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We propose a quantum-classical hybrid algorithm of the power method, here dubbed as the quantum
power method, to evaluate Ĥn|ψ〉 with quantum computers, where n is a non-negative integer, Ĥ is a
time-independent Hamiltonian of interest, and |ψ〉 is a quantum state. We show that the number of gates
required for approximating Ĥn scales linearly in the power and the number of qubits, making it a promis-
ing application for near-term quantum computers. Using numerical simulation, we show that the power
method can control systematic errors in approximating the Hamiltonian power Ĥn for n as large as 100. As
an application, we combine our method with a multireference Krylov-subspace-diagonalization scheme to
show how one can improve the estimation of ground-state energies and the ground-state fidelities found
using a variational-quantum-eigensolver scheme. Finally, we outline other applications of the quantum
power method, including several moment-based methods. We numerically demonstrate the connected-
moment expansion for the imaginary-time evolution and compare the results with the multireference
Krylov-subspace diagonalization.
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I. INTRODUCTION

Numerically solving quantum many-body systems is
one of the most useful approaches for yet challenging
issues in condensed-matter physics and quantum chemistry
[1–4]. With classical computers, a repeated multiplication
of a Hamiltonian Ĥ of interest to a properly chosen state,
i.e., the power iteration, is an essential element of var-
ious practical and advanced numerical techniques such
as Krylov-subspace methods [5], including the Lanczos
method [6–11], and polynomial-expansion methods [12].
Such methods allow for calculating not only ground states
but also dynamics [13–17] of quantum many-body sys-
tems. A major obstacle in these methods is, however, the
exponential growth of the dimension of the Hilbert space
with its system size N . The Lanczos method has been
implemented also with the variational Monte Carlo tech-
nique to systematically improve variational states towards
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the exact ground state [18]. While the variational Monte
Carlo method allows for substantially larger N than the
full-Hilbert space approaches, an affordable number of the
Lanczos iterations is practically limited to a few due to the
O(N n) number of terms constituting Ĥn.

Recently, simulating quantum many-body systems with
quantum computers [19–23] attracts great interest due to
experimental realizations of and advances on quantum
devices [24–33]. Quantum computers will allow for a
rather more direct access to quantum states defined in a
Hilbert space of potentially huge dimensions that cannot
be treated with classical computers. At present, quantum
computers are prone to noises and computations have to be
accomplished with a small number of gates. In this regard,
the variational-quantum-eigensolver (VQE) scheme has
been proposed to simulate quantum many-body systems
using noisy intermediate-scale quantum devices [34] and
classical computers in a hybrid manner [35–41]. VQE cal-
culations with noisy quantum devices are now becoming
affordable for fairly larger systems [42] than in the earlier
studies. While the majority of VQE schemes is devoted
for gate reduction at the expense of the increased num-
ber of measurements, a measure-and-reuse technique has
been proposed for reducing the number of qubits [43].
Such a qubit-reuse technique has been demonstrated by
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evaluating the ground-state energy of the one-dimensional
Heisenberg model accurately only with a few trapped-ion
qubits [44].

Moreover, to bypass variational parameter optimization
and ansatz-state cultivation inherent in the VQE scheme,
several versions of Krylov-subspace methods have been
proposed. The quantum Lanczos (QLanczos) method [45]
generates a Krylov subspace by evolving a reference state
with an approximate imaginary-time evolution [46–49].
The multireference-selected quantum Krylov (MRSQK)
algorithm generates a set of states spanning a Krylov sub-
space by evolving selected reference states in real time
[50]. As a related method, a quantum version of the filter-
diagonalization (QFD) method has been developed [51]. A
version of the inverse-iteration method suitable for quan-
tum computers [52] makes use of an integral representation
of the inverse of the Hamiltonian [53]. Recently, an imple-
mentation of the exact imaginary-time evolution with the
help of ancillary qubits and Grover’s search algorithm has
been proposed [54]. Subspace-diagonalization schemes,
with subspaces not restricted to a Krylov subspace but
intended to approximate a particular set of eigenspaces of
the Hamiltonian of interest, have been implemented for
calculating not only the ground state but also excited states
of correlated quantum-chemistry systems [55–60].

In this paper, we propose a quantum power method,
a version of the power method suitable for quantum-
classical hybrid computing of quantum many-body sys-
tems. The method is based on a time-discretized form
of the higher-order derivative Ĥn = indnÛ(t)/dtn|t=0 of
the time-evolution operator Û(t) = e−iĤt, by which the
Hamiltonian power Ĥn is represented as a linear com-
bination of Û(t) at different time (t) variables close to
t = 0. The approximated Hamiltonian power retains its
Hermiticity by engaging the time-discretized formalism
with a central-finite-difference scheme for the time deriva-
tives and the symmetric Suzuki-Trotter decomposition of
the time-evolution operators. Assuming a k-local Hamil-
tonian Ĥ composed of O(N ) terms, the number of the
gates required for approximating Ĥn in the quantum power
method is O(nkN ), where N is the system size (i.e.,
the number of qubits). We numerically demonstrate that
the quantum power method can control the systematic
errors, due to the finite-difference scheme for the time
derivatives and the Suzuki-Trotter decomposition of the
time-evolution operators, in approximating the Hamilto-
nian power Ĥn with n as large as 100 for N up to 24.
We apply the quantum power method to generate a Krylov
subspace and perform, using noiseless numerical simula-
tions, the multireference Krylov-subspace diagonalization
for a one-dimensional spin-1/2 Heisenberg model with
various reference states including those obtained by the
VQE scheme. We find that the estimated ground-state
energy as well as the ground-state fidelity are significantly

improved with increasing the power n, thus providing a
way to systematically improve the VQE scheme. We also
apply the Krylov-subspace diagonalization combined with
the quantum power method to a Fermi-Hubbard model
to demonstrate that the quantum power method remains
effective even when the Hamiltonian in the qubit represen-
tation is not local. Furthermore, we briefly outline other
applications of the quantum power method.

The rest of the paper is organized as follows. In Sec. II,
we first summarize the main ideas and formulas of the
quantum power method and list in a table major sym-
bols used throughout the paper. In Sec. III, we provide
the derivations of the main formulas and the technical
details of the quantum power method, which includes
the description of the central-finite-difference scheme for
the time derivatives, basic properties of the approximated
Hamiltonian power, and the Suzuki-Trotter decomposition
of the time-evolution operators. In Sec. IV, we review
the Krylov-subspace-diagonalization scheme for an appli-
cation of the quantum power method. In Sec. V, we
numerically demonstrate the quantum power method by
considering the spin-1/2 Heisenberg model on a one-
dimensional periodic chain as an example. After defining
the spin-1/2 Heisenberg model, we first numerically show
that the systematic errors in the quantum power method
are well controlled to be essentially exact. We then present
numerical results of the Krylov-subspace diagonalization
combined with the quantum power method. The paper
is summarized with discussions in Sec. VI. The Krylov-
subspace-diagonalization scheme based on the quantum
power method is compared with other algorithms reported
recently and the distinctions of our method are high-
lighted in Appendix A. The Krylov-subspace diagonaliza-
tion combined with the quantum power method is also
numerically demonstrated for the Fermi-Hubbard model in
Appendix B. Explicit forms of the higher-order symmetric
Suzuki-Trotter decompositions generalized for multiparti-
tioned Hamiltonians and their error analysis are provided
in Appendix C. An alternative formalism of approximat-
ing the Hamiltonian power is discussed in Appendix D.
For other applications of the quantum power method, some
properties of the moments and cumulants are discussed
in the context of the quantum power method, and the
connected-moment expansion (CMX) for the imaginary-
time evolution is demonstrated by numerical simulations
in Appendix E. The Lanczos method with an emphasis
on its connection to the moments is also described in
Appendix F. Throughout the paper, we set the reduced
Planck constant � = 1.

II. MAIN FORMULAS

Here, we summarize the main ideas and formulas of the
quantum power method. Figure 1 illustrates an overview
of the formalism for the quantum power method based
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on the higher-order derivative of the time-evolution oper-
ator Û(t), which is decomposed approximately using the
symmetric Suzuki-Trotter decomposition. Table I lists
major symbols used in this paper. The derivations of
the main formulas and the technical details are described
in Sec. III.

A. Main ideas

Let Ĥ be the time-independent Hamiltonian. Then, the
time-evolution operator Û(t) is given by

Û(t) = e−iĤt =
∞∑

n=0

(−it)n

n!
Ĥn, (1)

where time t is real. The quantum power method proposed
here is based simply by noticing that the nth power of the

Hamiltonian, Ĥn, is given by the nth derivative of the time-
evolution operator at t = 0, i.e.,

Ĥn = in
dnÛ(t)

dtn

∣∣∣∣∣
t=0

. (2)

The main purpose of this paper is to formulate, on the
basis of the relation in Eq. (2), a quantum-classical hybrid
scheme, which scales polynomially in both the number N
of qubits and the power n for evaluating approximately
the Hamiltonian power Ĥn in a controlled manner. To
this end, below we show that the Hamiltonian power Ĥn

can be approximated by a linear combination of unitaries
under a controlled accuracy, if the central finite-difference
scheme for the time derivative in Eq. (2) and the sym-
metric Suzuki-Trotter decomposition of the time-evolution
operator Û(t) are employed (see Fig. 1).

(a)

(b) (c)

FIG. 1. Overview of the quantum power method proposed here. (a) The Hamiltonian power Ĥn is approximated as a linear combina-
tion of the time-evolution operators [Û(�τ/2)]n−2k for k = 0, 1, . . . , n, in which each Û(�τ/2) is further decomposed into Ŝ(p)2m (�τ/2)
using the symmetric Suzuki-Trotter decomposition. Here, �τ is a small time interval, and thus real positive number. EFD and EST
denote systematic errors due to the finite-difference scheme for the time derivatives and the symmetric Suzuki-Trotter decomposition
of the time-evolution operators, respectively. (b) An illustration of the central-finite-difference scheme for the nth-order derivative
of the time-evolution operator Û(t) at t = 0. Pascal’s triangle with an alternating sign in time t and power n provides coefficients
cn,k of a linear combination of the time-evolution operators that approximates the Hamiltonian power Ĥn. The systematic error due
to the finite-difference scheme is EFD ∼ O(�2

τ ). (c) A quantum circuit for the 2mth-order symmetric Suzuki-Trotter decomposition
Ŝ(p)2m (�τ ) of the time-evolution operator Û(�τ ) = e−iĤ�τ with the systematic error of O(�2m+1

τ ). The systematic error EST due to
the Suzuki-Trotter decomposition for approximating the Hamiltonian power Ĥn in (a) is O(�2m

τ ) because of the factor 1/�n
τ in cn,k.

D(p)
2m (= 2(N� − 1)pm−1 + 1) is the circuit depth of a single Ŝ(p)2m (�τ ) for a Hamiltonian Ĥ subdivided into N� parts, and p is typically

an O(1) integer parameter for the symmetric Suzuki-Trotter decomposition, independent of the number N of qubits. The figure refers
to m = 1, p = 3, and N = 6 for a 2-local Hamiltonian with N� = 2. The rth-order Richardson extrapolation improves systematically
the systematic errors as EFD ∼ O(�2r+2

τ ) and EST ∼ O(�2m+2r
τ ) at the expense of increasing the number (r + 1)(n + 1) of terms in

the linear combination. This implies that the lowest-order symmetric Suzuki-Trotter decomposition with m = 1 is adequate to control
these systematic errors consistently. The number of gates, each of which is indicated by a small blue rectangle in (c), required to
approximately represent the Hamiltonian power Hn scales as O(nkN ) for a k-local Hamiltonian with a prefactor D(p)

2m .
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TABLE I. Major symbols used in this paper.

Symbol Type Description Defining equation(s)

N integer number of qubits . . .

t real number time Eq. (1)
�τ real number time interval Eqs. (3) and (20)
Û unitary operator exact time-evolution operator Eq. (1)
Ŝ(p)2m unitary operator 2mth-order symmetric Suzuki-Trotter Eqs. (7), (30), and (33)

decomposition of Û
p integer parameter in Ŝ(p)2m determining its accuracy for Eq. (33)

given m, p � 3 and odd
Ĥ Hermitian operator time-independent Hamiltonian Eqs. (1), (65), (B1), and (B6)
Ĥn Hermitian operator exact Hamiltonian power Eq. (2)
Ĥn

ST Hermitian operator approximated Hamiltonian power Eqs. (3) and (5)
Ĥn

ST(r) Hermitian operator approximated Hamiltonian power with Eq. (14)
the rth-order Richardson extrapolation

{cn,k}n
k=0 complex number coefficients appearing in Ĥn

ST Eq. (6)
N� integer number of noncommuting parts in Ĥ Eq. (17)
D(p)

2m integer number of noncommuting exponentials in Ŝ(p)2m Eq. (18)

{si}D(p)2m
i=1 real number coefficients appearing in exponents of Ŝ(p)2m , Eq. (C1)

available via program in Listing 1
K vector subspace (block) Krylov subspace Eq. (39)
MB integer block size (i.e., number of reference states) in Eq. (39)

block Krylov subspace K
H Hermitian matrix matrix representation of Ĥ in (block) Krylov Eq. (44)

subspace K
S Hermitian matrix overlap matrix in (block) Krylov subspace K Eq. (45)
|�0〉 quantum state exact ground state of Ĥ with the exact Eq. (41)

ground-state energy E0

|�KS〉 quantum state approximate ground state of Ĥ spanned in K Eq. (42)
with the corresponding energy EKS

d real number operator distance, 0 � d � 1 Eq. (75)
J real number exchange interaction in the Heisenberg model Eq. (65) and Eq. (B1)

and transfer integral in the Hubbard model
UH real number on-site interaction in the Hubbard model Eq. (B1)

B. Quantum power method

1. Main formulas

By applying the central finite-difference scheme with a
small time interval �τ for the time derivative in Eq. (2)
and the symmetric Suzuki-Trotter decomposition of the
time-evolution operator, the Hamiltonian power Ĥn is
approximated as

Ĥn = Ĥn
ST(�τ )+ O(�2

τ )+ O(�2m
τ ), (3)

where

Ĥn
ST(�τ ) =

n∑

k=0

cn,k

[
Ŝ(p)2m

(
�τ

2

)]n−2k

(4)

= in

�n
τ

[
Ŝ(p)2m

(
�τ

2

)
− Ŝ(p)2m

(
−�τ

2

)]n

(5)

with

cn,k = in

�n
τ

(−1)k
(

n
k

)
(6)

being coefficients for the central finite-difference scheme
[see Fig. 1(b) for a graphical derivation of cn,k]. Note that
the coefficient cn,k depends on �τ , and if its dependence is
denoted explicitly as cn,k(�τ ), the coefficient satisfies that
cn,k(�τ ) = (−1)ncn,k(−�τ) = c∗

n,k(−�τ).
In Eq. (3), O(�2

τ ) represents the systematic error EFD
due to the finite-difference scheme for the time derivatives,
and O(�2m

τ ) denotes the systematic error EST due to the
Suzuki-Trotter decomposition of the time-evolution opera-
tors. Ŝ(p)2m (�τ ) is the 2mth-order symmetric Suzuki-Trotter
decomposition of Û(�τ ), given in Eq. (33), and satisfies
that

Û(�τ ) = Ŝ(p)2m (�τ )+ O(�2m+1
τ ) (7)
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and
[
Ŝ(p)2m (�τ )

]†
=
[
Ŝ(p)2m (�τ )

]−1
= Ŝ(p)2m (−�τ). (8)

The superscript p in Ŝ(p)2m (�τ ) is an odd-integer parameter
with p � 3 that determines prefactors of the residual terms
in O(�2m+1

τ ) but does not change the order of the approxi-
mation in�τ (for numerical demonstrations, see Appendix
C). The order O(�2m

τ ) of the Suzuki-Trotter error EST in
Eq. (3) is decreased by one from the naively expected order
O(�2m+1

τ ) because of the factor 1/�n
τ in cn,k. Ĥn

ST(�τ )

is the central quantity in the quantum power method that
approximates the Hamiltonian power Ĥn.

Three remarks are in order. First, Eq. (3) already reveals
a remarkable advantage in the quantum power method: in
order to control the systematic errors EFD and EST with the
same order of accuracy, it is enough to adopt the lowest-
order Suzuki-Trotter decomposition with m = 1, indepen-
dently of the power n. Second, Eq. (4) indicates that the
Hamiltonian power Ĥn is approximated by a linear com-
bination of the n + 1 Suzuki-Trotter-decomposed time-
evolution operators. Third, Eq. (5) implies that Ĥn

ST(�τ )

satisfies the law of exponents

Ĥn
ST(�τ ) =

[
Ĥ1

ST(�τ )
]n

. (9)

Moreover, Ĥn
ST(�τ ) is Hermitian and an even function of

�τ , i.e.,

Ĥn
ST(�τ ) =

[
Ĥn

ST(�τ )
]†

= Ĥn
ST(−�τ), (10)

indicating that the systematic error in odd powers of �τ is
absent in Eq. (3).

2. Richardson extrapolation

The systematic errors EFD and EST in Eq. (3) can be
controlled by varying the time interval �τ . However, it is
often practically useful to reduce the systematic errors by
not taking too small �τ in the algorithmic level. A better
error estimate can be achieved by systematically elimi-
nating lower-order errors in Eq. (3) with the Richardson
extrapolation.

In the Richardson extrapolation, Ĥn
ST(�τ ) and Ĥn

ST
(�τ/h) with some real h (such that 0 < h �= 1) are used
to eliminate the leading terms of the systematic errors EFD
and EST simultaneously in Eq. (3) as

Ĥn = Ĥn
ST(1)(�τ )+ O(�4

τ )+ O(�2m+2
τ ), (11)

where

Ĥn
ST(1)(�τ ) = h2Ĥn

ST(�τ/h)− Ĥn
ST(�τ )

h2 − 1
(12)

is the first-order Richardson extrapolation of Ĥn
ST(�τ ).

Since Ĥn
ST(�τ ) is an even function of �τ , Ĥn

ST(1)(�τ ) is
also an even function of �τ and thus the systematic errors
EFD and EST in odd powers of �τ are absent in Eq. (11).

We can use the Richardson extrapolation recursively to
further eliminate the leading terms of the systematic errors
in Eq. (11). Namely, the rth-order Richardson extrapola-
tion Ĥn

ST(r)(�τ ) of the approximated Hamiltonian power
can be obtained recursively as

Ĥn = Ĥn
ST(r)(�τ )+ O(�2+2r

τ )+ O(�2m+2r
τ ), (13)

where

Ĥn
ST(r)(�τ ) = h2rĤn

ST(r−1)(�τ/h)− Ĥn
ST(r−1)(�τ )

h2r − 1
(14)

with Ĥn
ST(0)(�τ ) ≡ Ĥn

ST(�τ ) and therefore the system-
atic errors EFD and EST are reduced to O(�2+2r

τ ) and
O(�2m+2r

τ ), respectively, after the rth-order Richardson
extrapolation. One can easily show that

Ĥn
ST(r)(�τ ) =

[
Ĥn

ST(r)(�τ )
]†

= Ĥn
ST(r)(−�τ) (15)

because Ĥn
ST(0)(�τ ) is Hermitian and is an even function

of �τ , and therefore the systematic errors EFD and EST
in odd powers of �τ are absent in Eq. (13). However,
Ĥn

ST(r)(�τ ) is no longer the nth power of Ĥn=1
ST(r)(�τ ), i.e.,

Ĥn
ST(r)(�τ ) �=

[
Ĥ1

ST(r)(�τ )
]n

, when r � 1, but obviously

Ĥn
ST(r)(�τ ) =

[
Ĥ1

ST(r)(�τ )
]n

+ O(�2+2r
τ )+ O(�2m+2r

τ ).
In our numerical simulations, we set h = 2 when the
Richardson extrapolation is used.

Since Ĥn
ST(0)(�τ ) is a linear combination of n + 1 uni-

taries
{

[Ŝ(p)2m (�τ/2)]n−2k
}n

k=0
, Ĥn

ST(r)(�τ ) is a linear com-
bination of (r + 1)(n + 1) unitaries{{

[Ŝ(p)2m (�τ/2hl)]n−2k
}n

k=0

}r

l=0
. Equation (13) hence

reveals another significant feature of the quantum power
method that the lowest-order symmetric Suzuki-Trotter
decomposition with m = 1 suffices to systematically and
consistently eliminate the lower-order systematic errors in
EFD and EST with only a polynomial increase of compu-
tational complexity. In Sec. V B, we show by numerical
simulations that these systematic errors in the approxi-
mated Hamiltonian power are well controlled with the time
interval �τ for the power n as large as 100.

For the application purpose of the quantum power
method, it is important that the symmetry of the Hamilto-
nian Ĥ is still respected in the approximated Hamiltonian
power Ĥn

ST(r)(�τ ). This is indeed the case in the quantum
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power method because
[
Ĥ, Ĥn

ST(r)(�τ )
]

= O(�2m+2r
τ ). (16)

Therefore, the symmetry of the Hamiltonian Ĥ is pre-
served in the quantum power method within the systematic
error EST due to the Suzuki-Trotter decomposition that can
be well controlled. Notice that there is no contribution from
the systematic error EFD due to the finite-difference scheme
for the time derivatives in the right-hand side of Eq. (16)
because

[
Ĥ, Û(�τ )

]
= 0.

