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Describing open quantum systems far from equilibrium is challenging, in particular when the environ-
ment is mesoscopic, when it develops nonequilibrium features during the evolution, or when memory
effects cannot be disregarded. Here we derive a master equation that explicitly accounts for system-bath
correlations and includes, at a coarse-grained level, a dynamically evolving bath. It applies to a wide vari-
ety of environments; for instance, those that can be described by random matrix theory or the eigenstate
thermalization hypothesis. We obtain a local detailed balance condition that does not forbid the emergence
of stable negative temperature states in unison with the definition of temperature through the Boltzmann
entropy. We benchmark the master equation against the exact evolution and observe very good agreement
in a situation where the conventional Born-Markov-secular master equation breaks down. The present
description of the dynamics is robust and it remains accurate even if some of the assumptions are relaxed.
Even though our master equation describes a dynamically evolving bath not described by a Gibbs state,
we provide a consistent nonequilibrium thermodynamic framework and derive the first and second law as
well as the Clausius inequality. Our work paves the way for studying a variety of nanoscale quantum tech-
nologies, including engines, refrigerators, and heat pumps, beyond the conventionally used assumption of
a static thermal bath.
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I. INTRODUCTION

To understand the potential of future quantum tech-
nologies, it is essential to develop an efficient description
of microscopic systems far from equilibrium. Quantum
master equations are an important tool to describe the
nonequilibrium dynamics of small systems in contact with
an external environment [1–3]. Master equations have the
advantage that they apply to a large class of open systems,
are intuitive, and often allow further analytical progress in
the description. Unfortunately, master equations often rely
on the assumption that the environment is large, thermal,
memoryless, and weakly coupled to the system; therefore,
they quickly break down for many interesting applications
[1–3].

Here we reconsider a class of master equations, first
proposed in Ref. [4], which are general, intuitive, and
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analytically tractable but overcome to some extent the
assumption of a large, thermal, and memoryless environ-
ment. We refer to them as the “extended microcanoni-
cal master equation” (EMME). The idea is to addition-
ally keep track of the bath dynamics at a coarse-grained
level and include to some degree system-bath correlations.
This approach was previously formalized using corre-
lated projection operator techniques [5–8] and it has been
shown to significantly improve standard perturbative mas-
ter equations [6,8–10]. However, it has not yet become a
widespread tool. We believe the reason is that the general
physical properties of this class of master equations have
not yet been investigated and applications have remained
restricted to specifically tailored models. It is our goal to
overcome these limitations in the present paper.

We show that the EMME does not only provide an
efficient way to describe the non-Markovian dynamics of
open quantum systems but it also connects to a plethora
of actively discussed topics in nonequilibrium statisti-
cal mechanics. In the following, we summarize our main
results, which also serves as an outline for the rest of the
paper.

In Sec. II, we derive the EMME using three dif-
ferent methods, all leading to the same structure and
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phenomenology. Among them, one method uses random
matrix theory (RMT) and another invokes the eigenstate
thermalization hypothesis (ETH). The fact that we obtain
the same equation using different methods indicates that
our master equation has a clear degree of universility since,
in principle, it can be applied to many open quantum sys-
tems. In Sec. III, we observe that the EMME preserves
the total (system plus bath) coarse-grained energy and we
derive the local detailed balance. Remarkably, the local
detailed balance condition does not forbid the emergence
of stable negative temperatures defined according to the
Boltzmann entropy. We devote Sec. IV to testing numer-
ically our analytical results. We benchmark the EMME
against the frequently used Born-Markov-secular (BMS)
master equation and against the exact dynamics. To that
end, we consider a spin system randomly coupled to a finite
environment for which the EMME shows very good agree-
ment with the exact dynamics. In Sec. V, we introduce a
consistent nonequilibrium thermodynamic framework that
includes slowly driven systems. Using this framework, we
obtain the first and second law of thermodynamics. More-
over, we connect the first and second law with the Clausius
inequality by introducing an effective nonequilibrium tem-
perature. In Sec. VI, we extend the aforementioned results
to the case of multiple environments. In Sec. VII, we com-
pare the EMME with other master equation approaches and
present our conclusions. Finally, to keep the presentation
focused, generalizations and additional results are shifted
to the Appendixes.

II. THE EXTENDED MICROCANONICAL
MASTER EQUATION

A. General idea and final result

One of the central goals of the theory of open quan-
tum systems is to derive a closed evolution equation for
the relevant degrees of freedom. Such an equation can be
formally obtained with use of projection operator tech-
niques [1,3]. Projection operator techniques are based on
the definition of a projection superoperator P and its com-
plementary Q = I − P (where I is the identity map),
which divide the Hilbert space into relevant (P) and irrel-
evant (Q) degrees of freedom. Because P and Q are
orthogonal projectors, they satisfy P2 = P , Q2 = Q, and
QP = PQ = 0, and are otherwise quite arbitrary. Given
the state ρ of an isolated system, the use of projection tech-
niques provides a closed equation for the dynamics of the
relevant part Pρ = P[ρ], achieved by formally integrating
out the dynamics of the irrelevant part Q[ρ] [1,3].

We consider an isolated system (the universe) composed
of the system S and the environment (or bath) B. The iso-
lated system undergoes unitary dynamics generated by the
Hamiltonian H = HS + Hint + HB, where HS and HB con-
tain only system and bath degrees of freedom, respectively,

while Hint represents the interaction energy between the
system and the bath.

In the interaction picture with respect to H0 = HS + HB,
the evolution of the isolated system is generated by the von
Neumann equation (� = 1)

∂tρ̃(t) = −i[H̃int(t), ρ̃(t)] := L(t)[ρ̃(t)], (1)

where the tilde denotes operators in the interaction picture;
for example, ρ̃(t) = exp(iH0t)ρ(0) exp(−iH0t). Under the
assumptions of (i) weak coupling and (ii) an initial state
contained in the relevant part P[ρ(0)] = ρ(0), the dynam-
ics of the relevant degrees of freedom are described by the
well-known second-order time-convolutionless (or finite-
time Redfield) master equation [1,3]:

∂tP ρ̃(t) = PL(t)[P ρ̃(t)]

+
∫ t

0
dt′PL(t)QL(t′)[P ρ̃(t)], (2)

where we have disregarded terms of O(H3
int). Dropping

assumption (ii) would lead to an extra nonhomogeneous
term in Eq. (2) that, typically, is relevant only for the
transient dynamics.

It is worth noting that the derivation of Eq. (2) makes no
use of the explicit form of the projection superoperator P .
For later comparison, we introduce the projection super-
operator PBorn, which leads to the standard BMS master
equation (kB = 1):

PBorn[ρ] := ρS ⊗ e−HB/Tcan

ZB
, (3)

where ρS := trB ρ, Tcan is the canonical temperature of the
reference state of the bath, and ZB := tr[exp(−HB/Tcan)] is
the partition function. We emphasize that PBorn is defined
with respect to a fixed Gibbs state of the bath, which is
uncorrelated with the system.

In some physical situations, however, the system-bath
interaction causes the bath to evolve and develop correla-
tions with the system. To better approximate this situation,
we instead consider the following classically correlated
projection superoperator:

P[ρ] :=
∑

E

ρS(E) ⊗ �E

VE
, (4)

where all the terms deserve a comment. First, the macro-
scopic energies {E} are a set of coarse-grained bath ener-
gies. To be precise, consider the spectral decomposition
of the bath Hamiltonian HB = ∑

Ei
Ei|Ei〉〈Ei|, where the

set of microscopic energies {Ei} is ordered according to
Ei ≤ Ej if i < j . In contrast, we define the set {E} of
macroscopic energies by dividing the spectrum of the bath
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into nonoverlapping energy windows Eδ := [E − δ/2, E +
δ/2) of width δ. Accordingly, we introduce the projectors
�E := ∑

Ei∈Eδ
|Ei〉〈Ei| corresponding to the different ener-

gies E that can be distinguished by macroscopic measure-
ments. We also introduce the volume VE := tr �E , which
represents the number of microstates in the macrostate
E. Finally, ρS(E) := trB (ρ�E) is the unnormalized con-
ditional state of the system when the bath is found in the
macroscopic state E, and its trace gives the probability
p(E) := tr ρS(E) of the bath being in that macrostate E.
Then the reduced state of the system can be obtained as
ρS = ∑

E ρS(E), which is normalized since
∑

E p(E) = 1.
For the time being, we focus on the case where HB rep-
resents a single bath, leaving the extension to multiple
environments to Sec. VI.

Our goal is to describe the dynamics of open quantum
systems that interact and build up correlations with a finite
bath. Hence, we first define precisely what a finite bath
actually is. First, the term “finite” refers to an environment
with a finite dimension whose state cannot be approxi-
mated by a time-independent reference state. Second, the
term “bath” implies that such a system should exhibit bath-
like properties, which are ultimately related to a large
number of microstates. In particular, the coarse-graining
procedure should ensure that in each energy window Eδ

there are enough microscopic energies Ei. As already
recognized by Boltzmann, the aforementioned coarse-
graining procedure is crucial to reconcile the underly-
ing reversible quantum mechanical description with the
irreversible macroscopic world and permits a simplified
dynamical description. The same coarse-graining proce-
dure was also used by von Neumann [11] (see Ref. [12]
for the English translation) almost a century ago.

To fix further notation, we introduce the system Hamil-
tonian HS = ∑

k εk|k〉〈k| and we fix the interaction Hint =
λS ⊗ Bint, where λ is an energy scale. The general expres-
sions for multiple coupling operators (i.e., Hint = ∑

α Sα ⊗
Bα

int) can be found in the Appendixes.
Under the conditions set out above, our central object

of study is a master equation describing the time evolution
of ρS(E). If we use the conventional Markov and secular
approximations [1–3], it reads

∂tρS(E) = −i[H′
S(E), ρS(E)]

+
∑

ω

(
γ (E, E − ω)

VE−ω

SωρS(E − ω)S†
ω

− γ (E + ω, E)

2VE

{
ρS(E), S†

ωSω

})
, (5)

where ω sums over all possible system transition fre-
quencies. Furthermore, we have introduced the dissipation

rates

γ (E, E′)δE′,E+ω :=
∫

R

dτ trB[B̃†(−τ)�EB�E′] eiωτ , (6)

the operators Sω := ∑
kq〈k|S|q〉|k〉〈q|δεq−εk ,ω, and the

modified Hamiltonian H′
S(E), which commutes with the

bare system Hamiltonian HS. All of them are defined
precisely below.

It is important to emphasize two general features of our
EMME. First, one can show that Eq. (5) fits into the gen-
eral form investigated by Breuer [8], who shows that it
preserves the trace of ρS and complete positivity of ρS(E)

at all times. Second, although we derive Eq. (5) using the
Markov and secular approximations, which implies that
ρS(E) evolves in a Markovian manner, the reduced system
state ρS does not. Therefore, the EMME is able to capture
non-Markovian system dynamics.

We provide a step-by-step derivation of Eq. (5) in Sec.
II B. Particular care is required when one is evaluating the
bath correlation function. In Sec. II C, we use three dif-
ferent methods to arrive at the same conclusion. Further
mathematical details are shifted to Appendix A. Readers
not interested in the details of the derivation can skip the
rest of this section and continue reading in Sec. III, where
we start to focus in detail on the physics predicted by the
EMME.

