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Generalized contextuality refers to our inability of explaining measurement statistics using a context-
independent probabilistic and ontological model. On the other hand, measurement statistics can also be
modeled using the framework of general probabilistic theories (GPTs). Here, starting from a construction
of GPTs based on a Gleason-type theorem, we fully characterize these structures with respect to their
permission and rejection of generalized (non)contextual ontological models. It follows that in any GPT
construction the three insistence of (i) the no-restriction hypothesis, (ii) the ontological noncontextuality,
and (iii) multiple nonrefinable measurements for any fixed number of outcomes are incompatible. Hence,
any GPT satisfying the no-restriction hypothesis is ontologically noncontextual if and only if it is sim-
plicial. We give a detailed discussion of GPTs for which the no-restriction hypothesis is violated, and
show that they can always be considered as subtheories (subGPTs) of GPTs satisfying the hypothesis. It
is shown that subGPTs are ontologically noncontextual if and only if they are subtheories of simplicial
GPTs of the same dimensionality. Finally, we establish as a corollary the necessary and sufficient condition
for a single resourceful measurement or state to promote an ontologically noncontextual (i.e., classical)
general probabilistic theory to an ontologically contextual (i.e., nonclassical) one under the no-restriction
hypothesis.

DOI: 10.1103/PRXQuantum.2.010330

I. INTRODUCTION

A promise of classical theories is to give a probabilis-
tic account for the statistics resulted from prepare-and-
measure experiments on single physical systems without
relying upon their particular operational procedure, or
context. Contextuality [1–4], and more recently, general-
ized contextuality [5], refer to no-go theorems dismissing
context-independent classical models for measured statis-
tics. Hence, a plausible definition of nonclassicality of
statistics is through their generalized contextuality [6,7].

Besides probabilistic (or ontological) models, statistics
from operational procedures can also be modeled using
the framework of general probabilistic theories (GPTs),
an example of which is quantum theory [8–14]. Nonclas-
sical data thus mean that none of their potential GPT
explanations can be translated into a noncontextual onto-
logical model [5]. Recently, Kunjwal and Spekkens [15]
and Schmid et al. [16] provided noncontextuality inequal-
ities for detection of possible nonclassical statistics. In this
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paper, we determine which GPTs for physical phenom-
ena allow and which ones disallow noncontextual onto-
logical models. More specifically, we prove a Gleason-
type theorem for construction of GPTs and show that, in
finite dimensions, any GPT that satisfies the no-restriction
hypothesis [10] must possess simplex sets of nonrefin-
able effects and states to be ontologically noncontextual.
We then discuss the scenario in which the no-restriction
hypothesis is removed.

The practical significance of our analysis lies within
a markedly interesting context. Referring to the scenario
of quantum computations with Clifford circuits, stabilizer
input states, and Pauli measurements, it is well known
that such computations authorize a classical model mak-
ing them classically efficiently simulatable [17–20]. This
possibility is removed by providing only a single suitable
nonstabilizer input state (or measurement) that “magi-
cally” enables fault-tolerant universal quantum computing
[20–24]. Thus, there are scenarios in which only a single
extra preparation or measurement procedure is resource-
ful in that it simultaneously gives rise to two phenomena.
First, it generates data that render a classical model impos-
sible. Second, it causes a significant improvement in the
performance of some information-processing protocols.
Our analysis here is motivated by the first phenomenon,
which is a prerequisite of the second.

The study of resources for information-processing
purposes commonly begins with assuming an underlying
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theory. Thinking of quantum theory, this is beauti-
fully done within the formalism of quantum resource
theories [25], such as entanglement [26], athermality
[27–32], coherence [33–36], asymmetry [37–39], non-
Markovianity [40], and dynamical correlations [41]. Here,
we instead relax the assumption of a specific underly-
ing theory by adopting the generic formalism of GPTs
and use our first result to obtain the necessary and suffi-
cient criterion to distinguish between classicality and non-
classicality of a single resourceful measurement or state
leading to potential nonclassical information-processing
advantages [7].

II. ONTOLOGICAL MODELS

Throughout this paper, we are interested only in the
prepare-and-measure experiments on single systems that
can be described in finite dimensions. Operationally, the
primitive elements of our physical description in any such
experiment are the laboratory prescriptions for prepara-
tions and measurements forming the collections P :={Pk}
and M:={Mj }, respectively [5]. The fundamental goal
in theoretical physics is to establish assignments between
these elements and mathematical objects endowed with a
set of rules to determine the outcome probabilities in each
measurement. A first generic step is to meaningfully assign
(not necessarily scalar) “sizes,” called measures, to mea-
surement outcomes. Given the finite set � of all outcomes,
a set ω of its subsets on which such assignments are well
defined is called the σ algebra of events and the pair (�,ω)

is named a measurable space; see Appendix A for a brief
review.

Ontological models go beyond the minimal promise
of theoretical physics by assuming an underlying ontic
variable space ϒ and assigning physical phenomena to
elements of reality. In this process, the operational ele-
ments, i.e., preparations and measurements, correspond
most generally to probabilistic preparations and measure-
ments of the ontic variable and thus, they are represented
by probability distributions and indicator functions over ϒ ,
respectively. More precisely, one defines also a σ algebra
υ on ϒ and designates “sizes” to members of both ω and
υ that are probabilities, also known as probability mea-
sures. Given the collections Y and Q of all probability
measures on (ϒ ,υ) and (�,ω), respectively, the ontologi-
cal model then hypothesizes the existence of convex linear
maps μ:P→Y and ξ :M→Q that assign the ontic state μP
to the preparation procedure P and the ontic measurement
ξM to the measurement procedure M [5]. Thus, for each
preparation,

μP : υ → [0, 1] and
∫

ϒ

dλμP(λ) = 1, (1)

and for each measurement,

ξM : ω×ϒ → [0,1] and ξM(�|λ) = 1 ∀λ ∈ ϒ . (2)

Then, the probability of a particular event X in a measure-
ment M given the preparation P can be obtained via Bayes’
rule,

p(X |P,M)=
∫

ϒ

dλμP(λ)ξM(X |λ). (3)

III. GENERAL PROBABILISTIC THEORIES

A second approach to the abstraction of operational sce-
narios is known as GPTs. Their constructions begin with
assuming a vector space V whose elements can (at least
partially) be ordered and on which an inner product 〈·,·〉
can be defined [8–14]. In the example of quantum the-
ory, this vector space is the Banach space L(H ) of all
bounded linear Hermitian operators on a Hilbert space H
with the usual Hilbert-Schmidt inner product. In contrast
to ontological models, in this case, to each measurement
event X ∈ω we assign a vector as its “size”; Appendix A.
Hence, instead of a probability measure we have a proba-
bility vector-valued measure (PVVM) which is a function
E:ω→V satisfying (i) E(X )�0 for all X ∈ω, (ii) E(�)=U
for a fixed nonzero element U∈V called the unit element,
and (iii) E(∪iXi)=

∑
iE(Xi) for all sequences of disjoint

events Xi∈ω. An easy way to make sense of these con-
ditions is by comparing a PVVM to a probability measure
where after the substitutions V �→R and U�→1 the former
simply reduces to the latter; see Appendix A. Each vector
E(Xi) is called an effect where their collection is denoted
by E . The familiar quantum counterpart of a PVVM is a
positive operator-valued measure (POVM) [42,43].