3. Gate count

In the quantum power method, the Hamiltonian
power Ĥn is approximated with Ĥn

ST(r)(�τ ), which
is a linear combination of (r + 1)(n + 1) unitaries{{

[Ŝ(p)2m (�τ/2hl)]n−2k
}n

k=0

}r

l=0
, i.e., Suzuki-Trotter-

decomposed time-evolution operators, and each unitary
is treated separately. Therefore, the gate count is deter-
mined by the number of gates required for describing
[Ŝ(p)2m (±�τ/2hl)]n in a quantum circuit because the num-
ber of gates required scales linearly with the power of
Ŝ(p)2m (�τ/2hl) and is independent of the argument.

The number of the noncommuting exponentials in
Ŝ(p)2m (�τ ) corresponds to the circuit depth of a quantum
circuit for a single time-evolution operator Û(�τ ) approx-
imated by Ŝ(p)2m (�τ ), and thus it gives a prefactor for the
gate count. Let us assume that the Hamiltonian Ĥ can be
divided into N� parts as

Ĥ = ĤA + ĤB + ĤC + · · · + ĤZ︸ ︷︷ ︸
N� terms

, (17)

where generally [Ĥ� , Ĥ�′] �= 0 if � �= �′ but terms
within each Ĥ� commute to each other (here, �,�′ =
A, B, . . . , Z). As derived in Sec. III B 3, the number D(p)

2m

of noncommuting exponentials in Ŝ(p)2m (�τ ) is given by

D(p)
2m = 2(N� − 1)pm−1 + 1. (18)

As illustrated in Fig. 1(c), the simplest case with m = 1,
p = 3, and N� = 2, for which D(p)

2 = 3, a quantum cir-
cuit for a single Ŝ(p)2m (�τ ) has the circuit depth D(p)

2m , and
thus the circuit depth required for Ĥn

ST(�τ ) is at most O(n)
with a prefactor D(p)

2m . It should be noted here that, as far as
the quantum power method is concerned, the lowest-order
symmetric Suzuki-Trotter decomposition (i.e., m = 1) is
sufficient.

Let N be the number of qubits. Assuming that a Hamil-
tonian Ĥ is k local and consists of O(N ) terms, each of

which is a Pauli string of length at most k, the number
of gates required for Ŝ(p)2 (�τ ) is O(kN ) [61] with a pref-
actor D(p)

2 . Therefore, the number of gates required for
Ĥn

ST(�τ ) is O(nkN ) with a prefactor D(p)
2 = 2N� − 1 ∼

O(1), where O(1) implies that the quantity is indepen-
dent of n and N . For example, for the spin-1/2 Heisenberg
model considered in Sec. V, the locality of the Hamilto-
nian is independent of the system size, i.e., k ∼ O(1), and
hence the gate count for Ĥn

ST(�τ ) scales as O(nN ). On
the other hand, when a fermionic Hamiltonian is consid-
ered, the locality of the Hamiltonian may depend on the
system size N due to a fermion-to-qubit mapping such
as the Jordan-Wigner transformation [62] or the Bravyi-
Kitaev transformation [63] (see also Refs. [64–66]). The
Jordan-Wigner transformation represents a fermionic oper-
ator with an O(N ) number of Pauli operators, i.e., k ∼
O(N ), and hence the gate count for Ĥn

ST(�τ ) scales asymp-
totically as O(nN 2). The Bravyi-Kitaev transformation
represents a fermionic operator with an O(log N ) number
of Pauli operators, i.e., k ∼ O(log N ), and hence the gate
count for Ĥn

ST(�τ ) scales asymptotically as O(nN log N ).
As described above, the rth-order Richardson extrap-

olation does not alter the number of gates required,
but the number of the Suzuki-Trotter-decomposed time-
evolution operators in Ĥn

ST(r)(�τ ) increases as (r + 1)(n +
1). Therefore, for example, to evaluate the expecta-
tion value of Ĥn

ST(r)(�τ ) with respect to a given state
|ψ〉, the (r + 1)(n + 1) number of state overlaps such as
〈ψ |[Ŝ(p)2m (�τ/2hl)]n−2k|ψ〉 have to be estimated. However,
these quantities can be evaluated on quantum computers
separately in parallel with respect to k and l.

4. Possible circuit structure for the linear combination
of time-evolution operators

The form of the approximated Hamiltonian power
Ĥn

ST(�τ ) in Eq. (5) suggests a direct treatment of the lin-
ear combination of the Suzuki-Trotter-decomposed time-
evolution operators with a single quantum circuit [67–69]
that forms a simple recursive structure. Figure 2 shows
such a circuit structure for probabilistically generating
the state ∝ [Ŝ(p)2m (�τ/2)− Ŝ(p)2m (−�τ/2)]n|ψ〉, among 2n

superposed states, in the N register qubits along with n
ancilla qubits. However, the probability for finding the
desired state in the register qubits becomes exponentially
small in general if n is large. Let us define Pb1b2···bn as the
probability for finding a bit string b1b2 · · · bn by measur-
ing the n ancilla qubits (bk = 0 or 1 for 1 � k � n). Then
the probability for finding the bit string 11 · · · 1, which is
relevant for Ĥ2n

ST(�τ ) [70], is given by

P11···1 = 1
4n (−1)n〈ψ |[Ŝ(p)2m (�τ/2)− Ŝ(p)2m (−�τ/2)]2n|ψ〉.

(19)
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(a)

(b)

FIG. 2. Circuit with N register qubits and n ancilla qubits
for probabilistically generating the state ∝ [Ŝ(p)2m (�τ/2)−
Ŝ(p)2m (−�τ/2)]n|ψ〉 in the register qubits for (a) n = 1 and (b)
n = 2. H , S(p)2m , and S(p)†2m in the circuit denote the Hadamard gate,
Ŝ(p)2m (�τ/2), and Ŝ(p)2m (−�τ/2), respectively. A controlled-unitary
gate with a solid (open) circle indicates that the unitary gate is
applied only if the control qubit is set to 1 (0). The probabil-
ity Pb1b2···bn for finding the bit string b1b2 · · · bn = 11 · · · 1 in the
ancilla qubits is given in Eq. (19).

If |ψ〉 were an eigenstate of Ŝ(p)2m (�τ/2) with an eigen-
value eiλ(�τ ), it oscillates as P11···1 = [sin λ(�τ )]2n, but
otherwise it is exponentially small. Therefore, as far as
near-term applications with a limited number of gates are
concerned, the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is better treated with
classical computers in the form of Eq. (4). However, we
anticipate that, once a noiseless quantum computer is real-
ized, the product form of Eq. (5) might have the advantage
of robustness against loss of significance for small �τ .

5. Summary of the proposed method

Figure 1 summarizes the quantum power method. In
the quantum power method, the Hamiltonian power Ĥn

is approximated to Ĥn
ST(�τ ) represented as a linear com-

bination of the n + 1 Suzuki-Trotter decomposed time-
evolution operators {[Ŝ(p)2m (�τ/2)]n−2k}n

k=0. The systematic
error EFD due to the finite-difference scheme for the time
derivatives is O(�2

τ ), and the systematic error EST due
to the Suzuki-Trotter decomposition of the time-evolution
operators is O(�2m

τ ). These systematic errors EFD and EST
can be both improved systematically with the rth-order
Richardson extrapolation to O(�2+2r

τ ) and O(�2m+2r
τ ),

respectively, by approximating the Hamiltonian power
Ĥn with Ĥn

ST(r)(�τ ), which is given as a linear combi-
nation of the (r + 1)(n + 1) Suzuki-Trotter-decomposed

time-evolution operators
{{

[Ŝ(p)2m (�τ/2hl)]n−2k
}n

k=0

}r

l=0
.

While the linear combination of the Suzuki-Trotter-
decomposed time-evolution operators is treated classically,

each Suzuki-Trotter-decomposed time-evolution operator
[Ŝ(p)2m (�τ/2hl)]n−2k is evaluated on quantum computers.

C. Comparison with direct evaluation and classical
computation

The direct evaluation of 〈ψ |Ĥn|ψ〉 requires the expec-
tation values of O(min(N n, 4N )) operators, possibly con-
taining long strings of Pauli operators, provided that
the Hamiltonian Ĥ consists of O(N ) terms. Although
the depth of the circuits for these terms is O(1), the
O(min(N n, 4N )) measurements make the direct evaluation
of 〈ψ |Ĥn|ψ〉 unfeasible as soon as the power n and the
number N of qubits are large.

In classical computation, the computational complexity
scales as O(nND) for the evaluation of Ĥn|ψ〉, when the
Hamiltonian Ĥ is local and thus the Hamiltonian matrix
is sparse. Here, ND is the dimension of the Hilbert space,
e.g., ND = 2N for the spin-1/2 Heisenberg model. This
implies that the computational complexity of the classical
computation scales exponentially in N .

In the quantum power method proposed here, the gate
count for approximating the Hamiltonian power Ĥn scales
as O(nkN ) for a k-local Hamiltonian composed of O(N )
terms. In addition, the number of state overlaps required
to evaluate is (r + 1)(n + 1), which is polynomial in n and
independent of N . Therefore, although it is approximate,
the quantum power method is a potentially promising
application for near-term quantum devices and would have
a quantum advantage over the classical counterpart of the
power method.

III. DERIVATIONS OF THE MAIN FORMULAS

Here, we provide the derivations of the main formulas in
Sec. II and describe technical details of the quantum power
method.

A. Hamiltonian power as a linear combination of
unitary time-evolution operators

As shown in Eq. (2), the Hamiltonian power Ĥn is
given by the nth derivative of the time-evolution operator
Û(t) at t = 0. Here we show that, using the central finite-
difference scheme for the time derivatives, the Hamiltonian
power can be approximated by a linear combination of the
time-evolution operators.

By introducing a small time interval �τ , we replace the
time derivative in Eq. (2) with the central finite difference
as

Ĥn = Ĥn(�τ )+ O(�2
τ ), (20)
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where

Ĥn(�τ ) =
n∑

k=0

cn,kÛ
((n

2
− k
)
�τ

)
(21)

and cn,k is given in Eq. (6). The systematic error O(�2
τ )

in Eq. (20) is due to the finite differentiation and this is
the same systematic error EFD in Eq. (3). Equations (20)
and (21) thus indicate that the nth power of the Hamilto-
nian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators
evaluated at n + 1 different time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

[
Û(t)

]†
=
[
Û(t)

]−1
= Û(−t), (22)

it follows that the approximated Hamiltonian power
Ĥn(�τ ) is Hermitian and an even function of �τ i.e.,

Ĥn(�τ ) =
[
Ĥn(�τ )

]†
= Ĥn(−�τ). (23)

In the last equality, we use that cn,k in Eq. (6) is an
even (odd) function of �τ when n is even (odd). Since
Ĥn(�τ ) is an even function of �τ , the systematic error
EFD in odd powers of �τ is absent in Eq. (20). Moreover,
with the multiplication law of the time-evolution operator
Û (t) Û

(
t′
) = Û

(
t + t′

)
, Eq. (21) can be written as

Ĥn(�τ ) =
n∑

k=0

cn,k

[
Û
(
�τ

2

)]n−2k

=
n∑

k=0

cn,k

[
Û
(
�τ

2

)]n−k [
Û
(

−�τ

2

)]k

= in

�n
τ

[
Û
(
�τ

2

)
− Û

(
−�τ

2

)]n

. (24)

The last line in Eq. (24) indicates that the approximated
Hamiltonian power Ĥn(�τ ) satisfies a law of exponents

Ĥn(�τ ) =
[
Ĥ1(�τ )

]n
. (25)

Namely, Ĥn(�τ ) is exactly the nth power of Ĥn=1(�τ ) for
n � 0. In fact, Eq. (24) can be understood simply as

Ĥn =
[

i
dÛ(t)

dt

∣∣∣∣∣
t=0

]n

=
[
Ĥ1(�τ )

]n
+ O(�2

τ ). (26)

The systematic error in Eq. (20) can be systematically
improved by the Richardson extrapolation. Following the
same procedure described in Sec. II B 2, the leading order
of the systematic error can be eliminated recursively by the
rth-order Richardson extrapolation as

Ĥn = Ĥn
(r)(�τ )+ O(�2+2r

τ ), (27)

where

Ĥn
(r)(�τ ) = h2rĤn

(r−1)(�τ/h)− Ĥn
(r−1)(�τ )

h2r − 1
, (28)

with Ĥn
(0)(�τ ) ≡ Ĥn(�τ ). Because Ĥn(�τ ) satisfies

Eq. (23), one can readily show that Ĥn
(r)(�τ ) is also

Hermitian and is an even function of �τ , and there-
fore the systematic error EFD in odd powers of �τ is
absent in Eq. (27). Since Ĥn

(0)(�τ ) is a linear combi-
nation of the time-evolution operators at n + 1 different
times, Ĥn

(r)(�τ ) is a linear combination of the time-
evolution operators at (r + 1)(n + 1) different times. Note
also that Ĥn

(r)(�τ ) �=
[
Ĥ1
(r)(�τ )

]n
for r � 1, but obviously

Ĥn
(r)(�τ ) =

[
Ĥ1
(r)(�τ )

]n
+ O(�2+2r

τ ).
There are three additional remarks regarding the prop-

erties of the approximated Hamiltonian power Ĥn(�τ ).
First, if a forward or backward, instead of the central,
finite-difference scheme is employed in Eq. (21), the Her-
miticity and the even dependence on �τ of Ĥn(�τ ) in
Eq. (23) are both violated. Therefore, the central finite-
difference scheme is a crucial choice. Second, when
the time-evolution operator Û(�τ ) is approximated by a
Suzuki-Trotter decomposition, the corresponding Suzuki-
Trotter error EST appears in Eqs. (21) and (24). Since the
implementation of a higher-order Suzuki-Trotter decom-
position on quantum computers requires many layers
of gates, it is essential to control EST with a lower-
order Suzuki-Trotter decomposition. Third, if a symmetric
Suzuki-Trotter decomposition, which retains the equiv-
alence between the inverse of the time evolution and
the time-reversed evolution [the right-most equality in
Eq. (22)], is employed to decompose the time-evolution
operators in Eqs. (21) and (24), the resulting Ĥn(�τ ) still
satisfies the Hermiticity and the even dependence on �τ ,
as given in Eq. (10). Therefore, it is important to adopt a
symmetric Suzuki-Trotter decomposition (see Sec. III B 2
for details).

B. Suzuki-Trotter decomposition

The formalism described above in Sec. III A is based
on the exact time-evolution operator Û(t) in Eq. (1). How-
ever, on quantum computers, the time-evolution operator
with its exponent composed of the sum of noncommut-
ing operators usually has to be represented as a product
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of time-evolution operators with each exponent composed
of the sum of commuting operators. For this purpose,
the Suzuki-Trotter decomposition is employed to approxi-
mately decompose the time-evolution operator.

In this regard, we should emphasize that one of the cru-
cial steps for the successful quantum power method is to
determine properly in which stage the time-evolution oper-
ators in Ĥn(�τ ) should be approximated by the Suzuki-
Trotter decomposition, either in Eq. (21) or in Eq. (24).
Although Eqs. (21) and (24) are exactly the same if the
exact time-evolution operators are used, they are no longer
the same in general once the time-evolution operators are
approximated. Therefore, there are at least two routes to
formulate the quantum power method. As we discuss in
details, these two approaches give us two different algo-
rithms that scale differently in the power n. It turns out that
when the power n is larger than 4, the algorithm formulated
on the basis of Eq. (24) with the lowest-order symmetric
Suzuki-Trotter decomposition is preferable, otherwise the
formalism based on Eq. (21) with the higher-order sym-
metric Suzuki-Trotter decompositions is favored in terms
of the gate counts.

To understand the difference of these two approaches,
in this section, we briefly summarize a systematic con-
struction of the higher-order symmetric Suzuki-Trotter
decompositions [71–73] for the quantum power method.

1. Recursive construction of higher-order Suzuki-Trotter
decompositions

We now describe a systematic construction of the sym-
metric Suzuki-Trotter decompositions. Let us define x =
−i�τ to simplify the notation. The second-order symmet-
ric decomposition Ŝ2(�τ ) of the time-evolution operator
Û(�τ ) for the Hamiltonian Ĥ of the form in Eq. (17) is
given by

Û(�τ ) = exĤ = Ŝ2(�τ )+ O(�3
τ ), (29)

where

Ŝ2(�τ ) =
N�−1 exponentials︷ ︸︸ ︷

e
x
2 ĤAe

x
2 ĤBe

x
2 ĤC · · · exĤZ

N�−1 exponentials︷ ︸︸ ︷
· · · e

x
2 ĤCe

x
2 ĤBe

x
2 ĤA︸ ︷︷ ︸

2N�−1 exponentials

.

(30)

Equation (30) can be derived by using the well-known
decomposition ex(ĤA+ĤB) = e(x/2)ĤAexĤBe(x/2)ĤA + O(�3

τ )

repeatedly, e.g., ex(ĤA+ĤB+ĤC) = e(x/2)ĤAex(ĤC+ĤB)e(x/2)ĤA

+ O(�3
τ ) = e(x/2)ĤAe(x/2)ĤBexĤCe(x/2)ĤBe(x/2)ĤA + O(�3

τ ).
The subscript “2” implies that Ŝ2(�τ ) correctly represents
Û(�τ ) = exĤ to O(�2

τ ). It is readily found that Ŝ2(�τ )

satisfies
[
Ŝ2(�)

]†
= Ŝ2(−�τ) (31)

and

Ŝ2(�τ )Ŝ2(−�τ) = Ŝ2(−�τ)Ŝ2(�τ ) = Î , (32)

where Î is the identity operator, and therefore Ŝ2(�2) is
unitary.

It is noteworthy that if we write Ŝ2(�τ ) in the form
Ŝ2(�τ ) = exp

[
xĤ + x2R̂2 + x3R̂3 + · · ·

]
, then the resid-

ual terms R̂k with k even are zero [72]. This can be
confirmed as follows. Equation (32) indicates that Ŝ2(�τ )

commutes with Ŝ2(−�τ) = [Ŝ2(�τ )]−1, implying that Î =
Ŝ2(�τ )Ŝ2(−�τ) = exp

[
2(x2R̂2 + x4R̂4 + x6R̂6 + · · · )

]

for arbitrary x(= −i�τ). We thus obtain that R̂2 = R̂4 =
R̂6 = · · · = 0. This property holds for the higher-order
symmetric decompositions described below, as they satisfy
the relation corresponding to Eq. (32) by construction [72].

Starting with Ŝ(p)2 (�τ ) ≡ Ŝ2(�τ ), the higher-order
decomposition Ŝ(p)2m (�τ ) for m � 2 that satisfies Eq. (7) can
be constructed recursively as

Ŝ(p)2m (�τ ) =
[
Ŝ(p)2m−2(k

(p)
m �τ)

](p−1)/2

× Ŝ(p)2m−2(k̃
(p)
m �τ)

[
Ŝ(p)2m−2(k

(p)
m �τ)

](p−1)/2
,

(33)

where k̃(p)m = 1 − (p − 1)k(p)m , k(p)m = [(p − 1)−
(p − 1)1/(2m−1)]−1, and p is an odd integer with
p � 3 [74]. The superscript “(p)” implies that Ŝ(p)2m consists
of a product of p Ŝ(p)2m−2’s. The parameter k(p)m is deter-
mined so as to eliminate the residual term x2m−1R̂2m−1 in
ln Ŝ(p)2m (�τ ) and thus

Ŝ(p)2m (�τ ) = exp
[
xĤ + x2m+1R̂2m+1 + · · ·

]
. (34)

Namely, k(p)m is the solution of (p − 1)
[
k(p)m

]2m−1
+

[
k̃(p)m

]2m−1
= 0 under the condition (p − 1)k(p)m + k̃(p)m = 1.

It is obvious that Ŝ(p)2m (�τ ) satisfies
[
Ŝ(p)2m (�τ )

]†
= Ŝ(p)2m (−�τ). (35)

Since Ŝ(p)2m (�τ ) also satisfies

Ŝ(p)2m (�τ )Ŝ
(p)
2m (−�τ) = Ŝ(p)2m (−�τ)Ŝ

(p)
2m (�τ ) = Î , (36)

the residual terms of even power such as x2mR̂2m are absent
in the exponent of Ŝ(p)2m (�τ ) in Eq. (34), shown by the same
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argument for m = 1. Some of the higher-order symmetric
Suzuki-Trotter decompositions are explicitly provided in
Appendix C 1. As shown in Appendix C 2, the parameter
p affects the accuracy of the decomposition for a given m.

2. Unitarity and time-reversed evolution of Ŝ(p)

2m (�τ )

As implied in Eq. (36), Ŝ(p)2m (�τ ) retains not only the
unitarity but also the equivalence between the inverse
and the time-reversed evolution, as given in Eq. (8).
Therefore, the Hermiticity and the even dependence on
�τ of Ĥn(�τ ) in Eq. (23) are both retained even when
the exact time-evolution operators in Eqs. (21) and (24)
are approximated by simply replacing them with Ŝ(p)2m ’s.
Indeed, the main formula of the quantum power method in
Eq. (3) is obtained by replacing Û(�τ/2) with Ŝ(p)2m (�τ/2)
in Eq. (24) and the approximated Hamiltonian power
Ĥn

ST(�τ ) satisfies Eq. (10). The same relations are also
satisfied for Ĥn

ST(r)(�τ ) after the rth-order Richardson
extrapolation, as given in Eq. (15).