B. Detailed derivation

In this subsection, we give a detailed derivation of the
EMME, which corresponds to finding explicit expressions
for the first-order and second-order terms in Eq. (2). To
this aim, it will prove useful to decompose Hint into block-
diagonal and off-diagonal parts:

Hint =
∑

E

δH(E) ⊗ �E + V, (7)

where we have implicitly defined

δH(E) := λ〈Bint〉ES,

V := λS ⊗ B = λS ⊗
(

Bint −
∑

E

〈Bint〉E�E

)
.

(8)

Here 〈· · ·〉E := trB(· · · �E/VE) denotes the microcanoni-
cal average at energy E. Note that the operator B has the
important property 〈B〉E = 0, which we use below.

With use of Eq. (7), the first-order term in Eq. (2) reads

PL(t)[P ρ̃(t)] = −i
∑

E

[ ˜δH(E; t)�E ,P ρ̃(t)]. (9)

In standard projection operator techniques that use PBorn,
the first-order term in Eq. (2) can be set to zero without loss
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of generality by including its contribution in the system
Hamiltonian HS [1–3]. This is no longer possible for the
projection in Eq. (4). The second-order term is obtained by
similar manipulations as

PL(t)QL(t′)[P ρ̃(t)]

= −
∑

E

trB{�E[Ṽ(t), [Ṽ(t′),P ρ̃(t)]]} ⊗ �E

VE
. (10)

The evolution equation for each component ρ̃S(E; t) is
then found by inserting Eqs. (9) and (10) in Eq. (2) and
using of our correlated projector P in Eq. (4). This yields

∂tρ̃S(E; t) = −i[ ˜δH(E; t), ρ̃S(E; t)]

+
∑

E′

∫ t

0
dt′ trB

{
�E

[
Ṽ(t),

[
ρ̃S(E′; t) ⊗ �E′

VE′
, Ṽ(t′)

]]}
.

(11)

Next, we introduce the microcanonical bath correlation
function

CB(E, E′; t′ − t) := λ2 tr〈B†(t′)�EB(t)〉E′ , (12)

which can be explicitly computed as

CB(E, E′; −τ) =
∑

Ei∈Eδ

∑
Ej ∈E′

δ

λ2

VE′
|〈Ei|B|Ej 〉|2 ei(Ei−Ej )τ .

(13)

We also introduce the decomposition S̃(t) = ∑
ω Sω

exp(−iωt), where Sω := ∑
kq〈k|S|q〉|k〉〈q|δεq−εk ,ω. Using

both expressions in Eq. (11), one arrives at

∂tρ̃S(E; t) = −i[ ˜δH(E; t), ρ̃S(E; t)]

+
∑

E′

∑
ωω′

∫ t

0
dt′ei(ω′t′−ωt)

(
CB(E, E′; t′ − t)Sωρ̃S(E′, t)S†

ω′

−CB(E′, E; t′ − t)ρ̃S(E; t)S†
ω′Sω

)
+ h.c.. (14)

Equation (14) is the finite-time Redfield version of the
EMME (in the interaction picture), which is ready for
numerical implementation and gives improved results for
transient times (see Sec. IV). It is, however, still hard to
work with Eq. (14) analytically. Therefore, we use the
standard Markov and secular approximations [1–3], which,
nonetheless, give different results from the standard BMS
master equation due to the different choice of the projection
superoperator P in Eq. (4).

The Markov approximation relies on the fact that the
microcanonical bath correlation function decays rapidly to
zero. To understand the range of validity of this approx-
imation, we use the following timescale argument. We

denote by τB the correlation time of the bath defined such
that CB(E, E′; −τ) ≈ 0 for all τ ≥ τB. Of course, τB is a
function of the energy width δ, that is, τB = τB(δ), and
depends on the particular coarse-graining procedure. If the
bath energies are fine-grained (i.e., δ → 0), the correlation
function oscillates at frequency Ei − Ej and never decays.
In such a case, τB → ∞ and the Markov approximation
breaks down. Instead, for a sufficiently large δ many fre-
quencies Ei − Ej contribute to Eq. (13) and the correlation
function decays rapidly. Then one can safely extend the
upper limit of the time integrals in Eq. (14) to infinity and
the Markov approximation holds. In this sense, a finite
coarse graining δ is necessary to reconcile the reversible
microscopic description with the irreversible macroscopic
world.

However, for finite baths the correlation function never
decays exactly to zero and it can exhibit recurrences for
sufficiently long times. Then the validity of the Markov
assumption relies on the fact that the typical Poincaré
recurrence time is exceedingly large (see, for instance,
Refs. [13,14]), and one is often interested in timescales of
evolution much smaller than the recurrence time.

Our second approximation, which is called the “secu-
lar approximation”, consists in averaging out the rapidly
oscillating terms in the interaction picture. Formally, this
is done by introducing the time average

O := lim
T→∞

1
T

∫ T

0
dt′Õ(t′), (15)

which, used in Eq. (14) (after taking the limit t → ∞ in the
upper limit of the integral) selects the components ω = ω′.

Introducing the one-sided Fourier transform

�(E, E′; ω) := VE′

∫ ∞

0
dτCB(E, E′; −τ) eiωτ , (16)

we can write the resulting equation after both approxima-
tions compactly as

∂tρ̃S(E; t) = −i[δH(E), ρ̃S(E; t)]

+
∑

E′

∑
ω

(
�(E, E′; −ω)

VE′
Sωρ̃S(E′; t)S†

ω

− �(E′, E; −ω)

VE
ρ̃S(E; t)S†

ωSω

)
+ h.c., (17)

where the change of variables τ = t − t′ has been per-
formed. Also, δH(E) is an energy-dependent Hamil-
tonian shift that commutes with the system Hamil-
tonian HS and has the explicit expression δH(E) =∑

k〈Bint〉E〈k|S|k〉|k〉〈k|.
To compare the EMME with the conventional BMS

master equation, it is convenient to decompose the function

010340-4



QUANTUM SYSTEMS CORRELATED WITH A FINITE BATH... PRX QUANTUM 2, 010340 (2021)

�(E, E′; ω) into its real and imaginary parts as

A(E, E′; ω) := 1
2i

[�(E, E′; ω) − �(E, E′; ω)∗],

γ (E, E′; ω) := �(E, E′; ω) + �(E, E′; ω)∗,
(18)

from which it follows that

γ (E, E′; ω) = VE′

∫
R

dτCB(E, E′; −τ) eiωτ . (19)

From Sec. II C 1 to Sec. II C 3, we show that the function
γ (E, E′; ω) is generically peaked around E′ = E + ω and
we are allowed to factorize

γ (E, E′; ω) = γ (E, E′)δE′,E+ω. (20)

We also introduce the energy-dependent Lamb-shift
Hamiltonian

HLS(E) := −
∑

E′

∑
ω

A(E′, E, −ω)

VE
S†

ωSω, (21)

which also commutes with the system Hamiltonian HS.
Then the modified Hamiltonian

H′
S(E) := HS + δH(E) + HLS(E) (22)

commutes with HS and corresponds to an E-dependent
shift of the system energies.

Finally, after moving to the Schrödinger picture, we
obtain our first main result: the EMME within the Markov
and secular approximations shown in Eq. (5).

The exact computation of CB(E, E′; −τ), or the asso-
ciated γ (E, E′; ω), depends on the fine structure of the
bath energy levels as well as the exact form of the cou-
pling operators B. In relevant physical situations, neither
the fine structure of the bath energy levels nor the exact
form of the coupling operator is typically available. For
this reason, it is important to find approximate methods to
compute the correlation function that depend only on the
coarse structure of the bath energy levels. In the following
subsection, we present three methods to obtain the func-
tions γ (E, E′; ω): the first one ignores part of the internal
bath dynamics, the second one uses RMT, and the third
invokes the ETH. Moreover, we further connect those three
methods in Appendix A 4.

C. Evaluation of the bath correlation function

1. Heuristic approach

The idea behind the heuristic approach is to assume that
there exists a coarse graining δ such that δτB(δ)  1. In
that case, for the relevant times τ ≤ τB, one can expand

ei(Ei−Ej )τ ≈ ei(E−E′)τ + O(δτB). (23)

Essentially, this corresponds to replacing the energy differ-
ences Ei − Ej �→ E − E′ when Ei ∈ Eδ and Ej ∈ E′

δ in Eq.

(13), as was considered in Ref. [15]. Then the correlation
function yields

CB(E, E′; −τ) ≈ λ2 tr(B†�EB�E′)
ei(E−E′)τ

VE′
. (24)

The case δ → 0 was studied in Refs. [4,16]. With the help
of Eqs. (19) and (24) (see Appendix A 1), one obtains the
dissipation rates

γheuristic(E, E′) = 2πλ2

δ
tr(B†�EB�E′). (25)

Hence, the procedure above provides an additional inter-
pretation of the parameter δ. Of course, given a bath, it
is not clear whether such a coarse graining δ exists, and
for this reason we refer to this approach as “heuristic”. On
the other hand, the present evaluation of the correlation
function does not rely on any explicit assumption on the
bath coupling operator B. Alternative methods to evalu-
ate CB(E, E′; −τ) that are based on assumptions about the
bath coupling operator B are considered in the next two
subsections.

2. Random matrix coupling with a dense environment

In many physical situations, the interaction Hamilto-
nian Hint might be too complicated to be obtained with ab
initio methods. Hence, in the same spirit as the heuristic
approach, our aim is to evaluate the correlation func-
tion without fully specifying the bath coupling operator
B. One possibility is offered by RMT (for a review of
the topic see, for instance, Ref. [17]), which has been
widely used in many physical contexts due to its uni-
versality. In particular, it has been used to describe the
decay of quantum systems in contact with complex envi-
ronments (see for instance, Refs. [6,9,18–23]). In general,
a random matrix ansatz seems to work well for strongly
nonintegrable systems (see, for instance, Ref. [24]).

Our approach is based on extracting B from a random
matrix ensemble and computing the corresponding cor-
relation function. In principle, two different members of
the ensemble can give rise to a very different dynamics.
The essence of RMT relies on the fact that this is often
not the case and the fine structure of the coupling opera-
tors is important only in exceptional cases. In particular,
it has been shown not only that the RMT approach gives
the correct mean value when compared with the predic-
tions of statistical mechanics but also that the variance
between the two is very small (see, for instance, Ref. [25]).
Thus, almost all members of the random matrix ensemble
give the same prediction. Hence, despite our performing
the random matrix ensemble average theoretically, no such
average is implied experimentally.
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Here we use the RMT approach and consider that the
coupling to the environment is done via the random matrix

B =
∑
E �=E′

∑
Ei∈Eδ

∑
Ej ∈E′

δ

[
b(E, E′) + c(Ei, Ej )

] |Ei〉〈Ej |, (26)

where b(E, E′) are deterministic functions of the macro-
scopic energies, and c(Ei, Ej ) are random numbers.
We consider c(Ei, Ej ) to be independent and identi-
cally distributed complex random variables with zero
mean, that is, E[c(Ei, Ej )] = 0, and variance a2, that is,
E[c(Ei, Ej )c(Ei′ , Ej ′)] = a2δEi,E′

i
δEj ,E′

j
. Using the random

coupling of Eq. (26) and averaging over the correlation
function in Eq. (13) (see Appendix A 2 for details), one
obtains the dissipation rates

γRMT(E, E′) = 2πλ2

δ
VEVE′(|b(E, E′)|2 + a2). (27)

3. The eigenstate thermalization hypothesis

The ETH is an ansatz for the matrix elements of a local
observable in the energy eigenbasis of a quantum many-
body system (see Refs. [26–29]). It has been successfully
used to study equilibration and thermalization in a vari-
ety of isolated quantum systems. Yet, its exact range of
validity is still under debate, but there is a consensus that
it applies to many-body systems whose classical counter-
part is chaotic (although not exclussively, see Ref. [28]).
Here we use the ETH to make progress in computing
the bath correlation function CB(E, E′; −τ), thereby link-
ing the field of equilibration and thermalization in isolated
many-body systems to the field of open quantum systems.
The ETH can be formulated as follows. The matrix ele-
ments of a local observable O in the energy eigenbasis
of a nonintegrable quantum many-body system obey the
following ansatz:

Oij = O(Eij )δij +
√

1
VEij

f (Eij , �ij )Rij , (28)

where the mean energy Eij = (Ei + Ej )/2 and the energy
difference �ij = Ei − Ej have been introduced. All ele-
ments of the above equation deserve a comment. The
functions O(Eij ) and f (Eij , �ij ) are smooth functions of
their arguments. Moreover, the function f must decay as
|�ij | grows and has the symmetry property f (Eij , −�ij ) =
f ∗(Eij , �ij ). Finally, the numbers Rij = R∗

ji have zero mean
and unit variance, and vary erratically with i and j . These
erratically varying Rij allow us to effectively use argu-
ments from random matrix theory without the need to
actually perform any ensemble average.