Suppose that along with a measurement having E(X )

as an effect the experimenter tosses a (biased) coin with
probability p for heads and accepts the occurrences of X
only if the coin is heads. Assuming that the product rule of
probability holds, the effect corresponding to the accepted
events is given by pE(X ). Hence, it is reasonable to assume
that given any operationally legitimate effect E(X ), the
effect pE(X ) for any real number p∈[0, 1] is also allowed.
Further, suppose that E1 and E2 are two PVVMs and our
experimenter performs E1 if the coin is heads and E2 oth-
erwise. The resulting PVVM is thus Ep :=pE1+(1−p)E2
implying that the set of all effects E is convex. In order
for the latter to be a well-defined summation, E1 and E2
have to possess a common domain. Consequently, through-
out this paper we assume that the event space ω is fixed.
Finally, we assume that E spans V . These allow us to state
a Gleason-type theorem for GPTs as follows.

Theorem 1. Any generalized probability measure q:
E→[0, 1] satisfying (i) q[E(X )]�0 for all effects E(X )∈E ,
(ii) q(U)=1, and (iii) q[

∑
iE(Xi)]=

∑
iq[E(Xi)] for all
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sequences of effects in E that satisfy
∑

iE(Xi)�U, must be
of the form q(A)=〈A,B〉 for all A∈V , for a unique B∈V ,
which is normalized in the sense that 〈U,B〉=1.

As presented in Appendix B, Theorem 1 is simply
proven by extending probability measures on E to the
whole V and using Riesz’s representation theorem.

Given effect space E , the state space of the GPT can be
delineated using Theorem 1 in conjunction with the no-
restriction hypothesis [10], i.e., that given PVVM space E
all definable probability measures (q’s) on it correspond to
physically valid states, as

S := {	 ∈ V|〈E(X ),	〉 � 0 ∀E(X ) ∈ E ,〈U,	〉 = 1}. (4)

We denote a GPT by its pair of PVVM and state space as
T :=(E ,S).

Here, instead of a priori assuming the probability rule
of GPTs, we derive it from a set of reasonable assumptions
following in the footsteps of Gleason [44], Busch [45], and
Caves et al. [46]. Moreover, it is argued, for example in
Refs. [11,47,48], that the no-restriction hypothesis is of no
physical basis and thus, it is desirable to drop it from GPT
constructions. We note that, such a “relaxation” comes at a
price: one has to assume a priori also the state assignments,
meaning trading one assumption for another. Indeed, there
is no objection to not imposing the no-restriction hypoth-
esis, however, we show in Appendix C that any GPT that
does not satisfy the no-restriction hypothesis is obtained
as a subtheory of possibly (infinitely) many GPTs that do
satisfy it by imposing appropriate further constraints, thus
named a subGPT. To give an example, consider quantum
mechanics as a specific GPT that satisfies the no-restriction
hypothesis and from which the subGPT of Gaussian quan-
tum mechanics is obtained by restricting the effect and
state spaces to those elements possessing Gaussian Wigner
representations [49]. Notably, quantum theory is not the
unique GPT containing Gaussian quantum mechanics, for
it is also a subtheory of classical statistical (or Liouville)
mechanics [49].

Within the rest of this paper, we use GPT and subGTP
to distinguish between theories that do and do not comply
with the no-restriction hypothesis, respectively.

IV. BROAD (NON)CONTEXTUALITY

Irrespective of which approach is adopted to explain
experimental data, be it an ontological model or a
(sub)GPT, broad noncontextuality (as defined below)
is a desirable hypothesis about the description. Begin-
ning with the statistical equivalence assumption [5,42],
two preparations P1,P2∈P are statistically indiscernible
and equivalent, P1∼=P2, if and only if for every mea-
surement procedure M∈M and every event X ∈ω it
holds that p(X |P1,M)=p(X |P2,M). Similarly, two mea-
surements M1,M2∈M are statistically indiscernible and

FIG. 1. The diagrammatic representation of different model
constructions for operational descriptions of experiments. The
dotted arrow represents the detour approach for building NCOMs
for GPTs. A GPT that admits a NCOM is called ontologically
noncontextual.

equivalent, M1∼=M2, if and only if for every prepara-
tion procedure P∈P and every event X ∈ω it holds that
p(X |P,M1)=p(X |P,M2). These relations partition the col-
lections of preparations and measurements into equiva-
lence classes e(P) and e(M) for each preparation P and
measurement M. The particular way in which a state or
measurement is experimentally realized corresponds to an
element within an equivalence class and it is called a con-
text. The broad noncontextuality hypothesis states that our
models of physical phenomena aiming only at reproducing
the statistics should depend only on equivalence classes
rather than individual contexts, because statistics do not
carry any information about the latter; see, e.g., Ref. [46].

An ontological model, which is noncontextual in the
broad sense is called a noncontextual ontological model
(NCOM) and satisfies

P1 ∼= P2 ⇔ μP1 = μP2 ,

M1 ∼= M2 ⇔ {ξM1(X |λ)} = {ξM2(X |λ)}. (5)

Similarly, broad noncontextulaity of (sub)GPTs reads as

P1 ∼= P2 ⇔ P1, P2 �→ 	,

M1 ∼= M2 ⇔ M1, M2 �→ {E(X )}. (6)

Note that, broad noncontextuality is built in to our
GPT and subGPT constructions. In general, however, it
is possible to construct (sub)GPTs that do not respect
the broad noncontextuality hypothesis by allowing for
context-dependent effect and state assignments. Impor-
tantly, it follows from our constructions here that every
NCOM is a (sub)GPT while the converse is not true. In
this paper, our aim is to determine which (sub)GPTs do
and which ones do not admit an NCOM; see Fig. 1.

V. ONTOLOGICAL (NON)CONTEXTUALITY OF
(SUB)GPTS

As we infer from experiments in the quantum regime,
that to take a direct route and build a NCOM to describe
all possible physical experiments seems very unlikely. Yet
we may ask if it is possible to take a detour, as shown
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in Fig. 1, and construct ontological models of (sub)GPTs,
noting that, with appropriate care, such models will inherit
the noncontextuality from the theory leading to NCOMs.
For quantum theory as a GPT the answer to our question
is in negative [6,50]. In the case of a generic (sub)GPT,
we replace the preparation and measurement procedures P
and M in Eqs. (1)–(3), with their representatives in the the-
ory, 	∈S and {E(X )}⊂E , respectively. Hence, there should
exist injective maps η:S→Y and ζ :E→Q that assign the
unique ontic state η	 and ontic measurement ζE to each
state vector 	 and PVVM E, respectively, such that for all
λ∈ϒ and all events X ∈ω,

η	(λ) � 0, ζE(X |λ) ∈ [0,1], (7)

and satisfy

∫
ϒ

dλη	(λ) = 1, and ∀λ ζE(�|λ) = 1. (8)

The probability of a particular event X in a measurement
M given the preparation P should then be obtained as

p(X |P,M)=p(X |	, E)=
∫

ϒ

dλη	(λ)ζE(X |λ). (9)

Within recent literature a noncontextual (sub)theory usu-
ally refers to a (sub)theory that admits an NCOM [5].
For clarity, here we call such a (sub)theory ontologically
noncontextual and reserve the term noncontextuality for
the broader notion. We note also that any ontologically
noncontextual (sub)theory is noncontextual while the con-
verse is not true. For instance, quantum theory satisfies
broad noncontextuality hypothesis but, it is not ontologi-
cally noncontextual as it contains effects and states that do
not possess a unique convex decomposition in terms of the
respective extremal elements [6,50]. The latter is clarified
by the following analysis.

