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Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum
computers. In this work, we present a general framework based on machine learning for reducing the
impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learn-
ing (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum
states, or estimate an observable of a many-qubit state. Given a task and a device model that captures
information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit
to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost func-
tion over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient
to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quan-
tum device, for applications including quantum state overlap, quantum Fourier transform, and W-state
preparation.
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I. INTRODUCTION

Recent years have seen a surge in quantum computer
hardware development, and we now have several quantum
computing platforms with tens of qubits that can be con-
trolled and coupled with fidelities that enable execution of
quantum circuits of limited depth. This has led to intense
interest in formulating quantum algorithms that can be reli-
ably executed on such devices. The challenge however is
that naive compilations of nearly all nontrivial quantum
algorithms require circuit depths that are currently out of
reach for near-term hardware. Motivated by this challenge,
in this work we study how machine learning (ML) can be
applied to formulate noise-aware quantum circuits that can
be executed on near-term quantum hardware to produce
reliable results.

Our method is called noise-aware circuit learning
(NACL), and given a suitable description of a computa-
tional task and a device model that captures the noise and
constraints of a device, it outputs a native circuit that per-
forms the task with greatest robustness to noise. NACL
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has several broad applications, as illustrated in Fig. 1.
The task can be the compilation of a specified unitary
transformation [Fig. 1(a)], the preparation of a target state
from a specified input state [Fig. 1(b)], or the extraction
of an observable from a many-qubit state [Fig. 1(c)]. In
each case, NACL returns a circuit that is the significantly
more noise resilient to the given noise model, however, as
we detail below, the formulation of the machine learning
problem is different in each application. Perhaps the most
familiar version of NACL is that depicted in Fig. 1(a),
where a specified unitary matrix is to be implemented by
a circuit composed of native gates, which is usually called
compilation. In this context, NACL results in noise-aware
circuit compilations.

Previous work on circuit optimization for noise mit-
igation has largely considered the task of compilation,
under restricted models of errors or imperfections. In fact,
most work focuses on reducing overall circuit error by
reducing the number of two-qubit gates (which tend to be
more noisy than single-qubit gates), avoiding faulty qubits,
reducing the number of SWAP gates required in architec-
tures with restricted connectivity, or reducing the amount
of qubit idle time and/or overall circuit depth [1–8]. These
strategies incorporate very little information about errors
present in a particular hardware platform. More recent
work on error-aware compilation by Murali et al. [9]
goes beyond this and includes basic calibration informa-
tion [e.g., qubit T2 times, controlled NOT (CNOT) gate error
rates] to compile circuits using more reliable qubits and
gates.
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FIG. 1. Applications of NACL. (a) In compiling, the goal is to
approximate an input unitary matrix U by a noise-resilient circuit
that is compatible with the device constraints. (b) In state prepa-
ration, one inputs a set of N input and output states {|xi〉, |yi〉},
where N could be as small as 1, and the output is a noise-resilient
circuit that approximately prepares the |yi〉 states from the |xi〉
states. (c) In observable extraction, one inputs a set of input states
and classical outputs that typically correspond to local observable
expectation values, {|xi〉, yi}, and the output is a noise-resilient
circuit that approximately computes the outputs from any input
state |ψ〉 that might or might not be in the input set.

In this work we extend this direction even further and
demonstrate that one can use fine-grained error model
information to increase the reliability of the outputs of
quantum circuits. Incorporating detailed noise models into
one’s circuit optimization, as we do here, is particularly
compelling at present with the advent of advanced char-
acterization techniques like gate-set tomography [10,11].
These techniques produce fine-grained details—e.g., esti-
mates of process matrices representing the action of imper-
fect quantum gates—describing the actual evolution of
qubits in near-term hardware. We demonstrate that such
experimentally derived noise models can be used to go
beyond naive circuit compilations for several example
quantum algorithms.

NACL has several additional strengths relative to exist-
ing approaches in the literature. Crucially, NACL takes
a task-oriented approach to quantum circuit discovery,
which implies that one does not need a starting point or
example quantum circuit that already accomplishes the
task. Note that traditional compilers do require such a
quantum circuit to start from. Furthermore, because NACL
does not start from a template circuit, the optimization
is less susceptible to bias. In contrast, standard literature
methods that tweak a given quantum circuit inherently
bias their optimization towards solutions that look like that
starting point. This means that NACL has the potential to

discover more novel solutions that otherwise would not
be obvious to the human mind. In addition, we will see
that NACL naturally balances the trade-off between circuit
depth, which leads to more expressivity, and circuit noise,
which makes outputs less accurate.

Machine learning was previously applied to train param-
eterized quantum circuits [6,12], albeit in a noise-free set-
ting. In addition, variational quantum algorithms (VQAs)
[13–26] can also be thought of as machine learning of
quantum circuits. In the Discussion (Sec. VII), we elab-
orate on the relationship between NACL and VQAs.

In what follows, we first present our theoretical frame-
work (Sec. II). We then discuss a device model with
experimentally determined noise parameters (Sec. III).
Next, we present our implementations of NACL with this
noisy device, for examples from the three different appli-
cation classes shown in Fig. 1 (Secs. IV–VI). Finally, we
conclude with a discussion in Sec. VII.

II. MACHINE LEARNING FRAMEWORK

A. Overview

A schematic diagram of the steps of NACL is shown
in Fig. 2. There are two inputs to NACL: (1) a task, and
(2) a device model. The output of NACL is an optimized
quantum circuit that accomplishes the inputted task in the
presence of the inputted device model. NACL may not out-
put a globally optimal solution (this depends on details
of the cost function landscape and optimization method
used), but even local optima are improvements over circuit
compilations that are not noise aware.

(a)
(b)

(a)
(b)

FIG. 2. Schematic diagram of NACL. Our approach takes a
task and a device model as an input. The task is defined via exam-
ples in a training set and a cost function, C. That information is
sufficient to find a noise-aware circuit that approximates a spec-
ified task. It is done via optimization over a set of parameters
(L, �k, �θ) that describe a quantum circuit. The algorithm returns
parameters (Lopt, �kopt, �θopt), which represent an optimized quan-
tum circuit that minimizes the cost function C. See the text for
details.
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Note that circuit depth is not an input to NACL. This is
because NACL optimizes over circuit depths, and aims to
find the depth that achieves the most noise resilience. In
addition, an ansatz for the circuit is not an input, because
NACL attempts to optimize over many ansätze. Hence,
the structure of the circuit, as well as its depth, are opti-
mized by NACL. This feature of NACL is in the spirit of
task-oriented programming, where the user only needs to
specify the task, and not the details of the circuit. NACL
adapts the circuit structure to optimize a cost function that
depends on the type of task specified. As shown in Fig. 1,
there are three categories of tasks.

In what follows we provide more details on how NACL
works. In Secs. II B and II C we discuss the device model
and noise specification, and in Sec. II D we define the
NACL cost function for each application. Finally, in Sec.
II E we summarize the optimization methods used by
NACL.

B. Parameterized circuit

For a given quantum hardware, we denote the native
gate set or gate alphabet as A = {Aj (θ)}. Each gate Aj is
either a one- or two-qubit gate and may also have an inter-
nal continuous parameter θ . As an example, the IBM Q
five-qubit computer “Ourense” has the native gate alphabet

AOurense = {CNOT12, CNOT23, CNOT24, CNOT45,

Z1(θ), X 1(π/2), Z2(θ), X 2(π/2),

Z3(θ), X 3(π/2), Z4(θ), X 4(π/2),

Z5(θ), X 5(π/2)}, (1)

where CNOTjk is a CNOT between qubits j and k, Zj (θ) is a
rotation of angle θ about the z axis of qubit j , and X j (π/2)
is a rotation of angle π/2 about the x axis of qubit j (also
called a pulse gate).

Such a gate set is supplemented by state preparation
and measurement quantum operations. These are typically
fixed in most quantum computing architectures (e.g., pre-
pare all qubits in the ground state and measure in the
computational basis), and therefore there is no opportunity
for optimizing over these. Therefore, we do not consider
these as part of the learnable set.

We consider a generic gate sequence that defines a
circuit

G�α = G(L,�k,�θ) = AkL(θL) · · · Ak2(θ2)Ak1(θ1), (2)

where L is the number of gates, �k = (k1, . . . , kL) is the vec-
tor of indices describing which gates are utilized in the
gate sequence, �θ = (θ1, . . . , θL) is the vector of continuous
parameters associated with these gates, and �α = (L, �k, �θ)
is the set of all these parameters. All parameters in �α =
(L, �k, �θ) are optimized over in NACL.

C. Device model

An input to NACL is a device model, which captures the
constraints of a device (e.g., limited connectivity) and also
represents the noise in the device. We assume the device
constraints and connectivity are captured by the specifica-
tion of a native gate alphabet for the device, e.g., Eq. (1).
Only gates that are available are listed in this specification.

