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We design and implement a quantum annealing simulation platform to observe and study dynamical
processes in quantum field theory (QFT). Our approach encodes the field theory as an Ising model, which
is then solved by a quantum annealer. As a proof of concept, we encode a scalar field theory and measure
the probability for it to tunnel from the false vacuum to the true vacuum for various tunneling times,
vacuum displacements, and potential profiles. The results are in accord with those predicted theoretically,
showing that a quantum annealer is a promising platform for encoding QFTs. This is the first time it
has been possible to measure instanton processes across a freely chosen QFT energy barrier. We argue
that this novel and flexible method to study the dynamics of quantum systems has potential application to
many field theories of interest. Measurements of the dynamical behavior of such encoded field theories are
independent of theoretical calculations and can be used to infer their properties without being limited by
the availability of suitable perturbative or nonperturbative computational methods. Soon, measurements
using such a quantum annealing simulation platform could therefore be used to improve theoretical and
computational methods conceptually and may enable the measurement and detailed study of previously
unobserved quantum phenomena.
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I. INTRODUCTION

Quantum field theories (QFTs) are the theoretical
framework underlying the most fundamental description
of nature. Yet, studying the dynamics of those special
classes of quantum field theories that occur in nature
requires either the use of multibody quantum systems
(e.g., condensed matter systems) or the design of highly
sophisticated high-energy experiments that probe the prop-
erties of quantum field theories when they manifest them-
selves as particles. So far no quantum platform has been
devised that provides a platform for studying and measur-
ing the quantum effects and dynamics of arbitrary field
theories; that is, theories in which the quantum num-
bers and interactions of quantum fields can be adjusted
at will. We show that a quantum annealer acting on a
generalized Ising model [1] can serve exactly that pur-
pose—namely, it can be a simulation platform for field
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theories chosen at will. Consequently, in soon many the-
oretical calculations for quantum field theories could be
replaced by quantum measurements, thereby overcoming
computational or theoretical limitations (e.g., perturba-
tive or nonperturbative computational methods) or high
computational demands (e.g., in lattice calculations). We
refer to this as a “quantum annealing simulation platform”
(QASP) (although some of the techniques we discuss for
encoding a field theory would be applicable to quantum
gate devices as well). Our study is performed on the D-
Wave Systems quantum annealer, which we treat as a
trusted device that does what it claims to do—namely,
it implements the potential and interactions of a gener-
alized Ising model. Under this assumption, our goal is
to then test if the QASP produces results that fit with
expectations.

We use the method introduced in Ref. [2] for encod-
ing a field theory in a generalized Ising model, and show
that, in principle, implemented on an annealer it allows
one to implement and observe truly quantum dynamical
processes. We focus on recreating and measuring the phe-
nomenon of tunneling in scalar field theories, which is
clear evidence for a quantum rather than a classical pro-
cess. For a field theory that has d = 0 or d = 1 space-time
dimensions, this is equivalent to the measurement of the
time-dependent quantum mechanical wave function as it
attempts to reach the ground state of the system. From a
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more general field theory perspective, it means that we are
able to measure nonperturbative decay processes that are
described by instantons [3–9].

In Yang-Mills theories [10] such objects are of profound
importance, because they are the primary explicit example
of genuinely nonperturbative gauge field configurations,
leading to a wealth of geometrical, topological, and quan-
tum effects with a fundamental impact on quantum dynam-
ics. Instanton effects are important in the electroweak
sector of the Standard Model and also in QCD, as well as
in a broad variety of theoretical constructions ranging from
supersymmetric models, grand unified theories, and extra
dimensions to string theory and D-branes [11–16]. While
all these incarnations of instantons have been predicted,
and there is little doubt of their existence in the Standard
Model and their profound role in shaping the history of
the early universe, none of the relevant processes have
been observed experimentally [17–21]. Reproducing and
measuring such specific processes of interest as genuine
quantum effects (rather than merely studying them numer-
ically) has become an important goal (for complementary
approaches see, e.g., Refs. [22–25]).

There are by contrast several specific condensed mat-
ter systems where such effects have been observed [26].
However, all these cases were constrained to the particu-
lar field theory in question. The ultimate ambition of this
approach is to instead provide a framework for studying
nonperturbative effects in any field theory of interest.

This would, in principle, allow one to check the calcu-
lation of nonperturbative phenomena by measuring them
on a QASP. It may even be possible to observe new phe-
nomena that have not yet been anticipated. For this study
we are, of course, be limited by the hardware that is avail-
able to us, so the discussion is necessarily restricted to the
simpler field theories that can exhibit instantonlike behav-
ior—namely, the aforementioned d = 1 scalar field theory.
Nevertheless, within this theory we are be able to set up a
potential that we then manipulate by hand so that it devel-
ops a nontrivial vacuum structure that induces tunneling.
We believe this is the first time that it has been possible to
implement instanton processes in a freely chosen quantum
field theory and observe the expected phenomena.

