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We develop a universal approximation for the Renyi entropies of a pure state at late times in a noninte-
grable many-body system, which macroscopically resembles an equilibrium density matrix. The resulting
expressions are fully determined by properties of the associated equilibrium density matrix, and are hence
independent of the details of the initial state, while also being manifestly consistent with unitary time
evolution. For equilibrated pure states in gravity systems, such as those involving black holes, this approx-
imation gives a prescription for calculating entanglement entropies using Euclidean path integrals, which
is consistent with unitarity and hence can be used to address the information loss paradox of Hawking.
Applied to recent models of evaporating black holes and eternal black holes coupled to baths, it provides
a derivation of replica wormholes, and elucidates their mathematical and physical origins. In particular,
it shows that replica wormholes can arise in a system with a fixed Hamiltonian, without the need for
ensemble averages.
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I. INTRODUCTION

Consider a quantum many-body system initially in a
far-from-equilibrium pure state |�0〉. If the system is non-
integrable, it should eventually approach a thermal equi-
librium, in the following sense. For times t � ts, where
ts is a thermalization time scale, |�(t)〉 = U(t) |�0〉 can
be associated with macroscopic thermodynamic quantities
such as temperature, entropy, and free energy, which obey
the usual thermodynamic relations, and measurements of
generic few-body observables in |�(t)〉 exhibit the same
behavior as in the equilibrium density matrix ρ(eq) with
those macroscopic parameters.

Even as the state equilibrates in the above sense, under
unitary time evolution it must go to a pure state, and
therefore cannot become equal to the mixed state ρ(eq). A
natural question then is how we can tell an equilibrated
pure state apart from an equilibrium density matrix. For
instance, this question arises in the context of Hawking’s
information loss paradox [1,2], in trying to understand
whether the evolution of a black hole formed from the
gravitational collapse of a pure state is unitary. For this
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purpose, we can use the Renyi entropies S(A)n for n = 1, 2,
. . . [3]

S(A)n (t) = − 1
n − 1

log Tr ρn
A(t), ρA(t) = TrĀρ(t),

ρ(t) = |�(t)〉 〈�(t)| . (1)

In a pure state, one must have for any subsystem A and its
complement Ā

S(A)n (t) = S(Ā)n (t), n = 1, 2, . . . . (2)

In an equilibrium density matrix, Eq. (2) is not satisfied.
Other than brute-force numerical simulations of individ-

ual cases, we currently do not have an efficient method
for calculating S(A)n (t) for an arbitrary initial state |�0〉 in
a general system. For a finite-dimensional Hilbert space
with no energy constraint, where we expect equilibration to
the thermal state at infinite temperature, a valuable insight
comes from calculating the averages S(A)n over all pure
states with the Haar measure [4–8]:

S(A)n = S(Ā)n = min (log dA, log dĀ), n = 1, 2, . . . . (3)

Here dA and dĀ are, respectively, the dimensions of the sub-
systems A and Ā, and the above expression is exact only
in the limit where one of dA, dĀ is much larger than the
other. When dA � dĀ, these are equal to the entanglement
entropies of a thermal state at infinite temperature. It can
be checked that when the dimension of the Hilbert space is
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large, the standard deviation about the average, Eq. (3), is
small. Thus the right-hand side of Eq. (3) should provide
a good approximation for the entanglement entropies of a
typical pure state.

This observation has yielded many important results,
such as the prediction of the Page curve for black evap-
oration [9]. Similarly, a Haar average over pure states has
been used to predict when information in a black hole can
be transferred to its Hawking radiation [10]. The random
average idea, however, cannot be directly applied in cases
where we expect equilibration to a finite temperature, or in
field theories and other systems with infinite Hilbert space
dimension, where a canonical and calculable average such
as the Haar average does not seem to exist. Even for a
finite-dimensional system that equilibrates to infinite tem-
perature, in order to apply Eq. (3) when the initial state
and time-evolution operator is fixed, we need to make the
highly nontrivial assumption that the system can evolve to
a typical pure state. It would be useful to better understand
the physical basis for this assumption, and have a system-
atic procedure with which we can improve upon Eq. (3) for
such cases.

In this paper, we develop a general approximation
method for calculating S(A)n for equilibrated pure states
in systems with a fixed initial state and time-evolution
operator, in the limit where the effective dimension of the
Hilbert space (roughly, the dimension of the accessible part
of the Hilbert space from the initial state) is large. The
approximation scheme, which we refer to as the equilib-
rium approximation, can be applied to finite temperatures,
systems with infinite Hilbert space dimension, and field
theories.

The method we propose builds on an observation in
Ref. [11] that the Haar average in a finite-dimensional
Hilbert space can be seen as a projection into a sub-
space P of the replica Hilbert space used for computing
Renyi entropies. This means that for a system with a
fixed Hamiltonian, the result Eq. (3) can be considered an
approximation in which at leading order one ignores the
contribution from the orthogonal subspace to P. The gen-
eralization to finite temperatures or systems with infinite-
dimensional Hilbert spaces then boils down to identifying
the appropriate subspace of the replica Hilbert space to
project into to obtain the leading contribution. Equiva-
lently, the method can be thought of as identifying the
contributions from the most important subset of config-
urations in the Lorentzian path integrals for the Renyi
entropies. Since we drop certain well-defined contributions
to the time-evolved quantities in making this approxi-
mation, it can in principle be systematically improved
by adding these contributions back. We also develop a
self-consistent criterion to demonstrate the validity of the
approximation.

Some important general features of the results from our
approximation method are as follows:

1. The expressions for S(A)n (t) in an equilibrated pure
state are time independent, and can be expressed
solely in terms of partition functions and entropies
of an equilibrium density operator ρ(eq). They are
thus independent of details of the initial state and
capture the effects of equilibration.

2. The expressions are manifestly compatible with the
constraint from unitarity in Eq. (2).

3. While S(A)n (t) are defined in terms of Lorentzian path
integrals, the approximate expression for S(A)n (t) for
an equilibrated pure state can be expressed in terms
of a sum of Euclidean path integrals when ρ(eq)

has a Euclidean path-integral representation. Each
term in the sum has n replicas of the Euclidean path
integrals of ρ(eq) connected in a certain way, deter-
mined by an element of the permutation group Sn.
The approximation thus provides a general phys-
ical mechanism for how Euclidean path integrals
associated with the equilibrium density operator can
arise as the dominant subset of contributions from
intrinsically Lorentzian path integrals.

Since the only input that goes into our approximation
method is information about the equilibrium density matrix
ρ(eq), it can be used to obtain universal results for the
entanglement entropies of a variety of quantum many-body
systems when the initial state equilibrates to a given type of
ensemble. We explicitly obtain the universal expressions
for the microcanonical and canonical ensembles.

One important motivation for studying the entangle-
ment entropies of equilibrated pure states is to understand
the unitarity of black hole evolution. Consider a situation
where the initial state |�0〉 describes a star, which under
time evolution collapses to form a black hole. For all prac-
tical purposes, a black hole looks like a thermal state: it
emits thermal radiation at a certain temperature, and has
an entropy that satisfies the standard thermodynamic rela-
tions. Furthermore, correlation functions of a finite number
of few-body observables in the black hole geometry have
the same behavior as in a thermal state. The black hole
is thus in an equilibrated pure state if the time evolution
in gravity obeys the usual rule of unitarity in quantum
mechanics. The formalism we develop can thus be applied
to a black hole system to obtain its entanglement entropies
in a way that respects unitarity. In particular, item 3 above
implies that one can get expressions that are compatible
with unitarity using Euclidean gravity path integrals.

Recently, there has been important progress in under-
standing the unitarity of black hole evolution through
derivations of the Page curve [12–14] (see also
Refs. [15–45]) [46]. In particular, in order to obtain Renyi
and von Neumann entropies compatible with unitarity, one
needs to include certain “island” contributions [14] in the
quantum extremal surface prescription [47]. In models for
an evaporating black hole in Ref. [17] and for an eternal
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black hole coupled to a bath in Ref. [18], these island
contributions were derived by including Euclidean gravity
path integrals with replica wormholes in the calculation.
By applying the equilibrium approximation to these mod-
els, we provide a derivation of the replica wormholes intro-
duced in these references, explaining how such Euclidean
configurations emerge from Lorentzian time evolution at
late times, and why they lead to answers that are consis-
tent with unitarity constraints. Our discussion also clarifies
an issue raised in Ref. [17], due to which the authors there
suggested that an averaging procedure may be necessary to
explain the results from including replica wormholes. We
show that no average over theories is needed, and that the
issue can be resolved within the framework of the equilib-
rium approximation. In particular, the results highlight that
the success of using Euclidean path integrals to capture the
Page curve has to do with the physical nature of entan-
glement entropies, rather than the “magic” of Euclidean
path integrals. Applied to more general holographic sys-
tems, our results predict new bulk geometries that must
be summed over in the calculation of Renyi entropies for
states with black holes.

We also explore the underlying physical mechanism in
the Heisenberg evolution of operators that underlies the
emergence of the equilibrium behavior of entanglement
entropies. In Ref. [44], we showed that for the second
Renyi entropy, the random void distribution conjectured
for quantum chaotic systems in Ref. [48] leads to the right-
hand side of Eq. (3). Using the equilibrium approximation,
we show that the behavior of the Renyi entropies can be
seen as a special example of a general behavior of opera-
tor growth in chaotic systems, and derive a higher-moment
generalization of the random void distribution.

The plan of the paper is as follows. In Sec. II, we
develop the equilibrium approximation, discuss its justifi-
cation and universal consequences, and apply it to a variety
of equilibrated pure states. In Sec. III, we apply the approx-
imation to gravity systems with holographic duals, explain
how replica wormholes emerge from it, and make com-
ments on the need for averaging based on this derivation.
In Sec. IV, we explain how equilibration to infinite tem-
perature can be understood in terms of the random void
distribution. In Sec. V, we discuss the applicability of the
equilibrium approximation to observables other than the
Renyi entropies, and mention some open questions.

II. UNIVERSAL BEHAVIOR OF ENTANGLEMENT
ENTROPIES IN EQUILIBRATED PURE STATES

In this section, we present an approximation for the
entanglement entropies of equilibrated pure states, which
can be expressed in a simple, universal form, and applies
to a variety of systems. We first explain the physical rea-
soning behind this approximation and its mathematical

structure, and then examine its consequences for a variety
of equilibrated pure states.

A. Equilibrated pure states

Consider a quantum system in some far-from-
equilibrium pure state |�0〉 at t = 0. At time t, it evolves
to

|�〉 = U |�0〉 , (4)

where U is the time-evolution operator for the system. For
now, we assume the system is compact, so that there exists
a finite equilibration time scale ts such that for t � ts,
macroscopic properties of |�〉 can be well approximated
by some equilibrium density operator ρ(eq) [49]. We refer
to |�〉 as an equilibrated pure state [50,51].

We can write the equilibrium density matrix ρeq in the
form

ρ(eq) = 1
Z(α)

Iα , Z(α) = TrIα , (5)

where Iα is an un-normalized density operator, and α is a
set of equilibrium parameters such as temperature, chem-
ical potential, and so on, which can be determined from
the expectation values of conserved quantities in |�0〉. We
require that Iα commute with the evolution operator, i.e.,

UIαU† = Iα , U†IαU = Iα , (6)

which can be viewed as a requirement for ρ(eq) to be an
equilibrium state.

Here are some specific examples of Iα:

1. The system has a finite-dimensional Hilbert space,
and there is no constraint on accessible states from
|�0〉. In this case, the associated equilibrium state
ρeq does not need to be labeled with any parameters
α, and I is the identity operator,

I = 1, Z = d, (7)

where d is the dimension of the Hilbert space.
Below, we refer to this case as the infinite tempera-
ture case.

2. The system has a time-independent Hamiltonian H
with energy eigenstates |n〉, and |�0〉 (and hence
|�〉) involves only energy eigenstates localized in a
narrow energy band I = (E −�E, E +�E). In this
case,

IE =
∑

En∈I

|n〉 〈n| , Z(E) = TrIE = NI , (8)

where NI is the number of energy eigenstates in the
energy band I .
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3. The system has a time-independent Hamiltonian H ,
and |�0〉 (and hence |�〉) involves energy eigen-
states with a broader range of energies. In this
case,

Iβ = e−βH , Z(β) = Tr e−βH , (9)

where the inverse temperature β is determined by
requiring Iβ has the same energy as |�0〉,

1
Z(β)

Tr
(
He−βH ) = 〈�|H |�〉 = 〈�0|H |�0〉.

(10)

For Eqs. (7) and (8), Iα is a projector, I2
α = Iα , but this

is not true for Eq. (9). In Eqs. (8)–(9), one can view Iα
as an “effective identity operator” defining the accessible
part of the Hilbert space, and the partition function Z(α)
as the corresponding “effective dimension.” It is clear that
each choice of Iα in Eqs. (7)–(9) satisfies the requirement,
Eq. (6), of invariance under U.

B. Renyi entropies as transition amplitudes in a
replicated Hilbert space

We are interested in quantum-informational properties
of |�〉 at time scales t � ts. The nth Renyi entropy with
respect to a subsystem A is given by

Z (A)
n = e−(n−1)S(A)n = TrAρ

n
A = TrA

(
TrĀUρ0U†)n ,

ρ0 = |�0〉 〈�0| . (11)

Recall that in a quantum system with evolution operator U,
the transition amplitude from an initial state |�0〉 to a final
state |�f 〉 has the path-integral representation

〈�f |U|�0〉 =
∫

DψDχ �∗
f [ψ]�0[χ ]

×
∫ φ(t)=ψ

φ(0)=χ
Dφ(t′)eiS[φ(t′)], (12)

where φ(t) collectively denotes the dynamical variables of
the system and S[φ(t)] is the corresponding action [52].
Equation (11) contains 2n U’s and thus can be written in
terms of path integrals over 2n time integration contours,

Z (A)
n =

∫ n∏

i=1

[
DψiDψ ′

i δ(ψ
′
iA − ψ(i+1)A)δ(ψiĀ − ψ ′

iĀ)

]

×
∫ n∏

i=1

DχiDχ ′
iρ0[χi,χ ′

i ]

FIG. 1. The path integrals Eq. (13) for Eq. (11) involve 2n inte-
gration contours, with those for U’s going forward in time and
those for U† backward in time. ρ0 provides the initial conditions
while the contractions implied by the traces in Eq. (11) define the
final conditions for the path integrals.

×
n∏

i=1

(∫ ψi,ψ ′
i

χi,χ ′
i

Dφi(t)Dφ′
i(t)
)

× exp
(

i
n∑

i=1

(S[φi] − S[φ′
i])
)

. (13)

Here φi,φ′
i are, respectively, associated with the ith con-

tours going forward and backward in time, as in Fig. 1.
{χi,χ ′

i } and {ψi,ψ ′
i } denote, respectively, the initial and

final values of the dynamical fields. ψiA denotes the value
of ψi restricted to subsystem A, and ψ(n+1)A = ψ1A. The
initial state ρ0 determines the initial conditions for the inte-
grations through its “wave function” ρ0[χi,χ ′

i ] while the
contractions dictated by TrA and TrĀ determine the final
conditions for the integrals.

