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Recently implemented quantum devices such as quantum processors and quantum simulators combine
highly complicated quantum dynamics with high-resolution measurements. We present a passivity defor-
mation methodology that sets constraints on the evolution of such quantum devices. The approach yields
bounds that are often tighter, and thus more predictive, than the quantum microscopic analogue of the
second law of thermodynamics. In particular, (i) it yields tight bounds even when the environment is
microscopic; (ii) it successfully handles the ultracold limit; (iii) it enables one to account for constrained
dynamics; and (iv) it bounds observables that do not appear in the second law of thermodynamics. Further-
more, this framework provides insights into nonthermal environments, correlated environments, coarse
graining in microscopic setups, and the ability to detect heat leaks. Our findings can be explored and used
in physical setups such as trapped ions, superconducting circuits, neutral atoms in optical lattices, and
more.
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I. INTRODUCTION

The theory of thermodynamics emerged during the
industrial revolution. This celebrated theory was devel-
oped due to the pressing need to know how much coal
a steam engine requires to accomplish a task. One of the
strengths of the theory is its ability to make predictions that
do not depend on the precise details of a specific engine.
Instead, it provides universal laws (bounds) that apply to
all systems and processes.

Rapid technological advances facilitate unprecedented
ability to control and manipulate setups with highly pro-
nounced quantum dynamics. Examples include dozens of
interacting (atomic) spins in ion traps, neutral atoms in
optical lattices, superconducting circuits, Rydberg atom
lattices, etc. These setups are candidates for the realization
of quantum technologies such as computation, simulations,
communication, and more. Such applications require the
ability to measure very specific observables that would, for
instance, correspond to the result of quantum computation.
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For example, in ion traps or superconducting circuits, it is
possible to measure quantities such as the polarization of
specific spins, their mutual polarization covariance (cor-
relation), or the population of some preferred states. We
refer to such observables as “fine grained” to distinguish
them from observables that characterize the whole system,
such as energy, volume, entropy, etc.

Since fine-grained experimental data are presently avail-
able, it is desirable to have a theory that can make predic-
tions on this type of quantities. One possible approach is
to model all the details of the setup at hand and solve or
simulate the process of interest. Such an approach has to
be repeated if the setup is driven using a different protocol
or initialized in a different initial condition. Furthermore,
this method is not feasible in quantum computations and
simulators that attempt to solve problems that are com-
putationally hard (classically). A different approach, more
in the spirit of thermodynamics, is to identify constraints
that are applicable to a whole class of processes without
the need to explicitly solve for the evolution. This is the
approach we take in the present paper.

The utility of thermodynamiclike bounds on fine-
grained quantities is illustrated using the examples
depicted in Fig. 1. In Fig. 1(a) we illustrate the use of ther-
modynamiclike inequalities for detecting undesired cou-
pling of a quantum system to some (possibly unknown)
environment. Modern quantum devices such as quantum
computers and simulators require a high level of isolation
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FIG. 1. Inequalities as a tool to study and describe the evolu-
tion of quantum machines and devices. (a) Violation of inequal-
ities can be used to deduce coupling to an environment that is
assumed to be negligible. (b) The inequalities can reveal by how
much one can vary the expectation value of an observable by cou-
pling a system to another small system. (c) Setting the limitations
on the operation of exotic heat engines, namely machines that use
thermal resources to try and change the value of a fine-grained
observable (see the description of the machine in the main text).

from the rest of the world. The processor constitutes the
visible system in which we can measure and control its
initial state. Let us assume that the processor runs a com-
plicated task that cannot be simulated classically. Is it
possible to detect a coupling of the visible system to some
environment without knowing the circuit (algorithm) or
the details of the environment? The methods presented
in this paper allow us to derive several inequalities that
should hold as long as the assumption that the setup is
isolated is justified. If an experiment shows that one of
these inequalities is violated, it indicates that the system
is not isolated. Our approach allows us to obtain inequal-
ities that are tighter than the microscopic version of the
second law and therefore serve as better detectors for heat
leaks. It is interesting to point out that the second law can-
not be saturated when the sum of local entropies increases.
Nevertheless the inequalities we find can be saturated even
when the sum of local entropies increases. See Ref. [1] for
an experimental demonstration of heat leak detection based
on the global passivity framework introduced in Ref. [2].
The approach is in the same spirit as Ref. [3] where viola-
tions of the fluctuation relation (an equality) were used to
identify errors in a quantum annealer.

In Fig. 1(b) we depict a generic scenario of interest.
From a fundamental perspective, it is imperative to under-
stand what are the limitations on the manipulation of
some observable in system 1 by interacting with system
2. The second law is an example of such a limitation
where the observables are related to energies of the sub-
systems. In the microscopic world, it is possible to measure
and manipulate many different quantities, and it is unclear
what limits the changes of these observables. In this paper,
we address this general question. Finally, in Fig. 1(c)
we show an example of an “exotic heat machine” [4],

which is a more concrete realization of the general scheme
presented in Fig. 1(b). Exotic heat machines use thermo-
dynamic resources (work, heat, thermal environments) to
execute a nonthermodynamic task (i.e., a task different
from work extraction, cooling, etc.). Such machines were
used in Refs. [5,6] to create steady-state entanglement.
In the example in Fig. 1(c), the machine uses an N -spin
thermal environment to increase the correlation between
two initially uncorrelated spins. In particular, the goal is
to increase the probability that spins 1 and 2 are aligned.
The system observable that represents the alignment is A =
|0102〉〈0102| + |1112〉〈1112|. A more quantum fine-grained
task would be to increase the expectation value of some
entanglement witness. Since 〈A〉 is not the energy of a sub-
system, the second law of thermodynamics is not suitable
for constraining the changes of 〈A〉. In particular, it is inter-
esting to understand how much heat and work are needed
for changing 〈A〉 and how the performance depends on the
size of the small environment and its initial temperature.
In this paper, we present a framework that can generate
bounds that address some of these questions.

Our approach, passivity deformation, uses the recently
introduced notion of global passivity [2] as a starting point,
yet it quickly deviates from global passivity in order to
overcome some of its inherent limitations. Global pas-
sivity produces a family of inequalities on observables,
one of which is the second law. The predictive power of
global passivity bounds was experimentally demonstrated
using the IBM superconducting quantum processors [1].
By checking the validity of these inequalities, it was pos-
sible to detect heat leaks that the second law and other
thermodynamic frameworks could not detect. In Ref. [2]
they were also used to detect subtle Maxwell demons (i.e.,
weak feedback operations) in numerical simulations.

Despite being based on a different mathematical frame-
work, global passivity still shares the same limitations of
the second law when it is applied to small quantum setups.
By “second law” we refer to Eq. (11), which is the ana-
logue of the Clausius inequality in microscopic quantum
setups. Although this form of the second law can be rigor-
ously derived, it is often very loose in microscopic setups,
which severely limits its predictive power. The first lim-
itation, as discussed earlier, is the inability to restrict the
changes of the expectation value of a fine-grained quan-
tity. This however could be viewed as a feature and not
as a limitation since Eq. (11) does not aim to deal with
such an observable. We refer the reader to Refs. [7–10] for
an entropic approach (i.e., not observable based) to fine-
grained features. The second limitation is the “ultracold
catastrophe,” in which one considers processes involving
a subsystem that is initially at zero temperature. There the
term Qc/Tc dominates the inequality of the second law,
and the only possible prediction is that Qc ≤ 0 (Qc < 0
refers to heat leaving the system, later we use qc > 0 to
describe energy entering the bath). However, when Tc is
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low enough, the environment effectively starts in its ground
state, so clearly the average energy cannot go further down.
Thus, in this case, the second law does not add any new
information. See Refs. [11–13] for additional interesting
approaches for handling the ultracold catastrophe. The
third limitation is that the second law and the global pas-
sivity bounds are unattainable when the environments go
out of equilibrium. This is typically the case in micro-
scopic setups where the heat capacities are very small. This
unattainability tells us that the process is inherently irre-
versible. However, obtaining a tighter bound that is also
attainable will clearly enhance our ability to predict what
is achievable in such processes. Finally, the fourth limi-
tation is the difficulty in taking into account constraints
that limit the dynamics to a restricted set of unitaries
(global unitaries that include all the elements of interest).
This typically happens when the interaction that drives the
dynamics can be divided into disconnected sets of levels
(orthogonal Hilbert spaces). That is, the interaction takes
place between the states in the set A, and/or between the
states in set B, but not between a state in A and a state in B.
A simple example is energy conserving interactions where
the sets are the total energy shells of the system. Such dis-
connected sets are always associated with a conservation
law since the probability to be in each set is conserved by
the constrained interaction.

Once the dynamics is constrained, it is often the case
that the dynamics saturating some unconstrained bound
cannot be implemented. As a result, this bound is looser
than required and the predictions it makes on the observed
quantities of interest are less informative. We aim to pro-
vide tools that take into account the fact that the evolution
takes place in disconnected sets of levels, and produce
bounds that can be saturated despite the constraint. This
can be used, for example, for detecting weaker heat leaks.
Notably, the passivity deformation framework simultane-
ously solves these four limitations. However, we do not
claim that the resulting inequalities are unique or optimal,
but we demonstrate they produce tighter bounds com-
pared to Eq. (11), and other recently derived variations
of the second law in the microscopic setup. In a compan-
ion paper to the present one [1], we have utilized the IBM
platform mentioned above to experimentally demonstrate
that in the task of heat leak detection, passivity deforma-
tion can outperform both the second law and the global
passivity inequalities. This demonstration provides a posi-
tive indication that this framework is relevant for modern
experiments and that it increases the predictive power of
thermodynamiclike inequalities in such setups.

Recent years have seen important developments in our
understanding of the thermodynamics of small quantum
systems. Stochastic thermodynamics allows one to assign
thermodynamic quantities such as heat or work to a sin-
gle trajectory of particles (e.g., a colloidal particle or
a molecular motor [14,15]). Quantum thermodynamics

aims to identify the thermodynamic role of purely quan-
tum effects such as coherence, measurement back action,
or entanglement [16–19]. Despite their success, both
approaches are not well suited for the goals discussed
above due to their focus on the energy (work, heat, and
their fluctuations) as the observable of interest. A relevant
approach to microscopic thermodynamics was recently
suggested by Strasberg and Winter [9,10]. Their approach
is based on the notion of observational entropy [7,8]. They
demonstrated that an observational entropy of any mea-
surement in the system and energy in an environment
satisfies a second-law-like inequality. As a result, one can
obtain inequalities that constrain fine-grained quantities.
A crucial difference between the results of Refs. [9,10]
and the approach presented here is that the inequalities
we derive involve changes in expectation values. In con-
trast, the second law of Refs. [9,10] involves changes
in entropies, namely quantities of the form −∑

i pi ln pi,
which are harder to measure.

Our paper is structured as follows. After reviewing
the notions of passive operators and global passivity in
Secs. II, in III we describe the essence of the passivity
deformation method. In addition to studying the tightness
of the new bounds and their physical meaning, we also
show that constraints on the dynamics that are associated
with conservation laws can be integrated and yield even
better bounds. The section ends with several illustrative
examples. In Sec. IV we introduce an intuitive graphi-
cal representation of our framework, which is exploited
for deriving several useful bounds and insights without
doing explicit calculations. For example, we obtain a more
refined bound on information erasure compared to the Lan-
dauer bound. We then use our framework to address the
ultracold catastrophe. At the end of this section, we show
that some nonthermal and potentially correlated environ-
ments can be treated on the same footing as thermal uncor-
related environments, where the deviation from thermal
initial conditions reduces to using new effective temper-
atures in the familiar second law. In Sec. V passivity
deformation is utilized to study coarse graining within the
framework of passivity, and also to show that some heat
leaks cannot be detected with passivity-based constraints.
We conclude in Sec. VI.