II. SETUP FOR FALSE-VACUUM DECAY

It is convenient for several practical reasons to set up
a physical system on the annealer that recreates quantum
decay in a potential of the form

U(φ) = 3
4

tanh2 φ − k(t) sech2 [c(φ − v)] , (1)

where c and v are constants, while k is time dependent,
and φ(t) is the field. φ is the dimensionless object that we
define on the annealer. When required we convert it into a

Field value φ

U
 (

φ)

FIG. 1. The double Pöschl-Teller potential well for different
values of k and v. The system is initialized around φ = 0 and
allowed to decay to the true minimum at φ ≈ v.

dimensionful field η by defining

φ = η

η0
, (2)

where η0 is a constant. In the d = 1 field theory there are,
of course, no space dimensions, and at leading order it is
isomorphic to quantum mechanics (with φ playing the role
of x). However, the d = 1 field theory formalism allows for
particle creation and is the starting point for generalization
to higher dimensions, as discussed in Sec. I.

The first term in U provides a potential well around
φ = 0, which, in principle, allows the system to begin as
a bound state there. As mentioned, this is one of the ben-
efits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate energy.
Indeed, in the annealing the field is chosen to start at a
fixed value, which implies that it is initially a δ func-
tion, effectively containing an equal measure of all energy
eigenstates. At first, therefore, it has to shed energy to
arrive at a ground state.

The k term is then be turned on adiabatically during the
annealing in order to allow tunneling into the global mini-
mum that forms at φ = v. For this study we mostly take
c = 1, so that the potential during the tunneling period
consists of equally sized potential wells. The potential is
plotted in Fig. 1 for k = 1 and various values of separation
parameter v.

This function has several nice properties for our
purposes. One is that each individual well has the Pöschl-
Teller −sech2φ form, which can be solved [27,28].
Moreover the potentials around each minimum decay
exponentially. This makes it possible to “turn on” the
global true minimum by adjusting k without significantly
altering the profile of the potential around the false min-
imum (unlike the more commonly considered case of
quartic potentials). Other useful features of this choice are
discussed below when they become relevant.
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We begin the system with k = 0, such that it falls into
a Pöschl-Teller ground state. Assuming that the comple-
tion of the potential into a d = 1 field theory ultimately
corresponds to the Schrödinger equation, the ground state
(and its excited “friends”) in such a potential can be deter-
mined by factorization and ladder-operator methods (see,
e.g., Refs. [28,29]). In a theory where

2mη2
0

�2 U = λ(λ+ 1) tanh2φ, (3)

the bound states are given by Legendre polynomials of the
form Pμλ (tanhφ), and the ground state, Pλλ(tanhφ), is given
by

ψ0(φ) = N0 sechλφ, (4)

where the normalization constant is

N 2
0 = π−1/2�(λ+ 1/2)

�(λ)
.

This state, which is our idealized starting state, has energy

E0 = �2λ

2mη2
0

. (5)

We will not know a priori the value of

γ
def= �2

2mη2
0

in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration. To
do this we could, for example, multiply U by a constant, α
say, and by trial and error find a value for α that yields a
ground-state wave function of the form ψ0 = sechφ/

√
π

corresponding to λ = 1/2. According to Eq. (3) that value
of α would be equal to γ . However, this is demanding to do
(in terms of annealing time), and it is not easy to determine
the value of λ. We instead determine an estimate for γ in
the effective field theory by studying the ground state of the
simple-harmonic-oscillator potential and fitting the wave
function to the ground state. Either way it is unavoidable
that one must also determine γ as an empirical parameter.

We now consider the tunneling into the global mini-
mum once k is turned on. The expected decay rate can
be computed by instanton methods. In d = 1 field theory,
this means writing the path integral for the nonrelativistic
propagation of the physical field η = η0φ as a worldline
integral:

〈ηi|ηf 〉 =
∫ η(T)=ηf

η(0)=ηi

Dηe−i�−1 ∫ T
0 dt

[
1
2 mη̇2−(U−E0)

]
, (6)

where the path is between points ηi inside and ηf out-
side the barrier, and T is the time. As usual the integral

is dominated by the stationary phase contribution, but to
evaluate it efficiently, we deform t in the complex t plane
by making a Wick rotation t → −it and use the Euclidean
steepest-descent contour instead:

〈ηi|ηf 〉E =
∫ η(T)=ηf

η(0)=ηi

Dηe−�
−1 ∫

dt(mη̇2/2+U−E0). (7)

This describes the propagator from ηi to the endpoint,
but we are most interested in the exponentially decaying
part. The steepest-descent contour that determines it corre-
sponds to the classical solution of the Euclidean equation
of motion ηcl with endpoints at η+ and ηe, where ηe is the
escape point, namely, the point where U = E0, with the
quantum fluctuations providing prefactors. That is,

δSE = 0 =⇒ mη̈ = Uη, (8)

which gives the usual classical solution

η̇cl = ±
√

2(U − E0)

m
(9)

corresponding to energy conservation for a ball rolling in
the inverted potential between turning points at η+ and ηe.
Substitution then gives the classical action

SE,cl =
∫ ηe

η+
dη

√
2m(U − E0), (10)

and our letting η = ηcl + δη yields a quantum prefactor:

〈ηi|ηf 〉E =
∫

Dδηe−�
−1 ∫

dt[m(η̇cl+δη̇)2/2+U(ηcl+δη)−E0],

= Ae−�
−1SE,cl , (11)

with the decay rate � = |〈ηi|ηf 〉E|2 becoming

� ≈ e−2�
−1SE,cl . (12)

In principle these solutions should then be matched to
oscillating solutions at the turning points, but these oscil-
lating parts do not change the decay rate. Thus regardless
of the time T, the exponential decay in the amplitude
between points on either side of the barrier will be dom-
inated by this saddle point approximation, as one would
expect. As mentioned, the d = 1 field theory is isomorphic
to the Schrödinger equation at leading order, and indeed
the same result can be obtained by the WKB method.