From Eq. (13), and also intuitively from Fig. 1, we can
view Eq. (11) as a transition amplitude in a new “replica”
quantum system consisting of 2n copies of the original sys-
tem, with an evolution operator given by (U ⊗ U†)n [53].
This way of viewing Z (A)

n is particularly convenient for our
discussion below. To write down the explicit form for Z (A)

n
in the replica system, let us first introduce some notations.

Suppose H is the Hilbert space of the original system.
The Hilbert space of the replica system can be taken to be
(H ⊗ H)n. If we use an orthonormal basis {|i〉} for the first
copy of H in each H ⊗ H, then it is convenient to use a
basis {|ī〉} for the second copy, defined as

|ī〉 = T |i〉 ,
〈
ī|j̄ 〉 = 〈j |i〉 = δij , Uij = 〈i|U|j 〉,

〈ī|U†|j̄ 〉 = U∗
ij , (14)

where T is an antiunitary operator such that TUT−1 = U†.
For example, T can be taken to be the time-reversal oper-
ator in systems with time-reversal symmetry, or CPT in
more general systems. A basis for (H ⊗ H)n can then be
written as {|i1 ī′1i2 ī′2 · · · inī′n〉}.
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For any operator O acting on H, we can define a set of
n! states |O, σ 〉 ∈ (H ⊗ H)n, where σ is an element of the
permutation group Sn of n objects,

〈
i1 ī′1i2 ī′2 · · · inī′n|O, σ

〉 = Oi1i′
σ(1)

Oi2i′
σ(2)

· · ·Oini′
σ(n)

,

Oij = 〈i|O|j 〉 (15)

and σ(i) denotes the image of i under σ . The states asso-
ciated with the identity operator 1 are simply denoted as
|σ 〉

〈
i1 ī′1i2 ī′2 · · · inī′n|σ

〉 = δi1i′
σ(1)
δi2i′

σ(2)
· · · δini′

σ(n)
. (16)

We note that when H is infinite dimensional, |σ 〉 are not
normalizable and should be viewed as formal definitions
rather than genuine states in the replica Hilbert space.

In the discussion below, we often use the following
properties of the inner products among these states:

〈O1, τ |O2, σ 〉
= 〈O1, λτ |O2, λσ 〉 = 〈O1, τλ|O2, σλ〉,
= 〈O1, σ |O2, τ 〉 = 〈O1, τ−1|O2, σ−1〉,

= Tr
(
O†

1O2

)n1 · · · Tr
(
O†

1O2

)nk
, ∀σ , τ , λ ∈ Sn,

(17)

where k is the number of cycles in the permutation στ−1

and ns, s = 1, 2, . . . , k, are the lengths of the cycles.
For H = HA ⊗ HĀ, the associated replica Hilbert space

inherits a tensor product structure, and we can define the
corresponding states for each tensor factor.

Using the above notation, we can now write Eq. (11) as

Z (A)
n = 〈ηA ⊗ eĀ|(U ⊗ U†)n|ρ0, e〉 , (18)

where e is the identity element of Sn and η is the ele-
ment (n, n − 1, . . . 1). |ηA〉 is in the space (HA ⊗ HA)

n and
similarly |eĀ〉 ∈ (HĀ ⊗ HĀ)

n. The equivalence between
Eqs. (18) and (11) can be checked by inserting complete
sets of states of H and (H ⊗ H)n, respectively, in Eqs. (11)
and (18), and using Eqs. (15)–(16).

C. Proposal for a general equilibrium approximation

Consider the special set of configurations in the path
integral Eq. (13) that satisfy

φi(t) = φ̄σ (i)(t), i = 1, . . . , n, σ ∈ Sn. (19)

For such configurations, the phase factor in the exponent of
Eq. (13) vanishes identically [54]. Heuristically, one may
imagine that for sufficiently late times, the contributions
from configurations of φi, φ̄i, which do not satisfy Eq. (19),

will generically lead to large oscillations of the integrand
in the path integral, so that the integral will evaluate to a
small value. It is thus natural to expect that configurations
satisfying Eq. (19) dominate. An important feature of the
configurations, Eq. (19), is that they lead to contributions
that are independent of t, which also makes it natural for
them to describe the behavior of the system after reaching
macroscopic equilibrium at t � ts.

However, naively setting Eq. (19) in the path inte-
grals (which also sets χi = χ ′

σ(i) and ψi = ψ ′
σ(i)) leads

to divergences, for example even in a simple system of
two harmonic oscillators. Physically, the divergences come
from the fact that Eq. (19) includes unphysical configura-
tions of arbitrarily large energies. Mathematically, such a
procedure corresponds to replacing (U ⊗ U†)n in Eq. (18)
with a projector onto the set of states |σ 〉 , σ ∈ Sn asso-
ciated with the identity operator 1. In a system of an
infinite-dimensional Hilbert space, |σ 〉 is not normalizable.

We now present a systematic procedure, which incorpo-
rates the idea of matching the configurations on forward
evolutions with those on backward evolutions, but avoids
such divergences by restricting to configurations that are
accessible to the evolution. Our discussion does not depend
on whether the system has a finite- or infinite-dimensional
Hilbert space. Our proposal builds on an important obser-
vation in Ref. [11], that the Haar average in a finite-
dimensional Hilbert space can be seen as a projection into
the set of states |σ 〉 associated with the identity operator.
This observation can be seen as the infinite-temperature
case of our discussion.

Let us first introduce some further notation. Consider
the set of states in (H ⊗ H)n associated with the effective
identity operator Iα of Eq. (5),

〈
i1 ī′1i2 ī′2 · · · inī′n|Iα , σ

〉 =
n∏

a=1

〈
ia |Iα| i′σ(a)

〉
, σ ∈ Sn, (20)

which satisfy [using Eq. (17)]

〈Iα , τ |Iα , σ 〉 = Z2n1 · · · Z2nk , 〈Iα , σ |Iα , σ 〉 = Zn
2 ,

Zn ≡ TrIn
α , (21)

where k is the number of cycles in the permutation στ−1

and ns, s = 1, 2, . . . , k are the lengths of the cycles. For
notational simplicity, we suppress the α dependence in
Zn, and Z(α) in Eq. (5) is now referred to as Z1. It is
convenient to define the metric for the normalized states
corresponding to |Iα , σ 〉,

gτσ ≡ 〈Iα , τ |Iα , σ 〉
(〈Iα , σ |Iα , σ 〉〈Iα , τ |Iα , τ 〉) 1

2
= Z2n1 · · · Z2nk

Zn
2

.

(22)

Note that gτσ is a symmetric matrix, and from Eq. (17) it is
invariant under simultaneous multiplication of an element
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λ ∈ Sn on σ and τ from the left or the right, as well as
under simultaneously taking inverses of σ and τ . More-
over, we can show that gτσ , the inverse of gτσ , is also
invariant under each of these operations.

The projector onto the set of states spanned by {|Iα , σ 〉}
then has the form

Pα = 1
Zn

2

∑

σ ,τ

gστ |Iα , σ 〉 〈Iα , τ | . (23)

One key physical input in our approximation is that due
to the invariance, Eq. (6), of Iα under the action of U, the
states |Iα , σ 〉 are invariant under the action of the time-
evolution operator (U ⊗ U†)n in the replica Hilbert space,

(U ⊗ U†)n |Iα , σ 〉 = |Iα , σ 〉 ,

(U† ⊗ U)n |Iα , σ 〉 = |Iα , σ 〉 , (24)

which in turn implies that

(U ⊗ U†)nPα = Pα(U ⊗ U†)n = Pα . (25)

Then, decomposing the identity on (H ⊗ H)n as

1 = Pα + Q, PαQ = QPα = 0, Q2 = Q, (26)

where Q is the orthogonal projector of Pα , we can rewrite
the transition amplitude expression for the nth Renyi
entropy in Eq. (18) as

Z (A)
n = 〈ηA ⊗ eĀ|(Pα + Q)(U ⊗ U†)n(Pα + Q)|ρ0, e

〉
,

= 〈ηA ⊗ eĀ|Pα|ρ0, e
〉+ 〈ηA ⊗ eĀ|Q(U ⊗ U†)nQ|ρ0, e

〉
,

= Z (A)
n,P + Z (A)

n,Q. (27)

Our proposal is that for t � ts, for a chaotic system with
a large effective dimension Z1, Z (A)

n,Q is small compared to
Z (A)

n,P and can be ignored, so that

Z (A)
n ≈ Z (A)

n,P = 1
Zn

2

∑

σ ,τ

gτσ
〈
ηA ⊗ eĀ|Iα , τ

〉〈Iα , σ |ρ0, e〉,

n = 1, 2, 3, . . . . (28)

We refer to this approximation as the equilibrium approxi-
mation in the following discussion. In next subsection, we
discuss a justification for the approximation.

We thus replace the time-evolution operator (U ⊗ U†)n

of the replica Hilbert space with the projector onto the set
of states spanned by {|Iα , σ 〉} in the expression for Z (A)

n ,
which can be seen as a realization of the heuristic idea dis-
cussed at the beginning of this subsection. Equation (28)
is time independent, which is consistent with the proposal
that it captures quantum-informational properties of pure

state |�〉 after it has reached a macroscopic equilibrium
[55]. We note that each of the steps in Eqs. (24)–(27)
applies to any choice of Iα that is invariant under the
action of U. The approximation that Z(A)n,Q is negligible
should, however, only be valid for Iα chosen such that it
corresponds to the late-time equilibration of |�0〉.

In particular, we can obtain a self-consistency condition
from considering the implication of the approximation,
Eq. (28), for n = 1. In this case, Eq. (11) simply reduces
to the trace of ρ0 and we should find Z (A)

n = 1. For n = 1,
the only permutation is the identity e, and Eq. (28) then has
the form

Z (A)
1 ≈ 1

Z2

〈
eA ⊗ eĀ|Iα , e

〉〈Iα , e|ρ0, e〉 = Z1

Z2
Tr(ρ0Iα),

(29)

where we use Eqs. (21) and (17). For this result to repro-
duce the normalization of ρ0, we thus need

Tr(ρ0Iα) = Z2

Z1
. (30)

We impose Eq. (30) as a self-consistency condition for
|�0〉 to evolve to a state |�〉, which resembles 1

Z1
Iα

macroscopically [56]. Let us now use the self-consistency
condition, Eq. (30), in our approximation for Z(A)n . First,
using Eq. (17), we find that

〈Iα , σ |ρ0, e〉 = [Tr(ρ0Iα)]n = Zn
2

Zn
1

, (31)

where we use that since ρ0 is a pure state,

Tr (Iαρ0)
k = (〈�0

∣∣Iα
∣∣�0
〉)k = [Tr(ρ0Iα)]k . (32)

Equation (28) can then be written in a form independent of
the initial state,

Z (A)
n ≈ a

Zn
1

∑

τ∈Sn

〈
ηA ⊗ eĀ|Iα , τ

〉
, a =

∑

σ

gτσ

=
∑

σ

ge(στ−1) =
∑

σ

geσ . (33)

From our usual intuition about statistical systems and
the comments below Eq. (38) about the standard deviation
of the Haar average in the infinite temperature case, we
expect more generally that to suppress potential contribu-
tions from Z (A)

n,Q in Eq. (27), we should always consider the
regime that the “effective dimension” Z1 = TrIα is large.
Since Zn contains only a single trace, we should then have

Zn

Zn
1

� Z1−n
1 � 1, n = 2, 3, . . . . (34)

For the choices of Iα in Eqs. (7) and (8), the first relation
in Eq. (34) is in fact an equality. For Eq. (9), we expect the
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following general behavior:

Z1 = Tr e−βH = eNg(β)

→ Zn

Zn
1

= eN [g(nβ)−ng(β)] � Z1−n
1 � 1, (35)

where N is proportional to number of degrees of freedom
[57] and is large, and g(β) > 0 is an O(1) monotonically
decreasing function of β. From Eq. (22) we then find that

gτσ = δτσ + O(Z−1
1 ) → a = 1 + O(Z−1

1 ). (36)

We then obtain our final general expression for the approx-
imation to Z(A)n for an equilibrated pure state:

Z (A)
n ≈

∑

τ∈Sn

Z (A)
n (τ ), Z (A)

n (τ ) = 1
Zn

1

〈
ηA ⊗ eĀ|Iα , τ

〉
.

(37)

We examine the mathematical structure of Eq. (37) fur-
ther in Sec. II E. In Sec. II F we show that while Eq. (37)
is expressed solely in terms of properties of equilibrium
density operator Iα , the unitarity constraint Eq. (2) is main-
tained. The resulting physical properties are discussed in
Sec. II G H.

The equilibrium approximation for the case where the
initial state ρ0 is a mixed state is discussed in Appendix A.

D. A justification of the equilibrium approximation

In the infinite-temperature case, Eq. (7), with I = 1, the
equilibrium approximation, Eq. (28), yields results identi-
cal with those obtained from the Haar average over unitary
matrices U acting on the full system, as it can be checked
that [11]

(U ⊗ U†)n = PI=1, (38)

where the overline denotes the Haar average. With this
interpretation, one can estimate the magnitude of Z (A)

n,Q by
considering the variance of Z (A)

n under the Haar average

(
Z (A)

n,Q

)2
= (Z (A)

n )2 −
(
Z (A)

n

)2
= (Z (A)

n )2 − (Z (A)
n,P )

2.

(39)

If
(
Z (A)

n,Q

)2
� (Z (A)

n,P )
2, then for a randomly chosen time-

evolution operator U, Z (A)
n,Q has high probability of being

small compared with Z (A)
n,P , and the approximation is justi-

fied for most systems, including those where U comes from
a fixed Hamiltonian.

For a general Iα , the projection to Pα in Eq. (27) may
not emerge from an over average time-evolution operators.

As we discuss later, our results for Z (A)
n from the equilib-

rium approximation for the microcanonical and canonical
ensembles agree with previous calculations based on aver-
ages over special sets of states [58,59], but in these cases
there does not seem to be a clear way of interpreting the
averages over states as averages over time-evolution oper-
ators from physically relevant Hamiltonians. Moreover, in
the case of an infinite-dimensional Hilbert space, there
does not exist a canonical averaging procedure over all
physical time-evolution operators analogous to the Haar
average.