The salient characteristics of noise are captured by (i)
process matrices for each element of the device’s native
gate alphabet, and (ii) for state preparation and measure-
ment (SPAM) noise, by quantum-classical channels that
represent noisy state preparation or measurement positive
operator-valued measure (POVM) elements. The assump-
tion of a fixed process matrix for each gate in the alphabet
restricts this treatment to Markovian noise. This can be
relaxed by generalizing to time-dependent process matri-
ces for each elementary gate, but we do not do this
here for simplicity, and also because characterization tools
capable of producing such non-Markovian representations
of quantum computer operations are still in the early
stages of development [27]. Similarly, in this treatment
we mostly ignore the effects of crosstalk, and assume that
the process matrix describing a gate operates only on the
qubits the ideal gate is defined on. Properly incorporat-
ing crosstalk into the noise models that NACL considers
requires advances in characterization methods [28] that we
discuss later.

Given this paradigm for representing noisy quantum
operations, each gate in the alphabet A has an associated
process matrix that accounts for the local noise occurring
during that gate. Note that even the identity gate may have
a nontrivial process matrix, for example, due to relaxation
during idling.

Mathematically speaking, the noise model provides a
map from a parameterized circuit G�α to a parameterized
quantum channel E�α:

G�α
noise model−−−−−−→ E�α . (3)

Here, E�α is a completely positive trace-preserving (CPTP)
map that represents the action of G�α in a noisy environ-
ment.

Specifically, when the noise model is given in the form
of process matrices for gates, one can do the follow-
ing. Let A = {Aj (θ)} denote the gate alphabet associated
with the noiseless gates. In the presence of noise, this
gate alphabet becomes a set of quantum channels, Ā =
{Āj (θ)}, where we note that Āj (θ) now denotes a quan-
tum channel. Now suppose that G�α is given by G�α =
AkL(θL) · · · Ak2(θ2)Ak1(θ1). Then the simplest way to incor-
porate the noise model would be to replace each Aki with
Āki ; i.e., to transform G�α into a sequence of quantum
channels:

E�α = ĀkL(θL) ◦ · · · ◦ Āk2(θ2) ◦ Āk1(θ1). (4)
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However, it is important to note that this formula for E�α
only accounts for the nontrivial gates that were in the orig-
inal circuit G�α . However, in practice, identity gates will
occur with noise due to, e.g., thermal relaxation. There-
fore, care must be taken with respect to identity gates, and
we discuss this next.

1. Parallelization

The object we are optimizing over, the circuit in Eq.
(2), needs to be modified in the presence of imperfect
idle operations. In this case, the sensible thing to do is
to perform as many gates in parallel as possible, but the
description of a circuit as a sequence of gates, as in Eq.
(2), is incomplete because it does not capture which gates
can be performed in parallel. In other words, in the pres-
ence of imperfect idle operations we cannot simply think
of G�α as a linear sequence of gates; we have to map G�α to
a two-dimensional circuit diagram, in space and time.

Abstractly, we can rewrite

GPar
�α = G�α = U�α,M · · · U�α,2U�α,1. (5)

Here, each U�α,j represents a layer of gates that can be paral-
lelized. Specifically, we take the circuit proposed in G�α and
compress it using simple circuit rules to minimize idling of
qubits. For example, an X (π/2) rotation that occurs on the
target qubit after a CNOT gate can be moved to before the
CNOT gate because their actions on the target qubit com-
mute. In this manner, each gate in G�α is moved to as early a
time as possible without changing the unitary being imple-
mented by G�α . This naturally defines the circuit layers and
subsequently GPar

�α . Even though the reordering does not
change the overall unitary, whenever we write G�α in the
form in Eq. (5) we denote it as GPar

�α . An important aspect of
the optimization in NACL is to numerically find the paral-
lelized representation, GPar

�α , that yields the minimum error
in the cost functions detailed below.

Once G�α is rewritten in the form of GPar
�α , we can then

account for noise by replacing each gate in GPar
�α by the

quantum channel that represents its noisy implementation.
For example, if a circuit layer in GPar

�α on a five-qubit
processor happens to be

U�α,j = Z1(θ)⊗ CNOT23 ⊗ I 4 ⊗ X 5, (6)

where the superscript indicates which qubit the gates are
operating on [and Z(θ) is a rotation around the Z axis,
CNOT is a CNOT gate, I is the identity, and X is a π/2
rotation around the X axis]. This layer would be replaced
by

Ū�α,j = Z̄1(θ)⊗ CNOT
23 ⊗ Ī 4 ⊗ X̄ 5, (7)

where the quantities with bars above them are the quantum
channels representing those gates. Then the overall noisy

circuit corresponding to GPar
�α is written as

EPar
�α = Ū�α,M ◦ · · · ◦ Ū�α,2 ◦ Ū�α,1. (8)

It is important to note that NACL uses EPar
�α rather than E�α

as the overall noisy channel associated with G�α .
Note that this procedure of parallelizing and incorporat-

ing the noise model that we have outlined is valid because
our noise models do not account for crosstalk effects.
If crosstalk is significant then this strategy of maximiz-
ing parallelization might not be optimal since performing
many gates in parallel may lead to more noise. Moreover,
in the presence of significant crosstalk, capturing proces-
sor noise using quantum channels for each of its gates is
probably insufficient. Instead, one would need to charac-
terize each possible layer (there are an exponential number
of these) since the operation on a qubit due to application
of a gate could depend on what is done to any other qubit in
the computer at the same time. We discuss how to extend
NACL in the presence of crosstalk in the Sec. VII.

D. Cost functions

In this subsection, we construct the cost functions that
are minimized by NACL in each of the application classes
outlined in Fig. 1.

1. Preliminaries

We first define some relevant quantities. Let F(ρ, σ) =
(Tr

√√
ρσ

√
ρ)2 be the fidelity between two states ρ and σ .

For a given pure input state |ψ〉, we can denote the fidelity
of the output states under quantum channels E and F as

F(E ,F , |ψ〉) := F(E(|ψ〉〈ψ |), F(|ψ〉 〈ψ |)). (9)

We are interested in the case where F corresponds to a
unitary process U , in which case we have

F(E ,U , |ψ〉) = Tr[E(|ψ〉 〈ψ |)U(|ψ〉 〈ψ |)]. (10)

Furthermore, we can define the average process fidelity as

F(E ,U) =
∫

dψF(E ,U , |ψ〉)

=
∫

dψTr[E(|ψ〉 〈ψ |)U(|ψ〉 〈ψ |)], (11)

with the integral taken over the Haar measure.

2. Observable extraction

The first class of applications involves estimating an
observable given input state or a set of input states. An
example of this is computing the overlap of two quantum
states (discussed in Sec. IV). In this application, the output
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of the circuit is a classical number (the observable expec-
tation, which in practice is estimated by many executions
of the circuit), denoted f (x), and the input, denoted |x〉, is
a quantum state (or classical data encoded in a quantum
state). Hence, we want to construct a circuit that computes
the function |x〉 → f (x), We classically generate a training
data set of the form

T = {(|x(i)〉, f (x(i)))}N
i=1. (12)

In general, the amount of training data required could scale
exponentially in the problem size (i.e., number of qubits),
since the data must be general enough to cover the space
of possible inputs.

Recall that the parameters �α define a circuit G�α , which in
turn defines a noisy quantum channel EPar

�α . For this quan-
tum channel, let y(i)�α denote the output of the circuit (i.e.,
the expectation of the observable of interest) when the
input is |x(i)〉. Then we define the cost function as

COE(�α) = 1
N

N∑

i=1

[f (x(i))− y(i)�α ]2. (13)

The cost quantifies the discrepancy between the desired
output f (x(i)) and the true output y(i)�α , averaged over all
training data points.

3. State preparation

A second class of applications outlined in Fig. 1 is
state preparation. Here, the input is a quantum state or,
more generally, a set of quantum states {|x(i)〉}N

i=1. The
task is then to construct a circuit U that prepares the out-
put states {|y(i)〉 = U|x(i)〉}N

i=1 from these input states. In
other words, one wishes to learn a unitary U that accom-
plishes the desired state preparation task on the training
data, {|x(i)〉, |y(i)〉}N

i=1. Note that this is an underconstrained
problem since in the state preparation application N 	 2n,
where U is an n-qubit unitary. In this case, we use the cost
function

CSP(�α) = 1 − 1
N

N∑

i=1

F(EPar
�α ,U , |x(i)〉), (14)

where U(·) ≡ U(·)U†. This is the infidelity between the
state prepared by EPar

�α and the target state |y(i)〉, averaged
over the training data points. A typical scenario is when
there is a single input and output state (N = 1), as we
consider below in Sec. V.

4. Compilation

Finally, we consider the application of compiling a tar-
get unitary, U, into a set of native gates. The action of U
on all possible input quantum states must be reproduced.

