropy,
which is a combination of the Wehrl and observational
entropies. Each amplitude α, describing a possible uni-
verse in the Wigner or Q representation, is reduced to a
phase, measured, and binned into a set Si, which classi-
fies phases into p distinct ranges in each of � contigu-
ous regions. This is a topological measurement, since the
phase can only be established through a nonlocal phase-
unwrapping algorithm [91], which allows one to distin-
guish topological phases of −π and π through continuity
in space and time.

Given ni as the number of measured universes in the ith
bin, from a total of n, we define a probability Pi = ni/n,
and a corresponding observational Wehrl entropy as

ST = −
∑

i

Pi ln Pi ≤ � ln p . (43)

An early universe simulation must have a finite number of
trajectory samples. Hence, we require an appropriate bin-
ning strategy to formulate sample probabilities, in which
the total number of bins should be less than the number of
samples, to give reliable estimates. The simplest strategy
would be to use a binary binning with the relative phase
at each point in space in either a false vacuum or in a true
vacuum, thus ignoring topological effects.

However, as shown in Fig. 2, if we start with a false
vacuum at φ = 0, we find two topologically distinct true
vacuum states with relative phases of −π and π . These are
distinguishable using nonlocal phase unwrapping methods
in space or time. As a result, we require three phase bins in

each spatial region, of −π ± π/2, 0 ± π/2, and π ± π/2
to capture the vacuum states in our early universe model.
Since phase is measured in a finite volume, we define it by
averaging over a range of neighboring spatial lattice points.
Therefore, we identify in each space-time interval three
phase bins, two for the true vacua, and one for the false
vacuum. Compared to entropy as a microscopic quantity,
this entropic measure is uniquely sensitive to macroscopic
topological disorder. In fact, it is sensitive to disorder on
the scale of the entire universe, or model universes in
the case of the proposed laboratory quantum simulations
using coupled Bose condensates. This has quite different
properties to the microscopic von Neumann entropy.

Our simulations show a cooperative effect, where each
vacuum bubble eventually becomes dominated by one or
other of the topological phases. This provides a model for
multiple universes with fundamentally different properties.
An intriguing property of this type of scalar-field symmetry
breaking is that it is purely topological. There are no local
measures that distinguish the different topological phases,
although they are distinguishable using phase unwrapping.

It is speculated that discrete symmetry breaking could
provide a mechanism for matter-antimatter asymmetry [7,
8]. The basis for this is that scalar-field behavior involves
very high energies, with matter and antimatter being
formed at much lower energies. As a result, small asymme-
tries could have a large influence at the lower energies of
matter formation. The validity of this model hinges on the
question of whether domain walls form, as these can alter
the observed CMB spectrum. Our simulations indicate that
domain-wall formation is suppressed at low temperatures
and confined to universe boundaries. Experimental evi-
dence of domain-wall formation and symmetry breaking
can be found by measuring the topological entropy.

V. NUMERICAL RESULTS

This section summarizes the results of numerical studies
of the effect of finite initial temperatures in the proposed
BEC experiments. Our simulations use a discrete lattice,
corresponding to a physical momentum cutoff at M = 256
modes. This is necessary to prevent modulational instabili-
ties. The effect of removing the momentum cutoff by using
a smaller lattice spacing with more modes is reported in
the Appendix. It is experimentally challenging to measure
relative phase unambiguously in a BEC, as this requires a
simultaneous measurement of two complementary quadra-
tures. Most of the numerical results presented here use the
more accessible measure of relative number distribution,
pz ∝ cos (φa), while we also present results for the relative
phase φa in the section on topological phase entropy.

A. Experimental parameters

To have a realistic numerical study, we choose possible
parameters that correspond to a one-dimensional system of
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41K atoms in a ring trap near a Feshbach resonance. There
are many choices of atomic species possible, including 7Li,
so this is only one scenario among many.

For the existence of quasiparticles in a finite-
temperature condensate, the circumference L of the trap
should be shorter than the temperature-dependent phase
coherence length lφ ≈ (�2ρc/mkBT) [74]. The restriction
on the trap circumference L � lφ limits the tempera-
ture T of the condensate in the ring trap, i.e., T �
Tc = (�2ρc/mkBL) [16]. For condensates in a ring trap
with a three-dimensional density ρc,3D, assuming the con-
densate atoms are transversely confined in the effec-
tive s-wave scattering cross section As, the correspond-
ing one-dimensional density is estimated to be ρc =
Nc/L ≈ Asρc,3D. Following the suggested parameters in
Refs. [15,16], the parameters of the proposed experiments
are listed in Table I.

