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Multiparty quantum cryptography based on distributed entanglement will find its natural application in
the upcoming quantum networks. The security of many multipartite device-independent (DI) protocols,
such as DI conference-key agreement, relies on bounding the von Neumann entropy of the parties’ out-
comes conditioned on the eavesdropper’s information, given the violation of a multipartite Bell inequality.
We consider three parties testing the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality and certify
the privacy of their outcomes by bounding the conditional entropy of a single party’s outcome and the
joint conditional entropy of two parties’ outcomes. From the former bound, we show that genuine multi-
partite entanglement is necessary to certify the privacy of a party’s outcome, while the latter significantly
improves previous results. We obtain the entropy bounds thanks to two general results of independent
interest. The first one drastically simplifies the quantum setup of an N -partite Bell scenario. The second
one provides an upper bound on the violation of the MABK inequality by an arbitrary N -qubit state, as a
function of the state’s parameters.
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I. INTRODUCTION

Stimulated by data-security concerns and by commer-
cial opportunities, several companies and governments are
increasingly investing resources in quantum-cryptography
technologies [1,2]. Those include, most prominently, quan-
tum key distribution (QKD) [3–10] and quantum random-
number generation [11,12]. The former enables two parties
to establish a secret key (shared random bitstring), while
the latter is considered the only source of genuine ran-
domness. In the context of emerging quantum networks
[13–20], the task of QKD can be generalized to quan-
tum conference-key agreement (CKA) [21–27]. Here, N
parties establish a common secret key to securely broad-
cast messages within their network, as proved by recent
CKA experiments [28,29]. However, it is challenging to
ensure that the assumptions on the implementation of these
cryptographic tasks are met in practice, hence jeopardizing
their security.

This led to the development of device-independent (DI)
cryptographic protocols, whose security holds indepen-
dently of the actual functioning of the quantum devices
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and is based on the observation of a Bell inequality vio-
lation [30]. Such protocols include DIQKD [31–39] and
DICKA [40–43] schemes, where a secret key is shared
by two or more parties, respectively. Otherwise, with DI
randomness generation (DIRG) protocols [44–50] one can
generate random bitstrings that are guaranteed to be private
thanks to a Bell violation.

A crucial aspect of any DI protocol is the ability to care-
fully estimate, from the observed Bell violation, the mini-
mum amount of uncertainty that a potential eavesdropper,
Eve, could have about the protocol’s outputs. Indeed, this
quantity determines the length of the secret random bit-
string that can be distilled from the protocol’s outputs.
Eve’s uncertainty is quantified by appropriate conditional
von Neumann entropies [6,33,34,38] of the effective quan-
tum state shared by the parties in a generic round of the
protocol. The goal is to minimize the entropy over all
the possible states yielding the observed Bell inequality
violation.

This task can be carried out numerically, however the
available techniques [51–54] focus on minimizing a lower
bound on the von Neumann entropy, namely the min-
entropy [6], thus producing suboptimal results. Here we
follow an analytical approach that reduces the degrees of
freedom of the generic state shared by the parties without
loss of generality, thereby allowing a direct minimization
of the conditional von Neumann entropy. This can result in
a tight bound of Eve’s uncertainty, hence in longer secret
bitstrings and higher noise tolerance for the DI protocol.
Such an analytical procedure has only been developed by

2691-3399/21/2(1)/010308(36) 010308-1 Published by the American Physical Society

https://orcid.org/0000-0003-2966-7813
https://orcid.org/0000-0001-6020-0475
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.2.010308&domain=pdf&date_stamp=2021-01-14
http://dx.doi.org/10.1103/PRXQuantum.2.010308
https://creativecommons.org/licenses/by/4.0/


GRASSELLI, MURTA, KAMPERMANN, and BRUß PRX QUANTUM 2, 010308 (2021)

Pironio et al. [34] for the case of two parties testing the
Clauser-Horne-Shimony-Holt (CHSH) inequality [55].

In this work we develop an analytical procedure applica-
ble to multipartite DI scenarios. Specifically, we consider
N parties, each equipped with two measurement settings
with binary outcomes, testing a generic full-correlator
Bell inequality—i.e., an inequality where each correlator
involves every party [56]. Remarkably and without loss of
generality, we reduce the generic state shared by the N par-
ties (in one protocol round) to a mere N -qubit state almost
diagonal in the GHZ basis. Notably, we recover the result
of Pironio et al. when N = 2.

We then focus on the Mermin-Ardehali-Belinskii-
Klyshko (MABK) inequality [57–59] and derive an ana-
lytical bound on the maximal violation of the MABK
inequality yielded by rank-one projective measurements
on an given N -qubit state. This is a result of independent
interest, which generalizes the bound for the bipartite case
of Ref. [60] and constitutes the first of its kind valid for an
arbitrary N -qubit state.

Our results on the state reduction in a multipartite DI
scenario and on the MABK violation upper bound, allow
us to quantify Eve’s uncertainty about the parties’ out-
comes when three parties, Alice, Bob, and Charlie, test
the MABK inequality (see Fig. 1). Specifically, we obtain
an analytical lower bound on the von Neumann entropy
of Alice’s outcome conditioned on Eve’s information.
We compare our bound with a numerical estimation of

FIG. 1. Alice, Bob, and Charlie generate device-independent
randomness from the input-output correlations of their unknown
quantum devices by testing the MABK inequality. Each device
is equipped with two inputs and two outputs. The eavesdropper
Eve might hold a quantum memory E entangled with the par-
ties’ devices and use it to guess their outcomes X , Y, or Z. We
quantify Eve’s uncertainty on Alice’s outcome X by comput-
ing the conditional von Neumann entropy H(X |E). Additionally,
we assume that Alice and Bob are colocated and collaborate to
generate global randomness from their outcomes X and Y. We
quantify Eve’s joint uncertainty on their outcomes by computing
H(XY|E).

the corresponding tight entropy bound and with previous
results. We additionally prove that genuine multipartite
entanglement is a necessary resource to certify the pri-
vacy of a party’s outcome in any N -party MABK scenario.
The bound can find potential application in the security
of DIRG based on multipartite nonlocality. We also pro-
vide a heuristic argument for which full-correlator Bell
inequalities, such as the MABK inequality, are unlikely to
be employed in any DICKA protocol.