The main insight arises from the fact that the open sys-
tem S couples locally (through its boundary) to the bath
B via the operators B. Since the ETH holds for local

observables of a quantum many-body system, we can make
progress on the computation of the bath correlation func-
tion CB(E, E′; −τ) using the ETH ansatz for the operators
B. Then, introducing Ē = (E + E′)/2, one arrives at the
complex dissipation rates (see Appendix A 3)

γETH(E, E′) = 2πλ2

δ
VEVE′

|f (Ē, E − E′)|2
VĒ

. (29)

III. ENERGY CONSERVATION, EQUILIBRIUM
STATES, AND MUTUAL INFORMATION

After proving that the EMME has a certain degree
of universality, we devote this section to investigating
its properties. We start by noting that the populations
p(εk, E) = 〈k|ρS(E)|k〉 evolve autonomously under the
rate equation

∂tp(εk, E) =
∑

q

(
Wkq(E, E + ωkq)

VE+ωkq

p(εq, E + ωkq)

−Wqk(E + ωkq, E)

VE
p(εk, E)

)
, (30)

where we have defined ωkq = εk − εq and the transition
rates

Wkq(E, E′) := γ (E, E′)|〈k|S|q〉|2. (31)

In Appendix C, we prove the positivity of the transition
rates Wkq(E, E′) ≥ 0 as well as the symmetry Wkq(E, E′) =
Wqk(E′, E).

A. Strict energy conservation

A crucial property of Eq. (5) is that the coarse-grained
total energy of the system and bath composite is preserved
under the evolution. The statement is actually stronger
since not only the average value of the total energy is pre-
served but also the associated probability distribution. To
be precise, we introduce the coarse-grained total energy
Etot := εk + E associated with the system having energy εk
and the bath being in the energy window E. We denote the
corresponding probability of being in the energy shell Etot
as P(Etot) := ∑

k p(εk, Etot − εk). From Eq. (30), it follows
that

∂tP(Etot) = 0, (32)

and therefore the probability of being in the energy shell
Etot is a conserved quantity of the evolution. In particu-
lar, its average U := ∑

k,E P(Etot)Etot fulfills dU/dt = 0.
Hence, the two variables εk and E are not independent and,
given Etot, one can obtain εk from E or vice versa.
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B. Equilibrium states and local detailed balance

From Eq. (30), the rate to jump from the state (εq, E′)
to the state (εk, E) is Wkq(E, E′)/VE′ . Using the symmetry
property of the transition rates Wkq(E, E′) = Wqk(E′, E),
we find that the ratio of the rates to jump from the state
(εk, E) to the state (εq, E + ωkq) reduces to

VE

VE+ωkq

= e−[Smic(E+ωkq)−Smic(E)], (33)

where we have introduced the microcanonical (or Boltz-
mann) entropy Smic(E) = log VE . Equation (33) consti-
tutes the local detailed balance condition for the EMME.
Note that the local detailed balance condition in Eq. (33)
matches the one obtained within the context of classical
Markovian dynamics in phase space [30].

At equilibrium all probability flows are balanced and the
local detailed balance condition implies

peq(εk, E)

peq(εq, E + ωkq)
= e−[Smic(E+ωkq)−Smic(E)] (34)

for the equilibrium probabilities. Using the total energy Etot
introduced above, we can write the steady-state condition
in a more symmetric manner as

peq(εk, Etot − εk)

peq(εq, Etot − εq)
= VEtot−εk

VEtot−εq

. (35)

Since P(Etot) is constant, the final energy distribution for
each of the probabilities p(εk, Etot) is fixed to have the
equilibrium value

peq(εk, Etot − εk) = P(Etot)
VEtot−εk∑
q VEtot−εq

, (36)

which was first noted in Ref. [16]. In summary, the
steady-state condition in Eq. (35) implies that the system
explores equiprobably all the available phase space given
the macroscopic constraint that the total energy equals Etot.

One may wonder whether the steady state of the EMME
deviates from the steady state of the conventionally used
BMS master equation. From Eq. (34), introducing the
definition of the microcanonical (or Boltzmann) temper-
ature dE = Tmic(E) dSmic(E), we obtain for small ωkq

peq(εk, E)

peq(εq, E + ωkq)
= e−ωkq/Tmic(E). (37)

This still involves the joint probability distributions of the
system and the bath. If the bath energies are restricted to
a microscopically large but macroscopically small energy
range, we can assume that Tmic depends only very slowly
on E such that it is a constant to first order. In that scenario,

the population ratio in Eq. (37) is independent of the bath
energy E. Assuming an unbounded bath spectrum, one can
multiply Eq. (37) by p(εq, E + ωkq) and then sum over E
to obtain

peq(εk)

peq(εq)
= e−ωkq/Tmic

(
1 −

ωkq∑
E=0

p(εq, E)

p(εq)

)
, (38)

where we have taken, without loss of generality, ωkq > 0.
The second term in large parentheses in Eq. (38) is a cor-
rection that appears due to the strict energy conservation
condition ∂tP(Etot) = 0. Namely, for E < ωkq, the process
εq �→ εk cannot occur because there is no bath transition
that can supply the energy deficit ωkq. In general, the con-
tribution of the correction term will be small as long as the
bath has initially a sufficiently high energy.

Instead, the conventional BMS master equation derived
using the projector PBorn in Eq. (3) predicts the steady state

peq(εk)

peq(εq)
= e−ωkq/Tcan , (39)

where Tcan is fixed by the choice of the projector in Eq.
(3). At first glance, the steady-state probabilities in Eqs.
(38) and (39) are similar. Indeed, if the back action of
the system on the bath is negligible and if the equiva-
lence of ensembles holds, then Tcan = Tmic, but we remark
that Tmic �= Tcan in general. This is best illustrated by the
extreme case of negative-temperature (Tmic < 0) steady
states, for which the energy populations increase with
energy. Those negative-temperature states arise when, at
least locally, the volume terms of the bath decrease with
energy VE < VE′ for E > E′. Then the equivalence of
ensembles clearly breaks down, as there is typically no
Gibbs state that approximates the true state of the bath.

Following the observation of negative-temperature
states [31], the question of whether negative tempera-
tures are thermodynamically consistent has attracted much
attention recently, with arguments presented against [32–
34] or in favor [35–37] of this. The debate remained, how-
ever, mostly on an abstract and axiomatic level. We here
contribute to this fundamental question by numerically
observing the emergence of stable population inverted
steady states of an open system (see below). By “stable”
we mean that all initial states of the open system tend to
this population inverted state in the long-time limit (unless
additional symmetries are present preventing the existence
of a unique steady state). This result is also supported
by the exact numerical integration of the full Schrödinger
equation (see the second row in Fig. 2). These states
match a Gibbs distribution with negative temperature if
one uses the Boltzmann entropy to define temperature. In
Sec. V we also formulate nonequilibrium first and second
law for the EMME. Thus, within our framework we can
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deal with negative-temperature states without observing
the emergence of any thermodynamic inconsistencies.

C. System-bath correlations

In the literature, the use of the uncorrelated projection
superoperator PBorn is often justified by invoking the weak
coupling assumption. However, as we show in Sec. V, this
is not true, and even at the weak coupling limit strong
system-bath correlations can build up (see also Ref. [38]).
The EMME allows us to access part of these correlations
and also to quantify them. We proceed as follows.

To quantify the (possibly quantum) system-bath corre-
lations, we introduce the always positive quantum mutual
information

IS:B[ρ] := tr{ρ[log ρ − log(ρS ⊗ ρB)]} ≥ 0. (40)

Then a high value of the mutual information indicates that
the uncorrelated projector PBorn fails to capture the corre-
lated nature of the system-bath dynamics, and therefore,
the correctness of the BMS description is not guaranteed.

In absence of quantum correlations, the quantum mutual
information is bounded from above by IS:B ≤ log dS,
where dS is the dimension of the system Hilbert space
(naturally, we assume the dimension of the bath dB is
larger than the system dimension dS). Thus, in our context
a value IS:B � log dS corresponds to strong system-bath
correlations.

The EMME, however, keeps track of only part of the
full system-bath dynamics and, ultimately, has information
about the classical probability distribution p(εk, E), with
p(εk, E) = tr(ρ|k〉〈k| ⊗ �E/VE). The system-bath correla-
tions included in p(εk, E) are quantified with use of the
coarse-grained mutual information

IS:B
CG (p) :=

∑
k,E

p(εk, E) log
(

p(εk, E)

p(εk)p(E)

)
≥ 0, (41)

where p is the vector with components p(εk, E). It can be
shown (see Appendix D) that

IS:B[ρ] ≥ IS:B
CG (p) ≥ 0, (42)

where the first inequality becomes an equality for the state
ρ = ∑

k,E p(εk, E)|k〉〈k| ⊗ �E/VE .
Physically speaking, the reason why we can observe

strong system-bath correlations with the EMME arises
from the fact that the total energy Etot is conserved under
the evolution, which constraints the values that the bath
energy E can take given a system energy εk. Hence, this
constrained dynamics can give rise to high system-bath
correlations as we numerically observe in Sec. V (see
Fig. 5).

FIG. 1. Model of a spin coupled to a structured environment.

IV. EXAMPLE: SPIN COUPLED TO A
STRUCTURED ENVIRONMENT

To numerically check the validity of various results
derived in Secs. III and V, we consider here an extension of
the model studied in Ref. [6]. First, we derive the EMME
for this model and then we compare its prediction with the
exact integration of the Schrödinger equation. The model
consists of a single spin with two energy levels |0〉 and
|1〉 coupled to a finite environment (see Fig. 1). For con-
venience, we introduce the raising and lowering operators
σ+ = |1〉〈0| = σ

†
−. The bare system and bath Hamiltonians

are

HS = ε0|0〉〈0| + ε1|1〉〈1|,
HB =

∑
Ei

Ei|Ei〉〈Ei|. (43)

We consider the interaction Hint = V = λ(σ+ + σ−) ⊗ B,
and model the bath coupling operator using the RMT
approach described in Sec. II C 2 in such a way that
B is given by Eq. (26). This choice leads to δH(E) = 0
for all energies E. Recall that c(Ei, Ej ) are independent
and identically distributed complex random numbers with
zero mean and variance a2. For simplicity, we assume
that ε1 − ε0 = �ε = nδ, with n ∈ N, which ensures the
existence of an energy E′ such that E′ = E + �ε.