This is a more challenging task than constructing a state-
preparation circuit, since one must consider the action on
all states rather than on just one state or a small set of states.

Let U(·) ≡ U(·)U† denote the quantum channel asso-
ciated with U. Then we define the cost function for
compiling as

CUC(�α) = 1 − F(EPar
�α ,U). (15)

Note that this is analogous to Eq. (14) with the discrete
average replaced by a continuous average (i.e., integral
with Haar measure). The average F̄ can be computed in
various ways. Most elegantly, the average process fidelity
is related to the entanglement fidelity Fe, via [29–31]

F(E�α ,U) = dFe(U† ◦ EPar
�α )+ 1

d + 1
, (16)

where Fe(E) = 〈φ|I ⊗ E(|φ〉 〈φ|)|φ〉 = F(|φ〉〈φ|,
E(|φ〉〈φ|)), with |φ〉 = ∑

j |j 〉|j 〉/√d being a maximally
entangled state, and d = 2n being the Hilbert-space dimen-
sion. Therefore, we can compute the compilation cost
function by computing F(|φ〉〈φ|,I ⊗ U† ◦ EPar

�α (|φ〉〈φ|)).
From the machine learning perspective, the training data
set in this case just consists of a pair of states {|φ〉, (1 ⊗
U)|φ〉}. However, this approach requires a computation in
a doubled space of dimension 22n.

Alternative approaches to computing F̄ that trade this
greater memory complexity for greater time complexity
(but can be easily parallelized) are (i) to approximate the
Haar average with a sample average over a set of states that
form a 2-design, or (ii) to use Nielsen’s formula in terms
of Pauli operators {σi}d2

i=1 [31],

F(E�α ,U) = 1
d2(d + 1)

⎧
⎨

⎩

d2∑

i=1

Tr[UσiU†E(σi)] + d2

⎫
⎬

⎭
.

From the machine learning perspective, for (i), the training
data set corresponds to the sampled 2-design and the action
of the ideal channel on these, {|φi〉, U|φi〉}, and for (ii), the
training data set corresponds to the Pauli operators and the
action of the ideal channel on these, {σi, UσiU†}.

E. Machine learning algorithms

In this section we describe machine learning meth-
ods that we use to find quantum circuits. The general
idea behind our approach is the principle of task-oriented
programming. The method should work with minimal
information about the quantum algorithm, like the sys-
tem size, number of ancilla qubits, measurement type, or
details about the target quantum computer on which the
circuit will be run. With that minimal input, our method is
designed to find the best performing circuit that achieves
the initially specified task.
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The task is defined by the choice of training data and the
form of a cost function. Here, the choice depends on the
particular application. The general rule is that the training
data exemplifies the action of the algorithm that needs to
be found. A generic example of training data is given in
Eq. (12). There, the training set is generated by a function
f that encodes an initially specified task. In Sec. IV, we
use that framework to construct a training set for the quan-
tum algorithm for computing state overlap. In this case,
the function f in Eq. (12) takes the form of a trace and the
training data set is defined as

T = {((ρi, σi), Tr(ρiσi))}N
i=1. (17)

The size of the training data set is expected to grow expo-
nentially with the system size for many applications due
to the exponential size of the Hilbert space. Nevertheless,
there are applications that do not require exponentially
large training data sets. One such example is (possibly
multiple) state preparation discussed in Sec. V. In the
present work we use N = 15 training data points in the
observable extraction example in Sec. IV. Other examples
considered in the paper are trivial from the training data
construction point of view. The choice of data in the train-
ing set affects the discovered circuit, as we discuss in Sec.
IV. In most applications one chooses the data to be as rep-
resentative for a given task as possible. However, with our
approach, there is also an interesting alternative to special-
ize the quantum algorithm by restricting the type of input
data.

The choice of the cost function depends on the appli-
cation. It is typically defined to measure the discrepancy
between the action of the current circuit under optimiza-
tion and the expected action. The value of the cost function
should reach zero if and only if the circuit reproduces the
specified task exactly. In Sec. II D we give details on the
choice of the cost function for specific tasks considered in
the paper.

We use regression machine learning algorithms to learn
the relationship between inputs and outputs specified in
the training data. In other words, we want to learn how
to implement function f in Eq. (12) [e.g., the trace in Eq.
(17)] as a quantum circuit. It is done by minimizing the cost
function over the space of quantum circuits. This space is
described by a set of parameters �α = (L, �k, �θ), where L is
the depth of the circuit, �k is a set of discrete parameters
describing the layout of the circuit, and the �θ are contin-
uous parameters that span some of the quantum gates, as
detailed in Sec. II B.

We stress that the way to include information about the
noise model in our machine learning algorithm is to eval-
uate the cost function in a noisy simulator that implements
that noise model. This includes creating a device model
described with certain parallelization rules, as described in
Sec. II C.

The optimization methods play an important role in our
approach. The methods we describe here are general and
can be applied to any type of cost function. In particular,
they are applicable to the cost functions associated with the
applications discussed in Sec. II D.

The space in which the optimization takes place is large
and has a complicated form. In our method we are optimiz-
ing over circuits composed of gates taken from a particular
alphabet. The circuit is described by two kinds of param-
eters, discrete and continuous. The discrete parameters �k
define the circuit’s layout. That is, they specify what type
of gate is acting on a given qubit, at a given time during
the evaluation of the circuit. The continuous parameters �θ
span all gates that contain at least one variational param-
eter. In the example of an alphabet derived from the IBM
Q Ourense device in Eq. (1), only Z rotations contain a
continuous parameter.

The optimization is an iterative procedure in which
every iteration is organized in two nested loops. In the
inner loop, the optimizer deals with continuous parameters
with a fixed circuit layout �k. Changes to the structure of the
circuit are introduced in the outer loop. The optimization
over continuous parameters �θ is straightforward. Once the
structure parameters �k are fixed, the cost function depends
on at most L continuous parameters θi. We use adaptive
mesh–based, gradient-free, unconstrained (the cost func-
tion is invariant under θi → θi + 2π ) methods [32] to find
a minimum of the cost function C�k = C�k(�θ).

When the minimum c of C�k = C�k(�θ) is found, the opti-
mizer switches to the outer loop and makes a change in
the structural parameters �k. In this part of the procedure
the optimizer is testing small, random updates to the struc-
ture of the circuit. Those updates include gate shuffling,
gate removal, as well as inserting new gates in the form
of resolutions of identity (one-qubit and two-qubit ones).
This way, the number of gates L in the circuit is variable
and reaches an optimal (noise-dependent) value during the
optimization; see below for a more detailed discussion.
The circuit is also periodically compiled using simple,
standard techniques. Here, we check for gate cancelations
and simplification that arise from commutation relations.
In principle, we could leave that task to machine learning
as well but we find that doing it explicitly speeds up the
learning process. After new structural parameters �k′ are
identified, the optimizer enters the inner loop and varies
continuous parameters �θ to find a new minimum c′ of a
cost function C �k′ = C �k′(�θ). Finally, the optimizer makes a
decision whether or not the old circuit structure �k should be
replaced by the new one �k′. Here we follow the simulated
annealing approach and accept the change if c′ < c. The
change is rejected if c′ > c with probability exponentially
increasing in c′ − c.

The above describes one iteration of the optimization
algorithm. The iterations are repeated until convergence
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of the cost function is observed. The optimization is also
restarted multiple times to detect possible local minima.

Finally, let us mention an important feature of the opti-
mization approach. As stated above, random structure
updates done in the outer loop involve identity insertion
and gate removal. Because the cost function is evaluated in
the presence of noise, this procedure can sometimes lead
to a larger value of the cost function (this is not possible
with a noiseless simulator). Thanks to that, the optimiza-
tion algorithm automatically finds the optimal length L of
the circuit for a specified error model. Other machine learn-
ing approaches that are not noise aware must be artificially
biased towards short circuits. In contrast, our approach
automatically finds a balance between deep, expressive but
noisy circuits and shallow, less noisy ones.

III. NOISE MODEL

We demonstrate NACL in the following sections using a
fine-grained noise model derived from one- and two-qubit
gate-set tomography (GST) [10,11,33] experiments run
on the five-qubit IBM Q Ourense superconducting qubit
device. We emphasize that we are not claiming to capture
the full behavior of this device; this cannot be done with
just one- and two-qubit GST, and we need to make some
assumptions about device behavior. The most important
physical effects we are ignoring in this noise model are:
(i) nonuniformity across the device, since we use one-qubit
GST results on qubit 0 and two-qubit GST on the qubit pair
0-1 to infer process matrices for all qubits on the device,
and (ii) since we do not characterize spectator qubits, we
do not capture any crosstalk effects.