In the same tripartite scenario of Fig. 1, we derive
a lower bound on the joint conditional von Neumann
entropy of Alice and Bob’s outcomes, which substantially
improves the result derived in Ref. [50], where the authors
bound the corresponding min-entropy. The derived bound
can be employed in proving the security of DI global
randomness generation schemes.

II. REDUCTION OF THE N -PARTY
QUANTUM STATE

Let Alice1, Alice2,. . . , AliceN be N parties who want
to generate private randomness (random bitstrings) from
the outcomes of their uncharacterized quantum devices.
In order to certify device independently that the generated
randomness is private, they test a generic full-correlator
Bell inequality [56], where each party can choose among
two measurement settings with binary outcomes on her
respective device. We identify this as the (N , 2, 2) DI
scenario.

An eavesdropper, Eve, wants to learn the randomness
generated by some of the parties. We consider the most
adversarial scenario where Eve herself may distribute arbi-
trary quantum states to the parties’ devices, which could
be forged by Eve. The device of each party measures
the binary observable A(i)x (i = 1, . . . , N ) on the received
quantum state, according to Alicei’s measurement input
(x = 0, 1). Note that the observables measured by each
device may be pre-established by Eve.

The tested Bell inequality is a linear combination of full
correlators of the form:

〈A(1)x1
· · ·A(N )xN

〉. (1)

From the observed Bell violation, the parties can quantify
Eve’s uncertainty on their random bitstrings by comput-
ing an appropriate conditional von Neumann entropy. With
this result, a party could enhance the privacy of her bit-
string (with privacy amplification [6]) and use it for various
cryptographic tasks (e.g., DICKA or DIRG).

Here we present a fundamental result that enables
a direct computation of the conditional von Neumann
entropy of interest. Indeed, our result drastically simpli-
fies, without loss of generality, the general quantum setup
described above. For instance, the generic quantum state
distributed to the parties is reduced to an N -qubit state
(almost) diagonal in the GHZ basis.
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The GHZ basis [21] for the Hilbert space of N qubits is
defined as follows.

Definition 1. The GHZ basis for the set of N-qubit states
is composed of the following 2N states:

|ψσ ,�u〉 = 1√
2

[
|0〉 |�u〉 + (−1)σ |1〉 |�̄u〉

]
, (2)

where σ ∈ {0, 1} while �u ∈ {0, 1}N−1 and �̄u = �1 ⊕ �u are
(N − 1)-bit strings. In particular, for a three-qubit state,
the GHZ basis reads

|ψi,j ,k〉 = 1√
2

[|0, j , k〉 + (−1)i |1, j̄ , k̄〉] i, j , k ∈ {0, 1},
(3)

where the bar over a bit indicates its negation.

We now formally state the first major result of this work,
the proof of which is reported in Sec. VIII A.

Theorem 1. Let N parties test an (N , 2, 2) full-correlator
Bell inequality in order to certify the privacy of their out-
comes. It is not restrictive to assume that, in each round,
Eve distributes a mixture

∑
α pαρα of N-qubit states ρα ,

together with a flag |α〉 (known to her), which determines
the measurements performed on ρα given the parties’
inputs. Without loss of generality , the measurements per-
formed by each device on ρα are rank-one binary projec-
tive measurements in the (x, y) plane of the Bloch sphere.
Moreover, each state ρα is diagonal in the GHZ basis,
except for some purely imaginary off-diagonal terms:

ρα =
∑

�u∈{0,1}N−1

[
λα0�u|ψ0,�u〉〈ψ0,�u| + λα1�u|ψ1,�u〉〈ψ1,�u|

+ isα�u
(|ψ0,�u〉〈ψ1,�u| − |ψ1,�u〉〈ψ0,�u|

)]
, (4)

Finally , N arbitrary off-diagonal terms sα�u can be assumed
to be zero and the corresponding diagonal elements
(λα0�u, λα1�u) can be arbitrarily ordered (e.g., λα0�u ≥ λα1�u).

In the following we focus our analysis on a given state
ρα . Hence, for ease of notation we drop the symbol α in the
parameters related to the state ρα (e.g., λα0,�u and sα�u ) when
there is no ambiguity.

Note that, for N = 2, we recover the result of Ref. [34].
By applying Theorem 1 to the case of N = 3 parties, it is
not restrictive to assume that they share a mixture of states
ρα , with the following matrix representation in the GHZ

basis:

ρα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ000 0 0 0 0 0 0 0
0 λ100 0 0 0 0 0 0
0 0 λ001 0 0 0 0 0
0 0 0 λ101 0 0 0 0
0 0 0 0 λ010 0 0 0
0 0 0 0 0 λ110 0 0
0 0 0 0 0 0 λ011 is
0 0 0 0 0 0 −is λ111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

The eigenvalues of Eq. (5) are given by

ρijk = λijk (j , k) 	= (1, 1)

ρi11 = λ011 + λ111 + (−1)i
√
(λ011 − λ111)2 + 4s2

2
.

(6)

In order to accurately quantify Eve’s uncertainty on the
parties’ outcomes via conditional von Neumann entropies,
one also needs an analytical expression for the maxi-
mal violation of the tested Bell inequality. In Sec. III we
establish such a result for the MABK inequality.

III. UPPER BOUND ON MABK VIOLATION

The MABK inequality [57–59] is one possible general-
ization of the CHSH inequality [55] and is derived on the
following MABK operator.