Here we propose a self-consistent criterion for decid-
ing whether Eq. (28) is a good approximation, which does
not depend on whether an average exists. We consider the
following quantity:

�2 ≡
[ (

Z (A)
n,Q

)2
]

eq app
=
[ (

Z (A)
n − Z (A)

n,P

)2
]

eq app

=
[ (

Z (A)
n

)2
]

eq app
−
(
Z (A)

n,P

)2
, (40)

where subscript “eq app” denotes that we apply the equi-
librium approximation, Eq. (28), to the quantity inside
the bracket. We explain more explicitly in Appendix B
what is meant by applying the equilibrium approxima-
tion to

(
Z (A)

n

)2. If � � Z (A)
n,P , then the approximation is

self-consistent. The criterion can also be interpreted as the
question of whether the equilibrium approximation is com-
patible with factorized form of

(
Z (A)

n

)2. When � � Z (A)
n,P ,

it means that to a good approximation we have

[ (
Z (A)

n

)2
]

eq app
≈
[
(Z (A)

n )eq app

]2

. (41)

We can also extend the self-consistency criterion to
higher powers: for the approximation for be valid, we need

�m ≡
[ (

Z (A)
n

)m
]

eq app
−
(
Z (A)

n,P

)m
�
(
Z (A)

n,P

)m
, (42)

i.e., the equilibrium approximation is compatible with
factorization for any power,

[ (
Z (A)

n

)m
]

eq app
≈
[
(Z (A)

n )eq app

]m

. (43)

In Appendix B, we calculate Eq. (40) explicitly, and

show that � is suppressed by at least a factor Z
− 1

2
1 com-

pared with the leading contribution from Z (A)
n,P in the limit

of large Z1. However, note that Z (A)
n,Q can be comparable to

or larger than the next-to-leading term in Z (A)
n,P . We further
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show that �m is suppressed by at least a factor Z−1
1 com-

pared with the leading contribution from (Z (A)
n,P )

m in the
limit of large Z1. Through analytic continuation, this leads
to the equilibrium approximation for the Renyi entropies,

(S(A)n )eq app = − 1
n − 1

lim
m→0

∂[(Z (A)
n )m]eq app

∂m
,

≈ − 1
n − 1

lim
m→0

∂(Z (A)
n,P )

m

∂m
= − 1

n − 1
log(Z (A)

n,P ).

(44)

Similarly, the approximation for the von Neumann
entropy can be obtained by analytic continuation as

(S(A)1 )eq app = − lim
n→1

∂Z (A)
n,P

∂n
. (45)

E. Diagrammatic structure and path-integral
representation

We now examine more closely the mathematical struc-
ture of Eq. (37). Using Eqs. (15)–(16), the inner product in
Z (A)

n (τ ) can be written more explicitly as

〈
ηA ⊗ eĀ|Iα , τ

〉

= (δi1a i′
η(1)a

· · · δina i′
η(n)a

δi1b i′1b
· · · δinb i′nb

)

× 〈i1a i1b |Iα|i′τ(1)a i′τ(1)b〉 · · · 〈ina inb |Iα|i′τ(n)a i′τ(n)b〉 ,
(46)

where |ika〉 , |i′ka
〉 (|ikb〉 , |i′kb

〉) denote basis vectors for sub-
system A (Ā) in the kth replica. In the above expression,
it should be understood that all indices ika , ikb , i′ka

, i′kb
with

k = 1, . . . , n, each of which appears twice, are summed
over. Equation (46) can be given a diagrammatic represen-
tation as in Figs. 2–4. The expression in the parentheses of
the first line corresponds to the “future conditions” indi-
cated in Fig. 2(a), where the Kronecker deltas between
indices in A are indicated with dashed lines, while those
in Ā are indicated with solid lines. These future condi-
tions are independent of τ , while the τ -dependent factors
in the second line of Eq. (46) correspond to how the indices
should be connected to each other in the interior of the
diagram. We connect each ika to i′τ(k)a with a dashed line,
and each ikb to i′τ(k)b with a solid line, and read off a factor
of 〈ika ikb |Iα|i′τ(k)a i′τ(k)b〉 from each such interior connection
to obtain Eq. (46). An example of an interior connection
is shown in Fig. 2(b), and some examples of diagrams
associated with different τ are given in Figs. 3–4.

In particular, each loop of solid lines in a diagram for a
given permutation corresponds to a trace in Ā, and each
loop of dashed lines to a trace in A. Qualitatively, we
expect that a trace in A (Ā) should yield a factor that is
of the order of the effective dimension of subsystem A (Ā).
The number of A loops in the diagram associated with τ
according to our prescription above is given by k(η−1τ),
while the number of Ā loops is k(τ ), where k(σ ) denotes
the number of cycles for a permutation σ . Thus we expect
that

Z (A)
n (τ ) ∼ 1

Zn
1

dk(η−1τ)
A dk(τ )

Ā
, (47)

where dA, dĀ denote the effective dimension of subsystems
A and Ā, respectively. Note that one should view Eq. (47)
as a heuristic equation, as in general [for example, for
both Eq. (8) and Eq. (9)] there is no precise definition of
effective dimensions for A and Ā.

(a) (b)

FIG. 2. (a) The “future conditions” for each of the Z (A)
n (τ ), coming from the factor in the first line of Eq. (46), for n = 6. In (b), we

show an example of how to connect indices in the interior of the diagram for a permutation τ such that τ(1) = 3, and the factor of
〈i1a i1b |Iα|i′3a

i′3b
〉 that comes from this interior connection.
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(a) (b) (c)

FIG. 3. Examples of planar diagrams corresponding to different choices of planar permutations τ that saturate Eq. (48).

Note that for any τ ,

k(η−1τ)+ k(τ ) ≤ n + 1. (48)

We can understand this diagrammatically. Let us slightly
redraw each of the diagrams in Figs. 3–4, ignoring the
distinction between dotted and dashed loops, and adding
an extra loop surrounding the diagram. Two examples are
shown in Fig. 5. We then get diagrams similar to ’t Hooft’s
double-line diagrams for large N matrix-field theories [60].
With each such diagram, we can associate a polygon by
replacing the double lines with single lines. If a poly-
gon can be drawn without crossing lines on a surface of
minimum genus h, then the total number of loops in the
double-line diagram is equal to the number of faces F of
the polygon on this surface. The total number of loops in
the original diagrams in Figs. 3–4 is one less than this, so

k(η−1τ)+ k(τ ) = F − 1 = E − V + 2 − 2h − 1, (49)

where E is the number of edges of the polygon and V is
the number of vertices, and we use the theorem relating
Euler’s characteristic to F , E, and V. But for all diagrams
we consider, the number of vertices is 4n and the number

of edges is 3n, and hence

k(η−1τ)+ k(τ ) = n + 1 − 2h. (50)

The largest value of k(η−1τ)+ k(τ ) is thus n + 1, corre-
sponding to planar diagrams.

Two immediate examples of permutations that corre-
spond to planar diagrams are τ = e and τ = η. More
generally, there is a one-to-one correspondence between
such planar permutations and “noncrossing partitions”
of n elements [61]. Given a noncrossing partition
{{a1

1, a1
2, . . . , a1

n1
}, {a2

1, a2
2, . . . , a2

n2
}, · · · , {ak

1, ak
2, . . . , ak

nk
}} of

{1, 2, . . . n} into k groups, where the elements of each
subset in the partition are arranged in descending
order (e.g., a1

1 > a1
2 > · · · > a1

n1
), we obtain a planar

permutation with the cycle representation given by
(a1

1, a1
2, . . . , a1

n1
)(a2

1, a2
2, . . . , a2

n2
) · · · (ak

1, ak
2, . . . , ak

nk
).

Equation (46) can be further written as

〈
ηA ⊗ eĀ|Iα , τ

〉 = 〈iη(1)a i1b |Iα|iτ(1)a iτ(1)b〉 · · ·
× 〈iη(n)a inb |Iα|iτ(n)a iτ(n)b〉 (51)

(a) (b) FIG. 4. Examples of nonplanar dia-
grams corresponding to two choices of
τ that do not saturate Eq. (48).
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(a) (b)

FIG. 5. Double-line diagrams (and the corresponding polygons) obtained from the diagrams of Figs. 3(a) and 4(a).

so that Eq. (37) has the form

Z (A)
n ≈ 1

Zn
1

∑

τ∈Sn

〈iη(1)a i1b |Iα|iτ(1)a iτ(1)b〉 · · ·

× 〈iη(n)a inb |Iα|iτ(n)a iτ(n)b〉 . (52)

In terms of path integrals, the approximation, Eq. (52),
corresponds to replacing the second line of Eq. (13) by a
sum of Euclidean path integrals, each of which involves n
copies of that for Iα “coupled” together in a certain way
specified by permutation τ . More explicitly, we now have

Z (A)
n = 1

Zn
1

∑

τ

∈ Sn

∫ n∏

i=1

DψiDψ ′
i , δ(ψiA − ψ ′

η(i)A)

× δ(ψiĀ − ψ ′
iĀ)

n∏

i=1

∫ ψi

ψ ′
τ(i)

Dφi e−SE [φi], (53)

= 1
Zn

1

∑

τ∈Sn

∫ n∏

i=1

DψiDψ ′
i δ(ψiA − ψ ′

τ−1η(i)A)

× δ(ψiĀ − ψ ′
τ−1(i)Ā)

n∏

i=1

∫ ψi

ψ ′
i

Dφi e−SE [φi], (54)

where SE[φ] is the Euclidean action for Iα , i.e.,

TrIα =
∫

Dψ
∫ ψ

ψ

Dφ e−SE [φ]. (55)

See Fig. 6 for an illustration. Since our approximation
arises from projecting to a subspace of states in the replica
theory [with Hilbert space (H ⊗ H)n], it corresponds to
isolating a subset of configurations from the Lorentzian
path integrals Eq. (13), which can further be given a
Euclidean formulation. We stress, however, that these

(a) (b) (c)

FIG. 6. Examples of the path-integral representation of Z (A)
n (τ ) in Eq. (54) for n = 3, in the case where Iα = e−βH and the system

is (1+1) dimensional. In the ith replica, the final state is labeled by ψi (which we indicate by 1, 2, 3 in the figure) while the initial state
is labeled by ψ ′

i (which is indicated by 1′, 2′, 3′). The shaded regions represent Euclidean path integrals from t′ = 0 to t′ = β between
the initial and final states. For each τ , the final states ψiA are identified with the initial states ψ ′

τ−1η(i)A
, while the final states ψiĀ are

identified with the initial states ψ ′
τ−1(i)Ā

, as indicated with the arrows in each case.

010344-10



ENTANGLEMENT ENTROPIES OF EQUILIBRATED PURE STATES. . . PRX QUANTUM 2, 010344 (2021)

Euclidean path integrals do not arise from analytically con-
tinuing the Lorentzian path integral. Also note that while
the Lorentzian replica space has 2n copies of the original
system, the Euclidean replica space in Eqs. (53)–(54) has
only n copies.

To conclude this subsection, we make some further
observations on the structure of Eq. (52), which will be
useful in the later discussion. Since ika , ikb are dummy
indices, relabeling ikb → iν(k)b , ika → iμ(k)a for any μ, ν ∈
Sn leaves Eq. (51) invariant. We thus have

Z (A)
n (τ ) = 1

Zn
1

〈
ηA ⊗ eĀ|Iα , τ

〉

= 1
Zn

1

〈
(μη)A ⊗ νĀ|Iα , (μτ)A(ντ)Ā

〉
, μ, ν ∈ Sn,

(56)

that is, the inner product is invariant under independent
left multiplications for A and Ā. The inner product is also
invariant under a simultaneous right multiplication for A
and Ā by the same permutation, that is,

Z (A)
n (τ ) = 1

Zn
1

〈
ηA ⊗ eĀ|Iα , τ

〉

= 1
Zn

1

〈
(ημ)A ⊗ μĀ|Iα , (τμ)A(τμ)Ā

〉
, μ ∈ Sn,

(57)

which simply corresponds to a reordering of the n factors
of the product, Eq. (51).

F. Unitarity

We now examine the physical consequences of Eq. (37)
further. It is first useful to note that two terms in the sum
over τ in Eq. (37) have a simple physical interpretation

Z (A)
n (e) = TrA

[(
TrĀρeq

)n] = Z (A,eq)
n = e−(n−1)S(A,eq)

n ,
(58)

Z (A)
n (η) = TrĀ

[(
TrAρeq

)n] = Z (Ā,eq)
n = e−(n−1)S(Ā,eq)

n ,
(59)

where S(A,eq)
n and (Ā,eq)

n are, respectively, the nth Renyi
entropy with respect to A and Ā of the equilibrium den-
sity operator ρeq. These two contributions are represented
diagrammatically in Figs. 3(a) and 3(b). We can then write
Eq. (37) as

Z (A)
n = Z (A,eq)

n + Z (Ā,eq)
n + Z̃ (A)

n , Z̃ (A)
n =

∑

τ �=e,η

Z (A)
n (τ ).

(60)

The first two terms in Eq. (60) are together manifestly
symmetric under A ↔ Ā. We now show that Z̃ (A)

n is also

invariant under A ↔ Ā so that the full expression satisfies
the constraint

Z (A)
n = Z (Ā)

n (61)

that must be obeyed in a pure state. For this purpose we
write Z̃ (A)

n as

Z̃ (A)
n = 1

2

∑

τ �=e,η

[
Z (A)

n (τ )+ Z (A)
n (σ−1η−1τσ )

]
, (62)

where σ is a permutation satisfying σησ−1 = η−1, which
always exists as η and η−1 are in the same conjugacy class
(and is in general nonunique). Then note that

Z (A)
n (σ−1η−1τσ ) = 1

Zn
1

〈
(σησ−1)A ⊗ eĀ|Iα , η−1τ

〉

= 1
Zn

1

〈
η−1

A ⊗ eĀ|Iα , η−1τ
〉
,

= 1
Zn

1

〈
eA ⊗ ηĀ|Iα , τ

〉 = Z (Ā)
n (τ ) (63)

where in the first and third equalities we use Eqs. (56)–(57)
repeatedly. Equation (62) can then be written as

Z̃ (A)
n = 1

2

∑

τ �=e,η

[
Z (A)

n (τ )+ Z (Ā)
n (τ )

]
, (64)

which is manifestly invariant under A ↔ Ā.
If the time-evolved state ρ = |�〉 〈�| is pure, we should

also have Tr ρn = 1. Let us see how this is realized under
our approximation, Eq. (28). Following arguments exactly
parallel to those that lead to Eq. (28) and further to
Eq. (37), we obtain the following approximation:

Tr ρn = 1
Zn

1

∑

τ∈Sn

〈η|Iα , τ 〉 = 1
Zn

1

∑

τ∈Sn

TrIn1
α · · · TrInk

α

= 1
Zn

1

∑

τ∈Sn

Zn1 · · · Znk , (65)

where k = k(τη−1), and n1, . . . nk, are the lengths of the
cycles in τη−1. Equation (65) can also be given a diagram-
matic representation, as explained in Fig. 7. From Eq. (34),
the dominant term is given by τ = η shown in Fig. 7(b),
leading to

Tr ρn = Zn
1

Zn
1

+ O(Z−1
1 ) = 1 + O(Z−1

1 ). (66)
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(a) (b) (c)

FIG. 7. (a) The “future conditions” corresponding to 〈η| in the expression, Eq. (65), for Tr[ρn]. (b) The diagram corresponding to
the dominant contribution from τ = η, while (c) gives an example of a subleading contribution coming from τ = e.