One-qubit GST on qubit 0 of the Ourense device yields
estimated one-qubit process matrices representing chan-
nels associated to the principal native gates on the device,
X (π/2) (or the “pulse” gate), and I , the single-qubit idle
operation. The other single-qubit gate used in this device is
Z(θ), but this is performed virtually in software (through a
phase shift of future single-qubit gates) and so we assume
that it takes no time and is implemented perfectly. We also
use the process matrices estimated by single-qubit GST for
|0〉 state preparation and single-qubit measurement POVM
elements for representing these operations. Then two-qubit
GST on qubits 0 and 1 is used to extract a process matrix
for the CNOT gate. All the estimated process matrices and
their figures of merit are presented in Appendix B. Note
that, although these process matrices are gauge depen-
dent [10], we only use them to simulate circuit output
distributions, which are manifestly gauge independent.

We assume that the layout and connectivity of the qubits
are the same as for the IBM Q Ourense device, and these
are outlined in Fig. 3. This connectivity and the process
matrices described above together define our device model.

Note that we only performed GST on qubits 0 and 1 for
simplicity, and assume that the resulting process matrices

FIG. 3. Qubit layout and connectivity for device modeled in
the noise model used to demonstrate NACL. This layout is
inspired by the IBM Q Ourense device, and the lines indicate
the qubits that can participate in CNOT coupling gates.

describe the same gates on other qubits also. This assump-
tion could easily be relaxed at the expense of more GST
experiments on all the qubits in the device.

In the following sections, we demonstrate NACL with
a device model composed of the connectivity informa-
tion for the IBM Ouresnse device and the above process
matrices obtained through GST. All cost functions will
be evaluated through simulation of circuits based on this
device model.

IV. IMPLEMENTATION FOR OBSERVABLE
EXTRACTION

The observable extraction application we focus on is
state overlap estimation, where the task is to estimate the
overlap between two input states ρ and σ , i.e., estimate
Tr(ρσ). The standard way to achieve this is to apply a
controlled-SWAP operation conditioned on an ancilla qubit,
and then measure an expectation of an observable on the
ancilla. We consider the case where ρ and σ are single-
qubit states, and decompose the textbook SWAP-based
circuit for overlap estimation into a standard gate set in
Fig. 4.

For evaluation under the noise model, we first compile
the textbook circuit in Fig. 4 into the native gate set com-
posed of CNOT gates, as well as X (π/2) and Z(θ) rotations.
Given the connectivity of the device, Fig. 3, we map the
input qubits to qubits 2 and 3, and the ancilla qubit to qubit
1. This is the most favorable mapping since in this case the
minimal number (2) of CNOT gates in Fig. 4 needs to be
decomposed to account for the lack of device connectivity.

FIG. 4. The textbook SWAP test–based circuit for state overlap
estimation when the input states (ρ, σ ) are single-qubit states. It
is obtained by decomposing the SWAP operation into a standard
universal gate set.
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FIG. 5. The form of the textbook SWAP test–based overlap esti-
mation circuit, shown in Fig. 4, when decomposed into the native
gates in our device model. Here P denotes the pulse gate, or
X (π/2) rotation, and I is an idle timestep. The vertical lines
denote Z(θ) rotations that are done virtually and therefore take
no time. This notation helps with visualizing which gates can be
performed in parallel. Values of θn are shown in Appendix A.

There are other mappings that result in similar require-
ments for CNOT decomposition. We iterate over all of them
and select the decomposition that gives the smallest error
(as measured by the value of the cost function evaluated in
the presence of noise).

The decomposed circuit is shown in Fig. 5. In this figure
we show identity gates, or periods where a qubit is idle,
in red. This circuit has been compressed and made as par-
allel as possible (using simplifications afforded by simple
commutation relations and circuit identities); however, the
remaining idle periods cannot be compressed away. We
assume that X (π/2) rotations (denoted by P in the figure)
take the same amount of time as a CNOT gate for simplicity.

Next, we consider ML-based circuit implementations
that do not consider noise. Using techniques developed in
Ref. [6], which attempt to find exact implementations that
consist of as few gates as possible, we perform training
without the noise model (but with the connectivity restric-
tions of the device). The training data set size consists of
15 pairs of randomly generated single-qubit states and their
computed overlap. The resulting circuit for overlap estima-
tion and its compiled version are shown in Fig. 6. In the
absence of the noise model there is no penalty for the cir-
cuit to contain identity gates, and so the resulting circuit
has a lot of them.

(a)

(b)

FIG. 6. (a) Machine learned circuit found without considering
the noise model. (b) The circuit decomposed into the native gates
in the device model. The notation is the same as in Fig. 5. Values
of θn are shown in Appendix A.

FIG. 7. Machine learned circuit found by NACL incorporating
the noise model. The notation is the same as in Fig. 5. Values of
θn are shown in Appendix A.

Finally, we apply NACL to this problem and formulate
the cost function using circuit simulation with the noise
model described in Sec. III. The training data set size
consists again of 15 pairs of randomly generated single-
qubit states and their computed overlap. The algorithm
works directly with the native gate set, and so no sub-
sequent decomposition is necessary. The circuit found by
NACL is shown in Fig. 7. Two features of the NACL cir-
cuit immediately stand out. First, since we have taken into
account the noise associated with idling qubits, the circuit
contains very few idles. Second, NACL makes interesting
use of Z(θ) gates—these are error free, take no time, and
also increase the expressiveness of a circuit—and, conse-
quently, NACL seems to maximize their use [especially
compared the noise unaware ML circuit in Fig. 6, which
does not distinguish Z(θ) gates from other gates, and there-
fore does not use them more frequently]. This liberal use
of Z(θ) gates most likely also leads to the shorter depth cir-
cuit. It should be stressed that these features are not built
into the algorithm but result from the optimization and rep-
resent the best found balance between the number of gates
and the noise induced by their action.

In the following, we compare the performance of the
three circuits described above. We generate a validation
data set—1000 pairs of new random one-qubit, mixed
states {ρj , σj }—and apply the three circuits to estimate the
overlap between each pair (the circuits are simulated under
the noise model). For simplicity, we label the textbook cir-
cuit (Fig. 5) A1, the noise unaware, standard ML circuit
(Fig. 6) A2, and the result of NACL (Fig. 7) A3. In Fig.
8(a) we compare the errors of all three circuits, defined
as the absolute value of the difference between the exact
overlap Tr(ρj σj ) and its estimate computed with the given
circuit:

errorj ,Ai = |Tr(ρj σj )− 〈σz〉Ai |. (18)

Here 〈σz〉Ai is the expectation value of the σz operator
on the measured qubit at the end of circuit Ai. The data
are sorted such that the error of A1 is increasing with
sample index, j . In Fig. 8(a) we show that noise-aware
ML-generated circuit gives the best overlap estimate for
most of the state pairs.

In the inset of Fig. 8(a) we show the difference between
the error of the textbook circuit and both ML circuits (these

010324-8



MACHINE LEARNING OF NOISE-RESILIENT... PRX QUANTUM 2, 010324 (2021)

(b)(a)
E

rr
or

E
rr

or
 d

iff
.

N
um

be
r 

of
 t

ra
in

in
g 

sa
m

pl
es

FIG. 8. (a) A comparison of the error in computing state over-
lap [as quantified by Eq. (18)] for each of the validation samples
for the three circuits: textbook (A1, blue), noise unaware ML
(A2, red), and NACL (A3, green). The x-axis indexes pairs of
states in the validation data set. The inset shows differences in
error. (b) Overlap estimation error for the three circuits as a func-
tion of the exact value of the overlap Tr(ρj σj ). The inset shows
a histogram of exact overlaps for the validation data set.

sets of data points are both independently ordered accord-
ing to decreasing error difference). The ML circuit is better
than the textbook one if the value shown in the inset is
positive. We can see that this is indeed the case for over
90% of cases, with the NACL circuit also outperforming
the regular ML circuit in these cases. For further analysis,
we look at the same data in Fig. 8(b), but this time with the
errors plotted against exact overlap of the 1000 samples in
the validation data set. It can be seen that the error of A1
generally decreases with the exact overlap. In addition, the
error of A3 (NACL) shows nonmonotonic behavior with
exact overlap, achieving its minimum around exact over-
lap of 0.5 and increasing for larger and smaller overlaps.
This behavior of the NACL error can be explained by the
specifics of the training method and the type of cost func-
tion that was used. NACL tries to minimize average error
[see Eq. (13)], and examining a histogram of overlaps in
the training sample [inset of Fig. 8(b)] we see that these
overlaps are concentrated between 0.4 and 0.5. Therefore,
NACL optimizes the average-case cost function by per-
forming best on input state pairs that have overlaps around
this value. An interesting observation is that there can be
a correlation between the structure of a circuit and the
overlaps it can best estimate.