How can we test this decay rate in a quantum annealer
directly? The assumption we make is that the transverse
field component of the annealer induces an effective φ̇2

term into any field theory we encode on it, with some
unknown coefficient. Therefore our method is to construct
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FIG. 2. The logarithm of the decay rate � (multiplied by
−1/2) versus the linear approximation in Eq. (14) (shown as
the dashed line) for γ = 1. The barrier disappears completely
at v = 5/3.

on the annealer a potential U as given in Eq. (1) and, by
observing its decay rates, test to see if the annealer has
indeed turned it into a d = 1 quantum field theory. The
object of interest is therefore the exponent in the decay
rate:

�
−1SE =

∫ ηe

η+

√
2m(U − E0)

�2 dη

≈ γ−1/2
∫ φe

φ+

√
3
4

tanh2 φ − sech2(φ − v)dφ,

(13)

where we have set c = 1. Obviously this integral becomes
linear in v at large values, but a second advantage of the
Pöschl-Teller potential barrier is that it remains so to a very
good approximation, even for values of v of order 1, as
shown in Fig. 2:

log� ≈ −2�
−1SE ≈

√
3
γ

(
5
3

− v

)
. (14)

Thus we expect exponential decay with an exponent
decreasing linearly with v. Crucially this behavior is quali-
tatively different from thermal tunneling, which has little
dependence on the barrier width v. For that one would
instead expect to recover the Arrhenius equation, with
� ∼ e−Ea/kT, where Ea is the activation energy [30].

III. IMPLEMENTATION ON A QUANTUM
ANNEALER

We now put together the components required to per-
form such a study. As mentioned, our goals are to encode
the field theory potential U(φ) on the annealer, then put the
system into the approximate ground state of a stable min-
imum, and add instability by adjusting the coupling k in
Eq. (1).

The method for encoding field theory is discussed in
Ref. [2]. In short, we begin with the effective Hamiltonian
of the annealer, which is a generalized Ising model of the
form

HQA = B(s)

⎛
⎝∑

ij

Ĵij σ
Z
i σ

Z
j + C(t)

∑
i

ĥiσ
Z
i

⎞
⎠

+ A(s)
∑

i

σ X
i , (15)

where i and j label the qubits, σ Z
i are the z-spin Pauli matri-

ces, and σ X
i are the transverse field components, while the

couplings ĥi and Ĵij between the qubits are set and kept
constant.

The reason these symbols are hatted is that they are not
in general the ones hi and Jij that are input by the user.
The annealer autoscales the latter until the largest absolute
value of the coupling hi (Jij ) is 2 (1). That is,

ĥi = hi

max{|hi|/2, |Jij |} ; Ĵij = Jij

max{|hi|/2, |Jij |} . (16)

In our study we keep all the couplings sufficiently small
so that autoscaling is avoided (it is possible to extend the
ranges of couplings but we do not do this here).

The parameter s(t) (with t being time) is a user-defined
control parameter that can be adjusted during the anneal-
ing, while A and B describe the resulting change in the
quantum characteristics of the annealer, and C(t) is another
user-defined parameter, called the “h gain.” To perform the
more standard task of finding a global optimization, one
would encode the problem to be solved in the “classical”
Ising model represented by the A terms, and then adjust the
relative parameters A and B to perform an annealing from
a highly quantum system to a classical one that has B = 0.
For our purposes we instead probe the quantum properties
of the system when B 	= 0.

Scalar field values can be represented with the “domain-
wall encoding” introduced in Ref. [31]. That is, we first add
the Ising chain Hamiltonian: if we define the total number
of qubits we use as N (where N should be large), this is
given by

J (chain)
ij = −�

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1 0
. . .

0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

h(chain) = �′(1, 0, 0 . . . , 0, −1),

(17)

where � and �′ are parameters that are somewhat larger
than the largest energy scale in the problem (for the best
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performance they should not be very much larger). The
coupling h(chain) forces the system to have spin σ Z

1 = −1 at
one end and spin σ Z

N = +1 at the other, while J (chain) forces
it to have as few spin flips as possible. The result is a sin-
gle “frustrated” position (the so-called domain wall) where
the spin flips from negative to positive. This position, r say,
encodes the value of the scalar field as

φ = φ0 + ξr = φ0 + ξ

2

N∑
i=1

(1 − σi), (18)

where φ0 is a fiducial minimum value, while the second
term gives r contributions of ξ from the negative σ Z

i up
to the domain-wall position. It is then straightforward to
see that one can encode a potential term U1(φ) in the hi
couplings by adding

h(QFT)
j = −ξ

2
U′

1(φ0 + ξ j ). (19)

For our purposes, such a term cannot represent the whole
of U in Eq. (1) however, because we need to divide the
potential into two pieces to have the ability to turn on the
metastable component. This functionality is provided by
the h-gain parameter C(t), so the entire potential is encoded
as

U = U0 + U1, (20)

where

U0 = 3
4

tanh2 φ, U1 = −k(t) sech2 (φ − v) , (21)

where U0 remains to be encoded in J . This allows us first
to allow the system to settle in the minimum around φ = 0
and then to adjust C during the annealing to turn on the
potential U1 and induce tunneling. The encoding of U0 into
J can be done by adding the couplings