In contrast to the symmetric Suzuki-Trotter decomposi-
tion, an asymmetric Suzuki-Trotter decomposition F̂(�τ ),
such as F̂(�τ ) = exĤAexĤB · · · exĤZ , results in

[
F̂(�τ )

]†
=
[
F̂(�τ )

]−1
�= F̂(−�τ). (37)

Thus, F̂(�τ ) retains the unitarity but the inverse is
no longer equivalent to the time-reversed evolution. In
this case, either the Hermiticity or the even depen-
dence on �τ of Ĥn(�τ ) in Eq. (23) is violated if the
exact time-evolution operators in Eqs. (21) and (24) are
approximated by F̂’s. For example, if we consider an
operator ĤH (�τ ) = i[F̂(�τ )− F̂†(�τ )]/�τ to approxi-
mate i[Û(�τ )− Û(−�τ)]/�τ , it satisfies the Hermiticity
but is no longer an even function of �τ as ĤH (�τ ) =
[ĤH (�τ )]† �= ĤH (−�τ). On the other hand, an opera-
tor ĤE(�τ ) = i[F̂(�τ )− F̂(−�τ)]/�τ is an even func-
tion of �τ but no longer satisfies the Hermiticity as
ĤE(�τ ) = ĤE(−�τ) �= [ĤE(�τ )]†. Therefore, the sym-
metric Suzuki-Trotter decomposition Ŝ(p)2m (�τ ) is essential
for the resulting Suzuki-Trotter approximated Ĥn(�τ ) to
retain both the Hermiticity and the even dependence on
�τ . Note that asymmetric Suzuki-Trotter decompositions
and their connection to symmetric ones have been studied
in Ref. [75].

3. Circuit depth for a single time-evolution operator
approximated by the Suzuki-Trotter decomposition

We now consider the circuit depth D(p)
2m required for a

single time-evolution operator Û(�τ ) approximated by the
symmetric Suzuki-Trotter decomposition Ŝ(p)2m (�τ ), as in

Eq. (7) [also see Fig. 1(c)]. We define D(p)
2m as the num-

ber of noncommuting exponentials appearing in Ŝ(p)2m (�τ ).
The depth of Ŝ2(�τ ) is thus given by D(p)

2 = 2N� − 1,
as explicitly shown in Eq. (30). Since Ŝ(p)2m (�τ ) con-
sists of a product of p Ŝ(p)2m−2’s, the depth of Ŝ(p)2m (�τ )

without contracting commuting exponentials is pD(p)
2m−2.

However, since Ŝ(p)2m (�τ ) involves p − 1 products of two
consecutive Ŝ(p)2m−2’s, between which two commuting expo-
nentials reside, p − 1 exponentials can be contracted.
We thus obtain that D(p)

2m = pD(p)
2m−2 − (p − 1) or equiv-

alently D(p)
2m − 1 = p[D(p)

2m−2 − 1]. By using this relation
recursively, we can find that

D(p)
2m − 1 = p

[
D(p)

2m−2 − 1
]

= p2
[
D(p)

2m−4 − 1
]

= · · ·
= pm−1

[
D(p)

2 − 1
]

. (38)

Substituting D(p)
2 = 2N� − 1 in Eq. (38) yields Eq. (18).

Recalling that p is a typically O(1) integer parameter,
the depth increases exponentially with m but is indepen-
dent of the number N of qubits. Therefore, the lower-
order Suzuki-Trotter decomposition is highly desirable to
shallow the depth of a quantum circuit.

4. Two routes for quantum power method

While the time-evolution operators satisfy the mul-
tiplication law Û(�τ )Û(�′

τ ) = Û(�τ +�′
τ ), this is no

longer correct when the time-evolution operators are
approximated by the Suzuki-Trotter decomposition, i.e.,
Ŝ(p)2m (�τ )Ŝ

(p)
2m (�

′
τ ) �= Ŝ(p)2m (�τ +�′

τ ). Therefore, it is cru-
cial to carefully consider when the time-evolution oper-
ators in the approximated Hamiltonian power Ĥn(�τ )

should be replaced with the symmetric Suzuki-Trotter
decomposition, either in Eq. (21) or in Eq. (24). This
implies that there exist two different routes to formulate
the quantum power method. Indeed, these two approaches
provide two different algorithms of the quantum power
method that differ in the scaling of complexity but control
the systematic errors EFD and EST with essentially the same
accuracy. The quantum power method formulated in Sec.
II B 1 is based on Eq. (24) that scales much better when the
power n is large. In Appendix D, an alternative algorithm
is formulated on the basis of Eq. (21), which is favored
when the power n is small (e.g., n � 4 when p = 3).

IV. KRYLOV-SUBSPACE DIAGONALIZATION

As an application of the quantum power method, here
we consider the Krylov-subspace diagonalization. We first
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define a block Krylov subspace and review the subspace-
diagonalization scheme [76]. We then describe how the
quantum power method is combined with the Krylov-
subspace diagonalization. Other applications of the quan-
tum power method are outlined in Appendices E and F.

A. Block Krylov subspace

The block Krylov subspace of the Hamiltonian Ĥ with
reference states {|qk〉}MB

k=1 is given as

Kn

(
Ĥ, {|qk〉}MB

k=1

)
= span

(
|q1〉, . . . |qMB〉, Ĥ|q1〉, . . . ,

Ĥ|qMB〉, . . . , Ĥn−1|q1〉, . . . , Ĥn−1|qMB〉
)

, (39)

where we call MB � 1 the block size. We should note that
the reference states {|qk〉}MB

k=1 do not have to be orthogonal
to each other but they are linearly independent. If MB =
1, Kn

(
Ĥ, {|qk〉}MB

k=1

)
reduces to the conventional Krylov

subspace. By defining

|ui〉 = Ĥl−1|qk〉, (40)

with i = k + (l − 1)MB and l = 1, 2, . . . , n, the block
Krylov subspace can be written simply as Kn

(
Ĥ, {|qk〉}MB

k=1

)

= span
(
{|ui〉}nMB

i=1

)
.

B. Rayleigh-Ritz technique

Suppose that the ground state |�0〉 of the Hamiltonian
Ĥ, satisfying

Ĥ|�0〉 = E0|�0〉 (41)

with E0 being the ground-state energy, should be approx-
imated with the (nonorthonormal) basis states {|ui〉}nMB

i=1 in
Kn(Ĥ, {|qk〉}MB

k=1) as

|�0〉 ≈ |�KS〉 ≡
nMB∑

i=1

vi|ui〉, (42)

where {vi}nMB
i=1 are the expansion coefficients to be deter-

mined.
The expansion coefficients {vi}nMB

i=1 can be determined
by minimizing the energy expectation value 〈�KS|Ĥ|�KS〉
under the constraint 〈�KS|�KS〉 = 1. To this end, let us

define the following function:

F(v, v∗) = 〈�KS|Ĥ|�KS〉 − ε (〈�KS|�KS〉 − 1)

= v†Hv − ε
(
v†Sv − 1

)

=
∑

ij

v∗
i

(
Hij − εSij

)
vj + ε, (43)

where ε is a Lagrange multiplier, [v]i = vi,

[H]ij = Hij = 〈ui|Ĥ|uj 〉 (44)

is the subspace Hamiltonian matrix, and

[S]ij = Sij = 〈ui|uj 〉 (45)

is the subspace overlap matrix. Then, the condition
∂F/∂v∗

i = 0 for 1 � i � nMB yields a generalized eigen-
value problem

Hv = εSv. (46)

Since both H and S are Hermitian, the condition ∂F/∂vi =
0 for 1 � i � nMB yields the same equation. The low-
est eigenvalue ε and the corresponding eigenvector v
in Eq. (46) provide an approximation to the ground-
state energy E0 and the expansion coefficients {vi}nMB

i=1 in
Eq. (42), respectively. Note that when MB = 1, the matri-
ces H and S correspond to the Hankel matrices Mn−1 and
Ln−1, respectively, defined in Eqs. (F6) and (F5).

Since S is a Hermitian matrix, it can be diagonalized by
a unitary matrix V as

V†SV = s, (47)

where s is the diagonal matrix that contains the eigenvalues
of S. Note that s > 0 because S is a Gram matrix and hence
is positive definite. By using a matrix

W = Vs−1/2, (48)

Eq. (46) can be transformed to a standard Hermitian
eigenvalue problem of the form

Tq = εq, (49)

where

T ≡ W†HW (50)

and q = W−1v. Thus, by solving the eigenvalue problem
of Eq. (49), one can obtain ε and v = Wq. The eigenvector
v with the lowest eigenvalue ε provides the coefficients in
the approximate ground state |�KS〉 [see Eq. (42)] with its
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energy EKS of the Hamiltonian Ĥ in the Krylov subspace
Kn

(
Ĥ, {|qk〉}MB

k=1

)
.

We note that if we use the Cholesky decomposi-
tion S = R†R with R being an upper-triangular matrix,
instead of the eigen decomposition in Eq. (47), T reduces
to the tridiagonal matrix in the Lanczos method when
MB = 1 [76].

C. Quantum-classical-hybrid Krylov-subspace method

Considering the Rayleigh-Ritz technique in a quantum-
classical-hybrid computation, it is suited for quantum hard-
ware to evaluate the matrix elements of H in Eq. (44) and
S in Eq. (45), because the states {|ui〉}nMB

i=1 are defined on
the Hilbert space of ND = 2N dimensions, for example,
for the spin-1/2 Heisenberg model. On the other hand,
the eigenvalue problem in the nMB-dimensional block
Krylov subspace given in Eq. (46) or Eq. (49) can be
solved on classical computers, assuming that the Krylov
subspace approximates reasonably well the eigenspace of
the ground state with relatively small n and MB, despite
that the dimension ND of the full Hilbert space could
be much larger than nMB. This feature is shared with
other quantum-classical-hybrid subspace-diagonalization
schemes reported previously [55–60].

We can now approximate the Hamiltonian power Ĥl−1

appearing in the Krylov-subspace basis |ui〉 given in
Eq. (40) as

|ui〉 = |ũi〉 + O(�2+2r
τ )+ O(�2m+2r

τ ), (51)

where

|ũi〉 = Ĥl−1
ST(r)(�τ )|qk〉 (52)

with i = k + (l − 1)MB for 1 � k � MB and 1 � l � n.
Note that the systematic errors in Eq. (51) are absent
when l = 1. As described in Sec. II B, to approxi-
mate the Hamiltonian power Ĥl−1 by Ĥl−1

ST(r)(�τ ) as in
Eq. (52), the Suzuki-Trotter-decomposed time-evolution
operators Ŝ(p)2m (±�τ/2) have to be applied at most l −
1 times to a state |qk〉. This implies that the circuit
depth required for constructing the block Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
is at most O(n) with a prefac-

tor of D(p)
2m . The circuit depth does not depend on the order

r of the Richardson extrapolation.
With the basis states defined in Eq. (51), the subspace

Hamiltonian matrix and the overlap matrix are approxi-
mated, respectively, as

Hij = H̃ij + O(�2+2r
τ )+ O(�2m+2r

τ ) (53)

and

Sij = S̃ij + O(�2+2r
τ )+ O(�2m+2r

τ ), (54)

where

[H̃]ij = H̃ij = 〈ũi|Ĥ|ũj 〉
= 〈qk|Ĥl−1

ST(r)(�τ )ĤĤl′−1
ST(r)(�τ )|qk′ 〉 (55)

and

[S̃]ij = S̃ij = 〈ũi|ũj 〉 = 〈qk|Ĥl−1
ST(r)(�τ )Ĥl′−1

ST(r)(�τ )|qk′ 〉,
(56)

with i = k + (l − 1)MB and j = k′ + (l′ − 1)MB for 1 �
k, k′ � MB and 1 � l, l′ � n in the block Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
. Here, the Hermiticity of the

approximated Hamiltonian power Ĥl−1
ST(r)(�τ ) in Eq. (15) is

used. Note also that Ĥl−1
ST(r)(�τ )Ĥl′−1

ST(r)(�τ ) �= Ĥl+l′−2
ST(r) (�τ )

for r � 1, but this equation is satisfied when r = 0.
More specifically, H̃ij and S̃ij in terms of Ŝ(p)2m (±�τ/2)

without the Richardson extrapolation are given, respec-
tively, as

H̃ij =
l−1∑

ν=0

l′−1∑

ν′=0

c∗
l−1,νcl′−1,ν′ 〈qk|

[
Ŝ(p)2m

(
−�τ

2

)]l−1−2ν

× Ĥ
[

Ŝ(p)2m

(
�τ

2

)]l′−1−2ν′

|qk′ 〉 (57)

and

S̃ij =
l−1∑

ν=0

l′−1∑

ν′=0

c∗
l−1,νcl′−1,ν′ 〈qk|

[
Ŝ(p)2m

(
−�τ

2

)]l−1−2ν

×
[

Ŝ(p)2m

(
�τ

2

)]l′−1−2ν′

|qk′ 〉. (58)

Note that the Suzuki-Trotter-decomposed time-evolution
operators [Ŝ(p)2m (−�τ/2)]l−1−2ν and [Ŝ(p)2m (�τ/2)]l′−1−2ν′ in
Eq. (58) can be combined exactly as in the form shown
in Eq. (64) when the Richardson extrapolation is not used.
However, here we deliberately do not combine these two
terms because it is helpful when the extension for the rth-
order Richardson extrapolation is considered. Assuming
that Ĥ consists of O(N ) local terms, the number of state
overlaps required for constructing all matrix elements of
H̃ and S̃ is O(n2M 2

BN ) and O(n2M 2
B), respectively. If the

rth-order Richardson extrapolation is employed, the num-
ber of state overlaps to be evaluated is increased by a factor
of (r + 1)2. The state overlaps in Eqs. (57) and (58) can be
evaluated with an Hadamard-test-like circuit, for example
[50,77–79].

However, for the purpose of solving the generalized
eigenvalue problem in Eq. (46) or the corresponding stan-
dard eigenvalue problem in Eq. (49), one could evaluate
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the matrix elements in Eqs. (44) and (45) more directly as

Hij = H̃ ′
ij + O(�2+2r

τ )+ O(�2m+2r
τ ) (59)

and

Sij = S̃′
ij + O(�2+2r

τ )+ O(�2m+2r
τ ), (60)

where

[H̃
′
]ij = H̃ ′

ij = 〈qk|Ĥl+l′−1
ST(r) (�τ )|qk′ 〉 (61)

and

[S̃
′
]ij = S̃′

ij = 〈qk|Ĥl+l′−2
ST(r) (�τ )|qk′ 〉, (62)

with i = k + (l − 1)MB and j = k′ + (l′ − 1)MB for 1 �
k, k′ � MB and 1 � l, l′ � n in the block Krylov sub-
space Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
. To be more specific, the

matrix elements of H̃
′

and S̃
′

for r = 0, i.e., without the
Richardson extrapolation, are given as

H̃ ′
ij =

l+l′−1∑

ν=0

cl+l′−1,ν〈qk|
[

Ŝ(p)2m

(
�τ

2

)]l+l′−1−2ν

|qk′ 〉 (63)

and

S̃′
ij =

l+l′−2∑

ν=0

cl+l′−2,ν〈qk|
[

Ŝ(p)2m

(
�τ

2

)]l+l′−2−2ν

|qk′ 〉. (64)

The number of state overlaps required for constructing all
matrix elements of both H̃

′
and S̃

′
is thus O(nM 2

B). If the
rth-order Richardson extrapolation is employed, the num-
ber of state overlaps to be evaluated is increased by a factor
of (r + 1).

Therefore, the approach based on Eqs. (61) and (62) is
better than that based on Eqs. (55) and (56) in the sense that
fewer state overlaps are required to approximately solve
the Krylov-subspace diagonalization. However, although
these two approaches are equivalent within the system-
atic errors, the approach based on Eqs. (61) and (62)
loses the exact meaning of the variational principle for
the ground state obtained by solving the (generalized)
eigenvalue problem (also see Ref. [51]). This is because
the approach based on Eqs. (55) and (56) respects the
subspace structure, which is generated by the Krylov sub-
space Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
, as opposed to the other

approach, and thus the lowest eigenstate of the (gener-
alized) eigenvalue problem with the matrix elements in
Eqs. (55) and (56) satisfies exactly the variational prin-
ciple. In addition, we find that the approach based on
Eqs. (55) and (56) is more stable for numerical simula-
tions. Therefore, we adopt the approach based on Eqs. (55)

and (56) in our numerical simulations shown in this
paper unless otherwise stated. In Appendix A, our method
described here is compared with other algorithms for the
Krylov-subspace diagonalization.

V. NUMERICAL DEMONSTRATION

In this section, we demonstrate the quantum power
method by numerically simulating the spin-1/2 Heisen-
berg model. We first define the Hamiltonian of the Heisen-
berg model, and then show how the quantum power
method can control the systematic errors in approximat-
ing the Hamiltonian power Ĥn. Next, as an application
of the quantum power method, we show the numerical
results of the multireference Krylov-subspace diagonaliza-
tion combined with the quantum power method for the
Heisenberg model. The numerical results of the multirefer-
ence Krylov-subspace diagonalization combined with the
quantum power method for the Fermi-Hubbard model,
which involves more technical details, are also provided
in Appendix B.

A. Heisenberg model

The spin-1/2 Heisenberg model is described by the
following Hamiltonian:

Ĥ = J
4

∑

〈i, j 〉

(
ÎiÎj + X̂iX̂j + ŶiŶj + ẐiẐj

)
= J

2

∑

〈i, j 〉
P̂ij ,

(65)

where J > 0 is the antiferromagnetic (AFM) exchange
interaction, 〈i, j 〉 runs over all nearest-neighbor pairs of
qubits i and j connected with the exchange interaction J ,
and {X̂i, Ŷi, Ẑi} and Îi are the Pauli operators and the identity
operator acting on the ith qubit. P̂ij is the SWAP opera-
tor, which acts on the ith and j th qubits as P̂ij |a〉i|b〉j =
|b〉i|a〉j . In the Hamiltonian in Eq. (65), the constant (iden-
tity) term ÎiÎj is added to the conventional Heisenberg
Hamiltonian and thus Ĥ is simply a sum of SWAP opera-
tors. Indeed, the second equality in Eq. (65) follows from
the identity

ÎiÎj + X̂iX̂j + ŶiŶj + ẐiẐj = 2P̂ij (66)

for i �= j .
We consider the Hamiltonian Ĥ on a one-dimensional

periodic chain with N sites (i.e., N qubits), and assume
that N is even. Then, the Hamiltonian can be written as

Ĥ = J
2

N∑

i=1

P̂i,i+1, (67)

where i + 1 in the subscript should be read as 1 if i = N
due to the periodic boundary conditions. For the use in the
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Suzuki-Trotter decomposition of the time-evolution opera-
tor, we divide the Hamiltonian into two parts (i.e., N� = 2)
as

Ĥ = ĤA + ĤB, (68)

with

ĤA = J
2

N/2∑

i=1

P̂2i,2i+1 (69)

and

ĤB = J
2

N/2∑

i=1

P̂2i−1,2i. (70)

Notice that [P̂2i,2i+1, P̂2j ,2j +1] = [P̂2i−1,2i, P̂2j −1,2j ] = 0,
where [Â, B̂] = ÂB̂ − B̂Â is the commutator of two oper-
ators Â and B̂.

For the one-dimensional spin-1/2 Heisenberg model
Ĥ = ĤA + ĤB given in Eqs. (65) and (68), the time-
evolution operator Û(t) = e−iĤt is constituted by two ele-
mentary time-evolution operators associated with ĤA and
ĤB. Let us first introduce the exponential-SWAP (e-SWAP)
gate Ûi,j [80–84]

Ûi,j (θ) = exp(−iθP̂i,j /2), (71)

where θ is a real-valued parameter. The e-SWAP gate,
which is equivalent to the SWAPα gate up to a two-qubit
global phase factor [43,85–87], is depicted schematically
in Fig. 1(c) as a blue rectangular extended over two qubits.
The gate corresponding to Eq. (71) can be implemented
with three CNOT gates and few single-qubit rotations [88–
90]. The time-evolution operators of ĤA and ĤB are given,
respectively, by

exp(−iĤAt) =
N/2∏

i=1

Û2i,2i+1(tJ ) (72)

and

exp(−iĤBt) =
N/2∏

i=1

Û2i−1,2i(tJ ). (73)

Since [Û2i,2i+1, Û2j ,2j +1] = 0 and [Û2i−1,2i, Û2j −1,2j ] = 0
for i �= j , the order of the product is not relevant in
Eqs. (72) and (73). Figure 1(c) illustrates a typical cir-
cuit structure that approximates the time-evolution oper-
ator Û(�τ ), consisting of a product of exp(−iĤA�τ si)’s
and exp(−iĤB�τ si)’s with real parameters {si}. As in

Eq. (30) for the general case, the lowest-order symmetric
Suzuki-Trotter decomposition of Û(�τ ) for the biparti-
tioned Hamiltonian Ĥ = ĤA + ĤB is given by

Ŝ2(�τ ) = e−i(�τ /2)ĤAe−i�τ ĤBe−i(�τ /2)ĤA . (74)

B. Degree of approximation

We first examine quantitatively how the Hamiltonian
power Ĥn is approximated by Ĥn

ST(r)(�τ ). For this pur-
pose, we define a distance d(Â, B̂) between operators Â and
B̂ as

d(Â, B̂) =

√√√√√√1 −

∣∣∣
〈
Â, B̂
〉

F

∣∣∣
∣∣∣
∣∣∣Â
∣∣∣
∣∣∣
F

∣∣∣
∣∣∣B̂
∣∣∣
∣∣∣
F

, (75)

where
〈
Â, B̂
〉

F
denotes the Frobenius inner product

between Â and B̂ defined by
〈
Â, B̂
〉

F
= Tr

[
Â†B̂
]

(76)

and ‖Â‖F denotes the Frobenius norm of Â, i.e.,

∣∣∣
∣∣∣Â
∣∣∣
∣∣∣
F

=
√

Tr
[
Â†Â
]
. (77)

Note that 〈Â, Â〉F = ‖Â‖2
F , 0 � |〈Â, B̂〉F | � ‖Â‖F‖B̂‖F ,

0 � d(Â, B̂) � 1, d(Â, B̂) = d(aÂ, bB̂) with a and b being
nonzero complex numbers, and d(Â, B̂) = 0 if and only if
Â = B̂. We compute the distance d(Â, B̂) for Â = Ĥn and
B̂ = Ĥn

ST(r)(�τ ) given in Eq. (4) for r = 0 and Eq. (14) for
r � 1. The Hamiltonian Ĥ is for the spin-1/2 Heisenberg
model on an N -qubit ring given in Eq. (65).