Definition 2. The MABK operator MN is defined by recur-
sion [61,62]

M2 = GCHSH[A(1)0 , A(1)1 , A(2)0 , A(2)1 ]

≡ A(1)0 ⊗ A(2)0 + A(1)0 ⊗ A(2)1 + A(1)1 ⊗ A(2)0

− A(1)1 ⊗ A(2)1

MN = 1
2

GCHSH[MN−1, MN−1, A(N )0 , A(N )1 ],

(7)

where A(i)xi
for xi = 0, 1 are the binary observables

of Alicei (each observable satisfies [A(i)xi
]† = A(i)xi

and
[A(i)xi

]2 ≤ id, where “id” is the identity operator) and where
Ml is the operator obtained from Ml by replacing every
observable A(i)xi

with A(i)1−xi
. For N = 3, the MABK operator

reads

M3 = A0 ⊗ B0 ⊗ C1 + A0 ⊗ B1 ⊗ C0

+ A1 ⊗ B0 ⊗ C0 − A1 ⊗ B1 ⊗ C1, (8)

where Ax, By , and Cz are Alice’s, Bob’s, and Charlie’s
observables, respectively.
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The N -partite MABK inequality reads [61,62]

〈MN 〉 = Tr[MNρ] ≤

⎧
⎪⎨
⎪⎩

2, classical bound
2N/2, GME threshold
2(N+1)/2 quantum bound

, (9)

where MN is the MABK operator and a violation of the
GME threshold implies that the parties share a genuine
multipartite entangled (GME) state.

The second major result of this work is an upper bound
on the maximal MABK violation obtained when N par-
ties share an N -qubit state and perform rank-one projective
measurements on the respective qubits. The bound is state
dependent and tight on certain classes of states (proof and
tightness conditions in Sec. VIII B). This is the first bound
of such a kind for an N -partite Bell inequality. Recently,
the authors in Ref. [63] derived a similar bound in the
N = 3 case. Our bound is tight on a larger set of states
(discussion in Sec. VIII B) and is valid for general N .

Theorem 2. The maximum violation Mρ of the N-partite
MABK inequality, Eq. (9), attained with rank-one projec-
tive measurements on an N-qubit state ρ, satisfies

Mρ ≤ 2
√

t0 + t1, (10)

where t0 and t1 are the largest and second-to-the-largest
eigenvalues of the matrix TρTT

ρ , where Tρ is the correlation
matrix of ρ.

We define the correlation matrix of an N -qubit state as
follows.

Definition 3. The correlation matrix of an N-qubit state
ρ, Tρ , is a square or rectangular matrix defined by the
elements [Tρ]ij = Tr[ρσν1 ⊗ · · · ⊗ σνN ] such that

i = 1 +
N/2�∑
k=1

3N/2�−k(νk − 1),

j = 1 +
N∑

k=N/2�+1

3N−k(νk − 1),

(11)

where ν1, . . . , νN ∈ {1, 2, 3}, σνi are the Pauli operators,
and x� returns the smallest integer greater or equal
to x.

Remark. We remark that the most general measurements
to be considered in computing the maximal MABK viola-
tion are projective measurements defined by observables
[A(i)xi

]2 = id [56], since positive-operator valued measures
(POVMs) never provide higher violations [64,65]. Such
measurements on qubits reduce to either (i) rank-one

projective measurements given by A(i)xi
= �ai

xi
· �σ with unit

vectors �ai
xi
∈ R3 and where �σ = (X , Y, Z)T is the vector of

Pauli operators, or (ii) rank-two projective measurements
given by the identity A(i)xi

= ±id, i.e., measurements with a
fixed outcome. While for N = 2 parties the identity does
not lead to any violation [60] and the optimal measure-
ments are described by case (i), in a multipartite scenario
case (ii) cannot be ignored.

For instance, if N = 3 parties share the state id/2 ⊗
|ψ00〉〈ψ00| (with |ψ00〉 given in Definition 1), an MABK
violation of 2

√
2 is achieved if the first party measures

A(1)0 = A(1)1 = id, whereas no violation is obtained if her
measurements are restricted to A(i)xi

= �ai
xi
· �σ .

We point out that previous works [63,66–68] addressing
the violation of multipartite Bell inequalities achieved by
a given multiqubit state have neglected case (ii) and only
considered case (i). By applying the above example, we
stress that the results of Refs. [63,66–68] characterizing
Bell violations yielded by multiqubit states are, in fact, less
general than claimed.

Nevertheless, for states whose maximal violation is
above the GME threshold, the bound we provide in
Theorem 2 is general and holds independently of the par-
ties’ measurements. Indeed, measuring the identity cannot
lead to violations above the GME threshold and thus case
(i) is already the most general.

By applying Theorem 2 to the state ρα in Eq. (5),
we obtain an upper bound on the maximal MABK vio-
lation Mα achievable on ρα with rank-one projective
measurements.

Corollary 1. For a tripartite state ρα of the form given in
Eq. (5), the maximal violation Mα of the MABK inequality
achieved with rank-one projective measurements satisfies

Mα ≤M↑
α = 4

√√√√
1∑

j ,k=0

(ρ0jk − ρ1jk)2, (12)

where {ρijk} are the eigenvalues of the state ρα , as specified
in Eq. (6).

In Sec. VIII B, we provide the tightness conditions,
Eq. (78), for which the upper bound in Eq. (12) is achieved.

IV. ONE-OUTCOME CONDITIONAL ENTROPY
BOUND

Consider the (3, 2, 2) DI scenario of Fig. 1. Alice, Bob,
and Charlie test the tripartite MABK inequality in order
to quantify Eve’s uncertainty on the generic outcome X
of one of Alice’s observables, by computing the condi-
tional von Neumann entropy H(X |E). We emphasize that,
in a DIRG protocol, the entropy H(X |E) determines the

010308-4



DEVICE-INDEPENDENT ENTROPY BOUNDS... PRX QUANTUM 2, 010308 (2021)

asymptotic rate of secret random bits extracted by applying
privacy amplification [6] on Alice’s X outcomes [69,70].
Similarly, in DICKA the secret key rate is determined by
H(X |E) decreased by the amount of classical information
disclosed by the parties in the other steps of the protocol
[42,62,69].