J (QFT)
ij = 1

4
U0(φ0 + ξ j )

(
2δij − δi(j −1) − δ(i−1)j

)
, (22)

where δij is the Kronecker δ. These J terms contribute zero
to the Hamiltonian except at the location of the domain
wall, where (2σ Z

k σ
Z
k − σ Z

k σ
Z
k+1 − σ Z

k+1σ
Z
k ) = 4, yielding a

contribution U0(φ) at that point.
h(chain) is also scaled down when C(t) is small, so with

this simple encoding we cannot set C = 0. However, we do
not need to initially turn off U1 entirely, but we just need to
reduce it so that tunneling is not possible. A more precise
encoding that allows one to turn off U1 entirely is to share
U1 between J and h such that the initial value of C makes

Field value φ

U
 (

φ)

FIG. 3. The potential as seen by the Ising model on the
annealer, where we choose N = 200 qubits and k = 1 and v = 5;
cf. the actual potential in Fig. 1. Note the large negative overall
energy offset due to the field theory encoding, and the “dropped
qubit” at φ = φ0.

them cancel exactly. That is,

J (U)ij = 1
4

(
U0(x0 + ξ j )− C0

1 − C0
U1(x0 + ξ j )

)

(
2δij − δi(j −1) − δ(i−1)j

)
,

h(U)j = −ξ
2

1
1 − C0

U′
1(x0 + ξ j ),

(23)

where the choice of parameters C(0) = C0 and C(tf ) = 1
gives the desired behavior. We use this later, but for the
moment we stay with the simpler assignment of potentials.

This completes the encoding of the field theory poten-
tial. To verify that it is working as desired, we show the
resulting potential in Fig. 3. For this and the remainder
of the work we take N = 200 as a reasonable compro-
mise between accuracy and efficiency on the annealer. As
expected there are two unavoidable features of the Ising
potential compared with the original one, both caused by
the Ising chain encoding of the field theory: first, the neg-
ative rewards in J (chain) cause an offset of order −N�;
second, the rewards in h(chain) in Eq. (17) imply “dropped
qubits” at the first and last positions (the one at the last
position is off the scale). Neither of these should affect the
tunneling rate.

We now turn to the configuration of the annealing itself.
As mentioned, the coefficients A and B describe how
“quantum” the system is, and are best visualized with the
plot in Fig. 4. When s = 0, the system is maximally quan-
tum, and when s = 1, the system has arrived at the pure
classically Ising-encoded problem. A “forward annealing”
schedule would take s(ti) = 0 and s(tf ) = 1, beginning
with a rapidly tunneling system and ending up with a sys-
tem that solves the optimization problem of interest. A
“reverse annealing” schedule gains initial classical control
with s = 1. Then we turn on the quantum mechanics so
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FIG. 4. Annealing schedule parameters. The thermal contribu-
tion is shown as a solid line, while B and A are the coefficients
scaling the classical Ising and transverse field contributions,
respectively.

that we send s to some finite value sq for some time interval
before returning to the classical system. This latter option
is the one we choose as it allows us to fix the system in the
false vacuum and then count the number of times it tunnels
when it is sent for a given period to sq. It is shown begin-
ning as the blue line in Fig. 5, returning to s = 1 on the
orange line.

The value of sq (i.e., the regime where we induce quan-
tum mechanical behavior) is much larger (sq = 0.65 in Fig.
5) than would normally be the case. Figure 4 makes it clear
that we will choose it to be where quantum mechanics is
just turning on in order to have relatively slow tunneling
and maintain good control.

During the annealing we choose an h-gain schedule,
C(t), which varies between C0 < 1 and C0 = 1, as indi-
cated by the green line in Fig. 5. For an initial period the
h gain begins at a small enough value such that the second
minimum induced by U1 is higher than that at the origin
U0. During this initial relaxation and dissipation period,
the system is unable to tunnel, so ultimately it is expected
to reach the ground state of U0 given by Eq. (4). Once it
is in a stable bound state, we can adjust C(t) to send the
coupling k → 1, and turn on tunneling for the rest of the
annealing. This configuration, in which we first allow the
system to settle, is forced on us by the quantum proper-
ties of the annealer. Indeed if we were to start the system
at the bottom of the metastable minimum at the origin and
then simply turn on the transverse field, the system would
tunnel very rapidly. This is because in a reverse anneal-
ing the classical starting point is a predefined set of σ Z

i
values. This implies that the initial wave function ψ(φ) is
a position eigenstate (it is essentially a Dirac δ function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we use a minor
embedding on the D-Wave Systems annealer quantum pro-
cessing unit, due its limited connectivity, with N = 200

Time (µs)

A
nn

ea
lin

g 
pa

ra
m

et
er

 s
, C

Reverse
Forward
h-gain schedule

FIG. 5. Typical reverse annealing schedule. The annealing
parameter s increases the transverse field, and there is an initial
period of stabilization in the minimum at the origin. The h-gain
parameter is then turned on to introduce metastability and induce
tunneling.

