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Oblivious transfer is an important primitive in modern cryptography. Applications include secure multi-
party computation, oblivious sampling, e-voting, and signatures. Information-theoretically secure perfect
1-out-of 2 oblivious transfer is impossible to achieve. Imperfect variants, where both participants’ ability
to cheat is still limited, are possible using quantum means while remaining classically impossible. Pre-
cisely what security parameters are attainable remains unknown. We introduce a theoretical framework
for studying semirandom quantum oblivious transfer, which is shown to be equivalent to regular oblivious
transfer in terms of cheating probabilities. We then use it to derive bounds on cheating. We also present
a protocol with lower cheating probabilities than previous schemes, together with its optical realization.
We show that a lower bound of 2

3 on the minimum achievable cheating probability can be directly derived
for semirandom protocols using a different method and definition of cheating than used previously. The
lower bound increases from 2

3 to approximately 0.749 if the states output by the protocol are pure and
symmetric. The oblivious transfer scheme we present uses unambiguous state elimination measurements
and can be implemented with the same technological requirements as standard quantum cryptography.
In particular, it does not require honest participants to prepare or measure entangled states. The cheating
probabilities are 3

4 and approximately 0.729 for sender and receiver, respectively, which is lower than
in existing protocols. Using a photonic testbed, we have implemented the protocol with honest parties,
as well as optimal cheating strategies. Because of the asymmetry of the receiver’s and sender’s cheating
probabilities, the protocol can be combined with a “trivial” protocol to achieve an overall protocol with
lower average cheating probabilities of approximately 0.74 for both sender and receiver. This demon-
strates that, interestingly, protocols where the final output states are pure and symmetric are not optimal in
terms of average cheating probability.
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I. INTRODUCTION

Following the discovery of quantum key distribution
in 1984 [1], there arose a general optimism that quan-
tum mechanics may provide a means to perform mul-
tiparty computations with information-theoretic security.
Despite this early confidence, the history of secure two-
party computations is characterized by mainly negative
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results. Mayers and Lo [2,3] proved that all one-sided two-
party computations are insecure in the quantum setting,
meaning that it is impossible to perform important proto-
cols such as bit commitment and oblivious transfer (OT)
with information-theoretic security. Nevertheless, imper-
fect variants of these protocols remain possible, and it has
been an interesting and productive open question to deter-
mine the optimal security parameters achievable for some
important two-party computations.

For many cryptographic primitives, this question has
been definitively answered. For strong coin flipping,
Kitaev [4] introduced the semidefinite programming for-
malism to show that the product of Alice’s and Bob’s
cheating probabilities must be greater than 1

2 , implying that
the minimum cheating probability is at least 1/

√
2. For

weak coin flipping, Mochon [5] showed that the minimum
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cheating probability is at least 1
2 + ε for any ε > 0. In the

same paper a protocol achieving this bound is presented,
showing that the bound is tight. Chailloux and Kerenidis
[6] used these results on weak coin flipping to gener-
ate a protocol for strong coin flipping achieving Kitaev’s
bound. Lastly, for quantum bit commitment, Chailloux and
Kerenidis [7] proved that the minimum cheating probabil-
ity is 0.739, and presented a protocol achieving this bias.
Thus, for bit commitment, weak coin flipping, and strong
coin flipping, the achievability bounds are tight with the
known protocols.

For OT on the other hand, the situation is not as clear.
Classically, it is impossible to achieve even limited secu-
rity for OT in the information-theoretic setting, since one
party can always cheat with certainty. On the other hand,
quantum mechanics allows for imperfect protocols, in
which the participants are able to cheat but their abilities
are limited.

OT is a fundamental primitive in cryptography. Its
importance stems from the fact that it can be used as the
foundation for secure two-party computations; with oblivi-
ous transfer, all secure two-party computations are possible
[8,9]. OT exists in many different flavors, all with slightly
different definitions and notions of security. It was first
introduced informally in 1970 by Wiesner as “a means
for transmitting two messages either but not both of which
may be received” [10], and subsequently formalized as 1-
out-of-2 oblivious transfer (1-2 OT) in Ref. [11]. In related
work, Rabin [12] introduced a protocol (now called Rabin
OT), which was later shown by Crépeau [13] to be classi-
cally equivalent to 1-2 OT, in the sense that if it is possible
to do one, it is possible to use this to implement the other.
Various “weaker” variants of OT have also been proposed,
most notably generalized OT, XOR OT, and universal OT
[14], but all have been shown to be equivalent to 1-2 OT
[15] in the classical setting. The equivalence is believed to
also hold in the quantum setting, but the reduction proofs
may need to be revised. There is also work by Damgård
et al. [16], who defined OT in a slightly different way,
and characterized security in terms of information leakage.
With these definitions (and their quantum counterparts),
the authors described a 1-2 OT protocol that is secure in the
bounded quantum storage model. Spacetime-constrained
quantum OT protocols have also been proposed [17–19],
requiring agents at different locations in spacetime, giv-
ing constraints on where in spacetime bit values can be
obtained. Recently, a device-independent quantum XOR
oblivious transfer protocol was proposed [20]. The pro-
tocol uses a shared entangled state to reveal cheating.
Another version of “imperfect” oblivious transfer was
considered and experimentally implemented in Ref. [21],
where the authors could achieve vanishing cheating advan-
tage for both sides, at the expense of having a protocol that
sometimes fails during honest execution.

In this paper we consider standalone quantum protocols
for 1-2 OT, including an experimental implementation of
such a protocol, and are concerned only with information-
theoretic security. As mentioned above, perfect security in
this setting is impossible. The best known lower bound on
the achievable bias in 1-2 OT protocols is due to Chail-
loux et al. [22], who showed that the minimum cheating
probability is at least 2

3 if participants are “semihonest.”
With the definition of cheating used in Ref. [22], with
“semihonest” participants, this bound is tight. However,
the best known OT protocol has a cheating probability
of 0.75 if parties are not assumed to be semihonest [23],
meaning that there is a gap between what is known to
be achievable, and what is known to be impossible. Nar-
rowing this gap either way—obtaining higher and thus
tighter lower bounds on cheating probabilities, or find-
ing concrete protocols with smaller cheating probabilities,
leading to lower upper bounds—is the main target of this
paper. In order to obtain lower upper bounds, we consider
general classes of protocols (either completely general
or with some restrictions), but limit the capabilities of
adversaries. This therefore provides only lower bounds on
cheating probabilities, applicable to all protocols within
the considered class. To obtain upper bounds on cheating
probabilities, we give a specific protocol, and then consider
the most general attacks. This therefore provides an upper
bound on achievable cheating probabilities, in the sense
that the best protocol can perform at least as well as the
specific protocol we give. There is also a subtlety regard-
ing the requirement of semihonesty, and related to this, to
what extent dishonest parties can always obtain the infor-
mation they would have obtained if they had been honest
especially when considering variants of oblivious transfer
that are not deterministic. We return to this below.

Our paper contains four main contributions.

1. We introduce the concept of semirandom OT and
prove a functional equivalence with respect to the
cheating probabilities between 1-2 OT and semiran-
dom OT. We further describe a general framework
for semirandom OT.

2. We use this framework to show that the minimum
achievable bound on the cheating probability is 2

3 .
This agrees with the result in Ref. [22] for reg-
ular (deterministic) oblivious transfer, but in our
case we do not assume that parties are semihonest.
We also increase the lower bound on the minimum
achievable cheating probability for 1-2 quantum OT
protocols to 0.749 if the states in the final round of
the protocol when the parties are honest are pure and
symmetric. We parameterize Alice’s and Bob’s abil-
ity to cheat in terms of a single variable F , related
to the fidelity of the protocol output states. This
parametrization suggests how to construct schemes
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when either sender or receiver dishonesty is priori-
tized. That is, sender and receiver can have different
cheating probabilities, and one can derive bounds
for such situations. Such a scenario arises in the
context of quantum signature schemes [24,25], and
the derived bounds may prove useful for under-
standing the potential application of imperfect OT
to signatures.

3. We illustrate our construction by giving an OT
protocol relying on unambiguous state elimination
measurements. The protocol improves on previous
protocols in the sense that it decreases the cheating
probability of the receiver and is easier to imple-
ment. It also highlights the connection between
unambiguous state elimination measurements and
1-2 OT, and provides a new application for this
relatively seldom used type of measurement. The
security parameters achieved are almost tight with
the bounds for protocols using pure symmetric states
proven in this paper. In this protocol, one party has
a smaller cheating probability than the other. This
is not captured by the overall cheating probability,
defined as the maximum of the cheating probabili-
ties of either party. Such protocols might however be
used for applications where restricting cheating by
one party is prioritized. Such a protocol can also be
combined with a “trivial” protocol, to achieve a pro-
tocol with lower average cheating probability, where
both sender and receiver can cheat with probability
at most 0.74. This is lower than the bound for proto-
cols using pure symmetric states and constitutes an
improvement on previously known protocols.

4. Last, but not least, we present an optical realiza-
tion of the protocol we have given. In principle,
an implementation of the protocol needs only the
same components used for standard BB84 [1] quan-
tum key distribution. Each of the two qubits can be
encoded into a single photon, sent individually to
Bob, and measured using the same components as
in BB84 quantum key distribution. That is, to imple-
ment our protocol, one only needs the components
used for standard quantum key distribution. Our
setup is however slightly different, because we want
not only to test the protocol with the honest par-
ties, but also experimentally implement the optimal
cheating strategies and verify the predicted cheating
probabilities. It is obvious that, for any (e.g., com-
mercial) application, the evaluation of the feasibility
and practicality of the protocol considers the com-
ponents required for an honest execution. Realizing
cheating strategies is still of interest to evaluate how
secure is the protocol in practice (cf. quantum hack-
ing). To implement these optimal cheating strategies
requires usage of a nontrivial entangled state. We
therefore encode two qubits into a single photon,

and employ a linear optical quantum gate to prepare
an entangled state where these two qubits are entan-
gled with a third qubit retained by Alice, which is
encoded in a separate second photon. The experi-
mental results for both honest and cheating parties
agree well with theoretical values, demonstrating
that the protocol is feasible also when realized in
this way.

The paper is organized as follows. We begin in Sec. II by
defining 1-2 OT and semirandom OT, stating an equiv-
alence between the cheating probabilities for each. In
Sec. III we describe a general framework for semirandom
OT protocols and consider specific undetectable cheating
strategies always available to Alice and Bob. We analyze
these strategies to lower bound the achievable cheating
probabilities for unbounded adversaries in 1-2 OT. In
Sec. IV we first introduce unambiguous measurements, in
particular unambiguous state elimination measurements,
and motivate their use in cryptography. We describe a
semirandom OT protocol that employs unambiguous state
elimination measurements and analyze its security in the
asymptotic limit. In Sec. V, we present the experimental
implementation of this protocol.