II. PASSIVE STATES, PASSIVE OPERATORS, AND
GLOBAL PASSIVITY

A. Passive states

Passive states (passive density matrices) were intro-
duced for studying how much work can be extracted from
an isolated system by using external forces [20–25]. Math-
ematically, this requires finding the unitary transformation
that brings the system to the lowest energy. Crucially,
the notion of passivity is not limited to studies of energy
changes. It can be applied to other observables as well.
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In Ref. [22] passivity was used for deriving a simplified
form of the second law and later, independently, the poten-
tial of passivity for generating additional constraints on the
dynamics of observables was studied in Ref. [2]. Consider
a Hermitian operator A, and a system whose initial state is
described by a density matrix ρ0. The operator A may be
the Hamiltonian of the whole system, a subsystem, or may
also describe other observables, such as angular momen-
tum, or projection operators onto specific subspaces. One
can then ask what is the minimal value of 〈A〉 = tr(ρA) that
is reachable from the initial state by a unitary transforma-
tion. The state obtained by this optimal unitary is called a
“passive state” ρA pass (with respect to the operator A). By
construction, one can write the inequality

〈A〉 ≥ min
all U

tr(UρU†A) = tr(ρA passA), (1)

which holds for all unitaries U. The passive state ρA pass
has an explicit expression. The operator A can be writ-
ten in terms of its eigenvalues and eigenvectors, A =∑

i ai|ai〉〈ai|, with ai+1 ≥ ai. A general initial density
matrix has the form ρ0 = ∑

i ri|ri〉〈ri|. A density matrix
that is passive with respect to the operator A will then have
the form

ρA pass =
∑

i

ri|ai〉〈ai|, (2)

with ri+1 ≤ ri. Thus, the optimal unitary is simply Uopt =∑
i |ai〉〈ri|. The ordering of ri with respect ai is crucial for

passivity (see the proof in Ref. [23]). The conditions for
passivity given in Eq. (2) can also be written as

[A, ρA pass] = 0, 〈ai+1|ρA pass|ai+1〉 ≤ 〈ai|ρA pass|ai〉.
(3)

In particular, it can be used for the evolution operator of
a setup that includes all the elements that interact with
each other. Thus, if a setup was prepared in an initial state
that is passive with respect to an operator A, i.e., it already
has the minimal value of 〈A〉, then any subsequent unitary
evolution must satisfy the inequality

�〈A〉 = tr(ρf A) − tr(ρ0A) ≥ 0 (4)

for ρ0 = ρA pass. Moreover, by linearity, this inequality also
holds if the evolution is described by a mixture of unitaries

ρf =
∑

k

pkUkρ0U†
k . (5)

This map is unital, i.e., a fully mixed state (the identity
operator plus trace normalization) is a fixed point of the
map. Simply put, Eqs. (4) and (5) state that, starting with
the minimal value obtained by unitaries, the expectation
value can only grow with respect to its initial value.

B. Passive operators

Passivity is not a property of the density matrix alone
but a relation between a density matrix and an observ-
able (an operator). A given initial density matrix ρ0 may
be nonpassive with respect to the Hamiltonian, but passive
with respect to other operators. In contrast to the previ-
ous section where passive states were defined, we now
take the complementary point of view and discuss passive
operators. Here, the initial density matrix is given and writ-
ten in the basis of decreasing eigenvalues: ρ = ∑

r′
i|r′

i〉〈r′
i|

with r′
i+1 ≤ r′

i. A passive operator Aρ0 pass with respect to
ρ0 satisfies

[
Aρ0 pass, ρ0

] = 0,

〈r′
i+1|Aρ0 pass|r′

i+1〉 ≥ 〈r′
i|Aρ0 pass|r′

i〉,
(6)

for any i. Such operators satisfy

�〈Aρ0 pass〉 ≥ 0 (7)

for any mixture of unitaries (5). This is illustrated in
Fig. 2(a): when a setup undergoes various unitary evo-
lutions (light green curves), the expectation value of a
passive operator will never go below its initial value (red
zone). In contrast, for a nonpassive operator (dark green
curves), there is always a unitary that reduces the expec-
tation value below its initial value (i.e., enters the red
zone).

In Figs. 2(b) and 2(c) examples of passive and nonpas-
sive operators are depicted. The x axis corresponds to |r′

i〉,
i.e., eigenstates sorted in decreasing order of probabilities
(eigenvalues of ρ0), as indicated by the line-dot curves.
Note that in this example states |3′〉 and |4′〉 are degen-
erate (dotted ellipse), so their relative order is arbitrary and
their position can be switched. The y axis corresponds to
〈r′

i|C|r′
i〉 (Fig. 2b) and 〈r′

i|D|r′
i〉 [Fig. 2(c)]. After exploiting

the freedom to reorder degenerate eigenstates of ρ0, Eq. (6)
is satisfied for any state |r′

i〉 in Fig. 2(b). Hence, operator C
is passive with respect to ρ0. Operator D shown in Fig. 2(c)
is not passive with respect to ρ0.

(a) (b) (c)

FIG. 2. (a) The expectation values of a passive operator C
(light green) must increase under any unitary operation with
respect to the initial value. The dark green curves show the
expectation values of a nonpassive operator D. (b),(c) Graphical
representations of passive and nonpassive operators in the basis
of decreasing probabilities.
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The slight complication that arises due to degenera-
cies in ρ0 or A can be avoided by two means. One is to
exploit the binary relation defined in Appendix A. The sec-
ond option is to define the nonpassive operator Ā in the
following way: given that [Ā, ρ0] = 0 holds, if there are
two eigenstates i and j for which 〈i|ρ0|i〉 > 〈j |ρ0|j 〉 and
〈i|Ā|i〉 > 〈j |Ā|j 〉 then Ā is nonpassive with respect to ρ0.
Any operator that commutes with ρ0 and is not nonpassive
is passive.

For a given initial state ρ0, there are many opera-
tors that are passive with respect to it. Next, we show
how to construct a passive operator with a clear physical
interpretation.

C. Global passivity

In our previous work [2] we used ρ0 itself to construct
an operator that is passive with respect to it. There are
many possible choices, yet one particular choice reveals
a connection between passivity and the second law:

B = − ln ρ tot
0 . (8)

Here, crucially, ρ tot
0 is the density matrix of the whole

setup, including both the system and the environments.
Note that, by definition, the operator B does not change in
time, i.e., 〈B〉t = tr[ρ tot(t)(− ln ρ tot

0 )]. The passivity of B
with respect to ρ tot

0 immediately follows from ρ tot
0 = e−B.

Consequently, it holds that

�〈B〉 ≥ 0 (9)

for any mixture of unitaries. The quantum evolution of a
microscopic system may not be unitary if it is not iso-
lated from its environment. Nevertheless, the evolution
of both the system and its nearby environments can be
viewed as unitary if they are sufficiently isolated from the
rest of the universe. In such cases, any process can be
modeled as a unitary that acts on both the system and its
local environment. The approach we present here makes
this assumption. We use the term global passivity to high-
light the fact that the processes we consider involve unitary
evolution that acts on both the system and its local environ-
ments, in contrast to the standard notion of passivity where
one subsystem is driven by an external field.

Without a meaningful physical interpretation, inequality
(9) is just a mathematical result. Our previous work starts
by pointing out a clear connection between global passiv-
ity and the second law. Let {βk, Hk} describe the inverse
temperatures and Hamiltonians of a set of subsystems that
act as environments. These potentially microscopic envi-
ronments are termed “microbaths.” In contrast to large
baths, they may strongly deviate from thermal equilibrium
when interacting with each other or with some external
forces. Hence, their temperature refers only to their ini-
tial state. We consider a setup where several microbaths

interact with each other (e.g., as in absorption refrigera-
tors [26–32]). Such a setup can also describe heat engines
and power refrigerators. Since ρ0 = exp(−∑

k βkHk)/Z
[Z = tr{exp(−∑

k βkHk)} is a normalization factor], the
global passivity of B, Eq. (9) yields

∑

k

βk�〈Hk〉 ≥ 0, (10)

which is the analogue of the second law for a set of
potentially small quantum systems. For completeness, the
analogue of the complete form of the classical Clausius
inequality is given by [33–35]

�Ssys +
∑

k

βk�〈Hk〉 ≥ 0. (11)

Here �Ssys is the change in the von Neumann entropy of
the system. Our goal, however, is to obtain inequalities
that constrain expectation values of observables. Quan-
tities such as �Ssys are considerably harder to measure
experimentally, so we wish to avoid their appearance in the
inequalities when possible. In addition, Eq. (11) reduces to
Eq. (10) under a periodic evolution of the system. While
such periodic operation often takes place in steady state
driven by large environments, it can also take place when
the system acts as a catalyst for energy exchange between
small environments (e.g., catalytic cooling and catalytic
thermometry transformations [36]). Finally, the relation
between Eqs. (11) and (10) was studied in Sec. II D of
Ref. [2].

We emphasize once again that βk in Eqs. (10) and (11)
refers only to the initial state of the environments. To iden-
tify �〈Hk〉 with the change in the average energy of the kth
microbath, it is essential that the Hamiltonian of the micro-
bath at the end of the process is equal to the Hamiltonian
at the beginning of the process. Furthermore, in Eqs. (10)
and (11) the terms �〈Hk〉 are not automatically identified
as “heat.” Although one can do so, there are other legiti-
mate alternatives (see Ref. [37] and Secs. 28.3.6 or III E
of Ref. [4]). Ultimately, Eq. (10) refers to average energy
changes in the microbaths and is independent of how heat
and work are defined.

While Eqs. (10) and (11) resemble the familiar second
law of thermodynamics, they deviate from the classical
thermodynamics result in several important aspects: (i)
the microbaths can be small, and may substantially devi-
ate from their initial thermal state during the process; (ii)
the dynamics may create entanglement and correlations
between different subsystems; (iii) thermal relaxation with
ideal heat baths are not included or assumed; and (iv) work
can be done during the process, but some of it may be done
on the microbaths and not only on the system of interest.

The example above shows both a systematic construc-
tion of a passive operator and a clear thermodynamic
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context. Yet, this example adds nothing new on top of
the already known Eq. (10) [4,16,33–35,38]. The added
value of the global passivity framework manifests when
constructing additional globally passive operators. In par-
ticular, in Ref. [2] it was shown that Bα is also passive
with respect to ρ tot

0 for any α > 0 [the more general form
is sgn(α)Bα for any real α]. Crucially, in several cases
we found that the resulting inequalities contain useful
information that is not included in Eq. (10) or (11). As
mentioned earlier, the added value of these inequalities
has recently been experimentally demonstrated on the IBM
quantum processor platform [1]. For the reader familiar
with thermodynamic resource theory [39–43], we point out
that the global passivity inequalities are different because
they deal only with observable quantities.

As shown in Appendix A, global passivity can be for-
mulated as a binary relation based on a matrix ordering
function. The conditions for this binary relation to become
an equivalence relation are discussed as well. While, for
clarity, the paper is written in the conventional formalism
of passivity, Eqs. (4) and (6), the formalism in Appendix A
is highly useful when exploring consequences of passivity.

The global passivity approach described above is well
suited for processes where a collection of quantum sys-
tems is prepared in a known initial density matrix and is
then driven. The resulting inequalities tell us what can-
not be achieved in any subsequent evolution. Yet, just
like Eq. (11), global passivity posses the same limitations
mentioned in the Introduction (briefly: lack of prediction
for fine-grained observables, no attainability of bounds for
a small environment, ultracold catastrophe, loose bound
when the dynamics is constrained).

III. THE PASSIVITY DEFORMATION APPROACH

In what follows we present a new approach that over-
comes the aforementioned limitations. Consider an observ-
able of interest A that satisfies [A, ρ tot

0 ] = 0. If A is passive
with respect to ρ tot

0 then �〈A〉 ≥ 0, but if it is not, it is
generally unclear what predication can be made on �〈A〉
without solving the full dynamics. In our approach, we
construct a globally passive operator that contains �〈A〉
as well as other observables. The first step is to choose a
passive operator, for instance, B = − ln ρ tot

0 , and use it to
define the operator

B(ξ) = B + ξA, (12)

where B(0) is globally passive by construction. It is
expected that there is a finite range of ξ values for
which B(ξ) is also globally passive and therefore satis-
fies �〈B(ξ)〉 ≥ 0. As explained later, for discrete and finite
systems, there is always ξ �= 0 for which B(ξ) is globally
passive.

Which values of ξ should be used? Tighter and, there-
fore, more restrictive and informative inequalities for 〈A〉

(a) (b) (c)

FIG. 3. Passivity deformation—when adding a small amount
of a nonpassive operator (dark green) to a passive operator (light
green), the combined operator created by the sum (depicted by
the total height) may still be passive, as shown in (a). At some
critical value, a new degeneracy forms (b). If the fraction of
the nonpassive part is too large, passivity is lost (bar no longer
monotonically increases) (c).

are obtained when |ξ | is as large as possible. However,
at some point, some of the eigenvalues of B(ξ) become
degenerate due to the change of ξ . Degeneracies inherited
from B(0) are irrelevant at this point—only those emerging
from increasing |ξ |. At this critical value of ξ the ordering
of the operator changes and it stops being globally passive.
This is illustrated in Fig. 3.

We denote by λ
(B)

k (λ(B)

k+1 ≥ λ
(B)

k ) and v
(B)

k the eigen-
values and eigenvectors of B. Because of passivity, the
probability of observing eigenstate v

(B)

k decreases as λ
(B)

k

is increased. The notation λ
(A)

k �
〈
v

(B)

k |A|v(B)

k

〉
refers to the

eigenvalue of A associated with eigenvector vk of B (A
and B have the same eigenvectors since they commute).
Note that, unlike λ

(B)

k , the λ
(A)

k are not sorted in decreasing
order. The condition for degeneracy between consecutive
eigenvalues of B(ξ) is λ

(B)

k+1 + ξλ
(A)

k+1 = λ
(B)

k + ξλ
(A)

k . Let
us define ξk = (λ

(B)

k+1 − λ
(B)

k )/(λ
(A)

k − λ
(A)

k+1), where k val-
ues that nullify the numerator or denominator are excluded
since degeneracies in either A or B do not affect the relative
ordering of the two operators. Using ξk, we define

ξ+ = min(ξk > 0), (13)

ξ− = − min(−ξk > 0). (14)

The operator B(ξ) is then passive in the range ξ− ≤ ξ ≤
ξ+. Since ξk cannot take the value zero (due to the exclu-
sion of k values in the definition of ξk), there is a nontrivial
ξ for which B(ξ) is globally passive. In processes satisfy-
ing �〈A〉 > 0, the tightest and most informative inequality
is found by using ξ− < 0, which results in the inequality

�〈A〉 ≤ 1
(−ξ−)

�〈B〉. (15)

Similarly, in processes in which �〈A〉 < 0, one should use
ξ+, giving

−�〈A〉 ≤ 1
ξ+

�〈B〉. (16)
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Inequalities (15) and (16) should be viewed as restrict-
ing the change of an observable A when compared to the
change on another, passive observable. In many of the
examples we present, B = − ln ρ tot

0 will describe a col-
lection of microbaths, so that B = ∑

k βkHk. Therefore,
�〈B〉 contains information about energy changes of sub-
systems during the process. In contrast, A may describe a
fine-grained nonthermal property, for instance, the proba-
bility to be in a specific state. Inequalities (15) and (16)
then describe how changes in the expectation values of A
are restricted by the subsystems energy changes. If A hap-
pens to be globally passive then �〈A〉 ≥ 0 and Eq. (15)
sets an upper bound on the change in 〈A〉.