Remarkably, it is relatively simple to obtain the finite-
time Redfield version of the EMME analytically for this
system. As explained in Appendix B, this is achieved by
conveniently introducing the function

ζ(t) := δ

π

∫ t

0

sin2(δτ/2)

(δτ/2)2 dτ , (44)

which fulfills ζ(t → ∞) = 1. Then the finite-time Red-
field of the EMME takes the same form as Eq. (5) but the
dissipation rates are multiplied by the time envelope ζ(t).
For our particular example, this procedure leads to
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∂tρS(E) = −i[H′
S(E), ρS(E)] + ζ(t)γ (E, E + �ε)

(
σ+ρS(E + �ε)σ−

VE+�ε

− {ρS(E), |1〉〈1|}
2VE

)

+ ζ(t)γ (E, E − �ε)

(
σ−ρS(E − �ε)σ+

VE−�ε

− {ρS(E), |0〉〈0|}
2VE

)
, (45)

where we have introduced γ (E, E′) = 2πλ2(|b(E, E′)|2 +
a2)VEVE′/δ. The function γ (E, E′) has the property
γ (E, E′) = γ (E′, E), and it vanishes if either E or E′ does
not exist. Physically speaking, the second line of Eq. (45)
represents a process in which a quantum of bath energy
excites the system, while the third line represents the oppo-
site process, in which the system gets de-excited. Equation
(45) corresponds to the finite-time Redfield equation for
this particular model, and we provide its analytical solution
in Appendix E.

To benchmark the EMME, we proceed to investigate
numerically a particular case of the model described
above. Namely, we consider an environment of only two
energy windows of macroscopic energies E = {ε0, ε0 +
�ε}, with width δ = �ε/2. The bath coupling operator
B takes the form in Eq. (26), where we set for simplic-
ity b(E, E′) = 0 and a2 = 1. Also, we fix the initial state

to ρ(0) = |1〉〈1| ⊗ �ε0/Vε0 . For this particular choice,
even if we were to consider more bands in the envi-
ronment, their populations would not change with time.
Finally, in the spirit of RMT, the numerical investiga-
tion is done with a single realization of the bath coupling
operator B.

To challenge the assumptions made in the derivation,
we consider the following three scenarios: (i) regular bath
spectrum—the energy levels of the bath are equidistantly
distributed (as in Ref. [6]); (ii) random bath spectrum—the
energy levels of the bath are randomly distributed within
each energy window; and (iii) half-filled energy win-
dow—not only are the bath energy levels randomly dis-
tributed but also the initial state has only half of the energy
window occupied. Hence, we have P[ρ(0)] �= ρ(0), but
we still use the EMME from Eq. (5) ,ignoring any inho-
mogeneous contribution.

p(e
1
, e

0
) EMME t Æ •

p(e
1
, e

0
) EMME finite t

p(e
1
, e

0
) BMS master equation

t (De –1) t (De –1) t (De –1)

p(e
1
, e

0
) Exact

p(
e 1, 

e 0)
p(

e 1, 
e 0)

FIG. 2. Comparison of the evolution of the joint probability p(ε1, E = ε0) for a spin system coupled to a two-band environment
with initial state ρ(0) = |1〉〈1| ⊗ �ε0/Vε0 , and b(E, E′) = 0 for all E and E′. The results are obtained with the following three different
methods: exact evolution solving the Schrödinger equation (solid blue line), solution using the EMME with the Markov approximation
t → ∞ (dashed orange line), solution using the finite-time Redfield version of the EMME (dot-dashed green line with square markers),
and solution using the standard BMS master equation (dotted red line). The first column corresponds to a regular bath with equidistant
energy levels. The second column corresponds to randomly distributed energy levels. The third column corresponds to randomly
distributed energy levels and the initial state of the bath taken to be only half-filled (i.e., a mixed stated of the Vε0/2 levels with
lower energy). The first row corresponds to Vε0 = 400 and Vε1 = 600. The second row corresponds to Vε0 = 600 and Vε1 = 400.
λ = 3 × 10−3, δ = 0.5, �ε = 1, and a = 1.
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To be precise, the regular bath spectrum has ener-
gies Eik = εk − δ/2 + ikδ/Vεk , where ik ∈ {0, 1, . . . , Vεk −
1} for k = 0, 1; the random bath spectrum has ener-
gies sampled from a flat distribution in the energy win-
dow [εk − δ/2, εk + δ/2) for k = 0, 1; and the initial
state of the half-filled energy window is taken to be
ρ(0) = |1〉〈1| ⊗ ∑Vε0/2

i=1 |Ei〉〈Ei|. The situations described
in (i)–(iii) increasingly challenge the assumptions made
in the derivation of the EMME. We numerically compare
them in Fig. 2 (one for each column).

In the first row in Fig. 2, we set Vε0 = 400 < Vε1 = 600
and observe that the prediction of Eq. (45) (dot-dashed
green line with square markers) agrees very well with the
exact result (solid blue line) even for the random bath spec-
trum or the half-filled window. For comparison, we also
plot the evolution of p(ε1, ε0) as predicted by the more
standard BMS master equation. To compute it, we use the
projector in Eq. (3) where the state of the bath has been
replaced by the microcanonical state �ε0/Vε0 , and we per-
form standard approximations (see Ref. [6] for details). As
seen in Fig. (2), the standard BMS master equation (dot-
ted red line) fails to capture the dynamics of the energy
populations for this model. If one sets ζ(t) �→ 1 (dashed
orange line), as opposed to keeping the time-dependent
dissipation rates ζ(t) (dot-dashed green line with square
markers), the equation fails to describe the dynamics only
at short timescales, but correctly predicts the steady state.
This short-time behavior is ultimately a consequence of
the failure of the Fermi golden rule and has a universal
character [39].

Note that Ref. [6] corresponds to this reference with
label Breuer 2006. In the second row in Fig. 2, we
exchange the volumes of the bands such that Vε0 = 600 >

Vε1 = 400. In all three scenarios, the EMME describes
accurately the dynamics and predicts correctly the steady
state. In this case, the equilibrium state shows population
inversion and, in agreement with the discussion in Sec.
III B, it can be described by a negative-temperature state
Tmic < 0.

In Appendix F, we challenge the EMME even further
by considering weaker and stronger coupling strengths
λ, as well as smaller volumes VE for the energy win-
dows of the bath. Even though the EMME is not able to
always reproduce the dynamics accurately, for large vol-
umes VE � 100, it does typically give the right timescale
of decay and a good approximation for the steady-state
populations.

V. NONEQUILIBRIUM THERMODYNAMICS

In Sec. II we derived the EMME starting from a micro-
scopic description of the system and the bath. One moti-
vation to derive such a master equation is its potential to
describe small quantum devices, including heat engines,
refrigerators, and heat pumps. If the bath is finite, operating

those small quantum devices can cause the bath to develop
nonequilibrium features during the evolution, and then the
standard approach relying on a large bath in a Gibbs state
cannot be applied. In this respect, it is important to obtain a
consistent (nonequilibrium) thermodynamic interpretation
of the dynamics.

Our master equation can describe three sources of
nonequilibrium: (i) a nonthermal initial state ρ(0) of the
system and bath composite as considered in the numeri-
cal simulations above; (ii) a time-dependent system energy
spectrum εk(λt), where λt represents a sufficiently slow
driving protocol (λ̇t  1) such that one can directly replace
εk �→ εk(λt) in Eq. (5); and (iii) the system S being in
contact with multiple environments (which we discuss in
Sec. VI). We devote this part of the article to connect the
nonequilibrium quantum dynamics of the EMME with the
laws of thermodynamics.

A. The first law of thermodynamics

We start with the definition of the internal energy of the
universe:

U(t) :=
∑
k,E

[εk(λt) + E]p(εk, E). (46)

By the first law of thermodynamics, its change can only
be due to the mechanical work done on the system. Then,
using ∂tP(Etot) = 0, we obtain

d
dt

U = Ẇ =
∑
k,E

[∂tεk(λt)]p(εk, E). (47)

We also introduce the internal energy of the system:

US(t) :=
∑
k,E

εk(λt)p(εk, E). (48)

Since the system S is in contact with a bath, the change in
its internal energy is now due to work and heat:

d
dt

US = Ẇ + Q̇. (49)

Then the heat flux is found to be

Q̇ := −
∑
k,E

E∂tp(εk, E) =
∑
k,E

εk(λt)∂tp(εk, E), (50)

where the second equality follows again from ∂tP(Etot) =
0.

B. The second law of thermodynamics

The second law of thermodynamics states that a change
in the thermodynamic entropy of the universe is always
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non-negative. However, there is no general consensus on
the microscopic definition of the thermodynamic entropy.
Here we use the recently (re)discovered observational
entropy [40–43]:

Sobs(p) :=
∑
k,E

p(εk, E) [− log p(εk, E) + log VE] , (51)

which also appears in the work of von Neumann and
Wigner [12]. Here we use p to denote the vector of prob-
abilities p(εk, E) and we also write Sobs(t) instead of
Sobs[p(t)] when its meaning is clear from the context. We
note that the observational entropy Sobs coincides with the
well-known von Neumann entropy

SvN[ρ] := −tr(ρ log ρ) (52)

when ρ is diagonal and fulfills 〈k, Ei|ρ|k, Ei〉 = p(εk, E)/VE
for all Ei ∈ Eδ . Finally, we introduce the coarse-grained
relative entropy

DCG(p||q) :=
∑
k,E

p(εk, E) log
p(εk, E)

q(εk, E)
≥ 0 (53)

for two arbitrary vectors of probabilities p and q.
Equipped with those information-theoretical quantities,

our aim is to derive a second law in terms of the obser-
vational entropy Sobs, and hence we define the entropy
production rate

�̇ := d
dt
Sobs(t). (54)

In contrast to Ref. [43], where only the integrated change
�Sobs(t) = Sobs(t) − Sobs(0) in observational entropy was
shown to be positive, we derive here the stronger result
that the entropy production rate is always positive �̇ ≥ 0.
To prove the positivity of �̇, it is convenient to introduce
the joint Gibbs distribution at temperature T:

pT(εk(λt), E) := VE exp{−[εk(λt) + E]/T}
ZS(λt)ZB

, (55)

where ZS(λt) := ∑
k exp[−εk(λt)/T] and ZB := ∑

E VE
exp(−E/T) are the partition functions. Note that pT(λt) is a
stationary distribution since it fulfills the steady-state con-
dition in Eq. (35). Below, we show that it is possible to
recast the entropy production rate as

�̇ = − ∂t|λt DCG[p(t)||pT(λt)], (56)

where the symbol ∂x|y stands for the partial derivative with
respect to x while y is kept fixed. The result above then

implies that the entropy production rate is non-negative:

d
dt
Sobs(t) = �̇ ≥ 0. (57)

This follows from two facts: first, pT is an equilibrium state
of the dynamics and, second, the dynamics are Markovian,
which implies that we can use monotonicity of the relative
entropy. If either of these assumptions is violated, nega-
tive entropy production rates can appear although �(t) =
�Sobs(t) remains positive [44].

The proof is as follows. We start by writing the classical
relative entropy in Eq. (56) in terms of the observational
entropy as

DCG[p(t)||pT(λt)] = −Sobs(t) + T−1U(t)

+ log ZS(λt) + log ZB. (58)

Then, using the chain rule d/dt = ∂t + λ̇t∂λt , we obtain

∂t|λt DCG[p(t)||pT(λt)] = d
dt
Sobs(t) − 1

T

(
dU
dt

− Ẇ
)

.