Evaluating the distance is costly as it demands matrix-
matrix multiplications or diagonalizations. To avoid such
costly operations, we employ a stochastic evaluation of the
trace as [91–95]

Tr
[
X̂
]

= lim
R→∞

1
R

R∑

ζ=1

〈φζ |X̂ |φζ 〉, (78)

where X̂ ∈
{

Â†Â, B̂†B̂, Â†B̂
}

and

|φζ 〉 =
∑

x

eiφζ (x)|x〉 (79)

is a random-phase state with {|x〉} being a complete
orthonormal basis set such that 〈x|x′〉 = δxx′ and φζ (x)
being a random variable drawn uniformly from [0, 2π).
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Note that 〈φζ |φζ 〉 = 2N , i.e., the dimension ND of the
Hilbert space. We choose {|x〉} as the orthonormal basis set
that diagonalizes the local Pauli Z operators. The stochas-
tic evaluation of the trace in Eq. (78) requires only sparse
matrix-vector multiplications and a single inner-product
calculation for each set ζ of random numbers φζ (x), if
X̂ is represented as a product of sparse matrices, which
is indeed the case here. Instead of taking the limit R → ∞,
we fix R = 16 for N � 12 and R = 256 for N = 10 and
estimate error bars. Since 〈φζ |Â†Â|φζ 〉, 〈φζ |B̂†B̂|φζ 〉, and
〈φζ |Â†B̂|φζ 〉 for Â = Ĥn and B̂ = Ĥn

ST(r)(�τ ) are highly
correlated to each other, error bars of d(Â, B̂) must be esti-
mated using the corresponding 3 × 3 covariance matrix.

Figure 3 shows the distance as a function of �τ for n =
1, 2, and 3 with N = 10, 12, 14, 16, 18, 20, 22, and 24 using
the symmetric Suzuki-Trotter decompositions Ŝ2 and Ŝ(3)4 .
Figures 3(a)–3(c) show the results without the Richardson
extrapolation (r = 0). Since the leading systematic error in
Ĥn

ST(r=0)(�τ ) is O(�2
τ ), the distance scales almost linearly

in �2
τ for each N . The distance simply increases with

increasing N and n. Figures 3(d)–3(f) show the results
with the first-order Richardson extrapolation (r = 1). For
each n, the distance with the Richardson extrapolation
is an order of magnitude smaller than that without the
Richardson extrapolation. The leading systematic error in
Ĥn

ST(r=1)(�τ ) is O(�4
τ ), and the distance indeed scales

almost linearly in �4
τ . As expected from Eq. (13), essen-

tially no difference can be found between the results with
Ŝ2 and Ŝ(3)4 , indicated, respectively, by empty and filled
symbols in Fig. 3. These results clearly demonstrate that
the systematic errors in approximating the Hamiltonian
power Ĥn are well controlled.

Figure 4(a) shows the n dependence of the distance for
N = 24 with various values of �τ calculated using the
lowest-order symmetric Suzuki-Trotter decomposition Ŝ2.
The distance first increases with n and tends to saturate at
n ∼ 100. It is remarkable to find in Fig. 4(b) that, even with
the large power exponents as large as n = 100, the linear

(a) (b) (c)

(d) (e) (f)

FIG. 3. (a)–(c) Distance d
(
Ĥn, Ĥn

ST(r)(�τ )
)

between the exact Hamiltonian power Ĥn and the approximated Hamiltonian power

Ĥn
ST(r)(�τ ) given in Eq. (4) without the Richardson extrapolation (r = 0) as a function of �2

τ for (a) n = 1, (b) n = 2, and (c) n = 3.
(d)–(f) Same as (a)–(c) but with the first-order Richardson extrapolation (r = 1) given in Eq. (14) as a function of�4

τ . The Hamiltonian
Ĥ is for the spin-1/2 Heisenberg model on an N -qubit ring given in Eq. (65). The symmetric Suzuki-Trotter decompositions Ŝ2 (empty
symbols) and Ŝ(3)4 (filled small symbols) are used. However, these results are on top of each other, as is expected. The error bar indicates
the standard error of the mean. The solid lines are a guide for the eye. Note that each panel employs a different scale in the y axis.
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(a)

(c)

(b)

(d)

FIG. 4. (a) Distance d
(
Ĥn, Ĥn

ST(r)(�τ )
)

between the exact

Hamiltonian power Ĥn and the approximated Hamiltonian power
Ĥn

ST(r)(�τ ) given in Eq. (4) without the Richardson extrapolation
(r = 0) as a function of n for different values of �τ . (b) Same as
(a) but as a function of �2

τ for different values of the power n.
(c) Same as (a) but with the first-order Richardson extrapolation
(r = 1) given in Eq. (14). (d) Same as (c) but as a function of
�4
τ for different values of the power n. The inset in (d) shows the

enlarged plot for�τ J � 0.04. The Hamiltonian Ĥ is for the spin-
1/2 Heisenberg model on an N = 24 qubit ring given in Eq. (65).
The lowest-order symmetric Suzuki-Trotter decomposition Ŝ2 is
used. The error bar indicates the standard error of the mean. The
solid lines are a guide for the eye. Note that each panel employs
a different scale in the y axis.

dependence of the distance on �2
τ remains in a wide range

of �τ (�τJ � 0.1) and the distance is smoothly extrapo-
lated to zero in the limit of�τ → 0, clearly demonstrating
the controlled accuracy of the quantum power method.
Figures 4(c) and 4(d) show the same results but obtained by
using the first-order Richardson extrapolation (r = 1), for
which the systematic errors in approximating the Hamil-
tonian power Ĥn are expected to be O(�4

τ ). Indeed, our
numerical simulations find the linear dependence of the
distance on�4

τ for at least�τJ � 0.05 when n = 100 [see
the inset in Fig. 4(d)]. Notice also that the distance itself
becomes smaller by a factor of approximately 5 even for

large n when the first-order Richardson extrapolation is
employed.

C. Krylov-subspace diagonalization

We now perform numerical simulations of the Krylov-
subspace diagonalization combined with the quantum
power method to calculate the ground-state energy and
fidelity of the spin-1/2 Heisenberg model described by the
Hamiltonian Ĥ in Eq. (65) on a periodic chain of N = 16
sites (i.e., qubits).

Considering the Krylov-subspace diagonalization as an
application of the quantum power method on near-term
quantum computers, it is crucial to reduce the circuit depth.
As discussed in Secs. II B and IV C, the depth of the cir-
cuit required for constructing the block Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
scales as O(n) with a prefac-

tor D(p)
2m . Since m and p in the symmetric Suzuki-Trotter

decomposition Ŝ(p)2m can be set to the minimum values
m = 1 and p = 3, at least for the system sizes examined in
the previous section including N = 16, the primary objec-
tive here is to reduce the power n. For this purpose, we
first describe the selection of the reference states, aiming
that the block Krylov subspace Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)

spanned by these reference states can approximate reason-
ably well the target subspace, which in the present case is
the eigenspace of the ground state of Ĥ. Then, we show by
numerical simulations how the selection of the reference
states affects the convergence to the ground state with n.

1. Selection of reference states

Equation (42) suggests that the ground state |�0〉 can
be well approximated if the reference states {|qk〉}MB

k=1 are
chosen so that these states have substantial overlap with
the exact ground state. Therefore, as the reference states,
we introduce the following product states for the subspace
diagonalization:

|q1〉 = |�A〉 = ⊗N/2
i=1 |s2i,2i+1〉, (80)

|q2〉 = |�B〉 = ⊗N/2
i=1 |s2i−1,2i〉, (81)

|q3〉 = |XAFM 1〉 = ⊗N/2
i=1 |+〉2i−1|−〉2i, (82)

|q4〉 = |XAFM 2〉 = ⊗N/2
i=1 |+〉2i|−〉2i+1, (83)

|q5〉 = |YAFM 1〉 = ⊗N/2
i=1 |R〉2i−1|L〉2i, (84)

|q6〉 = |YAFM 2〉 = ⊗N/2
i=1 |R〉2i|L〉2i+1, (85)

|q7〉 = |ZAFM 1〉 = ⊗N/2
i=1 |0〉2i−1|1〉2i, (86)

|q8〉 = |ZAFM 2〉 = ⊗N/2
i=1 |0〉2i|1〉2i+1. (87)

Here |si,j 〉 = (1/
√

2)(|0〉i|1〉j − |1〉i|0〉j ) is the spin-singlet
state and is an eigenstate of the SWAP operator P̂ij
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with eigenvalue −1. It is also known as one of
the Bell states. |+〉i = (1/

√
2)(|0〉i + |1〉i) and |−〉i =

(1/
√

2)(|0〉i − |1〉i) are the eigenstates of X̂i with
eigenvalues ±1, |R〉i = (1/

√
2)(|0〉i + i|1〉i) and |L〉i =

(1/
√

2)(|0〉i − i|1〉i) are the eigenstates of Ŷi with eigen-
values ±1, and |0〉i and |1〉i are the eigenstates of Ẑi with
eigenvalues ±1. |�A〉 and |�B〉 are the ground states of
ĤA and ĤB, respectively, while others are the AFM Néel
states that are the ground states when a mean-field the-
ory is applied to the Hamiltonian. These product states are
expected to have a sizable overlap with the exact ground
state (also see Fig. 6) and, moreover, they are easy to
be prepared from |0〉⊗N with appropriate combinations of
Pauli, Hadamard, phase, and CNOT gates.

Another relevant candidate might be a variational state
that has a substantial overlap with the ground state. We
thus introduce

|q9〉 = |�VQE〉 (88)

as another reference state, where |�VQE〉 is an approximate
ground state prepared with a VQE scheme. Specifically,
we choose |�VQE〉 as a resonating-valence-bond-type wave
function without the symmetry projection operator, con-
taining 64 optimized variational parameters for N = 16
that do not reflect the spatial symmetry of the Hamilto-
nian, as reported in Ref. [96]. While the exact ground-state
energy is E0/NJ = −0.196 393 522, our variational state
|�VQE〉 has the variational energy 〈�VQE|Ĥ|�VQE〉/NJ =
−0.1885 (also see Fig. 5) and the ground-state fidelity
|〈�0|�VQE〉|2 = 0.771 (also see Fig. 6).

In our previous study [96], we have shown that restora-
tion of the spatial symmetry that is broken by a circuit
ansatz greatly improves the ground-state-energy estima-
tion as well as the ground-state fidelity. Motivated by this
finding, we introduce another set of the reference states
{|q̄k〉}N

k=1 with

|q̄k〉 = T̂k−1|�VQE〉, (89)

where T̂k is a unitary operator representing the one-
dimensional k-lattice-space translation with T̂0 = Î , and
|�VQE〉 is the same state given in Eq. (88). With this set
of the reference states, the translational symmetry that is
broken in the apparent circuit structure of |�VQE〉 can be
restored as a linear combination of the states in the block
Krylov subspace, without applying a projection operator
to |�VQE〉. For example, a simple sum of these N ref-
erence states {|q̄k〉}N

k=1, i.e.,
∑N

k=1 |q̄k〉, is translationally
symmetric with momentum zero.

The reference states |�A〉, |�B〉, |�VQE〉, and {|qk〉}N
k=1

introduced above are all spin-singlet states, i.e, the total
spin and the Z component of the total spin being zero,
while the X , Y, and Z components of the total spin are

(a)

(b)

FIG. 5. (a) Ground-state energy EKS for the spin-1/2 Heisen-
berg model on an N = 16 qubit ring as a function of the
dimension of the Krylov subspace Kn per block size MB, n =
dimKn/MB, with various sets of the reference states. The hor-
izontal line indicates the exact ground-state energy E0. The
results are obtained with �τ J = 0.05, r = 1, m = 1, and p = 3.
(b) Same as (a) but a semilog plot of the energy difference
EKS − E0 as a function of n.

zero for the reference states |XAFM 1(2)〉, |YAFM 1(2)〉, and
|ZAFM 1(2)〉, respectively. Because the Hamiltonian Ĥ con-
sidered here is spin SU(2) symmetric and the quantum
power method preserves the Hamiltonian symmetry as
shown in Eq. (16), the Krylov subspace generated from
these reference states remains in the same symmetry sec-
tor of the Hilbert space as the reference states. We select
these reference states because it is known that the ground
state of the spin-1/2 Heisenberg model considered here is
spin singlet [97,98].

2. Ground-state energy and fidelity

Figures 5 and 6 show the estimated ground-state
energy EKS and the ground-state fidelity F = |〈�0|�KS〉|2,
obtained by solving Eq. (49), as a function of n =
dimKn/MB, i.e., the dimension of the Krylov sub-
space Kn per block size MB. Note that Ĥn−1

ST(r)(�τ ) is
the maximum approximated Hamiltonian power multi-
plied to the reference states when the Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
is constructed in Eq. (39).
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(a)

(b)

FIG. 6. (a) Same as Fig. 5(a) but for the ground-state fidelity
F = |〈�0|�KS〉|2. Here, |�0〉 is the exact ground state and |�KS〉
is the approximate ground state with the corresponding energy
EKS shown in Fig. 5. Both states are assumed to be normalized.
(b) Enlarged plot of (a).

Here, the Krylov-subspace Hamiltonian matrix [H̃]ij and
the overlap matrix [S̃]ij are computed as 〈ũi|Ĥ|ũj 〉 and
〈ũi|ũj 〉 in Eqs. (55) and (56), respectively. The first-order
Richardson extrapolation (r = 1) and the lowest-order
symmetric Suzuki-Trotter decomposition Ŝ2 are used for
{Ĥl

ST(r)(�τ )}n−1
l=1 with �τJ = 0.05, in which the system-

atic errors are practically negligible for our purpose, as
discussed later in Fig. 7 (also see Figs. 3 and 4).

Let us first focus on the results for n = 1, where no
Hamiltonian power is incorporated in the Krylov subspace.
It is not surprising to find that the energy and the fidelity are
substantially improved if the reference states include the
VQE state |�VQE〉. The improvement is even more signif-
icant if we incorporate the spatially translated VQE states
{|q̄k〉}N

k=1. Note that, if MB = 1, the energies plotted at n =
1 are merely the expectation values of Ĥ with respect to
the corresponding reference state, e.g., 〈�A|Ĥ|�A〉/NJ =
−0.125 and 〈�VQE|Ĥ|�VQE〉/NJ = −0.1885. The mul-
tireference scheme with MB > 1 further decreases the
energy and improves the fidelity without applying the
Hamiltonian power to the reference states.

With increasing n, the energy decreases monotonically
(Fig. 5) and the fidelity keeps increasing towards 1 (Fig. 6),

implying that the ground-state estimation can be improved
systematically over a chosen set of reference states with-
out any parameter optimization, at a cost of the linearly
increasing circuit depth that scales at most as 2n − 1. The
nearly linear behavior of EKS − E0 in the semilog plot
shown in Fig. 5(b) suggests the exponential convergence
to the exact ground-state energy as a function of n, as
in the Lanczos method [11]. Notice also that the energy
as well as the fidelity for MB = 16 is consistently better
than those for MB � 9 for every n. Moreover, the slope
in the semilog plot of EKS − E0 and also the slope of the
fidelity tend to be steeper for MB > 1 than for MB = 1
[see Figs. 5(b) and 6(a)], implying that the convergence
towards the ground state is improved more efficiently in the
multireference scheme with MB > 1. Interestingly, even
if |�VQE〉 is not included in a set of reference states, the
multireference schemes with MB = 2 and MB = 8 surpass
the scheme including only |�VQE〉 with MB = 1 at n = 5
and 3, respectively, in terms of the ground-state energy
EKS. Therefore, the multireference scheme with MB > 1
works effectively for reducing n and hence the number
of gates in a circuit, even if simple product states with
no variational parameters are chosen for the reference
states. Table II summarizes the minimum dimension n of
the Krylov subspace per block size and the correspond-
ing circuit depth required for converging the ground-state
energy EKS with an accuracy (EKS − E0)/NJ � 10−4 for
N = 16. Note here that the commuting exponentials in
[Ŝ2(±�τ/2)]n−1 are contracted when the circuit depth is
counted.

3. �τ dependence of the ground-state energy and
extrapolation to �τ → 0

Finally, we describe a strategy for performing the
Krylov-subspace diagonalization combined with the

TABLE II. Minimum dimension n of the Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
per block size MB necessary to con-

verge the ground-state energy EKS with an accuracy (EKS −
E0)/NJ � 10−4 for the spin-1/2 Heisenberg model on an N =
16 qubit ring. The third column indicates the maximum circuit
depth to generate the corresponding Krylov subspace basis. Note
that eight additional layers are required to prepare the VQE state
|�VQE〉 [96] and few additional gate operations are necessary to
generate each state of {|qk〉}8

k=1, which are not counted in the
maximum circuit depth listed in the third column.

Reference state(s) n = dimKn/MB Circuit depth

MB = 1, |�A〉 9 17
MB = 2, |�A〉, |�B〉 6 11
MB = 8, {|qk〉}8

k=1 5 9
MB = 1, |�VQE〉 7 13
MB = 9, |�VQE〉, {|qk〉}8

k=1 4 7
MB = 16, {T̂k−1|�VQE〉}16

k=1 2 3
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(a)

(b)

FIG. 7. (a) Ground-state energy EKS evaluated for the spin-
1/2 Heisenberg model on an N = 16 qubit ring by setting the
Krylov-subspace parameters (MB, n) = (2, 8) (diamonds) and
(16, 3) (circles) at �τ J = 0.12, 0.16, 0.2, and 0.24 without
the Richardson extrapolation. The lines are fits to the two sets
of data obtained separately by assuming the form EKS/NJ =
a(�τ J )2 + b with a and b being fitting parameters. (b) Same
as (a) but for (MB, n) = (16, 3) at �τ J = 0.3, 0.4, 0.5, 0.6, 0.7,
and 0.8 without the Richardson extrapolation. The dashed line
is a fit to the data obtained by assuming the form EKS/NJ =
a(�τ J )4 + b(�τ J )2 + c with a, b, and c being fitting parame-
ters, and the extrapolated value at �τ = 0 is indicated by black
cross. The inset is an enlarged plot. For comparison, the results
for (MB, n) = (16, 3) at �τ J = 0.05 with r = 0 and 1 are also
indicated by blue and red crosses, respectively, in (a) and the inset
of (b). Note that the result with r = 1 corresponds to that shown
in Fig. 5. The horizontal line indicates the exact ground-state
energy E0.

quantum power method using a noisy near-term quantum
computer. On a noisy quantum computer, a reasonably
large �τ should be used in order to evaluate, without
being buried in the noise, the approximated Hamiltonian
power formulated on the basis of the central finite dif-
ferentiation. For instance, the expectation value of the
difference Ŝ2(�τ/2)− Ŝ2(−�τ/2) should be substantially
more significant than the noise. However, as demonstrated
above, the quantum power method can well control the
systematic errors in approximating Hamiltonian power,
and therefore one can accurately extrapolate the results to
the limit of �τ → 0 even when a few results are available

for relatively large values of �τ (also see, e.g., Refs.
[99,100]).

Figure 7(a) shows the numerical results of the ground-
state energy EKS evaluated by setting the Krylov-
subspace parameters (MB, n) = (2, 8) and (16, 3) without
the Richardson extrapolation at�τJ = 0.12, 0.16, 0.2, and
0.24, which are larger than �τJ = 0.05 used in Figs. 5
and 6. For the results shown in Fig. 7, we adopt the
approach based on Eqs. (61) and (62) that requires a fewer
number of state overlaps than that based on Eqs. (55)
and (56). The lines are fits to the data assuming the form
EKS/NJ = a(�τJ )2 + b with a and b being fitting param-
eters determined by the least-squares method. As shown in
Fig. 7(a), the results are correctly extrapolated to the exact
energy within 2–3 standard deviations of the fitting error
(the error bars are not visible in the scale of the figure). It
is more striking to find in Fig. 7(b) that a similar extrapola-
tion, assuming the form EKS/NJ = a(�τJ )4 + b(�τJ )2 +
c with a, b, and c being fitting parameters, is also sat-
isfactory even when much larger values of �τ , as large
as �τJ = 0.8, are employed to evaluated the ground-state
energy EKS.