Finally, we can explain why the textbook circuit out-
performs NACL in regions of low exact overlap as a
combination of two factors: (i) as mentioned above, NACL
minimizes average error, and the contribution to this from
training samples with small overlap is small; hence, it sac-
rifices performance on small overlap states to get better

performance on states with larger overlap, and (ii) the
other factor that results in the textbook circuit perform-
ing well for small exact overlap samples is accidental;
namely, that the overlap is estimated by measuring 〈σz〉 on
the ancilla, and this quantity tends to 0 with circuit length
(since the stochastic noise in the gates dampens this polar-
ization). The output of A1 is small due to noise, and thus is
accidentally close to the correct answer for small overlap
states.

We note that the uneven behavior of NACL with exact
overlap of input states can be easily modified by (i) mod-
ifying the training data set to have uniformly distributed
overlaps, and (ii) modifying the cost function to be a
worst-case measure of performance instead of average case
and/or a function of relative error as opposed to absolute
error with the exact overlap.

V. IMPLEMENTATION FOR STATE
PREPARATION

For the state preparation application, we focus on
preparing W states of n qubits, i.e.,

|Wn〉 = 1√
n

n∑

i=1

|i〉, (19)

where |i〉 is the state where qubit i is |1〉 and all other qubits
are in state |0〉. W states are multipartite entangled states
that are robust against loss and can be used for multipartite
cryptographic protocols and for teleportation [34]. As far
as we are aware, the circuits generated in Cruz et al. [35]
are the most efficient circuits for W-state generation, and
we use these circuits as our base-case “textbook” circuits
to compare against.

In the following we study the preparation of W states for
n = 4, 5.

A. Four-qubit W-state preparation

The textbook circuit for preparing |W4〉 is shown in
Fig. 9(a). It is obtained by following the general proce-
dure given in Ref. [35]. This circuit will be applied to the
first four qubits in the device shown in Fig. 3. The per-
formance of the textbook circuit and the NACL circuit
will depend on the subset of qubits on which we prepare
the state. However, in realistic situations, one will not be
given that freedom since the state preparation is usually
only one step in a larger quantum circuit, which imposes
constraints on the choice of qubits. We select qubits 1–4
to show how NACL can optimize circuits on devices with
restricted connectivity.

The one-qubit gate, depicted as G(p) in Fig. 9(a), is
defined as

G(p) =
( √

p
√

1 − p√
1 − p −√

p

)
. (20)
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(a) (b)

FIG. 9. (a) Textbook circuit for preparing |W4〉. (b) Decompo-
sition of a control-G(p) gate into CNOT and one-qubit gates u and
u†, where u = e−iYα and α = arcsin(

√
p)/2. (c) Compilation of

the textbook circuit shown in (a) into the first four qubits of the
device model in Fig. 3. The notation is the same as in Fig. 5. The
values of angles θj are given in Appendix A.

Note that this is a slightly different definition than that
given in Ref. [35]. The above definition of G(p) leads to
the same state that is prepared with the circuit shown in
Fig. 9(a), but allows for more efficient decomposition of
the control-G(p) gate into CNOT and one-qubit gates.

The circuit shown in Fig. 9(a) must be compiled into the
native gate set in the device model. The W state is invari-
ant under permutation of qubits, and so one can relabel the
qubits in the circuit shown in Fig. 9(a) if this is advan-
tageous for compilation. To find the optimal compilation
of the textbook circuit, we check all possible permutations
of qubits. All permutations lead to a compilation in which
at least two CNOT gates are not compatible with device
connectivity and need to be decomposed further. We evalu-
ate each permutation by simulation (with the noise model)
under the corresponding compiled circuit and compute the
fidelity of the output with the exact |W4〉 state. The per-
mutation that gives the highest fidelity is simply [1, 2, 3, 4]
(there are however other permutations that lead to the same
fidelity), and the corresponding compiled circuit is shown
in Fig. 9(b). We find that this textbook circuit produces
|W4〉 with fidelity 0.671 under the noise model.

The circuit produced by NACL for preparing |W4〉 is
shown in Fig. 10. Since the task here is to prepare one
state from one other state, the training data set and vali-
dation data set are the same, and just consist of one pair
{|0〉⊗4, |W4〉}; the first element is the input state and the
second is the ideal output state. This NACL circuit outputs
a state under the noise model with a fidelity of 0.8894 to
the exact state. This is a reduction in error (as measured by
1 − F , where F is fidelity) by a factor of 3 as compared
with the best-known textbook circuit.

Careful inspection of the circuit in Fig. 10 reveals an
interesting feature. In certain circumstances, it is more

FIG. 10. Circuit that prepares |W4〉 found by NACL. The
notation is the same as in Fig. 5. Angles θj are specified in
Appendix A.

beneficial (from the point of minimizing the cost func-
tion; infidelity in this case) to have a long sequence of
gates that are not compiled into an equivalent transfor-
mation with a shorter sequence. An example is the final
13 gates [including Z(θ) gates in this count] applied to
qubit 1. It is possible to implement the resulting trans-
formation with a shorter sequence of gates, but doing so
would mean that the qubit sits idle for the remaining time
while the operations on the other qubits complete. Appar-
ently, this incurs a greater cost than the longer sequence
(the pulse gates are fairly high-quality gates for this device
and, in fact, have a smaller infidelity than the idle oper-
ations; see Appendix B). We thus observe a feature that
resembles dynamical decoupling or a dynamically cor-
rected gate for this final transformation of qubit 1. We have
reasonable confidence that this feature is not a numerical
artifact or local optimum because we also independently
optimized just that subcircuit (i.e., keep the rest of the cir-
cuit fixed and optimized just the last six clock cycles of
qubit 1 under the same cost function that evaluates the
error on the four-qubit output state), and could not find
a better sequence. Note that this feature is “emergent.”
Dynamical gate correction techniques are not coded in
the search algorithm and yet NACL effectively used them
in the optimized solution. It a way, those techniques are
“discovered” via cost optimization. We also point out that
this feature of preferring longer sequences to idles is not
general—one cannot replace every sequence of idles with
a sequence of pulses and Z(θ) rotations and lower the
error. For example, qubit 3 sits idle over five clock cycles
and this achieves the minimum cost function even when
we attempt to reoptimize just that subsequence of gates.
This feature demonstrates the ability of NACL to find cir-
cuit implementations that optimize performance in highly
nontrivial ways that incorporate an interplay between the
computational task (encoded in the cost function) and the
device model.

B. Five-qubit W-state preparation

We also study the preparation of |W5〉 since this task
requires the use of all qubits on the device in Fig. 3.
Again, we follow the prescription in Cruz et al. [35] to
arrive at the best textbook circuit for preparing |W5〉 in Fig.
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(a)

(b)

FIG. 11. (a) Circuit for preparing |W5〉 obtained by following
the construction given in Ref. [35]. The first controlled-G(p) gate
can be simplified, as the first qubit is initialized in |1〉. This allows
for a shorter compilation. (b) Its best compiled version achieved
by a proper permutation of qubits. The notation is the same as in
Fig. 5. Angles θj are given in Appendix A.

11. The compilation of this circuit onto the device under
study is not trivial since we can arbitrarily permute the
qubits. Every permutation will result in a potentially dif-
ferent decomposition of CNOT gates, given the constrained
connectivity of the device. We check all 120 qubit permu-
tations and find that the circuit compilation shown in Fig.
11(b) gives the smallest value of the cost function when
evaluated under the noise model. We find this optimal per-
mutation to be [4, 3, 5, 2, 1]. Under this permutation, only
one CNOT gate [the second gate from the left in Fig. 11(a)]
needs to be decomposed due to the lack of connectivity.
The circuit in Fig. 11(b) achieves the fidelity of 0.675.

NACL found the circuit presented in Fig. 12 for |W5〉
state preparation. Again, NACL finds a circuit that is much
more compact than the textbook one. It uses fewer CNOT
gates, requires less idling of qubits, and uses the error-free
Z(θ) gates liberally. The circuit produces an output state
with fidelity F = 0.837 with the ideal |W5〉 state. That is,
the error (as measured by 1 − F) is reduced by a factor of
2 as compared to the textbook circuit.

VI. IMPLEMENTATION FOR CIRCUIT
COMPILATION

For the circuit compilation application, we consider
the problem of compiling the quantum Fourier transform
(QFT), which is a paradigmatic building block that is used
in many quantum algorithms [36]. In the following we
consider implementing a three-qubit QFT.

A textbook circuit for implementing a QFT on three
qubits is shown in Fig. 13(a). We consider implementing
this on qubits 1, 2, and 3 in the device shown in Fig. 3.

FIG. 12. The circuit that approximates preparation of |W5〉
found by NACL. The notation is the same as in Fig. 5. Angles
θj are given in Appendix A.