II. DEFINITIONS

Intuitively, 1-2 OT is a two-party protocol in which
Alice chooses two input bits, x0 and x1, and Bob chooses a
single input bit b. The protocol outputs xb to Bob with the
guarantees that Alice does not know b and that Bob does
not know xb⊕1. A cheating Alice aims to find the value of
b, while a cheating Bob aims to correctly guess both x0 and
x1.

At this point it is worth stressing that, whenever we
speak of the cheating probability of one party, we assume
that the other party executes the protocol honestly. This
is a standard assumption in all cryptographic protocols
with two competing parties (such as coin flip, bit commit-
ment, and all versions of oblivious transfer) and we adopt
it throughout the paper. The reason for this assumption is
twofold. First, one is interested in ensuring that the “inter-
ests” of honest parties are secured, while it is less relevant
to give guarantees to a cheating party. The second reason
is that even defining what constitutes a cheating requires
the other party to behave (at least to a point) honestly. For
example, how can Bob cheat (guessing both x0 and x1) if
Alice has not even chosen two bits?

Definition 1 (Ref. [23]). A 1-2 quantum OT protocol is a
protocol between two parties, Alice and Bob, such that the
following statements hold.

(a) Alice has inputs x0, x1 ∈ {0, 1} and Bob has input
b ∈ {0, 1}. At the beginning of the protocol, Alice
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has no information about b and Bob has no infor-
mation about (x0, x1).

(b) At the end of the protocol, Bob outputs y or abort
and Alice can either abort or not.

(c) If Alice and Bob are honest, they never abort, y =
xb, Alice has no information about b, and Bob has
no information about xb⊕1.

(d) AOT := sup{Pr[Alice correctly guesses b ∧ Bob does
not abort]} = 1

2 + εA.
(e) BOT := sup{Pr[Bob correctly guesses (x0, x1) ∧ Alice

does not abort]} = 1
2 + εB.

The suprema are taken over all cheating strategies avail-
able to Alice and Bob. We note that there are also less
common variants of the definition of BOT, all with subtly
different cheating implications. Sikora et al. [26] defined
cheating in terms of Bob being able to guess the XOR of
Alice’s bits, while Chailloux et al. [22] defined cheating in
terms of Bob’s ability to guess both bits, while also requir-
ing that Bob can always retrieve a single bit with certainty.
The choice of which definition is most appropriate will be
largely application dependent.

We define pC := max{AOT, BOT} to be the cheating
probability of the protocol. The maximum cheating prob-
ability characterizes the performance of an OT protocol
since protocols with (AOT = 1, BOT = 0.5) are easy to con-
struct. However, for certain applications, keeping track of
cheating probabilities for both parties may be relevant.
For example, it is conceivable that there are applications
for which a protocol with cheating probabilities (0.76, 0.5)
may be better than that with (0.75, 0.75), and that proto-
cols with the same maximum cheating probability could
be ordered with respect to the smaller cheating probability.
Note also that our definition of security, while commonly
used, differs from that in some other works, for example,
Ref. [27], where security is characterized in terms of the
information leakage, or in terms of Bob’s ability to guess
the output of some function f (x0, x1). Nevertheless, our
simpler definition makes sense if we are interested only in
lower bounds on the cheating probability, since the ability
to guess (x0, x1) automatically implies the ability to guess
f (x0, x1) for any f .

In this paper we define a variant of OT, semirandom OT,
which differs from the above 1-2 OT in that Bob does not
have any inputs and randomly obtains one of Alice’s bit
values. More concretely, semirandom OT is defined below.

Definition 2. A 1-2 quantum semirandom OT, or simply
semirandom OT, is a protocol between two parties, Alice
and Bob, such that the following statements hold.

(a) Alice chooses two input bits (x0, x1) ∈ {0, 1} or
abort.

(b) Bob outputs two bits (c, y) or abort.

(c) If Alice and Bob are honest, they never abort, y =
xc, Alice has no information about c, and Bob has no
information on xc⊕1. Furthermore, x0, x1 and c are
uniformly random bits [28].

(d) AOT := sup{Pr[Alice correctly guesses c ∧ Bob does
not abort]} = 1

2 + εA.
(e) BOT := sup{Pr[Bob correctly guesses (x0, x1) ∧ Alice

does not abort]} = 1
2 + εB.

The reason for introducing semirandom OT is that we
have found it simpler to work with than 1-2 OT, and the
ability to perform semirandom OT with cheating proba-
bilities AOT and BOT implies being able to perform 1-2
quantum OT with the same cheating probabilities using
additional classical communication and processing (see
Appendix A). Moreover, in spite of the equivalence in the
above sense, semirandom protocols where Bob does not
choose which bit he obtains can be subtly different from
protocols where Bob can choose his input, in the follow-
ing sense. In a semirandom protocol, such as the example
protocol we give in Sec. IV, Bob obtains Alice’s first or
second bit at random [29]. In other words, the protocol
is not deterministic, even when parties honestly follow
the protocol, and it generally involves a destructive quan-
tum measurement. In order to obtain his “honest” output,
Bob needs to irreversibly disturb the quantum state he pos-
sesses. In earlier papers [3,22] it is assumed, correctly for
their framework, that Bob can always make a nondestruc-
tive measurement to obtain the bit of his choice. Bounds
derived in this way then do not directly apply to semi-
random OT protocols, where such a measurement does
not exist. Nevertheless, semirandom OT can be used to
implement “regular” OT, using classical postprocessing,
as described in Appendix A. There are subtle differences
when considering how such postprocessing affects lower
and upper bounds on cheating. Here we directly obtain the
same bound as in Ref. [22], but by considering semiran-
dom protocols. Our new technique also enables us to both
increase the lower bound for protocols that use symmetric
pure states, and to lower the upper bound by constructing a
protocol with smaller cheating probabilities averaged over
both parties.

III. GENERIC PROTOCOL

In this section we introduce a general framework for
semirandom OT and use it to prove lower bounds on pC.
We present undetectable cheating strategies available to
Alice and Bob and analyze them to lower bound their
cheating probabilities AOT and BOT, respectively. We show
that, for protocols within this framework, it holds that

pC = max{AOT, BOT} ≥ 2
3 . (1)
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Furthermore, if the states output to Bob by the protocol,
when both parties are honest, are pure and symmetric, then

pC = max{AOT, BOT} � 0.749. (2)

We prove this by bounding Alice’s and Bob’s cheating
probabilities with respect to a single parameter, F , which
is related to the fidelity of the output states of the protocol
when it is honestly executed. (When either of the parties
are dishonest, the output states may naturally be different.)
From this we find that there is always a trade-off; as Alice’s
ability to cheat decreases, Bob’s ability increases, and vice
versa.

For this special case of pure symmetric output states, our
result can be improved, giving an increased lower bound
on the cheating probabilities. For protocols with pure sym-
metric output states, this nearly closes the gap between the
known lower bounds, and the upper bounds resulting from
existing protocols. We note that all 1-2 OT protocols we
have seen proposed have output states that are pure and
symmetric. Although there is no reason why this must be
the case in general, protocols would intuitively often have
this property. As we later show, however, there exist proto-
cols with lower average cheating probabilities than what is
possible for protocols where the output states are pure and
symmetric.

A. Protocol framework

We now describe the general framework for semi-
random OT protocols with N rounds of communication
between Alice and Bob. This framework is based on
Kitaev’s construction for strong coin flipping [4] and is
useful for analyzing the security of semirandom OT. In
Appendix A, we further motivate why this framework is
general for semirandom OT.

1. Bob starts with the state ρBM and Alice starts with an
auxiliary system A initialized to |0〉〈0|A. The overall
state is ρBMA := ρBM ⊗ |0〉〈0|A. We further suppose
that Alice and Bob share the counter variable i, ini-
tialized to 1, which tracks the round number of the
protocol.

2. Alice randomly selects an element x0x1 ∈ {00, 01,
11, 10}.

3. Bob sends system M to Alice.
4. Based on her choice in step 2, Alice performs the

unitary operation Ux0x1,i
MA ∈ {U00,i

MA , U01,i
MA , U11,i

MA , U10,i
MA}.

5. Alice sends system M back to Bob.
6. Bob performs the unitary operation V(i)BM .
7. The index i is incremented by 1. If i = N + 1, the

protocol proceeds to step 8; otherwise, it returns to
step 3.

8. The final output held by Bob is

σ
x0x1
BM := TrA(η

x0x1
BMA), (3)

where

η
x0x1
BMA := V(n)BM Ux0x1,n

MA · · · V(1)BM Ux0x1,1
MA ◦ ρBMA (4)

and we have used the convention that U ◦ ρ =
Uρ U†.

9. Bob performs a positive operator-valued mea-
surement (POVM) with elements {�0∗

BM ,�1∗
BM ,

�∗0
BM ,�∗1

BM } to obtain the value of c and xc. The posi-
tion of the asterisk “∗” determines the value of c,
i.e., c = 0 for 0∗ and 1∗, while c = 1 for ∗0 and ∗1.
The value of the “nonasterisk” entry is the actual
value of xc. For example, the outcome �1∗

BM denotes
that c = 0 and x0 = 1.

The steps of the framework above describe the actions of
Alice and Bob if they are honest, together with the associ-
ated outputs, assuming that all measurements are deferred
to the end. Of course, Alice’s and Bob’s actual actions may
deviate from the honest protocol description if they are dis-
honest, but we will see that to obtain our lower bound, this
framework is useful.

B. Alice and Bob both honest

For the protocol to be correct if both Alice and Bob are
honest, we require the following conditions to hold:

Tr(�j ∗
BMσ

kl
BM ) =

{
1
2 if j = k,
0 if j �= k.

for c = 0, (5)

Tr(�∗j
BMσ

kl
BM ) =

{
1
2 if j = l,
0 if j �= l.

for c = 1. (6)

These conditions imply that Bob receives either one of
Alice’s two chosen bits with equal probability and that the
bit received by Bob is correct.