These inequalities include setup-specific information
through ξ±, which depend on the eigenvalues of A and B.
Thus, the method presented here allows us to obtain tighter
and more informative inequalities compared to approaches
that do not exploit such information, such as Eqs. (10)
and (11).

A. Bounds in the presence of constraints and
conserved quantities

Another advantage of the passivity deformation scheme
appears in the presence of constrained dynamics and con-
served quantities. As explained in the Introduction, the
specific form of the interaction may result in disconnected
sets of levels that give rise to conserved quantities. As a
result, the dynamics is restricted to a subset of allowed uni-
taries that often does not include the unitary that saturates
the bounds that apply to the full set of unitaries. Hence, the
bounds are looser than needed, and provide less accurate
prediction that may lead, for example, to a degraded heat
leak detection capability. In passivity deformation, this can
be remedied. Better and tight bounds can be obtained by
treating each manifold of states separately. For example,
for ξ+ instead of min(ξk > 0), we calculate

ξ int
+ = min{min(ξk∈{l1} > 0), min(ξk∈{l2} > 0), . . .}, (17)

where, due to the restricted dynamics, the set of states {li}
never interacts with the set {lj �=i}.

As an example, consider two four-level microbaths,
initially at inverse temperatures βc = 2 and βh = 1. The
energy levels are Ec = {0, 4, 8, 12} and Eh = {0, 1, 2, 3}.
The initial state of the system is therefore described by the
density matrix ρ tot

0 = exp(−βcHc)/Zc ⊗ exp(−βhHh)/Zh.
The unitary evolution is generated by creation-annihilation
interactions that couple only the first three levels Hint =
a12b†

12 + a23b†
23 + H.c., where aij (bij ) is the annihilation

operator |i〉 〈j | in the cold (hot) microbath [see Fig. 4(a)].
As a result, there are several conserved quantities, e.g., the
population of the fourth level in each microbath is con-
served. Note that the average energy is not conserved since
we chose different energy spacings in the two microbaths.

(a) (b)

FIG. 4. (a) Two four-level systems (microbaths) with initial
inverse temperatures βc, βh interact via creation-annihilation
terms. (b) The gray curve shows the actual change of the aver-
age energy of the cold microbath qc = �〈Hc〉. The green line
depicts bound (10). The bound in Eq. (11) is shown in purple.
The unrestricted passivity deformation prediction in terms of heat
(dashed red) is tighter than those given in Eqs. (10) and (11),
which are based on the increase of entropy. The passivity defor-
mation bound that also uses information about the constraints on
the dynamics (dotted red) is tight (analytically). The inset shows
that the mutual information (correlation) is not zero in the pro-
cess. This shows two points of merit for the present framework:
(i) it is tight in the presence of correlation and (ii) it can take into
account constraints on the dynamics and produce tight bounds
despite the constraint.

Thus, the microbaths exchange energy not only with each
other but also with the external field that generates Hint. At
the end of the evolution, the interaction is switched off.

In Fig. 4(b), different bounds on �〈Hc〉 are compared
to the numerically calculated value of �〈Hc〉 (denoted by
qc in the figure for brevity). The gray curve represents the
exact value of �〈Hc〉. The purple line shows the bound
imposed by Eq. (11), and the green line shows the bound
imposed by Eq. (10). The dashed red line represents the
passivity deformation prediction based on Eq. (13), where
ξ+ = 5/8βc. Exploiting the conserved quantities in this
specific interaction we use Eq. (17) and get ξ int

+ = 7/8βc.
This latter bound �〈Hc〉 ≥ [βh/βc(1 − 7/8)]�〈Hh〉 is tight
in this example, as can be seen by the red dots.

Interestingly, the bound is tight although there is a non-
negligible correlation between the two objects, as shown in
the inset of Fig. 4(b). In Ref. [44] it was indicated that, for
large environments, the correlation is not the main mecha-
nism that makes Eq. (11) nontight. It is the deviation from
equilibrium in the reservoir that plays a major role. In this
example both mechanisms are important. Nevertheless, we
see that a bound with ξ int

+ is tight despite the deviation
from equilibrium in the microbaths. Note that deviation of
the bath from equilibrium during the evolution was also
treated in Refs. [9,10,37].

To conclude this section, we emphasize that the
notion of integrating a constraint on the dynamics in
this paper is different from having a second law where
some of the quantities satisfy a conservation law. We
exploit the constraint (or conservation law) to produce
a tighter bound compared to the bound without the
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constraint. The outcome is a bound that has the same
observables as the bound without the constraint [e.g.,
�〈Hc〉 ≥ {βh/βc(1 − 7/8)}�〈Hh〉 compared to �〈Hc〉 ≥
(βh/βc)�〈Hh〉 in the example above], but is tighter and
can be saturated despite the restriction on the allowed
unitaries. Constraints in the context of the second law,
have been addressed in Ref. [45] (quantum systems)
and Ref. [46] (classical systems) using information-based
quantities rather than observables as in the present paper.

B. Bound-saturating, path-independent operations

In the previous subsection, we derived a bound of the
form �〈B(ξ)〉 ≥ 0, where B(ξ) = B + ξA is the sum of
a passive and a nonpassive operator, that was valid for a
finite range of ξ . It is of interest to understand the prop-
erties of processes that saturate this bound. This can be
further motivated by an analogy with traditional thermo-
dynamics. The Clausius inequality �Ssys − ∫

δQ/T ≥ 0
is saturated by reversible processes (Q is the heat enter-
ing the system while q is the heat entering the reservoir).
Reversible processes keep the reservoirs infinitesimally
close to equilibrium and do not generate classical cor-
relations and/or entanglement between the system and
reservoirs (see Appendix C and Refs. [4,35]). Reversibility
constrains the process and enables one to exactly express
changes in one element of the setup in terms of changes in
the others. For instance, in a reversible process, the change
in the entropy of the system (e.g., the engine’s working
medium) is fully determined by the changes in the energy
of the microbaths (heat) qk: �SR

sys = −∑
k βkqR

k with the
R superscript denoting a reversible process. Two very dif-
ferent reversible processes that have the same �SR

sys (they
can even involve completely different levels of the system)
will have the same “weighted heat”

∑
k βkqR

k . In particu-
lar, in the special case of a single bath �SR

sys fixes the heat
exchanged with the bath and makes it path independent.
If the two processes also have the same energy change
in the system then the work becomes path independent as
well since W = �F = �(Ssys − β〈Hsys〉). That is, by spec-
ifying the initial density matrix of the system alone, it is
possible to uniquely determine how much work and heat
were invested to make this change in a reversible manner.

In analogy to the path independence associated with
saturating the Clausius inequality, we ask what are the
processes that saturate the bound �〈B(ξ)〉 = 0. A triv-
ial way to saturate this bound is to apply processes that
leave the initial density matrix unchanged. This does not
necessarily imply that U = I . If there are degeneracies
in ρ tot

0 then there is a family of unitaries that only mix
states within each degenerate subspace, and for any mix-
ture of such unitaries, ρ tot

f = ∑
k pkUkρ

tot
0 U†

k = ρ tot
0 . Such

operations trivially lead to �〈B(ξ)〉 = 0 (as for any other
expectation value). Thus, these trivial degeneracies are of
no interest to us.

A nontrivial way of saturating the bound can be found
when the operator B(ξ) = B + ξA has degeneracies that
are different from the trivial degeneracies of B. Interest-
ingly, these degeneracies are guaranteed to appear at ξ =
ξ±. These degeneracies facilitate nontrivial processes that
redistribute population between these degenerate states of
B(ξ), while keeping the expectation value 〈B(ξ)〉 fixed
(assuming that no other operation takes place). For a
general mixture of unitaries, we have inequalities (15)
and (16). However, if we restrict the dynamics to be a mix-
ture of unitaries that only couple the states that become
degenerate at ξ±, the inequality can be replaced by the
equality

∑

k

βkqBSP
k = −ξ±�〈A〉BSP, (18)

where the index BSP (bound-saturating process) indicates
that only unitaries limited to this B(ξ±) degenerate sub-
space are included. Crucially, an interaction between non-
trivially degenerate states leads to ρ tot

f �= ρ tot
0 since these

states are associated with different initial probabilities.
The implications of Eq. (18) are similar to the familiar

reversible path independence mentioned earlier: knowing
that change in 〈A〉 was created by a BSP, fixes the value
of

∑
k βkqk regardless which BSP was actually used. Note

that the BSPs for ξ− and ξ+ are necessarily different from
each other since otherwise there will be two conflicting
predictions on

∑
k βkqk.

Interestingly, since B(ξ) and A in Eq. (18) have different
eigenvalue ordering when written in the same basis, they
cannot be minimized at the same time (although they com-
mute). Thus, there is a generic trade-off between saturating
the Bξ bound and performance (minimizing or maximizing
〈A〉). In contrast to the familiar power-efficiency trade-off
in heat machines, the present trade-off has nothing to do
with time and adiabaticity. It refers to the total accumulated
effect and time plays no role here.

It is instructive to highlight a key difference between
reversible operations and BSP. While BSPs are guaran-
teed to exist whenever ξ− or ξ+ are different from zero,
reversible operations such as isotherms cannot be imple-
mented with small environments. There are two reasons for
this: (1) the microbaths develop non-negligible correlation;
(2) due to their small heat capacity, the microbaths do not
remain locally in equilibrium with their original tempera-
ture. In contrast, the BSPs are standard unitary operations
that can be implemented with suitable control fields. That
is, in microscopic setups the dynamics is thermodynami-
cally irreversible [Eq. (11) is not saturated]. Nevertheless,
the BSP saturates the passivity deformation bounds despite
the thermodynamic irreversibility.

In summary, by examining the structure of the pas-
sive operators of the form B(ξ±) and restricting the
allowed unitaries to those associated with the emerging ξ±
degeneracies we identify nontrivial processes that saturate
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the passivity-based bounds (15) and (16). The path inde-
pendence associated with the equality shows some resem-
blance to reversible processes. However, the reasons for
the saturation of the bound are quite different in both
instances. Proximity to equilibrium during the dynamics
in one case, and a restriction to evolution in a degenerate
subspace in the other. Finally, we wish to emphasize that
passivity deformation inequalities (with the extremal val-
ues ξ±) can always be saturated by some unitary evolution,
even if the environments are very small. This addresses
the unattainability issue of Eqs. (10) and (11), and global
passivity.

C. Illustrative examples

In this section, we present several examples that demon-
strate how to obtain inequalities with interesting physical
interpretation using the passivity deformation approach.
These examples are intentionally chosen to be elementary
and involve just a few particles. We aim to show how
this method works in the simplest setups and what kind
of results it can provide. Some of the spin-based exam-
ples shown here can be extended to any number of spins
in the environment. An additional set of examples will be
presented later, after introducing a graphical approach to
passivity deformation.