qubits in our effective Ising model (but obviously with
more on the physical machine due to the embedding). Per-
formance is improved by splitting the large number of
reads into smaller groups (of, say, 100) to reduce biasing
from each embedding. The states are reinitialized at the
bottom of the false vacuum in a classical state at the begin-
ning of each read. As mentioned, one also has to be careful
to set the Ising chain parameters, namely, � and �′, to be
not much larger than the largest energy scale in the prob-
lem. This is because, as mentioned, we wish to avoid the
annealer autoscaling the couplings to ĥ and Ĵ as in Eq. (16).
After such scaling, Ising chain parameters that were very
large would imply couplings in the physical potential that
were very small. The effect of autoscaling is actually an
additional motivation for our favoring Pöschl-Teller poten-
tials, because they go to a constant at large field values and
different φ intervals do not change the autoscaling: by con-
trast, a quartic potential would grow rapidly at large field
values [32]. Conversely, if the Ising chain parameters are
too small, then the Ising chain breaks and we no longer
have a faithful representation of the field value. Such “wall
breaks” happen a small percentage of the time and can
never be eliminated entirely. Those results are simply dis-
carded. Additionally, the minor embedding itself (which
ties qubits together in a fashion similar to the Ising chain
embedding in J ) may also fail. The parameters can usu-
ally be adjusted so that these “chain breaks” happen rarely
however.

IV. RESULTS

A. Calibration on simple-harmonic-oscillator ground
states

We now turn to the results, and discuss the vari-
ous parameters and further interpretation as we proceed,
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Field value φ

D
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si
ty

FIG. 6. The probability density of the simple harmonic oscil-
lator with N = 200 and with sq = 0.7 after time t = 75 μs and
with κ = 0.06. The ground states are measured with an inter-
val �φ = 13. The probability density approximates the red line,
which corresponds to γ ≡ �2/2mη2

0 = 0.33.

beginning by studying the system with no tunneling. That
is, we keep C(t) = C0 and set v to be very large in order
to learn about the effective Planck constant, more pre-
cisely the combination γ = �2/2mη2

0. As mentioned, this
amounts to our calibration of the QASP, and to perform it
in a systematic way, we use the simple harmonic oscillator.
That is, we take

U0(φ) = κ

2
φ2. (24)

We show the result of 30 000 reads of the annealer with
κ = 0.06 in Fig. 6, presented as binned probability den-
sity functions normalized to 1. (In other words as N → ∞,
this curve would be |ψ |2.) The value of κ is chosen small
enough to avoid autoscaling. For this run we hold the
annealer at sq = 0.7 for 75 μs (plus 5 μs of ramp-up and
1 μs of ramp-down).

By inspecting this and similar curves, one gains some
intuition about the behavior of this system. First, apart
from some seemingly characteristic perturbation around
the peak, it clearly appears to have reached the Gaussian
ground state, which is of the form

|ψ |2 = (κ/2γ )1/4

π1/2 e−√
κ/2γφ2

, (25)

so we can reasonably conclude that for this choice of
parameters 75 μs is long enough for the required dis-
sipation. Note that η0 cancels in the κ/γ ratio. Second,
this curve leads to an approximate estimation of γ = 0.33.
Choosing different physical couplings appears to yield sim-
ilar values of γ , so not only do the wave functions have
the correct shape but they also have the correct functional
dependence on κ . By contrast, the result for the inferred
value of γ does depend on the interval we choose for φ.

Field value φ

FIG. 7. The probability distribution with v = 2.5 and sq = 0.7
after ttunnel = 50, 100, and 150 μs, where N is the number of
events.

This is because different intervals with the same choice of
N = 200 imply different ξ values, and not surprisingly this
affects the mass density m in the field theory.

We stress that absolutely no dynamics is introduced by
hand into the annealer, and therefore this constitutes a gen-
uine measurement of the ground-state wave function of a
quantum mechanical system.

It is also instructive to consider the fact that the annealer
returns a wave function with different γ values depend-
ing on the value of sq. When we choose sq, we imbue the
effective field theory with a kinetic φ̇2 term that has a cer-
tain value of �2/2m we do not know. The ground state has
to adjust to have the matching value of γ . Clearly, as we
let sq → 1, the value of �2/2m in our effective theory must
go to zero because quantum effects turn off there. Accord-
ingly the ground-state wave function becomes increasingly
narrow until in the classical limit it approaches a δ func-
tion, which in a reverse annealing is where it begins. In
other words the “classical” δ function position eigenstate

Field value φ

FIG. 8. The transition probabilities for different values of v
with sq = 0.7 after ttunnel = 100 μs.
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FIG. 9. Best-fit values for the tunneling fraction P(v) = ae−bv

for various vacuum expectation values v with tunneling time
ttunnel = 100 μs, a = 50.5, and b = 2.29.

is simply the ground-state wave function when there is no
transverse field component.

B. Tunneling

We now turn to our double-well potential, and adjust
the h-gain schedule so that setting the second minimum
appears and the system is able to tunnel into it for a
period ttunnel. One can perform the same exercise as for the
simple-harmonic-oscillator ground state. The result (now
displayed as a probability distribution such that the sum of
the bin counts is normalized to unity) is shown in Fig. 7
for the system when it is left for 50, 100, and 150 μs in
the presence of the second minimum, with k = 1 in the
potential of Eq. (1), where we take v = 2.5. The pres-
ence of tunneling is clearly evident. Further evidence in
support of this being genuine quantum tunneling can be
found by studying the decay rates as a function of v. This
is shown in Fig. 8 for several values of v, where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behavior can
be fit to the approximation in Eq. (14), as in Fig. 9. For
the measured value of γ , the theoretical expectation is
log� = 3.0 × (1.66 − v). The best-fit value (given by the
red line in Fig. 9) is log� = 2.29 × (1.71 − v). Perhaps
unsurprisingly, the overall parameter γ remains one of the
most difficult aspects to determine precisely given the lim-
itations of the annealer for this study. Nevertheless, the
observed behavior provides good support for the presence
of quantum tunneling.