(59)

Finally, we note that the rightmost term in Eq. (59) van-
ishes on the use of the first law in Eq. (47). Hence, we
obtain the second law of thermodynamics in Eq. (57),
which implies a positive entropy production rate. The sec-
ond law �̇(t) ≥ 0 derived here holds as long as P[ρ(0)] =
ρ(0) and, in particular, we do not invoke at any time the
assumption of thermal equilibrium for the bath.

C. Connecting the first and second law

In the above subsections, we derived independently
the first and second law of thermodynamics and, at this
point, they appear rather disconnected. In standard phe-
nomenological thermodynamics, the first and second law
are related through the well-known Clausius inequality.
Namely, if during a transformation the bath is well approx-
imated at all times t by an equilibrium state at temperature
TB(t), then the Clausius inequality reads

�SS(t) −
∫ t

0
dt′

Q̇(t′)
TB(t′)

≥ 0, (60)

where SS denotes the system thermodynamic entropy.
Equation (60) connects the entropic changes with the heat
flux into the system Q̇ when the environment is at temper-
ature TB. In particular, a large environment with an infinite
heat capacity would keep its temperature constant through-
out the process [i.e., TB(t) ≈ TB(0)]. Then the Clausius
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inequality simplifies to

�SS(t) − Q(t)
TB(0)

≥ 0, (61)

where Q(t) = ∫ t
0 dt′Q̇. Equation (61) is conventionally

considered the second law in quantum thermodynamics.
Importantly, Eq. (61) should be regarded as a consequence
of the second law only under the conditions set out above.

In our description, during a transformation ρ(0) �→
ρ(t), the environment generically goes through several
nonequilibrium states for which a temperature TB may
not even be defined. To establish a connection with the
Clausius inequality, we define an effective nonequilib-
rium temperature T∗

B(t) by demanding that the actual bath
energy matches the one of a fictitious canonical ensemble
at that temperature. In the equations, T∗

B(t) is determined
by our solving

∑
E

E
VEe−E/T∗

B(t)

ZB(t)
=

∑
k,E

Ep(εk, E; t) =: UB(t). (62)

Operationally, T∗
B(t) corresponds to the temperature of a

superbath that if weakly coupled to the bath B would give
rise to a total vanishing heat current between the bath and
the superbath.

As emphasized above, the Clausius inequality follows
from the second law, Eq. (57), only under additional
approximations. To derive it rigorously, we assume the fol-
lowing: (i) ρ(0) is a product state of the system and the
bath, that is, ρ(0) = ρS(0) ⊗ ρB(0), and (ii) the initial bath
state ρB(0) is a Gibbs state of the bath at temperature T(0).

We start by noting that for a Gibbs state at an arbitrary
temperature T, the following differential relation holds:

dUB = TdSB
obs(pT). (63)

Here we use the superscript B to indicate that SB
obs corre-

sponds to the observational entropy of the bath alone. Next
we note the following identity:

�SB
obs(t) = SB

obs(t) − SB
obs(pT∗

B(t))

+ SB
obs(pT∗

B(t)) − SB
obs(0). (64)

The difference of the first two terms of the above equation
is negative since, by construction, p(t) and pT∗

B(t) have the
same energy and the Gibbs state maximizes the entropy.
Using the differential relation in Eq. (63), we can cast the
last two terms of Eq. (64) as

SB
obs(pT∗

B(t)) − SB
obs(pTB(0)) = −

∫ t

0
dt′

Q̇(t′)
T∗

B(t′)
. (65)

Moreover, using the coarse-grained mutual information,
Eq. (41), as well as the initial product state assumption,

we obtain the following relation:

�SS
obs(t) + �SB

obs(t) = �Sobs(t) + IS:B
CG (p(t)) ≥ 0. (66)

Finally, putting together Eqs. (64)–(66), we find the fol-
lowing chain of inequalities:

�SS
obs(t) −

∫ t

0
dt′

Q̇(t′)
T∗

B(t′)
≥ �SS

obs(t) + �SB
obs(t)

≥ �Sobs(t) ≥ 0, (67)

which proves the aforementioned Clausius inequality and
connects the first and second law. The first inequality in Eq.
(67) becomes an exact equality whenever the bath does not
develop any noticeable nonequilibrium features.

D. Testing the results numerically

To conclude this section, we test numerically the results
derived above. We consider again the same spin system
described in Sec. IV but now we allow the energies εk(λt)

to depend parametrically on time. For concreteness, we
leave the energy ε0 = 0 constant and quench periodically
the energy of the excited state as

ε1(λt) =
{

�ε t ∈ [0, t�),
2�ε t ∈ [t�, 2t�),

(68)

where 2t� is the period and �ε us a fixed energy splitting.
Since we are quenching back and forth the energy of the
excited state, three energy windows of the environment are
now explored. We consider their associated macroscopic
energies to be E ∈ {0, �ε, 2�ε}.

In Fig. 3, we compare the exact dynamics with the pre-
diction of the EMME. The volume terms of the bands are
set to VE ∈ {100, 200, 400} and we chose the initial state
ρ(0) = |1〉〈1| ⊗ �E=0/VE=0. We observe that the EMME
is also able to reproduce accurately the dynamics when the
system energy levels are periodically quenched. This justi-
fies retrospectively our claim above that we can replace
the static system energies εk with time-dependent ener-
gies εk(λt) as long as λt varies slowly compared with the
relaxation time of the bath.

During the evolution the system and bath develop
nonequilibrium features, but the Clausius inequality and
our second law in Eq. (57) remain valid at all times as
demonstrated in Fig. 4. In the inset, we show the cor-
responding evolution of the non-equilibrium temperature
of the bath T∗

B(t), which, due to the finite heat capacity
of the bath, cannot be approximated by a constant value.
The fact that we start with a zero effective temperature
T∗

B(0) = 0 is a result of our choice for the initial state ρ(0)

and a consequence of the bath model, where we ignore any
energy levels below the lowest band that participates in the
dynamics.
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p(
e 1, 
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FIG. 3. Comparison of the exact dynamics (solid lines) with
the dynamics predicted by the EMME (dashed lines) for a spin
with energies ε0 = 0 and ε1(λt) = �ε (white background) and
ε1(λt) = 2�ε (shadowed background). See the main text for
details. δ = 0.5, t� = 120�ε−1, b(E, E′) = 0 for all E, E′, and
a = 1.

The difference between the dash-dotted green curve and
the dashed orange curve in Fig. 4 is a nonequilibrium effect
resulting from a bath state deviating from an ideal thermal
state. The difference between the solid blue curve and the
dashed orange curve in Fig. 4 is, instead, a result of the
(ignored) classical system-bath correlations as measured
by the coarse-grained mutual information in Eq. (41). To
investigate the latter, we numerically compute the evolu-
tion of the mutual information. In Fig. 5, we show that IS:B

always upper bounds IS:B
CG , which increases close to their

t (De –1)

t (De –1)

Se
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nd
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s

FIG. 4. Numerical proof of the Clausius inequality: �Sobs(t)
(solid blue line), �SS

obs(t) + �SB
obs(t) (dashed orange line), and

�SS
obs(t) − ∫ t

0 dt′Q̇(t′)/T∗
B(t′) (dot-dashed green line) computed

using the EMME for a spin with energies ε0 = 0 and ε1(t) = �ε

(white background) and ε1(t) = 2�ε (shadowed background).
See the main text for details. The inset shows the correspond-
ing nonequilbrium temperature of the bath T∗

B(t) (kB = 1) for the
same protocol. δ = 0.5, t� = 120�ε−1, b(E, E′) = 0 for all E, E′,
and a = 1.
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FIG. 5. Evolution of the mutual information comparing the
exact solution of the quantum mutual information (solid blue
line) with the exact coarse-grained mutual information (dashed
orange line) and the approximation obtained using the EMME
(dot-dashed green lines) for a spin with energies ε0 = 0 and
ε1(λt) = �ε (white background) and ε1(λt) = 2�ε (shadowed
background). See the main text for details. The initial state is
chosen as ρ(0) = |1〉〈1| ⊗ �E=0/VE=0. δ = 0.5, t� = 120�ε−1,
b(E, E′) = 0 for all E, E′, and a = 1.

maximum value log 2. Since the mutual information can
grow close to its maximum value, the system-bath corre-
lations are not negligible, showing that the weak-coupling
approximation does not justify the use of an uncorrelated
reference state of the system and the bath. Also, the EMME
provides a good approximation of the real value of IS:B

CG ,
but its prediction can violate the bound in Eq. (42). The
reason that the EMME overestimates the system-bath cor-
relation is a consequence of the strict energy conservation
derived in Sec. III A, which is never exactly satisfied
for any finite coarse graining and any finite system-bath
coupling strength.

VI. GENERALIZATION TO MULTIPLE
ENVIRONMENTS

In the previous sections, we studied the case of a quan-
tum system S in contact with a single heat bath B. Similar
findings hold for the case of multiple environments and, for
completeness, we outline in this section the generalization
of the main results to multiple environments. Its detailed
study including the treatment of various interesting appli-
cations is left for future work.

We consider multiple baths labeled by ν = 1, . . . , n,
with Hamiltonian HBν coupled to the system with an inter-
action Hint,ν = λSν ⊗ Bint,ν (again, more general expres-
sions can be found in the Appendixes). Denoting Eν,i as
the eigenenergies of the νth bath Hamiltonian, we pro-
ceed to coarse-grain the energies into energy windows
Eν,δν = [Eν − δν/2, Eν + δν/2) centered at the energy Eν .
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Then we can define a projection operator

P[ρ] :=
∑

E

ρS(E) ⊗ �E

VE
, (69)

where the vector E = (E1, . . . , En), the projector �E =
�E1 ⊗ · · · ⊗ �En , and the joint volume VE = VE1 · · · VEn
have been introduced. All the steps followed in Sec. II
are valid under the replacement E �→ E with the impor-
tant remark that we obtain an additive structure for the
EMME; that is, there are no crossed terms with ν �= ν ′(see
Appendix G). For the multiple-bath scenario, the bath
correlation function is given by

CBν (E, E′; −τ) := λ2〈B̃†
ν(−τ)�EBν〉E′ . (70)

Note that CBν (E, E′; −τ) is very sparse, since the vec-
tors E and E′ can be different only in the νth component.
Therefore, it is possible to redefine complex decay rates
γν(Eν , E′

ν ; ω) that depend only on the νth component of
the energy vectors E and E′. For the same reasons that
we give in Sec. II, it is justified to factor γν(Eν , E′

ν ; ω) =
γν(Eν , E′

ν)δE′
ν ,Eν+ω, yielding the EMME

∂tρS(E)

= −i[H′
S(E), ρS(E)]

+
∑

ν

∑
ω

(
γν(Eν , Eν − ω)

VEν−ω

Sν,ωρS(E + ωêν)S†
ν,ω

− γν(Eν + ω, Eν)

2VEν

{
ρS(E), S†

ν,ωSν,ω
})

, (71)

where êν is the unit vector along the νth component.
From Eq. (71), it is possible to obtain the conser-

vation of the probability ∂tP(Etot) = 0, with P(Etot) =∑
k,E p(εk, E)δEtot,εk+∑

ν Eν , as well as a steady-state con-
dition similar to Eq. (35) (further details are given in
Appendix G).