A. GPTs

We now analyze ontological noncontextuality of GPTs.
Recall that the maps μ and ξ , and hence η and ζ , are
convex linear. Using the fact that S and E both span V ,
η and ζ can uniquely be extended to the whole space V .
Then, using Riesz’s theorem we find that they must be of
the forms η	(λ)=〈	, F(λ)〉 and ζE(X |λ)=〈E(X ), D(λ)〉
for F(λ), D(λ)∈V . Satisfying Eq. (8) then requires that∫
ϒ

dλF(λ)=U and 〈U, D(λ)〉=1 for all λ ∈ ϒ . Thus,
F :={F(λ)} resembles a PVVM whereas D:={D(λ)} is a
subset of GPT’s state space. The probability rule of Eq. (9)
then implies that F and D are dual frames [50,51] for

representation of vectors in V so that

	=
∫

ϒ

dλη	(λ)D(λ), and E(X )=
∫

ϒ

dλF(λ)ζE(X |λ).

(10)

After taking into account that state vectors are dual to
measurement vectors and a few more simple steps (see
Appendix E) we find that F and D must be generating sets
of closed convex sets E and S , respectively, i.e., E=convF
and S=convD. In light of Eq. (10), we conclude from the
latter that the extremal or pure states 	∈D and the extremal
or sharp effects E(X )∈F , i.e., states and effects that can-
not convexly be decomposed into other states and effects,
must be represented by Dirac delta measures over the ontic
space ϒ , that is, (i) D�	 �→ηδλ	(λ) for some λ	∈ϒ and
(ii) F�E(X )� →ζ δλE(X )

(λ) for some λE(X )∈ϒ , where δa(β)

equals 0 if a/∈β and equals 1 if a∈β for any measurable
subset β.

The condition (i) is referred to as ontic determinism,
which means a pure preparation [10] represented by a pure
state determines the ontic value λ completely. Accordingly,
we call condition (ii) outcome determinability, that is, in
sharp measurements [52] represented by sharp effects of
the theory, specifying the ontic variable determines the
outcome of the measurement with certainty. Ontic deter-
minism and outcome determinability enforce that in any
ontologically noncontextual GPT state and effect vectors
possess unique decompositions into nonrefinable extremal
elements. Specifically, it is clear from Eq. (10) that requir-
ing a unique ontic representation η	(λ) for a state vector
	 simply means a unique convex decomposition into pure
states. Considering sharp effects that cannot be refined
(or atomic effects [10]) and denoting their collection by
ENR⊂F , it follows also that the convex decomposition of
any effect into elements of ENR must be unique. The fol-
lowing theorem characterizes GPTs for which these crite-
ria are met and thus, they are ontologically noncontextual.
For a detailed proof, see Appendix E.

Theorem 2. A GPT is ontologically noncontextual if and
only if its pure states and nonrefinable sharp effects each
form a complete basis for the space V . Equivalently, the
GPT must be simplicial meaning that S and convENR are
simplexes.

B. SubGPTs

As we discuss earlier, subGPT are GPTs with extra
restrictions on their effect and state spaces. We now deter-
mine the condition for a subGPT to admit a NCOM.

Theorem 3. Any subGPT Tsub=(Esub,Ssub) over Vsub
admits a NCOM if and only if it can be thought of as a sub-
theory of an ontologically noncontextual GPT T =(E ,S)

over V and dimVsub= dimV=card ϒ .
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The proof of Theorem 3 as detailed in Appendix F, sim-
ilar to that of Theorem 2, uses the extensions of maps η

and ζ to the whole Vsub, which partially explains the condi-
tion dimVsub= dimV . Further clarification is also provided
via two examples in Appendix G. On one hand, we show
that Spekkens’ toy model [53] is a four-dimensional sub-
GPT admitting a NCOM in four dimensions and hence
considered to be a classical subGPT; cf. Appendix 1. On
the other hand, the stabilizer rebit theory is shown to
be a three-dimensional subGPT the smallest ontological
model admitted by which is four dimensional and thus,
ontologically contextual; cf. Appendix 2.

From our discussion, it follows that the stabilizer rebit
subGPT cannot be regarded classical despite the fact that it
is classically simulatable in four dimensions. The caveat of
the four-dimensional ontological model is that the excess
dimension gives room for multiple ontic states that are sta-
tistically indiscernible under the subGPT’s measurements,
hence violating the broad noncontextuality hypothesis of
Eq. (5), specifically, P1∼=P2�μP1=μP2 ; see Appendix
2. Intuitively, this is the case whenever dimV> dimVsub.
Classicality of (sub)GPTs thus requires both their classical
simulatability and that there are no in-principle inaccessi-
ble parameters at the ontological level, i.e., the (sub)GPT
is ontologically complete. The latter is in accordance with
Leibniz’s methodological principle of the ontological iden-
tity of empirical indiscernibles [54,55]. We emphasize that
this constraint does not conflict with NCOM approaches to
experimental data presented, e.g., in Refs. [7] and [16]; see
Appendix H for a further discussion.

VI. RESOURCES AND CONTEXTUALITY IN
GPTS

We now consider the concept of resources at a funda-
mental level. Imagine experiments with sets of prepara-
tions P and measurements M, and an experimenter who
has devised a GPT T =(E ,S) capable of explaining the
statistics obtained in the experiments. We call the set of
all possible measurements E the free measurements and
the set of all possible preparations S the free states. We
remark that in quantum resource theories [25–41], free
states and measurements are subsets of all possible states
and measurements. Here, in contrast, all possible prepara-
tions and measurements are defined to be free and nonfree
(or resourceful) ones are those yet to be discovered and
thus not specified in the GPT.

Now, suppose that the experimenter discovers another
preparation or measurement procedure that was not previ-
ously known to exist. Naturally, the experimenter has to
come up with a new theory T �:=(E�,S�) to reproduce also
the new measurement data. We ask how T � compares to
T in terms of (non)classicality. We consider only the case
wherein the extended theory T � is required to satisfy the
no-restriction hypothesis. Then, by Theorem 2, given the

new sets of measurements and preparations, M� and P�,
if the nonrefinable sharp measurements of the new GPT
form a complete set of PVVMs over a vector space V�,
then the GPT will be ontologically noncontextual. In such
scenarios, even though the newly discovered element is a
resource, all the measured statistics can be explained in
classical terms. Hence, we call such a bonus procedure a
classical resource. On the other hand, a resourceful ele-
ment may enforce a nonclassical extension of the older
theory, where it is called a nonclassical resource. The
conditions for a single resource to dictate the use of a non-
classical model for an explanation of possible statistics is
provided below and proved in Appendix I.

Theorem 4. Suppose that the set of free measurements
M and preparations P are represented by PVVMs E
and states S in some classical GPT T =(E ,S). Given a
single nonrefinable bonus measurement M� (preparation
P�), the following are equivalent: (i) T � is ontologically
contextual; (ii) M� (P�) is a nonclassical resourceful mea-
surement (preparation); (iii) the PVVM E� (state 	�) non-
convexly overcompletes the nonrefinable effects ENR (states
S) into E�

NR (S�); (iv) E� (	�) lies within V�=V but E� /∈E
(	� /∈S).