The partial differential Eqs. (38) are solved using
an interaction picture fourth-order Runge-Kutta (RK4)
method with the extensible open-source MATLAB package
xSPDE [92]. From the experimental parameters listed in
Table I, the corresponding typical dimensionless parame-
ters used in the numerical simulations are listed in Table II.

We also note here that the final state behavior is likely to
be analogous to similar phenomena observed in other one-
dimensional BEC systems [93], and may be characterized
by prethermal quasi-steady-states, owing to the relatively
slow path to full thermalization in these systems.

TABLE I. Dimensional parameters in the proposed experi-
ments.

Experimental parameters
Trap circumference L 254 μm
Number of atoms Nc 4 × 104

Condensate density ρc ≈ 1.58 × 106cm−1

Degeneracy temperature
Td = (�2ρ2

c /2mkB)

≈ 147 μK

Coherence temperature
Tc = (�2ρc/mkBL)

≈ 7.34 nK

BEC temperature T ≈ 1.47 ∼ 147 nK
Transverse frequency ω⊥ 2π × 1910Hz
Oscillator frequency ω 2π × 9.56kHz
Oscillator amplitude ν/� 2π × 9.56Hz
Modulation depth δ 0.085 ∼ 0.10
s-wave scattering strength g 8.05 × 10−39Jm
Effective s-wave scattering cross

section As

8.10 × 10−9cm2

Three-dimensional condensate
density ρc,3D

1.94 × 1014cm−3

Speed of sound c 3.05mms−1

Observation time tf 49.9ms
Characteristic length x0 2.54 μm
Characteristic frequency ω0 2π × 191.26Hz

TABLE II. Typical dimensionless parameters in the numerical
simulations.

Typical parameters
Dimensionless circumference L̃ 100
Dimensionless observation time t̃f 60
Number of modes M 256
Dimensionless lattice spacing �̃x 0.3906
Dimensionless time step �̃t 7.5 × 10−4

Reduced temperature τ 10−5 ∼ 10−3

Dimensionless atom density ρ̃0 200
Dimensionless coupling ν̃ 0.004 ∼ 0.01
Dimensionless modulation λ 1.2 ∼ 1.4
Dimensionless frequency ω̃ 50 ∼ 200

B. Observational criteria

In order to convert the relative phase of the two species
into number density distribution, a π/2 radio-frequency
pulse can experimentally be applied to the coupled fields.
Vacuum nucleation can be observed from the relative
number density distribution,

pz (̃x) = ρ2(̃x)− ρ1(̃x)
ρ2(̃x)+ ρ1(̃x)

, (44)

where ρ1(̃x) and ρ2(̃x) are the number density of the
two species, respectively, after applying the second Rabi
rotation.

Figure 3 shows a single-trajectory example of one-
dimensional false vacuum dynamics. The simulation starts
with thermal states of a two-component condensate at a
low reduced temperature of τ = 1 × 10−5. The coupled-
field system is in the metastable state initially, with

FIG. 3. Single-trajectory 1D false vacuum simulation for the
time evolution of pz at τ = 1 × 10−5. The dimensionless length
L̃ = 100 corresponds to a trap circumference L = 254 μm. Sim-
ulation parameters are λ = 1.2, ν̃ = 7 × 10−3, ω̃ = 50, ρ̃ = 200,
number of modes M = 256. The false vacuum (pz = 1) indicated
by the yellow color decays, forming bubbles in the true vacua
(pz = −1) indicated by the blue regions.
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pz approximately 1 at time t̃ = 0, indicated by the yel-
low contour. The system starts to decay into a stable true
vacuum state with pz approximately − 1, indicated by the
blue contour at times t̃ � 2. In this example, five bubbles
are formed of true vacua. These bubbles expand until they
either meet at continuous domain walls of false vacuum
(at x̃ ≈ −43 and x̃ ≈ 25), which correspond to topologi-
cally distinct phases, or else form localized oscillons (at
x̃ ≈ −30, 6, and 46).

From the simulations of our model at finite temperature,
the thermal energy introduces extra thermal fluctuation
into the system. These thermal fluctuation can result in
thermal activation, which increases the rate of apparent
tunneling events within the coupled BEC fields.

In addition, as shown in the single-trajectory example in
Fig. 4, increasing the reduced temperature τ of the system
enhances the interactions between the false vacua and the
true vacua on long time scales. In the example of the low-
temperature dynamics shown in Fig. 3, domain-wall and
oscillon formation is minimized and the bubbles are well
defined. This clear structure of the true vacuum is disturbed
when the BEC is strongly thermalized as shown in Fig. 4.