G. Universal behavior of Renyi entropies for
equilibrated pure states

Before applying Eq. (37) to different classes of systems,
here we make some general comments on its implications
in various regimes:

1. Suppose A � Ā (and hence dA � dĀ). Then, from
the argument around Eq. (47), the term with the
maximal number of Ā loops, which corresponds to
τ = e, should dominate in Eq. (37). In this case,
from Eq. (58) we have

Z (A)
n ≈ Z (A,eq)

n = e−(n−1)S(A,eq)
n . (67)

Similarly, when Ā � A (and hence dĀ � dA), the
term with the maximal number of A loops, which
corresponds to τ = η, should dominate. In this case,
from Eq. (59)

Z (A)
n ≈ Z (Ā,eq)

n = e−(n−1)S(Ā,eq)
n . (68)

Thus, when one of the effective dimensions of A and
Ā is much larger than the other, we have

S(A)n = min
(

S(A,eq)
n , S(Ā,eq)

n

)
, n = 2, . . . (69)

where S(A,eq)
n and S(Ā,eq)

n are, respectively, the equi-
librium Renyi entropies with respect to A and Ā of
ρeq. Analytically continuing Eq. (69) to n = 1, one
then finds that for the von Neumann entropy

S(A)1 = min
(

S(A,eq), S(Ā,eq)
)

, (70)

where S(A,eq) and S(Ā,eq) are, respectively, the “equi-
librium entropy” for subsystems A and Ā for the
system in the equilibrium state ρeq.

2. In the regime where dA and dĀ are both large and
comparable in size, from Eq. (47), the leading terms
in Eq. (37) come from those τ ’s, which saturate
Eq. (48), that is, from planar diagrams like in Fig. 3.

3. In the infinite temperature case, Iα = 1 = 1A ⊗ 1Ā.
In general, Iα does not factorize between A and Ā.
Nevertheless, as we see more explicitly below and
in Sec. III, for various situations of physical interest,
one can have an approximate factorization

Iα ≈ I(A)αA
⊗ I(Ā)αĀ

. (71)

Note that here we allow the parameters α to be different
for A and Ā, which can happen if A and Ā interact only for
a finite period of time. Below for notational simplicity, we
simply write I(A)αA

,I(Ā)αĀ
as IA,IĀ. Define for any integer m

Z(A)m = TrAIm
A , Z(Ā)m = TrĀIm

Ā , Ẑ(A)m = Z(A)m(
Z(A)1

)m ,

Ẑ(Ā)m = Z(Ā)m(
Z(Ā)1

)m . (72)

From Eq. (71) we have Z1 = TrIα = (TrAIA)
(
TrĀIĀ

) ≡
Z(A)1 Z(Ā)1 and Eq. (52) can be expressed as

Z (A)
n ≈ 1

Zn
1

∑

τ

(
Z(A)m1

· · · Z(A)ml

) (
Z(Ā)n1

· · · Z(Ā)nk

)

=
∑

τ

(
Ẑ(A)m1

· · · Ẑ(A)ml

) (
Ẑ(Ā)n1

· · · Ẑ(Ā)nk

)
, (73)

where k is the number of cycles of τ with n1, . . . nk the
lengths of the corresponding cycles, and l is the num-
ber of cycles of τη−1 with m1, . . .ml the lengths of the
corresponding cycles.

We now consider more specifically the examples of Iα
discussed in Eqs. (7)–(9).
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1. Infinite temperature

Let us first consider the case Eq. (7). From Eq. (37) we
have

Z (A)
n = 1

dn

∑

τ

〈
ηA ⊗ eĀ|τA ⊗ τĀ

〉 = 1
dn

∑

τ

dk(τη−1)
A dk(τ )

Ā
,

(74)

where dA, dĀ are, respectively, the dimensions of A and Ā
with d = dAdĀ.

When one of dA, dĀ is much greater than the other, we
simply find Eqs. (69)–(70) with S(A)n = log dA and S(Ā)n =
log dĀ for all n.

Now consider the regime

dA, dĀ ∼ d
1
2 → ∞,

dA

dĀ
= finite. (75)

From Eq. (48) the leading contribution in Eq. (74) comes
from permutations τ corresponding to planar diagrams,
which saturate Eq. (48). All permutations with a given
number of cycles k(τ ) = k give the same contribution,
which leads to [62]

Z (A)
n = 1

dn

n∑

k=1

N (n, k)dn+1−k
A dk

Ā,

= 1

dn−1
Ā

+ 1
2

n(n − 1)

dAdn−2
Ā

+ · · · + 1
2

n(n − 1)

dn−2
A dĀ

+ 1

dn−1
A

,

(76)

where the coefficients N (n, k) are the number of noncross-
ing partitions of n objects with k blocks, and are known as
the Narayana numbers

N (n, k) = 1
n

(
n
k

)(
n

k − 1

)
. (77)

In the second line of Eq. (76), we also make explicit
that N (n, 1) = 1 (this comes from τ = η), and N (n, n) = 1
(from τ = e). The von Neumann entropy can be obtained
by analytically continuing Eq. (76) to general real values of
n and using Eq. (45). For this purpose, we note that Eq. (76)
can be written as

Z (A)
n = 1

dn−1
A

2F1(1 − n, −n; 2; dA/dĀ)

= 1

dn−1
Ā

2F1(1 − n, −n; 2; dĀ/dA), (78)

which can be continued to general n. The derivative with
respect to n can be found by expanding the hypergeomet-
ric function 2F1(a, b; c; z) as a power series of z. Since the

power series is convergent for |z| ≤ 1, we should use the
first expression in Eq. (78) for dA < dĀ, and the second one
for dA > dĀ. We then find that

S(A)1 =

⎧
⎪⎪⎨

⎪⎪⎩

log dA − 1
2

dA

dĀ
dA < dĀ

log dĀ − 1
2

dĀ

dA
dĀ < dA

. (79)

This agrees with the result from Haar averages [4]. As dis-
cussed below Eq. (38), subleading corrections to Eq. (76)
and Eq. (79) beyond the limit of large d will likely not be
universal.

2. Microcanonical ensemble

Now we consider the case of the microcanonical ensem-
ble, Eq. (8). We expect the result derived below should
also apply to a single energy eigenstate of a chaotic system
(i.e., to systems satisfying the eigenstate thermalization
hypothesis).

In this case, IE is a projector, Zn = NI for all n. For |�0〉
lying in the subspace defined by the projector IE , Eq. (31)
is exactly satisfied.

We can write the Hamiltonian of the system as

H = HA + HĀ + HAĀ, (80)

where HAĀ denotes the interactions between A and Ā, and
HA, HĀ involve only, respectively, degrees of freedom of
subsystems A and Ā. Let us suppose H is local. Then with
sufficiently large subsystems A, Ā, the contribution of HAĀ
to the energy is much smaller than those of HA, HĀ in
macroscopic states whose energies are proportional to the
volume of the system.

When A � Ā or Ā � A, we again have Eqs. (67)–(70).
Then using the standard argument of statistical mechanics,
we can write Z (A,eq)

n and Z (Ā,eq)
n more explicitly as

Z (A)
n ≈ Z (A,eq)

n ≈ TrA

[ (
ρ
(A)
β

)n
]

,

ρ
(A)
β = e−βHA

TrA[e−βHA]
, A � Ā, (81)

Z (A)
n ≈ Z (Ā,eq)

n ≈ TrĀ

[ (
ρ
(Ā)
β

)n
]

,

ρ
(Ā)
β = e−βHĀ

TrĀ[e−βHĀ]
, Ā � A, (82)

where the inverse temperature β is determined from the
density of states as β = d log NI

dE .
Let us now consider the situation in which A and Ā are

comparable in size. More explicitly, suppose the total sys-
tem has volume V and VA/V = c < 1, with V → ∞. Using
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again the fact that the contribution of HAĀ to the energy is
small, we can approximate the projector IE as

IE ≈
∑

EA
n +EĀ

m∈I

|n〉A |m〉Ā 〈n|A 〈m|Ā , (83)

where |n〉A , |m〉Ā are, respectively, eigenstates of HA and
HĀ with energies EA

n and EĀ
m. We then have

Z (A)
n = 1

N n
I

∑

τ

〈ηA ⊗ eĀ|IE , τ 〉

= 1
N n

I

∑

τ

∑

E
(dA

E)
k(τη−1)(dĀ

E−E)
k(τ ), (84)

where E runs over the allowed values of energy in A that
can be consistent with total energy E, dA

E is the dimen-
sion of the subspace of A with energy E , and dĀ

E−E is the
dimension of the subspace of Ā with energy E − E . Let us
write

dA
E = eVADA(εA), dĀ

E−E = eVĀDĀ(εĀ) (85)

where εA = E/VA, εĀ = (E − E)/VĀ are, respectively,
energy densities for A and Ā. Let E = εV, so that εĀ =
(ε − εAc)/(1 − c). Equation (84) can then be written as
[k1 = k(τη−1) and k2 = k(τ )]

Z (A)
n = 1

N n
I

∑

τ

∑

εA

exp{V [k1cDA(εA)+ (1 − c)k2DĀ(εĀ)
]}.

(86)

The sum over εA can now be performed by a saddle-
point approximation with the saddle point ε̄A satisfying the
equation

k1D′
A(ε̄A) = k2D′

Ā

(
ε − ε̄Ac
1 − c

)
. (87)

Note that ε̄A depends on k1, k2. We then find that

Z (A)
n = 1

N n
I

∑

τ

exp
{

V
[

k1cDA(ε̄A)

+ (1 − c)k2DĀ

(
ε − ε̄Ac
1 − c

)]}
. (88)

To proceed further, let us take the system to be homoge-
nous, so DA(ε) = DĀ(ε) = f (ε). We further take f (ε) to
be described by a power law, i.e., f (ε) = Cεα for some
exponent α. Conventional statistical systems have α <
1 and we restrict to this case [63], where we find that
the dominant contribution to Eq. (88) comes from τ = e
(or equivalently k1 = 1, k2 = n) when c < 1/2, and from

τ = η (or k1 = n, k2 = 1) when c > 1/2. For c = 1/2, the
τ = e and τ = η contributions are equal and both are
dominant.

Note that Eq. (84) can also be obtained by averaging
uniformly over all pure states in the subspace I , that is,
by taking a fixed |ψ0〉 ∈ I and averaging the value of
Z (A)

n over states U |ψ0〉, where U is a Haar-random unitary
matrix acting within the subspace of energy E. Equiva-
lently, it can be obtained from an average over the “ergodic
bipartition” states described in Ref. [59].

3. Canonical ensemble

Let us now consider the situation where the effective
identity operator Iα is given by Eq. (9). Note that the result
Eq. (37) with this value of Iα can also be obtained by fur-
ther manipulation of the average over random “canonical
thermal pure quantum states” in Ref. [58].

Let us now consider the result in special regimes. When
A � Ā or Ā � A, we again have Eqs. (67)–(70). Let us
now consider the case where A and Ā are comparable, that
is, the total system has volume V and VA/V = c < 1, with
V → ∞. With the Hamiltonian (80) and assuming local
interactions, we can approximate, within the traces appear-
ing in various quantities, that Iβ has a factorized form
[64],

Iβ = e−βH ≈ e−βHA ⊗ e−βHĀ = I(A)β ⊗ I(Ā)β . (89)

Then Z (A)
n is given by Eq. (73), and the quantities appear-

ing in Eq. (73) have the form

Ẑ(A)m = TrAe−mβHA

(TrAe−βHA)m
, Ẑ(Ā)m = TrĀe−mβHĀ

(TrĀe−βHĀ)m
. (90)

Comparing with Eq. (88), we see that while for A � Ā, the
Renyi entropies corresponding to the microcanonical and
canonical ensembles have the same form, they differ in the
regime where VA/V is finite.

For a homogeneous system, from Eq. (35), the partition
functions for A and Ā subsystems can be written as

TrAe−βHA = eNAg(β), TrĀe−βHĀ = eNĀg(β),

N = NA + NĀ. (91)

We then have

Ẑ(A)m = eNA[g(mβ)−mg(β)], Ẑ(Ā)m = eNĀ[g(mβ)−mg(β)]. (92)

To proceed further let us take g(β) to be a power law,
that is, g(β) = λβ−α with α > 0. We then find that the τ =
e term is dominant in this expression for c < 1/2, the τ =
η term is dominant for c > 1/2, and for c = 1/2, both τ =
e and τ = η give equal contributions, which are dominant.
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FIG. 8. Causal constraints and subre-
gion thermalization. To find the entan-
glement entropies of A in a system
with a sharp light-cone structure, it is
sufficient to consider the part of the
time-evolution operator in J (A), that is,
between the dashed lines.

H. Uncompact systems and subregion equilibration

In our discussion above, we assume that the whole sys-
tem thermalizes after some finite time scale ts. For an
uncompact system, such a time scale does not exist. Nev-
ertheless, at a finite time t, subregions of certain finite sizes
can thermalize, and we can apply the approximation of
Sec. II C–II E to such subregions.

As an illustration, we consider an infinite (1 + 1)-
dimensional system, which can be a spin chain or a quan-
tum field theory. We assume for simplicity that the system
is governed by a local Hamiltonian, which results in a
sharp light cone, with speed c = 1. Suppose we are inter-
ested in the entanglement of a finite region A with its
complement Ā at time t, as indicated in Fig. 8. Due to the
causality constraint from the sharp light cone, the region
that is relevant for this purpose is J (A), the region at t = 0
that is causally connected with A. Evolution of the system
in J (A) should not be relevant for finding S(A)n or S(Ā)n , and
we can replace the time-evolution operator in this part of
the system with the identity. See Appendix C for a more
explicit argument.

Let us further suppose that the system is sufficiently
strongly interacting and chaotic, such that at time t, the
system is locally equilibrated in region J (A), i.e., the equi-
libration is maximally efficient as allowed by causality. In
this case, we can apply Eq. (37), treating J (A) as the full
system, and the region J (A)− A of length 2t as the com-
plement of A. From the discussion of item 1 in Sec. II G
we immediately conclude that [65]

S(A)n = seq
n min(|A|, 2t), (93)

where seq
n is the nth equilibrium Renyi entropy density

(n = 1 being the equilibrium entropy density). Here the
entanglement velocity is given by vE = c = 1. Since it is
expected on general grounds [66,67] that vE ≤ vB, where
vB ≤ 1 is the velocity associated with the growth of oper-
ators, Eq. (93) implies that we must also have vB = 1,
corresponding to the fact that operators grow at the fastest
speed allowed by causality. Hence, we can see the maxi-
mally fast growth of operators as a necessary condition for
the assumption of maximally efficient equilibration that we
make above.

III. GRAVITY SYSTEMS AND REPLICA
WORMHOLES

The equilibrium approximation discussed in the last
section can be applied to gravity systems, with the assump-
tion that they follow the usual rules of quantum mechanics.
In this context, various quantities in Eq. (37) or Eq. (52)
should be seen as amplitudes in an exact theory of quantum
gravity. In particular, the Euclidean path integrals Eq. (53)
emerge universally as an approximation to the Lorentzian
path integral Eq. (13). Furthermore, different Euclidean
replica gravity systems have to be “coupled” in specific
ways. However, in our current understanding of quantum
gravity, gravity path integrals can only be formulated at a
semiclassical level, and hence a direct implementation of
the prescription Eq. (54) may be subtle. For holographic
systems, the amplitudes in Eqs. (37) and (54) also have a
dual description in terms of the corresponding ones in the
boundary system. Here, one has the benefit that the bound-
ary version of path integrals Eq. (54) can be used to provide
boundary conditions for formulating the corresponding
bulk ones by using the standard rules of holography.