These results corroborate that the systematic errors due
to a finite time interval �τ are well controlled also for the
quantities evaluated in the Krylov-subspace diagonaliza-
tion, thus allowing us to extrapolate the results obtained
for relatively large values of �τ to the limit of �τ → 0.
This could provide a promising error-mitigation strategy
on a noisy near-term quantum computer. We should remark
that, although the example shown here is the energy of the
small system (N = 16), the Suzuki-Trotter error is known
to be well controlled even in larger systems not only for the
energy but also for other quantities in general (for example,
see Ref. [101]).

VI. CONCLUSION AND DISCUSSION

We have proposed the quantum power method that
approximates the Hamiltonian power Ĥn with a linear
combination of the time-evolution operators. The key
ingredients of the quantum power method are the central-
finite-difference scheme for the time derivatives and the
symmetric Suzuki-Trotter decomposition of the time-
evolution operators, both of which are essential to retain
the Hermiticity and the even parity in �τ of the approx-
imated Hamiltonian power Ĥn

ST(�τ ), i.e., Ĥn
ST(�τ ) =[

Ĥn
ST(�τ )

]†
= Ĥn

ST(−�τ). The systematic errors due to
the finite differentiation and the Suzuki-Trotter decompo-
sition are well controlled in the quantum power method as
EFD ∼ O(�2

τ ) and EST ∼ O(�2m
τ ), respectively. The num-

ber of gates required for approximating the Hamiltonian
power Ĥn is O(nkN ), where N is the number of qubits
and a k-local Hamiltonian Ĥ in the qubit representation
composed of O(N ) terms is assumed, and thus it is at
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most O(nN 2) for a fermion Hamiltonian when the Jordan-
Wigner transformation is used (see Appendix B). This
should be contrasted to the classical power method, in
which the computational complexity scales exponentially
in N .

The rth-order Richardson extrapolation can be adopted
to systematically improve the systematic errors as EFD ∼
O(�2+2r

τ ) and EST ∼ O(�2m+2r
τ ) in the approximated

Hamiltonian power Ĥn
ST(r)(�τ ), without increasing the

number of gates required in each quantum circuit, although
the number of terms in the linear combination, which
can be treated classically, increases by the factor r + 1.
Thus, both with and without the Richardson extrapola-
tion, the systematic errors EFD and EST can be consistently
treated with the lowest-order Suzuki-Trotter decomposi-
tion with m = 1, independently of the power n, which
reduces significantly the circuit depth. This is in sharp
contrast to the algorithm that requires the higher-order
Suzuki-Trotter decomposition with increasing the power n
(see Appendix D). Therefore, the quantum power method
proposed here is a potentially promising algorithm for
near-term quantum devices.

By numerical simulations, we have tested the quantum
power method and found that the Hamiltonian power Ĥn

for the spin-1/2 Heisenberg model can be well approxi-
mated by Ĥn

ST(r)(�τ ) with the controlled accuracy to be
essentially exact for the power n up to 100 and N as large
as 24 qubits, corresponding to the Hilbert space dimension
ND = 2N ≈ 107.

As an application of the quantum power method, we
have demonstrated, with noiseless numerical simulations,
the multireference Krylov-subspace diagonalization com-
bined with the quantum power method for the spin-1/2
Heisenberg model on an N = 16 qubit ring to evalu-
ate the ground-state energy and the ground-state fidelity.
Considering the Hamiltonian power Ĥn up to n = 11,
we have shown that the multireference Krylov-subspace-
diagonalization scheme with the block size MB > 1 greatly
accelerate the convergence to the ground state, even
when simple parameter-free product states are employed
for the reference states. We have also found that the
Krylov-subspace-diagonalization scheme with MB = 1,
corresponding to a quantum version of the standard Lanc-
zos method [76], improves the ground-state energy of the
VQE state |�VQE〉 almost exponentially with increasing n.
Thus, the Krylov-subspace diagonalization combined with
the quantum power method, which satisfies the variational
principle by definition, can provide a systematic way to
further improve a VQE state that has already a reason-
able overlap with an exact ground state. This is a quantum
analog to the Lanczos iteration scheme in the variational
Monte Carlo method on classical computers [18], but here
one can treat higher powers of the Hamiltonian on quantum
computers.

We have also demonstrated by numerical simulations
the multireference Krylov-subspace diagonalization com-
bined with the quantum power method for the Fermi-
Hubbard model on a 4 × 2 lattice. In this case, the
Hamiltonian can be divided into N� = 4 parts, instead of
N� = 2 parts for the case of the one-dimensional spin-
1/2 Heisenberg model. Moreover, the Hamiltonian mapped
from the fermion representation to the qubit representation
on N = 16 qubits contains terms with long-range Pauli
strings. Even in this case, considering the Hamiltonian
power Ĥn up to n = 17, we have found numerically that
the ground-state energy converges almost exponentially
with n (see Appendix B).

Although we have simulated only the ground-state
energy, the expectation value of other observables that
commute with the Hamiltonian Ĥ can be evaluated sim-
ilarly. When an observable Ô does not commute with the
Hamiltonian Ĥ, the expectation value with respect to the
approximate ground state |�0〉 ≈ |�̃KS〉 ≡∑nMB

i=1 vi|ũi〉,
with the coefficients vi already determined by solving
Eq. (46) or Eq. (49) in the block Krylov subspace
Kn

(
ĤST(r)(�τ ), {|qk〉}MB

k=1

)
= span

(
{|ũi〉}nMB

i=1

)
, can also

be evaluated as

〈�0|Ô|�0〉 ≈
nMB∑

i=1

nMB∑

j =1

v∗
i vj 〈ũi|Ô|ũj 〉

=
nMB∑

i=1

nMB∑

j =1

v∗
i vj

l−1∑

ν=0

l′−1∑

ν′=0

c∗
l−1,νcl′−1,ν′

× 〈qk|
[

Ŝ(p)2m

(
−�τ

2

)]l−1−2ν

Ô

×
[

Ŝ(p)2m

(
�τ

2

)]l′−1−2ν′

|qk′ 〉, (90)

where |ũi〉 = Ĥl−1
ST(r)(�τ )|qk〉, as given in Eq. (52), and the

explicit form of Ĥl−1
ST(r)(�τ ) with r = 0 is used in the sec-

ond line. Here, i = k + (l − 1)MB and j = k′ + (l′ − 1)MB
for 1 � k, k′ � MB and 1 � l, l′ � n.

Our numerical simulations clearly demonstrate a
promising potential that the quantum power method com-
bined with the multireference Krylov-subspace diagonal-
ization enables us to perform systematic and optimization-
free calculations for quantum many-body systems, which
is suitable for near-term quantum computers. Other appli-
cations of the quantum power method include various
moment-based methods, which are briefly outlined in
Appendices E and F. In these appendices, we show that
the power method can evaluate 〈�|Ĥ2|�〉 with exactly the
same amount of resource that is required for 〈�|Ĥ|�〉,
and therefore, for example, the energy variance σ 2
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= 〈�|Ĥ2|�〉 − 〈�|Ĥ|�〉2 can be easily obtained. Here,
|�〉 is a given quantum state. Using numerical simulations,
we also demonstrate the CMX for the imaginary-time evo-
lution. This formalism can be easily extended to other
methods, e.g., the high-temperature series expansion [102].

Finally, we remark that the quantum power method
proposed here can generally be applied to any sparse Her-
mitian operator Â. In this case, the nth power of Â is
given as

Ân = in
dnV̂(t)

dtn

∣∣∣∣∣
t=0

(91)

with the generating function V̂(t) = e−iÂt. We can use the
central finite-difference scheme for the time derivatives to
represent Ân as a linear combination of unitary operator
V̂(t) at different time variables. The symmetric Suzuki-
Trotter decomposition is then used to decompose each
unitary operator V̂(t).
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APPENDIX A: COMPARISON WITH OTHER
ALGORITHMS FOR THE KRYLOV-SUBSPACE

DIAGONALIZATION

In this appendix, we summarize the distinctions between
the Krylov-subspace-diagonalization scheme described in
Sec. IV and other algorithms reported recently, i.e., the
QLanczos method [45], the MRSQK algorithm [50], and
the QFD method [51]. However, before making a com-
parison, we emphasize that the quantum power method
proposed here allows us to evaluate the Hamiltonian
power Ĥn directly by approximating it with a linear com-
bination of the time-evolution operators. Consequently,
the quantum power method finds many possible applica-
tions, some of which are described in this paper, and the
Krylov-subspace diagonalization is one of the promising
examples.

1. Brief review of the methods

The QLanczos method is based on the quantum
imaginary-time evolution (QITE) for generating states that
span a Krylov subspace. Namely, the Krylov subspace to

be approximated in the QLanczos method is given as

K(e−2�τ Ĥ, |ψ〉)
= span

(
|ψ〉, e−2�τ Ĥ|ψ〉, e−4�τ Ĥ|ψ〉, . . .

)
, (A1)

where |ψ〉 is a given reference state and only even pow-
ers of e−�τ Ĥ appear because it simplifies the evaluation of
matrix elements of the Hamiltonian Ĥ over the basis states
in the Krylov subspace K and the overlap matrix. How-
ever, this is irrelevant for the discussion given here. Let us
assume that a Hamiltonian Ĥ is given as Ĥ =∑m ĥ[m],
where ĥ[m] represents the mth string of Pauli opera-
tors. With the first-order Suzuki-Trotter decomposition,
the imaginary-time evolution operator for an imaginary

time l�τ can be written as e−l�τ Ĥ =
(∏

m e−�τ ĥ[m]
)l

+
O(l�2

τ ), where l is an integer, assuming that terms ĥ[m]
with different m are generally not commutable.

The QITE approximates, for each Trotter step, a
normalized short imaginary-time evolved state |ITE〉 ≡
e−�τ ĥ[m]|ψ〉/√c with c = 〈ψ |e−2�τ ĥ[m]|ψ〉 ≈ 1 − 2�τ

〈ψ |ĥ[m]|ψ〉 by a unitary evolved state |ITE′〉 ≡ e−i�τ Â[m]

|ψ〉, where Â[m] is a Hermitian operator of the form

Â[m] =
∑

ik1 ,ik2 ,...,ikD

aik1 ik2 ...ikD
[m]σ̂ik1

σ̂ik2
. . . σ̂ikD

(A2)

≡
∑

I

aI [m]σ̂I . (A3)

Here, σ̂ik ∈ {Îk, X̂k, Ŷk, Ẑk} in Eq. (A2), i.e., the identity
and Pauli operators at the kth qubit, and σ̂I in Eq. (A3)
represents a Pauli string of length D (D is a parame-
ter and is called domain size) with I = {ik1 , ik2 , . . . , ikD}
and 1 � k1 < k2 < · · · < kD � N . The sum over I runs
at most up to 4D (see Supplementary Information of
Ref. [45] for a precise counting). The coefficients aI [m]
should be determined by minimizing ‖ |ITE〉 − |ITE′〉 ‖,
which yields, to the first order of �τ , the linear sys-
tem Ca = b with [C]IJ = 〈ψ |σ̂ †

I σ̂J |ψ〉, [a]I = aI [m], and
[b]I = −(i/√c)〈ψ |σ̂ †

I ĥ[m]|ψ〉. Thus the solution vector a
of the linear system gives the coefficients aI [m]. By repeat-
ing the above procedure for all the Trotter steps, a state

that approximates e−l�τ Ĥ|ψ〉/
√

〈ψ |e−2l�τ Ĥ|ψ〉 to the first
order of �τ can be constructed.

In the QLanczos method, one may wish to increase the
time interval �τ to avoid the linear dependency of the
bases generated in the Krylov subspace K. However, there
is a trade-off that the increase of �τ increases the system-
atic error in approximating the imaginary-time evolution
operator with the Suzuki-Trotter decomposition and also
requires to generally enlarge the qubit domain size D in
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approximating the imaginary-time evolution with a uni-
tary evolution. Instead, if one chooses a small value of�τ ,
these difficulties may not occur. However, the states gen-
erated are most likely linearly dependent on other states
nearby in the imaginary time and thus many iterations of l
may be required.

In the QFD method and the MRSQK algorithm (with a
single reference state), the Krylov subspace to be approxi-
mated is given as

K(e−i�τ Ĥ, |ψ〉) = span
(
|ψ〉, e−i�τ Ĥ|ψ〉, e−i2�τ Ĥ|ψ〉, . . .

)
,

(A4)

where the time-evolution operators e−il�τ Ĥ are approxi-
mated by a Suzuki-Trotter decomposition in practice. The
MRSQK algorithm allows for the use of not only a single
state but also multiple states as the reference states. The
ground (or target) state is approximated as a linear com-
bination of the time-evolved states {e−il�τ Ĥ|ψ〉} and the
coefficients for the linear combination is determined by
the Rayleigh-Ritz variational principle, i.e., the subspace
diagonalization.

For example, the time-evolved state e−i�τ Ĥ|ψ〉 can be
expanded as

e−i�τ Ĥ|ψ〉 = |ψ〉 − i�τĤ|ψ〉 + O(�2
τ ). (A5)

Therefore, if �τ is too small, a distance between the
states |ψ〉 and e−i�τ Ĥ|ψ〉 would be so small that a linear-
dependency problem may occur in the subspace diagonal-
ization. On the other hand, if large�τ is chosen in order to
reduce the linear-dependency problem, the corresponding
Suzuki-Trotter error for approximating e−i�τ Ĥ becomes
large. Hence, it is desirable to find an optimum value of
�τ , which is however unknown a priori. This issue is sim-
ilar to the case of the QLanczos method. The MRSQK
algorithm can improve the linear-dependency problem by
virtue of the multireference states as compared to the sin-
gle reference state. However, in essence, the same issue
may remain because the expansion process of the Krylov
subspace is still based on a short real-time evolution.

In our method, the Krylov subspace is expanded by
generating states Ĥn

ST(r)(�τ )|ψ〉 from a reference state
|ψ〉. Namely, the Krylov subspace to be approximated is
given as

K(Ĥ, |ψ〉) = span
(
|ψ〉, Ĥ1|ψ〉, Ĥ2|ψ〉, . . .

)
, (A6)

and the Hamiltonian power Ĥn is approximated by a linear
combination of the time-evolution operators, Ĥn

ST(r)(�τ ),
with an O(�2+2r

τ ) error. Therefore, in contrast to the
MRSQK algorithm and the QFD method, the Krylov

basis Ĥn
ST(r)(�τ )|ψ〉 itself is a linear combination of

time-evolved states. The coefficients cn,k for the linear
combination in Ĥn

ST(r)(�τ )|ψ〉 are already determined
from the central finite-difference formula.

More explicitly, the state Ĥn
ST(r)(�τ )|ψ〉 can be written

as

Ĥn
ST(r)(�τ )|ψ〉 = Ĥn|ψ〉 +�2+2r

τ r̂n|ψ〉 + O(�4+2r
τ ),

(A7)

where r̂n is some Hermitian operator representing the
leading error (residual) term in Ĥn

ST(r)(�τ ). Thus, in our
method, the linear-dependency problem is expected to be
less severe than in the other methods in the sense that the
new basis in the Krylov subspace, e.g., ĤST(r)(�τ )|ψ〉,
is in general linearly independent of |ψ〉, irrespectively
of the value of �τ (unless |ψ〉 is an eigenstate, e.g., the
ground state, of Ĥ, which is the condition that indicates
the convergence). Indeed, we have numerically found that
the method is quite stable against the values of �τ (see
Fig. 7 and also the next section).

2. Condition number and residual ground-state energy

While making a fair comparison of different meth-
ods is not straightforward in any case, it would be
instructive to examine by numerical simulations how the
Krylov subspaces Kn(e−�τ Ĥ, |ψ〉), Kn(e−i�τ Ĥ, |ψ〉), and
Kn(ĤST(r)(�τ ), |ψ〉) are different from each other, because
it gains further insight into the different Krylov-subspace
approaches described above. This is precisely the purpose
of this section.

To this end, we employ the imaginary-time version of
the second-order Suzuki-Trotter approximation (for the
case of N� = 2)

e−l�τ Ĥ =
(

e−�τ
2 ĤAe−�τ ĤBe−�τ

2 ĤA
)l

+ O(l�3
τ ) (A8)

to generate Kn(e−�τ Ĥ, |ψ〉), instead of the QITE reported
originally in Ref. [45]. With this treatment, we can remove
arbitrariness in the QITE such as the choice of Â[m] oper-
ators and the domain-size parameter D. We also employ
the second-order Suzuki-Trotter decomposition Ŝ2(�τ )

to generate Kn(e−i�τ Ĥ, |ψ〉) and Kn(ĤST(r)(�τ ), |ψ〉),
i.e., with a similar decomposition for e−il�τ Ĥ as in
Eq. (A8). Therefore, the Suzuki-Trotter error is at the
same order for all three cases. Hereafter, we sim-
ply refer to Kn(e−�τ Ĥ, |ψ〉) as imaginary-time evolu-
tion (ITE), Kn(e−i�τ Ĥ, |ψ〉) as real-time evolution (RTE),
and Kn(ĤST(r)(�τ ), |ψ〉) as the quantum power method
(QPM). We use the spin-1/2 Heisenberg model on an
N = 16 qubit ring as the Hamiltonian Ĥ, and adopt the
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reference state |ψ〉 = |�A〉 in Eq. (80) and |ψ〉 = |�VQE〉
in Eq. (88). The overlap between these states and
the exact ground state |�0〉 is |〈�0|�A〉|2 = 0.259 and
|〈�0|�VQE〉|2 = 0.771 (see Fig. 6). In the numerical simu-
lations, we vary �τJ = 0.01, 0.1, 0.3, 0.5, and 0.8.

The linear dependency of the basis states in a Krylov
subspace can be examined by calculating the (Euclidean
norm) condition number of the overlap matrix S,

cond(S) ≡ smax

smin
, (A9)

where smax (smin) is the maximum (minimum) singular
value of the overlap matrix S defined in each Krylov
subspace [for example, see Eq. (45)]. To focus on the
linear-dependency issue, we assume that the basis states
are normalized, as it is always possible by replacing |ui〉
with |ui〉/

√〈ui|ui〉, where |ui〉 is an unnormalized basis
state in ITE and QPM. The Krylov-subspace diagonaliza-
tion in ITE and QPM for the normalized basis states can
be formulated simply by replacing the matrix elements Hij

[for definition, see Eq. (44)] and Sij with Hij /
√

SiiSjj and
Sij /
√

SiiSjj , respectively, or equivalently in the matrix form
as

H �→ δHδ (A10)

and

S �→ δSδ, (A11)

where

δ = diag
(

1√
S11

1√
S22

· · ·
)

. (A12)

The reduction scheme of the condition number of a
matrix with a transformation by diagonal matrices as in
Eqs. (A10) and (A11) is a widely used procedure known as
equilibration of a matrix [76]. Note that although the nor-
malization of the basis states alters the condition number
of the overlap matrix S in general, the resulting variational
ground-state energy EKS does not depend on whether or
not the basis states in the Krylov subspace are normal-
ized, as it can readily be confirmed from Eqs. (46), (A10),
and (A11). In addition, the eigenvector v in Eq. (46) is
simply given by replacing v with δ−1v when the equili-
bration of the matrices in Eqs. (A10) and (A11) is made.
If the basis states are orthonormalized, the overlap matrix
is an identity matrix, and hence the condition number
is 1. On the other hand, if the basis states become lin-
early dependent, S has zero singular value(s), and hence
the condition number diverges. We show the numerical
results for cond(S) � 1013, which is nearly the limit of
double-precision floating-point number.

(a)

(c)

(b)

FIG. 8. (a) Condition number cond(S) as a function of the subspace dimension n, (b) condition number cond(S) as a function of the
error in energy |(EKS − E0)/E0|, and (c) error in energy |(EKS − E0)/E0| as a function of the subspace dimension n for three different
Krylov subspaces (ITE, RTE, and QPM) with several values of �τ . Here, the Hamiltonian Ĥ is the spin-1/2 Heisenberg model on
an N = 16 qubit ring with the exact ground-state energy E0 and |ψ〉 = |�A〉 is used as the reference state. For QPM, the Richardson
extrapolation is not used (r = 0). Notice that the results for ITE and RTE with �τ J = 0.01 are identical in this scale. The inset in (c)
is the enlarged plot for small n.
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Figure 8 shows the numerical results that summarize
relations between the condition number cond(S), the error
in energy |(EKS − E0)/E0|, and the dimension of the
Krylov subspace n for several�τ values with the reference
state |ψ〉 = |�A〉. As shown in Fig. 8(a), when�τ is small,
the condition number grows rapidly in n for ITE and RTE.
With increasing �τ , the condition number decreases sig-
nificantly for RTE, while the decrease is less pronounced
for ITE. On the other hand, the condition number for QPM
is much less sensitive to �τ than that for the other Krylov
subspaces, even without the Richardson extrapolation (r =
0) [also see Fig. 10(a) for the results with the first-order
Richardson extrapolation]. Remarkably, RTE shows the
smaller condition number than QPM for �τJ = 0.5 and
0.8 as a function of n. However, as we discuss below, the
smaller condition number does not necessarily guarantee
the better approximation to the ground state.