1. Performance of an exotic heat machine

Consider the machine described in Fig. 1(c), namely a
two-spin system that can be manipulated by interacting
with a microbath. To keep the plot simple and tractable,
we first use a two-spin environment (microbath). The
goal of the setup is to implement a protocol of interac-
tion with the environment that will make the two spins
of the system as correlated as possible. Specifically, we
wish the system spins to be in the |00〉sys state or in the
|11〉sys state. The Hamiltonian of the setup is H = Hsys +
Henv + Hint(t), where Hsys = ωσ z

1 + ωσ z
2 , Henv = ωσ z

3 +
ωσ z

4 . Here Hint(t) depends on the protocol used for the cor-
relation enhancement. Initially, Hint(0) = 0, and the initial
inverse temperature of the whole setup is β = 1/2. Hence,
the initial state is ρ tot

0 = e−βH/tr[e−βH ].
The probabilities to be in a certain set of states is given

by expectation values of the projection operator to this
set of states. In the present case the goal is to increase
the expectation value of the projector A = |00〉〈00|sys +
|11〉〈11|sys, since Psame = P(11) + P(00) = tr(ρA) = 〈A〉.
What are the limitations on this class of processes? Which
resources must be invested to generate the desired output?
Using the form Bξ = B + ξωA, and employing Eq. (16),
we find that ξ− = −β. As a result, we obtain the bound

�Psame ≤ W/ω, (19)

where W = �〈Hsys + Henv〉 is the work done on the setup
during the process. We conclude that our ability to realign

(a) (b)

FIG. 5. (a) The blue curve shows the change in the correlation
of the two spins in the machine illustrated in Fig. 1(c). Passiv-
ity deformation predicts that the (scaled) work (dashed red) is
always larger than the correlation creation (blue). (b) The bar
plots show the emergence of degeneracies before, at, and after
the critical point ξ−. Unitary operation between states in the same
ellipse exhibit path-independent behavior.

the system’s spins is directly bounded by how much work
we invest. Note that this result holds for any β and any
ω. Using the method described in Appendix B, we find
the unitary that maximizes 〈A〉. In Fig. 5(a) we show
that in accordance to the passivity construction predic-
tion, �Psame ≤ W/ω, the work (normalized by ω) that has
to be invested (red line) is larger than the increase in
the probability of the spins to be in the same orientation.
As explained at the end of Sec. III B, the saturation of
the passivity deformation bounds typically conflicts with
achieving the maximal performance. The unitary that max-
imizes �Psame, which was used in this example, is different
from the BSP unitary that saturates the bounds. Hence, the
bound cannot be tight in this example.

In Fig. 5(b) we show the emergence of new degeneracies
at ξ = β. If the dynamics is restricted to unitaries that mix
only states inside each ellipse, then it is guaranteed that
Eq. (19) will reach equality. That is, the amount of work
will not depend on which BSP transformation we applied,
only on the change in the correlation observable �Psame,
i.e., there is path independence for BSP operations.

We point out that inequalities such as those in Eq. (10)
or (11) are not suitable for setting performance bounds for
such machines as they do not contain the changes in the
fine-grained observable A. This example illustrates the util-
ity of our approach to quantifying the performance limits
of such exotic heat machines.

Using the graphical tool presented in Sec. IV, it is
possible to show that Eq. (19) holds for any number of
environment qubits (provided that the product βω is the
same for all qubits). Furthermore, in systems with more
than two qubits, the creation of correlation between other
sets of states can be studied in the same way.

2. Bounds on the system-environment covariance in
dephasing dynamics

To show a more quantum aspect of our approach, we
consider dephasing dynamics. In our previous work [2] we
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FIG. 6. The dynamics of the normalized covariance between
the polarization of an initially coherent spin and the energy of
a dephasing environment composed of three thermal spins. The
exact dynamics is shown in blue and the gray areas are the for-
bidden zones according to the global passivity bound �〈B2〉 ≥ 0.
Using the passivity deformation framework, we find significantly
tighter bounds (red).

obtained a bound on the covariance between the coherence
of a system and the energy of its dephasing environment,
i.e., 〈σ sys

x Henv〉 − 〈σ sys
x 〉〈Henv〉, where Henv = ∑3

j =1 σ (j )
z is

the Hamiltonian of the environment. The Hamiltonian of
the system is Hsys = σ sys

z . The system was a spin with
some initial coherence in the energy basis, and it inter-
acted with a three-spin microbath (environment) via an
interaction of the form Hint = ∑3

j =1 γj σ
sys
z ⊗ σ (i)

z . Here
γi = {0.7, 0.5, 0.3} is a set of couplings that represents the
case where some environment spins are further away from
the system. The system Hamiltonian is Hsys = σ sys

z , and the
initial state of the setup is ρ tot

0 = exp(−βxσ
sys
x − βHenv)/Z

with βx = β = 3. Note that the state of the system is not
thermal since the system Hamiltonian is σ sys

z and not σ
sys
x .

From the initial density matrix we obtain B = βxσ
sys
x +

βHenv + ln Z.
In Ref. [2] we used the global passivity of B2 to set a

bound on 〈σ sys
x Henv〉. Here we look for a tighter inequal-

ity by constructing B(ξ) = B2 + ξσ
sys
x and studying for

which ξ values B(ξ) is globally passive. The gray regions
in Fig. 6 show the bounds obtained in Ref. [2] based on
�〈B2〉 ≥ 0, and the red curves show the passivity defor-
mation bounds �〈B(ξ−)〉 ≥ 0 with ξ− = −9. See Ref. [2]
for the technique used to derive the upper bounds. Clearly,
the passivity deformation bound is closer to the actual
dynamics of the covariance (blue) compared to the global
passivity bound.

3. Demon detection through violation of passivity
deformation bounds

One of the ways in which inequalities of the type
derived here can be useful is through their violation, which

indicates that some of the assumptions made on the dynam-
ics of the setup are not valid. In Ref. [2] we used this
idea for detecting the presence of Maxwell-like demons
that may tamper with the dynamics. The demons that were
considered were too subtle to be detected by the second
law. Nevertheless, they were detectable by the violation of
some of the global passivity inequalities �〈Bα〉 ≥ 0. As
it turns out, although the inequalities �〈Bα〉 ≥ 0 are more
sensitive to the presence of demons compared to Eq. (10),
they may still fail to detect a demon whose operation is
sufficiently weak. This raises the key question regarding
the existence of more sensitive thermodynamiclike tests
(inequalities) that can detect the tampering of these lazier
demons.

Consider two initially uncoupled microbaths at different
temperatures, i.e., ρ tot

0 = exp(−βcHc)/Zc ⊗ exp(−βhHh)/

Zh. In the absence of external work, the second law assures
us that subsequent evolution will result in energy transfer
from the hot to the cold microbath. If these two micro-
baths are well isolated from the rest of the world, and
there is no Maxwell’s demon, the evolution is unitary,
ρ tot

f = Uρ tot
0 U†. For simplicity, we consider a demon that is

operating on the setup at the end of the unitary evolution.
The demon applies feedback that depends on the state of
the setup, resulting in dynamics described by a Kraus map
ρ̃ tot

f = ∑
k Uk�kρ

tot
f �kU†

k , where �k denotes a projection
into the subspace that matches the measurement outcome
k. Passivity-based inequalities are not guaranteed to hold
under such evolution.

There are two ways to make demon detection more chal-
lenging. The first is to apply mild operations. That is, to
use demon (feedback) operations Uk that are very close to
the identity. The second option is to apply the feedback
with some probability p , and with probability 1 − p , do
nothing so that ρ̃ tot

f = p
∑

k Uk�kρ
tot
f �kU†

k + (1 − p)ρ tot
f .

Consequently, for the same feedback operations Uk, p = 0
corresponds to demon-free evolution while p = 1 is the
standard Maxwell demon (that violates the second law).
A demon with a low enough value of p , so that βc�〈Hc〉 +
βh�〈Hh〉 ≥ 0 and Eq. (10) cannot be used to detect it, is
called a lazy demon.

In the lazy demon scenario considered in Ref. [2] it was
found that the optimal detection using the �〈Bα〉 family
of inequalities takes place at α 
 2.56 (this value is not
universal). This suggests that higher α values are not nec-
essarily better, and that noninteger values of α can have
a practical advantage. Most importantly, inequality (10)
(α = 1) fails to detect this demon.

We return to this example and test whether one can
find even more sensitive inequalities using the approach
developed here. In the example used in Ref. [2] both
microbaths were two-spin systems, with Hc = σ (1)

z + σ (2)
z

and Hh = σ (3)
z + σ (4)

z . The initial inverse temperatures
were chosen to be βc = 2/3 and βh = 0.4. To derive
passivity-deformation-based inequalities, we assume that
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the dynamics in the absence of a demon is unitary and
construct the operator B

σ
(3)
z

(ξ) = βcHc + βhHh + ξσ (3)
z .

Using Eqs. (15) and (16), we find that the range of ξ values
for which this operator is passive is between ξ− ≈ −0.266
and ξ+ ≈ 0.133.

We now consider a process that involves evolution
with an “all-to-all” interaction between the spins HI =
∑

i>j σ
(i)
+ σ

(j )
− + σ

(i)
− σ

(j )
+ . After the evolution, the demon is

awake with probability p . If it is awake and the system is
in the state |1100〉, it replaces it with the state |0011〉. In
all other cases, the demon does nothing. In this example,
a demon that operates 0.56 of the time or more will vio-
late Eq. (10). In Ref. [2] it was shown that a demon that
operates only 0.48 of the time (or more) will violate the
inequality �〈Bα〉 ≥ 0 (with α = 2.56). Crucially, using
passivity deformation, we find that a demon that operates
more than 0.289 of the time will violate the inequality
�〈B

σ
(3)
z

(ξ−)〉 ≥ 0 derived here. Note that the inequal-
ity �〈βcHc + βhHh〉 ≥ 0 cannot detect the demon while
the passivity deformation inequality �〈βcHc + βhHh +
ξ−σ (3)

z 〉 ≥ 0 can detect the demon without resorting to
higher-order moments. Nevertheless, by using the pas-
sive operator [B

σ
(3)
z

(ξ−)]α , the detection threshold further
improves to p > 0.25 at α = 2.64. Hence, the passivity
deformation approach leads to more sensitive detection
compared to global passivity.

This example, as well as the previous examples studied
in this section, demonstrate that inequalities (15) and (16)
are tighter, and therefore more informative than inequality
(10). Moreover, they are tight even in the presence of small
environments and correlation buildup. This comes at a cer-
tain cost. To derive these new bounds, one has to exploit
system-specific information about the eigenvalues of rel-
evant operators, and on the initial state of the setup. This
setup dependence of ξ is also the reason for the tightness
of the bounds with respect to Eqs. (10) and (11)—passivity
deformation bounds are constructed to handle only the
scenarios that can actually take place in the setup of inter-
est (e.g., see the discussion on constraints and conserved
quantities). In many modern experimental setups such as
superconducting qubits, trapped ions, or optical lattices,
the initial state and the Hamiltonian are known. Hence, the
inequalities studied here are well suited for the description
of quantum processes in such setups.

IV. ADDITIONAL INSIGHTS FROM A
GRAPHICAL REPRESENTATION OF PASSIVITY

DEFORMATION

In this section, we explore a more visual and intu-
itive method for obtaining passivity-deformation-based
inequalities. The basic idea is to start with the globally
passive operator B = − ln ρ tot

0 , and deform it to a new
operator B̃, by shifting some of its levels (eigenvalues)

using a set of rules that ensure that the resulting operator is
globally passive. As a result, the subsequent evolution will
satisfy

�〈B̃〉 ≥ 0. (20)

Although we later consider more complicated scenarios,
let us start with the basic scenario of two uncorrelated
microbaths for which

B = βhHh ⊗ Ic + Ih ⊗ βcHc, (21)

where we have explicitly denoted the identity operators in
each subspace. We also dropped an additive constant, aris-
ing from the normalization of ρ tot

0 , that would not affect
the resulting inequality. Since the two terms commute,
the eigenvalues of B have the form βcE(c)

λ + βhE(h)
ν with

E(c)
λ (E(h)

ν ) denoting the eigenvalues of Hc (Hh). It is most
useful to plot this spectrum using “floors” and “ladders,” as
shown in Fig. 7. First, we select one of the microbaths, e.g.,
the cold one, to set the floors and plot the level βcE(c)

λ with
an increasing sideways shift for each level so that a stair-
case shape is obtained (the stairs may be uneven). Next,
on each floor, we set a ladder of the hot levels βhE(h)

ν . The
floors are not actual levels of B, but merely a reference
for the ladders. The positioned ladders constitute the actual
levels of B.

With the sideways shift, it is easy to read off B from
the plot. Without the shift, only the spectrum values are
accessible and it is difficult to note that it has the form
βhHh ⊗ Ic + Ih ⊗ βcHc if βcHc and βhHh are not known
a priori. Furthermore, this representation is very useful
for understanding how the spectrum changes if we con-
tinuously change some of the parameters, for example, the
temperature of one of the elements. Note that the ladders
may overlap in height [Fig. 7(a)] or be separated from each
other [Fig. 7(b)]. As explained later, this separation has
physical implications. It is straightforward to extend the
plot to multiple microbaths in an iterative way. For exam-
ple, for three microbaths, start by plotting two as before,

(a) (b)

FIG. 7. Plotting the spectrum of a globally passive operator
of the form βcHc + βhHh. For high enough temperatures Tc
(low βc), the hot manifolds overlap (a), while for cold enough
temperatures (high βc), they do not (b).
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then consider the resulting plot as “floors” and use the third
microbath as a ladder.

Let us define a new operator B̃ that has the same eigen-
states as B, i.e., [B̃,B] = 0, but can have different eigen-
values. To ensure that the new operator B̃ stays globally
passive, we want it to have the same order of eigenval-
ues as B. Individual levels can be shifted up or down and,
as long as they do not cross any other levels, the order of
the new eigenvalues of B̃ will still be the same as that
of B. Crossing levels is equivalent to level permutation
that changes the order and breaks global passivity. Since
degenerate levels of B have no order between themselves,
we can split and move them until they touch another level
they were not originally degenerate with. Thus, the idea of
passivity deformation can be stated as follows.