VII. CONCLUSIONS

We consider the phenomenon of generalized contextu-
ality in general probabilistic theories and show that any
GPT satisfying the no-restriction hypothesis is ontologi-
cally noncontextual if and only if it is simplicial. We also
discuss extensively the case of subGPTs that do not com-
ply with the no-restriction hypothesis. Our results show
that any GPT can at most subsume two of the three
properties of satisfying the no-restriction hypothesis, onto-
logical noncontexuality, and possessing multiple nonrefin-
able measurements. Some examples for each possibility
already exist, e.g., dropping the no-restriction hypothesis
that results in subGPTs as Gaussian quantum mechan-
ics [49], giving up on the ontological noncontextuality as
in full quantum theory, or capitulating incompatibility of
measurements as in classical mechanics.

A secondary aspect of our work is to provide a new route
towards the characterization of the nonclassical power of
individual operational elements in information-processing
protocols by noting that many nonclassical advantages,
though describable by quantum formalism, do not depend
on the specifically assumed underlying theory. As an
example, in quantum computations we can draw con-
clusions about their nonclassicality (similarly to the Bell
scenario) by merely relying on the classical inputs and
outputs and the hardness promises of the computational
complexity theory. We thus arrive at two conclusions.
First, a nonclassical advantage in a quantum scenario
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also implies a nonclassical advantage in any postquan-
tum theory, including those formulated within the GPT
framework. Second, the resource formalism suitable for
explaining the nonclassical advantages should describe a
fundamental theory-independent property, i.e., one that can
be certified merely by relying on the measurement statis-
tics. Contextuality is one such property that ipso facto
forbids a classical description of the processes. Combin-
ing these two, in our opinion, the study of contextuality of
GPTs and the contextual power of single operational ele-
ments is a good candidate for a new approach towards a
resource theoretic resolution to the fundamental problem
of sufficient resources for quantum computations.
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Note added.—Recently, we became aware of two inde-
pendent works by Schmid et al. [56] and Barnum and Lami
[57]. In the former, the concept of simplex-embeddable
GPTs, which is equivalent to our notion of ontologi-
cally noncontextual subGPTs, is introduced. Accordingly,
a result similar to Theorem 3 is presented. Here, we further
develop the idea by identifying the relationship between
the dimensionalities of subGPTs and ontological mod-
els. The latter work discusses a result overlapping with
Theorem 2. We also became aware of a recent work by
Gitton and Woods [58] that report a criterion for noncon-
textuality with a bound on the size of the ontic spaces.
Furthermore, in a recent paper, Wright and Weigert [59]
present a theorem similar to our Theorem 1. Both of these
researches have been performed independently of ours.

APPENDIX A: A BRIEF REVIEW OF MEASURES

The way we lean about the notion of “size” in school
is a very basic one with value assignments that are real
or complex numbers. For example, we learn to calculate
the area (or the two-dimensional volume) of a rectangle
by multiplying its sides. We are taught later on that the
volume under some continuous function can be evaluated
by Riemannian integration. This very sensible approach is
methodological rather than conceptual.

In order to abstractize and henceforth generalize the
notion of “size,” we need to pursue the usual mathemat-
ical procedure of creating a mathematical structure. This
route consists of defining some proper sets of objects, some

minimal axioms on those sets that shape the structure, and
potentially some suitable functions on those sets. Once this
is done to capture “size,” we get to a mathematical struc-
ture known as measure theory. In the following, we briefly
review this procedure for interested physicists.

Suppose a set � is given. It turns out that “sizes” cannot
be defined for one such arbitrary set. Therefore, instead of
defining “sizes” for elements of �, we define them for ele-
ments of another set generated by �, called the σ algebra
over �.

Definition 1. Let � be a nonempty set. A σ algebra for �

is a subset ω of the power set 2� (i.e., the set of all subsets
of �) that satisfies the following axioms:

(i) ω contains �;
(ii) if X ∈ ω then �\X ∈ ω;

(iii) for any countable sequence {Xi ∈ omega}i∈N it holds
that ∪iXi ∈ ω.

Definition 2. The pair (�, ω) of an underlying set together
with a σ algebra on it is called a measurable space.

Now, one might be able to develop a sense of why the
axioms of the σ algebra make it possible to meaningfully
assign “sizes” to its elements. The main idea is that we do
have, in a sense, the notions of complementarity [axiom
(ii)] and union [axiom (iii)] of elements. The first one
allows us to understand the relative “sizes” of different ele-
ments, including the relative “size” to the whole collection
of elements [axiom (i)]. The second one allows us to grasp
the meaning of the “size” of a joint collection of elements.
We can now precisely state what we mean by “size.”

Definition 3. Given a measurable space (�, ω), a measure
μ is a function μ : ω → [0, ∞] such that

(i) μ(∅) = 0;
(ii) for any sequence of pairwise disjoint elements {Xi ∈

ω}i∈N it holds that

μ(∪iXi) =
∑

i

μ(Xi). (A1)

Here, by pairwise disjoint elements we mean Xi ∩ Xj =
∅ whenever i �= j . Again, a measure has a simple interpre-
tation. For convenience, we need the empty set to have a
“size” of zero. This way, we map the identity element of
union of sets to the additive identity element of R. This
is done by axiom (i). Next, we complete the similarity
between set union and addition over R by condition (ii),
which is called the additivity property.

It must be now clear that μ together with its underly-
ing space deliver all the properties we expect from “size”
assignments to objects in a meaningfully general sense.
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Definition 4. The triplet (�, ω, μ) is called a measure (or
measured) space.

Definition 5. The elements X of the σ algebra ω are called
measurable subsets of �.

A very useful measure, which is also used within the
main text, is Dirac’s delta measure. Given the measurable
space (�, ω), Dirac delta measure is defined as

δX (x) =
{

0 x /∈ X
1 x ∈ X , (A2)

where X ∈ ω is a measurable subset of � and x ∈ �.
Dirac delta measure has the “familiar” property that given
a measure f on (�, ω) we have

∫
�

f (x)δX (x)dx = f (X ). (A3)

Consider now the case where � is the set of all outcomes
of some measurement on some physical system. We can
then define events that are subsets of all possible outcomes.
For instance, in flipping a coin the outcomes are “heads”
or “tails” and the events are ∅, “heads,” “tails,” “heads ∨
tails.” The event ∅ is impossible whereas the event “heads
∨ tails” is certain. It is straightforward to see that the
event set can be identified with the power set of the set
of measurement outcomes, hence it can be regarded as a σ

algebra. As a result, each event is a measurable subset of
the set of all outcomes. This is, in fact, the case for all mea-
surements on all physical systems, motivating us to define
the following measure.

Definition 6. Given a measurable space (�, ω), a prob-
ability measure p is a measure whose range is the closed
interval [0, 1] and satisfies p(�) = 1.

Clearly, p carries the interpretation of a probability dis-
tribution over the space of events assigning a “size” to each
event that is equivalent to our belief of occurrence of that
event.

As mentioned in the main text, indeed, there is no partic-
ular reason to restrict the range of measure functions to that
of real intervals. Once we replace the range interval [0, 1]
of a probability measure with a subset of a vector space we
obtain a probability measure where its values are vectors
rather than real numbers, that is a probability vector-valued
measure, as defined in the main text. Note that the latter
holds provided we can identify a fixed identity element (U)
within the vector space.