C. Security against Bob

We assume that Bob acts honestly throughout the pro-
tocol, until step 9, where he deviates in the final measure-
ment. This is clearly not the most general way of cheating
for Bob, but any cheating probability that Bob can achieve
by cheating in this restricted way can also be achieved by
an unrestricted Bob. We will therefore be able to derive a
lower bound on Bob’s general cheating probability. Bob,
at the beginning of step 9 (measurement), then holds either
σ 00

BM , σ 01
BM , σ 11

BM , or σ 10
BM . In order to cheat, Bob wants to

guess the exact value of x0 and x1. That is, he wants to
know which of the four σ states he holds. To do this, his
optimal strategy would be to perform a minimum-error
measurement. However, the minimum-error measurement
will vary according to the states chosen by any specific
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implementation of semirandom OT. Instead, to provide a
lower bound on Bob’s optimal cheating probability for all
protocols described by the framework, we assume that Bob
performs a square-root measurement (SRM) [30]. This
may not be his optimal strategy, but it is a valid cheating
strategy, and a strategy that Bob can employ without even
being caught (since Alice has no way of knowing which
measurement Bob performs). Bob’s cheating probability is
then at least as large as the success probability of the SRM,
which is bounded as [31]

pSRM
succ ≥ 1 − 1

8

∑
jk �=lm

F(σ jk
BM , σ lm

BM ), (7)

where jk, lm ∈ {00, 01, 11, 10} and F is the fidelity, defined
as

F(ρ, σ) := Tr
(√
ρ1/2σρ1/2

)
. (8)

Equations (5) and (6) imply that F(σ jk
BM , σ j ⊕1,k⊕1

BM ) = 0
(since these states can be perfectly distinguished). With-
out loss of generality, suppose that σ 00

BM and σ 01
BM are the

pair of states with the highest fidelity. Define

F := F(σ 00
BM , σ 01

BM ). (9)

Then it follows that

BOT ≥ 1 − F . (10)

This result is limited somewhat by the bound on the suc-
cess probability of the SRM for general states given in Eq.
(7). Placing restrictions on the output states of the protocol
allows us to tighten this bound. In particular, if {σ 00

BM , σ 01
BM ,

σ 11
BM , σ 10

BM } forms a symmetric set [32] of pure states for
which 0 ≤ F ≤ 1

2 then, as we show in Appendix B, Bob’s
SRM is successful with probability [33]

p̃SRM
succ ≥ 1

4

(
1 + 1

2

√
1 − 2F + 1

2

√
1 + 2F

)2, (11)

which gives the tighter bound Bpure
OT = p̃SRM

succ ≥ the rhs of
Eq. (11). (As we will see below, F > 1

2 would mean that
Alice’s cheating probability is greater than 3

4 .)
If Bob’s ability to cheat does not depend on Alice’s

random choice of input, it seems likely that most proto-
cols would output symmetric states, and this tighter bound
would apply. However, the example protocol we present in
Sec. IV, which uses symmetric pure states, can be com-
bined with a trivial protocol, to obtain overall average
cheating probabilities that are lower than the bound for
protocols using symmetric pure states. This shows that,
interestingly, protocols using symmetric pure states are not
optimal for semirandom OT in general.

D. Security against Alice

Suppose that Alice is dishonest and aims to guess the
value of the c output to Bob. In this section we present
a cheating strategy that is always available to Alice, and
which is always undetectable. We derive Alice’s cheating
probability given that she performs this specific strategy,
and use this to obtain a lower bound for Alice’s achievable
cheating probability given that she performs some optimal
strategy, in the same way we restricted Bob’s attacks to
obtain a lower bound for his cheating probability.

The strategy that Alice employs intuitively is the follow-
ing. She chooses the two classical two-bit inputs that corre-
spond to the pair of states among the σ jk

BM with the highest
fidelity, which we called F above. Then she performs the
protocol operations corresponding to either classical input,
conditioned on an ancillary qubit that is prepared in a
superposition state, and that she keeps. In other words, the
global state (before Bob’s measurement) will be an entan-
gled superposition, involving the pair of output states σ jk

BM
with the highest fidelity on Bob’s side. Bob then makes
the measurement he makes if honest. Conditioned on his
outcome, Alice’s ancillary qubit is prepared in one of two
states. Alice can distinguish between the two states with a
success probability determined by the fidelity F between
the two states on Bob’s side. (Her success probability is
greater than 1

2 , which would correspond to a random guess
by Alice.) This leads us to a bound on Alice’s cheating
probability that involves the same quantity F as our bound
on Bob’s cheating probability.

More specifically, Alice can proceed as follows. Let
|�〉BMAE be a purification of ρBMA, where E denotes
the environment. Alice also prepares an additional state
|+〉D = (|0〉D + |1〉D)/

√
2 for use as a control qubit to per-

form her strategy. Since we consider information-theoretic
security, Alice can do anything allowed within quantum
mechanics, including this. The overall state is

1√
2
(|�〉BMAE |0〉D + |�〉BMAE |1〉D), (12)

with Alice in complete control of systems A, E, and D.
Without loss of generality, we again assume that the two
σ states with the highest fidelity are σ 00

BM and σ 01
BM . A valid

cheating strategy available to Alice is as follows. In each
step 4 of the protocol, rather than performing a unitary
Ux0x1,i

MA , Alice instead performs

U00,i
MA ⊗ |0〉〈0|D + U01,i

MA ⊗ |1〉〈1|D. (13)

Defining Alice’s overall operations as U = V(N )BM U00,N
MA · · ·

V(1)BM U00,1
MA andV = V(N )BM U01,N

MA · · · V(1)BM U01,1
MA , Alice’s strategy
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leads to an output state

|χ〉 := 1√
2
(U |�〉BMAE |0〉D + V |�〉BMAE |1〉D)

:= 1√
2
(|ψ00〉BMAE |0〉D + |ψ01〉BMAE |1〉D). (14)

This strategy is not detectable by Bob, since without access
to system D it is as if Alice has performed the honest oper-
ations for either x = 00 or x = 01, each with probability
1
2 . The states |ψ jk〉 are purifications of σ jk

BM , and all purifi-
cations are related by a unitary operation acting on the
purifying system alone. Alice further performs the unitary
operation

W(1)
AE ⊗ |0〉〈0|D + W(2)

AE ⊗ |0〉〈0|D, (15)

where W(1)
AE and W(2)

AE are chosen to transform |ψ00〉 and
|ψ01〉 into |φ00〉 and |φ01〉, such that the latter two states
are the purifications of σ 00

BM and σ 01
BM with the highest over-

lap. This operation is performed so that we can later use
Uhlmann’s theorem to express Alice’s cheating probability
in terms of F , as we shall see. The resulting state is

|�〉 := 1√
2
(|φ00〉BMAE |0〉D + |φ01〉BMAE |1〉D). (16)

In step 8 of the protocol, Bob performs the POVM {�z
BM }z

on |�〉, where z ∈ {0∗, 1∗, ∗0, ∗1}. Our aim is to discover
how well Alice can distinguish between the outcomes c =
0 and c = 1 using a measurement on her D system. The
state of system D following Bob’s POVM is

μD = 1
2

∑
i,j ,z

〈φ0i|�z
MB |φ0j 〉 |j 〉 〈i|D , (17)

where i, j ∈ {0, 1}, z ∈ {0∗, 1∗, ∗0, ∗1}.
Equations (5) and (6) can be used to evaluate terms of

the form 〈φjk|�z
BM |φjk〉, since

〈φjk|�z
BM |φjk〉 = TrBMAE(�

z
BM |ϕjk〉〈ϕjk|)

= TrBM (�
z
BMσ

jk
BM ). (18)

The expression for μD can be further simplified using the
following lemma.

Lemma 1. For all values of z ∈ {0∗, 1∗, ∗0, ∗1} and jk ∈
{00, 01, 11, 10} such that TrBM (�

z
BMσ

jk
BM ) = 0, it holds

that

(�z
BM ⊗ 1AE) |φjk〉BMAE = 0. (19)

Proof. Since �z
BM ⊗ 1AE is a positive semidefinite opera-

tor, we can write its spectral decomposition as

�z
BM ⊗ 1AE =

∑
n

cnρcn, (20)

where the cn are positive real numbers. Therefore, using
Eq. (18),

TrBM (�
z
BMσ

jk
BM ) = 0 =⇒ 〈φjk|�z

BM ⊗ 1AE|φjk〉 = 0

=⇒ 〈ci|φjk〉 = 0 for all i,
(21)

and the result follows. �
Using this lemma, μD simplifies to

μD = 1
2

[ 1
2 |0〉〈0|D + 〈φ01|�0∗

MB|φ00〉|0〉〈1|D
+ 〈φ00|�0∗

MB|φ01〉|1〉〈0|D + 1
2 |1〉〈1|D

]
+ 1

2

[ 1
2 |0〉〈0|D + 1

2 |1〉〈1|D
]

= 1
2μ

c=0
D + 1

2μ
c=1
D , (22)

where the first square bracket corresponds to Bob obtaining
an outcome c = 0 (i.e., �0∗ or �1∗) and the second square
bracket corresponds to Bob obtaining an outcome c = 1
(i.e.,�∗0 or�∗1). Lastly, we must evaluate 〈φ01|�0∗

MB|φ00〉.
To satisfy no signaling, the density matrix in system D

must be the same regardless of whether or not Bob actu-
ally performs his measurement [34–38]. If Bob performs
no measurement, using Eq. (16), the state of system D is

1
2 [|0〉〈0|D + 〈φ01|φ00〉|0〉〈1|D

+ 〈φ00|φ01〉|1〉〈0|D + |1〉〈1|D]. (23)

Comparing Eqs. (22) and (23), we must have 〈φ01|�0∗
MB|φ00〉

= 〈φ01|φ00〉. The trace distance between μc=0
D and μc=1

D is
therefore |〈φ01|φ00〉|, meaning that Alice can distinguish
c = 0 from c = 1 with probability

p = 1
2 (1 + |〈φ01|φ00〉|)

= 1
2 [1 + F(σ 00

BM , σ 01
BM )]

:= 1
2 (1 + F), (24)

where the second equality follows from Uhlmann’s
theorem [39] since |φ00〉 and |φ01〉 are the purifications of
σ 00

BM and σ 01
BM with maximum overlap. It therefore holds

that

AOT ≥ 1
2 (1 + F). (25)
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E. Result

Previously, the best known lower bound for the cheating
probabilities in 1-2 quantum OT was [22]

max{AOT, BOT} ≥ 2
3 . (26)

Our results in the previous section reproduce this bound
since

AOT ≥ 1
2 (1 + F) and BOT ≥ 1 − F

=⇒ min
F
(max{AOT, BOT}) = 2

3 .
(27)

Our way to obtain this bound differs substantially from
Ref. [22] in two ways, and this means (as we show later)
that, when imposing further restrictions on the class of
protocols, we can increase the lower bound.

If we consider protocols where the output states, dur-
ing an honest execution, are pure and symmetric, then we
obtain a tighter lower bound (which cannot be obtained
using the technique in Ref. [22]). Specifically, we can use
Eq. (11) to obtain the tighter bound

min
F
(max{AOT, BOT}) ≈ 0.749. (28)

Protocols using symmetric states may be preferable due
to theoretical or experimental simplicity, and, intuitively,
one might expect optimal protocols to employ symmetric
states.