We first need to decompose the controlled-Z(θ) rotations.
Every controlled Z(θ) is decomposed using two CNOT
gates [37]. This decomposition leads to two CNOT gates
between qubits 1 and 3. Since these qubits are not directly
connected, these CNOT gates need to be decomposed fur-
ther. The result of this compilation procedure is shown in
Fig. 13(b). This compilation leads to a very sparse circuit
with many (incompressible) idle gates, which has negative
impact on the quality of the final result.

The circuit constructed via NACL is shown in Fig. 14.
We use NACL with the cost function defined in Eq. (15)
with the average process fidelity computed via Eq. (16).
The circuit has shorter depth than the compiled textbook
circuit, and does not contain a single idle gate (as compared
with 18 for the textbook circuit). It also contains more
error-free Z(θ) rotations, enhancing the expressiveness of
the circuit.

To compare the performance of the two compiled cir-
cuits for QFT, we select 1000 random pure states |	j 〉
and evaluate each circuit on those states. The error met-
ric we use is the infidelity between the ideal QFT output
and the circuit output; 1 − Tr(ρj |	ex

j 〉〈	ex
j |), where |	ex

j 〉
is the result of the exact evaluation of QFT on |	j 〉. Our
results are summarized in Fig. 15. We also compare our

(a)

(b)

FIG. 13. (a) A textbook circuit for performing QFT on three
qubits. (b) A compilation of the circuit in (a) into the native gate
set in the device model we are simulating. The compilation has
to take into account the fact that qubits 1 and 3 are not directly
connected. Angles θj are specified in Appendix A.
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FIG. 14. Circuit performing QFT found by NACL. The nota-
tion is the same as in Fig. 5. Angles θj are given in Appendix A.

results with qsearch [38], a recently proposed technique for
circuit compilation. Qsearch is typically used as an exact
compilation method, but it can be used with a finite pre-
cision δ. Qsearch results shown in Fig. 15 are obtained by
running it with various values of δ and selecting the cir-
cuit that gives the smallest error as defined by Eq. (16).
For easier comparison, the states |	j 〉 are ordered such
that the error of the textbook circuit (represented by the
blue line) increases with the state index j . The NACL-
generated circuit performed better than the textbook one on
all considered states. It also outperforms the circuit found
by qsearch even after minimizing over compilation preci-
sion δ. Since the validation data set is composed of random
pure input states, the average infidelity (over these input
states) is related to the entanglement infidelity of the chan-
nel defined by the noisy circuit [see Eq. (16)], which is an
input-state-independent measure of the quality of a channel
(or circuit implementation). We use this relation to vali-
date our error metric defined over randomly sampled input
states. In Fig. 15 the dotted lines show 1 − [dFe(U† ◦ E)+
1]/(d + 1), where d = 8, U is the channel correspond-
ing to the ideal circuit implementation, E is the channel
corresponding to the noisy circuit implementation, and Fe
is the entangled fidelity defined in Sec. II D. These lines
correspond well to the sample averages of our infidelity
error metric. We find that NACL reduced the average infi-
delity of a textbook circuit from 0.289 to 0.124, that is, by
57%. NACL also reduced the error by a factor of 1.4 as
compared to qsearch. Another observation is that the per-
formance of the textbook circuit varies more significantly
with input state than for the NACL-generated circuit.

VII. DISCUSSION AND CONCLUSIONS

We have introduced the framework of NACL, whereby
the circuit implementation of a quantum algorithm is for-
mulated by machine learning and optimization based on a
cost function that captures the goal of the algorithm and
a device model that captures the connectivity and noise in
the device that executes the circuit. We have shown that
this framework can be applied to all of the common tasks in
quantum computing—observable (or mean-value) extrac-
tion, state preparation, and circuit compilation—and have
demonstrated through examples the types of performance
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FIG. 15. Performance of textbook, qsearch-generated, and
NACL-generated circuits to evaluate QFT. The figure shows
error (as defined in the text) for 1000 randomly generated pure
states. The NACL-generated circuit performs much better than
the textbook one on all considered states. The circuit found by
NACL also has a lower error than that generated by qsearch.

improvements that can be obtained through NACL. For the
examples considered here, NACL produces reductions in
error rates (suitably defined for the different tasks) by fac-
tors of 2 to 3, when compared to textbook circuits for the
same tasks.

In general, NACL produces shorter depth circuits that
minimize the impact of stochastic noise sources. However,
as demonstrated through the examples considered here,
NACL can automatically derive known noise-suppression
concepts such as dynamical decoupling and apply these
in contexts where they are useful (as defined by the cost
function). It also naturally outputs circuits that incorporate
commonsense strategies such as minimizing the number
of noisy idle gates and maximizing the use of ideal gates,
such as error-free Z(θ) rotations. NACL can incorporate
much more fine-grained information about the device than
other circuit compilation techniques—e.g., in the demon-
strations presented here we have used process matrices
derived from gate set tomography of real hardware to
approximately model noise on this device. Such process
matrices can capture effects ignored by effective noise
models, such as coherent noise and nonunital processes
such as relaxation.

We note that we have also executed NACL with an error
model derived from trapped-ion physics (see Appendix C
for details), to validate that the technique can be used with
a variety of noise model specifications. The results are
very similar to those presented above, although there are
some simplifications due to an assumption of full connec-
tivity in the device (which is realistic for small trapped-ion
platforms).
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The noise models currently compatible with NACL do
not include crosstalk effects. Although these can be incor-
porated for small devices using the approach outlined in
this paper, incorporating crosstalk in a scalable manner
is complicated. The heart of the issue is how to model
crosstalk in a scalable manner [28]. In the presence of
crosstalk, the natural description of operations on a quan-
tum computer is not in terms of gates, but in terms of
layers, which capture what is done to each qubit in the
device in a given clock cycle. This is because the pre-
cise operation performed on a qubit could, in principle,
depend on what is performed on any other qubit in the
device. Therefore, the first extension of NACL required to
capture crosstalk is to optimize circuits in terms of lay-
ers as opposed to gate sequences. Moreover, one has to
also consider whether it is realistic to develop quantum
channels representing noisy implementation of any circuit
layer. Firstly, there are an exponential (in n, the number
of qubits) number of possible layers to characterize, and
secondly, one needs to perform n-qubit process tomogra-
phy in order to get quantum channels for each layer. This
last task is obviously impossible for large n, and there-
fore one has to develop more approximate techniques to
describe noisy implementations of layers. One approach
around these issues is to patch together quantum channels
derived from one-, two-, and three-qubit tomography to
get an approximate description of a circuit layer, similar
to what is demonstrated in Govia et al. [39]. This would
model a physically important subclass type of crosstalk
errors [28]. Another approach is to forego full tomographic
information about error processes and instead use effective
noise models or error rates that contain information about
crosstalk; see, e.g., Ref. [40] for an example of how such
partial information can be used to model crosstalk errors.
Of course, one is trading off NACL prediction accuracy
when approximate noise models are used. Future work will
look at incorporating these more complex noise effects into
the NACL circuit learning framework.

An important issue to consider is how to scale NACL
to develop noise-resilient circuits for larger devices. In
Appendix D, we present the empirical running times for
all the examples presented in the paper. The complexity of
circuit simulation under a noise model and the complexity
of optimization over the circuit parameters increase expo-
nentially with the number of qubits. As a consequence, the
current NACL approach could be used as is to optimize
circuits on up to about 8–10 qubits. With code optimiza-
tion and parallelization, this could be extended to circuits
on 12–14 qubits. Such machine learned noise resilient cir-
cuits could be useful for increasing the performance of
small modular elements of larger circuit applications; e.g.,
magic state distillation circuits. However, we can also out-
line a strategy for extending NACL beyond such use cases.
The strategy applies when one is already given a circuit
compilation for a computational task. Perhaps this is a

compilation derived using theoretical decompositions or
some other efficient method. Then one can sample a sub-
circuit from this circuit. This subcircuit defines an ideal
unitary and one can use NACL to find best approximations
to this unitary under the given device model. This sam-
pling can be repeated for multiple subcircuits. However,
note that this strategy does not guarantee any optimality
properties for the circuit derived from combining these
individually optimized subcircuits. Studying the potential
of this strategy for scaling up the NACL framework is left
as future work.

Related to scalability is the connection between NACL
and VQAs. An alternative to evaluating the NACL cost
functions in Sec. II D by simulating a parameterized quan-
tum circuit on a classical computer is to evaluate them by
executing the parameterized circuits on quantum hardware
directly in the spirit of VQAs. In addition to the obvious
advantage of scalability, this hardware-enabled approach
has the advantage of capturing the noise model exactly
(and does not require any noise modeling). However, for
certain applications (e.g., compiling and state prepara-
tion [19,20]), the NACL cost function requires comparing
against the ideal target circuit outputs. In a VQA setting,
any preparation of the targets would also be noisy, and
therefore one cannot exactly evaluate the required cost
functions. Whether it is possible to sufficiently approxi-
mate the cost functions with noisy hardware is an open
problem [41], and if this were possible, it would make
hardware-enabled NACL realistic.