Figure 8(b) shows the condition number as a function
of |(EKS − E0)/E0|. It is found that, in all the Krylov sub-
spaces, the condition number becomes larger as the error
in energy becomes smaller. Such a behavior can be under-
stood as follows. If a basis state |ui〉 in the subspace is close
to the exact ground state, |ui〉 ∼ |�0〉, a good variational
energy can be obtained, while the overlap matrix tends to
be more ill conditioned because the generated states |ui+1〉
can be almost parallel to |ui〉. We should also note that
the condition number as a function of |(EKS − E0)/E0| in
Fig. 8(b) behaves rather similarly between ITE and RTE,
especially when�τ is small, and indeed it is almost identi-
cal when�τJ = 0.01. As discussed above, this is expected

because these two Krylov subspaces should be equivalent
in a region of small �τ . Instead, the results for QPM are
very different from those for ITE and RTE, even when �τ

is small. This is simply because the Krylov subspace gen-
erated in QPM is different from those in ITE and RTE,
including in the limit of �τ → 0.

Figure 8(c) shows |(EKS − E0)/E0| as a function of n.
While ITE gives the better energy than the others when n
is small, it is difficult to reach larger n because of the large
condition number. On the other hand, RTE can achieve the
largest dimension of n = 35 (or more) when �τJ = 0.8
owing to the smaller condition number. However, the sig-
nificant improvement of |(EKS − E0)/E0| is not observed,
despite the fact that the dimension of the subspace is sub-
stantially increased. We also find that both ITE and RTE
give nearly the same error in energy at the maximum
dimension n when the same �τ value is used [also see
Fig. 8(b)]. The results for QPM are located somewhere
between those for ITE and RTE, and, depending on �τ

values, QPM can achieve the best accuracy in the ground-
state energy among the three Krylov subspaces considered
here. We should also note that the �τ dependence of the
results is somewhat scattered for ITE and RTE, but it is
more systematic for QPM.

These features do not depend significantly on the choice
of the reference state. Figure 9 summarizes the same
results but for the reference state |ψ〉 = |�VQE〉. Since
the VQE state |�VQE〉 has a larger overlap with the exact
ground state, a better convergence is generally expected
in a Krylov-subspace diagonalization. Indeed, the error in

(a)

(c)

(b)

FIG. 9. Same as Fig. 8 but for the reference state |ψ〉 = |�VQE〉. Notice that the results for ITE and RTE with �τ J = 0.01 are
identical in this scale.
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(a)

(c)

(b)

FIG. 10. Same as Fig. 8 but with the first-order Richardson extrapolation (r = 1) for QPM.

energy |(EKS − E0)/E0| at n = 1 is already one order of
magnitude smaller than that for |ψ〉 = |�A〉. Apart from
this, the results are qualitatively the same as those in Fig. 8

As demonstrated in some details in Sec. V, the rather
systematic dependence on �τ for QPM allows us to per-
form the Richardson extrapolation with an increase of
measurements, e.g., (r + 1)2 = 4 times more for the first-
order Richardson extrapolation. Figures 10 and 11 show

the same results as in Figs. 8 and 9 but with the first-order
Richardson extrapolation for QPM. With the Richardson
extrapolation, the QPM results almost collapse on a single
curve (aside from the error in energy for large n and large
�τ ), implying that the �τ dependence becomes almost
negligible. Although ITE and RTE may perform better
than QPM in terms of the ground-state energy if an opti-
mal �τ value can be found, such an optimal value is not

(a)

(c)

(b)

FIG. 11. Same as Fig. 9 but with the first-order Richardson extrapolation (r = 1) for QPM.
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known a priori. In addition, considering that the exact
solution is generally unknown, the systematic dependence
on�τ that guarantees the convergence to the exact is indis-
pensable. We also note that performing an imaginary-time
evolution on a quantum computer is rather involved when
the QITE is used. Thus, the application of the quantum
power method for the Krylov-subspace diagonalization
would be a promising alternative for the Krylov-subspace
approaches with quantum computers.

3. Summary

In short, as compared to the QLanczos method, our
method is basically free from optimization of several
parameters, such as the domain size D, the form of Her-
mitian operator Â[m], and the coefficients a[m], which
requires measurements of Pauli strings for C and b and
solving the linear system Ca = b of dimension approxi-
mately 4D. The only but crucial parameter in our method
is �τ , which introduces the time-discretization error, but
the systematic error is well controlled, as demonstrated
numerically above and throughout this paper. In addition,
our method can separate the choice of �τ from the issue
on the linear dependency of the basis states in the Krylov
subspace, which is thus different from the other methods.
In general, smaller �τ approximates the ground state bet-
ter. However, the well-controlled behavior of�τ allows us
to use large values of�τ and then extrapolate the results to
�τ → 0. This is also advantageous when a simulation on
a noisy quantum computer is considered (see Sec. V C 3).

APPENDIX B: FERMI-HUBBARD MODEL

In this appendix, we demonstrate the Krylov-subspace
diagonalization combined with the quantum power method
for the spin-1/2 Fermi-Hubbard model on a square lattice
with a ladderlike 4 × 2 cluster (i.e., N = 16 qubits) under
open boundary conditions (Fig. 12). The Hamiltonian of
the Fermi-Hubbard model is given by

Ĥ = −J
∑

σ

∑

〈i, j 〉

(
ĉ†

iσ ĉj σ + H.c.
)

+ UH

N/2∑

i=1

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (B1)

where ĉ†
iσ (ĉiσ ) is a creation (annihilation) operator of a

fermion at site i with spin σ(=↑, ↓) and satisfies the canon-
ical anticommutation relations {ĉiσ , ĉj σ ′ } = {ĉ†

iσ , ĉ†
j σ ′ } = 0

and {ĉiσ , ĉ†
j σ ′ } = δij δσσ ′ . n̂iσ = ĉ†

iσ ĉiσ is the density opera-
tor and 〈i, j 〉 runs over all pairs of nearest-neighbor sites i
and j on a square lattice. We assume that J > 0, UH > 0,
and the fermion density is 1, i.e., at half filling.

Before applying a fermion-to-qubit mapping, we first
subdivide the Hamiltonian Ĥ into noncommuting parts.

FIG. 12. The qubit indexing used for the Fermi-Hubbard
model on a square lattice with a ladderlike 4 × 2 cluster under
open boundary conditions. A circle with a number denotes a
qubit and the lines between qubits indicate the terms of the
subdivided Hamiltonians ĤA, ĤB, ĤC, and ĤD in the fermion
representation. Qubits 1–8 are assigned to fermions at site i (1 �
i � 8) with spin ↑ (upper layer), and qubits 9–16 are assigned
to fermions at site i (1 � i � 8) with spin ↓ (lower layer). The
subdivided Hamiltonians ĤA, ĤB, and ĤC correspond to the
hopping (J ) terms, while ĤD corresponds to the interaction
(UH ) terms, indicated, respectively, by the solid lines (blue), the
dashed lines (orange), the dash-dotted lines (green), and the wavy
lines (red).

For the 4 × 2 cluster, the Hamiltonian Ĥ can be subdivided
into N� = 4 parts as

Ĥ = ĤA + ĤB + ĤC + ĤD, (B2)

where ĤA denotes the hopping terms along the rung direc-
tion, ĤB the hopping terms on the odd bonds along the leg
direction, ĤC the hopping terms on the even bonds along
the leg direction, and ĤD the on-site interaction terms, as
schematically shown in Fig. 12. Note that all terms in each
subdivided Hamiltonian Ĥ� commute with each other,
although [Ĥ� , Ĥ�′] �= 0 when � �= �′. From Eq. (30),
the lowest-order symmetric Suzuki-Trotter decomposition
Ŝ2(�τ ) of the time-evolution operator Û(�τ ) = e−i�τ Ĥ

can be given as

Ŝ2(�τ ) = e−i(�τ /2)ĤAe−i(�τ /2)ĤBe−i(�τ /2)ĤCe−i�τ ĤD

× e−i(�τ /2)ĤCe−i(�τ /2)ĤBe−i(�τ /2)ĤA . (B3)

We now assign the fermion indexes to the qubit indexes
as (i, ↑) �→ i↑ ≡ i and (i, ↓) �→ i↓ ≡ i + N/2 for 1 � i �
N/2 [104]. The full indexing for the 4 × 2 cluster is given
in Fig. 12. Let us now apply the Jordan-Wigner transfor-
mation to represent the fermion creation and annihilation
operators by Pauli operators as [62,105]

ĉ†
iσ = σ̂−

iσ

∏

k<iσ

Ẑk (B4)
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and

ĉiσ =
∏

k<iσ

Ẑk σ̂
+
iσ = σ̂+

iσ

∏

k<iσ

Ẑk, (B5)

where σ̂±
i ≡ 1

2 (X̂i ± iŶi). The fermion density operator
is given by n̂iσ = σ̂−

iσ σ̂
+
iσ = 1

2 (1 − Ẑiσ ), implying that the
single-particle state (i, σ) is occupied (unoccupied) if the
iσ th qubit state is |1〉iσ (|0〉iσ ). Now the Fermi-Hubbard
Hamiltonian in the qubit representation reads

Ĥ = −J
2

∑

σ

∑

〈iσ , jσ 〉

(
X̂iσ X̂jσ + Ŷiσ Ŷjσ

)
ẐJW,iσ jσ

+ UH

4

N/2∑

i=1

ẐiẐi+N/2. (B6)

Here, ẐJW,ij =∏i≶k≶j Ẑk is the Jordan-Wigner string for
i ≶ j , which supplies the fermion sign ±1, depending on

the population parity of the fermion occupation between
the ith and j th qubits. Note that the subdivided Hamiltoni-
ans Ĥ� with � = A, B, C, D are similarly transformed in
the qubit representation (see Fig. 12) and apparently all
terms in each Ĥ� in the qubit representation still commute
with each other.

Figure 13 illustrates a circuit structure of the lowest-
order Suzuki-Trotter-decomposed time-evolution operator
Ŝ2(�τ ) in Eq. (B3) for the Fermi-Hubbard model given in
Eq. (B6) obtained by the Jordan-Wigner transformation.
To implement Ŝ2(�τ ) in a circuit, we first exponentiate
the hopping term, i.e., exp[−iθ(X̂iX̂j + ŶiŶj )ẐJW,ij /2], by
using a circuit representation of exp[−iθ(X̂iX̂j + ŶiŶj )/2]
(denoted as the XY gate in Fig. 13), which is composed
of two CZ gates and six single-qubit rotations [44], sand-
wiched by 2(|i − j | − 1) CZ gates [106] (also see Refs.
[21,88,107–110] for other possible circuit realizations of
the same operator). Here, the rotation angle is given by
θ = −�τJ/2. This gate is denoted as the K gate in
Fig. 13. The interaction term is transformed into the Ising

(a) (b)

(c)

FIG. 13. (a) Circuit structure of the lowest-order Suzuki-Trotter-decomposed time-evolution operator Ŝ2(�τ ) in Eq. (B3) for the
Fermi-Hubbard model considered here in Eq. (B6). The gate K denotes the exponentiated hopping term defined in (b), while the
gate V denotes the exponentiated interaction term defined in (c). Here, only the part corresponding to the first four exponentials is
shown. (b) Decomposition of the K gate that represents exp[−iθ(X̂iX̂j + ŶiŶj )ẐJW,ij /2] operating at qubits i and j as well as all qubits
between these two qubits. The gate XY represents exp[−iθ(X̂iX̂j + ŶiŶj )/2] operating at qubits i and j . The gate RX (Y)(θ) is given
by RX (Y)(θ) = exp[−iθ X̂i(Ŷi)/2] operating at qubit i. (c) Decomposition of the V gate that represents exp[−iφẐiẐj /2] operating at
qubits i and j . The gate RZ(φ) is given by RZ(φ) = exp[−iφẐi/2] operating at qubit i. Here, θ = −�τ J/2 and φ = �τUH/2 for the
Fermi-Hubbard model given in Eq. (B6).
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interaction in Eq. (B6) and hence it can be exponentiated
with a single-qubit rotation exp[−iφẐi+N/2/2] sandwiched
by two CiNOTi+N/2 gates [61] (denoted as the V gate in
Fig. 13). Here, the rotation angle is given by φ = �τUH/2.

As the reference states for the Krylov-subspace diago-
nalization, we consider the following product states:

|�A〉 = ⊗N/2
i=1 |t2i−1, 2i〉, (B7)

|ZAFM 1〉 = ⊗N/4
i=1 |0〉2i−1|12i〉 ⊗N/4

i=1 |1〉2i−1+N/2|0〉2i+N/2,
(B8)

|ZAFM 2〉 = ⊗N/4
i=1 |1〉2i−1|02i〉 ⊗N/4

i=1 |0〉2i−1+N/2|1〉2i+N/2,
(B9)

where |ti, j 〉 = (1/
√

2)(|0〉i|1〉j + |1〉i|0〉j ) is one of the
Bell states and can be interpreted as a “spin-triplet state”
in the qubit representation or as a “bonding state” in the
fermion representation. |�A〉 is the ground state of the
subdivided Hamiltonian ĤA, because ĤA after the Jordan-
Wigner transformation is merely a direct sum of two-site
XY models with the ferromagnetic exchange interaction
−J < 0, and hence the ground state is given by the direct
product of |ti, j 〉. |ZAFM 1〉 and |ZAFM 2〉 are the Néel states
(both in the qubit and fermion representations) with the
staggered moments pointing alternatively along the spin-Z
axis.

All these three states are within the subspace of the
half filling and zero magnetization because they have
N/4 |0〉iσ ’s for 1 � iσ � N/2 and N/4 |0〉iσ ’s for N/2 +
1 � iσ � N . Moreover, these states can be easily gener-
ated from |0〉⊗N with appropriate combinations of Pauli X ,
Hadamard, and CNOT gates. The particle number and mag-
netization are conserved even after applying the Hamil-
tonian power to these states. In addition to these three
states, we adopt the ground state of Ĥ at UH = 0, |�UH =0〉,
as a reference state. Since |�UH =0〉 is a Slater determi-
nant, i.e., a particular case of fermionic Gaussian states,
it can in principle be prepared on a quantum circuit with
at most O(N 2) gates [21,111–113]. |�UH =0〉 is also within
the subspace of the half filling and zero magnetization.

Figures 14 and 15 show the numerical results of the
estimated ground-state energy EKS and the ground-state
fidelity F = |〈�0|�KS〉|2, respectively, for the Fermi-
Hubbard model with UH/J = 4, obtained by the same
procedures as in the case of the spin-1/2 Heisenberg
model discussed in Sec. V C. Here, |�0〉 is the exact
ground state and we set the time interval �τJ = 0.05
with r = 1, m = 1, p = 3, and N� = 4 for approximat-
ing the Hamiltonian power in the numerical simulations.
The exact ground-state energy per site is E0/(NJ/2) =
−1.626 562 894. Note that N is the number of qubits and

(a)

(b)

FIG. 14. Same as Fig. 5 but for the Fermi-Hubbard model with
UH/J = 4 at half filling.

the number of lattice sites of the Fermi-Hubbard model is
given by N/2.

As shown in Figs. 14 and 15, the convergence to the
ground state is improved with increasing the block size
MB, which is similar to the case of the spin-1/2 Heisen-
berg model found in Figs. 5 and 6. We also observe in
Fig. 14(b) the exponential convergence of the energy with
respect to n for any set of reference states. We can also
notice in Fig. 15(a) that the noninteracting ground state
|�UH =0〉 has a significantly larger overlap with |�0〉 than
|�A〉, and indeed the results obtained with |�UH =0〉 shows
the faster convergence than those with |�A〉.

The relatively slower convergence found here for the
Fermi-Hubbard model as compared to the case of the
spin-1/2 Heisenberg model, when only the simple prod-
uct states other than |�UH =0〉 are used, might be due to
the smaller state overlaps between the reference states
and the exact ground state. These results clearly demon-
strate that the quantum power method can also be effec-
tive for fermion systems where a transformed Hamilto-
nian in the qubit representation involves more complex
terms.

Finally, it should be noted that although the Bravyi-
Kitaev transformation is known to scale asymptotically
better than the Jordan-Wigner transformation in gate count,
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(a)

(b)

FIG. 15. Same as Fig. 6 but for the Fermi-Hubbard model with
UH/J = 4 at half filling.

the difference in efficiency between the two transforma-
tions is not obvious for small systems such as that consid-
ered here with N = 16 (see, for example, Refs. [114,115]).
In addition, since the Jordan-Wigner transformation is
based on the occupation basis of fermions, density-density
interactions such as the Hubbard interaction can be writ-
ten simply as Ising interactions [see Eq. (B6)], while Pauli
strings might be involved in the interaction term when
the Bravyi-Kitaev transformation is employed (see, for
example, Refs. [64,66]). A comparative study of fermion-
to-qubit mappings for the Hubbard model is, however,
beyond the scope of this paper, and we have adopted the
Jordan-Wigner transformation in favor of the simple form
of the interaction term.

APPENDIX C: HIGHER-ORDER SYMMETRIC
SUZUKI-TROTTER DECOMPOSITIONS Ŝ(p)

2m (�τ )

In this appendix, we provide a PYTHON program that
generates coefficients required for the higher-order sym-
metric Suzuki-Trotter decompositions Ŝ(p)2m (�τ ) introduced
in Sec. III B 1, and examine numerically the systematic
errors due to the Suzuki-Trotter decompositions when the
time-evolution operator Û(t) is approximated by a product
of Ŝ(p)2m (�τ ) with different parameters m and p . Note that
m is an integer with m � 1 and p is an odd integer with
p � 3.

1. Coefficients for higher-order Suzuki-Trotter
decompositions

Listing 1 shows a PYTHON program that generates

the coefficients {si}D(p)2m
i=1 for a given set of parameters m

and p in the symmetric Suzuki-Trotter decompositions
Ŝ(p)2m (�τ ):

Ŝ(p)2m (�τ ) = exs1ĤAexs2ĤBexs3ĤC

× · · · × e
xs

D(p)2m −2
ĤC

e
xs

D(p)2m −1
ĤB

e
xs

D(p)2m
ĤA

, (C1)

where x = −i�τ and D(p)
2m = 2(N� − 1)pm−1 + 1 as given

in Eq. (18). The program includes an example for m = 2,
p = 5, and N� = 2. In this case, the symmetric Suzuki-
Trotter decomposition has a form

Ŝ(5)4 (�τ ) = exs1ĤAexs2ĤBexs3ĤAexs4ĤB

× exs5ĤAexs6ĤBexs7ĤA

× exs8ĤBexs9ĤAexs10ĤBexs11ĤA (C2)

LISTING 1. A PYTHON program for generating the coefficients

{si}D(p)2m
i=1 in the symmetric Suzuki-Trotter decomposition Ŝ(p)2m .
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and the output of the program gives the 11 coefficients

s1 = 0.207 245 385 897 187 86,

s2 = 0.414 490 771 794 375 7,

s3 = 0.414 490 771 794 375 7,

s4 = 0.414 490 771 794 375 7,

s5 = −0.121 736 157 691 563 57,

s6 = −0.657 963 087 177 502 8,

s7 = −0.121 736 157 691 563 57,

s8 = 0.414 490 771 794 375 7,

s9 = 0.414 490 771 794 375 7,

s10 = 0.414 490 771 794 375 7,

s11 = 0.207 245 385 897 187 86.

By modifying lines 21–23 in the program, one can obtain

{si}D(p)2m
i=1 for other values of m, p , and N� .

Notice that the coefficients {si}D(p)2m
i=1 are symmetric, i.e.,

si = s
D(p)2m −i+1

(C3)

and satisfy the following sum rule:

D(p)2m∑

i=1

si = N� (C4)

for any m and p . Although it is sufficient to find the

coefficients {si}D(p)2m
i=1 for our purpose, the program can

also output a cumulative sum Ti of the coefficient si
defined as

Ti =
i∑

k=1

sk. (C5)

By plotting Ti as a function of i [or i/D(p)
2m ] for several

values of m with a fixed p , one can find a fractal feature
appearing in the higher-order Suzuki-Trotter decomposi-
tions [71,74].

2. Numerical examination of a Suzuki-Trotter error

Here we numerically examine the systematic errors
due to the Suzuki-Trotter decompositions when the time-
evolution operator Û(t) is approximated by a product of
Ŝ(p)2m (�τ ) with different parameters m and p . The Trotter
formula [116–118] combined with Ŝ(p)2m (�τ ) yields

Û(t) =
[
Ŝ(p)2m (�τ )

]M
+ O(t�2m

τ ), (C6)

where M is an integer such that t = M�τ .

Figure 16 shows the real part of the difference between
the exact propagator

K(t) = 〈�0|Û(t)|�0〉 (C7)

and the approximated propagator

K̃(t) = 〈�0|
[
Ŝ(p)2m (�τ )

]M
|�0〉, (C8)

i.e.,

ReδK(t) = ReK̃(t)− ReK(t), (C9)

with �τJ = 0.07 and 0.1 for the spin-1/2 Heisenberg
model on an N = 16 qubit ring described by the Hamilto-
nian Ĥ in Eq. (65), in which the Hamiltonian is subdivided
into N� = 2 parts. Here, |�0〉 is the exact ground state. The
exact propagator is simply given by K(t) = e−iE0t, where
E0 is the exact ground-state energy. As expected, when p
is fixed, the error decreases by orders of magnitude with
increasing m. It is also found that, when m is fixed, the
error decreases by orders of magnitude with increasing p .
Although we only show ReδK(t), the imaginary part of the
difference, ImδK(t), behaves similarly.