Intuitively, couplings among different replicas could
lead to replica wormholes, that is, geometries connecting
different replica manifolds. In this section, we make this
idea precise by applying the equilibrium approximation to
two recently discussed models of black holes [17,18], and
showing that the prescriptions proposed there for including
certain replica wormholes in the calculation of entangle-
ment entropies follow from Eq. (37) and Eq. (54). The
earlier discussion of Sec. II F then provides an explanation
for why including replica wormholes leads to entangle-
ment entropies that are consistent with unitarity. We also
comment on how the equilibrium approximation provides
an alternative to the need for an averaged description dis-
cussed in Ref. [17], and briefly discuss the Renyi entropies
for a big black hole in AdS formed from gravitational
collapse of a pure state.

A. A model for black hole evaporation

Let us first briefly review the model of an evaporating
black hole discussed in Ref. [17], where the black hole
lives in a (1 + 1)-D spacetime with Jackiw-Teitelboim (JT)
gravity and has an end-of-the-world (EOW) brane behind
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(a) (b)

FIG. 9. Lorentzian and Euclidean geometries for a black hole
with an end-of-the-world brane (denoted by the green line).

the horizon, see Fig. 9. The state |�〉 of the full system
resulting from the evaporation process is assumed to be
such that if |i〉 is an orthonormal basis of N states for the
radiation subsystem R, then the matrix element (ρR)ij of
the reduced density matrix for R can be calculated using
Euclidean path integrals with the following rules, shown in
Fig. 10. The boundary condition is given by a single open
asymptotic boundary segment of JT gravity of length β for
some inverse temperature β associated with the state. The
endpoints of the segment are labeled by i and j , as shown
in Fig. 10(a). In the corresponding bulk path integral in
Fig. 10(b), the two endpoints are connected with an EOW
brane. In addition to a gravity path integral indicated by
the shaded region, this gives a factor of δij , indicated by
the dotted line connecting i and j .

The boundary conditions for the calculation of Z (R)
n

involve n open asymptotic boundary segments of length
β as shown in Fig. 11(a) for n = 3, with the dashed lines
indicating the contraction of indices in the matrix multipli-
cation. The rule for the corresponding bulk path integral
is to sum over all possible ways of connecting the end-
points with EOW branes, like the two examples shown in
Figs. 11(b) and 11(c). Each resulting loop of dashed lines
gives a factor of N . Contributions like Fig. 11(c), where
multiple asymptotic boundaries are connected by the bulk
geometry, are said to have replica wormholes, and such
wormhole contributions are important for giving results for
Z (R)

n consistent with unitarity.
We now describe the evaluation of the quantities Z (A)

n
according to the equilibrium approximation in a more gen-
eral class of quantum-mechanical systems related to the
above model. We then show that applying the standard
rules of holography to the Euclidean path integrals in

(a) (b)

FIG. 10. (a) Boundary conditions and (b) the bulk path integral
for evaluating (ρR)ij according to the rules of Ref. [17].

the resulting expression gives a derivation of the replica
wormholes introduced with the ad hoc rules above. The
final result matches precisely with that of Ref. [17].

Let us consider a situation where the initial state |�0〉
in Eq. (4) describes a star, which under time evolution
collapses to form a black hole and subsequently emits
Hawking radiation. The full system at time t, described by
the state |�〉, consists of the black hole and the emitted
radiation subsystem. The radiation subsystem has a Hilbert
space of finite dimension N with no energy constraint,
while the black hole can be associated with an inverse tem-
perature β. We assume that the radiation separates from
and no longer interacts with the black hole after being
emitted. We can then write the effective identity operator
Iα corresponding to |�〉 in a factorized form

Iα = 1R ⊗ I(B)β , TrR1R = N , (94)

where R and B denote, respectively, the radiation and black
hole subsystems.

For an evaporating black hole, the Hamiltonian of the
system cannot be strictly time independent. As a result,
Eq. (94) may not strictly satisfy Eq. (24). However,
Eq. (24) should still be valid to a very good approximation
if the evaporation process happens slowly.

For comparison with the discussion of Ref. [17], we
assume that the black hole subsystem resembles that in JT
gravity (or the Sachdev-Ye-Kitaev model model at a suf-
ficiently low temperature). That is, it has a large number
of densely spaced states in the energy range accessible at
inverse temperature β, such that

Z(B)1 = TrBI(B)β = eS0z1(β),

Z(B)m = TrB

(
I(B)β

)m
= eS0zm(β), (95)

(a) (b) (c) FIG. 11. (a) Boundary conditions, and
(b),(c) show two contributions to the bulk
path integral for evaluating Z (R)

n for n = 3
according to the rules of Ref. [17].
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where the “background” density of states eS0 is large, and
zm(β) are O(1) functions. We are interested in the regime

eS0 , N → ∞, Ne−S0 = finite. (96)

Applying Eq. (73) to Eq. (94) we find for the radiation
subsystem

Z (R)
n ≈ 1

(
NZ(B)1

)n

∑

τ

N k(τη−1)Z(B)n1
· · · Z(B)nk(τ )

, (97)

where n1,. . . , nk(τ ) are the lengths of the cycles in τ . In the
regime Eq. (96), the leading terms in Eq. (97) are given
by those τ ’s that saturate Eq. (48), that is, by the planar
diagrams of Sec. II E. We can write the cycle structure of
a permutation τ as τ = (1m12m2 · · · nmn), which indicates
that it has m1 cycles with one element, m2 cycles with two
elements, and so on. By definition we have

k(τ ) = m1 + · · · + mn, n =
n∑

i=1

imi. (98)

Since the summand in Eq. (97) depends only on the cycle
structure of τ , we can write the leading planar contribution
as

Z (R)
n ≈ 1

(Z(B)1 )n

n∑

k=1

N 1−k
∑

∑
i mi=k

N ({mi})
n∏

j =1

(Z(B)j )mj ,

(99)

where N ({mi}) is the number of planar permutations
with cycle structure {mi}, and from our comments below

Eq. (48), can in turn be understood as the number of non-
crossing partitions with mi blocks of cardinality i. The
explicit expression for this number when the total number
of blocks k > 1 is given by [68]

N ({mi}) = n(n − 1) · · · (n − k + 2)
m1! · · · mn!

. (100)

For k = 1, we have only one block consisting of all n
elements, and N ({mi}) = 1.

So far, our discussion is general and applies to any sys-
tem with Iα as in Eq. (94) and Z(B)m as in Eq. (95). The
specific gravity description enters in the explicit evalua-
tion of various partition functions Z(B)m (β) [or equivalently
zm(β)], which can be expressed in terms of Euclidean
gravity path integrals and evaluated using a saddle-point
approximation. Let us now specify to the gravity system
considered in Ref. [17]. This motivates us to write

I(B)β = f (HB)e−βHB , (101)

where HB is the Hamiltonian for the black hole subsystem
and we include a factor f (HB), which captures the pres-
ence of the EOW brane. The specific form of the function
f is not important for our discussion.

The calculation of Z(B)m (β) using bulk gravity follows
from the standard rules of holography. The partition func-
tion Z(B)1 (β) of I(B)β can be obtained from the Euclidean
black hole geometry of Fig. 9(b). The evaluation of Z(B)m (β)

for m > 1 is indicated in Fig. 12, and involves replica
wormholes. Z(B)m here should thus be identified with the
replica wormhole partition function Zm with m boundaries
given in Eq. (2.29) or (2.32) of Ref. [17,69]. The contribu-
tions from terms corresponding to different τ in Eq. (97)

(a) (b)

FIG. 12. Boundary path integrals for Z(B)m = TrB
[
f (HB)e−βHB

]m can be represented as in (a) for n = 6. The Euclidean path integral

along each black line from t′ = 0 to t′ = β represents e−βHB , and each green dot represents f
1
2 (HB). For convenience of presentation

we arrange the factor f (HB) symmetrically in each replica. (b) The dual gravity description of the boundary path integral, where one
should integrate over all bulk configurations with the specified boundary topology, and we interpret the green dots representing f (HB)

as the end-of-the-world branes.
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saturating Eq. (48) can be captured precisely by the pla-
nar gravity diagrams of Ref. [17] like the ones shown in
Figs. 11(b) and 11(c), which correspond, respectively, to
τ = e and τ = η.

We can show more explicitly that Eqs. (99)–(100) agree
precisely with the results obtained in the limit Eq. (96) in
Refs. [17,70]. In Ref. [17], the full expression for Z (R)

n
was only given implicitly through a generating functional
called the resolvent, which can be used to obtain a recur-
sion relation for Z (R)

n . More explicitly, the trace of Eq.
(2.27) of Ref. [17] can be written in our notation as

∞∑

n=1

1
λn+1Z

(R)
n = 1

λ

∞∑

n′=1

Z(B)n′

N n′
(Z(B)1 )n

′

(
N
λ

+
∞∑

m=2

Z (R)
m−1

λm

)n′

.

(102)

Equating coefficients of 1/λn+1 on both sides, we find a
recursion relation

Z (R)
n = 1

N
Z (R)

n−1 +
n−1∑

n′=2

Z(B)n′

N n′
(Z(B)1 )n

′

∑

r1+···+rn=n′
∑

i iri=n

n′!
r1! · · · rn!

N r1

×
n∏

t=2

(Z (R)
t−1)

rt + Z(B)n

(Z(B)1 )n
. (103)

One can check that Eqs. (99)–(100) indeed satisfy
Eq. (103) [71].

B. Comments on averaging and replica wormholes

In the previous subsection, we demonstrate how the
Euclidean gravity prescription for computing the Renyi
entropies of an evaporating black hole can emerge as an
approximation to the Lorentzian path integrals Eq. (13).
One important implication of the discussion is that replica
wormholes can arise in a system with a fixed Hamiltonian,
and it not necessary to have an ensemble-averaged theory.
We now further clarify an issue raised in Ref. [17], which
was used there to interpret replica wormholes as arising
from some averaging procedure.

Let us first recapitulate the issue. Consider a matrix ele-
ment of the reduced density matrix for the radiation system
(here |i〉 denotes a basis for the R subsystem),

(ρR)ij = TrR(|j 〉 〈i| ρR) = TrR[|j 〉 〈i| TrB(Uρ0U†)]

= 〈iRj̄R ⊗ eB|U ⊗ U†|ρ0, e〉 . (104)

Applying the same procedure as in Eq. (27) to Eq. (104),
we find

(ρR)ij = 1
Z1

〈
iRj̄R ⊗ eB|Iα , e

〉+�ij =
(
ρ

(eq)
R

)

ij
+�ij ,

(105)

where ρ(eq) = 1
Z1
Iα and �ij is the contribution from the Q

projector. Using Eq. (94) and dropping �ij , we obtain the
equilibrium approximation for these matrix elements,

(ρR)ij ≈ 1
N
δij , (106)

which would imply

Z (R)
n = TrRρ

n
R ≈ 1

N n−1 . (107)

But Eq. (107) clearly contradicts Eq. (99). For example,
for n = 2, Eq. (99) gives

Z (R)
2 ≈ 1

N
+ Z(B)2

(Z(B)1 )2
= 1

N
+ e−S0

z2(β)

z2
1(β)

. (108)

Equations (107) and (108) are compatible only when N �
eS0 , but the derivation of Eq. (106) uses only Z1 ∼ NeS0 �
1 and, in particular, does not need to assume any relative
magnitude of eS0 and N .

In Ref. [17], the same apparent disagreement was
observed, and it was pointed out that Eqs. (106) and (108)
can be compatible if the Euclidean gravity prescription
for computing them is interpreted as an average over an
ensemble of theories, so that there is a difference between
the averages (ρR)ij (ρR)

∗
ij and |(ρR)ij |2. We now show that

the conflict between Eq. (106) and Eq. (108) can be nat-
urally resolved using the equilibrium approximation inter-
pretation of the Euclidean gravity prescription, without the
need for any averages.

For this purpose, let us estimate the term �ij we drop
in reaching Eq. (106) using the analogous procedure to
Eq. (40), which is computed in Appendix B. The results
are

(�ij )
2
eq app = 1

N 2 δij
Z(B)2

(Z(B)1 )2
, |�ij |2eq app = 1

N 2

Z(B)2

(Z(B)1 )2
.

(109)

Comparing Eq. (109) with Eq. (106), we see that �ij is
suppressed by a factor e− 1

2 S0 compared with the leading-
order contribution, Eq. (106). So the approximation,
Eq. (106), appears to be justified in the limit eS0 → ∞.
This still does not say anything about the relative magni-
tude between N and eS0 , so the tension between Eq. (107)
and Eq. (108) remains. But notice that

Z (R)
2 =

∑

i,j

|(ρR)ij |2 =
∑

i

|(ρR)ii|2 +
∑

i�=j

|(ρR)ij |2 = 1
N

+ N 2 − N
N 2

Z(B)2

(Z(B)1 )2
≈ 1

N
+ Z(B)2

(Z(B)1 )2
, (110)
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which recovers Eq. (108). In Eq. (110), we use Eq. (106)
for the diagonal terms, and the second equation of
Eq. (109) for the off-diagonal terms.

We thus see that although the off-diagonal elements
|�ij | are higher order in e−S0 compared with the diago-
nal elements, there are many more of them [O(N 2)] than
the number N of the diagonal terms. So Z (R)

2 can receive
significant contributions from these off-diagonal terms out-
side the regime N � eS0 , and hence the corrections to
the equilibrium approximation for the matrix elements are
important while estimating Z (R)

2 . Since the first equation
of Eq. (109) vanishes for off-diagonal elements, we con-
clude that the off-diagonal elements �ij must be complex
and likely time dependent.

Our explanation here is consistent with an idea dis-
cussed in Ref. [17], that an average over time rather than
an average over theories may also explain the disagree-
ment between Eqs. (106) and (108), as the equilibrium
approximation should agree with an average over time at
late times.

We emphasize that the conceptual picture obtained here
is different from certain possibilities proposed in Ref. [17].
It was suggested there that bulk geometry may only pro-
vide “an effective, coarse-grained description” of some
“different, more fundamental degrees of freedom” that
correspond to the boundary theory, and that such non-
geometric degrees of freedom may need to be added to
calculate quantities like Eqs. (106) and (108) to an accu-
racy that allows us to avoid the apparent disagreement.
Here, we emphasize that the conflict arises from drop-
ping �ij in Eq. (105), which is equivalent to approximat-
ing these quantities with Euclidean path integrals like in
Eq. (53). It therefore arises even before we use semiclassi-
cal gravity to evaluate these Euclidean path integrals, and
is thus not linked to using semiclassical gravity. In partic-
ular, this means that the approximation can in principle be

improved within the framework of semiclassical gravity, if
we are able to perform a Lorentzian rather than Euclidean
calculation of these quantities.

For a different perspective on how replica wormholes
can emerge without the need for ensemble averaging, see
Ref. [31].

C. A model for an eternal black hole coupled to a bath

We now consider a quantum-mechanical system that
corresponds to the gravitational system discussed in
Ref. [18] (see also [15,16,20,72]), which consists of an
eternal black hole in AdS2 coupled to a flat (1 + 1)-
dimensional bath system with speed of light c = 1, see
Fig. 13(a). In the quantum-mechanical system, shown in
Fig. 13(b), the eternal black hole is replaced by a boundary
dual. Note that the bath system remains the same in two
descriptions. The whole system is initially put in a pure
state, which does not have any entanglement between the
black hole and bath subsystems [73]. We also assume the
interactions between the black hole and the bath are local.