As can be seen in Fig. 4, no stable domain walls or
periodic oscillons are formed as the temperature increases,
and no true vacuum bubbles survive on long time scales.
As quantum tunneling is enhanced at higher temperatures,
more bubbles are formed in the true vacua, but most of
them are short lived. Tunneling is accelerated at high
temperatures, which leads to strong fluctuations between
the true vacua and the false vacua, and many relatively
unstable domain walls.

To quantify tunneling events, we can examine the aver-
age cosine of the relative phase of the coupled fields along

FIG. 4. Single-trajectory 1D false vacuum simulation for the
time evolution of pz at τ = 3 × 10−4, all other parameters are as
in Fig. 3.

the axial coordinate, where

〈cosφa〉 = 1
L̃

L̃∫
cosφa(̃x)d̃x. (45)

As illustrated in Fig. 5, the value 〈cosφa〉 = 1 corresponds
to an initial false vacuum. As the tunneling starts and
the false vacuum decays to the true vacua, 〈cos(φa)〉 is
expected to gradually decrease from 1 to −1 in a complete
transition. At very low temperatures, the presence of the
true vacuum bubbles is noticeable with 〈cosφa〉 < −0.5.
However, at higher temperatures, the presence of the true
vacuum bubbles is less noticeable due to the influence
of the thermal fluctuations, and 〈cosφa〉 only goes to just
below 0. We define a threshold value 〈cosφa〉 = 0.9 as the
initiation of the false vacuum tunneling event.

Recalling that the TW method provides quantum esti-
mation from a set of stochastic trajectories, to investigate
thermal effects on the tunneling rate at finite-temperature
conditions, we repeat the single trajectory simulation and
determine the probability of bubble creation [〈cosφa〉 ≤
0.9] over time, P(̃t).

We then obtain the survival probability of the false
vacuum F given that F = 1 − ∫ t̃

0 P(̃t′)d̃t′. The tunneling
rate � for long time scales is calculated from a linear
fit in log scale given that F = exp(−�̃t) [94]. We per-
form simulations over a range of coupling strengths ν̃ and
reduced temperatures τ . Results are presented in Figs. 6,
7, and 8. Previous work showed that larger couplings ν̃
extend the tunneling time [15,16], which confirmed an
expected slowing down of quantum tunneling with dis-
sipation [95]. To illustrate thermal effects, we compare
the Bogoliubov thermal-state results with the coherent-
state results, in which thermal noise is neglected. Although
the coherent initial state is not a true Bogoliubov ground
state, it has very similar behavior to the low-temperature
ground state. In the Wigner representation, the coherent

FIG. 5. Time evolution of the corresponding average relative
phase 〈cosφa〉 shown in Fig. 3 (solid line) and Fig. 4 (dash line),
the horizontal dash-dot line 〈cosφa〉 = 0.9 indicates the threshold
of the appearance of a true vacuum bubble.
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FIG. 6. Dependence of the tunneling rate � on the coupling ν̃
for different values of reduced temperature τ for λ = 1.2. The
error bars show the estimated error of the linear least-squares
fitting in log scale.

initial state is represented by adding the quantum noise in
each vacuum mode, Eq. (31), to the classical false vacuum
state. In dimensionless from, the coherent Wigner fields
after the BEC is Rabi rotated are ψ̃i=1,2 = (ψ̃c/

√
2)+

(1/
√

L̃)
∑
α̃keĩk̃x, where α̃k is an independent Gaussian

random variable as already described in Eq. (34).

C. Thermally induced changes in decay rates

How does the finite initial temperature affect the decay
of the false vacuum? From all three figures (Figs. 6 to 8),
the tunneling rates � determined from both the coherent
state and the thermal states at all tested temperatures τ
show a power-law dependence on ν̃. The gradients of log�
for each effective modulation depth λ are similar. If we
compare the change of the tunneling rate � at a fixed mod-
ulation depth λ, from each of Figs. 6, 7, and 8, one can see

FIG. 7. Tunneling rate � for different values of reduced tem-
perature τ for λ = 1.3.

FIG. 8. Tunneling rate � for different values of reduced tem-
perature τ for λ = 1.4.

that the rate of tunneling is increased as the temperature τ
increases.

For the case of very low temperatures, τ = 1 × 10−5,
as the modulation depth λ increases the tunneling rate is
reduced more significantly than at higher temperatures.
On the other hand, in the case of the highest reduced
temperature studied (τ = 3 × 10−4), this reduction of the
tunneling rate due to an increase in λ is less significant
than at lower temperatures. The tunneling of the false
vacuum is less restricted by λ at higher temperatures.
This is because λ determines the depth of the well, and
at higher temperatures thermal-activation results in more
rapid destabilization of the metastable state.