APPENDIX B: PROOF OF THEOREM 1

Following the approach of Refs. [45,46], from the addi-
tivity property (iii) and that given any E ∈ E , the effect pE

for any real number p ∈ [0, 1] also belongs to E , it follows
that the map q is homogeneous over nonnegative ratio-
nal numbers, i.e., q(mE/n) = mq(E)/n for any E ∈ E and
m, n ∈ Z

+.
Next, suppose that E ∈ E and α, β ∈ [0, 1] with α <

β. Thus, αE and βE belong to E and αE < βE. It is
also clear that E′ := βE − αE = (β − α)E belongs to E .
Since βE = E′ + αE implies q(βE) = q(E′) + q(αE) and
q(E′) � 0 by requirement (i), we have q(αE) � q(βE).
That is, the map q preserves the order of elements within E .

Now consider a pair of increasing and decreasing
sequences of rational numbers in the [0, 1] interval,
(αi)i and (βi)i, respectively, where both converge to the
same irrational value γ ∈ [0, 1]. From the order-preserving
property of q and its homogeneity over rational numbers
we obtain αiq(E) = q(αiE) � q(γ E) � q(βiE) = βiq(E).
Then by the pinching theorem we have q(γ E) = γ q(E),
that is, the map q must be linear.

Since q is a convex-linear functional that is defined on
a spanning convex subset (E) of a vector space (V), it can
be uniquely extended to a linear functional on the whole
vector space (V). Finally, by Riesz’s theorem, this linear
functional can be written as the inner product q(A) = 〈A,B〉
for a unique vector B ∈ V .

The normalization of B follows simply from require-
ment (ii) as q(U) = 〈U,B〉 = 1.

APPENDIX C: GPTS AS CONTAINERS FOR
SUBGPTS

Proposition 1. Any GPT Tsub defined on a vector space V
and identified by the pair Tsub:=(Esub,Ssub) of its physically
allowed PVVMs and states that does not satisfy the no-
restriction hypothesis is a subtheory of possibly (infinitely)
many extended GPTs that do satisfy it.

Proof. It follows from violation of the no-restriction
hypothesis that Ssub ⊂ S , where S is defined as

S := {	 ∈ V|〈	, E(X )〉 � 0 ∀E(X ) ∈ Esub,〈U,	〉 = 1}.
Hence, Tsub is a subtheory of T := (Esub,S), where T
satisfies the no-restriction hypothesis; see Fig. 2(a). Alter-
natively, one can fix the state space and define the set of
effects as

E := {E ∈ V|〈	, E〉 ∈ [0, 1] ∀	 ∈ Ssub}.
Clearly this time Esub ⊂ E and thus Tsub is a subtheory
of T ′ := (E ,Ssub), where T ′ satisfies the no-restriction
hypothesis; see Fig. 2(b).

Finally, any GPT T ′′ := (E ′′,S ′′) such that Esub ⊂ E ′′ ⊆
E , Ssub ⊂ S ′′ ⊆ S , and E ′′ and S ′′ are dual sets, contains
Tsub as its subtheory; see Fig. 2(c). �
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(a) (b) (c)

FIG. 2. A heuristic representation of the cones containing
three possible GPTs sharing a subGPT. As described in the
proof of Proposition 1, (a) T = (Esub,S), where Ssub ⊆ S;
(b) T ′ = (E ,Ssub), where Esub ⊆ E ; (c) T ′′ = (E ′′,S ′′), where
Esub ⊆ E ′′ ⊆ E and Ssub ⊆ S ′′ ⊆ S . While the subGPT does not
satisfy the no-restriction hypothesis, the extended GPTs do sat-
isfy it, i.e., their effect and state spaces are dual to each other.
Note that the effect or the state space of all three GPTs can be
restricted in such a way to reproduce the given subGPT.

APPENDIX D: GENERATORS OF GPT STATE
AND EFFECT SPACES

Lemma 1. The pair (F ,D) mapping a GPT that satisfies
the no-restriction hypothesis to a NCOM must be the gen-
erating sets of the pair of closed convex sets (E ,S). That
is, E=convF and S=convD.

Proof. In order to have a NCOM, it is first required that
ζE(X |λ) = 〈E(X ), D(λ)〉 � 0 for all E ∈ E and all λ ∈ ϒ .
Therefore, in view of the no-restriction hypothesis as in
the definition of the GPT’s state space in Eq. (4) of the
main text and that 〈U, D(λ)〉 = 1 for all λ ∈ ϒ , we find that
D(λ) ∈ S , which implies convD ⊆ S . Second, by impos-
ing the second requirement of a noncontextual ontological
model on Eq. (10), that is, η	(λ) � 0 for all 	 ∈ S and all
λ ∈ ϒ , we see that S ⊆ convD(λ). Combining together, it
must hold true that convD = S and thus, the set D is a
generating set of the GPT’s state space S .

Similarly, starting from the requirement η	(λ) =
〈	, F(λ)〉 � 0 for all 	 ∈ S and all λ ∈ ϒ for a NCOM
and noting that the set of effects is dual to the set of
states with

∫
ϒ

dF(λ) = U, we infer that F(λ) ∈ E and thus,
convF ⊆ E . Next, using the fact that ζE(X |λ) � 0 for all
E ∈ E and all λ ∈ ϒ in Eq. (10) of the main text, that is,

	=
∫

ϒ

dη	(λ)D(λ), and E(X )=
∫

ϒ

dF(λ)ζE(X |λ),

(D1)

we find that E ⊆ convF . Together, we have E = convF ,
meaning that the set F is a generating set of the GPT’s set
of allowed effects E . �

APPENDIX E: PROOF OF THEOREM 2

To give the proof of the theorem, we first need to state
and prove the following geometrically intuitive lemma.

Lemma 2. Given a nonconvexly overcomplete basis A =
{Ai} of vectors for an ordered vector space V , given that
elements of A belong to the positive pointed generating
cone C, there exists an element C ∈ convA such that its
convex decomposition into elements of A is not unique.

Proof of Lemma E. First, the overcompleteness of A
means that there exists a vector AJ ∈ A that is linearly
dependent on the elements in A \ AJ . Nonconvexly over-
completeness thus means that AJ possesses a nonconvex
decomposition AJ = ∑

i�=J αiAi in terms of other elements
of A such that at least one of the expansion coefficients αi
is negative.

Our proof of the lemma is constructive. We first
show that there exists a vector B ∈ convA such that B /∈
convA \ AJ and

B =
∑
i�=J

βiAi,
∑
i�=J

βi = 1. (E1)

Considering the vector AJ , if
∑

i�=J αi > 0 then we can
simply set B = AJ /

∑
i�=J αi. Otherwise, bearing in mind

that due to being an element of a positive cone all αi’s can-
not simultaneously be negative, we consider a coefficient
0 < α� ∈ {αi}i�=J that corresponds to the operator A� ∈
{Ai}i�=J . Define the operator B(p) := pAJ + (1 − p)A� =
p

∑
i�=J αiAi + (1 − p)A�. Then, for the expansion coeffi-

cients of B(p) it holds true that
∑

i�=J βi(p) = p
∑

i�=J αi +
(1 − p). By defining α := |∑i�=J αi| we find

p := p =
⎧⎨
⎩

any p ∈ (0, 1), if α = 0,
1

1 + α
otherwise,

(E2)

for which
∑

i�=J βi(p) = 1. Evidently, B(p) ∈ convA by
construction. However, because there exists at least
one βi(p) = pαi < 0, it also holds true that B(p) /∈
convA \ AJ . We thus can set B = B(p).