We derive an analytical lower bound on H(X |E) as
a function of the observed MABK violation. Theorem 1
guarantees that we can restrict the computation of the con-
ditional entropy H(X |Etot) over a mixture of states ρα
of the form Eq. (5) and to rank-one projective measure-
ments performed by the parties. We emphasize that the
total information Etot = E� available to Eve includes the
knowledge of the flag �, which carries the value of α
(see Sec. VIII A). The goal is to lower bound the condi-
tional entropy H(X |Etot) with a function F of the observed
MABK violation m.

Thanks to Theorem 1, we can express the conditional
entropy H(X |Etot) as follows:

H(X |Etot) =
∑
α

pαH(X |E� = α)

=
∑
α

pαH(X |E)ρα , (13)

as a matter of fact the state on which H(X |Etot) is com-
puted is a classical-quantum state [see Eq. (41)]. At the
same time, the observed violation m can be expressed as

m =
∑
α

pαmα . (14)

In Eq. (13), the entropy H(X |E)ρα is the conditional
entropy of Alice’s outcome given that Eve distributed the
state ρα , while pα is the probability distribution of the
mixture prepared by Eve. In Eq. (14), mα is the viola-
tion that the parties would observe had they shared the
state ρα in every round of the protocol and performed the
corresponding rank-one projective measurements.

We then aim at lower bounding H(X |E)ρα with a convex
function F of the MABK violation mα:

H(X |E)ρα ≥ F(mα). (15)

Indeed, by combining Eqs. (13)–(15) and the convexity of
F , one can obtain the desired lower bound on H(X |Etot) as
a function of the observed violation m:

H(X |Etot) ≥ F(m). (16)

The bound is tight if, for any given MABK violation m,
there exist a quantum state and a set of measurements
that achieve violation m and whose outcome’s conditional
entropy is exactly given by F(m). We now obtain the func-
tion F by minimizing H(X |E)ρα over all the states ρα
yielding a violation mα .

The eigenvectors of the state ρα , corresponding to the
eigenvalues in Eq. (6), read

|ρijk〉 = |ψi,j ,k〉 (j , k) 	= (1, 1),

|ρ011〉 = cos(t) |ψ0,1,1〉 − i sin(t) |ψ1,1,1〉 ,

|ρ111〉 = cos(t) |ψ1,1,1〉 − i sin(t) |ψ0,1,1〉 ,

(17)

where the parameter t is defined as

t = arctan
2s

λ011 − λ111 +
√
(λ011 − λ111)2 + 4s2

. (18)

By combining the freedom in ordering the diagonal ele-
ments λijk of ρα (cf. Theorem 1) with the definition of the
eigenvalues ρijk in Eq. (6), one can impose the following
constraints on the eigenvalues:

ρ0jk ≥ ρ1jk ∀ j , k. (19)

The entropy H(X |E)ρα is computed on the classical-
quantum state:

ραXE = (EX ⊗ idE)TrBC[|φαABCE〉〈φαABCE|], (20)

where |φαABCE〉 is a purification of ρα (Eve holds the puri-
fying system E), while EX represents one of the two
projective measurements of Alice, defined by the eigen-
vectors:

|a〉X = 1√
2

[|0〉 + (−1)aeiϕX |1〉] a ∈ {0, 1}, (21)

where ϕX ∈ [0, 2π) identifies the measurement direction
in the (x, y) plane of the Bloch sphere. For definiteness,
we choose ϕX to be the measurement direction of Alice’s
observable A0: ϕX = ϕA0 . Hence, we are deriving a lower
bound on H(XA0 |Etot), where XA0 is the outcome of Alice’s
observable A0.

The entropy minimization can be simplified if, instead
of minimizing over the matrix elements {λijk} and s of
ρα , one minimizes over its eigenvalues {ρijk} and over t.
This change of variables is legitimized by the bijective
map linking the two sets of parameters, defined by Eqs. (6)
and (18).

The solution of the following optimization problem
yields a tight lower bound on H(XA0 |E)ρα :

min
{ρijk ,t, �ϕ}

H(XA0 |E)ρα (ρijk, t,ϕA0)

subject to 〈M3〉ρα (ρijk, t, �ϕ) ≥ mα; ρ0jk ≥ ρ1jk;
∑
ijk

ρijk = 1; ρijk ≥ 0,

(22)

where �ϕ := (ϕA0 ,ϕA1 ,ϕB0 ,ϕB1 ,ϕC0 ,ϕC1) contains the
measurement directions identified by the observables
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A0, A1, B0, B1, C0, and C1. Notably, due to the symme-
tries of the MABK inequality, all the tight lower bounds
on H(XAi |E)ρα , H(YBi |E)ρα , and H(ZCi |E)ρα (for i = 0, 1)
coincide. Thus, solving Eq. (22) yields a tight lower bound
on the conditional entropy H(X |E)ρα of any single party’s
outcome X .

We drastically simplify the optimization problem in
Eq. (22), by replacing the MABK expectation value 〈M3〉ρα
with its upper bound M↑

α derived in Eq. (12). Indeed, this
allows us to independently minimize H(X |E)ρα over t and
ϕA0 without affecting the MABK violation. The resulting
conditional entropy is minimized by t = ϕA0 = 0 and reads

H(X |E)ρα (ρijk, t = 0,ϕA0 = 0)

= 1 − H({ρijk})+ H({ρijk + ρij̄ k̄}), (23)

where the Shannon entropy of a probability distribution
{pi}i is defined as H({pi}) =

∑
i −pi log2 pi.

We are thus left to solve the following optimization
problem:

min
{ρijk}

1 − H({ρijk})+ H({ρijk + ρij̄ k̄})

subject to M↑
α(ρijk) ≥ mα; ρ0jk ≥ ρ1jk;
∑
ijk

ρijk = 1; ρijk ≥ 0,

(24)

whose solution is a lower bound on the solution of the orig-
inal optimization problem, Eq. (22). We analytically solve
Eq. (24) and provide the complete proof in Appendix E.