This result suggests that at high temperatures, the effect
of thermal fluctuations dominates the quantum decay of
the false vacuum. For a fixed coupling strength ν̃, an
increase of temperature increases the probability of pene-
trating the modulation depth barrier λ, and hence increases
the formation rate of the true vacuum.

The correlated ground state with τ = 10−5 has a slightly
lower tunneling rate than a coherent state, as it is stabilized
by the Bogoliubov correlations. A possible reason for this
is that the BEC ground state has suppressed low-frequency
number fluctuations compared to a coherent state. This ini-
tial squeezing is partly transferred to the false vacuum state
when a Rabi rotation is used to prepare this state. As a
result, there is a reduction in spatial fluctuations of the
density-dependent trapping potential. This may help to sta-
bilize the false vacuum for a low-temperature initial BEC,
leading to longer tunneling times.

The qualitative effects of bubble nucleation and growth
are similar in both cases.

D. Topological entropy results

The topological entropy allows us to quantify the phase
disorder caused by the formation of true vacua and domain
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FIG. 9. Evolution of the topological phase entropy function S
in early universe simulations using 104 trajectories with varying
order of magnitude, of reduced temperature τ . Here the selected
dimensionless parameters are ν̃ = 7 × 10−3, λ = 1.2, ω̃ = 50,
and ρ̃ = 200 with simulation parameters L̃ = 100, space-phase
bins � = 8, p = 3, with Ngrid = 300 and 8 × 104 time steps.

walls. Results for the topological entropy with 104 dis-
tinct realizations are shown in Fig. 9. Initially the coarse-
grained observational entropy is nearly zero, since all
phase-space coordinates are in the metastable false vac-
uum. The observational entropy initially increases with
time evolution, in contrast to the von Neumann quantum
entropy, which is constant with time. The entropy reaches
a maximum as tunneling occurs, giving a nearly maximally
disordered state with entropy S < 8 ln 3 = 8.79, using � =
8, and p = 3. The entropy then reduces as the true vacua
grow, reducing phase disorder.

The entropy function is shown to reach a maximum
as a result of tunneling and after t̃ � 40, it stabilizes to
near S ≈ 8 ln 2, as the false vacuum is eliminated. Between
τ = 10−6 and τ = 10−4 shown by black and red curves,
there is a decrease in the maximal entropy Smax and life-
time of the peak. From τ = 10−5 to 10−4, as Smax decreases
the lifetime of the peak increases. Beyond τ = 10−4, the
system thermalizes, as shown by the green curve.

At very low temperatures, the final state has almost no
false vacuum. As a result, S ≤ 5.55 as seen in the simula-
tions of Fig. 9. At higher temperatures, the false vacuum
never disappears completely, due to unstable domain-wall
formation, thus increasing the final state disorder. This is
shown by the red and black scattered lines in Fig. 9 and
leads to the prediction of stable steady-state entropy values
S ≈ 5.3. The remaining disorder arises from the random-
ness due to the two topological phases of the true vacua
and the remaining false vacuum domain wall or oscillat-
ing oscillons. The amount of disorder possible is limited
by the spatial extent chosen for phase bins, and the number
of samples used.
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FIG. 10. (a) Dependence of the entropy function S(̃t) on cou-
pling ν̃ calculated using 104 trajectories with λ = 1.3, ω̃ = 50,
ρ̃ = 200, and τ = 10−5. (b) 〈cos(φa)〉 = (1/̃L)

∫ L̃
0 cosφa(̃x)d̃x

for single-trajectory simulations for different values of ν̃. The
horizontal dash-dot line 〈cos(φa)〉 = 0.9 indicates the threshold
of the appearance of a true vacuum bubble. The tunneling time is
longer for larger couplings ν̃.

Figure 2 reveals true vacua states after a time t̃ � 3,
showing two different colors that depict the two different
topological phases for the true vacuum. The true vac-
uum bubbles expand in space until they meet after a time
t̃ � 15 at x̃ ≈ −19 and after a time t̃ � 24 at x̃ ≈ 46. The
neighboring true vacuum regions with distinct topological
phases are separated by a domain wall of false vacuum. On
long time scales, Fig. 2 clearly depicts the formation of an
asymmetric structure of the topological phase in the true
vacuum.

In Fig. 10 we display the evolution of the entropy func-
tion S(̃t) for different values of ν̃ using 104 TW trajectories,
and a comparison plot for the evolution of average rela-
tive phase 〈cos(φa)〉 of the corresponding single-trajectory
examples. For larger couplings ν̃, the maximum entropy
Smax is reduced and the lifetime of the peak is extended.
As the coupling ν̃ is increased, the tunneling initiation is
generally delayed and the tunneling time is extended.