Given the operator B with the properties as in Eq. (E1),
we consider two sets of indices: I− := {i �= J |βi < 0} and
I+ := {i �= J |βi > 0} and define the operator

C := 1
N

(B +
∑
i∈I−

|βi|Ai) = 1
N

∑
i∈I+

βiAi, (E3)

in which N = ∑
i∈I+ βi. We see that, both sides of Eq. (E3)

are convex decompositions of C into elements of A,
while only the first decomposition contains the operator AJ
(implicit in B). �

Proof of Theorem 2. If the points of ENR form a noncon-
vexly overcomplete basis for V , then by Lemma 2 above,
there exists a vector (an effect) C within E which is not
a coarse-grained effect and yet it possesses a nonunique
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decomposition in terms of ENR⊂F . This means the effect
C possesses a nonunique representation in the ontological
model that is not due to coarse graining. As a result, such a
GPT does not admit a NCOM. A similar argument holds if
the extreme points of S form a nonconvexly overcomplete
basis. �

APPENDIX F: PROOF OF THEOREM 3

The if direction can be shown as follows. All subGPTs
Tsub of a hypothetical ontologically noncontextual GPT
T =(E ,S) are ontologically noncontextual provided that
dimVsub= dimV . To see this, we note that for any subGPT
Tsub=(Esub,Ssub) it holds true that Esub ⊆ E and Ssub ⊆ S ,
where E and S are the effect and state spaces of the hypo-
thetical ontologically noncontextual GPT T . Furthermore,
by Theorem 2 the hypothetical ontologically noncontex-
tual GPT is simplicial and isomorphic to a hypothetical
simplicial ontological model. It is noteworthy that, despite
the aforementioned isomorphism, we can safely assume
the existence of the hypothetical ontological model with-
out assuming the existence of the hypothetical GPT. This
is because the existence of the hypothetical GPT requires
the extra assumption that its states and measurements not
within the subGPT are physically realizable [60], whereas
the existence of the hypothetical ontological model does
not make such an assumption, i.e., it does not presume that
its states and measurements not within the subontological
model associated to the subGPT are physically realizable.

Now, for all elements E(X ) ∈ Esub and 	 ∈ Ssub one can
simply use the elements of the hypothetical ontological
model ζE(X |λ) and η	(λ) that are the same ones assigned
to the states and effects of the hypothetical GPT T =
(E ,S). These assignments trivially reproduce the statis-
tics of the subGPT, meaning that there exists (at least)
one subontological model to which the subGPT can be
associated. There is, however, a subtle point: the phys-
ically allowed measurements are only those defined by
the subGPT as Esub. As a result, if dimVsub< dimV , then
for every state of the subGPT there will exist multiple
ontic states with components in V⊥

sub ⊂ V that generate
exactly the same statistics under the physically possible
measurements, hence, the subontological model associ-
ated with the subGPT will not be unique. In other words,
P1∼=P2�μP1=μP2 and thus, the ontological model will
not be satisfying the broad noncontextuality assumption
(see Sec. 2 below for an explicit example).

The only if direction can be shown as follows. Assume
that the subtheory Tsub = (Esub,Ssub) admits a NCOM.
This means that there exist bijective convex linear maps
ηsub and ζsub from state and effect spaces of the subtheory to
the ontic state and indicator functions over some ontic vari-
able space ϒ . We note that we can always assume that the
effect and state spaces of the subGPT span its underlying
vector space Vsub. As a result, ηsub and ζsub can be uniquely

extended to bijective maps η and ζ over the whole Vsub. We
also know that, due to being probability measures on ϒ ,
the ontic state and indicator function spaces of the NCOM
can be enlarged to ontic state and measurement spaces
whose extreme points are Dirac delta measures. Indeed, the
extended ontic spaces are dual to each other and satisfy
the no-restriction hypothesis, identifying a hypothetical
simplicial ontological model. In the next step, we simply
apply η−1 and ζ−1, the inverses of the extended maps η

and ζ , to the extended ontic spaces to obtain extended state
and effect spaces S ⊇ Ssub and E ⊇ Esub in V . It is imme-
diate that dimV = dimVsub, and E and S are dual thus
the GPT satisfies the no-restriction hypothesis that identi-
fies the desired hypothetical GPT. Moreover, T = (E ,S) is
ontologically noncontextual by construction. Finally, Tsub
is a subtheory of T . We emphasize that the GPT T con-
structed in this way is only a hypothetical theory in the
sense that the physically allowed states and measurements
are only those described by the subGPT Tsub. Hence, there
is no assumption that a parent simplicial GPT physically
exists.

APPENDIX G: TWO EXAMPLES

1. Spekkens’ toy theory

As an interesting example of the application of The-
orems 2 and 3, we analyze the noncontextuality of
Spekkens’ toy theory [53].

In this model, there exists an elementary system whose
pure ontic states are denoted by “1,” “2,” “3,” and “4” that
can be represented by column vectors

η1 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , η2 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ , η3 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , η4 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ ,

(G1)

respectively, i.e. a simplex in R
4; see also Fig. 3. The mea-

surements on the system can be considered as questions
about the state of the system. Of particular interest are
the two outcome measurements that are reproducible, or
repeatable [52], in the sense that if repeated upon a system
in a pure state they always output the same outcome. The
set of all such measurements define the sharp effects of the
dichotomic measurements, and they are given by “is the
state of the system 1 or not?,” “is the state of the system
2 or not?,” “is the state of the system 3 or not?,” and “is
the state of the system 4 or not?” Naturally, these measure-
ments are coarse-grained versions of a single four-outcome
nonrefinable measurement that can also be mapped to a

010330-9



FARID SHAHANDEH PRX QUANTUM 2, 010330 (2021)

FIG. 3. Three-dimensional representation of the (ontic) state
and effect spaces of the GPT underlying Spekkens’ toy theory.
This is a simplex whose vertices correspond to vectors spanning
R

4. The (epistemic) state and effect spaces of the subGPT (i.e.,
Spekkens’ toy theory) is obtained by imposing the knowledge
balance principle, which are given by octahedra inside the GPT’s
state and effect spaces. Clearly, while the state and effect spaces
of the GPT are dual to each other and satisfy the no-restriction
hypothesis, the state and effect spaces of the subGPT are not
duals and do not satisfy this hypothesis. Nevertheless, Spekkens’
toy theory is ontologically noncontextual according to Theorem
3, because it is a subtheory of an ontologically noncontextual
GPT.

simplex in R
4. This PVVM is given by

ζ1 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

T

, ζ2 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠

T

, ζ3 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

T

, ζ4 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

T

,

(G2)

with the unit element ζU = (1, 1, 1, 1). Note that the set
of all PVVMs, which is dual to the state space forms a
hypercube. As such, according to Theorem 2, we have a
four-dimensional classical GPT for the elementary system
that satisfies the no-restriction hypothesis.