Importantly, the following family of states solves
Eq. (24) for every value of the violation mα:

τ(νm) = νm|ψ0,0,0〉〈ψ0,0,0| + (1 − νm)|ψ0,1,1〉〈ψ0,1,1|,
(25)

where the parameter νm is fixed by the violation mα by

mα =M↑
τ (νm) = 4

√
2ν2

m − 2νm + 1, (26)

where we use Eq. (12) in the second equality. The lower
bound on the conditional entropy H(X |E)ρα is thus given
by the entropy of the states in Eq. (25):

H(X |E)ρα ≥ F(mα) := H(X |E)τ(νm). (27)

The entropy of the states in Eq. (25) is easily com-
puted from Eq. (23) and can be expressed in terms of the
violation mα by reverting Eq. (26). We obtain

F(mα) = 1 − h

(
1
2
+ 1

2

√
m2
α

8
− 1

)
, (28)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy. Finally, the lower bound, Eq. (28), is a convex
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FIG. 2. Analytical lower bound on the conditional von Neu-
mann entropy H(X |Etot) as a function of the MABK inequality
violation [green line, Eq. (29)] observed by three parties. We
compare it to the numerical optimization of Eq. (22) (blue line),
whose convex hull (dashed orange) yields an upper limit on the
lowest value of H(X |Etot). We notice that Eve has no uncer-
tainty on Alice’s outcome X for violations below the genuine
multipartite entanglement (GME) threshold.

function, hence we can employ it in Eq. (16) and obtain
the desired lower bound on H(X |Etot) as a function of the
observed MABK violation:

H(X |Etot) ≥ 1 − h

(
1
2
+ 1

2

√
m2

8
− 1

)
. (29)

In Fig. 2 we plot the lower bound on the conditional
entropy derived in Eq. (29), as well as a numerical opti-
mization of Eq. (22), which yields an upper bound on the
minimal value of H(X |E)ρα . We can conclude that the
tight lower bound on H(X |Etot) lies in the plot region
delimited by the convex hull of the numerical curve [the
bound in Eq. (15) must be convex] and our analytical lower
bound.

From Fig. 2, we deduce that our analytical lower bound
on H(X |Etot) leaves little room for improvement (com-
pared to the ideal tight bound) and that it is actually tight up
to the GME threshold of m = 2

√
2. We prove this by show-

ing that the state τ(1/2), which yields the analytical bound
at m = 2

√
2, is also an optimal solution of the original opti-

mization problem, Eq. (22). Indeed, when m = 2
√

2, the
tightness conditions of the MABK upper bound, Eq. (78),
applied to τ(1/2) are verified for ϕA0 = ϕA1 = 0. In other
words, there exist observables that Alice, Bob, and Char-
lie can measure on τ(1/2) such that 〈M3〉τ(1/2) = 2

√
2.

In particular, Alice’s optimal observables are the Pauli
X . Under these conditions, the entropy in Eq. (22) reads
H(X |E)τ(1/2)(ϕA0 = 0) = 0, which must be the solution of
Eq. (22) since in general it holds H(X |E)ρα ≥ 0. Thus the
lower bound, Eq. (29), is tight for m = 2

√
2 and is equal

to zero.
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By combining this with the fact that the tight lower
bound on H(X |Etot) is monotonically nondecreasing in m
by construction [see Eq. (22)], we deduce that the condi-
tional entropy of a party’s outcome is zero for every viola-
tion below the GME threshold of 2

√
2. Hence, GME states

are a necessary resource to guarantee private randomness
of a party’s outcome in a tripartite MABK scenario.

Notably, the claim on the necessity of GME can be
generalized to an N -party MABK scenario. Consider the
following family of states that generalizes Eq. (25) to N
parties:

τ(ν) = ν|ψ0,�0〉〈ψ0,�0| + (1 − ν)|ψ0,�1〉〈ψ0,�1|. (30)

For ν = 1/2, we have that the N -party MABK viola-
tion upper bound, Eq. (10), yields 2

√
2 and its tightness

conditions (see Appendix D) are satisfied when Alice mea-
sures ±X for both of her observables. With these settings,
the N -party conditional entropy reads H(X |E)τ(1/2)(ϕA0 =
0,π) = 0. By repeating the argument on the monotonicity
of the entropy, we deduce that GME is necessary to certify
the privacy of a party’s outcome in any MABK scenario.

Since private randomness of a party’s outcome is a
prerequisite of any DICKA protocol, it is an open ques-
tion whether GME is a necessary ingredient for DICKA.
Note, instead, that GME has been shown not to be neces-
sary for device-dependent CKA [71]. Besides, in Sec. V
we argue on the apparent incompatibility of full-correlator
Bell inequalities and DICKA protocols.

Finally, we mention that a lower bound on H(X |Etot)

as a function of the MABK inequality violation is also
derived in Ref. [62], for the general N -party scenario. The
conditional entropy bound obtained in Ref. [62] reads

H(X |Etot) ≥ 1 − h

(
1
2
+ 1

2

√
m2

2N − 1

)
, (31)

where m is the observed violation of the N -partite MABK
inequality, Eq. (9). Surprisingly, despite the fact that the
bound in Ref. [62] is derived with a completely different
approach without aiming at optimality, the lower bound,
Eq. (31), for N = 3 coincides with the bound. Eq. (29),
obtained in this work.

V. FULL-CORRELATOR BELL INEQUALITIES
AND DICKA

We provide an heuristic argument on why full-correlator
Bell inequalities with two dichotomic observables per
party, such as the MABK inequality, seem to be useless
for DICKA protocols. We hope that this fundamental ques-
tion can spark the interest of the community towards more
conclusive results.

Any DICKA protocol is characterized by two essential
ingredients: a violation of a multipartite Bell inequality

to ensure secrecy of Alice’s outcomes and correlated out-
comes among all the parties yielding the conference key.
Since a part of Alice’s outcomes form the secret key, one
of the measurements she uses to assess the violation of
the inequality must be the same used for key generation
[34,43,72]. Note that, unlike Alice, the other parties are
equipped with an additional measurement option solely
used for key generation.

It is known that every full-correlator Bell inequality with
two dichotomic observables per party is maximally vio-
lated by the GHZ state [56]. Moreover, the only multiqubit
state leading to perfectly correlated and random outcomes
among all the parties is the GHZ state, when the parties
measure in the Z basis [21].