The single-trajectory results presented in Fig. 10(b) are
consistent with the expectation of a slowing down of tun-
neling. We find similar behavior for the modulation depth
λ in the regime of metastability (for λ > 1). In the case
of large λ, bubble nucleation is delayed, with more results
given in the Appendix.

The time evolution of the entropy function S(̃t) for dif-
ferent numbers of spatial modes M using 104 trajectories
is shown in Fig. 11. The results are compared with the cor-
responding 〈cos(φa)〉 shown in Fig. 11(b). The evolution
of S(̃t) and 〈cos(φa)〉 for higher spatial mode numbers are
specified by black and red scattered lines in Fig. 11. Sys-
tems with higher mode numbers have a more chaotic phase
fluctuation, whereas the system with lower mode numbers
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FIG. 11. (a) Time evolution of the entropy S(̃t) using 104 tra-
jectories for the number of modes M = 300, 512, and 1024. The
dimensionless parameters chosen here are ω̃ = 50, τ = 10−5,
ν̃ = 7 × 10−3, λ = 1.2, and ρ̃ = 200. (b) Time evolution of
〈cos(φa)〉 for different numbers of modes M . The horizontal
dash-dotted line indicates a uniform random phase.

specified by the blue dashed line show a smooth tunneling
to the true vacuum.

The behavior is reflected in the entropy plots in Fig. 11,
where the narrow peaks of the entropy function for black
and red scattered lines indicate a more chaotic phase order-
ing. On the other hand, the flattened peak of the entropy
function for blue scattered line shows a relatively stable
phase. In our simulations, the rapid transition to chaotic
fluctuations at higher spatial modes can be minimized
by increasing the characteristic frequency to ω̃ = 200 to
achieve a stable tunneling to true vacuum. This behavior
is caused by Floquet mode instabilities, and is an artifact
of the microwave modulation frequency, as explained in
greater detail in the Appendix.

VI. CONCLUSION

Prior to the present paper, the proposed experiment on
the decay of a false vacuum had only been studied in the
zero-temperature limit [14,16,61]. As a result, the effects of
finite-temperature thermal noise on vacuum tunneling and
nucleation using BECs with two spin components were not
understood. This mixture of two BEC spin components
can be used as the relativistic analogous quantum field,
where the relative phase of the two species corresponds
to the metastable state (phase π ) and stable state (phase
zero), respectively. The components can be coupled via a
microwave field, which creates an unstable vacuum.

To create a metastable vacuum from this unstable vac-
uum, one can make use of the classical concept of a
modulated pendulum [54–57], where a modulated ampli-
tude of microwave coupling allows one to engineer the
metastable vacuum potential. We consider a symmetric

intracomponent case in this work for its simplicity. In
previous work, we suggested the use of a pair of Zee-
man states of 41K, where |1〉 = |F = 1, mF = 1〉 and |2〉 =
|F = 1, mF = 0〉 as the two spin states in the proposed
BEC experiment. This Zeeman pair has a symmetrical
intracomponent Feshbach resonance where the interstate
scattering lengths between the two components are zero
[96].

The use of other BEC species or Zeeman pairs in
the proposed experiment is possible, but in general the
interstate scattering lengths of these Zeeman pairs are
nonzero. The finite-temperature model presented in this
work does not include any interstate interaction. How-
ever, the dynamical equations of such system was studied
in previous work [16]. A model that includes both finite-
temperature effects and nonzero interstate interaction is
feasible, but it still would require substantially differ-
ent inter- and intraspecies scattering lengths to have the
required dynamics.

As an example of generally similar experimental studies
of toroidal BECs, 23Na has several commonly used Zee-
man pairs with similar inter- and intrascattering lengths
[97]. This has been used in recent quasi-one-dimensional
BEC experiments [98,99], over a range of tempera-
tures. From the published experimental parameters, the
corresponding dimensionless parameters in our finite-
temperature model would be circumference L̃ ≈ 20 ∼
55, dimensionless density ρ̃0 ≈ 370 ∼ 1200, reduced tem-
perature τ ≈ 10−5 ∼ 10−4, dimensionless coupling ν̃ ≈
0.001 ∼ 0.01, and dimensionless oscillation frequency
ω̃ ≈ 15 ∼ 50. These parameters for 23Na are similar to our
suggested parameters for 41K, showing that our proposed
values are close to existing experimental ones.