The thermodynamic behavior studied in Sec. V also
extends to multiple environments. Introducing Q̇ν =∑

k,E Eν∂tp(εk, E), we find the first law takes the form

d
dt

US =
∑

ν

Q̇ν + Ẇ. (72)

To obtain the second law, we first need to introduce the
multiple-bath observational entropy

Sobs(p) =
∑
k,E

p(εk, E)[− log p(εk, E) + log VE], (73)

for which it is possible to show that dSobs(t)/dt ≥ 0. The
proof uses the additive structure of the EMME, and then

proceeds analogously to the single-bath case. Finally, the
Clausius inequality is similarly found as

�SS
obs(t) −

∑
ν

∫ t

0
dt′

Q̇ν(t′)
T∗

ν(t′)
≥ �Sobs(t) ≥ 0. (74)

VII. OUTLOOK AND COMPARISON WITH
OTHER MASTER EQUATIONS

We conclude by comparing the EMME with other
master equation approaches. In the previous sections we
discussed the EMME in comparison with the popular Red-
field and BMS (or “quantum optical”) master equations
[1–3], whose dynamic and thermodynamic predictions can
differ significantly from those of the EMME. Note that,
similar in spirit to the EMME, the BMS master equation
is sometimes refined by equipping it with an additional
counting field, which keeps track of the changes in bath
energy [2,45]. However, these counting field master equa-
tions make no further use of this information to obtain a
more accurate system dynamics: after integrating out of the
counting field, the reduced dynamics of the system is still
given by the standard BMS master equation. Therefore, we
focus her only on a comparison with more advanced master
equations going beyond this standard approach.

Clearly, one way to obtain improved results is to use
the standard projection operators PBorn as for the BMS
master equation but to go beyond second order in the
interaction Hamiltonian. However, this quickly becomes
cumbersome and, as shown in Ref. [6], even the fourth-
order master equation does not necessarily increase the
accuracy, still giving qualitatively wrong results in com-
parison with the EMME and the exact solution. A more
sophisticated idea in comparison to simply “crank up” the
perturbative hierarchy is to apply different approximation
techniques to the memory kernel in the Nakajima-Zwanzig
equation based on, for example, semiclassical simulations
of the bath dynamics [46,47]. While being nonperturbative
and more accurate, this approximation so far mostly been
used for numerical case-by-case studies and it seems hard
to obtain general insights from it.

Another approach, which still resides in the standard
picture by tracing out the entire bath and keeping only
information about the system, is to combine second-order
master equations and polaron transformations [48]. In
this approach one first maps a strongly coupled system-
bath Hamiltonian to a weakly coupled one by using the
polaron transformation and afterwards combines it with
standard perturbative master equations. This allows one
to treat strong coupling, as demonstrated, for example,
in Refs. [49–52], but it does not overcome the Markov
approximation and essentially treats the bath as being in
(conditional) equilibrium throughout. Nevertheless, com-
bining polaron transformations, which work well only for
particular system-bath models, with the EMME seems to
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be a promising avenue for future research to treat strongly
coupled systems in a more accurate way.

Finally, another master equation approach, which shares
some similarities with our approach by explicitly treat-
ing parts of the bath degrees of freedom, is based on
Markovian embedding strategies [53–55]. By redefining
the system-bath partition and applying a master equation
to an enlarged but weakly coupled and Markovian sys-
tem, as done using, for example, the reaction coordinate
master equation [56–60] or other formally exact but more
involved master equations [61,62], one can obtain numer-
ically accurate results while retaining at the same time
detailed information about system-bath correlations and
(parts of) the bath degrees of freedom. We have not yet
benchmarked our master equation with these techniques,
but we expect the latter to be more accurate. On the down-
side, these Markovian embedding strategies, as well as the
aforementioned master equations using polaron transfor-
mations or semiclassical simulations of the memory ker-
nel, all rely on the paradigmatic Caldeira-Leggett model.
We believe it is a significant advantage that the EMME
applies in principle to every system-bath model.

Thus, to summarize, the EMME opens up the possibility
of treating a variety of interesting nonequilibrium situa-
tions, including, for example, finite heat baths, spin envi-
ronments, nonlinear system-bath interactions, and impuri-
ties in quantum many body systems, in a dynamically more
accurate way beyond the restrictive static bath and Markov
approximation and with an intuitive and consistent thermo-
dynamic interpretation. Perhaps in combination with other
techniques, such as the ones just mentioned, we are con-
vinced that it provides an efficient, flexible, and intuitive
tool for future research in quantum nanotechnologies.
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APPENDIX

For the sake of explanation, we consider a single
system-bath coupling operator throughout the main text.

For completeness, we set out here the most general form
of the EMME for multiple environments and multiple cou-
pling operators, corresponding to the interaction Hint,ν =
λ

∑
αν

Sαν
ν ⊗ Bαν

intν . In this case, the EMME yields

∂tρS(E) = −i[H′
S(E), ρS(E)]

+
∑

ν

∑
ανα′

ν

∑
ω

(
γ

ανα′
ν

ν (Eν , Eν − ω)

VEν−ω

Sαν
ν,ωρS(E + ωêν)S

α′
ν†

ν,ω

− γ
ανα′

ν
ν (Eν + ω, Eν)

2VEν

{
ρS(E), Sα′

ν†
ν,ω Sαν

ν,ω

})
. (75)

Equation (1) reduces to Eq. (71) for Hint,ν = λSν ⊗ Bintν
(for all ν) and to Eq. (5) for a single bath index ν.

APPENDIX A: DETAILS ON THE DERIVATION
OF THE EMME

Here we provide details on the derivation of the EMME,
the computation of the dissipation rates in the three
approaches listed in the main text, and a comparison
between them. For generality, we consider the interaction
Hint = λ

∑
α Sα ⊗ Bα

int, which appears as a double index
αα′ in the expression for the correlation functions [i.e.,
Cαα′

B (E, E′; ω)] and the corresponding dissipation rates
[i.e., γ αα′

(E, E′)]. In the three methods, the aim is to
compute the complex dissipation rates γ αα′

(E, E′) starting
from the correlation function

Cαα′
B (E, E′; −τ) =

∑
Ei∈Eδ

∑
Ej ∈E′

δ

λ2

VE′
Bα′∗

ij Bα
ij ei(Ei−Ej )τ . (A1)

1. Details of the heuristic approach

As explained in the main text, this approach is based
on the substitution Ei − Ej �→ E − E′ in Eq. (A1). Then,
using Eq. (19), one obtains

γ αα′
heuristic(E, E′; ω) = λ2 trB(Bα′†�EBα�E′)

×
∫

R

dτei(ω+E−E′)τ . (A2)

The macroscopic energies of the bath can always be
expressed as E = nδ for some n ∈ N. Then the time inte-
grals give rise to

∫
R

d(δτ ) e±i[(ω/δ)+n−n′](δτ ) ≈ 2πδ′
E′,E+ωkq

, (A3)

where the modified Kronecker δ should be interpreted as
the function

δ′
E′,E+ωkq

=
{

1 if E′ subject to |E′ − E − ω| ≤ δ

0 otherwise, (A4)
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and then one can directly identify the expression
γ αα′

heuristic(E, E′) in Eq. (25).

2. Details of the RMT approach

We consider bath coupling operators of the form

Bα =
∑
E �=E′

∑
Ei∈Eδ

∑
Ej ∈E′

δ

[
bα(E, E′) + cα(Ei, Ej )

] |Ei〉〈Ej |,

(A5)

where bα(E, E′) are deterministic functions of the macro-
scopic energies and cα(Ei, Ej ) are independent and identi-
cally distributed complex random numbers with zero mean
and variance E[cα(Ei, Ej )cα′

(E′
i , E′

j )] = a2δαα′δEiE′
i
δEj E′

j
.

Then the ensemble-averaged bath correlation function
yields

E[Cαα′
B (E, E′; −τ)] = λ2

VE′

[
bα′∗(E, E′)bα(E, E′) + a2δαα′

]

×
∑

Ei∈Eδ

∑
Ej ∈E′

δ

eiEiτ e−iEj τ .

(A6)

To compute the double-sum term in Eq. (A6), we intro-
duce the density of states g(E) = ∂E

∑
Ei

�(E − Ei) and
assume (i) the bath is dense enough to justify

∑
Ei

�→∫
g(e) de and (ii) g(e) is approximately constant in each

energy window. Then

∑
Ei∈Eδ

∑
Ej ∈E′

δ

ei(Ei−Ej )τ ≈ VEVE′ ei(E−E′)τ sin2(δτ/2)

(δτ/2)2 , (A7)

where we have used the relation g(E)δ = VE . The time-
dependent properties of the correlation function are then
described by the function

h(τ ) = δ

2π

sin2(δτ/2)

(δτ/2)2 (A8)

As we show in Appendix B, the Fourier transform of h(τ )

is strongly peaked around the origin, and it allows us to
approximate

∫
R

dτh(τ ) ei�τ = ĥ(�) ≈ δ�,0, (A9)

where in the computation of the complex dissipation rates,
� = ω + E − E′. Then, using Eq. (19), we obtain the
complex dissipation rates

γ αα′
RMT(E, E′)

= 2πλ2

δ
[b∗

α′(E, E′)bα(E, E′) + a2δαα′]VEVE′ . (A10)

3. Details of the ETH approach

To use the ETH to compute the correlation function in
Eq. (A1), two issues arise: first, there is no guarantee that
the operators Bα are Hermitian and, second, it is not clear
how the ETH should be modified when one considers cor-
relation between different observables. The first issue is
easily solved by noting that any operator can be decom-
posed as O = O+ + iO−, where O+ and O− are Hermitian.
Therefore,

V = λ
∑

α

Sα ⊗ Bα = λ
∑

α

(
Sα

+ ⊗ Bα
+−Sα

−⊗Bα
−
)

. (A11)

Then we can assume without loss of generality that Sα and
Bα are Hermitian. Then, using the ETH ansatz, we find

Bα
ij = Bα(Eij )δij +

√
1

VEij

f α(Eij , �ij )Rα
ij . (A12)

Because the definition of Bα is such that 〈Bα〉E = 0 for all
E, the first term of the ansatz can be set to zero. Then the
microcanonical bath correlation function yields

Cαα′
B (E, E′; −τ)

= λ2

VE′

∑
Ei,Ej

f α′∗(Eij , �ij )f α(Eij , �ij )

VEij

Rα′∗
ij Rα

ij ei(Ei−Ej )τ .