However, a GHZ state maximally violates a full-
correlator Bell inequality when the measurements are
chosen such that the resulting inequality (modulo rear-
rangements) is only composed of expectation values of
GHZ stabilizers, which acquire the extremal value 1.
Moreover, the stabilizers appearing in the inequality do
not act trivially on any qubit—i.e., do not contain the
identity—due to the full-correlator structure of the inequal-
ity. We call such stabilizers “full stabilizers” for ease of
comprehension.

The problem is that none of the N -partite GHZ state full
stabilizers, for N odd, contains the Z operator [73]. This
implies that, in order to maximally violate the inequality,
Alice’s measurement directions are orthogonal to Z. Since
one of these measurements is also used to generate her
raw key, she would obtain totally uncorrelated outcomes
with the rest of the parties (perfect correlations are only
obtained with a GHZ state when measuring Z). This causes
the unwanted situation of having maximal violation and
perfect correlations among the parties’ key bits as mutually
exclusive conditions. Since both conditions are required in
a DICKA protocol, the above argument constitutes an ini-
tial evidence that full-correlator Bell inequalities are not
suited for DICKA protocols.

A similar argument holds when the number of par-
ties N is even (N > 2). As a matter of fact, in this case
there exists only one GHZ full stabilizer, which contains
the Z operator, namely Z⊗N . If 〈Z⊗N 〉 were to appear in
the rearranged inequality expression, there should be at
least another correlator containing at least one Z operator.
Indeed, if each observable in a correlator never appears
again in any other term of the inequality, that correlator
is useless since Eve could assign to it any value (Eve is
supposed to know the inequality being tested). The lack of
any other full stabilizer containing the Z operator prevents
having a second correlator containing Z, thus excluding the
term 〈Z⊗N 〉 in the first place. Therefore, also in the N -even
case Alice’s measurements leading to maximal violation
are orthogonal to Z, yielding uncorrelated raw-key bits.
We remark that the N = 2 case is peculiar since the low
number of parties allows 〈ZZ〉 [obtained from the term
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〈A1(B0 − B1)〉 in the inequality] to appear just once in the
CHSH inequality [55].

It is worth mentioning that in Ref. [72] the apparent
incompatibility of the MABK inequality with a DICKA
protocol was already discussed. In particular, it is shown in
the tripartite case that there exists no honest implementa-
tion such that the parties’ outcomes are perfectly correlated
and at the same time the MABK inequality is violated
above the GME threshold, which is a necessary condition
as we pointed out above.

Despite the concerns on the use of MABK inequalities
in DICKA protocols, the results of this paper are still of
fundamental interest for DIRG [44–50] based on multi-
party nonlocality. As a further application, in the following
we improve the bound on Eve’s uncertainty of Alice and
Bob’s outcomes derived in Ref. [50].

VI. TWO-OUTCOME CONDITIONAL
ENTROPY BOUND

Consider the same DI scenario of Fig. 1 and suppose that
Eve wishes to jointly guess the measurement outcomes X
and Y of Alice and Bob, respectively. This scenario may
occur in DIRG protocols where the parties are assumed
to be colocated and collaborate to generate global secret
randomness [50,69]. We estimate Eve’s uncertainty by
providing a lower bound on the conditional von Neumann
entropy H(XY|E)ρα , as a function of the MABK violation
mα . The entropy is computed on the following quantum
state:

ραXYE = (EX ⊗ EY ⊗ idE)TrC[|φαABCE〉〈φαABCE|], (32)

where the maps EX and EY represent Alice’s and Bob’s
measurements, respectively, defined by the eigenvectors:

|a〉X = 1√
2

[|0〉 + (−1)aeiϕX |1〉] a ∈ {0, 1},

|b〉Y =
1√
2

[|0〉 + (−1)beiϕY |1〉] b ∈ {0, 1}.
(33)

For definiteness, we select ϕX = ϕA0 and ϕY = ϕB0 and
define the optimization problem:

min
{ρijk ,t, �ϕ}

H(XA0YB0 |E)ρα (ρijk, t,ϕA0 ,ϕB0)

subject to 〈M3〉ρα (ρijk, t, �ϕ) ≥ mα; ρ0jk ≥ ρ1jk;
∑
ijk

ρijk = 1; ρijk ≥ 0,

(34)

whose solution yields a tight lower bound on H(XA0
YB0 |E)ρα . Nonetheless, due to the MABK symmetries,
the lower bounds on H(XAiYBj |E)ρα , H(XAiZCj |E)ρα , and
H(YBiZCj |E)ρα coincide (for i, j ∈ {0, 1}). Thus, the solu-
tion of Eq. (34) actually provides the tight lower bound

on the conditional entropy H(XY|E)ρα of any pair of
outcomes X and Y belonging to distinct parties.

Similarly to the case of H(X |E)ρα , we analytically solve
the following simplified optimization problem (details in
Appendix F):

min
{ρijk ,t,ϕX ,ϕY}

H(XY|E)ρα (ρijk, t,ϕX ,ϕY)

subject to M↑
α(ρijk) ≥ mα; ρ0jk ≥ ρ1jk;
∑
ijk

ρijk = 1; ρijk ≥ 0,

(35)

which yields a lower bound on the solution of the origi-
nal optimization problem, Eq. (34). The lower bound on
H(XY|E)ρα obtained by solving Eq. (35) reads

H(XY|E)ρα ≥ G(mα), (36)

where

G(mα) := 2 − H [{1 − 3f (mα), f (mα), f (mα), f (mα)}] ,
(37)

and where the function f is defined as

f (mα) = 1
4
−
√

3
24

√
m2
α − 4. (38)

Similarly to the case of H(X |E)ρα , we can exploit the
convexity of the function in Eq. (37) to lower bound the
conditional entropy of the global state prepared by Eve:

H(XY|Etot) ≥ G(m), (39)

where m is the violation observed by Alice, Bob, and
Charlie and G(m) is the function defined in Eq. (37).