C. Quantum versus thermal: study with barriers

It is important to definitively exclude the possibility
that what is being observed is thermal tunneling rather
than quantum tunneling. More precisely, we wish to estab-
lish that the states are really tunneling through the barrier
rather than being thermally excited over the top, noting,

Field value φ

U
 (

φ)

FIG. 10. Minimally disturbing the initial state in order to test
if the tunneling exhibits quantum or thermal behavior. The ini-
tial potential is a single well, and additional terms raise a barrier
between it and a new well that is introduced with a minimum
either at either exactly the same height as the original potential
or deeper than the original one.

for example, that an explanation for the drop-off with v
observed in the tunneling rate above could simply be due
to the height of the barrier (and hence the activation energy
Ea) increasing with v.

To probe this particular question, we now examine a
potential that provides a cleaner separation between quan-
tum and thermal behavior, as shown in Fig. 10. The poten-
tial is divided up more precisely than before, in the manner
described earlier, so that it is of the form in Eq. (23), where
we take C0 = 0.2 as our initial h-gain parameter. In other
words, the terms in our new potential can be written as

U0 = 3
4

tanh2 φ − C0U1,

U1 = k′ tanh2 φ − k sech2c(φ − v),
(26)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) → 1, the first
term in U1 then raises the sides of the well by (1 − C0)k′,
while the second term introduces a new well at φ = v of
width approximately 1/c and depth (1 − C0)k. We take
c = 3 and k′ = 1/2. We then consider k = k′ or k = 2.
For this study we also choose sq = 0.65, which gives more
rapid tunneling, allowing us to choose values of v that are
in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behavior. First, it is
notable from the study above that the bound state in which
the system begins has a rather high energy. Therefore if we
simply introduce a new minimum as we did earlier, then it
is likely that some components of the wave function will
be able to tunnel rapidly. The initial dip at v that is present
in our previous configuration would also be able to capture
states during the dissipation phase. Neither of these two
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types of state could be very easily distinguished from ones
that had thermally tunneled.

What do we expect the tunneling behavior to be in the
potential above? In the situation where k = k′, no new
minimum is introduced that would be quantum mechan-
ically accessible to any component of the initial bound
state. Therefore, in principle, we should not find any states
in this minimum at all if the system is purely quantum,
although in practice this will depend on there being no
remaining continuous component in the spectrum at all.
This is in contrast to the case where k = 2 shown as the
dashed red line in Fig. 10, where the standard quantum tun-
neling should occur. Moreover, according to Eq. (14), the
observed tunneling rate into this minimum should again
drop off with increasing v, even if we consider values of v
in the region where the barrier height is constant.

Let us contrast this behavior with what one would expect
for a thermally activated system. In this case there would
be little distinction between the k = 1/2 and k = 2 cases.
Once thermal effects are large enough to excite states over
the barrier, roughly similar proportions would be captured
by the new minimum at φ = v. How much remains trapped
there depends somewhat on the temperature and whether
the transitions are in equilibrium. If we call the minima at
0 and v, A and B, respectively, and the height of the bar-
rier Ea, ultimately such a system would attempt to reach
an equilibrium where the transition rates are the same in
both directions; that is, NA/NB = eEa/kBTe−(Ea−EB)/kBT =
eEB/kBT. If the system were fully in equilibrium, then the
ratio of the numbers of states found in the new minima
would be independent of the height of the barrier and of
order e(EB1−EB2 )/kBT, where 1 or 2 labels the choice k = k′
or k = 2, respectively. However, the difference in energies
(EB1 − EB2) is of the same order as the activation energy
Ea itself. Therefore a significant thermal tunneling would
result in similar numbers of states in the new minima. The

Field value φ

FIG. 11. The transition probabilities into the raised minimum
in Fig. 10 for v = 4 with sq = 0.65 after ttunnel = 100 μs.

Field value φ

FIG. 12. The transition probabilities for different values of v in
the presence of the deep minima in Fig. 10 with sq = 0.65 after
ttunnel = 100 μs.

k = 2 and k = k′ cases become more similar only if the
transitions begin to fall out of equilibrium, as the rate of
tunneling in either direction would become very low: the
number count in the new minimum would then simply
depend on how many states had fallen into its domain of
attraction, and this would be virtually independent of the
depth. Finally, the tunneling rate should not depend on v
in this potential if tunneling proceeds by thermal activa-
tion: any thermally activated state would be equally likely
to fall into the new minimum regardless of v.

Results from the two cases k = k′ and k = 2 are shown
in Figs. 11 and 12, respectively. The former shows the
expected quantum tunneling behavior with a rapid fall in
tunneling probability as v increases. The latter has col-
lected some of the energetic degrees of freedom but only a
fraction of the number that are able to tunnel into the lower
minimum. This behavior provides further support for the
presence of quantum tunneling. Essentially we are realiz-
ing a many-qubit version of the study of this phenomenon
in Refs. [33,34].

There are other simple setups that probe different aspects
of the physics, and these will be the subject of future study.
For example, one could construct a potential with a small
but thin extra barrier in front of the second well. A ther-
mally excited transition would be greatly reduced by such
a barrier, while a quantum transition would be virtually
unaffected. A point we wish to emphasize however is the
ease with which our framework allows one to formulate
and address the question.