(A13)

Now we would like to use the statistical properties of the
erratically varying random numbers Rα

ij . It is clear that Rα
ij

should have zero mean as before. However, Rα
ij cannot be

uncorrelated for different α or otherwise two-point corre-
lation of two generic different observables would vanish
[28]. Thus, we proceed without assigning a value to the
correlation of Rα′∗

ij Rα
ij , where here the overline denotes the

average in the spirit of the ETH.
We proceed as follows: On one hand, the numbers Rα

ij
change erratically with i and j and even j �→ j + 1 can
abruptly change its value. On the other hand, the func-
tion f α(E, �) is a smooth function of its arguments and,
for a dense enough bath, the substitution j �→ j + 1 will
give rise to a perturbative correction. Therefore, it is justi-
fied to substitute in Eq. (A13) Rα′∗

ij Rα
ij �→ Rα′∗

ij Rα
ij . Then we

introduce the function

Fαα′
(Eij , �ij ) := f α′∗(Eij , �ij )f α(Eij , �ij )Rα′∗

ij Rα
ij ,
(A14)

which, consistently with the ETH ansatz, is a smooth func-
tion of its arguments, decays with |�| → ∞, and has the
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symmetry property

[Fαα′
(E, �)]∗ = Fα′α(E, �) = Fαα′

(E, −�). (A15)

For a sufficiently regular and dense environment, it is jus-
tified to approximate Eij ≈ Ē = (E + E′)/2 and replace∑

Ei
�→ ∫

deg(e). Assuming that g(e) is constant within
each energy window, we arrive at

Cαα′
B (E, E′; −τ) = λ2 g(E)g(E′)

VE′

×
∫∫

de de′ F
αα′

(Ē, e − e′)
VĒ

ei(e−e′)τ , (A16)

Finally, using Eq. (19), we find the integration over time
of the correlation function gives a factor 2πδ(ω + e − e′)
and leads to the expression

γ αα′
ETH(E, E′) = 2πλ2

δ
VEVE′

Fαα′
(Ē, E − E′)

VĒ
. (A17)

4. Connection between the three approaches

Finally, we investigate under what circumstances the
three derivations given above give rise to the same decay
rates. To this end, we rewrite them in the alternative form

γ αα′
heuristic(E, E′) = 2πλ2

δ
VEVE′

tr(B†
α′�EBα�E′)

VEVE′
,

γ αα′
RMT(E, E′) = 2πλ2

δ
VEVE′[b∗

α′(E, E′)bα(E, E′) + a2δαα′],

γ αα′
ETH(E, E′) = 2πλ2

δ
VEVE′

Fαα′
(Ē, E − E′)

VĒ
,

(A18)

which makes the comparison easier. A connection can
be found when the coupling has purely coarse-grained
components; namely, when the following approximation
holds:

Bα =
∑
EiEj

〈Ei|Bα|Ej 〉|Ei〉〈Ej |

≈
∑
EE′

bα(E, E′)
∑

Ei∈Eδ

∑
Ej ∈E′

δ

|Ei〉〈Ej |, (A19)

where bα(E, E′) are functions of only the coarse grained
energies.

Connection of the approaches in Secs. II C 1 and II C 2
Assuming the form in Eq. (A19), the coarse bath dynam-

ics method gives raise to the rates

γ αα′
heuristic(E, E′) = 2πλ2

δ
VEVE′b∗

α′(E, E′)bα(E, E′). (A20)

On the other hand, in the limit of vanishing variance a →
0, the random matrix coupling in Eq. (26) reduces to (A19).

Therefore, we find

γ αα′
RMT(E, E′)

= lim
a→0

2πλ2

δ
VEVE′[b∗

α′(E, E′)bα(E, E′) + a2δαα′]

= 2πλ2

δ
VEVE′b∗

α′(E, E′)bα(E, E′), (A21)

obtaining then the same rates γ αα′
heuristic(E, E′) = γ αα′

RMT
(E, E′).

Connection of the approaches in Secs. II C 1 and II C 3
Using the ETH ansatz in Eq. (A12) and assuming that

the bath coupling operator has the coarse-grained structure
in Eq. (A19), we find

Bα
ij =

√
1

VĒ
f α(Ē, E − E′)Rα

ij (E �= E′). (A22)

Using Eq. (A22) in Eq. (25) and identifying the average
R∗

α′,ij Rα,ij = ∑
ij R∗

α′,ij Rα,ij /(VEVE′), we arrive at

γ αα′
heuristic(E, E′) = 2πλ2

δ
VEVE′

Fαα′
(Ē, E − E′)

VĒ
, (A23)

and therefore γ αα′
heuristic(E, E′) = γ αα′

ETH(E, E′).

APPENDIX B: MORE DETAILS ON THE RMT
APPROACH

Here we give further details on the RMT approach. Our
starting point is the finite-time Redfield version of the
EMME, which in the Schrödinger picture reads

∂tρS(E) = −i[HS, ρS(E)] +
∑
αα′

∑
E′

∑
ωω′

∫ t

0
dτ e−iω′τ

×
{
E[Cαα′

B (E, E′; −τ)]SωρS(E′)S†
ω′

−E[Cαα′
B (E′, E; −τ)]ρS(E)S†

ω′Sω

}
+ h.c.. (B1)

Our goal consists in evaluating more explicitly the inte-
grals of the form

∫ t

0
dτE[Cαα′

B (E, E′; −τ)] eiωτ , (B2)

which appear in Eq. (B1). To that end, we use the results
obtained in Appendix A 2 to write the averaged micro-
canonical bath correlation function as

E[Cαα′
B (E, E′; −τ)] = γ αα′

RMT(E, E′)
VE′

h(τ ) ei(E−E′)τ . (B3)
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Then the integrals of interest can be cast as

γ αα′
RMT(E, E′)

VE′

∫ t

0
dτh(τ ) ei(ω+E−E′)τ . (B4)

In the case where ω + E = E′, the evaluation is simpler
and can be done by conveniently introducing the function

ζ(t) := δ

π

∫ t

0
dτ

sin2(δτ/2)

(δτ/2)2 = 2
∫ t

0
dτh(τ ). (B5)

Then all the dissipation rates appearing in the EMME are
multiplied by the time-dependent envelope ζ(t) as is the
case, for instance, in the example analyzed in Sec. IV.

In general, however, there is no a priori reason why
E′ = E + ω. Even though the general result for a finite t
is cumbersome, it is possible to evaluate exactly the time
integrals under the Markov approximation (i.e., for t →
∞). Ultimately, our objective is to compute the integrals

I(1) :=
∫ ∞

0
dτh(τ ) e−i�τ = 1

π

∫ ∞

0
dx

sin2 x
x2 e−i2(�/δ)x,

(B6)

which appear in Eq. (B4). Those integrals can be regarded
as the Laplace transform h̆(i�) = L[h(τ )](s = i�), with
L[f (τ )](s) = ∫ ∞

0 dτ f (τ ) exp(−sτ). It is easy to see that
the real and imaginary parts of h̆(i�) correspond respec-
tively to even and odd functions of �. We introduce the
frequency ratio ξ = �/δ ∈ R as well as the parameter-
dependent integral

I(a) := 1
π

∫ ∞

0
dx

sin2 ax
x2 e−i2ξx

⇒ I ′(a) = 1
π

∫ ∞

0
2adx

sin 2ax
2ax

e−i2ξx. (B7)

Performing the change of variables t = 2ax and noting the
Laplace transform property

L[f (t)/t](s) =
∫ ∞

s
duf̆ (u)

⇒ L(sin t/t)(s) =
∫ ∞

s

du
1 + u2 = π

2
− arctan s, (B8)

we obtain I ′(a) = 1/2 − arctan(iξ/a)/π . The complex
function w(z) = arctan z can now be written in terms of
logarithms using the following reasoning:

z = tan w = −i
eiw − e−iw

eiw + e−iw

⇒ 2iw = log
1 + iz
1 − iz

+ n2π i, with n ∈ N. (B9)

We choose the principal Riemann sheet n = 0 to coincide
with the real arctan function; that is, w(1) = π/4. Noticing

that I(0) = 0, we can proceed to

I(1) =
∫ 1

0
daI ′(a) =

∫ 1

0
da

(
1
2

− arctan(iξ/2)

π

)

= 1
2

+ i
2π

∫ 1

0
da [log(a − ξ) − log(a + ξ)] .

(B10)

As we have discussed, the real and imaginary parts of the
target integral I(1) are respectively even and odd functions
of ξ , and then we can restrict ourselves to ξ > 0. Still, we
have two different scenarios:
∫ 1

0
da[log(a + ξ) − log(a − ξ)] =

∫ 1

0
log(a + ξ)

−
∫ ξ

0
da log(a − ξ)−

∫ 1

ξ

(log |a − ξ | + iπ) (for ξ < 1),

∫ 1

0
da[log(a + ξ) − log(a − ξ)] =

∫ 1

0
log(a + ξ)

+
∫ 1

0
(log |a − ξ | + iπ) (for ξ > 1),

(B11)

which leads, for ξ > 0, to the final result

Re[I(1)] =
{
(1 − ξ)/2 for ξ < 1,

0 for ξ > 1,

Im[I(1)] = 1
2π

[2ξ log(ξ) − (1 + ξ) log(1 + ξ)

+(1 − ξ) log |1 − ξ |] .

(B12)

Therefore, there is no approximation in Re[h̆(i�)] by
disregarding the nonresonant terms � > δ. For complete-
ness we show the full behavior in Fig. 6. Hence, the

FIG. 6. Real (solid blue line) and imaginary (dashed orange
line) parts of the function h̆(i�).
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relation γ αα′
RMT(E, E′; ω) ∝ δE′,E+ω is obtained without any

approximation in computing the time integrals.

APPENDIX C: PROPERTIES OF THE TRANSTION
RATES

Here we consider the interaction Hint = λ
∑

α Sα ⊗ Bα
int

leading to the transition rates

Wkq(E, E′) :=
∑
αα′

〈q|Sα′†|k〉〈k|Sα|q〉γ αα′
(E, E′). (C1)

With this definition, we prove the properties Wkq(E, E′) ≥
0 and Wkq(E, E′) = Wqk(E′, E) for the transition rates. The
former is proven, as usual, through Bochner’s theorem and
the latter requires only basic algebraic manipulation.

1. Positivity

We start by noting that the transition rates Wkq(E, E′)
may be obtained from the scalar product

(skq, γ T skq) =
∑
αα′

sα′∗
kq γ αα′

(E, E′; ω)sα
kq, (C2)

where the arguments E, E′ and ω are implicit in the matrix
γ T. Defining Vkq = λ

∑
α sα

kqBα , we find Eq. (C2) is the
Fourier transform

(skq, γ T skq) =
∫

R

dτ trB(e−iHBτ V†
kq eiHBτ�EVkq�E′]) eiωτ

=
∫

R

dτ f (τ ) eiωτ = f̂ (ω). (C3)

Bochner’s theorem states that the Fourier transform f̂ (ω)

of a function f (τ ) is positive if f (τ ) is of positive type. A
function is of positive type if for any set of times {τα} the
matrix f αα′ ≡ f (τα − τα′

) is positive semidefinite. Then
we see that f (τ ) is of positive type since taking a general
vector w, we have

(w, fw) =
∑
EiEj

∣∣∣∣∣
∑

α

wα e−i(Ei−Ej )τ
α

∣∣∣∣∣
2

|〈Ei|Vkq|Ej 〉|2

≥ 0, (C4)

where Ei ∈ Eδ and Ej ∈ E′
δ . Finally, to obtain Wkq(E, E′) ≥

0 from the inner product (skq, γ T skq) ≥ 0, it is only left to
assume the factorization condition, which yields

Wkq(E, E′)δE′,E+ω = (skq, γ T skq) ≥ 0. (C5)

2. Symmetry

The key observation is that since the interaction V is
Hermitian, we have the property V†

kq = Vqk. Then one can
cast Eq. (C3) in the alternative form

(skq, γ T skq) =
∑
EiEj

|〈Ei|Vkq|Ej 〉|2
∫

R

dτ ei(ω+Ei−Ej )τ , (C6)

where Ei ∈ Eδ and Ej ∈ E′
δ . From the equation above, one

deduces

[skq, γ T(E, E′; ω) skq] = [sqk, γ T(E′, E; −ω) sqk]. (C7)

Therefore, assuming the factorization condition in Eq. (6),
it follows that

Wkq(E, E′)δE′,E+ω = Wqk(E′, E)δE,E′−ω, (C8)

from which we deduce Wkq(E, E′) = Wqk(E′, E).