Finally, another important feature of our bounding
method is that our construction quantifies the trade-offs
possible between AOT and BOT, something of importance
for applications where one is more interested in a smaller
value for one of the two. This exact situation arises in
the context of quantum signatures [25], where, in the dis-
tribution stage, signing keys are partially distributed in a
manner reminiscent of 1-2 OT. In these protocols AOT is
prioritized, and it is important that AOT ≈ 0.5 to protect
against repudiation attempts. On the other hand, to protect
against forging attempts is much simpler, and the require-
ments on BOT are less strict. The parametrization of AOT
in terms of F suggests that in order to create an imperfect
1-2 OT schemes with a small εA, it is necessary to have
a protocol that, in the honest case, outputs states that are
almost orthogonal. Unfortunately, given AOT ≈ 0.5, our
results show that it is necessary to have BOT ≈ 1. This
mirrors a similar result for two-party computation [40].

IV. A PROTOCOL FOR OBLIVIOUS TRANSFER

In this section we present a protocol for imperfect quan-
tum oblivious transfer that achieves cheating probabilities
of 3

4 and approximately 0.729 for sender and receiver,
respectively. The protocol uses unambiguous quantum
state elimination.

A. Unambiguous measurements

Suppose that a quantum system is prepared in one of the
states ρx, where x ∈ X , with prior probabilities px. When
retrieving the information stored in ρx using an “optimal”
measurement, what is “optimal” depends heavily on the
application. For communication protocols, a minimum-
error measurement—one that identifies the state with the
smallest probability of error—is just one possibility. For
cryptographic protocols, the optimal measurement is often
one that returns the largest possible amount of informa-
tion while simultaneously disturbing the system less than a
threshold amount.

A particular class of measurements we are interested
in is unambiguous measurements. These measurements
give “perfect” information in the sense that, given a suc-
cessful measurement outcome, one can be certain that
the decoded classical information is correct. Unambigu-
ous measurements come in two main flavors: unambiguous
state discrimination (USD), and unambiguous state elim-
ination (USE). A successful USD measurement on ρx

would identify x with certainty, but the measurement is
generally not successful with probability 1. When the mea-
surement is unsuccessful, it does not uniquely determine
the state.

USE measurements [41–49] on the other hand can more
often be successful with probability 1, but only guaran-
tee that x /∈ Y ⊂ X , i.e., the measurement rules out states
rather than definitively identifying the state. Intuitively, it
seems that unambiguous measurements are well suited to
cryptographic applications—their ability to provide “per-
fect yet partial” information on the states being sent is
often exactly what is needed. More concretely, USD can be
seen as very similar to Rabin OT, in which it is desired that
the receiver obtains the sender’s message with probability
1
2 , and otherwise receives nothing with probability 1

2 . On
the other hand, USE measurements seem closely related to
the more common 1-2 OT, in which incomplete but correct
information is gained with certainty. Since OT plays a cen-
tral role in secure two-party computation, it seems likely
that unambiguous measurements could also play a role in
this developing field.

B. Semirandom OT using unambiguous state
elimination

In this section, we present an application of USE mea-
surements. We describe a protocol for implementing many
runs of semirandom OT and analyze its security in the
asymptotic limit. We again work in the information-
theoretic security setting but this time prove upper bounds
on the cheating probabilities achievable for Alice and Bob.
We show that our protocol performs better than previous
protocols, and is almost optimal with respect to the bounds
for symmetric pure states derived in the previous section.
The protocol proceeds as follows.
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1. Alice uniformly, randomly, and independently
selectsN elements from the setX = {00, 01, 11, 10}.
She encodes elements as 00 → |00〉, 01 → | + +〉,
11 → |11〉, and 10 → | − −〉, where |±〉 = (|0〉 ±
|1〉)/√2.

2. Alice sends the N two-qubit states to Bob.
3. Bob randomly selects

√N out of the N states he
has received and asks Alice to reveal their identity
[50]. If Alice declares | + +〉 or | − −〉, then Bob
measures both qubits in the X basis; otherwise, he
measures both qubits in the Z basis. The protocol
aborts if any measurement result does not match
Alice’s declaration.

4. The
√N states used in the previous step are dis-

carded.
5. For each of the N − √N remaining states, Bob

measures the first qubit in the Z basis and the second
qubit in the X basis. These measurements constitute
two USE measurements (for example, an outcome
of |0〉 on the first qubit rules out |11〉). Following
these measurements, Bob can with certainty rule
out one element from the set Y0 = {00, 11} and one
from the set Y1 = {01, 10}. In this way, for each
of the remaining states, he can know with certainty
exactly one of x0 and x1, but not both.

The result of this protocol is that Alice and Bob have per-
formed N − √N runs of semirandom OT, each of which
could be used to implement a single instance of 1-2 OT,
as per the construction in Appendix A. Below we ana-
lyze the cheating probabilities achieved by each instance
of semirandom OT generated by this protocol.

At this point it is important to note that in our analy-
sis we assume that all

√N tests have passed successfully.
This is important to simplify the subsequent analysis,
by restricting to “undetectable” strategies, as we explain
below. It is worth noting, however, that in realistic sce-
narios, even honest parties would fail some tests due to
imperfections and noise. Therefore, an important further
work is to weaken the condition to allow for a small frac-
tion of tests to fail, in order to make our protocol robust.
This involves bounding the trace distance of the resulting
states as a function of the (small) failure of tests, and is
postponed for a future publication.

Note that, from a security perspective, the protocol
given above can be set in the general framework con-
sidered of the previous section by defining U = R ⊗ R,
where

R = |+〉〈0| − |−〉〈1|. (29)

Alice begins with the state |00〉 and applies either 1, U, U2,
or U3 to obtain either |00〉, | + +〉, |11〉, or | − −〉, respec-
tively. The subsequent rounds simply consist of classical
communication and measurements, the latter of which can

be described as a unitary operation acting on a larger
Hilbert space, with state collapse delayed until a protocol
output is required. We show that this protocol can be made
secure with AOT = 0.75 and BOT ≈ 0.729.

C. Security against Bob

If Bob wants to cheat then his aim is to correctly guess
both x0 and x1 for each individual pair. In the asymptotic
limit, the fraction of states discarded for testing in step 3
tends to 0. Since the states are prepared independently, any
strategy Bob performs (including general measurements
correlated across all N states) cannot have an average suc-
cess probability (probability of correctly identifying both
x0 and x1) that is greater than the minimum-error measure-
ment on a single state [51]. Therefore, in the asymptotic
limit we can bound Bob’s average cheating probability
for each of the N − √N ≈ N runs by considering the
minimum-error measurement on a single state. Since the
set S := {|00〉, | + +〉, |11〉, | − −〉} forms a set of sym-
metric pure states, the minimum-error measurement is the
SRM [33]. Using this measurement, Bob can guess both of
Alice’s input bits with probability

BOT = 1
4
(
1 + 1√

2

)2 ≈ 0.729. (30)

In this case, Bob’s optimal strategy is the exact strategy
considered in the general scenario in Sec. III C. (If the
tested fraction of states does not tend to 0 as N → ∞
then Bob’s optimal measurement would be a maximum
confidence measurement [38,52], with a success probabil-
ity increasing with the fraction of tested states, reaching a
maximum of 3

4 if at least 1
4 of the states are tested. Bob

would then perform the relevant measurement with higher
confidence in the result, and if the measurement fails, ask
to “test” the state in that position.)

D. Security against Alice

If Alice wants to cheat, her aim is to correctly guess
the value of c such that Bob received xc. To do this, she
may send states other than those in S. In general, Alice
will generate ρAB11B12B21B22···BN1BN2 and send the B systems
to Bob, keeping the A system for herself. In step 3 of the
protocol Bob then randomly selects a pair of the qubits he
received, say ρBk1Bk2 , and asks Alice to declare the identity
of the state. He does this for

√N of the N pairs. Since we
are looking for an upper bound on Alice’s capabilities, we
assume that she holds a purification |�〉Bk1Bk2A of ρBk1Bk2 .

Alice must declare a state to Bob that will agree with his
measurement outcomes in step 3. If she can do this with
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certainty then the state |�〉Bk1Bk2A must be of the form

|�〉Bk1Bk2A = b0|00〉Bk1Bk2 |0〉A + b1| + +〉Bk1Bk2 |1〉A

+ b2|11〉Bk1Bk2 |2〉A + b3| − −〉Bk1Bk2 |3〉A,
(31)

where {|0〉A, |1〉A, |2〉A, |3〉A} is an orthonormal basis. If
Alice does not send states in the above form then she can-
not guess Bob’s measurement outcomes with certainty, and
for asymptotically large N , it becomes virtually certain
that the protocol will abort.

We note that Alice also cannot improve her average
cheating probability by using strategies where she uses
entanglement not just between the system she keeps and
Bob’s individual qubit pairs, but where she also introduces
entanglement between the different qubit pairs she sends to
Bob. Any state for which Alice will deterministically pass
a test on the qubits in position Bk1Bk2, can be written as

|�〉Bk1Bk2A′ = b0|00〉Bk1Bk2 |0〉A′ + b1| + +〉Bk1Bk2 |1〉A′

+ b2|11〉Bk1Bk2 |2〉A′ + b3| − −〉Bk1Bk2 |3〉A′ ,
(32)

where {|0〉A′ , |1〉A′ , |2〉A′ , |3〉A′ } is an orthonormal basis that
may include not just a system Alice holds, but Bob’s qubits
in other positions than Bk1Bk2. This state is evidently of the
form in Eq. (31). That is, if Alice is able to deterministi-
cally pass a test done on a qubit pair then this directly limits
her average cheating probability for that qubit pair, and this
is true for all qubit pairs also when Alice can entangle the
qubits she sends to Bob in arbitrary ways.

Essentially, this means that Alice is restricted to the
attacks considered in the general protocol analysis in Sec.
III D—attacks that are superpositions of honest operations,
and as such, are always undetectable by Bob. In fact, it can
be proven (see Appendix C) that an optimal strategy for
Alice is to prepare

1√
2
(|00〉B|0〉A + | + +〉B|1〉A), (33)

which corresponds exactly to the operation given in Eq.
(13). Since the overlap between all adjacent states in S is 1

2 ,
Eq. (25) implies that Alice can correctly guess the value of
c with probability 3

4 . The analysis in Appendix C confirms
that this is her cheating probability.

E. A combined protocol with lower average cheating
probability

One can combine our example scheme, where AOT = 3
4

and BOT = 0.729, with a “trivial” scheme where AOT = 1
2

and BOT = 1, to achieve a scheme where both Alice’s and
Bob’s average cheating probabilities are below 3

4 . Note that

this is possible because our protocol had different cheat-
ing probabilities for sender and receiver. This illustrates
that the maximum of the two cheating probabilities does
not fully characterize the performance of a protocol, since
the smaller cheating probability can become relevant in
such combined protocols. As in Ref. [22], Alice and Bob
execute a weak coin flipping protocol to probabilistically
choose between a protocol that is more favorable to Alice,
and one that is more favorable to Bob. In Ref. [22], it is
considered in some detail how to securely compose weak
coin flipping and a subsequent OT protocol. In the triv-
ial OT scheme we use, Alice simply sends Bob both bits,
and Bob reads the bit he wants and discards the other,
giving AOT = 1

2 and BOT = 1. If our example scheme is
chosen with probability p and the trivial scheme chosen
with probability 1 − p , the average cheating probabilities
become

ÃOT = 3p/4 + (1 − p)/2, B̃OT = 0.729p + (1 − p).
(34)

Choosing p to set these equal results in a combined
scheme where both Alice and Bob can cheat on average at
most with probability ÃOT = B̃OT = pC ≈ 0.74. This is the
smallest cheating probability that a concrete protocol can
achieve to our knowledge. Interestingly, this is lower than
0.749 both for Alice and Bob, thus proving that protocols
using symmetric pure states are not optimal for semiran-
dom oblivious transfer in terms of the average cheating
probability.