We show in this paper that quantum vacuum nucleation
is accelerated at finite temperature, although the bubbles
formed of true vacua may be short lived at high temper-
atures due to thermalization of the BEC. The formation
of the true vacuum bubbles at finite temperature generally
follows the expected behavior, apart from an accelerated
tunneling rate. Clearly, lower temperatures move one fur-
ther into the true quantum regime. Such experiments may
also allow more subtle questions to be investigated, such
as the possibility of a critical radius for bubble formation,
although we see relatively little evidence for this in the
present simulations.

Our results also show that higher oscillator frequencies
ω can remove short-wavelength instabilities, provided that
there is a high-momentum cutoff present. This increases
the feasibility of a false vacuum BEC experiment. The
proposed table-top experiment using Zeeman states of 41K
may help to test vacuum tunneling theory under real exper-
imental conditions where thermal effects are unavoidable.
This provides insight into early universe models with high
temperatures, which is present in some early universe
models [7].
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Such an experiment can detect a unique topological fea-
ture of the scalar-field vacuum. Unlike the von Neumann
quantum entropy, which is time-invariant, the topological
phase entropy is predicted to reach a maximum at the time
when most tunneling occurs. Intriguingly, phase entropy
can decrease with time, because the final vacuum state is
more ordered than the state occurring while tunneling. This
is a true topological feature of the present model, since
the relative phase is only uniquely defined after a nonlocal
unwrapping.

Such measurements may be useful in investigating pro-
posals in which a discretely broken symmetry provides
a model for particle-antiparticle symmetry. We find that
domain-wall formation is prevalent at high temperatures,
in agreement with qualitative predictions [7,8]. However,
at low temperatures, domain walls are restricted to uni-
verse boundaries where they would be far removed from
having a direct influence on CMB inhomogeneities, which
was thought to be a possible problem with such theories.

Alternative implementations include a homogeneous,
two-dimensional simulation. This allows even more com-
plex topological vacuum structures to form. Such experi-
ments are realizable in microgravity with a shell geometry
[100,101], for example in the NASA CAL space-station
environment. There are many other possible approaches
using different quantum technologies, including supercon-
ducting circuits or discrete Bose-Hubbard lattices, which
are not analyzed here.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with
Andrei Sidorov. This research has been supported by
the Australian Research Council Discovery Project Grant
Schemes under Grants No. DP180102470 and No.
DP190101480.

APPENDIX: MODULATIONAL INSTABILITIES

Modulational instabilities can occur if the microwave
modulation frequency ω is too low relative to the momen-
tum cutoff. In such a case, the microwave modulation
cannot be adiabatically eliminated, and parametric instabil-
ities occur. The effect of such Floquet modes was studied
by Braden et al. [61,62]. In the work above, we include a
momentum cutoff to prevent this, as explained in the main
text.

In this Appendix, we analyze the effects of modulational
instabilities at finite temperatures with a higher momentum
cutoff. The value of 〈cos (φa)〉 of the relative phase of such
a system evolves to around approximately 0, indicating
that the transition from the false vacuum to a true vac-
uum is inhibited, as the relative phase becomes completely
randomized. This is studied numerically by choosing a
smaller lattice spacing and larger M , to resolve the high
wave-number unstable modes.

Nyq

Nyq

FIG. 12. Critical wave number k̃c and Nyquist wave number
k̃Nyq = π/�̃x in the simulations for ω̃ = 50 at various values of ν̃
with fixed length L̃ = 100. For M = 256, k̃Nyq in the simulations
are all below k̃c, hence the unstable modes are excluded. For M =
1024, the unstable modes are included, as k̃Nyq > k̃c.

The unstable modes occur in a narrow band centered at
wave numbers as derived in Refs. [61,62]. The dimension-
less critical unstable wave number is given by

k̃2
c ≈ 1

2̃ν

(√
1 + ω̃2̃ν − 1

)
− σ , (A1)

where σ = cosφa = ±1 is the relative phase of the fields.
Figure 12 shows the cutoff wave numbers k̃Nyq in the

simulations of previous Secs. V B and V C in comparison
with the corresponding critical wave numbers k̃c at vari-
ous values of ν̃. The Nyquist wave number determined by
the lattice spacing �̃x, is k̃Nyq = π/�̃x. The unstable wave
number k̃c is the wave number of the highest gain Floquet
mode.

As shown in Fig. 12, such effects are excluded in the
M = 256 simulations presented in Secs. V B and V C at all
values of ν̃. Therefore, the short-wavelength fluctuations
between the true vacua and the false vacua found at higher
temperature (Fig. 4) are purely due to the thermalization
of the condensate. Thermal effects were excluded in earlier
work [62]. The dynamics at finite temperatures presented
in Fig. 4 shows similarities to the dynamics in the presence
of the Floquet modes in Ref. [62]. In the following, we
investigate the combined effect of thermal fluctuations and
Floquet instabilities on the dynamics, by setting k̃Nyq above
the critical k̃c.