We note that NACL typically outputs approximations
of the task that is specified. This is because of two rea-
sons: (i) in the presence of typical noise models the best
one can do is approximate an ideal unitary map, and (ii)
NACL provides no guarantee of finding global minima of
the cost functions, which are typically extremely nonlin-
ear. Therefore, even if the noise model is benign enough
that the global minimum or minima correspond(s) to ideal
implementations of the target unitary, NACL will most
likely find a local minima that is an approximation of the
target unitary. However, as empirically demonstrated in
this paper, NACL output is often far superior to textbook
derived circuits, or even circuits optimized using other
compilation techniques.

Modern optimization and machine learning methods
will be critical for deriving computational use from near-
term quantum devices. Motivated by this, we have devel-
oped the NACL framework as a way to utilize detailed
noise characterization information to build noise-resilient
circuits for near-term quantum computing applications,
and we have outlined promising directions for extend-
ing this framework. Our NACL method can be combined
with (and hence is complementary to) other approaches
to error mitigation that have recently been proposed [42–
46]. Hence, NACL is a novel primitive that will play an
important role in the quest for quantum advantage.
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APPENDIX A: NUMERICAL VALUES OF
ROTATION ANGLES

In Table I we list the angles θn that define the Z(θ) gates
in all the circuits presented in the main text.

APPENDIX B: NOISE MODEL PROCESS
MATRICES

In this appendix we list the process matrices and SPAM
elements derived from GST experiments that define our

error model for the five-qubit device we demonstrate
NACL on. These process matrices are completely posi-
tive trace-preserving estimates of the corresponding oper-
ations. [We note that, in order to estimate these process
matrices, GST required that we also estimate the process
matrix corresponding to the Y(π/2) operation. We omit
that estimate here as our device model does not include the
Y(π/2) gate in the native gate set.] All process matrices
are given in the Pauli basis (i.e., they are “Pauli trans-
fer matrices”) while the SPAM operations are given in
the “standard” representation. Because of throughput con-
straints only “short” GST circuits (i.e., circuits for linear-
inversion GST [10]) are used; each circuit is repeated 1024
times.

We have

I =

⎛

⎜
⎝

1.0000 −0.0000 0.0000 −0.0000
0.0042 0.9943 −0.0064 0.0178

−0.0033 0.0120 0.9962 0.0186
0.0029 −0.0182 −0.0167 0.9928

⎞

⎟
⎠ ,

X (π/2) =

⎛

⎜
⎝

1.0000 0.0000 0.0000 −0.0000
0.0007 0.9988 −0.0050 −0.0055

−0.0010 −0.0060 0.0167 −0.9980
−0.0017 0.0065 0.9979 0.0176

⎞

⎟
⎠ ,

P0 =
(

0.9997 −0.0006
0.0055 0.0231

)
,

P1 =
(

0.0003 0.0006
−0.0055 0.9769

)
,

ρ0 =
(

0.9903 0
0 0.0097

)
.

Here, P0 and P1 are the imperfect POVM effects for pro-
jections onto the |0〉 and |1〉 states, respectively, and ρ0
is the density matrix for the single-qubit imperfect state
preparation. Finally,

CNOT

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.012 0.973 0.016 0.005 0.005 −0.002 0.012 −0.004 −0.002 0.003 −0.004 0.002 −0.010 0.008 0.015 −0.001
0.001 −0.009 0.004 −0.003 −0.002 0.000 −0.023 0.001 −0.006 −0.001 −0.007 0.003 0.005 −0.019 0.974 0.003
0.002 0.006 0.000 0.003 −0.005 −0.001 0.002 −0.021 −0.010 0.001 0.003 −0.010 −0.001 −0.007 0.004 0.983
0.002 0.001 0.012 −0.008 0.015 0.964 0.017 0.004 0.001 0.020 −0.018 0.003 0.048 0.020 −0.002 −0.004
0.002 −0.001 0.004 0.002 0.980 0.004 −0.002 −0.009 0.018 0.001 −0.005 0.012 0.021 0.042 0.002 0.005

−0.002 −0.003 0.041 0.002 −0.009 0.001 0.005 −0.018 −0.005 −0.002 0.003 0.977 0.014 −0.003 0.000 0.012
−0.003 −0.006 −0.002 0.045 −0.006 0.019 0.015 0.006 −0.002 0.022 −0.968 −0.001 −0.006 0.001 −0.008 0.005
0.001 0.007 −0.004 0.001 0.000 −0.019 0.017 −0.001 0.011 0.966 0.019 0.003 0.012 0.009 −0.002 −0.005
0.001 0.008 0.004 −0.001 −0.021 −0.000 0.002 −0.011 0.981 0.004 −0.001 −0.005 0.014 0.004 0.002 0.010

−0.001 −0.005 0.007 −0.002 0.005 0.005 −0.003 −0.975 −0.011 0.002 0.007 −0.020 −0.003 −0.002 0.008 −0.023
−0.002 −0.012 0.004 0.006 0.003 −0.021 0.967 0.001 −0.005 0.017 0.016 0.007 0.003 0.004 0.021 0.004
−0.002 −0.003 −0.001 0.001 −0.021 −0.035 −0.008 −0.001 −0.010 −0.006 0.001 −0.006 0.987 0.002 0.001 −0.000
−0.008 0.006 0.012 −0.001 −0.043 −0.020 −0.003 0.003 −0.010 −0.009 0.003 0.008 0.011 0.970 0.016 0.007
0.005 −0.018 0.973 0.003 −0.004 −0.009 0.002 0.008 0.002 0.005 −0.001 −0.039 −0.004 −0.007 0.005 −0.005
0.000 −0.007 0.005 0.982 0.005 0.002 −0.008 0.003 0.003 −0.009 0.040 0.002 0.002 0.005 0.001 0.001

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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TABLE I. Angles (in radians) defining the Z(θ) gates in each of the circuits presented in the main text.

n θn in θn in θn in θn in θn in θn in θn in θn in θn in
Fig. 5 Fig. 6(b) Fig. 7 Fig. 9(c) Fig. 10 Fig. 11(b) Fig. 12 Fig. 13(b) Fig. 14

1 3.926 991 4.729 459 1.249 703 1.570 796 6.261 032 0.785 398 0.000 110 2.748 894 5.528124
2 1.570 796 2.356 455 2.410 073 0.785 398 1.581 678 2.356 194 3.107 730 1.570 796 1.603 007
3 1.570 796 6.271 231 5.503 714 2.356 194 0.618 247 3.141 593 0.775 046 2.356 194 3.180 240
4 0.785 398 0.012 770 0.172 928 3.141 593 6.210 505 0.615 480 1.385 048 1.570 796 1.588 121
5 5.497 787 5.497 958 0.106 332 0.785 398 3.155 136 2.526 113 3.218 745 0.785 398 5.982 926
6 5.497 787 0.017 911 0.022 432 2.356 194 3.088 771 3.141 593 6.184 576 5.497 787 1.517 815
7 0.785 398 0.785 692 1.621 729 3.141 593 3.127 992 1.369 438 0.000 214 1.570 796 3.174 252
8 5.497 787 4.713 347 6.267 293 2.708 279 0.785 398 0.725 692 2.356 194 2.380 614
9 2.355 849 3.672 289 1.477 670 2.356 194 0.895 856 5.497 787 3.909 589

10 4.711 034 0.132 619 2.327 048 3.141 593 0.149 143 0.392 699 6.271 246
11 5.697 289 0.012 648 2.289 056 5.890 486 0.006 795
12 3.141 953 0.876 330 3.142 930 3.903 039
13 4.364 565 0.444 937 4.665 748 4.728 925
14 0.964 557 4.781 066 0.000 281 3.157 351
15 6.037 635 5.429 627 0.614 126 2.383 873
16 5.975 455 2.827 826 6.176 411 0.022 179
17 0.159 144 3.101 400 3.698 677 3.135 448
18 6.194 334 0.505 015 1.349 278 5.062 797
19 1.518 005 1.752 444 5.651 896 3.119 667
20 2.570 119 0.077 924 0.048 880 0.821 506
21 2.836 344 2.324 862 1.604 027
22 3.171 423 5.525 191 4.721 183
23 4.005 286 1.711 153 0.000 189
24 0.113 893 1.563 388
25 0.040 828 3.165 257
26 0.863 436 0.025 552
27 6.210 510 3.165 166
28 4.981 590 1.566 059
29 2.622 501 0.897 177
30 0.536 382 5.028 318
31 2.882 208 6.282 094
32 0.148 144 2.400 830
33 2.916 385 3.127 614
34 5.971 181 2.312 352
35 5.047 211

We also list in Table II various error metrics for these
noisy operators (as compared to ideal operators). “Infi-
delity” for gate operations is taken to be average gate
infidelity, i.e., 1 − F̄ , where F̄ is the average gate fidelity
(with respect to the desired target operation), as defined
in Eq. (11). For SPAM operations, we simply use state
infidelity, i.e.,

1 − F(ρ, σ) = 1 − (
Tr

√√
ρσ

√
ρ
)2. (B1)

The half-diamond distance, denoted ε�, is defined as

ε�(A, B) = 1
2‖A − B‖�= 1

2 sup
ρ

‖(A ⊗ 1d[ρ])

− (B ⊗ 1d[ρ])‖1, (B2)

where ‖ · ‖1 is the trace norm, sup is taken over all density
matrices of dimension d2, and d = dim A = dim B.