V. EXPERIMENT

A major advantage of the above protocol is that it can
be realized using a standard BB84 quantum key distribu-
tion setup [53]. However, we implement the semirandom
OT protocol slightly differently to also enable the realiza-
tion of optimal cheating strategies. Namely, we created
Alice’s entangled state with the help of optical multiqubit
quantum logic gates. But still one photon carrying a single
qubit stays at Alice’s side and the other photon carrying
two qubits travels to Bob’s side.

A. Experimental setup

Pairs of 810-nm time-correlated photons are generated
using type-II spontaneous parametric down-conversion in
a β-barium-borate crystal. The photons are guided to the
experimental setup depicted in Fig. 1(a). Primarily, the
state of the first of the qubits B chosen by Alice is encoded
by quarter- and half-wave plates (QWP, HWP) into the
polarization of the signal photon. Then a calcite beam dis-
placer (BD) spatially separated horizontally and vertically
polarized components into two parallel beams with a lat-
eral distance of 4 mm. This turns the encoding of the first
qubit from polarization to spatial encoding. Wave plates
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(a) (b)
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FIG. 1. (a) Experimental setup. (b) Quantum circuit diagram of the experiment. With appropriate tuning of the controlled-phase
gates UCP, UCCP and the single-qubit gates U1,2,3, Alice prepares the required state (spa and pol denote qubits encoded into spatial and
polarization modes respectively).

acting on both parallel beams are then used to encode the
state of the second qubit B into polarization. In this way, a
single photon carried both qubits.

When the basic operation of the semirandom OT is
tested, as well as when Bob’s cheating strategy is imple-
mented, we utilize the idler photon (the other photon in the
pair) only to herald successful generation of the signal pho-
ton. When Alice’s cheating strategy is studied, the state of
Alice’s qubit A is encoded into the polarization state of the
idler photon. Linear-optical quantum logic gates, shown
in Fig. 1(b), then entangle the input qubits to produce the
required state (33).

The two-qubit controlled-phase gate (UCP) operates on
qubits B and introduces an arbitrary phase shift on state
|11〉. The wave plates in the lower optical path perform the
phase shift, the wave plates in the upper path only com-
pensate for the path length difference. Another half-wave
plate implements the Hadamard gate acting on the sec-
ond one of qubits B (encoded in the polarization degree
of freedom). The three-qubit controlled-controlled-phase
gate (UCCP) provides a way to entangle qubit A with
qubits B. The beam displacer separates the path of the
idler photon according to its polarization into two paral-
lel beams with 6-mm spacing. This extends the Hilbert
space, providing room for manipulation. Suitable polariza-
tion operations, two-photon interference, and consecutive
coincident detection then constitute the UCCP operation.
The two-photon interference takes place in the central
block of three partially polarizing beam splitters (PPBSs),
the central one with reflectances RH = 0, RV = 2

3 , the other
two with RH = 2

3 , RV = 0. This is the core of the gate oper-
ation [54–57], which is explained in detail in the Methods
section of our previous work [58]. The gate is probabilistic
and succeeds with theoretical probability 1

9 for phase shifts
0 and π , which are used in the experiment.

Final projective measurements are realized by wave
plates, polarizing beam splitters, and single-photon
avalanche diodes (SPADs). This enables projection onto an

arbitrary product state [59]. Electric signals are processed
by coincidence logic. The overall coincidence count rate is
roughly 330 counts per second. The experimental integra-
tion time is 5 s for each projective-measurement setting.

B. Both parties are honest

To test the case when both parties are honest, we set the
UCP and UCCP gates to zero phase shift and turn off the
Hadamard operation H .

We sequentially prepare states |00〉, | + +〉, | − −〉, |11〉
and measure each of them in the ZX basis on Bob’s side.
The probability of Bob correctly receiving one of Alice’s
bits is estimated to be 0.9943(9), where the number in
the brackets represents one standard deviation at the final
decimal place. It means that, due to experimental imper-
fections, there is a small probability (about 0.6%) that Bob
obtains an erroneous bit value. Complete experimental
data are provided in Table IV of Appendix E.

The protocol also includes test measurements. If the par-
ties are honest, this means that the states |00〉, |11〉 are
measured in the ZZ basis and states | + +〉, | − −〉 in the
XX basis. Such measurements should unambiguously dis-
criminate between the incoming states and Bob should
never abort the protocol when Alice is honest. But in
an experimental implementation imperfections may cause
errors. In our experiment, the average error probability is
0.013(1). All measured data are provided in Table V of
Appendix E.

C. Bob is cheating

Bob’s optimal cheating strategy is to perform a
minimum-error measurement [60]. In our case, this means
measuring the first qubit in the basis

{|ζ0〉 = α |0〉 + β |1〉 , |ζ1〉 = β |0〉 − α |1〉}
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and the other in the basis

{|ξ0〉 = α |0〉 − β |1〉 , |ξ1〉 = β |0〉 + α |1〉}
with α = cos(π/8) and β = sin(π/8). Each combination
of detector clicks gives Bob a guess of both Alice’s bits.
The average experimental value of the cheating probabil-
ity, i.e., the probability of a correct guess of both bits, is
0.718(5), which is close to the theoretical value of 0.729.
Recorded counts are provided in Table VI of Appendix E.

D. Alice is cheating

To test Alice’s optimal cheating strategy, we set the
phase shifts of the gates UCP and UCCP to −138.2◦ and
180◦, respectively. We prepare the input qubits in a suitable
product state and adjust the output single-qubit operations
U1,2,3 to achieve the desired entangled state (33). The spe-
cific choice of input states, gate parameters, and unitary
operations is a result of numerical optimization, which is
discussed in Appendix D.

In order to verify the prepared entangled state, we per-
form quantum state tomography [61]. The purity of the
state is P = 0.884 and its fidelity with respect to the ideal
state (33) is F = 0.921. The cause of imperfect purity and
fidelity is the sensitivity of the UCCP gate to interferomet-
ric phase instability and spatiotemporal misalignment of
the photons. Imperfect wave-plate retardances reduce the
quality of the state even further.

To determine which bit is obtained by Bob, Alice mea-
sures her qubit A in state (33) in the X basis. Honest
Bob makes his measurements according to the protocol.
As described above, Bob’s outcomes |0+〉B , |1−〉B cor-
respond to c = 0 and |1+〉B , |0−〉B correspond to c = 1.
If Alice obtains |+〉A (|−〉A) then she guesses that c = 0
(c = 1). Alice’s measurements in the X basis and Bob’s
measurements in the ZX basis are already contained in the
data from the three-qubit state tomography. We estimate
the cheating probability as the number of detection events
in which Bob and Alice obtain the same value of c, divided
by the number of all detection events. Alice correctly esti-
mated Bob’s bit c with probability 0.77(1). The measured
count rates are given in Table VII in Appendix E.

In the case of test measurements, Bob measures in the
ZZ or the XX basis and Alice in the Z basis. These data are
also obtainable from the tomographic measurement. In the-
ory, Bob should not be able to detect this type of cheating
strategy by Alice. But in the experiment, there is a small
fraction of outcomes telling Bob to abort the protocol, on
average 0.059(6). This fraction is calculated as the num-
ber of counts in which Bob’s measurement outcome does
not match Alice’s declaration divided by the total number
of counts. The relevant data are presented in Table VIII of
Appendix E.

In our experiment, Alice’s probability of making a cor-
rect guess, 0.77, is higher than the theoretical limit 0.75.

But there is also a relatively high probability of Bob dis-
covering her cheating (0.059, which is higher than the
probability of “false alarm,” 0.013, if Alice is honest).
These effects are likely caused by imperfect preparation of
the state (33).

VI. DISCUSSION

In this paper we introduce semirandom OT and a gen-
eral framework useful for its study. We explicitly construct
undetectable cheating strategies available to Alice and Bob
and use them to lower bound the cheating probability
for any semirandom OT protocol within our framework.
The derived bounds are directly transferable to standard
1-2 quantum OT, allowing us to obtain the lower bound
pC ≥ 2

3 , but using different assumptions on cheating strate-
gies than assuming semihonest adversaries as done by
Chailloux et al. [22]. Our technique, other than rederiving
the previous bound, allows us to (i) quantify the trade-off
between cheating probabilities for different parties, which
can be useful for applications where limiting cheating by
one party is prioritized, and (ii) obtain tighter bounds if we
impose further restrictions. In particular, if the states used
by honest parties are pure and symmetric, we obtain the
bound pC ≥ 0.749, which was not obtained previously.

Our construction provides a simple quantitative relation-
ship between Alice’s and Bob’s ability to cheat, and gives
new bounds in biased settings. In applications more sensi-
tive to sender dishonesty than receiver dishonesty (or vice
versa), our parametrization of AOT and BOT in terms of
the fidelity shows explicitly how reductions in one party’s
ability to cheat will impact the other’s cheating probability.
To illustrate our construction, we present an OT proto-
col using unambiguous state elimination measurements to
achieve cheating probabilities AOT = 3

4 , BOT ≈ 0.729 and,
therefore, pC = 3

4 , together with its experimental realiza-
tion. The cheating probabilities compare favorably with
the previously best-known protocol given in Ref. [23] in
which AOT = BOT = 3

4 . Unlike for the qutrit protocol pro-
posed in Ref. [23], in our example protocol, the bound on
Alice’s cheating probability concerns her average cheating
probability. On the other hand, Bob’s cheating probabil-
ity is lower (0.729 against 0.75 in Ref. [23]), and above
all, our protocol does not require entanglement and can be
realized using the same experimental components as BB84
quantum key distribution. A minor modification could ren-
der our protocol even more practical. Bob could, before
asking Alice to reveal any states, randomly select some
qubit pairs and measure them in the same basis, either
the X or the Z basis. He then asks Alice to receive these
states, but only after he has measured these qubit pairs.
If Alice’s declaration does not match his measurement
results, he again aborts. Bob’s test is then only useful if
his selected basis matches the basis states used by Alice.
Another variation would be for Bob to randomly select
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which qubit he measured in the X basis and which in the
Z basis. This makes no difference if Alice is limited to
using undetectable cheating strategies, but would lead to
somewhat improved performance when loss and imperfec-
tions are present and in finite-size scenarios, where Alice
may choose to employ a cheating strategy that could be
detected by Bob with some probability.