The full system is uncompact with local interactions, as
in the case discussed in Sec. II H. We can therefore apply
the discussion of that subsection to the current context,
replacing the subsystem A there by the subsystem describ-
ing the eternal black hole. In particular, for the purpose of
studying entanglement between the black hole and the bath
at some time t, it is enough to consider the finite region
J (B) around the black hole determined by causality, as
indicated in Fig. 13(b). When the bath is maximally effi-
cient in thermalization as in our discussion of Sec. II H, we
can immediately write down the Renyi entropies for either
subsystem as a function of time,

S(BH)
n = S(bath)

n = min(2S (BH)
n ,S(bath)

n (t)],

S(bath)
n (t) = 2tseq

n , (111)

(a) (b)

FIG. 13. (a) The Penrose diagram for an eternal black hole in AdS2 coupled to a bath, the system discussed in Ref. [18]. The shaded
region coupled to JT gravity corresponds to the black hole, while the unshaded region with flat Minkowski space corresponds to the
bath. (b) A quantum-mechanical system dual to this gravitational system. In this dual theory, the black hole is a (0 + 1)-dimensional
system while the bath is (1 + 1) dimensional. At time t, only the part of the time-evolution operator in the region J (B) is relevant for
finding the entanglement entropies between the black hole and the bath.
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where S (BH)
n are the thermal entropies for the black hole,

and seq
n is the equilibrium entropy density for the bath.

The entropies increase linearly and then saturate at tn =
S (BH)

n /seq
n . The expression is valid for t not close to tn,

and agrees with the results for the entanglement entropy
in Ref. [18].

Using the duality between the black hole and its bound-
ary description, we can understand the two contributions in
Eq. (111) more explicitly from the gravity perspective. For
this purpose it is convenient to start with the path-integral
representation, Eq. (54), for the boundary description of
Fig. 13(b), with A = bath and Ā = BH. Then the linearly
increasing contribution to Eq. (111) comes from the con-
figuration in Fig. 6(a) with τ = e, while the saturation
value for t > tn comes from the configuration in Fig. 6(b)
with τ = η. For τ = e, one traces over the black hole sub-
system within each replica copy. On the gravity side this
corresponds to the standard evaluation of the black hole
partition function using the Euclidean black hole geom-
etry. For τ = η, the black hole subsystems for different
replica copies are now connected, and on the gravity side
this requires the introduction of replica wormholes. The
contributions from other values of τ , such as the example
in Fig. 6(c), involve other types of replica wormholes, and
are only relevant in a relatively short time interval around
the transition time tn between linear growth and saturation.

Our assumption that the bath is maximally efficient in
thermalization is not important for obtaining the quali-
tative features of the results here. The specific physical
nature of the bath system may affect the specific form of
S(bath)

n (t), and the time scale for saturation. However, it
will not change the fact that entanglement entropies will
saturate at 2S (BH)

n due to the contribution from Fig. 6(b). In
particular, the bath can in principle be a free theory instead
of a chaotic system that leads to rapid thermalization, like
one of the toy models considered in Ref. [44].

D. Unitarity of Renyi entropies in more general
holographic systems

In the previous subsections, we consider situations
where only one of the subsystems has a gravity description,
and the path integral involving that subsystem could be
turned into a gravity calculation involving replica worm-
holes. However, the unintuitive couplings between replicas
should appear in more general contexts. Consider an ini-
tial pure state, which subsequently undergoes gravitational
collapse to form a big black hole in AdSd+1, which is sta-
ble and does not evaporate. In the boundary language, the
system settles into an equilibrated pure state corresponding
to the black hole. The von Neumann and Renyi entropies
of this final state should satisfy the unitarity constraint,
Eq. (2).

In holography, the von Neumann entropy S(A)1 for a sub-
region A is found from the area of the HRT surface [74,75].

For a black hole formed from collapse, the HRT surface for
Ā is the same as that for A, and thus the unitarity constraint
S(A)1 = S(Ā)1 is automatically satisfied [76].

For the Renyi entropies, it is less well understood how
unitarity is maintained. From our discussion of Sec. II G,
the Renyi entropies of a subsystem in the boundary field
theory can be obtained by the path integrals in Fig. 6,
and correspondingly in the bulk calculation, the Renyi
entropies can be obtained from certain Euclidean black
hole geometries, despite the fact that a black hole from
collapse does not have a Euclidean analytic continua-
tion. However, the boundary conditions for these gravity
path integrals include the unconventional ones specified
by permutations τ , as indicated for example in Figs. 6(b)
and 6(c). From Sec. II G, at leading order in the large
N expansion, one should consider two types of bulk
geometries, one for the boundary conditions with τ = e
and one for those with τ = η in Figs. 6(a) and 6(b).
Bulk manifolds with more exotic boundary conditions
such as those in Fig. 6(c) provide subdominant correc-
tions, which are exponentially suppressed in the large N
limit.

IV. TYPICALITY AND THE RANDOM VOID
DISTRIBUTION

In the discussion of the previous sections, we assume
that the time-evolution operator U can take a system from
a far-from-equilibrium state to an equilibrated pure state,
and furthermore that U is such that the contribution from
Z (A)

n,Q in Eq. (27) can be neglected. For a finite-dimensional
system at infinite temperature, the approximation yields
the same results as those obtained from the Haar-random
averages of the quantities Z (A)

n over the full Hilbert space.
Thus, the suppression of Z (A)

n,Q may be viewed as a dynam-
ical criterion for the evolution of a system towards typical
states in such systems. However, since we expect on
general grounds that evolution to typicality should take
place in chaotic systems, it would be good to understand
more directly which aspects of chaos are responsible for
it. In this section, we offer some suggestions from the
perspective of operator growth.

We conjectured in Ref. [48] that one general feature of
operator evolution in chaotic systems at late times is the
form of the probability of “void formation” in them, which
we referred to as the random void distribution. In Ref. [44],
based on studies of the second Renyi entropy, we argued
that typicality is a direct consequence of the random void
distribution.

In this section, we generalize the notion of the random
void distribution to higher moments, and show that the
behavior of all higher Renyi entropies of an equilibrated
pure state can be seen as special cases of the generalized
random void distribution. Below, we first review the notion
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of void formation in operator growth, and discuss its rel-
evance for typicality. For simplicity, we consider only a
finite-dimensional Hilbert space with no energy constraint
(that is, the infinite temperature case).

A. Random void distribution and typicality

Consider the Heisenberg evolution O(t) of an initial
operator O. Since the identity operator does not evolve,
in the discussion below we always assume that O does
not have an identity part, i.e., Tr O = 0. With respect to
a subsystem S, we can decompose O(t) as a sum of two
parts,

O(t) = O(1)(t)+ O(2)(t), O(1)(t) = 1S ⊗ ÕS̄,

TrS[O(2)(t)] = 0, (112)

where 1S is the identity operator for subsystem S and ÕS̄ is
some operator in S̄.

We refer to the presence of O(1)(t) in O(t) as void forma-
tion in the subsystem S. Using the following inner product
between any two operators A and B,

〈A, B〉 = 1
d

Tr[A†B], (113)

where d is the dimension of the full Hilbert space, we
can define the weight (or “probability”) that an operator
O forms a void in the subsystem S at time t as

P(S)O,2(t) = 〈O(1)(t), O(1)(t)〉
〈O(t), O(t)〉 . (114)

Moreover, based on studies in random unitary circuits,
it was conjectured in Ref. [48] that in a chaotic system,
for a generic traceless initial operator O, at sufficiently late
times the probability P(S)O,2(t) has a simple universal form

P(S)O,2(t) = 1
d2

S
, dS̄ � 1, (115)

which is referred to as the random void distribution. We
note that Eq. (115) should apply essentially to all traceless
operators, for example, in a spin chain, to local oper-
ators, basis operators, which cover a finite region, and
superpositions of nontrivial basis operators.

We now show that if we assume Eq. (115) applies to
the nonidentity part of a density matrix for a pure state we
obtain Eq. (76) for n = 2. The discussion below can be
seen as a model-independent version of the argument in
Ref. [44] for the derivation of the Page curve of black hole
evaporation using the random void distribution. For this

purpose, we decompose the initial density matrix as

ρ0 = |�0〉 〈�0| = 1
d

1 + ρ̂0, Tr ρ̂0 = 0. (116)

Given the initial state is pure,

ρ2
0 = ρ0 ⇒ ρ̂0

2 = d − 1
d2 1 + d − 2

d
ρ̂0

⇒ Tr ρ̂2
0 ≈ 1, (117)

where the final statement is true in the large d limit. To find
the reduced density matrix for a subsystem A, we further
decompose ρ̂(t) ≡ Uρ̂0U† as

ρ̂(t) = ρ̂(1) + ρ̂(2), ρ̂(1) = OA ⊗ 1Ā, TrĀρ̂
(2) = 0

(118)

for some OA in subsystem A. Tracelessness of ρ̂ implies
that TrA OA = 0. It then follows that the reduced density
matrix for A has the form

ρA(t) = 1
dA

1A + ρ̂A, TrAρ̂A = 0, ρ̂A = dĀOA (119)

and the second Rényi entropy for ρA(t) can be written as

e−S(A)2 = TrAρ
2
A(t) = 1

dA
+ TrAρ̂

2
A = 1

dA
+ dĀ Tr[(ρ̂(1))2].

(120)

Now assuming the random void distribution, Eq. (115), for
operator O = ρ̂0 and the subsystem S = Ā, we have

P(Ā)
ρ̂0,2 = Tr[(ρ̂(1))2]

Tr{[ρ̂(t)]2} = Tr[(ρ̂(1))2]
Tr[(ρ̂0)2]

= 1
d2

Ā

⇒ Tr[(ρ̂(1))2] = 1
d2

Ā

⇒ TrAρ̂
2
A = 1

dĀ
,

(121)

where we use Eq. (117). We thus find

e−S(A)2 = 1
dA

+ 1
dĀ

. (122)

Equation (3) with n = 2 then follows immediately. The
first term in Eq. (122) is the contribution from the iden-
tity, and the second term comes from processes of void
formation in Ā under the action of U.

B. Higher moments of the random void distribution

Just like the behavior of the second Renyi entropy
may be considered a direct consequence of the random
void distribution, our discussion of the Renyi entropies in
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Sec. II G can be considered a special case of the random
void distribution for higher moments of general operators.

More explicitly, consider the generalization of Eq. (114)
to higher n:

P(S)O,n(t) = Tr[O1(t)n]
Tr[On]

= 1

dn−1
S

1
Tr[On]

TrS̄({TrS[O(t)]}n).

(123)

The nth Renyi entropy for A corresponds to taking O = ρ

and S = Ā. The general approximation scheme we develop
in Sec. II G can be used to find Eq. (123), assuming there
exists a time scale such that the quantity P(S)O,n(t) saturates
and the contribution from projector Q can be neglected.
More explicitly, we find in the large d limit that

TrS̄({TrS[O(t)]}n)

= 1

dn−1
S̄

(Tr O)n +
∑

τ �=e,η

dk(η−1τ)−n
S̄

dk(τ )−n
S 〈τ |O, e〉

+ 1
dn−1

S

Tr[On], (124)

where we separate the contribution from τ = e and τ = η

explicitly. Recall that

〈τ |O, e〉 = Tr On1 · · · Tr Onk , (125)

where k = k(τ ) and ni are the lengths of the cycles of τ . If
O is traceless,

TrS̄({TrS[O(t)]}n) =
∑

σ �=e,η,
τhas no cycle with

one element

dk(η−1τ)−n
S̄

dk(τ )−n
S 〈τ |O, e〉

+ 1

dn−1
S

Tr[On]. (126)

In particular, with Tr[On] ∼ O(1) (i.e., independent of
dS, dS̄, d), then for dS � dS̄ we have

P(S)O,n(t) = 1

d2(n−1)
S

. (127)

Heuristically, Eqs. (115) and (127) suggest that the oper-
ator has become uniformly spread throughout the system,
so that the probability that it is trivial in any small subsys-
tem is exponentially suppressed in the number of degrees
of freedom in that subsystem.

Setting O in Eq. (124) to be ρ0 and S = Ā, we then
recover Eq. (76). Setting in Eq. (126) O to be ρ̂0 (i.e., the
traceless part of ρ) and S = Ā, we obtain a generalization

of Eq. (121) to higher n [in the regime of Eq. (75)]

TrA[ρ̂n
A] = 1

dn−1
Ā

+
n−1∑

p=2

Ñ (n, p)
1

dn−p
A dp−1

Ā

, (128)

where Ñ (n, p) is the number of noncrossing partitions of n
objects into p blocks such that each block has more than
one element. Ñ (n, p) are called the Riordan numbers [77].
The consistency of Eq. (128) with Eq. (76) leads to a nice
relation between the Riordan and Narayan numbers

N (n, p) =
n∑

k=p

Ck
nÑ (k, p) = 1

n
Cp

nCp−1
n . (129)

It is tempting to conjecture that Eqs. (126)–(127) apply
to a general chaotic system. In Appendix D we show
that they hold in the local random unitary circuits of
Refs. [78,79].

V. CONCLUSIONS AND DISCUSSION

In this paper, we develop an approximation to calculate
the entanglement entropies of an equilibrated pure state.
The resulting expressions can be written solely in terms
of the partition functions and thermodynamic entropies of
the equilibrium density operator ρ(eq), but at the same time
are compatible with unitarity. One immediate implication
is that a set of Euclidean path integrals for the equilibrium
density operator emerge universally as an approximation
to the Lorentzian path integrals for Renyi entropies, with
a variety of boundary conditions specified by different
permutations of the replica systems. We introduce a crite-
rion for checking that the approximation is self-consistent,
which at the same time provides an estimate of the con-
tribution Z (A)

n,Q we neglect. We also extract the universal
behavior of the entanglement entropies for various classes
of equilibrated pure states.

Applied to two recently discussed models of black holes
[17,18], the equilibrium approximation leads to a deriva-
tion of the prescriptions proposed in these papers for
including replica wormholes in the calculation of entan-
glement entropies, and provides a general explanation for
why such a prescription leads to results compatible with
unitarity. Replica wormholes are thus one manifestation of
a universal structure, which appears in a large variety of
thermalizing systems, including quantum-mechanical sys-
tems and quantum field theories without holographic duals.
Our derivation can be used to see when and how replica
wormholes should be included in more general gravity
theories, and in particular it shows that they can arise in
systems with a fixed Hamiltonian, without any need for an
ensemble average.

We further discuss a mechanism for equilibration in the
infinite-temperature case from the perspective of operator
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growth. The underlying property of operator growth, called
the random void distribution, can be seen as a more direct
manifestation of quantum chaos than the assumptions that
went into the equilibrium approximation.

One important open question for the future is to under-
stand better the role of the contribution Z (A)

n,Q, which we
neglect, and to develop a further approximation scheme
to capture its effects (see Ref. [11] for a discussion in
the infinite-temperature case). A related question is about
the time scales for which our equilibrium approximation
should be valid. We expect it to be valid for time scales
much longer than the thermalization scale ts, but perhaps
not at very long time scales at which large fluctuations
could become relevant.