The average gate infidelity may be thought of as, aver-
aged over the Haar measure, the infidelity of a state that has
passed through the gate’s channel; the diamond distance

TABLE II. Error metrics for noisy operations (compared to
ideal operations) used in our device model input to NACL. For
gate operations, entanglement infidelity and diamond distance
are presented, while for SPAM operations, only state infidelity
is used.

Gate label Infidelity Half-diamond distance

I 2.8 × 10−3 1.7 × 10−2

X (π/2) 8.8 × 10−4 1.1 × 10−2

CNOT 1.9 × 10−2 5.0 × 10−2

ρ0 9.7 × 10−3 · · ·
P0 2.0 × 10−3 · · ·
P1 2.3 × 10−2 · · ·
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may be thought of as a worst-case error rate. The average
gate infidelity is quadratically more sensitive to stochastic
error than the unitary error, while the diamond distance is
equally sensitive to both classes of errors [47].

APPENDIX C: NOISE MODEL FOR A
TRAPPED-ION QUANTUM COMPUTER

In addition to the noise model presented in the main text,
we also ran NACL using an additional noise model, that
is, an effective model formed from error metrics derived
from a near-term trapped-ion quantum computer. We adapt
the coarse-grained error maps used to model errors during
execution of a common trapped-ion gate set developed by
Trout et al. [48]. In particular, the native gates in the pro-
cessor are assumed to be X (θ), Y(θ), Z(θ), and XX (θ) ≡
eiθX ⊗X , where the first three are single-qubit rotations
about the three orthogonal axes and the last is an arbitrary
angle Molmer-Sørensøn interaction between two qubits.
The quantum channels representing the noisy versions of
each of these gates are given by

EX (θ) = D(pd) ◦ W(pdep) ◦ RX (pα) ◦ UX (θ),

EY(θ) = D(pd) ◦ W(pdep) ◦ RY(pα) ◦ UY(θ),

EZ(θ) = D(pd) ◦ W(pdep) ◦ RZ(pα) ◦ UZ(θ),

EXX (θ) = [D1(pd,1)⊗ D2(pd,2)]

◦ [W1(pdep)⊗ W1(pdep)]

◦ H(pxx) ◦ H(ph) ◦ UXX (θ).

Here, Uk(θ) represents an ideal rotation about axis
k [e.g., UX (θ)ρ = e−iθX ρeiθX ], Rk(pα) represents the
effects of rotation angle imprecision about axis k [e.g.,
RX (pα)ρ = (1 − pα)ρ + pαX ρX )], W(pdep) is a depo-
larizing channel [i.e., W(pdep)ρ = (1 − pdep)ρ + pdepI ],
D(pd) is a dephasing channel [i.e., D(pd)ρ = (1 − pd)ρ +
ZρZ], and, finally, H(p)ρ = (1 − p)ρ + XX ρXX is a
two-qubit channel that represents the effects of an impre-
cise rotation (when p = pxx) or the effects of ion heating
(when p = ph). The subscripts on any of these channels
(in the case of the two-qubit operation) denotes action on
that qubit.

In addition to these imperfect gates, we model SPAM
errors by following an ideal ground-state preparation with
a depolarizing channel, and by preceding ideal single-qubit
measurement POVM effects by a depolarizing channel,
i.e.,

〈〈0| → 〈〈0|D(pdep),

|i〉〉 → D(pdep)|i〉〉 for i = 0, 1,

where we have notated state preparation and measurement
effects as Hilbert-Schmidt vectors. Finally, in order to cap-
ture noise during idle cycles, all idles are modeled as a
depolarizing channel D(pidle).

This effective noise model captures many of the non-
idealities in typical ion trap quantum computing architec-
tures. However, note that, under this model, there are no
connectivity restrictions and it is possible to perform a
two-qubit gate between any two qubits. In the following
computations we use the error rates

pd = 1.5 × 10−4,

pdep = 8 × 10−4,

pd,1 = pd,2 = 7.5 × 10−4,

pα = 1 × 10−4,

pxx = 1 × 10−3,

ph = 1.25 × 10−3,

pidle = 8 × 10−4.

APPENDIX D: NACL TRAINING TIMES

In this appendix we discuss computational resources that
are needed to compile circuits with NACL. NACL is ini-
tialized with a random quantum circuit. That circuit is
evolved in time such that it minimizes a properly defined
cost function. This aspect of our approach together with the
nonconvex optimization landscape with many local min-
ima makes it hard to define “compilation time” or “time
to solution.” Furthermore, the optimization could be ter-
minated before reaching the global minimum of the cost
function. As we show here, such imperfect compilations
are still better than other compilations in many cases.

Instead of working with a particular definition of the
“compilation time,” we analyze how quickly NACL can
reduce the cost and find circuits that perform better than
textbook circuits. This gives more information about per-
formance of the algorithm than a single number that char-
acterizes the compilation time. Our results are summarized
in Fig. 16, which shows all the use cases that we con-
sider in the main text. In Fig. 16(a) we show how the
quality of the compilation increases with time. Here (as
well as in other panels) time indicates wall-clock time,
measured in seconds. Compilation quality is measured as
1 − COE, where COE is the observable extraction cost func-
tion defined in Eq. (13). We use the same training data set
as that considered in the main text. The results suggest
that NACL quickly finds an algorithm that outperforms
the textbook one. It took NACL only 15 s to find a circuit
that has a lower cost function than the textbook one. Fur-
ther improvements however are more costly and reaching
a global minimum took more than 20 h. As expected, one
is dealing with diminishing returns in running longer opti-
mizations, as the algorithm that reached 98% of the best
achievable quality was found only after 26 s.

The above cost analysis is representative for other appli-
cations. In Fig. 16(b) we show results for three-qubit QFT
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considered in Sec. VI. The plot displays how the aver-
age fidelity of the channel E defined by the noisy circuit
improves as a function of time. Here, the fidelity is defined
by [dFe(U† ◦ E)+ 1]/(d + 1), where d = 8 for a three-
qubit example, Fe is the entanglement fidelity defined in
Sec. II D, and U is the ideal channel implementing three-
qubit QFT. Again, we find that NACL quickly surpasses
the textbook solution but takes significantly more time
to find the global optimum. In Figs. 16(c) and (d) we
present results for W-state preparation on 4 and 5 qubits,
respectively. Here, the compilation quality is defined as
a fidelity between the noisy state and exact W state. As
expected, compiling bigger circuits is more expensive
due to exponential scaling of quantum simulation. Nev-
ertheless, NACL manages to surpass the best textbook
algorithm within 110 s and 37 min for four-qubit and
five-qubit W-state preparation, respectively.

In Table III we combine compilation times (as defined
by the time to beat the textbook algorithm and the
time to reach 98% of the best NACL result) for var-
ious applications of NACL. We use a 16-core desktop
computer to generate the data shown in Table III and
Fig. 16.

TABLE III. Compilation times for all NACL applications con-
sidered in the main text. The data presented in the table are
extracted from Fig. 16 and show the time needed to surpass the
textbook algorithm and time to reach 98% of the best circuit
found by NACL.

Time to beat the Time to achieve 98%
Algorithm textbook algorithm of the best NACL

Observable
extraction 15 s 26 s
Three-qubit QFT 28 s 23 min
Four-qubit QFT 110 s 1.3 h
Five-qubit QFT 37 min 12 h

While the NACL compilation times presented in Table
III and Fig. 16 are generally too long for just-in-time com-
pilers of quantum circuits, we stress that this is not how we
envision NACL will be used in practice. Instead, NACL
will be an offline utility that will precompile noise-resistant
circuits for common subroutines. We envision that NACL
will be used to create libraries of commonly used algo-
rithmic routines for specific devices. We argue that in the

(d)(c)

(a) (b)
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FIG. 16. NACL performance. Panels show compilation quality as a function of the wall-clock time. The definition of compilation
quality depends on a particular task; see the text for details. Panels (a)–(d) show NACL performance as applied to observable extraction,
three-qubit QFT compilation, and four-qubit and five-qubit W-state preparation, respectively.
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noisy intermediate-scale quantum era such a capability is
more useful than fast just-in-time compilers.
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