D. Quantum versus thermal: no-barrier case

Unequivocal evidence that the tunneling observed as
described above is being driven by entirely quantum
behavior can be obtained by studying dynamics in the
most trivial case of all—namely, the situation in which
there is no barrier. By looking at this case, one can learn
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FIG. 13. Typical embedding of the Ising model with N = 200
on the annealer.

much more about how the field theory dynamics emerges
and how it depends crucially on the parameters in the
annealer. To this end we consider the system with U =
3/4 tanh2 3/4φ, but beginning with the field displaced at
φ(0) = −2.

In such a system one expects the wave function to
evolve to φ = 0, but the speed with which it does so
depends on the nature of the embedding and the param-
eters we choose. For the present system with its one-
dimensional encoding, we present a typical embedding on
the annealer in Fig. 13. It retains a simple structure, with
the position φ represented by the node positions. To under-
stand the dynamics of the macroscopic field theory we are
modeling, it is useful to consider how the system changes
in terms of this underlying microscopic structure.

Suppose one starts the system in a reverse annealing
with the σ Z values chosen initially so as to put φ(0) =
−2. On an interval φ ∈ [−5, 5] with N = 200, this means
that 140 of the qubits, in the top half of Fig. 13 say,
begin with a σ Z eigenvalue of +1, while the remaining
60 have eigenvalue −1. As there is no barrier in the poten-
tial, one expects the qubits to begin flipping one by one
at the domain-wall position, so the domain wall moves to
the position corresponding to φ = 0, in which exactly half
the eigenvalues are positive and half are negative.

However, we observe that this does not happen unless
the transverse field contribution is made sufficiently large
by dialing down s. As an example we show the evolution
(or rather lack of it) in Fig. 14. Even though the Ising model
in the continuous N → ∞ limit reproduces the potential
U(φ), one has to recall that the system is actually discrete.
For a single qubit in the chain to flip its eigenvalue, even
at the site of the domain wall, it evidently has to pene-
trate a tiny barrier, of order 1/N times the potential. On
a microscopic level (by which we mean at the level of

Field value φ

FIG. 14. When s is made large, evolution stops. Here we show
the wave function in the near classical regime with s = 0.8
superimposed on the potential U = 3/4 tanh2 3/4φ.

the discrete Ising model rather than the continuous field
theory) the potential is actually a tanh2 function overlaid
with tiny bumps, and the theory has very little dynamics if
it cannot penetrate them. Consequently at s = 0.8 we see
very little movement in the domain wall, which remains
frustrated at φ = −2.

Dynamics in the macroscopic field theory can emerge
once the transverse field term is turned on, allowing the
tiny bumps to be penetrated and the domain-wall position
to move. This is shown for s = 0.7 in Fig. 15, where we see
the expectation value move to the correct minimum in time
t ≈ 50 μs. What has happened in the effective field the-
ory when s is reduced is that it has acquired a kinetic term
and an �2/2m term in its effective Schrödinger equation.
We conclude that without the transverse field there is no
kinetic term in the effective theory, which we can now
identify as being a quantum-induced term depending on
A(s). Likewise, tunneling in the effective field theory cor-
responds on a microscopic level to coherent multiple-spin
flips, which also turn off exponentially fast with γ , as in
Eq. (13). Crucially this excludes the possibility that the
coherent tunneling through large barriers could be any-
thing other than quantum. Finally, it is worth noting the

Field value φ

FIG. 15. Evolution in the barrierless potential for s = 0.7.
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Field value φ

FIG. 16. A snapshot of the wave function after t = 180 μs for
different values of the annealing parameter s.

extreme sensitivity of the effective �/2m to the value of s.
In Fig. 16 we show the wave function after t = 180 μs for
several values of s. Lower values of s correspond to very
large γ and in the macroscopic system very rapid barrier
penetration.

V. UNIVERSALITY

The QASP approach appears to be rather flexible and
could conceivably be used to probe all kinds of non-
erturbative processes in various different field theories.
The d = 1 system (with the single dimension being time)
already includes all the paraphernalia of field theory,
including loop corrections, particle pair production, and so
forth. In principle then it presents a promising simulation
platform for testing both perturbative and nonperturbative
aspects of quantum field theory.

A natural question to ask is how universal the approach
can be. There are three basic augmentations one might con-
sider when evaluating this, which can be broadly classified
as additional external symmetries (i.e., space-time degrees
of freedom), additional internal symmetries (i.e., gauge
degrees of freedom), and different space-time statistics
(i.e., fermions).

The first two would be straightforward to implement,
with the limitation coming only from the number of avail-
able qubits, so only the limited size and connectivity of
the annealer prevent us implementing such extensions cur-
rently. For example, the number of space-time degrees of
freedom could be straightforwardly augmented following
the conventional “worldline” approach (reviewed in Ref.
[35]). This first-quantized approach would simply require
augmenting the number of fields so that η → ημ, with μ
labeling the space dimension. Possibly of more interest
is tunneling in the second-quantized formalism, in which
one is interested in a field living in a multidimensional
space-time. Suppose, for example, one wished to introduce
a single space dimension into the field theory as well as the
physical time. To do this one would introduce an additional

discretization of space into the Ising model as described
in Ref. [2]. Namely, we begin by splitting the single space
dimension ρ into M � 1 discrete values and the field value
at the �th position into N � 1 discrete values:

ρ� = �ν = ν . . .Mν,

φ(ρl) = φ0 + rξ = φ0 + ξ · · ·φ0 + Nξ ,

where ν is the unit of discretized space. Now each of the
M blocks of qubits holds the field value for that space
position:

φ(ρ�) = φ0 + ξ

2

N∑
j =1

(1 − σ Z
�N+j ). (27)

Thus our Ising interaction Jij is an (MN )× (MN ) matrix,
while hi becomes an (NM ) vector. The domain-wall imple-
mentation of each field value involves a trivial extension
of J chain

ij to the M blocks. We may now introduce kinetic
terms into the bilinear J by having interactions that cou-
ple adjacent � positions. That is, kinetic terms can be
discretized in ρ as

∫ �ρ

0
dρ

1
2
φ′2 = lim

M→∞

M∑
�=1

1
2ν

[φ(ρ�+1)− φ(ρ�)]2 ,

=
M−1∑
�=1

N−1∑
ij

ξ 2

8ν
(
σ Z
(�+1)N+i − σ Z

�N+i

)

×
(
σ Z
(�+1)N+j − σ Z

�N+j

)
, (28)

where ν = �ρ/M scales so as to keep �ρ constant. If we
insert the discrete representation of the field values using
Eq. (27), then Eq. (28) is represented by the following
bilinear interactions:

J (QFT)
�N+i,mN+j = ξ 2

8ν

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
�m

.

(29)

It was demonstrated in Ref. [2] that this can correctly
reproduce classical soliton solutions. The introduction of
full Lorentz invariance into the fields encoded on the
annealer would then follow straightforwardly, in principle
allowing one to recreate instanton processes in conven-
tional relativistic quantum field theories in d = 4 space-
time dimensions. However the practical limitation here is
the number of qubits required, which grows exponentially
with the dimensions. A fully fledged d = 4 theory would
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require NM 3 qubits: that is, a discretization of a scalar field
theory and the space-time it lives in into, say, 50 units
would require 6 × 106 qubits.

Additional global symmetries could be encoded rather
simply by extending the field content in the obvious man-
ner. The Ising encoding of fermions and of gauge theories
is more intricate and a more long-standing topic (see Refs.
[36,37]). For example, gauge theories would most likely
require the encoding of a gauge plaquette action into the
Ising model, possibly in the form of dual lattice variables
[37,38]. All the usual methods that have been devised for
encoding such degrees of freedom in an Ising formalism
should be applicable here.

While we are discussing universality, we should men-
tion one caveat, which is that the technique we are using is
not expected to be universal in the same general sense that
the D-Wave Systems annealer is not in that it is most effec-
tive for modeling quantum tunneling processes that occur
when a system finds the ground state and then tunnels out
of it. It would be more difficult to arrange for large coherent
scattering processes (e.g., soliton collisions).

VI. CONCLUSION

Barrier penetration is a manifestly quantum mechan-
ical property of a quantum field. While such tunneling
processes have been observed and studied in quantum
mechanics and a selection of special quantum field theories
have been realized in nature (e.g., in some condensed mat-
ter systems), to our knowledge it has not yet been possible
to implement, observe, and study such instanton processes
in a freely chosen quantum field theory.

For this purpose we outline how to encode and probe a
quantum field theory on a specially prepared QASP. The
quantum field is represented by a spin chain and each node
corresponds to a qubit on a quantum annealer. After initial-
izing the quantum field with a field value in the potential
minimum, one can observe it settle into a quantum eigen-
state characteristic of the potential profile imposed on the
system. In a second step, we modify the energy profile of
the quantum annealer across its qubits, such that the quan-
tum field is no longer in the global potential minimum
but is in a false vacuum. We then measure the probabil-
ity for the field to tunnel from the false vacuum to the
true vacuum for various tunneling times, vacuum displace-
ments, and potential profiles. It is then possible to compare
the observed tunneling probabilities with those predicted
theoretically by the WKB method.

Of course, ultimately the observations in the simpler
situations we study here can be reproduced by classical
simulations: the result is after all simply a measurement
of a solution to the Schrödinger equation, which could
always be recovered numerically instead. But it is impor-
tant to appreciate that this study yields results consistent
with a genuine quantum tunneling process occurring on the

annealer. A quantum annealer, as, for example, provided
by D-Wave Systems, appears to be a platform that, fol-
lowing our method, can be used to encode more general
quantum field theories and more complex situations, and
probe them physically.

Indeed the exciting prospect is the potential to consider
theories and processes that are not easy to treat analytically.
As we discuss, the variety of theories that can be studied
on a QASP appears to be limited mainly by the number
and connectivity of the qubits in the quantum annealer.

This highly adaptive approach could therefore have far-
reaching implications for future studies of quantum field
theories. As measurements of the dynamical behavior of
field theories are entirely independent of theoretical calcu-
lations, they can be used to infer their properties without
being limited by the availability of suitable perturbative
or nonperturbative computational methods. The particular
dissipative properties of the annealer may also allow the
study of decoherence effects in tunneling as discussed, for
example, in Refs. [39–41].

Soon, measurements on a QASP could be used to
improve theoretical and computational methods concep-
tually. Furthermore, it could enable the measurement and
detailed study of previously unobserved quantum phenom-
ena, involving solitons, instantons, and so forth, that are
relevant for field theories of interest in particle physics,
condensed matter physics, quantum optics, or cosmology.
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