Passivity deformation.
An operator B̃ created from B = − ln ρ tot

0 by applying the
following operations

(1) moving up and down levels without crossing other
levels,

(2) splitting levels that were degenerate in B,
is globally passive, i.e., it satisfies �〈B̃〉 ≥ 0 for any proto-
col ρ tot

f = ∑
k pkUkρ

tot
0 Uk

†.

If the dynamics does not mix all levels (i.e., there are
dynamical constraints and conserved quantities) then we
have the following more flexible set of rules.

Passivity deformation under restricted dynamics.
Let the dynamics be composed of a mixture of unitaries U′

k that
do not mix two specific levels m and l (levels of the whole
setup), i.e., 〈m|Uk|l〉 = 〈l|Uk|m〉 = 0. An operator B̃ created
from B using rules (1) and (2) above, as well as the rule that

(3) crossing levels m and l is allowed (provided that no
other levels are crossed in the process),

is globally passive, i.e., it satisfies �〈B̃〉 ≥ 0 for any protocol
generated by the restricted dynamics ρ tot

f = ∑
k pkU′

kρ
tot
0 U′†

k .

The additional third rule can be stated using a conserva-
tion law. In the case of a conserved quantity Q, crossing
should be avoided only between levels that have the same
value of Q.

We emphasize that these deformations are by no means
physical operations we execute on the setup. They are just
a mathematical technique for finding new globally passive
operators and new inequalities. The physical interpreta-
tion of the resulting inequalities depends on the passive
operators B̃ that can be identified. The interpretation does
not have to be thermodynamic in nature (e.g., involving
energies of subsystems).

As shown later in Sec. IV C, this deformation recipe
[rules (1)–(3)] is not limited to objects that are initially in a
Gibbs state or to uncorrelated objects. Next, we study sev-
eral key examples that illustrate the value of the passivity
deformation approach and the graphical representation in
particular.

A. Addressing the ultracold catastrophe

1. Ultracold environments and nonoverlapping ladders

As an example for a process involving a very cold envi-
ronment, let us consider once again a setup composed of
two microbaths that are initially thermal with inverse tem-
peratures βc and βh. Then, the setup is driven by a process
described by a mixture of unitaries. If the initial temper-
ature 1/βc is too low, no unitary process (or a mixture
of unitaries) can cool the cold microbath, irrespective of
the amount of invested work. That is, a refrigerator can-
not be implemented in the given setup. As shown below,
this is a rather general result. We term such environments
“ultracold environments.”

By construction, the spacings between the floors [blue
lines in Fig. 7(a)] are proportional to βc. Hence, when
decreasing the initial temperature, the spacings between
the blue levels expand. Yet, the spacings in the red ladder
are not affected by the change in βc. Next, we assume that
the spectral range of the hot microbath ωmax

h = max(Eh) −
min(Eh) is finite. Under this assumption, it follows that,
for large enough βc, the ladders will not overlap with
each other, as shown in Fig. 7(b). The condition for
nonoverlapping ladders is

βc ≥ β�
c , (22)

β�
c

.= βhω
max
h /ωmin

c , (23)

where ωmin
c = min(Ec

n+1 − Ec
n) is the minimal, nonzero

energy gap in the cold bath Hamiltonian. Physically, this
condition is met when the initial temperature of the cold
microbath is “sufficiently cold.” Equation (22) implies that
this scale of coldness is not an intrinsic and objective prop-
erty of the cold environment, but a property with respect
to the other systems it potentially interacts with (the hot
microbath). Note that in this regime βh can be very large
as well, as long as Eq. (22) is satisfied. Next, the rela-
tion between no cooling and nonoverlapping ladders is
outlined.

2. No cooling in the ultracold regime

Considering the two-microbath scenario above, inequal-
ity (10) constrains the possible changes in the energies of
the hot and cold subsystems. Yet, it does not, a priori,
determine the sign of �〈Hc〉 that may, in principle, depend
on the selected interactions.
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Next, we assume that the cold environment is ultracold
and that the no-overlap condition (22) holds. Since the
ladders do not overlap, according to the passivity defor-
mation rules presented earlier, one can freely expand the
distances between them (no levels will be crossed). We
uniformly increase the distance between them by replac-
ing βc by some fictitious β ′

c ≥ βc. Since this a legitimate
deformation, it holds that

β ′
c�〈Hc〉 + βh�〈Hh〉 ≥ 0. (24)

We remind the reader that this is not a physical change in
the system and that the initial temperature is still βc and
not β ′

c. Yet, we obtained a new inequality (24) by doing
this deformation. Taking the limit β ′

c → ∞ we conclude
that

�〈Hc〉 ≥ 0 for βc ≥ β�
c , (25)

i.e., there is no refrigerator that can exploit the given
hot environment, to cool the given ultracold environment.
Such behavior is known for specific Otto engines coupled
to Markovian environments [47–49]. Here we have used
passivity deformation to show that this is a generic prop-
erty of microbaths and not of a specific machine. Even in
complicated machines that involve quantum nonadiabatic
couplings that are too complicated to be solved analyti-
cally, the conclusion on the lack of cooling window for
βc ≥ β�

c still holds. Note that there was no restriction on
the applied unitary, so it is possible to add a local unitary
on the cold microbath at the end of the evolution that brings
the cold microbath to its passive state. Thus, even residual
coherence cannot be utilized to overcome the �〈Hc〉 ≥ 0
result for βc ≥ β�

c .

3. Handling the zero-temperature limit

As explained above, when βc → ∞, the hot (finite) lad-
ders are infinitely separated from each other [see Fig. 7(b)].
According to the rules of passivity deformation described
above, we now deform the operator B into a new opera-
tor B̃ by shrinking the distance between the ladders (but
not shrinking the ladders themselves). As a result, the new
operator now has a fictitious β ′

c < ∞. According to the
rules of passivity deformation, β ′

c cannot be arbitrarily
small. We must stop at the first time the ladders cross. This
happens at

β ′
c = β�

c = βhω
max
h /ωmin

c . (26)

Thus, it holds that in this setup

β�
c �〈Hc〉 + βh�〈Hh〉 ≥ 0 (27)

or, alternatively,

1
ωmin

c
�〈Hc〉 + 1

ωmax
h

�〈Hh〉 ≥ 0. (28)

This form appears to be temperature independent; how-
ever, it is valid only if the real initial cold temperature
of the bath 1/βc is smaller than ωmin

c /(βhω
max
h ). Equa-

tions (27) and (28) provide a more refined prediction
compared to Eq. (10) or (11), which only determines the
sign of �〈Hc〉 via �〈Hc〉 ≥ 0. We now have a meaningful
relation between the energy changes in the cold microbath
and the hot microbath. In particular, according to Eq. (28),
the efficiency of an engine exploiting these two envi-
ronments is limited by η ≤ 1 − βh/β

�
c = 1 − ωmin

c /ωmax
h ,

while the prediction of Eq. (10) for βc → ∞ is η ≤ 1 −
βh/βc = 1, which provides no useful information. The effi-
ciency 1 − βh/β

�
c = 1 − ωmin

c /ωmax
h corresponds to an Otto

engine operating between the two levels with the smallest
nonzero energy gap in the cold bath and the two most sep-
arated levels in the hot bath. This process will saturate the
revised bound (27). Yet, we emphasize that in the ultracold
limit the Otto efficiency 1 − ωmin

c /ωmax
h limits all possible

protocols for work extraction from these two baths.
We should clarify that in this scenario there is no

machine that runs a periodic protocol and achieves some
steady-state operation. Instead, there is a direct non-
energy-conserving interaction between the two micro-
baths. Yet this interaction may cool (and consume work) or
harvest some work (an engine). In the current setup, there
is no subsystem that acts as a working medium that can
store part of the energy. As a result, the efficiency remains
W/Qh even if a single-shot nonperiodic drive is applied.
Finally, for readers who are familiar with microscopic
engines, we point out that small environments cannot sup-
port the isotherms needed for the Carnot machines (see
the discussion about reversible processes in Sec. III B).
Thus, for small environments, Carnot machines cannot be
implemented regardless of how slow they operate.

To numerically illustrate our findings, we apply the pas-
sivity deformation approach to the spin-oscillator setup
studied in Ref. [50]. The Hamiltonian is

H = Hosc + Hspin + Hint

= ωaa† + �σσ † + g(a† + a)(σ † + σ), (29)

where initially the oscillator is in some cold temperature
Tosc, and the excited state population of the spin is 0.1. The
two are initially uncorrelated. The goal is to get a bound
on the heat flows that enters the oscillator qosc = �〈Hosc〉
using quantities that involve only the system. Employing
Eq. (28) to the present scenario yields the following lower
bound on �〈Hosc〉:

�〈Hosc〉 ≥ ω

�
�〈Hspin〉. (30)

In Fig. 8 the numerically calculated value of �〈Hosc〉 is
depicted in black, and the prediction Tosc�Ssys obtained
from Eq. (11) is shown in red. The bound derived in
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Various bounds on the change in energy of a cold
oscillator that is coupled to a spin. In black is the numerically
calculated energy change of the oscillator. The red line represents
bound (11). The blue line shows the bound obtained in Ref. [50]
and the magenta line shows our passivity deformation bound
(30). In all plots the passivity deformation bound is the tightest.
The values of the coupling constant and the initial temperature
of the oscillator are given in each plot. In Fig. 8(f) the coupling
strength is very weak, g = 0.01. As appears in this figure, in
the limit g → 0 the passivity deformation bound becomes tight
while the other bounds do not.

Ref. [50] is shown in Blue, and the magenta line corre-
sponds to the passivity deformation bound.

In the top row of Fig. 8, g = 0.2; in Figs. 8(d) and 8(e),
g = 0.05; and in Fig. 8(f), g = 0.01. In addition, ω = � =
1, as taken in Ref. [50]. The initial temperatures of the
oscillators from left to right in Fig. 8 are T = 0.01, T = 0.1,
and T = 0.4. Interestingly, as shown in Fig. 8c, for hot tem-
peratures all bounds become equal (the blue and magenta
lines are behind the red). The passivity deformation bound
is the tightest at all times in all plots. In Fig. 8(f) we
show that, for an even weaker coupling than that tested in
Ref. [50], the passivity deformation bounds approach the
actual values. We observe that, as the coupling gets weaker
(and the evolution time is larger to compensate for that),
the passivity deformation becomes tighter and tighter. On
the other hand, the bound presented in Ref. [50] does not
become tighter and can be seen by comparing the blue line
in Figs. 8(d) and 8(f).

Finally, we compare our approach to a result from
another paper [51], where an environment with several
spins (1, 3, or 5) interacts with a single spin. The bounds
studied in Ref. [51] show an improvement over Eq. (11)
and a bound studied in Ref. [51]. Yet none of the pre-
sented bounds are tight. We find that, for the case in which
the initial state of the system is hot (Fig. 3 of Ref. [51]),
our bound is tight. When the initial state is pure (excited
state) (see Fig. 4 of Ref. [51]), our bound is tight provided

that the restricted dynamics passivity deformation scheme
described in Sec. III A is employed.

B. Information erasure and the energetic cost of
polarization creation

One of the merits of the passivity deformation approach
is that it can be used to obtain bounds on various fine-
grained observables and not only on the average energy
and the entropy. As an example, consider a setup composed
of hot and cold microbaths. Assume that the hot micro-
bath is an N -level system where levels m and m + 1 are
degenerate, Eh

m = Eh
m+1. The task at hand is to increase the

polarization of these two levels, i.e., to increase the popu-
lation difference |ph

m − ph
m+1| by interacting with another

microbath. Note that, due to interactions of other levels
with the external driving and the other microbath, the total
average energy of the hot bath and its entropy can either
grow or decrease as the polarization is increased. Con-
sequently, this task is “fine grained,” and the quantities
appearing in Eq. (10) or (11) do not set explicit bounds
on the execution of this task.

Initially, the hot microbath is in a Gibbs state and both
levels are equally populated. In the case in which the hot
microbath is a two-level system, polarization creation is
very similar to the Landauer principle that assigns a min-
imal heat cost to entropy changes �Sh = −βc�〈Hc〉. The
most familiar case is a full resetting of a fully unknown
state whose initial entropy is ln 2.

The Landauer erasure principle is one of the central
results regarding the energetic consequences of handling
information. It highlights the costs that must accompany
logically irreversible operations on a subsystem. Thus,
it is of interest to study the energetic cost of polariza-
tion creation that is the expectation value analog of the
Shannon–von Neumann information erasure.

For simplicity, let us first assume that βc ≥ β�
c and

relax this assumption later. Moreover, for brevity, we also
assume that only two levels are degenerate (Eh

m = Eh
m+1 =

E), and define E+ ≡ Eh
m+2 > E, E− ≡ Eh

m−1 < E, i.e., the
first upper and lower levels around the degeneracy. The
population difference of interest can be recast as the expec-
tation value of the operator A = |m + 1〉〈m + 1| − |m〉〈m|,
namely tr(ρA) = ph

m+1 − ph
m. Next, we construct the opera-

tor B̃(ξ) = βcHc + βhHh + ξβhA by adding a term propor-
tional to A to the globally passive operator B. As shown in
Fig. 9(a), this operator splits the degeneracy.