We should emphasize here that while the deviation of
the approximated propagator K̃(t) from the exact one K(t)
becomes larger in the long time limit (tJ � 1), the quan-
tum power method proposed here is formulated on the
basis of the time-evolution operators Û(t) at time t close
to zero, for which the deviation is small. Therefore, this
is another advantage of the quantum power method in
controlling the Suzuki-Trotter error over other quantum
algorithms that require the long-time dynamics approxi-
mately described by the Suzuki-Trotter-decomposed time-
evolution operators.

Figure 17 shows ReδK(t) divided by (�τJ )2m for
�τJ = 0.07, 0.11, 0.13, and 0.17. As expected from
Eq. (C6), the values of δK(t)/(�τJ )2m for different �τ are
almost on the same curve. It is also found that the error
decreases with increasing p for a fixed m, independently of
�τ . This suggests that the increase of p reduces the coef-
ficient of the leading-error term by orders of magnitude.
However, as shown in Eq. (18), p is the base of the expo-
nential in D(p)

2m , which determines the circuit depth. Thus, as
far as noisy near-term quantum computers are concerned,
p = 3 might be a more suitable value than p � 5.

We also examine the systematic errors due to the
Suzuki-Trotter decompositions Ŝ(p)2m (�τ ) in approximating
the time-evolution operator for the Fermi-Hubbard model
on a square lattice with a ladderlike 4 × 2 cluster under
open boundary conditions, in which the Hamiltonian is
subdivided into N� = 4 parts, as described in Appendix B.
Figure 18 shows the numerical results of ReδK(t) divided
by (�τJ )2m for different values of �τ for the Fermi-
Hubbard model with UH/J = 4 at half filling. As in the
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(a) (b) (c)

(d) (e) (f)

FIG. 16. Deviation of the real part of the propagator from the exact value, ReδK(t), for�τ J = 0.07 (empty symbols) and�τ J = 0.1
(filled symbols) with different approximation schemes of the symmetric Suzuki-Trotter decomposition Ŝ(p)2m (�τ ) for the time-evolution
operator. (a) m = 1, D = 3, (b) m = 2, p = 3, D = 7, (c) m = 2, p = 5, D = 11, (d) m = 2, p = 7, D = 15, (e) m = 3, p = 3, D = 19,
and (f) m = 3, p = 5, D = 51, where D = D(p)

2m is the depth of a single Ŝ(p)2m (�τ ) given in Eq. (18). Note that Ŝ2(�τ ) corresponds
to Ŝ(p)2m (�τ ) with m = 1 and p = 3. The results are for the spin-1/2 Heisenberg model on an N = 16 qubit ring described by the
Hamiltonian Ĥ in Eq. (65) and N� = 2. The solid lines are a guide for the eye.

case of the spin-1/2 Heisenberg model shown in Fig. 17,
these values for different values of �τ are almost on the
same curve. In addition, the systematic errors decrease
with increasing p for a fixed m, independently of �τ , sug-
gesting that the increase of p reduces the coefficient of the
leading-error term by orders of magnitude also for N� = 4.

Finally, we note that several exponential-product for-
mulas, not limited to those found by Suzuki, up to the
depth � 11 with an error analysis can be found in Ref.
[119]. Other error analysis of the Suzuki-Trotter decom-
position devoted for quantum computing can be found in
Refs. [120–122].

APPENDIX D: ANOTHER FORMALISM FOR
APPROXIMATING THE HAMILTONIAN POWER

As discussed in Sec. III B, we can formulate at least
two different algorithms for evaluating the Hamiltonian
power Ĥn, depending on in which stage the time-evolution

operators in the approximated Hamiltonian power Ĥn(�τ )

are replaced with the symmetric Suzuki-Trotter decompo-
sition, either in Eq. (21) or in Eq. (24). In the quantum
power method described in Sec. II B, the time-evolution
operators in Eq. (24) are approximated by the symmet-
ric Suzuki-Trotter decomposition. In this appendix, we
describe the other formalism by approximating the time-
evolution operators in Eq. (21) and show that the resulting
algorithm scales differently from the one formulated in
Sec. II B.

By incorporating the symmetric Suzuki-Trotter decom-
position Ŝ(p)2m into the approximated Hamiltonian power
Ĥn(�τ ) in Eq. (21), the Hamiltonian power Ĥn is now
approximated as

Ĥn = Ĥn
ST(�τ )+ O(�2

τ )+ EST, (D1)
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(a) (b) (c)

(d) (e) (f)

FIG. 17. Same as Fig. 16 but the deviation ReδK(t) divided by (�τ J )2m for several values of �τ as indicated in the figures.

where

Ĥn
ST(�τ ) =

n∑

k=0

cn,kŜ(p)2m

((n
2

− k
)
�τ

)
, (D2)

O(�2
τ ) represents the systematic error EFD due to the finite-

difference scheme for the time derivatives, and EST denotes
the systematic error due to the Suzuki-Trotter decompo-
sition of the time-evolution operators, with the order of
EST being discussed below. We should emphasize here
that Ĥn

ST(�τ ) �= Ĥn
ST(�τ ) for n � 2, where Ĥn

ST(�τ ) is
defined in Eq. (4), because

Ŝ(p)2m (�τ )Ŝ
(p)
2m (�

′
τ ) �= Ŝ(p)2m (�τ +�′

τ ) (D3)

for �τ �= −�′
τ , although the exact time-evolution oper-

ators satisfy the multiplication law Û(�τ )Û(�′
τ ) =

Û(�τ +�′
τ ). Note also that Ĥ1

ST(�τ ) = Ĥ1
ST(�τ ).

We can readily confirm that Ĥn
ST(�τ ) is Hermitian and

an even function of �τ , i.e.,

Ĥn
ST(�τ ) =

[
Ĥn

ST(�τ )
]†

= Ĥn
ST(−�τ), (D4)

as in the case of Ĥn
ST(�τ ) given in Eq. (10) and hence the

systematic error EST (as well as the systematic error EFD,
see Sec. III A) in odd powers of �τ is absent in Eq. (D1).
We can also show that Ĥn

ST(�τ ) does not satisfy the law of
exponents, i.e.,

Ĥn
ST(�τ ) �=

[
Ĥ1

ST(�τ )
]n

(D5)

for n � 2, simply because of Eq. (D3), but only satisfies it
approximately within the systematic errors. This is in sharp
contrast to the case of Ĥn

ST(�τ ), which satisfies exactly the
law of exponents in Eq. (9).

At first glance, one would tend to conclude that
Ĥn

ST(�τ ) in Eq. (D2) is more suitable to approximate the

Hamiltonian power Ĥn than Ĥn
ST(�τ ) in Eq. (4), because

each term in Ĥn
ST(�τ ) contains a single Ŝ(p)2m , not a prod-

uct of multiple Ŝ(p)2m ’s as in Ĥn
ST(�τ ), thus expecting fewer

gates in the circuit. However, the disadvantage of Ĥn
ST(�τ )

in Eq. (D2) is that the higher-order Suzuki-Trotter decom-
positions are required for approximating the Hamiltonian
power Ĥn with larger n.
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(a) (b) (c)

(d) (e) (f)

FIG. 18. Same as Fig. 17 but for the Fermi-Hubbard model on a square lattice with a 4 × 2 cluster under open boundary conditions
described by the Hamiltonian Ĥ in Eq. (B6). The other parameters of the model are UH/J = 4 and N = 16 at half filling. N� = 4 and
�τ J = 0.04, 0.05, and 0.07 are used.

This can be understood by recalling that Ŝ(p)2m (t) has a
form of Eq. (34):

Ŝ(p)2m (t) = exp
[
−itĤ + (−it)2m+1R̂2m+1 + · · ·

]
. (D6)

Accordingly, the higher-order derivative of Ŝ(p)2m (t) at t = 0
is given by

in
dnŜ(p)2m (t)

dtn

∣∣∣∣∣
t=0

= Ĥn (D7)

for n � 2m, but

in
dnŜ(p)2m (t)

dtn

∣∣∣∣∣
t=0

�= Ĥn (D8)

for n > 2m. For example, if n = 2m + 1, the derivative
reads

i2m+1 d2m+1Ŝ(p)2m (t)
dt2m+1

∣∣∣∣∣
t=0

= Ĥ2m+1 + (2m + 1)!R̂2m+1.

(D9)

It is now important to notice that the right-hand side
of Eq. (D2) corresponds to the central finite-difference
approximation of in[dnŜ(p)2m (t)/dtn]|t=0, i.e.,

in
dnŜ(p)2m (t)

dtn

∣∣∣∣∣
t=0

=
n∑

k=0

cn,kŜ(p)2m

((n
2

− k
)
�τ

)
+ O(�2

τ ).

(D10)

In other words, the approximated Hamiltonian power
Ĥn

ST(�τ ) in Eq. (D2) is given by the higher-order deriva-

tive of Ŝ(p)2m (t) at t = 0 as

Ĥn
ST(�τ ) = in

dnŜ(p)2m (t)
dtn

∣∣∣∣∣
t=0

+ O(�2
τ ). (D11)
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Now, it is obvious that the formalism in Eq. (D2)
breaks down if n > 2m because in this case, according
to Eq. (D8), lim�τ→0 Ĥn

ST(�τ ) �= Ĥn, which contradicts
Eq. (D1). Therefore,

2m � n (D12)

is required for approximating the Hamiltonian power Ĥn

by Ĥn
ST(�τ ) under a controlled accuracy with the system-

atic error

EST ∼ O(�2
τ ). (D13)

This is the most important difference from the algorithm
described in Sec. II B, where the lowest-order Suzuki-
Trotter decomposition with m = 1 is adequate for any
power n.

There are two remarks in order. First, the approximated
Hamiltonian power Ĥn

ST(�τ ) in Eq. (5) can be considered
as

Ĥn
ST(�τ ) =

[
i

dŜ(p)2m (t)
dt

∣∣∣∣∣
t=0

+ O(�2
τ )

]n

. (D14)

Therefore, the lowest-order symmetric Suzuki-Trotter
decomposition with m = 1 is adequate to satisfy Eq. (D12)
and indeed, as discussed in Sec. II B, it approximates the
Hamiltonian power Ĥn with the controlled accuracy. Sec-
ond, although we have emphasized that the violation of
the multiplication law Ŝ(p)2m (�τ/2) Ŝ(p)2m (�τ/2) �= Ŝ(p)2m (�τ )

is the essential point that distinguishes the two algorithms
described here and in Sec. II B, this equation is satisfied
within the systematic error, i.e.,

Ŝ(p)2m

(
�τ

2

)
Ŝ(p)2m

(
�τ

2

)
= Ŝ(p)2m (�τ )+ O(�2m+1

τ ). (D15)

Accordingly, the two algorithms described here and in
Sec. II B should be the same within the systematic error. In
fact, the approximated Hamiltonian powers Ĥn

ST(�τ ) and
Ĥn

ST(�τ ) in Eqs. (4) and (D2), respectively, are equivalent
within the systematic error because

Ĥn
ST(�τ ) =

n∑

k=0

cn,k

[
Ŝ(p)2m

(
�τ

2

)]n−2k

(D16)

=
n∑

k=0

cn,k

[
Ŝ(p)2m

((n
2

− k
)
�τ

)
+ O(�2m+1

τ )
]

(D17)

= Ĥn
ST(�τ )+ O(�2m+1−n

τ ), (D18)

provided that 2m + 1 > n, which is consistent with
Eq. (D12).

As an example, we show in Fig. 19 the expectation val-
ues 〈Ĥn

ST(�τ )〉 and 〈Ĥn
ST(�τ )〉 with respect to the quantum

states |�A〉 and |�VQE〉 of the spin-1/2 Heisenberg model
on an N = 16 qubit ring for the power n = 3. Here, a
simplified notation of the expectation value

〈· · · 〉 ≡ 〈�| · · · |�〉 (D19)

is introduced with |�〉 ∈ {|�A〉, |�VQE〉} given in Eqs. (80)
and (88). According to Eqs. (D7)–(D9), 〈Ĥ3

ST(�τ )〉 in the
limit of �τ → 0 should converge as

lim
�τ→0

〈
Ĥ3

ST(�τ )
〉
=
〈
Ĥ3
〉

(D20)

for m � 2, but

lim
�τ→0

〈
Ĥ3

ST(�τ )
〉
=
〈
Ĥ3 + 3!R̂3

〉
(D21)

(a)

(b)

FIG. 19. 〈Ĥ3
ST(�τ )〉 and 〈Ĥ3

ST(�τ )〉 as a function of�2
τ evalu-

ated for the spin-1/2 Heisenberg model on an N = 16 qubit ring,
using different orders of the symmetric Suzuki-Trotter decompo-
sition Ŝ(p)2m with m = 1, 2 and p = 3. For a quantum state |�〉, we
choose (a) the singlet-pair product state |�A〉 in Eq. (80) and (b)
the VQE state |�VQE〉 in Eq. (88). The exact values are indicated
at �τ = 0 with the filled symbols (blue and orange).
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for m = 1. Here, the explicit form of the residual term R̂3
in Eq. (D21) for N� = 2 can be derived by using the Baker-
Campbell-Hausdorff formula for Ŝ2 as [72,119,123]

R̂3 = − 1
24

[
ĤA,

[
ĤA, ĤB

]]
+ 1

12

[
ĤB,

[
ĤB, ĤA

]]
.

(D22)

The numerical results in Fig. 19 confirm Eqs. (D20)
and (D21), as well as the expected behavior
lim�τ→0〈Ĥ3

ST(�τ )〉 = 〈Ĥ3〉 for m = 1. Note also that the
linear convergence of these quantities to the exact values as
a function of�2

τ shown in Fig. 19 corroborates the system-
atic errors expected for 〈Ĥn

ST(�τ )〉 in Eqs. (D1) and (D13)

and for 〈Ĥn
ST(�τ )〉 in Eq. (3).

Let us now discuss the gate count for approximating
Ĥn with Ĥn

ST(�τ ). As described above, Eq. (D12) sets
the order of the Suzuki-Trotter decomposition such that
2m � n, i.e., the smallest order m of the Suzuki-Trotter
decomposition to evaluate Ĥn being m = �n/2�, where �·�
is the ceiling function that returns the minimum integer
larger than or equal to the argument. Therefore, assum-
ing that a k-local Hamiltonian Ĥ composed of O(N )
terms, the number of gates required for approximating Ĥn

with Ĥn
ST(�) is O(pn/2kN ) because the circuit depth D(p)

2m
for the single Suzuki-Trotter-decomposed time-evolution
operator Ŝ(p)2m is given by Eq. (18), and thus it increases
exponentially in the power n. In contrast, as described in
Sec. III B 3, the number of gates required for approx-
imating Ĥn with Ĥn

ST(�τ ) is O(nkN ) with a prefactor
D(p)

2 = 2N� − 1 ∼ O(1), i.e., increasing polynomially in
N and n.

This indicates that the algorithm based on Ĥn
ST(�τ )

suffers from the exponential increase of the number of
gates for large n. However, the algorithm based on
Ĥn

ST(�τ ) can be more favorable than that based on

Ĥn
ST(�τ ) when the power n is small. To be more spe-

cific, let us consider the case of p = 3 and N� = 2.
Then, the circuit depth for Ĥn

ST(�τ ) is given by D(3)
2�n/2� =

3, 3, 7, 7, 19, 19, 55, 55, 163, . . ., while the largest circuit
depth for Ĥn

ST(�τ ) involving [Ŝ(p)2 (±�/2)]n is n(D(3)
2 −

1)+ 1 = 2n + 1 = 3, 5, 7, 9, 11, 13, 15, 17, 19, . . ., for the
Hamiltonian power n = 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .. Here, for
the latter, the depth is counted by assuming that the com-
muting exponentials in [Ŝ(p)2 (±�/2)]n are contracted (also
see Table II). Therefore, in this case with p = 3 and N� =
2, the algorithm based on Ĥn

ST(�τ ) is more preferable than

that based on Ĥn
ST(�τ ) as long as the power n � 4. In fact,

one can readily show that this is generally the case, irre-
spectively of the value of N� , when p = 3 [124]. As shown
in Appendix E 4, the algorithm based on Ĥn

ST(�τ ) is

indeed particularly useful when the lowest-order moments
are evaluated.

To apply the quantum power method formulated in this
appendix to the Krylov-subspace-diagonalization scheme,
it is crucial to reduce the maximum power n appearing in
the formalism. Defining

|ũi〉 = Ĥl−1
ST (�τ )|qk〉 (D23)

for the basis set generated in the block Krylov subspace
Kn

(
ĤST(�τ ), {|qk〉}MB

k=1

)
, the matrix elements H and S in

Eqs. (44) and (45) are now approximated by replacing |ui〉
with |ũi〉 as

H̃ ij = 〈ũi|Ĥ|ũj 〉 = 〈qk|Ĥl−1
ST (�τ )ĤĤl′−1

ST (�τ )|qk′ 〉
(D24)

and

S̃ij = 〈ũi|ũj 〉 = 〈qk|Ĥl−1
ST (�τ )Ĥl′−1

ST (�τ )|qk′ 〉, (D25)

where i = k + (l − 1)MB and j = k′ + (l′ − 1)MB for
1 � k, k′ � MB and 1 � l, l′ � n. Similarly to Eqs. (55)
and (56), the power exponents are distributed to the left
and the right basis states.

To be more specific, H̃ ij and S̃ij in terms of Ŝ(p)2m are
given as

H̃ ij =
l−1∑

ν=0

l′−1∑

ν′=0

c∗
l−1,νcl′−1,ν′

× 〈qk|Ŝ(p)2m

(−t(l−1)
ν

)
ĤŜ(p)2m

(
t(l

′−1)
ν′

)
|qk′ 〉 (D26)

and

S̃ij =
l−1∑

ν=0

l′−1∑

ν′=0

c∗
l−1,νcl′−1,ν′

× 〈qk|Ŝ(p)2m

(−t(l−1)
ν

)
Ŝ(p)2m

(
t(l

′−1)
ν′

)
|qk′ 〉, (D27)

where t(l−1)
ν = ( l−1

2 − ν
)
�τ and Eq. (8) is used. The num-

ber of terms in Eqs. (D26) and (D27) is O(Nll′) and
O(ll′), respectively. Here, we assume that Ĥ consists of
O(N ) local terms. In total, O(n2M 2

BN ) and O(n2M 2
B) state

overlaps are required to be evaluated for constructing all
matrix elements of the nMB × nMB matrices H̃ and S̃,
respectively.

Finally, we note that the systematic errors EFD and EST in
Eqs. (D1) and (D13) can be improved systematically, with-
out increasing the gate count of each circuit, by adopting
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the Richardson extrapolation as

Ĥn = Ĥn
ST(r)(�τ )+ O(�2+2r

τ ), (D28)

where Ĥn
ST(r)(�τ ) is the rth-order Richardson extrapola-

tion of the approximated Hamiltonian power, i.e.,

Ĥn
ST(r)(�τ ) =

h2rĤn
ST(r−1)(�τ/h)− Ĥn

ST(r−1)(�τ )

h2r − 1
,

(D29)

with Ĥn
ST(0)(�τ ) ≡ Ĥn

ST(�τ ). Since Ĥn
ST(0)(�τ ) is a linear

combination of n + 1 unitaries
{

Ŝ(p)2m [(n − 2k)�τ/2]
}n

k=0
,

Ĥn
ST(r)(�τ ) is a linear combination of (r + 1)(n + 1) uni-

taries
{{

Ŝ(p)2m [(n − 2k)�τ/2hl]
}n

k=0

}r

l=0
.

APPENDIX E: MOMENT METHODS

In this appendix, we outline moment methods as other
applications of the quantum power method to evaluate
the moments and cumulants of the Hamiltonian. By using
numerical simulations, we demonstrate the CMX for a
short imaginary-time evolution and estimate the ground-
state energy of the spin-1/2 Heisenberg model. These
numerical results are compared with those obtained by the
multireference Krylov-subspace diagonalization combined
with the quantum power method discussed in Sec. V C. We
also show that the quantum power method can particularly
simply evaluate the lowest-order moments.

1. Moment and cumulant

The Feynman propagator with respect to a state |�〉 can
be written as

K(t) = 〈Û(t)〉 =
∞∑

n=0

(−it)n

n!
μn, (E1)

where Û(t) is the time-evolution operator given in Eq. (1)
and

μn = 〈Ĥn〉 (E2)

is the nth Hamiltonian moment. We also define the gener-
ating function �(t) of the cumulants {κn} as

�(t) ≡ ln K(t) = ln〈e−iĤt〉 ≡
∞∑

n=0

(−it)n

n!
κn. (E3)

Thus, the nth moment μn and cumulant κn are given by the
nth time derivative of generating functions K(t) and �(t),

respectively, as

μn = in
dnK(t)

dtn

∣∣∣∣
t=0

(E4)

and

κn = in
dn�(t)

dtn

∣∣∣∣
t=0

. (E5)

We note that, recently, a method making use of the
expectation value of the time-evolution operator has been
proposed for evaluating eigenvalues of the Hamiltonian
[125].

It should be noticed [126] that the nth moment μn can
be expressed as

μn = κn +
n−1∑

k=1

(
n − 1
k − 1

)
κkμn−k (E6)

and, equivalently, the nth cumulant κn can be expressed as

κn = μn −
n−1∑

k=1

(
n − 1
k − 1

)
κkμn−k. (E7)

Therefore, from the moments {μk}k�n, one can obtain the
cumulants {κk}k�n and vice versa. A remarkable difference
between these two quantities is that the magnitude of the
moment grows exponentially in n as μn ∼ O(N n), while
the magnitude of the cumulant remains as κn ∼ O(N )
[127].