APPENDIX D: MUTUAL INFORMATION
INEQUALITY

Here we prove the inequality IS:B[ρ] ≥ IS:B
CG (p). First,

we note that the quantum mutual information can be cast as
IS:B[ρ] = D[ρ||ρS ⊗ ρB], where we have introduced the
quantum relative entropy

D[ρ||σ ] = tr[ρ(log ρ − log σ)] ≥ 0 (D1)

for two states. ρ and σ The relative entropy is contrac-
tive under the action of a completely positive and trace-
preserving map E ; that is, it fulfills the property D[ρ||σ ] ≥
D[E(ρ)||E(σ )]. Second, we note that the map

E[ρ] =
∑
k,E

tr[ρ|k〉〈k| ⊗ �E]|k〉〈k| ⊗ �E

VE

=
∑
k,E

p(εk, E)|k〉〈k| ⊗ �E

VE
, (D2)

is a valid completely positive and trace-preserving map
since its Kraus decomposition can be read from

E[ρ] =
∑
k,E

∑
Ei∈Eδ

∑
Ej ∈Eδ

|k, Ei〉〈k, Ej |√
VE

ρ
|k, Ej 〉〈k, Ei|√

VE
. (D3)

Therefore, we obtain

IS:B[ρ] = D[ρ||ρS ⊗ ρB]

≥ D[E[ρ]||E[ρS ⊗ ρB]] = IS:B
CG (p). (D4)
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APPENDIX E: ANALYTICAL SOLUTION FOR
THE SPIN SYSTEM

Here we provide the analytical solution for the spin sys-
tem studied in Sec. IV. Taking as a starting point Eq. (45),
we project into the system eigenstates, from which we
obtain the population rate equations

∂tp(ε0, E) = ζ(t)γ (E, E − �ε)

×
(

p(ε1, E − �ε)

VE−�ε

− p(ε0, E)

VE

)
,

∂tp(ε1, E) = ζ(t)γ (E, E + �ε)

×
(

p(ε0, E + �ε)

VE+�ε

− p(ε1, E)

VE

)
,

(E1)

where we have defined γ (E, E′) = 0 if either E or E′ does
not exist. Equivalently, we could have written Eq. (E1) in
matrix form by gathering all the populations p(εk, E) in the
population vector p as

∂tp = ζ(t)�p, (E2)

where the entries of the matrix � should be read from
Eq. (E1) (see below). Equation (E1) leads to the block-
diagonal structure

� =
⊕

Etot
�(Etot), (E3)

where �(Etot) acts on the subspace p(Etot) = {p(ε1, E),
p(ε0, E + �ε)} of total energy Etot = ε1 + E. Explicitly,
we can write

�(Etot) = γ (E, E + �ε)

(−1/VE 1/VE+�ε

1/VE −1/VE+�ε

)
, (E4)

which is a stochastic matrix. Now we are in the position
where it is possible to integrate Eq. (E2) to arrive at

p(t) =
⊕

Etot
e�(Etot)�(t)p(0), (E5)

where �(t) = ∫ t
0 dt′ζ(t′). Remarkably the matrix �(E) has

the property

�(Etot)
2 = −γ (E, E + �ε)

(
1

VE
+ 1

VE+�ε

)
�(Etot)

≡ −2γ̄ (E, E + �ε)�(Etot), (E6)

which leads to the final solution

e�(Etot)�(t)p(Etot; 0) =
∞∑

n=0

[�(Etot)�(t)]n

n!
p(Etot; 0)

=
(

1 + 1 − e−2γ̄ (E,E+�ε) �(t)

2γ̄ (E, E + �ε)
�(Etot)

)
p(Etot; 0).

(E7)

Since the function ζ(t) saturates rapidly to ζ(t → ∞) =
1, we expect �(t) ∼ t at long times. Therefore, the steady
state can be computed

peq(ε1, E)

peq(ε0, E + �ε)
= VE

VE+�ε

, (E8)

while we keep constant at all times the probability of
being in the energy shell Etot = ε1 + E; that is, p(ε1, E) +
p(ε0, E + �ε) = constant.

APPENDIX F: ADDITIONAL NUMERICAL
RESULTS

Here we show the evolution of the population for
stronger and weaker coupling strengths as compared with
the main text (Fig. 2). First, in the first row in Figs. 7–9,
we observe that reducing the volumes of the energy bands
VE � 100 typically leads to a disagreement of the exact
dynamics with the prediction of the EMME. This expected
behavior arises from the fact that the bath is too small:
recurrences are unavoidable and no perturbative mas-
ter equation approach can correctly capture the reduced
system dynamics in this case.

p(e
1
, e

0
) EMME t Æ •

p(e
1
, e

0
) EMME finite t

p(e
1
, e

0
) BMS master equation

p(e
1
, e

0
) Exact

t (De –1 × 102) t (De –1 × 102) t (De –1 × 102)

p(
e 1, 

e 0)

FIG. 7. Comparison of the evolution of the joint probability p(ε1, E = ε0) for a spin system coupled to a two-band bath (see Fig. 2
for details). λ = 3 × 10−3, δ = 0.5, ε0 = 0, ε1 = 1, Vε0 = 20, Vε1 = 40, and a = 1.
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p(e1, e0) EMME t Æ •

p(e1, e0) EMME finite t

p(e1, e0) BMS master equation

p(e1, e0) Exact

t (De –1 × 102) t (De –1 × 102) t (De –1 × 102)

t (De –1 × 104) t (De –1 × 104) t (De –1 × 104)

p(
e 1,

 e
0)

p(
e 1,

 e
0)

p(
e 1,

 e
0)

FIG. 8. Comparison of the evolution of the joint probability p(ε1, E = ε0) for a spin system coupled to a two-band bath (see Fig. 2
for details). The first row corresponds to Vε0 = 20 and Vε1 = 40. The second row corresponds to Vε0 = 400 and Vε1 = 600. The third
row corresponds to Vε0 = 600 and Vε1 = 400. λ = 5 × 10−4, δ = 0.5, ε0 = 0, ε1 = 1, and a = 1.

Regarding the second and third rows in Fig. 8, we
observe that reducing the coupling strength λ further can
lead to imprecise results even though the second-order
approximation becomes more accurate. The underlying
reason is that as λ → 0, the linewidth of a jump process
becomes narrower, and then the system can resolve the fine
structure of the bath energy bands. Typically, resolving the
structure of the bath energy bands leads to a reduced effec-
tive volume of the band or, for a very small number of
available levels, may avoid thermalization completely.

In the opposite limit of a “large” coupling λ (see
Fig. 9), the EMME fails to describe the transient behav-
ior, while the steady state is correctly predicted. Of course,
for even larger λ, the second-order approximation breaks
down completely, leading to an incorrect description of the
dynamics.

The aforementioned observations are in unison with the
findings in Ref. [9], where upper and lower bounds for
the coupling strength were found to the validity of the
microcanonical master equation.

APPENDIX G: DETAILS ON MULTIPLE
ENVIRONMENTS

Here we show in some detail the derivation of the
EMME for the case of multiple baths and, also, we obtain
the nonequilibrium thermodynamic description in a man-
ner analogous to the case of a single bath. We generalize
the results shown in the main text to a coupling operator of
the form Hint,ν = ∑

αν
Sαν

ν ⊗ Bαν
int,ν .

1. Additive structure

Following the derivation for a single bath, we consider
that each bath is coupled to the system via the interaction
operator

Hint,ν = λ
∑
αν

Sαν
ν ⊗ Bαν

int,ν . (G1)
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t (De –1) t (De –1) t (De –1)
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p(e
1
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p(e
1
, e
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FIG. 9. Comparison of the evolution of the joint probability p(ε1, E = ε0) for a spin system coupled to a two-band bath (see Fig. 2
for details). The first row corresponds to Vε0 = 20 and Vε1 = 40. The second row corresponds to Vε0 = 400 and Vε1 = 600. The third
row corresponds to Vε0 = 600 and Vε1 = 400. λ = 10−2, δ = 0.5, ε0 = 0, ε1 = 1, and a = 1.

The evolution in the interaction picture is then governed
by the von Neumann equation

L(t)[ρ] = −i
∑

ν

[H̃int,ν(t), ρ̃(t)]. (G2)

Again, it will prove useful to decompose the interaction
into the respective block-diagonal and off-diagonal parts

∑
E

δHν(E)�E = λ
∑
αν

Sαν
ν ⊗

∑
E

〈Bαν
int,ν〉E�E,

Vν = λ
∑
αν

Sαν
ν ⊗

(
Bαν

int,ν −
∑

E

〈Bαν
int,ν〉E�E

)
,

(G3)

and further introduce δHν = ∑
E δHν(E) and Bαν

ν = Bαν
int −∑

E〈Bαν
int,ν〉E�E. We now proceed to compute the different

terms appearing in Eq. (2). We start with

PL(t)Pρ = −i
∑

ν

[δH̃ν(t),P ρ̃(t)], (G4)

and using the linearity of the commutator together with
Q = I − P , we deduce

QL(t)Pρ = −i
∑

ν

[Ṽν(t),P ρ̃(t)]. (G5)

Therefore, the second-order term is found to be

PL(t)QL(t′)Pρ

=
∑
νν′

∑
E

trB(�E[δH̃ν(t)

+ Ṽν(t), [P ρ̃(t′), Vν′(t′)]])
�E

VE
. (G6)

After a lengthy but straightforward manipulation, one finds
that the term involving δHν vanishes since it ends up being
proportional to 〈Bαν

ν 〉E = 0, and one is left with

PL(t)QL(t′)Pρ

=
∑
νν′

∑
E

trB(�E{Ṽν(t), [P ρ̃(t′), Ṽν′(t′)]})�E

VE
. (G7)
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Using the explicit expression for Vν , one finds that only
the terms with ν = ν ′ survive since, again, the case ν �= ν ′
lead to factors 〈Bαν

ν 〉E = 0. Therefore, we get an additive
structure for the EMME. Then one can proceed for each ν

as we do for the single bath case. Performing the standard
Markov and secular approximations leads to Eq. (71).

2. Rate equation

The rate equation for the multiple-environment case is
found to be

∂tp(εk, E) =
∑
ν,q

(
Wν,kq(Eν , Eν + ωkq)

VEν+ωkq

p(εq, E + ωkqêν)

−Wν,qk(Eν + ωkq, Eν)

VEν

p(εk, E)

)
, (G8)

where for each bath ν we introduce the transition rates
Wν,kq analogously to the case of a single bath. Again, we
find the properties Wν,kq(Eν , E′

ν) ≥ 0 and Wν,kq(Eν , E′
ν) =

Wν,qk(E′
ν , Eν).

3. Energy conservation

Using Eq. (G8), one can prove that P(Etot) =∑
k,E p(εk, E)δEtot,εk+∑

ν Eν is preserved. To this end we
introduce, given Etot, the energy of the bath ν given the
system energy εk

Eν|k = Etot −
∑
ν′ �=ν

Eν′ − εk, (G9)

with the property Eν|k + ωkq = Eν|q. We note that under
the action of the Kronecker δ function in the definition of
P(Etot), we have

∂tP(Etot) =
∑

E

∑
ν

∑
kq

×
(

Wν,kq(Eν|k, Eν|q)
VEν|q

p(εq, E1, . . . , Eν|q, . . . , En)

−Wν,qk(Eν|q, Eν|k)
VEν|k

p(εk, E1, . . . , Eν|k, . . . , En)

)
,

(G10)

which vanishes after renaming of the dummy variables
k ↔ q in the second line.

4. Steady state

Imposing detailed balance in Eq. (G8), we obtain the
steady-state condition

p(εk, E1, . . . , Eν|k, . . . , En)

p(εq, E1, . . . , Eν|q, . . . , En)
= VEν|k

VEν|q
, (G11)

which is analogous to the one found for the single-
environment case in Eq. (35).
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