The bound in Eq. (39) is plotted in Fig. 3, together
with the tight lower bound on the correspondent min-
entropy obtained in Ref. [50] and a numerical optimization
of Eq. (34). As already mentioned in Sec. IV, the tight
bound on H(XY|Etot) must lie between the convex hull of
the numerical curve and our analytical bound, Eq. (39).
Figure 3 suggests that our analytical bound is close to the
ideal tight bound.

We point out the dramatic improvement in certifying
device independently the privacy of two parties’ outcomes
with our lower bound on the conditional von Neumann
entropy H(XY|Etot), as opposed to bounding the condi-
tional min-entropy Hmin(XY|Etot) [50].

The min-entropy is often used to lower bound the von-
Neumann entropy in DI protocols, since it can be directly
estimated using the statistics of the measurement outcomes
[51,52]. In general it holds that H ≥ Hmin [74]. However,
bounding the von Neumann entropy with the min-entropy
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FIG. 3. Analytical lower bound on the conditional von Neu-
mann entropy H(XY|Etot) [green line, Eq. (39)] as a function of
the MABK violation observed by three parties. We compare it
to the lower bound on the conditional min-entropy Hmin(XY|Etot)

derived in Ref. [50] (magenta line) and to the numerical solu-
tion of Eq. (34) (blue line), whose convex hull (dashed orange)
yields an upper limit on the lowest value of H(XY|Etot). Our
bound dramatically improves the one in Ref. [50] since it directly
bounds the von Neumann entropy. Unlike the case of H(X |Etot)

in Fig. 2, Eve’s uncertainty on outcomes X and Y is nonzero even
for violations below the GME threshold.

can be far from optimal, as in the case analyzed here (see
Fig. 3).

From Fig. 3 we also observe that the joint conditional
entropy of two parties’ outcomes H(XY|Etot) is nonzero for
violations below the GME threshold, unlike the entropy of
a single party’s outcome H(X |Etot) (cf. Sec. IV).

VII. CONCLUSION

The security of DI cryptographic protocols is based on
the ability to bound the entropy of the protocols’ outcomes,
conditioned on the eavesdropper’s knowledge, by a Bell
inequality violation. To this aim, we consider a DI scenario
where N parties test a generic full-correlator Bell inequal-
ity, with two measurement settings and two outcomes per
party. We prove, in this context, that it is not restrictive to
reduce the most general quantum state tested by the par-
ties to simple N -qubit states. Our result reduces to the only
other one of this kind [34] when N = 2.

In order to obtain the entropy bounds, we prove an ana-
lytical upper bound on the maximal violation of the MABK
inequality achieved by a given N -qubit state, when the par-
ties perform rank-one projective measurements. The bound
is tight on certain classes of states and has general validity
(i.e., independent of the parties’ measurements) for states
whose maximal violation is above the GME threshold.
Our bound generalizes the known result [60] valid for the
CHSH inequality to an arbitrary number of parties. This is
the first bound on the maximal violation of a N -partite Bell
inequality achievable by a given state, expressed in terms
of the state’s parameters.

These results enabled us to derive an analytical lower
bound on the conditional von Neumann entropy of a
party’s outcome, when Alice, Bob, and Charlie test the
tripartite MABK inequality. We also derive an analytical
lower bound on the conditional von Neumann entropy of
any pair of outcomes from distinct parties, which dramat-
ically improves a similar estimation made in Ref. [50] in
terms of the corresponding min-entropy. The improvement
gained by directly bounding the von Neumann entropy
has direct implications for randomness generation proto-
cols, inasmuch as it increases the fraction of random bits
guaranteed to be private.

Moreover, both analytical bounds perform well when
compared to the numerical estimation of the corresponding
tight bounds, leaving little room for improvement.

By proving that our bound on the conditional entropy
of a party’s outcome is tight at the GME threshold, we
deduce that genuine multipartite entanglement (GME) is
necessary to guarantee the privacy of a party’s random
outcome in any device-independent scenario based on the
MABK inequality. It is an open question whether GME is
a fundamental requirement for DI conference-key agree-
ment (DICKA). In this regard, we heuristically argue that
full-correlator Bell inequalities with two binary observ-
ables per party, such as the MABK inequality, are unlikely
to be employed in any DICKA protocol. We envision fur-
ther and more conclusive results in this direction from the
scientific community interested in this topic.

The bounds on the conditional entropies derived in this
work can find potential application in DI randomness gen-
eration based on multipartite nonlocality. Depending on
the application, such protocols would generate local ran-
domness for one party or global randomness for two or
more parties. In all cases, the privacy of the generated ran-
dom data would be ensured by entropy bounds like the
ones we derive.

Furthermore, the techniques developed in proving
Theorem 1 can inspire analogous analytical reductions of
the quantum state for other Bell inequalities. Indeed, of
particular interest are the Bell inequalities employed in the
existing DICKA protocols [42,43], for which a result like
Theorem 1 would be the first step towards a tight security
analysis, which is still lacking.

VIII. METHODS

Here we present the proofs of Theorems 1 and 2.

A. Proof of Theorem 1

The proof of Theorem 1 is based on three main ingredi-
ents: (i) the fact that each party has only two inputs with
two outputs allows the reduction of the analysis to qubits
and rank-one projective measurements; (ii) the symmetries
of the MABK inequality allow us to set all the marginals to
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zero, without changing the MABK violation or the infor-
mation available to the eavesdropper; (iii) the freedom in
the definition of the local axes is used to further reduce the
number of free parameters. Our proof is inspired by a sim-
ilar proof given in Ref. [34]. However, our result is valid
for an arbitrary number of parties N in the generic (N , 2, 2)
DI scenario described in the main text. Notably, for N = 2
we recover the result of Ref. [34].

In order to prove Theorem 1, we make use of the follow-
ing Lemma 1, which is a consequence of a result given in
Ref. [75] and whose proof is reported in Appendix A.