Given the elementary system and the GPT for it, one can
define a canonical measurement set to be a minimal set
of possibly coarse-grained measurements that fully deter-
mine the state of the system. For the elementary system
above, one such set, for example, is given by {“is the state
of the system 1 OR 2, or not?”, “is the state of the sys-
tem 1 OR 3, or not?”}. At this point, it is possible to define
the amount of knowledge to be the maximum number of
questions for which the answer is known, varied over all
possible canonical measurement sets.

Given a measure of knowledge, an epistemic restriction
can be imposed on the theory, which results in Spekkens’
toy theory.

The knowledge balance principle [53]: If one has the max-
imal knowledge, then for every system, at every time,
the amount of knowledge one possesses about the ontic
state of the system at that time must equal the amount of
knowledge one lacks.

After enforcing the knowledge balance principle on the
original theory, a subtheory is obtained; the pure states of
which are given as “1 ∨ 2,” “1 ∨ 3,” “1 ∨ 4,” “2 ∨ 3,” “2 ∨
4,” and “3 ∨ 4” [53]. Here, ∨ denotes the disjunction or
“OR” operator. These states can be represented by column
vectors

η5 =

⎛
⎜⎜⎜⎜⎜⎝

1
2
1
2
0
0

⎞
⎟⎟⎟⎟⎟⎠

, η6 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
2
1
2

⎞
⎟⎟⎟⎟⎟⎠

, η7 =

⎛
⎜⎜⎜⎜⎜⎝

1
2
0
1
2
0

⎞
⎟⎟⎟⎟⎟⎠

, η8 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
2
0
1
2

⎞
⎟⎟⎟⎟⎟⎠

,

η9 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
2
1
2
0

⎞
⎟⎟⎟⎟⎟⎠

, η10 =

⎛
⎜⎜⎜⎜⎜⎝

1
2
0
0
1
2

⎞
⎟⎟⎟⎟⎟⎠

,

(G3)

respectively, which form an octahedron that is circum-
scribed by the GPT’s state space [61]; see Fig. 3. The set
of reproducible and nonrefinable PVVMs also reduces to
{1 ∨ 2, 3 ∨ 4}, {1 ∨ 3, 2 ∨ 4}, and {1 ∨ 4, 2 ∨ 3}, that can
be represented by

ζ5 =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠

T

, ζ6 =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠

T

, ζ7 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠

T

,

ζ8 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠

T

, ζ9 =

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠

T

, ζ10 =

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠

T

, (G4)

respectively, which also form an octahedron inside the
GPT’s effect space; see Fig. 3. By the restriction enacted,
the effect and state spaces of the subGPT do not sat-
isfy the no-restriction hypothesis anymore. It is clear that
dimVSpekkens = 4 equals the dimensionality of the con-
tainer GPT. A second way to check this is by considering
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the probability table of the subGPT, given as

TSpekkens

=

E(5) E(6) E(7) E(8) E(9) E(10)

P5 1 0 1/2 1/2 1/2 1/2
P6 0 1 1/2 1/2 1/2 1/2
P7 1/2 1/2 1 0 1/2 1/2
P8 1/2 1/2 0 1 1/2 1/2
P9 1/2 1/2 1/2 1/2 1 0
P10 1/2 1/2 1/2 1/2 0 1

,

(G5)

and checking its rank. In this case, rankTSpekkens = 4.
Given a probability table for sets of pure preparations and
nonrefinable measurements, it is known that any model for
that table must satisfy dimVmodel � rankT [14], where for
the Spekkens’ toy model the equality can be satisfied. Con-
sequently, by Theorem 3, Spekkens’ subGPT is a proper
ontologically noncontextual subtheory.

2. Stabilizer rebit theory

Our second example is closely related to but signif-
icantly different from the previous one. The subtheory
of stabilizer rebit is a model in which the nonrefinable
effects and pure states of a qubit system is restricted
to E(1), P1 �→ |0〉〈, E(2), P2 �→ |1〉〈, E(3), P3 �→ |+〉〈,
E(4), P4 �→ |−〉〈. These produce a table of probabilities
for all in principle possible prepare and measure experi-
ments on a rebit given by

Trebit =

E(1) E(2) E(3) E(4)

P1 1 0 1/2 1/2
P2 0 1 1/2 1/2
P3 1/2 1/2 1 0
P4 1/2 1/2 0 1

. (G6)

It is evident that Trebit is a subtable of TSpekkens in Eq. (G5).
Suppose that we want to construct a GPT for this

table. The first question is what the dimensionality of the
employed vector space should be. To answer this ques-
tion, we note that rankTrebit = 3 and thus, regardless of the
model constructed being a GPT or an ontological model,
dimVmodel ≥ 3.

A GPT on a three-dimensional space reproducing T1 can
be given by the states

s1 =

⎛
⎜⎜⎜⎝

1
2
0
1
2

⎞
⎟⎟⎟⎠ , s2 =

⎛
⎜⎜⎜⎝

−1
2

0
1
2

⎞
⎟⎟⎟⎠ , s3 =

⎛
⎜⎜⎜⎝

0
1
2
1
2

⎞
⎟⎟⎟⎠ ,

s4 =

⎛
⎜⎜⎜⎝

0

−1
2

1
2

⎞
⎟⎟⎟⎠ , (G7)

and the effects

e1 =
⎛
⎝1

0
1

⎞
⎠

T

, e2 =
⎛
⎝−1

0
1

⎞
⎠

T

, e3 =
⎛
⎝0

1
1

⎞
⎠

T

,

e4 =
⎛
⎝ 0

−1
1

⎞
⎠

T

, (G8)

with the unit element eU = (0, 0, 2).
We note that the given GPT does not satisfy the no-

restriction hypothesis, i.e., it is a subGPT. One GPT con-
taining this subGPT, for instance, is given by the state
space generated by the vectors

s5 =

⎛
⎜⎜⎜⎜⎝

1
2
1
2
1
2

⎞
⎟⎟⎟⎟⎠ , s6 =

⎛
⎜⎜⎜⎜⎝

−1
2

1
2
1
2

⎞
⎟⎟⎟⎟⎠ , s7 =

⎛
⎜⎜⎜⎜⎝

1
2

−1
2

1
2

⎞
⎟⎟⎟⎟⎠ ,

s8 =

⎛
⎜⎜⎜⎜⎝

−1
2

−1
2

1
2

⎞
⎟⎟⎟⎟⎠ . (G9)

These states form the extreme points of the dual cone to
the effect space defined by e1, e2, e3, and e4 with a positive
inner product with all the given effects and thus, if the no-
restriction hypothesis holds, they must be legitimate states.
It is clear that the states s1, s2, s3, and s4 can be written
as convex combinations of s5, s6, s7, and s8. For instance,
s1 = (s5 + s7)/2. From Theorem 2 follows that this GPT
is ontologically contextual.

Given the four pure states and the four nonrefinable
effects of table Tssrebit in Eq. (G6), no ontological model
that respects the broad noncontextulity and reproduces
the desired probabilities exists for card ϒ = dimVontic =
3. Hence, the subGPT is ontologically contextual for
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card ϒ = dimVontic = 3. We now show that increasing
dimensionality does not resolve this issue.