2. Finite-difference approximation

By approximating the derivative in Eq. (E4) with the
central-finite-difference method, we obtain that

μn = μn(�τ )+ O(�2
τ ), (E8)

where

μn(�τ ) =
n∑

i=0

cn,iK
((n

2
− i
)
�τ

)
. (E9)

Using K(−�τ) = K(�τ )
∗, μn(�τ ) for n odd and n even

can be expressed, respectively, as

μ2m+1(�τ ) = 2i
m∑

i=0

c2m+1,iImK
((

m + 1
2

− i
)
�τ

)

(E10)

and

μ2m(�τ ) = c2m,m + 2
m−1∑

i=0

c2m,iReK ((m − i)�τ ) , (E11)
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where K(0) = 1 and c2m,m = (1/�2m
τ )
(

2m
m

)
are used in

Eq. (E11). Thus, for obtaining μn(�τ ), it suffices to eval-
uate K(t) at equally spaced �n/2� different points, where
�·� denotes the ceiling function defined previously. More-
over, if {K(l�τ/2)}n−1

l=1 used for evaluating the moments
{μl(�τ )}n−1

l=1 are all stored, only K(n�τ/2) has to be eval-
uated for μn(�τ ). Therefore, for obtaining all n moments
{μl(�τ )}n

l=1, it is sufficient to evaluate the propagator at n
different points, i.e., {K(l�τ/2)}n

l=1, only once.
We can apply the same argument for the cumulants.

Using the central-finite-difference method, the nth cumu-
lant is evaluated as

κn = κn(�τ )+ O(�2
τ ), (E12)

where

κn(�τ ) =
n∑

i=0

cn,i�
((n

2
− i
)
�τ

)
. (E13)

Because�(−�τ) = �(�τ )
∗, κn(�τ ) for n odd and n even

can be expressed, respectively, as

κ2m+1(�τ ) = 2i
m∑

i=0

c2m+1,iIm�
((

m + 1
2

− i
)
�τ

)

(E14)

and

κ2m(�τ ) = 2
m−1∑

i=0

c2m,iRe�((m − i)�τ ) , (E15)

where�(0) = ln K(0) = 0 is used in Eq. (E15). Note that,
if we write the propagator as K(t) = a(t)eiϕ(t) with a(t)
and ϕ(t) real, then Re�(t) = ln a(t) and Im�(t) = ϕ(t),
implying that the cumulants with odd order are related to
the phase of K(t), while the cumulants with even order
are related to the amplitude of K(t). Recently, an efficient
method for estimating the overlap amplitude of two pure
states has been proposed [128]. Such a method might be
utilized for evaluating the cumulants with even order.

3. Quantum power method for moment and cumulant

As shown explicitly in the previous section, the nth
moment μn can be approximated as a linear combina-
tion of the Feynman propagator K(t), i.e., the expectation
value of the time-evolution operator Û(t), evaluated at dif-
ferent time variables t(n)i = ( n

2 − i
)
�τ for i = 0, 1, . . . , n.

Similarly, the nth cumulant κn can be approximated as a
linear combination of �(t), i.e., logarithm of the Feyn-
man propagator K(t), evaluated at different time variables
t(n)i . Therefore, an important quantity here is again the
time-evolution operator Û(t).

To implement on quantum computers, the time-
evolution operator is further decomposed approximately
by using the symmetric Suzuki-Trotter decomposition as
in Eq. (7). However, at this point, it is crucially important
to recall the argument given in Sec. III B 4 and Appendix
D. Although the time-evolution operator Û(t) evaluated at
time t(n)i = ( n

2 − i
)
�τ satisfies that

Û
((n

2
− i
)
�τ

)
=
[

Û
(
�τ

2

)]n−2i

, (E16)

and thus the approximated nth moment μn(�τ ) in Eq. (E9)
is equivalent to

μn(�τ ) =
n∑

i=0

cn,i

〈[
Û
(
�τ

2

)]n−2i
〉

, (E17)

these are no longer generally correct when the time-
evolution operators are approximated by the Suzuki-
Trotter decomposition, i.e.,

Ŝ(p)2m

((n
2

− i
)
�τ

)
�=
[

Ŝ(p)2m

(
�τ

2

)]n−2i

. (E18)

Therefore, the Feynman propagator K(t(n)i ) in Eq. (E9) can
be approximated either as

K(t(n)i ) =
〈
Ŝ(p)2m

((n
2

− i
)
�τ

)〉
+ O(�2m+1

τ ) (E19)

or

K(t(n)i ) =
〈[

Ŝ(p)2m

(
�τ

2

)]n−2i
〉

+ O(�2m+1
τ ). (E20)

If the Feynman propagator K(t(n)i ) is approximated as in
Eq. (E20), the nth moment μn is given by

μn =
n∑

i=0

cn,i

〈[
Ŝ(p)2m

(
�τ

2

)]n−2i
〉

+ O(�2
τ )+ O(�2m

τ )

(E21)

and thus the lowest-order symmetric Suzuki-Trotter
decomposition Ŝ(p)2m with m = 1 can be adopted (see
Sec. II B). This approach is suitable for the calculations
of higher-order moments and cumulants. On the other
hand, if the Feynman propagator K(t(n)i ) is approximated
as in Eq. (E19), the higher-order symmetric Suzuki-Trotter
decomposition Ŝ(p)2m is required. As discussed in Appendix
D, in order to evaluate the nth moment μn with the con-
trolled accuracy, the order of the symmetric Suzuki-Trotter
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decomposition Ŝ(p)2m must be 2m � n [see Eq. (D12)]. In this
case, the systematic error is O(�2

τ ), i.e.,

μn =
n∑

i=0

cn,i

〈
Ŝ(p)2m

((n
2

− i
)
�τ

)〉
+ O(�2

τ ). (E22)

Therefore, this approach is not suitable for large n but
is more preferable than the other approach when n � 4,
assuming p = 3 in the symmetric Suzuki-Trotter decom-
position. Since the cumulant κn can be expressed in terms
of the moments {μk}k�n as in Eq. (E7), the same argument
is applied for the cumulant.

4. First and second moments

The first and second moments are the most fundamental
quantities for many practical purposes because μ1 = 〈Ĥ〉
is the average of the energy and μ2 = 〈Ĥ2〉 is related to the
variance of the energy. The first moment 〈Ĥ〉 is directly
evaluated by measuring each term of the Hamiltonian Ĥ
on quantum computers. Perhaps, 〈Ĥ2〉 could also be eval-
uated in the same way, although terms to be measured are
increased by a factor of O(N ), assuming that a Hamilto-
nian Ĥ is local. The quantum power method can provide
an alternative approach to evaluate these quantities with
the same amount of resource.

From Eqs. (E10) and (E11), we can approximate the first
and second moments μ1 and μ2 as

μ1(�τ ) = − 2
�τ

Im
〈
Û
(
�τ

2

)〉
(E23)

and

μ2(�τ ) = 2
�2
τ

[
1 − Re

〈
Û (�τ )

〉]
, (E24)

respectively. This is already remarkable because the sec-
ond momentμ2 is also estimated simply by the expectation
value of a single time-evolution operator. To evaluate these
quantities on quantum computers, the time-evolution oper-
ator Û(�τ ) is approximated by the lowest-order symmetric
Suzuki-Trotter decomposition Ŝ2(�τ ) (see Appendix E 3).
Therefore, in the quantum power method, the first and
second moments μ1 and μ2 are estimated simply by
evaluating Im

〈
Ŝ2
(
�τ
2

)〉
and Re

〈
Ŝ2 (�τ )

〉
, i.e.,

μ1(�τ ) ≈ − 2
�τ

Im
〈
Ŝ2

(
�τ

2

)〉
(E25)

and

μ2(�τ ) ≈ 2
�2
τ

[
1 − Re

〈
Ŝ2 (�τ )

〉]
, (E26)

FIG. 20. Quantum circuit to evaluate Re〈�|Ŝ2(�τ )|�〉 or
Im〈�|Ŝ2(�τ )|�〉. θ in the circuit denotes the phase gate
such that θ̂ |0〉 = |0〉 and θ̂ |1〉 = eiθ |1〉. Since P0 − P1 =
Re[eiθ 〈�|Ŝ2(�τ )|�〉], one can evaluate Re〈�|Ŝ2(�τ )|�〉 if θ =
0 and Im〈�|Ŝ2(�τ )|�〉 if θ = −π/2 from the difference of the
probabilities P0 and P1. Here, Pb is the probability for finding a
bit b (= 0, 1) by measuring the ancilla qubit.

respectively. Although we have to introduce an ancilla
qubit (see Fig. 20), μ1 = 〈Ĥ〉 and μ2 = 〈Ĥ2〉 can thus
be estimated with exactly the same amount of resource. If
noise in quantum devices is not destructively serious, this
approach based on the quantum power method might be
more suitable than the direct approach measuring all terms
in Ĥ and Ĥ2.

Figure 21 shows the numerical results of μ1 and μ2
evaluated from Eqs. (E25) and (E26) for the spin-1/2
Heisenberg model defined in Eq. (65) with two differ-
ent quantum states. We also show the results obtained by
employing the first-order Richardson extrapolation, i.e.,

μn(1)(�τ ) = h2μn(�τ/h)− μn(�τ )

h2 − 1
(E27)

for n = 1 and 2, which expects that the systematic error
scales as O(�4

τ ), instead of O(�2
τ ) without the Richardson

extrapolation. Our numerical simulations clearly demon-
strate that the systematic errors are well controlled and the
results converge smoothly to the exact values in the limit
of �τ → 0. The quantum power method for the first and
second moments could be useful to, e.g., the energy vari-
ance minimization for optimizing a parametrized quantum
circuit [129].

Here, we only consider the first and second moments,
but the higher-order moments can be similarly evaluated.
For example, the third and fourth moments are given as

μ3(�τ ) = 2
�3
τ

[
Im
〈
Û
(

3�τ

2

)〉
− 3Im

〈
Û
(
�τ

2

)〉]

(E28)

and

μ4(�τ ) = 2
�4
τ

[
Re
〈
Û (2�τ)

〉
− 4Re

〈
Û (�τ )

〉
+ 3
]

,

(E29)

respectively. To implement these on quantum computers,
Û (�τ ) is now approximated by using the higher-order
Suzuki-Trotter decomposition Ŝ(p)4 (�τ ) with m = 2 (also
see Fig. 19), which is still affordable.
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(a)

(b)

(c)

(d)

FIG. 21. (a),(b) The first moment μ1 and (c),(d) the second
moment μ2 as a function of �2

τ evaluated from Eqs. (E25)
and (E26), respectively, by numerical simulations for the spin-
1/2 Heisenberg model on an N = 16 qubit ring. For a quantum
state |�〉, we choose (a),(c) the singlet-pair product state |�A〉
in Eq. (80) and (b),(d) the VQE state |�VQE〉 in Eq. (88). The
results obtained by the first-order Richardson extrapolation (r =
1) are also plotted. The insets show the same results for the first-
order Richardson extrapolation but plotted against�4

τ . The exact
values are indicated at �τ = 0 with the filled symbols.

5. Imaginary-time evolution

For an application of the cumulants, we now consider
the imaginary-time evolution of a quantum state |�〉, i.e.,

|�(τ)〉 = e−τĤ/2|�〉√
〈�|e−τĤ|�〉

(E30)

for τ real. We introduce a simplified notation for the
imaginary-time-dependent expectation value as 〈· · · 〉τ ≡
〈�(τ)| · · · |�(τ)〉. Then, the energy expectation value with
respect to |�(τ)〉 is given as

E(τ ) = 〈Ĥ〉τ

= 〈�|e−τĤ/2Ĥe−τĤ/2|�〉
〈�|e−τĤ|�〉

= 〈Ĥe−τĤ〉
〈e−τĤ〉 . (E31)

Observing that E(τ ) = −(d/dτ) ln〈e−τĤ〉 = −(d/dτ)∑∞
n=0[(−τ)n/n!]κn, the CMX of the energy is given as

[126]

E(τ ) =
∞∑

n=0

(−τ)n
n!

κn+1. (E32)

Figure 22 shows the exact E(τ ) and the CMX of the
energy truncated at the nmaxth cumulant

Enmax(τ ) =
nmax−1∑

n=0

(−τ)n
n!

κn+1 (E33)

for the spin-1/2 Heisenberg model defined in Eq. (65),
where the VQE state |�VQE〉 in Eq. (88) is selected for the
quantum state |�〉 in Eq. (E30). The energy E(τ ) with the
exact imaginary-time evolution decreases monotonically
in τ , because the first derivative of E(τ ) is minus of the
energy fluctuation [126]

dE(τ )
dτ

= −
(
〈Ĥ2〉τ − 〈Ĥ〉2

τ

)
� 0, (E34)

where the equality satisfies if and only if |�VQE(τ )〉 is an
exact eigenstate (e.g., the ground state) of Ĥ. On the other
hand, due to the truncation of the series at finite order,
Enmax(τ ) at large τ diverges to −∞ for even nmax � 2 or to
+∞ for odd nmax � 3. Note that E2(τ ) = κ1 − κ2τ is the
tangent line of E(τ ) at τ = 0. We also find that the con-
vergence of Enmax(τ ) to the exact ground-state energy E0
with respect to the power exponents nmax in the cumulants
required is rather slower, as compared with the Krylov-
subspace diagonalization with either MB = 1 or MB = 9
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(a) (b)

FIG. 22. (a) Energy expectation value E(τ ) with respect to the exact imaginary-time evolution of |�VQE〉 (black solid line) and the
CMX energy Enmax(τ ) with various truncation order nmax (symbols) as a function of the imaginary time τ for the spin-1/2 Heisenberg
model on an N = 16 qubit ring given in Eq. (65). For comparison, the energies estimated with the Krylov-subspace diagonalization
involving |�VQE〉 as a reference state with MB = 1 for 1 � n � 4 (blue horizontal lines) and with MB = 9 for 1 � n � 3 (red horizontal
lines) are shown. These are the same results in Fig. 5. Here, n = dimKn/MB, i.e., the dimension of the Krylov subspace Kn per block
size MB (for details, see Sec. V C). (b) Same as (a) but an enlarged plot for 0 � τJ � 1.5.

discussed in Sec. V C. This is not quite surprising because
the form of E(τ ) in Eq. (E33) is an expansion around τ =
0, which is analogous to the high-temperature expansion.

Finally, it should be noted that recently several schemes
different from the quantum power method to evaluate 〈Ĥn〉
are proposed and demonstrated with various CMX meth-
ods for quantum-chemistry Hamiltonians [130] and with
the Lanczos method for Heisenberg Hamiltonians [131].

APPENDIX F: LANCZOS METHOD

In this appendix, we briefly outline the Lanczos method
with an emphasis on its aspect as a moment method
[132,133], i.e., a potential application of the quantum
power method.

1. Lanczos tridiagonal matrix and Hamiltonian
moment

The Lanczos method generates a sequence of orthonor-
malized states {|qi〉}, satisfying 〈qi|qj 〉 = δij , from an
initial (reference) state |q1〉 = |�〉 recursively as

Ĥ|qi〉 = βi−1|qi−1〉 + αi|qi〉 + βi|qi+1〉, (F1)

with αi = 〈qi|Ĥ|qi〉, βi = 〈qi|Ĥ|qi+1〉, β0 ≡ 0, and |q0〉 ≡
0. After obtaining {|qi〉}n

i=1, the Hamiltonian Ĥ can be

represented as a tridiagonal matrix [Tn]ij = 〈qi|Ĥ|qj 〉 as

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1
β1 α2 β2

β2 α3
. . .

. . . . . .
βn−1

βn−1 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (F2)

The matrix elements {αi} and {βi} can also be con-
structed recursively using the Hamiltonian moments [132,
133]. Following Ref. [132], {αi} and {βi} are given in terms
of {μn} as

αi =
(Li−1

Li−2

)(Mi−2

Mi−3

)−1

+
(Mi−1

Mi−2

)(Li−1

Li−2

)−1

(F3)

and

β2
i =

( Li

Li−1

)(Li−1

Li−2

)−1

, (F4)

where Ln ≡ det Ln and Mn ≡ det Mn are determinants
of (n + 1)× (n + 1) Hankel matrices defined, respec-
tively, as [Ln]ij = μi+j −2 and [Mn]ij = μi+j −1, or more
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explicitly

Ln =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ0 μ1 μ2 · · · μn−1 μn
μ1 μ2 μ3 · · · μn μn+1
μ2 μ3 μ4 · · · μn+1 μn+2
...

...
...

...
...

...
μn−1 μn μn+1 · · · μ2n−2 μ2n−1
μn μn+1 μn+2 · · · μ2n−1 μ2n

⎤
⎥⎥⎥⎥⎥⎥⎦

(F5)

for n � 0 and

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1 μ2 μ3 · · · μn μn+1
μ2 μ3 μ4 · · · μn+1 μn+2
μ3 μ4 μ5 · · · μn+2 μn+3
...

...
...

...
...

...
μn μn+1 μn+2 · · · μ2n−1 μ2n
μn+1 μn+2 μn+3 · · · μ2n μ2n+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(F6)

for n � 0. Equations (F3) and (F4) hold for i � 1 pro-
vided that Mn and Ln with negative indices are defined as
M−1 = 1, M−2 = 0, and L−1 = 1. The Hankel matrices
Ln−1 and Mn−1 are identical, respectively, to S in Eq. (45)
and H in Eq. (44) if MB = 1. It is noticed in Eqs. (F3)
and (F4) that the Lanczos matrix elements αi and βi are
expressed in terms of the ratios of the Hankel determinants
whose matrix dimensions differ only by 1. The particu-
lar structure of the Hankel matrices Ln and Mn allows
us to evaluate the ratios of the determinants appearing in
Eqs. (F3) and (F4) recursively, as described in Appendix
F 2.

It is instructive to give the explicit forms of the first
few matrix elements of Tn. The first three matrix elements
required for constructing the 2 × 2 matrix T2 are given by

α1 = 〈Ĥ〉, (F7)

β1 =
√

〈Ĥ2〉 − 〈Ĥ〉2, (F8)

α2 = 〈Ĥ3〉 − 2〈Ĥ2〉〈Ĥ〉 + 〈Ĥ〉3

〈Ĥ2〉 − 〈Ĥ〉2
, (F9)

where 〈· · · 〉 = 〈q1| · · · |q1〉. Therefore, α1 and β2
1 are the

energy expectation value and the energy variance with
respect to the initial state |q1〉, respectively.

2. Ratio of Hankel determinants

We now describe a way to calculate recursively the ratio
of the determinants appearing in Eqs. (F3) and (F4). Let us
first review the determinant and the matrix-inversion for-
mulas for general matrices. Let An be an n × n matrix,
b be an n × 1 matrix, c be an n × 1 matrix, and d be

a 1 × 1 matrix (i.e., a scalar), and let us consider an
(n + 1)× (n + 1) matrix An+1 of the form

An+1 =
[

An b
cT d

]
. (F10)

If we define

r = d − cTA−1
n b, (F11)

the determinant of An+1 is given by

det An+1 = det
[

An b
cT d

]
= r det An, (F12)

and the inverse A−1
n+1 is given by

A−1
n+1 =

[
An b
cT d

]−1

=
[

A−1
n + (A−1

n b)(cTA−1
n )/r −A−1

n b/r
−cTA−1

n /r 1/r

]
. (F13)

Now we apply the above formulas to recursively eval-
uate the ratios of the determinants of Ln and Ln−1. Due
to its particular structure, Ln can be expressed in terms of
Ln−1 as

Ln =
[Ln−1 mn

mT
n μ2n

]
(F14)

with the following n-dimensional vector:

mT
n = (μn,μn+1, . . . ,μ2n−1). (F15)

From the formula in Eq. (F12), the ratio of the determinants
is given by

Ln

Ln−1
= det Ln

det Ln−1
= rn (F16)

with

rn = μ2n − mT
nL−1

n−1mn, (F17)

which involves the inverse L−1
n−1 whose dimension is less

than that of L−1
n by 1.
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The inverse matrix L−1
n can be calculated using

Eq. (F13). Starting with

L−1
0 = μ−1

0 , (F18)

L−1
n for n � 1 can be constructed from L−1

n−1 and mn
recursively as

L−1
n =

[Ln−1 mn
mT

n μ2n

]−1

=
[L−1

n−1 + (L−1
n−1mn)(L−1

n−1mn)
T/rn −L−1

n−1mn/rn

−(L−1
n−1mn)

T/rn 1/rn

]
,

(F19)

where (L−1
n )T = L−1

n is used. Thus, starting with the
known L−1

0 and using Eqs. (F17) and (F19), one can obtain
{rn} recursively as L−1

0 → r1 → L−1
1 → r2 → L−1

2 →
r3 → · · · .

It should be noted that Eq. (F17) involves a matrix-
vector multiplication and, in addition, Eq. (F19) involves
a rank-1 update. Therefore, the complexity for comput-
ing the ratio of determinants in Eq. (F16) is O(n2). This
is more efficient when n is large because the direct cal-
culation of a determinant from scratch, e.g., by using the
LU decomposition, requires O(n3) operations. Noticing
that [Ln]ij = μi+j −2 while [Mn]ij = μi+j −1, the similar
recursive formula for Mn can be readily derived simply
by replacing the indexes for the moments in the above as
{μi}2n

i=0 → {μi+1}2n
i=0.
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