Figure 13 shows our results when both thermal effects
and unstable Floquet modes are included. Here we reduce
the lattice spacing �̃x in the simulations by increasing the
number of simulation modes to M = 1024. This lattice
spacing corresponds to a Nyquist wave number of k̃Nyq ≈
32.14, well above the critical wave number k̃c ≈ 15.39 for
ν̃ = 7 × 10−3.
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FIG. 13. Single-trajectory 1D false vacuum simulation for the
time evolution of pz at τ = 1 × 10−4 with M = 1024 to include
the effect of Floquet modes. The modulation frequency is ω̃ =
50. Dimensionless parameters are L̃ = 100, λ = 1.2, ν̃ = 7 ×
10−3, ρ̃ = 200. Bubbles in the true vacua (pz = −1) are short
lived and dominated by fluctuations at later time.

The most significant effect of the unstable Floquet
modes is that true vacua formed at finite temperature are
gradually destroyed, and the system is eventually domi-
nated by chaotic fluctuations. At a reduced temperature
of τ = 1 × 10−4, the presence of Floquet modes causes
fluctuations with wavelengths shorter than the dominant
thermal fluctuations.

In Figs. 3, 4, and 5 we show the effect of thermal fluctu-
ations independently by setting k̃Nyq < k̃c to exclude Flo-
quet modes. The true vacua in the absence of the Floquet
modes have a metastable structure with average relative
phase 〈cosφa〉 acquiring a nonzero constant value (Fig. 5).
However, this behavior is different in the presence of the
Floquet modes, where the structure of the true vacua is
short lived.

In the example presented in Fig. 13, most of the vac-
uum bubbles survive only over a time duration 5 � t̃ � 30
(which corresponds to a real experimental time duration
approximately 20ms). At t̃ � 30, one can expect 〈cosφa〉
to be around 0 as the chaotic fluctuations dominate. This
is confirmed by the averaged result using 8000 trajectories
shown in Fig. 14.

The modulation depth λ is known to correspond to
the strength of the unstable Floquet modes [61]. In the
absence of thermal effects, earlier studies [62] showed that
increasing the modulation depth λ can reduce the time
scale of the Floquet modes, and results in the stabiliza-
tion of long-wavelength structure in the decay of false
vacua. This effectively delays the nucleation of the true
vacuum bubbles. For systems at finite temperature where
short-wavelength thermal fluctuations coexist with the true
vacua, we find that this delay of bubble nucleation is valid.
Figure 15 shows the examples on the effect of increasing λ
at a fixed reduced temperature τ = 1 × 10−4.

At time t̃ � 10, our results show that the systems with
larger λ (λ = 1.3, 1.5) break through the threshold value
of the tunneling initiation 〈cosφa〉 = 0.9 later than the
λ = 1.1 system, indicating a delay of the bubble nucle-
ation. In the presence of Floquet instabilities, increasing
λ results in a significant reduction of the average relative
phase. The peak value of |〈cosφa〉| drops from approxi-
mately 0.35 to approximately 0.1 as λ is increased from
1.1 to 1.5. For decay at finite temperature, we show in the
main text Fig. 5 that this phase signal is also weakened by
the influence of thermal fluctuations in the absence of the
Floquet instabilities.

Increasing λ in the presence of Floquet modes further
reduces the phase signal, which increases the difficulty of
measuring true vacua in an experiment. Therefore, it is
expected that true vacuum bubbles are destroyed by Flo-
quet instabilities regardless of λ. At time t̃ � 10 in Fig. 15,
the average relative phase of all three systems reaches
approximately 0 eventually. The true vacuum bubbles in
the system with the lowest λ survive longer due to their
larger sizes. In the case where Floquet instabilities are not
negligible, the tuning of the modulation depth λ plays a
role in the balance between time duration and strength of
true vacua signals.

In order to remove the unstable Floquet modes from
the system, one can increase the oscillation frequency ω̃
to shift k̃c to higher wave numbers above the increased
momentum cutoff used in this Appendix. Figure 16
illustrates the simulated dynamics of the false vacuum at
a fixed temperature τ = 1 × 10−4, and increasing ω̃.