Quite easily, it is possible to construct an ontological
model for the above subGPT by enlarging the ontic space
such that card ϒ= dimVontic=4. We can represent prepara-
tions and measurement effects as ontic states and indicator
functions

η5 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , η6 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ , η7 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , η8 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

(G10)

and

ζ5 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

T

, ζ6 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠

T

, ζ7 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

T

, ζ8 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

T

,

(G11)

respectively. This is isomorphic to the GPT containing
Spekkens’ toy theory. There are various ways in which
we can construct a subontological model reproducing Trebit,
one of which is via the states and indicator functions

η1 =

⎛
⎜⎜⎜⎜⎜⎝

1
2
1
2
0
0

⎞
⎟⎟⎟⎟⎟⎠

, η2 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
2
1
2

⎞
⎟⎟⎟⎟⎟⎠

, η3 =

⎛
⎜⎜⎜⎜⎜⎝

1
2
0
1
2
0

⎞
⎟⎟⎟⎟⎟⎠

, η4 =

⎛
⎜⎜⎜⎜⎜⎝

0
1
2
0
1
2

⎞
⎟⎟⎟⎟⎟⎠

(G12)

and

ζ1 =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠

T

, ζ2 =

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠

T

, ζ3 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠

T

, ζ4 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠

T

.

(G13)

The most important point here is that, despite being
an ontological model, this model does not satisfy broad
noncontextuality when noting that we are operationally
restricted to the statistics given by the subGPT. In other
words, assuming the subGPT Trebit (or in general, any
GPT) implicitly implies that no preparation and measure-
ment beyond what is predicted by the subGPT exist. As a

result, we can readily verify that the vector

η� =

⎛
⎜⎜⎜⎜⎜⎝

1
2
0
0
1
2

⎞
⎟⎟⎟⎟⎟⎠

, (G14)

produces the same statistics as the maximally mixed rebit
state

ηMM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4
1
4
1
4
1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (G15)

for every physically legitimate ontic effect generated by
{ζ5, ζ6, ζ7, ζ8} of Eq. (G13).

Note that, η� does not belong to the state space of the
subontological model corresponding to the stabilizer rebit
subGPT Srebit but it is an ontic state of the full ontolog-
ical model, i.e., it is a convex combination of states in
Eq. (G10). As such, given the preparation procedure PMM
that generates the table

TMM = E(1) E(2) E(3) E(4)

PMM 1/2 1/2 1/2 1/2 , (G16)

we have two possible ontic assignments:

PMM �→ ηMM or PMM �→ η�. (G17)

Therefore, even though ηMM and η� are distinct ontic
functions with regards to the full ontic measurements of
Eq. (G11), by the implicit assumption of the stabilizer
rebit subGPT, it is operationally impossible to distinguish
them. As a result, Eq. (G17) is in clear contradiction with
broad noncotextuality assumption for NCOMs [Eq. (5)]
and the fact that each preparation equivalence class must
be represented by a unique ontic state that is completely
determined by the observable statistics.

It is worth pointing out that similar arguments can
also be made by exchanging the roles of ontic states and
indicator functions.

APPENDIX H: IS THERE A CONFLICT?

An interesting lesson we learn from the example of sta-
bilizer rebit subtheory is that restricting classical theories
[in this case the ontologically noncontextual GPT given by
Eqs. (G10) and (G11)] in certain ways may also give rise
to ontologically contextual subtheories. This faces us with
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the dilemma of choosing between (i) assuming all subthe-
ories of classical theories are classical and thus ontological
contextuality is not a purely nonclassical effect, or (ii)
ontological noncontextuality is a purely nonclassical effect
and thus subtheories of classical theories can also be non-
classical. Our personal preference is the latter, because the
assumption of (i) cannot be justified. In particular, there is
no reason to call a weird-looking world wherein our empir-
ical observations are restricted in such a way that certain
statistics have multiple undeterminable ontic explanations
classical, noting that any such explanation is different from
our current classical perception of the world.

One might also be concerned that the claim “stabilizer
rebit subGPT is ontologically contextual” conflicts with
other results, e.g., Refs. [7] and [16], or that this subGPT
can be classically simulated. We, however, emphasize that
there is no conflicts with either of these results for the
following reasons.

In Refs. [7,16], the idea is to build a NCOM for a given
table of probabilities rather than a subGPT. There is a
significant difference between the two, namely that, once
a subGPT (like the stabilizer rebit theory) is given it is
assumed that

no observable statistics exist beyond those predicted by the
(sub)theory.

Therefore, if a NCOM exists in larger spaces, the extra
statistics predicted by the NCOM is empirically unobserv-
able leading to the previously discussed contradiction. In
sharp contrast, given merely a set of experimental data
there is no assumption that the given data is all one can in
principle measure for the physical system. Hence, once a
NCOM for the data is built (possibly in larger dimensions)
it is implicit that the extra statistics predicted by the model
but not included in the given table are indeed empirically
observable. Hence, the difference between the two scenar-
ios is in assuming or not assuming empirical observability
of the statistics predicted by the NCOM beyond the given
table or the subGPT, respectively.

A similar argument holds when we speak of classi-
cal simulatability, wherein, again, there is no assumption
of physical possibility or impossibility of certain statis-
tics. Therefore, as an example, the stabilizer rebit subGPT
being ontologically contextual does not imply it being
classically nonsimulatable. This highlights the conceptual
difference between “classicality” and “classical simulata-
bility,” which was also pointed out by Meyer in the context
of quantum games in his reply to van Enk [62]:

“Clearly, the expansion of Q’s pure strategy set [4] which
enables him to win every game can be realized in either
a quantum or a classical system, but to argue that ‘A sin-
gle qubit is not a truly quantum system’ because it can be
‘mocked up by a classical hidden-variable model’ [2] is, as
Heisenberg put it, to ‘attempt to put new wine into old bot-
tles. Such attempts are always distressing, for they mislead

us into continually occupying ourselves with the inevitable
cracks in the old bottles, instead of rejoicing over the new
wine’ [5].”

Our position of classicality identified by ontological
noncontextuality requires, in addition to classical simu-
latability, that the (sub)GPT is not underdetermined in the
sense that there are no in principle inaccessible variables
present at the ontological level. The latter requirement fol-
lows the spirit of Leibniz’s methodological principle, as
Spekkens [54] puts it,

“If an ontological theory implies the existence of two sce-
narios that are empirically indistinguishable in principle
but ontologically distinct (where both the indistinguisha-
bility and distinctness are evaluated by the lights of the
theory in question), then the ontological theory should be
rejected and replaced with one relative to which the two
scenarios are ontologically identical.”

The principle thus asks for ontologically identical
descriptions of facts that cannot be empirically distin-
guished. It is clear that, in the example of rebit stabilizer
subGPT, replacing ηMM with η� results in two ontologi-
cally distinct accounts for the same subGPT (i.e., empir-
ical) description. Hence, the rebit stabilizer subGPT does
not allow for an ontological model satisfying the Leibniz’s
methodological principle and, by our definition, it is a
nonclassical subGPT.

APPENDIX I: PROOF OF THEOREM 4

That (i) if and only if (ii) follows from the definition
of nonclassical resources given above. That (i) if and only
if (iii) follows from Theorem 2 and that ENR (pure states)
forms a complete basis for V . That (iii) if and only if (iv)
follows from the assumption that ENR (pure states) form a
complete basis for V , hence adding an extra nonrefinable
extreme point overcompletes it if V�=V . Conversely, it is
trivial that if an overcompleting element lies within E , it
is either refinable or a convex combination of the extreme
points.
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