From the no-crossing rule of the passivity deforma-
tion framework, we find that B̃(ξ) is globally passive for
−ν ≤ ξ ≤ ν, where ν = min(E+ − E, E − E−). By com-
bining the −ν bound for positive changes in A with the +ν

bound for negative changes we obtain

βc�〈Hc〉 + βh�〈Hh〉 ≥ νβh|ph
m+1 − ph

m|, (31)
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(a) (b)

FIG. 9. (a) The deformation for obtaining a bound on the
polarization erasure in the nonoverlapping ladders regime (only
one ladder is plotted). (b) The deformation that assigns a tem-
perature to a nonthermal passive environment (one ladder is
shown—nonoverlapping ladders regime).

where the polarization ph
m+1 − ph

m is calculated at the end of
the process (initially there is no polarization). If βc = βh =
β or, alternatively, if there is only one microbath with a
Hamiltonian H , and the goal is to polarize two of its levels,
then Eq. (31) becomes

W ≥ ν|ph
m+1 − ph

m|, (32)

where W = �〈H 〉 is the work needed to create the polar-
ization. A more restrictive inequality than that in Eq. (31)
can be obtained by replacing βc with β�

c , resulting in

ωmax
h

ωmin
c

�〈Hc〉 + �〈Hh〉 ≥ ν|ph
m+1 − ph

m|. (33)

When βc < β�
c , a similar inequality to that in Eq. (31)

holds. The only difference is in the expression for E±. For
βc > β�

c , it is clear that the levels in B̃(ν) that are closest
to the degenerate levels Eh

m, Eh
m+1 in a specific ladder are

in the same ladder, since the ladders are well separated.
When the ladders overlap, the closest levels may originate
from different ladders. Nonetheless, the principle remains
the same, and ν is obtained from the maximal deformation
before the nearest level is crossed. Note that, for βc < β�

c ,
it is not possible to replace βc → β�

c as done in Eq. (33)
for the case where the ladders do not overlap.

We stress that bound (33) is tight for environments
of any size (there is always a BSP operation that satu-
rates the bound). In contrast, the Landauer bound is loose
when the environment is small (see the explanation in
Appendix C). Furthermore, if the dynamics respects some
conservation laws that exclude the possibility of executing
the bound-saturating operation (Sec. III B), we can incor-
porate the conservation laws into Eq. (31) or (33) as done
in Sec. IV (second box). As a result, a new attainable bound
is obtained where the value of the new ν is greater than the
value of ν without the conservation law.

Next, we consider the case where the energy level of
both objects (hot and cold) are an integer multiplication
of some frequency ω, i.e., Ec(h) ∈ {nω}n=1,2,3,.... This spec-
trum can correspond to a spin bath of arbitrary number
N and/or to a harmonic oscillator. Furthermore, the initial
inverse temperature of the objects are equal, βc = βh. Let

m and m + 1 be two degenerate levels in one of the objects.
Employing the passivity deformation rules as before we
find that the work needed to polarize these two level
satisfies

W/ω ≥ 1
2 |pm+1 − pm|. (34)

The factor of half that is missing in Eq. (32) appears here
since the ladders overlap in this case. As a result, the defor-
mation has to be smaller to avoid level crossing. This
example shows that the current framework can also be
applied to systems with very large Hilbert spaces.

C. Local and global deviations from an initial local
equilibrium

In the previous sections, the goal was to find new
inequalities for initial states of several uncoupled and ther-
mal subsystems, where Eq. (10) holds. We now do the
opposite and look for scenarios where the initial conditions
are such that Eq. (10) may be violated (e.g., initially corre-
lated microbath). Our goal is to use passivity deformation
to obtain bounds that are valid in this regime, yet still have
the same form of Eq. (10), albeit involving some effective
temperatures.

1. Initially athermal passive subsystem

Consider a situation in which a subsystem is pre-
pared in state ρ

pass
0 that is athermal, yet still passive with

respect to its Hamiltonian Hs, i.e., pn ≤ pk if Es
n ≥ Es

k and
[− ln ρ

pass
0 , Hs] = 0. This athermal system is then coupled

to an ultracold microbath by a process that is described by a
mixture of unitaries. The global passivity of − ln ρ tot

0 yields
�〈− ln ρ

pass
0 〉 + βc�〈Hc〉 ≥ 0. Unfortunately, this expres-

sion provides a prediction on the observable − ln ρ0 and
not on the energy of the initially passive system. Our goal
now is to derive an inequality that would constrain the
variation of the subsystem energy �〈Hs〉.

Since the ladders are now given by the expression
− ln ρ

pass
0 instead of βhHh, the nonoverlapping ladders

condition now reads

βc ≥ β̄�
c

.= 1
ωmin

c
ln(

p1

pN
). (35)

In what follows we assume that this condition holds. Con-
sequently, it is possible to use the passivity deformation
rules and get a new globally passive operator using the
deformation − ln pi → βeff

s Hs, as depicted in Fig. 9(b). The
value of βeff

s is determined by the no-overlap condition
βeff

s ωmax
s = βcω

min
c . The resulting bound is

1
ωmin

c
�〈Hc〉 + 1

ωmax
s

�〈Hs〉 ≥ 0. (36)

We have demonstrated that such athermal initial states still
lead to bounds that restrict energy exchanges. For example,
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(a) (b)

FIG. 10. (a) When two environments are initially classically
correlated, the globally passive operator B = − ln ρ

pass
0 no longer

has the “ladder replicas” structure shown in Fig. 7. Instead, each
ladder is determined by the conditional probability via − ln(ph|c

j |i ).
(b) If the manifolds are separated as shown in (a) then it is
possible to deform the original B into a new operator with a
replica structure and thermal local operators that yield a bound
of the form βeff

c �〈Hc〉 + βeff
h �〈Hh〉 ≥ 0. This procedure yields

an effective temperature related to the initial classical correlation.

in the no-overlap regime an engine exploiting this pas-
sive environment is limited by the Otto efficiency with a
compression ratio of ωmin

c /ωmax
s .

The extension to two athermal small environments in the
nonoverlapping ladders regime is straightforward. Denot-
ing the additional athermal environment that replaces the
cold microbath by s′, we find that Eq. (10) remains valid
(replacing labels “c” by “s′”), but now the no-overlap
condition reads

min(ln ps′
n /ps′

n−1) ≥ ln p1/pN . (37)

Since Eq. (36) holds in this case as well, the Otto efficiency
limits the performance of the engine even though none of
the environment is initially thermal. Moreover, exactly as
in Sec. IV A 2, it is not possible to cool and reduce the
average energy of s′ since the ladders do not overlap.

2. “Inert” classical correlations between subsystems

Next, we consider a scenario in which there are initial
correlations (in the energy basis) between different subsys-
tems. For concreteness, we consider a setup with the initial
Hamiltonian H = Hc + Hh. The initial state of the setup
is diagonal in the eigenbasis of the Hamiltonian, but does
not form a product state, namely pch

ij �= pc
i ph

j , where the p
are the diagonal elements of the density matrix. As before,
the setup is driven by a process modeled by a mixture of
unitaries. At the end of the process, the coupling is turned
off so that the final Hamiltonian is the same as the initial
Hamiltonian.

The initial correlations of the type considered here can
be achieved by creating interaction between subsystems
and turning it off before the process starts. In quantum
setups, such a procedure may result in additional quan-
tum correlations. Nevertheless, there are situations where
the quantum correlation reduces to classical correlation.

For example, if two objects with different energy gaps are
brought momentarily into resonance by a driving field, the
free evolution after the drive is switched off will cause
the off-diagonal elements of the density matrix to rotate
in time. If it is not known when the correlating interaction
took place, only the time-averaged density matrix is acces-
sible. As a result, the time-averaged state is classically
correlated. Alternatively, if the two objects are subjected to
local dephasing after the correlating interaction is switched
off, the joint state will be classically correlated.

In the derivation of Eq. (10) the lack of correlations
is a crucial assumption (see Ref. [4] and the references
therein). Indeed, such initial correlations may result, for
example, in spontaneous energy flow from a cold subsys-
tem to a hot subsystem [52]. Below, we show that if one
subsystem is sufficiently cold, a second-law-like inequal-
ity holds, but with effective temperatures that depend on
the initial correlations. We start by writing the classically
correlated initial state as

pch
ij = pc

i ph|c
j |i , (38)

where ph|c
j |i is the conditional distribution of the hot envi-

ronment given that the cold environment is in state “i”. By
taking − ln of the right-hand side of Eq. (38), it becomes
clear how to extend the “floors and ladders” diagram to
the classically correlated case: {− ln(pc

i )}i constitute the
floors, and they are used for plotting the initial staircase
as before. Next, on floor i we put the “conditional ladder”
{− ln(ph|c

j |i )}j that corresponds to it. That is, the correlation
manifests in the fact that the ladders are different from each
other as shown in Fig. 10.

In this way, arbitrarily strong classical correlation can
be represented. In order to apply passivity deformation
and derive a bound that resembles Eq. (10), we make
the following assumptions: (1) as in the previous section,
the ladders do not overlap; (2) the conditional marginals
{− ln(ph|c

j |i )}j are passive with respect to Hh; and (3)
{− ln(pc

i )}i is passive with respect to Hc. We do not assume
that the marginals are thermal or that the correlation is
weak.

Starting with the cold subsystem, we first shift the floors
from {− ln(pc

i )}i to βeff
c Hc. Since the ladders do not over-

lap, there is always some large enough βeff
c for which this

is possible. To obtain a tight bound, we select the minimal
value for which this is possible. Next, to get rid of the cor-
relation in our constructed globally passive operator, we
need to make all the ladders identical. Since we assumed
that the conditioned marginals of the hot object are passive,
it implies that each ladder has the same ordering as βhHh.
Therefore, we can use the ladder separation to deform each
ladder separately into βeff

h Hh. For achieving the best bound,
βeff

h is taken to be the largest value that does not make the
ladders cross.
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We conclude that if the three conditions above hold then
despite the initial correlations a second-law-like bound of
the form

βeff
c �〈Hc〉 + βeff

h �〈Hh〉 ≥ 0 (39)

holds for any mixture of unitaries. The information about
the correlations is encapsulated in the values of the effec-
tive temperatures. Note that, by construction, this bound is
tight (see Sec. III B).

As in Sec. IV A 2, the no-overlap condition leads to
�〈Hc〉 ≥ 0. Hence, we call such a correlation an “inert
correlation” as it cannot be exploited to cool the cold envi-
ronment. If, however, the product state created from the
product of the marginals ρprod = trhρch ⊗ trcρch satisfies
the no-overlap condition but ρch does not (noninert case),
it is possible to cool the object that appears to be locally
ultracold.

Several recent papers were devoted to the study of fluc-
tuation theorems of small systems that are strongly cou-
pled to their environment [53–56]. These involve classical
and quantum correlations that are typically beyond the
scope of the “inert” classical correlation considered here.
One should note several important differences between
the approach taken in the aforementioned papers and that
taken here. Specifically, in the study of fluctuation theo-
rems, the coupling between a system and its environment is
always present, so the question of dividing the interaction
energy between subsystems becomes nontrivial. In addi-
tion, the framework of stochastic thermodynamics deals
with fluctuating quantities. Our results pertain to changes
of expectation values. Finally, the initial correlation was
also treated using observational entropy in Refs. [9,10]

V. COARSE GRAINING AND UNDETECTABLE
HEAT LEAKS

In this part of the paper, we use our framework to obtain
two general insights. The first deals with situations where
coarse graining takes place. This coarse graining can arise
due to limited resolution of the measuring device, or due to
the lack of interest in some fine details. The other insight
concerns undetectable heat leaks. In both cases, the con-
clusion is based on passivity deformations that create new
degeneracies.

In Appendix D, similar passivity deformations are
used for obtaining two more results: the partial Clausius
inequality and the binary Clausius inequality. These two
inequalities reveal a hierarchical structure that starts with
the second law and ends with a majorization condition.

A. Coarse graining

Consider a situation in which the energy levels in the
setup of interest have some internal structure that our

detectors cannot resolve. We describe this physical situ-
ation by considering a model with two sets of quantum
numbers so that the energy eigenstates can be denoted by
|n, m〉. Here n corresponds to the resolvable degrees of
freedom, while m refers to the experimentally unresolv-
able internal structure. Our goal is to write an inequality
that depends only on the measurable degrees of freedom n.