Since our example protocol outputs symmetric pure
states, the cheating probabilities achieved are almost tight
with the bounds proven in this paper for this class of pro-
tocols. Combining the example protocol with a trivial pro-
tocol, however, an average cheating probability pC ≈ 0.74
for both Alice and Bob is possible. It follows that proto-
cols with pure and symmetric output states are not optimal.
There thus remains a gap between the known lower bounds
on cheating probabilities for quantum oblivious transfer,
and what the lowest achievable cheating probabilities are.

We further note that if two protocols are combined using
weak coin flipping then the parties know which protocol
actually got implemented. The bound on cheating proba-
bilities in such combined protocols are therefore also only
bounds on average cheating probabilities. For an individ-
ual round, the parties are aware that they have higher or
lower cheating probabilities. Related to this, cheating prob-
abilities do not fully capture how certain a cheating party
can be that the extra information they have dishonestly
obtained is correct. In our example protocol, Bob can never
be certain that his dishonestly obtained information is cor-
rect. He only ever knows that his guess is correct with
probability 0.729. Alice, however, can be certain of Bob’s
bit choice with probability 1

4 , and she knows when this
occurs. The rest of the time her guess is right with probabil-
ity 2

3 . This is a further advantage of our protocol, compared
with the one in Ref. [23]. To elaborate, if one probabilis-
tically chooses between a trivial protocol where Alice can
cheat perfectly and Bob cannot cheat at all (AOT = 1 and
BOT = 1

2 ) and a trivial protocol where Alice cannot cheat
at all and Bob can cheat perfectly (AOT = 1

2 and BOT = 1),
then the average cheating probabilities for either party are
3
4 , but with probability 1

2 , either party knows for sure that
they can cheat perfectly. When executing the protocol in
Ref. [23], Alice similarly knows for sure what Bob’s bit
choice was half the time, and the rest of the time she ran-
domly guesses. In our protocol, Alice is only sure with
probability 1

4 . Bob, however, cheats with a minimum-error
measurement both in our protocol and the one in Ref. [23],
and is never sure that his guess is correct. Since the states
Bob receives in both protocols are linearly dependent, he
can never unambiguously determine both of Alice’s bit
values. We also present an optical realization of our pro-
tocol. The achieved experimental performance parameters
agree well with the theoretical values, showing that the
protocol is feasible.

As a final point, we note that in quantum cryptography,
it is often easier to analyze so-called individual, identically

distributed (i.i.d.) cheating strategies, where dishonest par-
ties are restricted to act individually on each quantum
system transmitted (or to act individually on other relevant
“units” in the protocol), and where they act in the same
way for each transmitted quantum system. If the parties
can use cheating strategies that operate jointly on several
transmitted quantum systems, sometimes called “coher-
ent” cheating strategies, then cheating probabilities might
increase. It is therefore worth emphasizing that the results
we obtain are in fact valid for general cheating strate-
gies, not just i.i.d. cheating strategies. First, note that the
bounds we derive are lower bounds for cheating probabil-
ities, and are therefore immediately valid for all cheating
strategies, including joint or coherent cheating strategies
by either party. Second, in the example protocol, we do
not need to restrict either Alice or Bob to i.i.d. cheating
strategies. As for Alice, in connection with Eq. (32), we
explain why she does not benefit from entanglement with
other positions. That is, we are allowing her joint cheating
strategies, and show that this does not increase her ability
to predict Bob’s output for each instance of OT. However,
it should be pointed out that this results from the fact that
we make the simplifying assumption that Alice needs to
pass Bob’s tests with unit probability. If this assumption
is not made then the analysis of whether joint or coher-
ent strategies can help Alice cheat is less straightforward.
If Alice is allowed to fail Bob’s tests with some proba-
bility then she can use a state that slightly deviates from
the state in Eqs. (31) and (32), and a more careful analy-
sis of i.i.d. versus joint or coherent cheating strategies for
Alice would be required. Bob, on the other hand, needs to
maximize his average probability to correctly guess both
of Alice’s bits. His optimal cheating probability is obtained
by individual minimum-error measurements on each qubit
pair. Joint measurements on more than one qubit pair do
not help him, and there is no need to restrict Bob to i.i.d.
cheating strategies in the finite-size scenario either.
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APPENDIX A: EQUIVALENCE BETWEEN
SEMI-RANDOM OT, OT, AND RANDOM OT

Here we prove the following claim contained in the main
text.
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Proposition 1. The existence of a semirandom OT proto-
col with cheating probabilities AOT and BOT is equivalent
to the existence of a 1-2 quantum OT protocol with the
same cheating probabilities.

To prove this, we begin by giving the definition of a
related OT variant called random OT (ROT), as follows.

Definition 3. Random OT is a protocol between two par-
ties, Alice and Bob, such that the following statements
hold.

(a) Alice outputs two bits (x0, x1) ∈ {0, 1} or abort.
(b) Bob outputs two bits (c, y) or abort.
(c) If Alice and Bob are honest, they never abort, y =

xc, Alice has no information about c, and Bob has
no information about xc⊕1. Furthermore, x0, x1, and
c are uniformly random bits.

(d) AOT := sup{Pr[Alice correctly guesses c ∧ Bob does
not abort]} = 1

2 + εA.
(e) BOT := sup{Pr[Bob correctly guesses (x0, x1) ∧ Alice

does not abort]} = 1
2 + εB.

Chailloux et al. [23] proved that the existence of a
ROT protocol with cheating probabilities AOT and BOT is
equivalent to the existence of a 1-2 OT with the same
cheating probabilities. Following very similar arguments,
in the following subsections we show that the existence
of a semirandom OT protocol with cheating probabilities
AOT and BOT is equivalent to the existence of a ROT with
the same cheating probabilities. This, combined with the
results in Ref. [23], proves the proposition.

1. Semirandom OT from ROT

Let P be a ROT protocol with cheating probabilities
AOT(P) and BOT(P). We construct a semirandom OT pro-
tocol Q with the same cheating probabilities as follows.

1. Alice has inputs (z0, z1).
2. Alice and Bob run protocol P to output (x0, x1) for

Alice and (c, y) for Bob.
3. Alice and Bob abort in Q if and only if they abort in

P. Otherwise, Alice sends (z0 ⊕ x0, z1 ⊕ x1) to Bob.
4. Bob outputs (c, y ′), where y ′ = (zc ⊕ xc ⊕ y).

We now show that Q is a semirandom OT protocol with
cheating probabilities AOT(P) and BOT(P).

If Alice and Bob are honest then by definition we have
y = xc and so y ′ = zc. Alice has no information about c
and Bob has no information about zc⊕1, as required.

If Alice is dishonest, she cannot guess c except with
probability AOT(P) since she only receives communi-
cations from Bob via protocol P. Therefore, AOT(Q) =
AOT(P).

If Bob is dishonest, he holds (z0 ⊕ x0, z1 ⊕ x1) and
aims to guess (z0, z1). This is equivalent to Bob guess-
ing (x0, x1), which he can do with probability BOT(P)
Therefore, BOT(Q) = BOT(P).

2. ROT from semirandom OT

Let P be a semirandom OT protocol with cheating prob-
abilities AOT(P) and BOT(P). We construct a ROT protocol
Q with the same cheating probabilities as follows.

1. Alice picks x0, x1 ∈ {0, 1} uniformly at random.
2. Alice and Bob perform the semirandom OT proto-

col P where Alice inputs x0, x1. Let (c, y) be Bob’s
outputs.

3. Alice and Bob abort in Q if and only if they abort in
P. Otherwise, the outputs of protocol Q are (x0, x1)

for Alice and (c, y) for Bob.

The outputs of Q are uniformly random bits (if both parties
are honest) since Alice chooses her input at random. Note
that, in the definition of ROT, the outputs are only required
to be random in the honest case, and no assertions are made
when one party acts dishonestly. Therefore, Q does indeed
implement ROT. From the construction of Q, it is also clear
that AOT(P) = AOT(Q) and BOT(Q) = BOT(P).

3. Semirandom OT from ROT in the general protocol
framework

In order to fully motivate why the protocol framework
in Sec. III A is general for semirandom OT, we here sketch
how to recast semirandom OT, realized by performing
ROT together with the classical processing as detailed
above in Sec. A 1, in the form of our general framework.
ROT with classical processing is not immediately in the
form of the general protocol framework for semirandom
OT, since in a quantum protocol for ROT, Alice has out-
puts that she would obtain through a measurement. In the
general protocol framework in Sec. III A, however, Alice
makes no measurements. We also show that the cheating
probabilities do not change when the protocol is recast.

Suppose therefore that Alice obtains her two output bits
in ROT by measuring a part of a quantum system held
by her at some point during the protocol. (If desired, this
measurement may be deferred to the end of the proto-
col, using the standard technique for this, closely related
to the procedure we describe below.) Any POVM may
be realized as a projective measurement in a suitably
enlarged Hilbert space [62], with as many dimensions as
outcomes. We label this Hilbert space C. Suppose there-
fore that in this possibly enlarged Hilbert space, Alice’s
four-outcome measurement has measurement operators
�

x0,x1
C = |x0, x1〉CC〈x0, x1|, which are orthonormal projec-

tors on four orthogonal basis states |x0, x1〉C for x0, x1 ∈
{0, 1}. (The construction below can easily be extended to
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the case where Alice’s four measurement operators are
orthogonal projectors onto more than one basis state, that
is, have rank > 1.)

Now, instead of measuring system C to obtain (x0, x1)

and sending (z0 ⊕ x0, z1 ⊕ x1) to Bob, where (z0, z1) are
Alice’s inputs, Alice performs one of the four unitary
transforms

Uz0,z1
CD =

∑
x0,x1∈{0,1}

|x0, x1〉CC〈x0, x1|

⊗ |z0 ⊕ x0, z1 ⊕ x1〉DD〈aux| (A1)

on system C and an auxiliary system D, where |aux〉D is
a “blank” state that could, e.g., be chosen as |0, 0〉. The
states |0, 0〉D, |0, 1〉D, |1, 0〉D, |1, 1〉D form an orthonormal
basis for the four-dimensional D system. She then sends
system D to Bob, who (if he is honest) can measure this
system to obtain (z0 ⊕ x0, z1 ⊕ x1).

This modified protocol for semirandom OT is now in
the form of the general framework. [If desired, Bob’s mea-
surements to obtain (z0 ⊕ x0, z1 ⊕ x1) and (c, y) can be
combined into a single measurement by Bob that directly
gives (c, y ′).] By no signaling [34–38], Bob cannot tell
whether or not Alice has measured system C. Therefore,
Bob’s cheating probability remains the same as if an honest
Alice simply had measured system C and sent him the state
|z0 ⊕ x0, z1 ⊕ x1〉. Equivalently, Bob’s cheating probability
is the same as if Alice had measured system C and sent him
the classical bits (z0 ⊕ x0, z1 ⊕ x1). Since the recast semi-
random OT protocol is otherwise the same as the ROT
protocol we started with, in particular, how Bob obtains
(c, y) remains the same, Alice’s cheating probabilities are
also equal in both versions of the semirandom protocol.
That is, cheating probabilities remain the same in the ver-
sion that is in the form of the general framework, and in the
version where Alice and Bob perform ROT with classical
processing.