In Fig. 16, the result shows that the stabilization of true
vacua is sensitive to an increase of ω̃. Both the lifetime and
the phase signal of the true vacua are enhanced. In compar-
ison with Fig. 13 (ω̃ = 50 at τ = 1 × 10−4), increasing ω̃
to 150 (Fig. 16) extends the sizes of the true vacuum bub-
bles and the chaotic fluctuations are suppressed in the true
vacua. The survival time of the true vacuum bubbles before
domination by fluctuations is also improved slightly when

FIG. 14. Time evolution of average relative phase 〈cosφa〉
using 8000 trajectories for M = 256 (̃kNyq ≈ 8.01 < k̃c ≈ 15.39,
Floquet modes excluded) and M = 1024 (̃kNyq ≈ 32.14 > k̃c ≈
15.39, Floquet modes included). All other parameters are as in
Fig. 13. The errors in 〈cosφa〉 are less than 1%.
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FIG. 15. Time evolution of average relative phase 〈cosφa〉
using 8000 trajectories for λ = 1.1 (solid line), λ = 1.3 (dash
line), and λ = 1.5 (dot line). Floquet modes are included by set-
ting number of modes M = 1024 (̃kNyq ≈ 32.14 > k̃c ≈ 15.39).
Reduced temperature τ = 1 × 10−4, other dimensionless param-
eters L̃ = 100, ω̃ = 50, ν̃ = 7 × 10−3, ρ̃ = 200. The errors in
〈cosφa〉 are less than 1%.

ω̃ is increased, from roughly t̃ � 30 for ω̃ = 50 to t̃ � 40
for ω̃ = 150.

As mentioned, the simulated system with ω̃ = 50 in
Fig. 13 includes the Floquet modes by setting k̃Nyq ≈ 32.14
well above the critical wave number k̃c ≈ 15.39; while
for the system with ω̃ = 150, the Floquet modes are par-
tially removed as the critical wave number is increased
to k̃c ≈ 28.79. This partial removal of the Floquet modes
reduces the chaotic fluctuations and results in the partial
stabilization of true vacua.

If we further increase the modulation frequency to ω̃ =
200, the critical wave number is shifted to k̃c ≈ 33.57,
which is slightly higher than k̃Nyq. In this case, the Floquet
modes are almost completely excluded. Figure 17 shows
that in the dynamics of the false vacuum with ω̃ = 200,

FIG. 16. Single-trajectory simulation for pz at τ = 1 × 10−4

with M = 1024. The modulation frequency is ω̃ = 150. Floquet
modes are included: k̃Nyq ≈ 32.1 > k̃c ≈ 28.8. Dimensionless
parameters L̃ = 100, λ = 1.2, ν̃ = 7 × 10−3, ρ̃ = 200. Compar-
ing to Fig. 13, the true vacuum (pz = −1) is relatively long lived
and stable.

FIG. 17. Single-trajectory simulation for the time evolution of
pz with an increased frequency ω̃ = 200 to remove the Floquet
modes (̃kNyq ≈ 32.14 < k̃c ≈ 33.57). Other parameters are as in
Fig. 16.

one can see that the size of the true vacuum bubbles are
extended, and a break down of the vacuum bubbles is not
observed in the simulation.

Increasing ω̃ to suppress the chaotic fluctuations induced
by the presence of the Floquet instabilities has a significant
effect on the stabilization of true vacua. Figure 18 shows
that the suppression of the chaotic fluctuations enhances
the average relative phase 〈cosφa〉. The relative phase can
reach 〈cosφa〉 ≈ −0.75 even at the high reduced tempera-
ture τ = 1 × 10−4, which is comparable to a measurement
at a lower temperature τ = 1 × 10−5 (〈cosφa〉 ≈ −0.8 ∼
−0.9, in Fig. 5).

In summary, bubble nucleation and break down are
delayed by increasing ω̃ to remove the Floquet modes.
From the averaged results using 8000 trajectories, true
vacua reach their peak size at a time t̃ ≈ 10 for ω̃ = 50
and t̃ ≈ 20 for ω̃ = 150, and are later destroyed by chaotic
fluctuations due to Floquet modes (i.e., 〈cosφa〉 ≈ 0). For
ω̃ = 200, the time of the peak relative phase is delayed
to t̃ ≈ 35 and 〈cosφa〉 remains approximately −0.8 over

FIG. 18. Time evolution of 〈cosφa〉 using 8000 trajectories
for ω̃ = 50 (solid line), 150 (dash line), and 200 (dot line), all
other parameters are as in Fig. 16. The errors in 〈cosφa〉 are less
than 1%.
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the remaining simulation time duration. The high dimen-
sionless frequency ω̃ = 200 in the simulations corresponds
to an oscillation frequency ω = 2π × 38.24kHz, which is
achievable in current experiments. We emphasize that this
still requires an overall momentum cutoff, although at a
higher wave number.
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