Let ρfull
0 = ∑N

n=1
∑Mn

m=1 pnm |n, m〉 〈n, m| be the full ini-
tial density matrix of the setup. Here Mn denotes the
number of unresolvable states associated with each value
of n. Global passivity leads to �〈Bfull〉 ≥ 0, where Bfull =
− ln ρfull

0 . This inequality clearly depends on all the degrees
of freedom of the setup including the internal ones that we
wish to coarse grain. We ask under what conditions it holds
that

�〈BCG〉 ≥ 0, (40)

where BCG = ∑N
n=1 qn |n〉 〈n| and the qn are some real

numbers that we obtain shortly.
It is useful to start by examining a special case where

the coarse graining is straightforward. When the probabil-
ities are degenerate in the index m, we can write p0

nm =
p̃n, where the dimension (number of levels) of p̃n is N ,
which is smaller than the dimension of the original sys-
tem

∑N
n=1 Mn. Such degeneracies can arise, for example,

in thermal states due to degeneracies in the Hamiltonian.
These degeneracies enable one to simplify the inequality
�〈Bfull〉 ≥ 0:

0 ≤ �〈Bfull〉
=

∑

nm

(pf
nm − p0

nm)[− ln p0
nm]

=
∑

n

(pf
n − p0

n )[− ln p̃n]

= �〈BCG〉. (41)

Here pf ,0
n ≡ ∑

m pf ,0
nm and BCG = −∑

ln p̃n |n〉 〈n|.
When the probabilities p0

nm are not degenerate in the
quantum number m, the passivity deformation approach
can be used to find out if, and under what conditions,
one can obtain a coarse-grained inequality. Consider the
case shown in Fig. 11(a) where the values Bnm = − ln p0

nm
are clustered (in the vertical axis), with different values
of n denoting different clusters, while m differentiates
between states in the same cluster. Passivity deformation
allows one to deform Bnm into a new passive operator
B̃nm that is independent of m, as depicted in Fig. 11(b).
Then, one can repeat the argument in Eq. (41) and obtain
a lower-dimensional operator that satisfies the effective
inequality (40). This coarse-graining procedure is allowed
as long as the different clusters do not overlap. The result
is not unique, since the value of qn can be modified
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(a) (b) (c)

FIG. 11. (a) and (b) The passivity deformation that makes all
the unmeasured degrees of freedom degenerate. (b) and (c) After
this deformation, it is possible to coarse grain and ignore the
internal structure of the levels. This process is possible only when
the internal manifolds do not overlap. This is a weaker condition
compared to the full no-overlap situation shown in Fig. 7(b).

by deformations. However, there is no point in doing
deformations that are below the resolution of the detector.

Note that, in general, the passivity-based inequality
�〈BCG〉 ≥ 0 is different from that obtained by first coarse
graining the probability distribution and then applying
passivity. If the coarse graining is done first, one finds
that B′

n = − ln p0
n = − ln

∑
m p0

n,m = − ln Mnp̃n, where Mn
is the degeneracy of level n. If Mn = M , i.e., all the n lev-
els have the same degeneracy, then B′

n = − ln p̃n + const,
where the additive constant can be ignored as it drops out
when calculating �〈B′〉. We conclude that, if Mn = M , it
holds that BCG

n = B′ + const. That is, in this special case
it is not important if the coarse graining is done in the
probability space or in the passive operator space. Yet,
in general, BCG

n is not equivalent to B′. For example,
for a thermal state with some degenerate energy struc-
ture Enm = En, it holds that BCG

n = βEn while B′
n = βEn −

log Mn. However, passivity provides an inequality involv-
ing BCG

n and not B′
n. Thus, this example illustrates the

importance of coarse graining the passive operator and not
the probabilities.

A related, but different approach to obtain a coarse-
grained inequality is based on the notion of observational
entropy [7–10]. However, the inequality differs from that
presented above for two reasons. It involves entropy cal-
culations at the final time. It also does not use the free-
dom that passivity gives to change the operator whose
expectation value is calculated.

B. Undetectable heat leaks

When studying the dynamics of small quantum systems,
we implicitly assume that we can neglect its interactions
with some parts of the world. But it is hard to be cer-
tain when such assumptions are valid. Perhaps our system
is weakly interacting and exchanging energy with some
unknown environment. As explained before, it is possible

to use violations of inequalities that hold for unitary evo-
lution to detect these potential heat leaks. Assuming that
only observables in the energy basis are used, it is impor-
tant both from a fundamental and a practical point of view
to understand the limitations of this approach. Next, we
exploit passivity deformation to derive a bound that defines
scenarios where this approach fails. An environment is said
to be detectable if there is an inequality based on expecta-
tion values (in the visible system only) that is violated due
to the interaction with the hidden environment. The sim-
plest undetectable heat leak takes place when the system
interacts with an environment with infinite temperature.
For Tenv → ∞, the hidden environment is in a fully mixed
state, so the initial state is

ρ tot
0 = ρ

sys
0 ⊗ Ienv/Nenv, (42)

where Ienv is the identity operator in the environment sub-
space and Nenv is the number of states. After taking the log
we obtain

B = − ln ρ
sys
0 ⊗ Ienv + const. (43)

From global passivity, �〈B〉 ≥ 0 holds for any global
unitary that involves the system and the fully mixed envi-
ronment. However, Eq. (43) implies that, for this specific
environment, the globally passive operator B = Bsys ⊗ Ienv
and, therefore,

�〈Bsys〉 = �〈B〉 ≥ 0. (44)

We conclude that, for this environment, any passive opera-
tor in the system subspace is also globally passive in the
full space that included the environment. Consequently,
there is no passivity inequality (in the system subspace)
that can detect the heat leak associated with Tenv → ∞
environments.

We now ask whether this undetectability is unique to
Tenv → ∞ environments, or can it appear in finite tem-
peratures as well. An example of a typical operator Bvis =
− ln ρvis(0) is plotted with blue dotted lines in Fig. 12(a).
As explained in Sec. IV, with the lack of initial correla-
tions, the operator Btot = − ln ρvis(0) − ln ρenv(0) can be
plotted by using the visible part as the floors [blue lines
in Fig. 12(a)] and the environment as ladders (red lines).
Without loss of generality, we can set the lowest energy
of the environment to be zero. In the example plotted in
Fig. 12(a) each ladder is fully contained between the gaps
of the visible systems. As such, the ladders do not over-
lap and it is possible to apply a passivity deformation that
brings all the levels in each red ladder to the ground state of
the ladder (Fig. 12). The resulting globally passivity oper-
ator is Btot = − ln ρvis(0) [the term ln Ienv/dim(env) is a
constant shift that can be dropped].

By reversing this logic we conclude that, if Tenv is suffi-
ciently high (βenv is sufficiently small), any operator that is
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(a) (b)

FIG. 12. (a) A representation of a globally passive operator (in
the space of the whole setup, i.e., visible + environment) when
the initial temperature of the hidden environment is sufficiently
hot so that the “ladders” of the environment (red) do not overlap.
Such operators can be deformed into the operator shown in (b)
according to the rules in Sec. IV. From this we conclude that,
whenever the temperature of the environment is sufficiently high
[see bound (45)], the ladders do not overlap and this environment
is not detectable by any passivity deformation inequality.

globally passive with respect to the visible system is also
globally passive with respect to the whole setup (visible
+ environment). Consequently, local inequalities cannot
be violated by a mixture of unitaries on the whole setup.
The environment temperature above which heat leaks are
undetectable is determined by the no-overlap condition for
the environment ladders βenv[max(Eenv) − min(Eenv)] ≤
min(Bvis

n − Bvis
n−1) or

Tenv ≥ Tundet
.= max(Eenv) − min(Eenv)

min(Bvis
n − Bvis

n−1)
. (45)

In summary, although Tundet < ∞ and the associated
reduced dynamics is not a unital map, an environment
with initial temperature Tenv ≥ Tundet cannot be detected.
The converse is true in the following sense: for Tenv ≤
Tundet, there exists a unitary map for which the environ-
ment can be detected using only observables of the visible
system.

From a practical point of view, Eq. (45) is useful only if
the maximal energy gap of the environment is known and
the environment is initially uncorrelated with the system.
Yet, the goal here was just to show that Tenv → ∞ is not
the only case that leads to undetectable heat leaks.

VI. CONCLUSION

In this paper, we present a framework that enables us
to derive thermodynamiclike inequalities for fine-grained
observables that are becoming measurable in various
setups such as ion traps, optical lattices, superconducting
qubits, and more. These observables do not appear in the
second law and are therefore not constrained by it. On
top of being applicable to new observables, the passivity
deformation framework also overcomes some of the lim-
itations that arise when using the analogue of the second

law in microscopic setups: it yields tight bounds in sce-
narios where other second-law-like inequalities, such as
Eqs. (10) and (11), are not tight, it can be integrated with
dynamical constraints due to conservation laws, and it pro-
duces informative and useful results even when one of the
environments is very cold.

What makes all this possible is the exploitation of the
energy spectrum of the various elements in the setup. In
man-made setups (superconducting circuits, ion traps, etc.)
this information is readily available. Thus, we believe that
our method is more suitable for man-made setups and less
suitable for natural and biological systems. We note that
the denser the spectrum of the environment with respect to
the system, the less room there is to do a deformation. This
can be potentially circumvented by a dynamical constraint
or a conservation law that increases the space of possible
deformations.

The added value of our inequalities is that they deal with
measurable expectation values and they are indifferent to
the complexity of the evolution. This feature is desirable in
systems that cannot be classically simulated like quantum
computers and quantum simulators.

In the future, heat machines may not be restricted
to cooling and work extraction. For example, quantum
machines can be used to build up entanglement [5,6] or
to manipulate some observables that are not directly asso-
ciated with energy or entropy. The upper bounds on the
performance of such machines can be identified using a
thermodynamiclike approach, without the need to explic-
itly solve for the dynamics. In this work, we show the
applicability of our framework for setting bounds on the
performance of such machines.

We demonstrate that the passivity deformation frame-
work does not only produce bounds but also insights. By
exploring the tightness of the bounds, path-independent
processes, which may not correspond to reversible pro-
cesses, are identified. In addition, we identify scenarios
where processes with athermal and correlated environ-
ments satisfy inequalities that take the same form of as
the second law, yet with some effective temperature. More-
over, passivity deformation offers a clear recipe for coarse
graining and provides the conditions for the validity of the
bounds when some degrees of freedom cannot be resolved
in the measurement process.

For future research, it would be interesting to explore
the application of the theory to setups with particle trans-
port, band-gapped materials, or steady-state operation. In
particular, band-gapped materials offer the freedom to exe-
cute deformations when they interact with a system that
has a small Hilbert space (e.g., a probe). It is also of
interest to investigate to what extent these inequalities
can reveal that a system is not well isolated from the
rest of the world [3], e.g., due to the presence of heat
leaks or lazy Maxwell demons [2]. The detection of heat
leaks can be used to compare the predictive power of
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different thermodynamiclike approaches, such as passivity
deformation, thermodynamic resource theory, and stochas-
tic thermodynamics [1].

Our findings can be verified in various quantum setups
such as ion traps, neutral atoms in optical lattices, or in
presently available superconducting quantum processors
[57]. A proof-of-principle experimental demonstration of
superior heat leak detection based on passivity deforma-
tion was successfully carried in out in a companion paper
using the IBM quantum processors [1].
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APPENDIX A: PASSIVITY AS A BINARY
RELATION

To methodically study the global passivity of various
operators with respect to ρ0, we introduce in this appendix
the ordering function tool. Let A and B (B is unrelated to
B) be two Hermitian matrices of the same dimensionality;
the (mutual) ordering function is given by

χ(A, B)
.= tr(AB) − λ

↓
A · λ

↓
B, (A1)

where λ
↓
A(B) are the eigenvalues of A(B) sorted in decreas-

ing order. The matrices A and B have the same ordering if
and only if

χ(A, B) = 0. (A2)

Similarly, A and B have reverse ordering if and only if

χ↓↑(A, B) = 0, (A3)

where the reverse ordering function is

χ↓↑(A, B)
.= tr(AB) − λ

↓
A · λ

↑
B. (A4)

In this notation, the two conditions for global passivity in
Eq. (3) can be jointly written as

χ↓↑(A, ρ tot
0 ) = 0. (A5)

This can be used to numerically determine the value of the
critical ξ± in the operator B + ξA [see Eqs. (12)–(14)]. The
first step is to plot χ↓↑(B + ξA, ρ tot

0 ) as a function of ξ . By
construction, at ξ = 0 it holds that χ↓↑(B + ξA, ρ tot

0 ) = 0.
Starting from ξ = 0, the first positive (negative) instance

of where χ↓↑(A, ρ tot
0 ) �= 0 will determine the value of ξ+

(ξ−).
The two ordering functions have some useful prop-

erties. Let fC be a strictly monotonic decreasing func-
tion f ′

C (x) < 0 in the spectral range of operator C, x ∈
[min(λC), max(λC)], and similarly gC satisfies g′

C(x) > 0
in the same regime. Then it holds that

χ↓↑(A, B) = 0 ⇐⇒ χ [fA(A), B] = 0,

⇐⇒ χ [A, fB(B)] = 0, (A6)

χ(A, B) = 0 ⇐⇒ χ [A, gB(B)] = 0,

⇐⇒ χ [gA(A), B] = 0. (A7)

Using fB(B) = − ln B in Eq. (A6), we conclude that the
global passivity condition (A5) for operator A can be
written as

χ(A,B) = 0 (global passivity of A), (A8)

where B = − lnρ tot
0 as before Eq. (8). As a reassurance

exercise, we set A = B and find that B is globally passive,
since any operator is ordered with respect to itself. Next,
we use property (A7) to deduce that

χ [gB(B),B] = 0 (A9)

from χ(B,B) = 0. Choosing gB(x) = sgn(α)xα we get the
global passivity inequalities

�〈sgn(α)Bα〉 ≥ 0 (A10)

for any evolution of the form (5) in the setup [2].
Ordering as defined in Eq. (A2) can be viewed as a

binary relation: A ∼ B ⇔ χ(A, B) = 0. While this binary
relation is reflexive, A ∼ A, and symmetric, A ∼ B = B ∼
A, it may not be transitive, i.e., it is possible that A ∼ B
and B ∼ C but A�C. Hence, in general, χ = 0 is not an
equivalence relation.