It is also interesting to consider for which other observ-
ables the approximation is expected to work well, and for
which observables it is expected to fail. Let us discuss two
examples. For correlation functions of the form

F = 〈ψ0|O1(t1)O2(t2) · · ·On(tn)|ψ0〉, (130)

if the smallest time tm is much greater than ts, then we
can apply the equilibrium approximation, which gives the
equilibrium correlation functions associated with ρ(eq) (see
Appendix B for details):

F ≈ Tr[ρ(eq)O1(t1 − tm)O2(t2 − tm) · · ·On(tn − tm)].
(131)

Using an analogous criterion to the one discussed in
Sec. II D, we show in Appendix B that Eq. (131) is
valid provided that the minimal subsystem A in which
O ≡ O1(t1 − tm)O2(t2 − tm) · · ·On(tn − tm) is contained
is much smaller than its complement Ā. This is also consis-
tent with what we expect based on the behavior of Renyi
entropies in this regime [recall Eqs. (69)–(70)].

As a final example, let us consider the quantity

Z ≡ (Tr U Tr U†)n = T̂r(U ⊗ U†)n, (132)

where in the second equality we express the quantity in the
replica system, with T̂r denoting the trace in (H ⊗ H)n.
This is the nth power of the spectral form factor stud-
ied in Ref. [80]. This quantity does not correspond to the
equilibration of a far-from-equilibrium initial state or have
an equilibrium value. We therefore intuitively expect that
the equilibrium approximation should not make sense for
Eq. (132). Indeed, for any choice of Iα , on applying the
equilibrium approximation to the above expression, we
get Z ≈ n!, which does not satisfy the self-consistency
criterion of Sec. II D [81].

Based on studies in random matrix theory and the SYK
model, the spectral form factor is expected to have a lin-
ear “ramp” and eventually a constant “plateau” of order eS

(where S is the thermodynamic entropy) at late times in

chaotic systems with conserved energy, both of which are
not captured by the equilibrium approximation. In the JT
gravity calculations of Refs. [80,82], the ramp contribution
to the spectral form factor is correctly captured by “trum-
pet” geometries, which involve bulk connections between
disconnected closed boundaries. While these structures
geometrically resemble the replica wormholes of Ref. [17],
our observations above imply that these two kinds of
connected geometries appearing in two different quanti-
ties have distinct physical origins. The replica wormholes
of Ref. [17], appearing in the calculation of the Renyi
entropies, can be fully explained within the framework
of the equilibrium approximation. On the other hand, the
ramp contributions to the spectral form factor, and hence
the trumpet geometries associated with them, appear to
be beyond the scope of the equilibrium approximation.
The trumpet geometries lead to a disagreement between
the direct evaluation of Tr[U] Tr[U†] and the product of
Tr[U] and Tr[U†] in the gravity calculation, which is sim-
ilar to the conflict between Eqs. (106) and (108) discussed
in Sec. III B. However, while the equilibrium approxima-
tion can resolve the issue discussed in Sec. III B, it does not
seem to explain the factorization problem of the spectral
form factor.

In a different future direction, it would also be inter-
esting to understand how the mechanism for equilibration
based on operator growth in the infinite-temperature case
in Sec. IV generalizes to other choices of Iα .
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APPENDIX A: EQUILIBRIUM APPROXIMATION
FOR A GENERAL INITIAL DENSITY MATRIX

Here we discuss the generalization of the equilibrium
approximation to a general initial density operator rather
than a pure state, which has been the focus of the main
text.

Consider the quantities

zn = Tr ρn
0 = Tr ρn = Tr(Uρ0U†)n = 〈η|(U ⊗ U†)n|ρ0, e

〉
.

(A1)

Applying the equilibrium approximation to the above
expression, we have

zn = 1
Zn

2

∑

τ

〈η|Iα , τ 〉〈Iα , τ |ρ0, e〉. (A2)

In the case where ρ0 is a pure state, recall that An =
〈Iα , τ |ρ0, e〉 is independent of τ , and by imposing Eq. (30)
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we obtain zn ≈ 1 as discussed in Eq. (66). For ρ0, which is
a mixed state, requiring the n = 1 equation to be satisfied
again fixes

TrIαρ0 = Z2

Z1
. (A3)

For n = 2,

z2 = 1
Z2

2
(〈η|Iα , e〉〈Iα , e|ρ0, e〉 + 〈η|Iα , η〉〈Iα , η|ρ0, e〉)

= 1
Z2

2

(
Z2

Z2
2

Z2
1

+ Z2
1 Tr(Iαρ0)

2
)

, (A4)

which requires

Tr(Iαρ0)
2 =

(
z2 − Z2

Z2
1

)
Z2

2

Z2
1

. (A5)

Since Z2/Z2
1 ∼ Z−1

1 � 1, for z2 ∼ O(1) we then have

Tr(Iαρ0)
2 ≈ z2

Z2
2

Z2
1

. (A6)

Continuing this further, the equation for zn can be used
to determine Tr[(Iαρ0)

n] in terms z1, . . . zn and Z1, . . . Zn.
Each of these equations should be imposed as a self-
consistency condition on Iα . In particular, for zn ∼ O(1),
we have

Tr(Iαρ0)
n ≈ zn

Zn
2

Zn
1

. (A7)

Now for a general density operator ρ0 we have in the
large Z1 limit

Z (A)
n ≈ Z (A)

n,P = 1
Zn

2

∑

τ

〈
ηA ⊗ eĀ|Iα , τ

〉〈Iα , τ |ρ0, e〉,

n = 2, 3, . . . . (A8)

Now using Eq. (A5) and it higher n counterparts we can
express Eq. (A8) in terms of z1, . . . zn and various partition
functions of Iα . When zn ∼ O(1) for all n, we have

Z (A)
n ≈ Z (A)

n,P = 1
Zn

1

∑

τ

bτ
〈
ηA ⊗ eĀ|Iα , τ

〉
,

bτ = zn1 · · · znk , n = 2, 3, . . . , (A9)

where k is the number of cycles of τ with n1, . . . nk
the lengths of the cycles. For general zn, the explicit

expressions for Eq. (A8) are somewhat complicated.
For example, for n = 2 and n = 3, we find

Z (A)
2 ≈ Z (A,eq)

n +
(

z2 − Z2

Z2
1

)
Z (Ā,eq)

n (A10)

and

Z (A)
3 ≈ Z (A,eq)

n + 3
(

z2 − Z2

Z2
1

)
Tr[(ρ(eq)

A ⊗ ρ
(eq)
Ā

)ρ(eq) ]

+
[

z3 − Z3

Z3
1

− 3
Z2

Z2
1

(
z2 − Z2

Z2
1

)]

×
(
Z (Ā,eq)

n + 〈ηA ⊗ eĀ|ρ(eq) , η−1〉
)

. (A11)

APPENDIX B: ESTIMATE OF Z (A)
n,Q IN VARIOUS

CASES

Here we discuss the calculation of Eq. (40) to show
the self-consistency of the equilibrium approximation, and
also the analogous quantities for the equilibrium approxi-
mation of other observables.

For any quantity T that can be written as a transition
amplitude in a replica Hilbert space, we can separate T as
a sum of two parts,

T = 〈b|(U ⊗ U†)n|a〉 = TP + TQ, TP = 〈b|Pα|a〉,
(B1)

for some states |a〉 , |b〉 ∈ (H ⊗ H)n. The definition of
TP,TQ are in complete analog with Eq. (27) for the Renyi
entropies. Note that in general T may not be real. To dis-
cuss the self-consistency of the equilibrium approximation
for the quantity T , similar to Eq. (40), we consider

(|TQ|2)eq app = (|T |2)eq app − |TP|2

= 〈b̄ ⊗ b|P̃α|ā ⊗ a
〉− |TP|2, (B2)

(
T 2

Q

)

eq app
= (T 2)eq app − T 2

P = 〈b ⊗ b|P̃α|a ⊗ a
〉− T 2

P ,

(B3)

where |ā〉 , |b̄〉 ∈ (H ⊗ H)n are defined from |a〉 , |b〉 by the
following procedure:

〈
i1 ī′1i2 ī′2 · · · inī′n|a

〉 = ai1i′1i2i′2···ini′n

→ 〈
i1 ī′1i2 ī′2 · · · inī′n|ā

〉 = a∗
i′1i1i′2i2···i′nin

(B4)

and

P̃α = 1
Z2n

2

∑

τ∈S2n

|Iα , τ 〉 〈Iα , τ | (B5)

is the projector associated with Iα in (H ⊗ H)n ⊗ (H ⊗
H)n. We again assume Z1 is large and Eq. (36).
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We then have

(|TQ|2)eq app

= 1
Z2n

2

∑

τ∈S2n

〈
b̄ ⊗ b|Iα , τ

〉〈Iα , τ |ā ⊗ a〉

− 1
Z2n

2

∑

τ ′,σ ′∈Sn

〈
b̄|Iα , τ ′〉〈Iα , τ ′|ā〉〈b|Iα , σ ′〉〈Iα , σ ′|a〉.

(B6)

When τ ∈ S2n can be written in a factorized form τ =
σ ′ ⊗ τ ′ for σ ′, τ ′ ∈ Sn (meaning that it can be seen as a
composition of a permutation σ ′ involving only the first
n elements with a permutation τ ′ involving only the last
n elements), the contribution from τ in the first term can-
cels with the contribution from the associated σ ′, τ ′ in the
second term. One can write down a similar expression for
(T 2

Q )eq app. Hence,

(|TQ|2)eq app = 1
Z2n

2

∑

τ �=σ ′⊗τ ′

〈
b̄ ⊗ b|Iα , τ

〉〈Iα , τ |ā ⊗ a〉,

(B7)
(
T 2

Q

)

eq app
= 1

Z2n
2

∑

τ �=σ ′⊗τ ′
〈b ⊗ b|Iα , τ 〉〈Iα , τ |a ⊗ a〉,

(B8)

where τ �= σ ′ ⊗ τ ′ indicates that τ ∈ S2n cannot be written
in a factorized form.

We now consider Eq. (B7) or Eq. (B8) for a few different
observables.

1. Renyi entropies

For the nth Renyi entropy we take |a〉 = |ρ0, e〉 and
|b〉 = |ηA ⊗ eĀ〉, for which we have

�2 ≡
[ (

Z (A)
n,Q

)2
]

eq app

= 1
Z2n

1

∑

τ �=σ ′⊗τ ′

〈
ηA ⊗ eĀ ⊗ ηA ⊗ eĀ|Iα , τ

〉
. (B9)

As in Eq. (47), we can estimate the magnitude of the above
expression by counting the number of traces for A and Ā,
with TrA ∝ dA, TrĀ ∝ dĀ

〈
ηA ⊗ eĀ ⊗ ηA ⊗ eĀ|Iα , τ

〉 ∼ dk1
A dk2

Ā
, k1 = k(ν−1τ),

k2 = k(τ ), ν = η ⊗ η. (B10)

k1 and k2 can be interpreted, respectively, as the number of
dashed and solid loops in the diagrams shown in Fig. 14.
These diagrams are obtained by following exactly the same
rules as those for Fig. 2–4. The contractions correspond-
ing to the final condition 〈ηA ⊗ eĀ ⊗ ηA ⊗ eĀ| are given in
Fig. 14(a). Notice that the contractions for the first group
of n elements and those for the second group of n ele-
ments, respectively, form separate subdiagrams in such a
way that for any τ �= σ ′ ⊗ τ ′, we always get nonplanar dia-
grams, as such a τ necessarily connects some elements of
the first group to those of the second group. An example is
Fig. 14(c), while τ for Fig. 14(b) is factorizable and does
not contribute to Eq. (B9).

Like in the discussion around Fig. 5 in Sec. II E, we can
obtain a double-line diagram from each of these diagrams
by adding an extra surrounding loop. The total number of
loops in the double-line diagram is again equal to the num-
ber of faces F of the polygon associated with it, when it is
placed on a manifold where it does not have crossing lines.
In this case, the total number of edges of the polygon is
E = 6n − 1 and the total number of vertices is V = 4n − 2,
so if the diagram associated with τ can be drawn without

(a) (b) (c)

FIG. 14. Examples of the diagrammatic representation for Eq. (B9) for n = 3. (a) The contractions of indices from “future
conditions” 〈ηA ⊗ eĀ ⊗ ηA ⊗ eĀ|. (b),(c) Examples of interior connections for two different choices of τ .

010344-25



HONG LIU and SHREYA VARDHAN PRX QUANTUM 2, 010344 (2021)

crossings on a surface of minimum genus h, then

k1 + k2 = F − 1 = E − V + 2 − 2h − 1 = 2n + 2 − 2h.
(B11)

Since we always get nonplanar diagrams with h ≥ 1 for
τ �= σ ′ ⊗ τ ′,

k1 + k2 ≤ 2n. (B12)

Also, since any τ �= σ ′ ⊗ τ ′ is not equal to either e or ν,
and for any τ �= e, k(τ ) ≤ 2n − 1,

k1, k2 ≤ 2n − 1. (B13)

Recall that for dA ∼ dĀ ∼ Z
1
2
1 , the leading term of Z (A)

n,P

scales as Z
1
2 (1−n)
1 , while from the above � ∼ Z

− 1
2 n

1 . When
dA � dĀ ∼ Z1, the leading contribution of Z (A)

n,P scales as

d1−n
A while from the above � ∼ d1/2−n

A d
− 1

2
Ā

. In both cases
we have

�

Z (A)
n,P

∼ Z
− 1

2
1 � 1. (B14)

Also note that in both cases dA ∼ dĀ ∼ Z
1
2
1 and dA � dĀ ∼

Z1, the next-to-leading order correction to Zn,P is sup-
pressed by Z−1

1 relative to the leading contribution, so that
the contribution from ZQ is larger than this contribution.

For n = 1, we have [with η = (12) below]

�2 = 1
Z2

1
〈e|Iα , η〉 = Z2

Z2
1

� 1, (B15)

which is consistent with the other self-consistency condi-
tion, Eq. (30), that we introduce earlier.

We see from the above discussion that the suppression
of the correction Z (A)

n,Q has to do with the trace structure in
the definition of the Renyi entropies.