APPENDIX B: BOB’S CHEATING PROBABILITY
FOR SYMMETRIC SETS OF STATES

We need to obtain Bob’s cheating probability for a
symmetric set of four equiprobable pure states σ ij

BM =
|ψ ij 〉〈ψ ij |, where “symmetric” means that there exists
a unitary transform U such that U4 = 1, and succes-
sive applications of U to a “starting state” will result
in the other states in the set. It could either hold
that |ψ01〉 = U|ψ00〉, |ψ〉11 = U2|ψ00〉, |ψ10〉 = U3|ψ00〉,
which we refer to as “case 1,” or that |ψ11〉 =
U|ψ00〉, |ψ〉01 = U2|ψ00〉, |ψ10〉 = U3|ψ00〉, which we refer
to as “case 2.” All other orderings will be equivalent to
these two cases. Case 1 will result in a lower cheating
probability for Bob for a given largest pairwise fidelity F
between two of the four states. That is, case 1 will give
1-out-of-2 OT protocols with better performance.

In either case, Bob’s optimal measurement is the
minimum-error measurement for distinguishing between
these four states. For a set of symmetric equiprobable
states, the optimal minimum-error measurement is the so-
called square-root measurement. Its success probability for
pure symmetric states can be obtained in terms of the
sum of the square roots of the Gram matrix for the states
[33]. The elements of the Gram matrix for a set of states
{|ψj 〉} are given by Gij = 〈ψi|ψj 〉. For four symmetric
pure states, the Gram matrix is given by

G =

⎛
⎜⎝

1 f G f ∗
f ∗ 1 f G
G f ∗ 1 f
f G f ∗ 1

⎞
⎟⎠ , (B1)

where f is generally complex but G is always real.
In case 1, it holds that f = 〈ψ00|ψ01〉 = 〈ψ01|ψ11〉 =
〈ψ11|ψ10〉 = 〈ψ10|ψ00〉 and G = 〈ψ00|ψ11〉 = 〈ψ01|ψ10〉.
For sets of states that allow us to implement 1-out-of-2
oblivious transfer, in case 1 it will also hold that G = 0. As
already mentioned, this follows from conditions (5) and
(6). In case 1 it also then holds that the largest pairwise
fidelity between two of the states F = |f |. In case 2, it will
instead hold that f = 0 and G is nonzero, with |G| equal
to the largest pairwise fidelity F .

The eigenvalues of the Gram matrix are equal to

λ0 = 1 + f + G + f ∗, λ1 = 1 + if − G − if ∗,

λ2 = 1 − f + G − f ∗, λ3 = 1 − if − G + if ∗.
(B2)

These eigenvalues are all real, and can also be shown
to always be nonnegative. The success probability for
the square-root measurement, and hence Bob’s cheating
probability, is given by [33]

BOT = 1
16

(√
λ0 +

√
λ1 +

√
λ2 +

√
λ3

)2

= 1
16

(√
1 + G + 2Ref +

√
1 + G − 2Ref

+
√

1 − G + 2Imf +
√

1 − G − 2Imf
)2.
(B3)

(Since the eigenvalues of the Gram matrix are nonneg-
ative, the arguments of each of the square roots are
non-negative.)

In case 1, where G = 0, Bob’s optimal cheating proba-
bility becomes

BOT = 1
16

(√
1 + 2Ref +

√
1 − 2Ref

+
√

1 + 2Imf +
√

1 − 2Imf
)2.

Since Alice can always cheat at least with probability
AOT ≥ (1 + F)/2, the interesting range is F = |f | ≤ 1

2 .
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It is relatively easy to show that the expression on the
right-hand side is then minimized when f is pure real
or pure imaginary. To show this, one can, e.g., set f =
F cos θ + iF sin θ , and differentiate with respect to θ . For
fixed F ≤ 1

2 , BOT reaches its maximum value when θ =
kπ/2 and its minima when θ = π/4 + kπ/2, where k is an
integer. (In the general case, where |f | can be larger than
1
2 , we should make either Ref or Imf as large as possi-
ble, without the arguments of any of the square roots being
negative, in order to minimize BOT.) That is, in case 1 the
smallest possible cheating probability for Bob when F ≤ 1

2
is equal to

BOT = 1
4

(
1 + 1

2

√
1 + 2F + 1

2

√
1 − 2F

)2, (B4)

as a function of the largest pairwise fidelity F between the
states.

In case 2, Bob’s optimal cheating probability is instead
given by

BOT = 1
4

(√
1 + G + √

1 − G
)2, (B5)

where now the largest pairwise fidelity F = |G|. For a
given F , this cheating probability for Bob is always larger
than that in Eq. (B4). To summarize, for a given largest
pairwise fidelity F ≤ 1

2 , Bob’s cheating probability BOT for
a set of equiprobable pure symmetric states is at least as
large as the cheating probability given in Eq. (B4).

APPENDIX C: ALICE’S OPTIMAL CHEATING
STRATEGY IN THE EXAMPLE PROTOCOL

Alice, to pass a test by Bob with certainty, has to send a
state of the form

|ψch〉 = a |0〉A ⊗ |00〉B + b |1〉A ⊗ |++〉B

+ c |2〉A ⊗ |11〉B + d |3〉A ⊗ |−−〉B , (C1)

where {|1〉A , |2〉A , |3〉A , |4〉A} is an orthonormal basis for
a system A she retains while sending Bob system B, and
|a|2 + |b|2 + |c|2 + |d|2 = 1.

Bob measures the first B qubit in the Z basis and the
second B qubit in the X basis. It holds that

〈0 + |ψch〉 = 1√
2
(a |0〉A + b |1〉A), (C2a)

〈1 + |ψch〉 = 1√
2
(b |1〉A + c |2〉A), (C2b)

〈0 − |ψch〉 = 1√
2
(a |0〉A + d |3〉A), (C2c)

〈1 − |ψch〉 = −1√
2
(c |2〉A + d |3〉A). (C2d)

These states are the unnormalized states conditionally pre-
pared on Alice’s side, given Bob’s measurement outcome.
The norm of each of the above states gives the probability
for that outcome on Bob’s side. That is, it is the probability
with which the corresponding state is prepared.

To successfully cheat, Alice needs to determine whether
Bob received the first or second bit. Bob obtains the first
bit if he obtains (0, +) or (1, −), and the second bit if he
obtains (0, −) or (1, +). It so happens that each of these
outcome combinations occur with probability 1

2 , irrespec-
tive of a, b, c, d. The two density matrices Alice needs to
distinguish between are ρ0 and ρ1, with

1
2ρ0 = 〈0 + |ψch〉 〈ψch|0+〉 + 〈1 − |ψch〉 〈ψch|1−〉 ,
1
2ρ1 = 〈0 − |ψch〉 〈ψch|0−〉 + 〈1 + |ψch〉 〈ψch|1+〉 ,

(C3)

which in matrix form, with the basis states ordered
{|0〉A , |1〉A , |2〉A , |3〉A}, are given by

ρ0 =

⎛
⎜⎜⎝

|a|2 ab∗ 0 0
a∗b |b|2 0 0
0 0 |c|2 cd∗

0 0 c∗d |d|2

⎞
⎟⎟⎠ ,

ρ1 =

⎛
⎜⎜⎝

|a|2 0 0 ad∗

0 |b|2 bc∗ 0
0 b∗c |c|2 0

a∗d 0 0 |d|2

⎞
⎟⎟⎠ .

Alice’s optimal measurement is the Helstrom measure-
ment, given by a projection in the eigenbasis of ρ0 − ρ1.
If Alice obtains an outcome corresponding to a positive
eigenvalue, she guesses that Bob obtained the first bit,
and if she obtains an outcome corresponding to a nega-
tive eigenvalue, then she guesses that Bob obtained the
second bit. If Alice obtains an outcome corresponding to
a zero eigenvalue, she can guess either the first or second
bit, without altering her success probability (conditioned
on such an outcome, Bob is equally likely to have obtained
the first or second bit). Because the state space on Bob’s
side is three dimensional, the situation is effectively three
dimensional on Alice’s side too, but it is convenient to
keep {|0〉A , |1〉A , |2〉A , |3〉A} as a basis.

We therefore need to find the eigenvalues of

ρ0 − ρ1 =

⎛
⎜⎝

0 ab∗ 0 −ad∗
a∗b 0 −bc∗ 0
0 −b∗c 0 cd∗

−a∗d 0 c∗d 0

⎞
⎟⎠ . (C4)

010335-16



IMPERFECT 1-OUT-OF-2 QUANTUM OBLIVIOUS TRANSFER... PRX QUANTUM 2, 010335 (2021)

The eigenvalues are

λ1 = λ2 = 0, (C5a)

λ3,4 = ±
√

|ab|2 + |bc|2 + |cd|2 + |ad|2

= ±
√
(|a|2 + |c|2)(|b|2 + |d|2), (C5b)

where we choose the + sign for λ3. The success probability
is therefore given by

pcheat = 1
2 + 1

4 Tr|ρ0 − ρ1|
= 1

2 + 1
4

∑
i

|λi|

= 1
2

[
1 +

√
(|a|2 + |c|2)(|b|2 + |d|2)]. (C6)

Clearly, Alice’s cheating probability is maximized when
|a|2 + |c|2 = |b|2 + |d|2 = 1

2 , giving a maximum cheating
probability of 3

4 whenever this condition is met. One opti-
mal choice for Alice is, for example, |a| = |b| = 1/

√
2 and

c = d = 0. In this case, ρ0 = |+〉 〈+| and ρ1 = 1
2 (|0〉 〈0| +

|1〉 〈1|). Alice should measure in the |+〉 , |−〉 basis, where
|±〉 = (|0〉 + |1〉)/√2. With probability 1

4 , she will obtain
the outcome “−” and is then sure that Bob obtained the
second bit [outcomes (0, −) or (1, +) for Bob]. With prob-
ability 3

4 , she will obtain the outcome “+” and then she
guesses that Bob obtained the first bit. Her guess is in this
case however only correct with probability 2

3 , giving an
overall cheating probability of 3

4 .
Choosing either |a| or |c| equal to 1/

√
2 and the other

one equal to zero, and either |b| or |d| equal to 1/
√

2
and the other one equal to zero gives the same cheating
probability. These optimal cheating strategies all require
only a two-dimensional system on Alice’s side. Choos-
ing |a| = |b| = |c| = |d| = 1

2 also gives pcheat = 3
4 ; these

are examples of cheating states with high symmetry. As
an example of a suboptimal cheating strategy, choosing
three of the parameters equal to 1

√
3 and the remaining

one equal to zero gives pcheat = 1
2 (1 + √

2/3), which is less
than 3

4 .