The breakdown of transitivity takes place if A and B
have different degeneracy structures. We say that B is
nonequivalent to A if (1) A ∼ B and (2) at least two eigen-
vectors that are nondegenerate in A are degenerate in B,
i.e., there are at least two eigenvectors vk, vl such that

〈vk|A|vk〉 �= 〈vl|A|vl〉, (A11)

〈vk|B|vk〉 = 〈vl|B|vl〉. (A12)

Now, it is possible to construct an operator C that satisfies
B ∼ C but not A ∼ C. For simplicity, for the levels j �= k, l,
we choose C that satisfies 〈vj |C|vj 〉 = 〈vj |A|vj 〉 that makes
all these levels irrelevant, and it is possible to restrict the
discussion to j and l. Next, we choose the eigenvalues k
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and l in C to have the opposite ordering with respect to
A. This can be done by the choice 〈vl|C|vl〉 = 〈vk|A|vk〉
and 〈vk|C|vk〉 = 〈vl|A|vl〉. By construction, A�C since the
ordering is opposite in k and l. Yet, due to the degeneracy
in B, it holds that A ∼ B and B ∼ C.

This example explains why in the deformation rules in
Sec. IV we can only split degeneracies that were already
there in the initial density matrix. Otherwise, it would con-
tradict the noncrossing rule: we can first make the two
states degenerate and then split them in the other direc-
tion, which creates a forbidden crossing. Finally, we point
out the relation between ergotropy and the ordering func-
tion. Even when A and B are some local Hamiltonians, the
ordering function does not depend on the energy eigenval-
ues (it is not even an observable) and it does not impose
any limitation on the evolution. It is simply a relation
between two matrices. However, the passive state that
determines the ergotropy satisfies χ↓↑(ρpass, H) = 0. In the
context of passivity-based inequalities, we require that the
evolution is a mixture of unitaries, and that the initial state
has a reverse ordering with respect to ρ tot

0 .

APPENDIX B: OPTIMAL PROTOCOLS FROM
PASSIVITY

Consider a setup that aims to achieve a maximal change
in the expectation value of a certain observable of interest
A (a Hermitian operator). The observable may be “local,”
i.e., involve only one element of the setup or it may be
global and involve several elements or even the whole
setup. For example, in refrigerators, the goal is to mini-
mize the average energy of a cold subsystem 〈A〉 = 〈Hc〉,
which is a local quantity. In engines, the goal is to reduce
the energy of the whole setup 〈A〉 = 〈Htot〉 (global quan-
tity), since this change is equal to the amount of work
exchanged with the driving field that executes the protocol.
Note, however, that A does not have to be related to energy
or to the original basis of the initial state of the setup.
Here A can be any Hermitian operator bounded from below
in the Hilbert space of the setup (see, e.g., the dephasing
example in Sec. III C 2).

Let us assume that the initial state of the setup ρ tot
0 is

given, and so is the operator A that describes the observ-
able of interest. Thus, the initial expectation value of A,
〈A〉0 = tr[ρ tot

0 A], is fixed. Our goal is to find the opti-
mal unitary Uopt that will produce the lowest value of
〈A〉, i.e., A0 → Amin = tr[ρ tot

optA] = tr[Uoptρ
tot
0 U†

optA]. For-
tunately, this problem is already solved by the principle
of passivity. Adopting the logic of passivity, finding Uopt is
simple, the unitary that transforms ρ tot

0 into a passive state
with respect to A: χ↓↑(ρ tot

opt, A) = 0 will do the job. This
can be carried out in two steps. The first step is to rotate
ρ tot

0 to the basis of A (if it is not already in this basis). The
second step is to apply simple level permutations that will

rearrange the populations in a monotonically decreasing
order with respect to the eigenvalue of A.

If the operator is local as in the case a refrigerator
A = Hc, it is important to write it in the Hilbert space of
the whole setup Hc → Hc ⊗ Irest, where Irest is the identity
operator of the rest of the setup. As an example, con-
sider the case of a qutrit with energy spacings ω that is
being cooled by two spins with energy spacing ω. All the
particles start at thermal equilibrium with inverse temper-
ature β. The optimal protocol is obtained by building a
bar plot (see Fig. 13) where the x axis contains the sorted
eigenvalues of A. Local operators such as Hc exhibit many
degeneracies, but their ordering with respect to each other
makes no difference in finding the minimal value of 〈A〉.
The y axis in Fig. 13 is the probability of populating each
eigenstate of Hc ⊗ Irest according to the initial distribu-
tion determined by ρ tot

0 . If the distribution is monotonically
decreasing, it implies that ρ tot

0 and Hc ⊗ Irest are passive
with respect to each other and 〈A〉 is already in its minimal

(a)

(b)

eig (A)

eig (A)

FIG. 13. Optimal protocols for manipulating a qutrit system
(S) using two qubits (B1 and B2). (a) To reduce the average
energy of S, the probability distribution of the eigenvalues of A =
HS ⊗ IB1 ⊗ IB2 are plotted. The optimal protocol (black arrows)
is obtained by applying the permutations that lead to a monoton-
ically decreasing distribution of A. (b) Optimal protocol for an X
machine (see the text). Here the task is to maximally deplete level
number 1 of the system. For this, we set A = |1S〉〈1S| ⊗ IB1 ⊗ IB2
and redo the plot. Note that the permutation inside each eigen-
value block (dashed rectangular) has no impact on the final value
of 〈A〉. Thus, a smaller number of permutations (black arrows)
can be used compared to the full sorting of the probability
distribution.
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passive value. However, if the distribution is nonmonoton-
ically decreasing as in Fig. 13(a), it is clear that the needed
unitary is the one that rearranges the distribution into a
monotonically decreasing form.

As a second example, we consider an exotic heat
machine whose goal is to deplete the population of the
middle level (“1”) of the qutrit. We use the setup shown in
Fig. 13. This time the operator of interest is A = |1S〉〈1S| ⊗
IB1 ⊗ IB2. Eigenvalue 1 (respectively 0) stands for all the
global states of the setup in which the middle level of the
system is (respectively is not) populated. As before, we
plot the distribution of A [see Fig. 13(b)], and apply sorting
permutations to minimize the expectation value of A.

Although a complete sorting of the distribution always
provides the optimal protocol, it may contain many oper-
ations that do not affect the observable of interest A. Any
operation between degenerate states of A has no impact on
〈A〉 [i.e., permutation between states in the same dashed
box in Fig. 13(b)]. Thus, in some cases, as in this example,
a partial sorting can lead to the same optimal performance
(same change in �〈A〉) as shown by the black arrows in
Fig. 13(b). In general, the partial sorting protocol differs
from the full sorting protocol in the final state of the envi-
ronment (the two qubits) and its final system-environment
correlation.

APPENDIX C: UNATTAINABILITY OF EQ. (11)
FOR SMALL ENVIRONMENTS

As described in Ref. [4] and the references therein (e.g.,
Ref. [35]), by assuming that the environment is initially
in a Gibbs state ρenv

0 = e−βHenv
/Z, the following equality

holds:

�Ssys + β�〈H env〉 = D(ρf |ρsys
f ⊗ ρenv

f ) + D(ρenv
f |ρenv

0 ).
(C1)

Since the quantum relative entropy satisfies

D(x, y) > 0 for x �= y, (C2)

we find that, if ρf �= ρ
sys
f ⊗ ρenv

f (there is some correlation
buildup) or if ρenv

f �= ρenv
0 (the environment is changed by

the interaction with the system), then

�Ssys + β�〈H env〉 > 0, (C3)

and therefore inequality (11) cannot be saturated. In
the microscopic weak-coupling limit these two relative
entropy terms become negligible. However, in small
setups, the environment is often driven far away from equi-
librium and non-Markovian dynamics takes place. As a
result, these terms can be quite large and bound (C3) is
far from being tight.

APPENDIX D: THE TRUNCATED AND BINARY
INEQUALITIES

1. Truncated inequalities

In the following, we show a generic prescription (i.e.,
one that can be carried out in any setup) for construct-
ing inequalities that depend only on parts of the Hilbert
space, while ignoring others. These inequalities can exhibit
superior heat leak detection or lazy demon detection.

Let us consider a setup with several initial uncorre-
lated microbaths. We start by considering the operator
B = − ln ρ0, which is globally passive by construction
[Fig. 14(a)]. Denoting by 0 ≤ b1 ≤ b2 ≤ b3 ≤ · · · the
eigenvalues of B (“levels” of B), let us apply the follow-
ing deformation. First, the lowest level b1 is lowered to
zero. Since the eigenvalues of bi ≥ 0, this means moving
the level to a point that is lower than all the other lev-
els. Then, the second-lowest level b2 is lowered to zero,
and this is repeated until only the l highest levels (i.e.,
the least-populated levels) remain, as shown in Fig. 14(b).
According to passivity deformation, the resulting operator
B(l) = ∑N

k=N−l+1 bi|bi〉〈bi| satisfies

�〈B(l)〉 ≥ 0. (D1)

The physical interpretation of such an observable is not
self-evident. For example, B of an initially uncorrelated
microbath can be written as a sum of local operators
Ac ⊗ Ih + Ic ⊗ Ah, but B(l) in general cannot be written in
this form since the remaining “ladders” are not identical.
Nevertheless, for a setup composed of several microbaths,
the B(l) are observables in the energy basis, and as such,
they can be obtained from energy measurements in the
different subsystems.

We have numerically verified that in a linear spin
chain where a lazy demon operates between the two mid-
dle spins, the B(l) inequalities can detect demons that
sgn(α)Bα cannot detect. This was checked for chains of up
to ten spins. At first, it may seem surprising that cropping
a few levels from B can improve the sensitivity. However,
while some levels of B are more affected by feedback or
heat leaks, some are not affected, and contribute a pos-
itive value to �〈B〉 ≥ 0. This positive contribution can
degrade the detection performance. By excluding these

(a) (b) (c)

FIG. 14. (a) and (b) The deformation that leads to the truncated
inequalities. (b) and (c) The deformation that leads to binary
inequalities.
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levels (within the limitations of the passivity deformation
rules), better sensitivity may be achieved (depending on
the specific demon mechanism).

2. Binary inequalities and their relation to
majorization

Next, we study a similar deformation and relate it to
majorization. By applying the same logic as in the pre-
vious deformation, the lowest N − l + 1 levels can be
shifted to 0 as before and the highest l levels to the
value of 1 [Fig. 14(c)]. The resulting passivity deformation
inequalities are

�〈B(l)
Bin〉 ≥ 0, (D2)

where B(l)
Bin = ∑N

k=N−l+1 |bi〉〈bi| are projection operators.
These observables are binary. They only test if our sys-
tem is in a certain subspace of the Hilbert space. At first,
these binary inequalities look even stranger than Eq. (D1),
but they can be understood directly from the following
majorization relation between the initial and final pop-
ulations in the basis of B. By construction, the initial
density matrix is diagonal in the basis of B. Thus, for any
evolution (5), the final populations in this basis {pf

i } are
related to initial ones {p0

i } (i.e., the eigenvalues) through
the majorization relation (Schur lemma [58])

l∑

j =1

p0
↑,j ≤

l∑

j =1

pf
↑,j for any 1 ≤ l ≤ N , (D3)

where the up arrow stands for increasing order. First, we
note that

l∑

j =1

p0
↑,j = tr[ρ tot

0 B(l)
Bin] � 〈B(l)

Bin〉0 (D4)

and also that

l∑

j =1

pf
↑,j ≤

l∑

j =1

pf
j = 〈B(l)

Bin〉f . (D5)

Consequently, from Eqs. (D3)–(D5), it follows that

〈B(l)
Bin〉0 =

l∑

j =1

p0
↑,j

≤
l∑

j =1

pf
↑,j

≤ 〈B(l)
Bin〉f for any 1 ≤ l ≤ N , (D6)

which yields Eq. (D2). Conditions (D2) are identical
to majorization (D3) when the final populations have

the same ordering as the initial population (and then
∑l

j =1 pf
↑,j = 〈B(l)

Bin〉f ).
Since any �〈B(l)〉 ≥ 0, Eq. (D1) can be written as a con-

vex sum of several �〈B(l)
Bin〉 ≥ 0 inequalities; it follows that

any violation of Eq. (D1) is associated with a violation of
at least one of the inequalities in Eq. (D2), but not neces-
sarily the other way around. The family of inequalities in
Eq. (D2) is more restrictive than Eq. (D1). However, the
inequalities in Eq. (D2) do not carry information on the
changes in the energies of the subsystems.

Finally, we point out that inequalities (10), (D1),
and (D2) and majorization (in this order) form a hier-
archal structure that reflects a trade-off between physical
context [maximal for Eq. (10)] and tightness (maximal for
majorization).
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