To see the factorization condition for higher m in
Eq. (43), let us now consider the quantity

�m =
[ (

Z (A)
n

)m
]

eq app
− (Z (A)

n,P )
m

= 1
Zmn

1

∑

τ �=σ ′
1⊗σ ′

2···⊗σ ′
m

〈
(ηA ⊗ eĀ)

m|Iα , τ
〉
. (B16)

Here τ �= σ ′
1 ⊗ σ ′

2 · · · ⊗ σ ′
m indicates a permutation in Smn

that is not factorized among each of the m consecutive sets
of n elements. The discussion completely parallels the m =
1, 2 cases discussed earlier, with

〈
(ηA ⊗ eĀ)

m|Iα , τ
〉 ∼ dk1

A dk2
Ā

, k1 = k(ν−1
m τ),

k2 = k(τ ), νm = η ⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
m times

, (B17)

k1 and k2 can again be seen as the number of dashed and
solid loops in the diagrams of Fig. 15 (shown for the m = 3
case). Now for a diagram we have E = 3mn − m + 1, V =
2mn − 2m + 2. Hence,

k1 + k2 = F − 1 = E − V + 2 − 2h − 1 = mn + m − 2h.
(B18)

Examples of τ corresponding to h = 0 and h = 1 are
shown, respectively, in Figs. 15(b) and 15(c). For any
τ �= σ ′

1 ⊗ σ ′
2 · · · ⊗ σ ′

m, we get a nonplanar diagram, so for

(a)

(b) (c)

FIG. 15. Examples of the diagrammatic representation for Eq. (B16) for n = 3 and m = 3. (a) The “future conditions” common to

all diagrams for
[ (

Z (A)
n

)m
]

eq app
with m = 3. (b),(c) Examples of interior connections for two different choices of τ .
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all terms appearing in Eq. (B16),

k1 + k2 ≤ mn + m − 2. (B19)

Also, again since any τ �= σ ′
1 ⊗ σ ′

2 · · · ⊗ σ ′
m is not equal to

e or νm,

k1, k2 ≤ mn − 1. (B20)

We then find that in both limits, dA ∼ dĀ ∼ Z1/2
1 and dA �

dĀ ∼ Z1, �m is suppressed by at least a factor of Z−1
1

relative to the leading term in (Zn,P)
m.

2. Matrix elements and correlation functions

Let us now consider

T = 〈ψ0|O1(t1)O2(t2) · · ·On(tn)|ψ0〉
= Tr[OU(tm)ρ0U(tm)†], (B21)

where O ≡ O1(t1 − tm)O2(t2 − tm) · · · On(tn − tm), and tm
is the smallest time among t1, . . . , tn. If tm � ts, then we
can apply the equilibrium approximation for U(tm), with
|a〉 = |ρ0, e〉, |b〉 = |O†, e〉 and n = 1. We find

〈ψ0|O1(t1)O2(t2) · · ·On(tn)|ψ0〉 ≈ Tr(Oρ(eq))

= 1
Z1

Tr(IαO), (B22)

which implies that the expectation value of O should be
equal to that in the equilibrium density operator ρ(eq). For
Eq. (B22), Eqs. (B7) and (B8) become [below η = (12)]
(
T 2

Q

)

eq app
= 1

Z2
1

〈
O†, e|Iα , η

〉 = 1
Z2

1
Tr(OIαOIα),

(B23)

(|TQ|2)eq app = 1
Z2

2

〈
O†, e ⊗ O, e|Iα , η

〉〈Iα , η|ρ0, e〉

= 1
Z2

1
Tr(O†IαOIα). (B24)

a. Matrix elements of reduced density matrix

A special example is O = |j 〉 〈i| ⊗ 1Ā, where |i〉 is a
basis for a subsystem A, in which case we have

(ρA)ij = (ρ
(eq)
A )ij +�ij , (B25)

where�ij is dropped under the equilibrium approximation.
Furthermore,
(
�2

ij

)

eq app
= 1

Z2
1

∑

a,b

(Iα)ia,jb(Iα)ib,ja,
(|�ij |2

)
eq app

= 1
Z2

1

∑

a,b

(Iα)ja,jb(Iα)ib,ia, (B26)

where a, b denote indices for a basis of Ā. Now suppose Iα
can be factorized Iα = IA ⊗ IĀ, we then find that

(
�2

ij

)

eq app
= {(ρ(eq)

A )ij }2TrĀ[(ρ(eq)
Ā
)2],

(|�ij |2
)

eq app = (ρ
(eq)
A )ii(ρ

(eq)
A )jj TrĀ[(ρ(eq)

Ā
)]2. (B27)

Now as an illustration let us consider the example of
Sec. III A with Eq. (94) and A = R. We have

(ρ
(eq)
R )ij ≈ 1

N
δij , �2

ij = 1
N 2 δij

Z(B)2

(Z(B)1 )2

|�ij |2 = 1
N 2

Z(B)2

(Z(B)1 )2
. (B28)

b. Equal-time correlation functions

Let us now consider Eqs. (B22)–(B24) for some generic
operator O (which can be a product of observables), with
A the smallest subsystem containing O.

In the case A � Ā, from our earlier discussion in
Sec. II G, in particular, Eqs. (69)–(70), the reduced den-
sity operator ρA of ρ = Uρ0U† is well approximated by
ρ
(eq)
A , and indeed we expect Eq. (B22) to hold as 〈O(t)〉 =

TrA(OρA) ≈ TrA[O(ρe)A] = Tr(Oρe). But going away
from the regime A � Ā, we expect the approximation,
Eq. (B22), to break down. Let us see how this comes
about from examining Eqs. (B23)–(B24). As an illustration
we consider a finite-dimensional Hilbert space at infinite
temperature with I = 1.

For this purpose, consider

O =
⎛

⎝
∑

i,j

cij |i〉 〈j |
⎞

⎠⊗ 1Ā, (B29)

where |i〉 again denotes a basis for A. Suppose cij are ran-
domly picked numbers with comparable magnitude (which
we can take to be 1) but random phases. From Eq. (B22)

〈O(t)〉 ≈ 1
dA

∑

i

cii ∼ 1

d
1
2
A

, (B30)

while

�2 ≡ (|TQ|2)eq app ≈ 1
dĀ

1
d2

A

∑

ij

|cij |2 ∼ 1
dĀ

1
d2

A
d2

A ∼ 1
dĀ

.

(B31)

We thus find the approximation, Eq. (B22), is good if

�

〈O(t)〉 = d
1
2
A

d
1
2
Ā

� 1 ⇐⇒ dA � dĀ. (B32)
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FIG. 16. Time evolution of the initial state |ψ0〉 to the state |ψ(t)〉 = U |ψ0〉 at time t by a circuit of local two-site unitary operators
in an uncompact system.

APPENDIX C: CAUSALITY ARGUMENT

Here we illustrate the causality argument of Sec. II H by
modeling the time evolution using discrete steps, that is, by
a unitary circuit. More explicitly, we consider an infinite
spin chain in 1+1-D with local Hilbert space dimension q,
and its local time evolution U is modeled by a circuit of
two-site unitary operators, as shown in Fig. 16. We want
to show that the entanglement entropies of the region A
shown in Fig. 8 are independent of the part of the time-
evolution operator outside the region J (A), which is in
causal contact with A.

Recall that for any subsystem A, for any unitary opera-
tors UA and UĀ acting only on A and Ā, respectively, and

any state ρ,

S(A)n

[
(UA ⊗ UĀ)ρ(U

†
A ⊗ U†

Ā
)
]

= S(A)n (ρ), (C1)

S(Ā)n

[
(UA ⊗ UĀ)ρ(U

†
A ⊗ U†

Ā
)
]

= S(Ā)n (ρ) (C2)

for all n. Let us act on the state |ψ(t)〉 created by the circuit
in Fig. 16 with (U−)Ā ⊗ 1A, where the operator U− acting
on Ā is constructed from local unitary operators as shown
in Fig. 17. U− has t layers of local unitary operators like the
original time-evolution operator U, and each local unitary
in U− is equal to the inverse of the operator in U located
at its mirror image with respect to the line at time t. By

FIG. 17. Blue rectangles indicate the local unitaries of the original circuit, red rectangles indicate their inverses used to construct
U−, and white rectangles indicate the identity operator. We show the action of U−

Ā
⊗ 1A on |ψ(t)〉, and some of the local random

unitaries in the definition of U−.
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FIG. 18. Due to the cancellation of inverses between local operators in U and U−
Ā

, the final state in Fig. 17 can also be produced by
the circuit shown above, where the time-evolution operator is of the form ŨJ (A) ⊗ 1J (A), with Ũ given by the part of the circuit between
the green dashed lines.

construction, the state prepared by the circuit in Fig. 17
is equal to the state prepared by that of Fig. 18, where the
overall time-evolution operator is of the form ŨJ (A) ⊗ 1J (A)

with ŨJ (A) nontrivial.

APPENDIX D: P(S)
O,n IN RANDOM UNITARY
CIRCUITS

In this section, we show that the result, Eq. (124),
obtained from the equilibrium approximation holds for
sufficiently late times in local random unitary circuits.

We use the setup and methods of Refs. [78,79,83], where
the system is a spin chain in (1 + 1) dimensions with local
Hilbert space dimension q. The time-evolution operator
is constructed from local unitary operators as shown in
Fig. 19(a), where each V appearing in the circuit is an inde-
pendent random unitary matrix acting on two sites, drawn
from the Haar measure of U(q2). We denote the number
of sites in the full system and in the subsystem A, respec-
tively, as |L| and |A|. Then dA = q|A| and dĀ = q|L|−|A|, with
the subsystems A and Ā = B1 ∪ B2 as shown in Fig. 19(a).
We take both |A| and |L| − |A| to be large, and consider
times t � |A|, |Ā|.

Now consider

TrĀ({TrA[O(t)]}n) = ⊗m∈Ā 〈η|m ⊗m∈A 〈e|m (U ⊗ U†)n |O, e〉 ,
(D1)

where we can express (U ⊗ U†)n as a product of (V ⊗ V†)n

for the local unitaries V. As explained in Refs. [78,79,

83], by using the Haar average of (V ⊗ V†)n, each V in
Fig. 19(a) can be associated with a “spin” σ taking val-
ues in the permutation group Sn, and Eq. (D1) becomes
the partition function for a classical spin system, which
has the same lattice structure as the circuit in Fig. 19(a).
See Fig. 19(b). The final state and initial state in Eq. (D1),
respectively, determine the spin configurations at the top
and bottom layers of the systems. In the top layer, the A
subsystem has e spins while Ā has η spins. The bottom
layer has a superposition of spin states determined from
the matrix elements of operator O. The spin system has
interactions among the three spins on each shaded triangle
in Fig. 19(b), characterized by a factor J (σb, σc; σa). The
contribution to Eq. (D1) from a given spin configuration is
given by the product of J (σb, σc; σa) from all shaded tri-
angles in Fig. 19(b), and a factor involving O that comes
from the bottom layer.

As in the usual Ising model, the partition function for
this spin system can be obtained by summing over different
domain-wall configurations. A domain wall between spins
σ and τ is labeled as σ−1τ (see Fig. 20), and thus there
are altogether n! different types of domain walls, one for
each element of Sn. We refer to domain walls associated
with transpositions of two elements as elementary domain
walls. Just like an element of Sn can be decomposed into a
product of transpositions, a domain wall can decomposed
into compositions of elementary domain walls. For exam-
ple, given that η = (n, n − 1, . . . 1) can be decomposed as
η = (1, 2)(1, 3) · · · (1, n − 1)(1, n), an η-domain wall may
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(a) (b)

FIG. 19. (a) The tensor network for the time-evolution operator in random unitary circuits and the regions A and Ā = B1 ∪ B2. (b)
The corresponding triangular lattice for the evaluation of Eq. (D1), which can have a spin labeled by elements of Sn at each vertex,
like σa,b,c shown explicitly in the figure.

be considered as a composite of n − 1 elementary domain
walls associated with these transpositions.

When the difference in position �x and the difference
in time �t between the initial and final points are both
large for all domain walls relevant for a quantity of interest,
there exists a coarse-grained description where we can
characterize domain walls by their velocities �x/�t, and
collectively take into account the contributions from all
detailed configurations that correspond to these velocities
[83]. Then a domain wall with velocity v contributes a
factor q−E(2)(v)�t to the partition function, where E (2)(v)
is independent of the type of the elementary domain wall.
Furthermore, if there are l − 1 elementary domain walls
traveling together at velocity v for time�t, we get a factor

q−(l−1)E(l)(v)�t. With finite q, for general v, E (l)(v) is dif-
ferent from E (2(v) due to interactions among domain walls
(they become equal in the limit q → ∞). It was argued in
Ref. [84] based on the dynamics of entanglement growth
in chaotic systems that the conditions

E (l)(vB) = vB, E (l)(v) ≥ v, E (l)′(vB) = 1 (D2)

should be satisfied for all l in any chaotic system. Here vB
is the butterfly velocity of the system. The explicit form of
E (l)(v) in random unitary circuits with finite q is not known
for l > 2, but the condition E (3)(vB) = vB was checked up
to next-to-leading order in 1/q in Ref. [83].

(a) (b)

FIG. 20. A domain wall that separates σ spins on the left and σμ spins on the right is labeled by μ, as shown in (a). For the
configuration shown in (b) (where we do not show the details of the lattice), the combined contribution from all domain walls is
q−E(2)(v1)tq−2E(3)(v2)tq−3E(4)(v3)t.
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(a) (b)

FIG. 21. (a) A general domain-wall configuration that can contribute in the scaling limit and at late times. (b) The leading
contribution in the scaling limit for a particular choice of σ , where each of the domain walls has velocity vB.

From the spin configuration indicated at the top bound-
ary of Fig. 19(b), we have an η−1 domain wall at the left
edge of A, and an η domain wall at the right edge. As
discussed above, each of these domain walls can be seen as
composites of n − 1 elementary walls, which can in prin-
ciple travel independently through the lattice. The lower
endpoints of each of these elementary domain walls in the
lattice can be either on the left or right edges, or at the
bottom [85]. One example of a possible configuration is
Fig. 20(b).

Now suppose t � |A|, |Ā|. Since the E (l)(v) are all O(1),
in all configurations where any domain walls reach the
lower boundary, we get factors exponentially suppressed
in t relative to configurations where all domain walls meet
in the middle or end at the edges of the system. So at such
times, it is sufficient to consider configurations that do not
reach the lower boundary. A general example of such a
configuration is indicated in Fig. 21(a). From Eq. (D2), we
see that for a pair of domain-wall configurations, which
meet in the middle, the maximal contribution comes from
the case where both have velocity vB. Similarly with those
ending on the edges. Thus any domain wall, which travels
to the left or right, must have velocity vB at leading order
in our limit. For a decomposition of η

η = σ × ν, (D3)

where σ corresponds to the composite domain walls,
which meet in the middle and ν to those ending on the
edge, the corresponding domain-wall configuration con-
tributes

q−|σ ||A|q−|ν||Ā| = q−[n−k(σ )]|A|q−[n−k(η−1σ)]|Ā|. (D4)

In the regime we are interested in, the above expression
is maximized when k(σ )+ k(η−1σ) is maximized, that is,
they should saturate Eq. (48).

On the lower boundary, |O, e〉 is attached to a σ−1 spin
at each site, so that we get a factor of 〈σ−1|O, e〉. Putting
together the contributions from such leading domain-
wall contributions for different choices of σ that saturate
Eq. (48), we then obtain the result, Eq. (124).

In the above derivation, we only make use of the fact that
the average over local random unitaries could be expressed
in terms of “spins” associated with permutations, and that
there is a membrane tension associated with the domain
walls between such spins in the scaling limit, which satis-
fies the conditions, Eq. (D2). The discussion of Ref. [11]
implies that the above features are also present in the
scaling limit in a variety of chaotic systems involving no
random averaging, such as the Floquet spin chains studied
there. We therefore expect that it may be possible to show
using the methods of Refs. [11] that the result, Eq. (124),
holds in the systems considered there.
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