APPENDIX D: PREPARATION OF ALICE’S
ENTANGLED STATE

In this appendix we describe in detail the preparation of
state (33):

|�〉 = 1√
2
(|00〉B|0〉A + | + +〉B|1〉A).

This state can be prepared by means of a controlled-phase
gate UCP, a Hadamard gate H , a controlled-controlled-
phase gate UCCP, and local unitary operations. Controlled-
phase gates introduce tunable and conditional phase shifts.

Specifically,

UCP = I + [exp(iα)− 1]|11〉〈11|,
UCCP = UCCP = I + [exp(iβ)− 1]|111〉〈111|.

We use the quantum circuit in Fig. 1(a) to turn an ini-
tially separable state |ψin〉 into a state that is equivalent
to |�〉 up to local unitary operations. The parameters α,β
describe the net operation U(α,β) = UCCP(β)(I ⊗ H ⊗
I)[UCP(α)⊗ I].

The input state can be parameterized by two tuples of
angles, θ = {θi=1,2,3} and φ = {φi=1,2,3}, as

|ψin〉 =
⊗∏

i=1,2,3

[cos(θi/2)|0〉 + sin(θi/2)eiφi |1〉].

The degree of local-unitary equivalence E(|a〉, |b〉)
between states |a〉 and |b〉 can be quantified by an overlap
maximized over all local unitary operations

E(|a〉, |b〉) = max
v

|〈a|VLO(v)|b〉|2,

where v is a tuple containing nine parameters {Aj , Bj ,
Cj }j =1,2,3 that parameterize the operation VLO = V1 ⊗
V2 ⊗ V3. Specifically, the parameters Aj , Bj , and Cj
describe a j th local operation

Vj =
(

cos(Aj ) exp(iBj ) − sin(Aj ) exp(−iCj )

sin(Aj ) exp(iCj ) cos(Aj ) exp(−iBj )

)
. (D1)

We maximize E[|�〉, U(α,β)|ψin(θ , φ)〉] numerically
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [63].

First we perform the optimization with all parameters
being free and with multiple random initial guesses. From
the set of optima we arbitrarily pick the parameter tuples
with θ1 ≈ 120◦, fixed θ1 = 120◦ and perform the optimiza-
tion again. We repeat this procedure to gradually also fix
φ1, θ2, φ2, β, and ϕ3, in this order. The parameters α and
θ3 remain free in the last round of the optimization. The
optimal parameters are listed in Table I. With these param-
eters, the complement of E to one is sufficiently small,
1 − E ≈ 8 × 10−11.

Next, we initialize the circuit and the input state with
the optimal parameters and perform tomography of the
output quantum state. Employing the maximum-likelihood

TABLE I. Optimal parameters for the preparation of state |�〉.
θ1 120.000◦ φ1 22.500◦
θ2 90.000◦ φ2 90.000◦
θ3 116.565◦ φ3 180.000◦
α −138.190◦ β 180.000◦
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TABLE II. Parameters of the corrective unitary operations.

i Ai (deg) Bi (deg) Ci (deg)

1 41.315 49.770 136.535
2 48.385 −37.718 42.637
3 29.367 −1.225 −177.329

method [61] we reconstruct the density matrix ρexp,0 of
actually prepared quantum state. Then we numerically
maximize the expectation value

〈�|ULO(u)ρexp,0U†
LO(u)|�〉

to find the corrective local operations ULO. The optimal
ULO not only implements the required local operation to
finish the preparation of |�〉, but also compensates for
some systematic errors. The parameters of the optimal
unitaries are listed in Table II. We parameterize ULO =
U1 ⊗ U2 ⊗ U3 the same way as in case of V; see Eq. (D1).
Note that these parameters are not unique, multiple solu-
tions exist (due to insensitivity to global phase and phase
periodicity).

An arbitrary unitary operation acting on a single polar-
ization qubit can be easily implemented by a sequence of
a quarter-wave plate, half-wave plate, and another quarter-
wave plate. However, we merge the unitary ULO into final
projective measurements. It can be done because the output
state is projected at the end onto a state |π〉 and the pro-
jection 〈π |Ui|η〉 is equivalent to 〈π̃ |η〉 with |π̃〉 = U†

i |π〉.
We find the corresponding wave-plate angles for six-state
tomography by means of numerical minimization; see
Table III. This optimization reduces the number of com-
ponents in the experimental setup, reducing experimental
imperfections and losses that accumulate with each added
component.

APPENDIX E: EXPERIMENTAL DATA

In this appendix we present the full sets of experimental
data. The tables contain measured counts C, relative fre-
quencies (or estimated probabilities) f , and theoretically
predicted probabilities pt. Relative frequencies are calcu-
lated as a ratio of the number of respective counts to the

TABLE III. Wave-plate angles for transformed projectors. All
numbers are in degrees.

|π〉 HWP1 QWP1 HWP2 QWP2 HWP3 QWP3

|0〉 −15.35 49.83 9.80 53.28 80.78 8.54
|1〉 29.65 −40.17 91.52 −53.28 27.24 −8.54
|+〉 3.16 94.65 47.90 92.29 9.80 92.26
|−〉 43.50 85.35 2.90 2.29 −35.20 2.26
|R〉 22.80 −1.28 64.96 82.06 9.51 53.85
|L〉 −20.93 1.28 19.96 −7.94 54.51 −36.15

TABLE IV. Measured counts C, relative frequencies f , and
corresponding theoretical probabilities pt for the situation when
both the parties were honest. Here |ψB〉 is a state that Alice sends
to Bob. Bob measures projection onto |πB〉; ps is the probability
of correct receipt, i.e., Bob gets an erroneous bit with probability
1 − ps.

|πB〉
|ψB〉 |0+〉 |0−〉 |1+〉 |1−〉 ps

C |00〉 892 829 3 3
f 0.52(1) 0.48(1) 0.002(1) 0.002(1) 1.00(2)
pt 0.5 0.5 0 0 1
C | + +〉 823 2 782 7
f 0.51(1) 0.0012(9) 0.48(1) 0.004(2) 0.99(2)
pt 0.5 0 0.5 0 1
C | − −〉 7 824 15 867
f 0.004(2) 0.48(1) 0.009(2) 0.51(1) 0.99(2)
pt 0 0.5 0 0.5 1
C |11〉 0 1 800 841
f 0.000(0) 0.0006(5) 0.49(1) 0.51(1) 1.00(2)
pt 0 0 0.5 0.5 1

total number of counts. Digits in parentheses represent one
standard deviation at the final decimal place. The statis-
tical errors are computed using error propagation and the
fact that the count rates obey Poisson distribution.

In Table IV we show data for the case when both parties
were honest. Alice sent states |00〉, | + +〉, | − −〉, |11〉
and Bob measured in the ZX basis. In Table V we show
data for Bob’s test measurements when he measured the
incoming states in the XX or ZZ basis.

In Table VI we summarize results for the situation when
Alice was honest but Bob was cheating. This means that
Bob has been performing square-root measurements.

TABLE V. Data for Bob’s test measurements in the case when
Alice was honest. Here, pFA is the probability of “false alarm,”
i.e., the probability that Bob aborts the protocol even if Alice is
not cheating.

|πB〉
|ψB〉 |00〉 |01〉 |10〉 |11〉 pFA

C |00〉 1701 3 1 0
f 0.998(1) 0.002(1) 0.0006(5) 0.000(0) 0.002(1)
pt 1 0 0 0 0
C |11〉 0 0 15 1592
f 0.000(0) 0.000(0) 0.009(2) 0.991(2) 0.009(2)
pt 0 0 0 1 0

| + +〉 | + −〉 | − +〉 | − −〉
C | + +〉 1615 1 43 1
f 0.973(4) 0.0006(5) 0.026(4) 0.0006(5) 0.027(4)
pt 1 0 0 0 0
C | − −〉 5 9 9 1660
f 0.003(1) 0.005(2) 0.005(2) 0.986(3) 0.014(3)
pt 0 0 0 1 0

010335-18



IMPERFECT 1-OUT-OF-2 QUANTUM OBLIVIOUS TRANSFER... PRX QUANTUM 2, 010335 (2021)

TABLE VI. Bob was cheating, Alice was honest. Here, pCE is
the probability of Bob correctly estimating the incoming state.

|πB〉
|ψB〉 |ζ0〉|ξ0〉 |ζ0〉|ξ1〉 |ζ1〉|ξ0〉 |ζ1〉|ξ1〉 pCE

C |00〉 85 1215 4 114
f 0.060(6) 0.857(9) 0.003(1) 0.080(7) 0.857(9)
pt 0.125 0.729 0.021 0.125 0.729
C | + +〉 1013 184 301 53
f 0.65(1) 0.119(8) 0.19(1) 0.034(5) 0.65(1)
pt 0.729 0.125 0.125 0.021 0.729
C | − −〉 64 253 384 1441
f 0.030(4) 0.118(7) 0.179(8) 0.67(1) 0.67(1)
pt 0.021 0.125 0.125 0.729 0.729
C |11〉 228 48 1360 253
f 0.121(7) 0.025(4) 0.72(1) 0.134(8) 0.72(1)
pt 0.125 0.021 0.729 0.125 0.729

TABLE VII. Alice was cheating, Bob was honest. The table
shows the probabilities of Alice correctly or incorrectly guessing
Bob’s bit c.

Alice’s Bob’s
estimate bit c C f pt

0 0 856 0.53(1) 0.5
0 1 356 0.22(1) 0.25
1 0 17 0.010(3) 0
1 1 400 0.25(1) 0.25

TABLE VIII. Test measurements for an honest Bob when Alice
was cheating. Alice measured her qubit in the Z basis and Bob
measured his qubit in the ZZ or XX basis.

|πA〉 |πB〉 C f pt

|0〉 |00〉 851 0.52(1) 0.5
|0〉 |01〉 15 0.009(2) 0
|0〉 |10〉 28 0.017(3) 0
|0〉 |11〉 31 0.019(3) 0
|1〉 | + +〉 688 0.42(1) 0.5
|1〉 | + −〉 7 0.004(2) 0
|1〉 | − +〉 11 0.007(2) 0
|1〉 | − −〉 4 0.002(1) 0

The situation when Bob was honest but Alice was cheat-
ing is recorded in the last two tables. In Table VII we
show the relative frequencies of Alice’s correct and incor-
rect estimates of the values of Bob’s bit c. In Table VIII
we show relative frequencies of different results of Alice’s
and Bob’s measurements in the test phase of the protocol.
Theoretically, Bob should only detect | + +〉 or |00〉.
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