Lemma 1. Let {P0, P1} and {Q0, Q1} be two projective
measurements acting on a Hilbert space H, such that
P0, P1, Q0, and Q1 are projectors and P0 + P1 = id and
Q0 + Q1 = id. There exists an orthonormal basis in an
enlarged Hilbert space H∗ such that the four projectors
are simultaneously block diagonal, in blocks of size 2 × 2.
Moreover, within a 2 × 2 block, each projector has rank
one.

Proof. The first step consists in reducing the state dis-
tributed by Eve to a convex combination of N -qubit states.
To start with, every generalized measurement (POVM) can
be viewed as a projective measurement in a larger Hilbert
space. Since we did not fix the Hilbert space to which
the shared quantum state belongs, we can assume with-
out loss of generality that the parties’ measurements are
binary projective measurements on a given Hilbert space
H. In particular, the projectors P(i)0 and P(i)1 (Q(i)

0 and Q(i)
1 )

correspond to Alicei’s binary observable A(i)0 (A(i)1 ) relative
to input xi = 0 (xi = 1).

Now we can apply Lemma 1 to the projective measure-
ments of Alicei for i = 1, . . . , N and state that, at every
round of the protocol, the Hilbert space on which, e.g.,
Alice1’s measurements are acting is decomposed as

H∗ = ⊕αH2
α, (40)

where every subspace H2
α is two-dimensional and both

Alice1’s measurements act within H2
α as rank-one pro-

jective measurements. From Alice1’s point of view, the
measurement process consists of a projection in one of the
two-dimensional subspaces followed by a projective mea-
surement in that subspace (selected according to Alice1’s
input). Therefore, Eve is effectively distributing to Alice1 a
direct sum of qubits at every round. Alice1’s measurement
then selects one of the qubit subspaces and performs a pro-
jective measurement within that subspace. Of course, since
Eve fabricates the measurement device, the projective
measurements occurring in every subspace can be prede-
fined by Eve. Since this argument holds for every party,
Eve is effectively distributing a direct sum of N -qubit states
in each round.

Certainly, it cannot be worse for Eve to learn the flag
α of the subspace selected in a particular round before
sending the direct sum of N -qubit states to the parties.
For this reason, we can reformulate the state preparation
and measurement in a generic round of the protocol as Eve
preparing a mixture

ρA1...AN� =
∑
α

pαρα
N⊗

i=1

|α〉〈α|ξi (41)

of N -qubit states ρα , together with a set of ancillae � :=
{ξi}Ni=1 (known to her), which fixes the rank-one projective
measurements that each party can select on ρα .

Let us now focus on one specific occurrence defined by
a given α, i.e., on one of the N -qubit states ρα . For ease of
notation, in the following we omit the symbol α.

We define the plane induced by the two rank-one pro-
jective measurements of each party to be the (x, y) plane
of the Bloch sphere. Now, we assume without loss of gen-
erality that the statistics observed by the parties is such that
every marginal is random:

〈∏
i∈P

A(i)
〉
= 0, (42)

where A(i) is any dichotomic observable of Alicei and
P is any nonempty strict subset of all the parties: P �

{1, . . . , N }. Indeed, if this is not the case, the parties
can perform the following classical procedure on their
outcomes, which enforces the requirement in Eq. (42):
“Alice1 and Alicei flip their outcome with probability 1

2 ,”
repeated for every i = 2, . . . , N . This procedure does not
change the observed Bell violation since an even number
of flips occurs at every time, thus leaving the correla-
tors, Eq. (1), composing the Bell inequality unchanged.
Moreover, it requires classical communication between the
parties, which we assume to be known by Eve.

Since the observed statistics always satisfies Eq. (42),
we can imagine that it is Eve herself who performs the clas-
sical flipping on the outputs in place of the parties. To this
aim, Eve could apply the following map to the state ρ she
prepared, before distributing it:

ρ �→ ρ̄ = ◦N
i=2Di(ρ), (43)

where the composition operator in Eq. (43) represents the
successive application of the following operations:

Di(ρ) = 1
2
ρ + 1

2
Z1ZiρZ†

1Z†
i , (44)

with Zi representing the third Pauli operator applied on
Alicei’s qubit. Note that the application of Z prior to mea-
surement flips the outcome of a measurement in the (x, y)
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plane. Thus, by applying the map in Eq. (43), Eve is dis-
tributing a state, which automatically satisfies Condition
(42). We can safely assume that Eve implements the map
in Eq. (43) since this is not disadvantageous to her. As a
matter of fact, her uncertainty on the parties’ outcomes,
quantified by the conditional von Neumann entropy, does
not increase when she sends the state ρ̄ instead of ρ. We
provide a detailed proof of this fact in Appendix B. There-
fore, it is not restrictive to assume that the parties receive
the state, Eq. (43), from Eve, which can be recast as

ρ̄ = 1
2N−1

�N/2�∑
n=0

∑
x∈I(n)

ZxρZx, (45)

with

I(n) = {x ∈ {0, 1}N : ω(x) = 2n}, (46)

Zx =
N⊗

j=1

Z
xj
j , (47)

where the Hamming weight ω(x) of a bit string x returns
the total number of bits that are equal to one and �y�
returns the greatest integer smaller or equal to y.

By expressing the initial generic state ρ in the GHZ
basis:

ρ =
∑

�u,�v∈{0,1}N−1

1∑
σ ,τ=0

ρ(σ �u)(τ �v) |ψσ ,�u〉 〈ψτ ,�v| , (48)

where ρ(σ �u)(τ �v) ∈ C and by substituting it into Eq. (45),
we notice that the state ρ̄ is greatly simplified in the GHZ
basis. In particular, all the coherences between states of the
GHZ basis relative to different vectors �u are null:

ρ̄ =
∑

�u∈{0,1}N−1

1∑
σ ,τ=0

ρ(σ �u)(τ �u) |ψσ ,�u〉 〈ψτ ,�u| . (49)

This means that the matrix representation of ρ̄ is block
diagonal in the GHZ basis. By relabeling the nonzero
matrix coefficients, we represent ρ̄ as follows:

ρ̄ =
⊕

�u∈{0,1}N−1

[
λ0�u r�u + is�u

r�u − is�u λ1�u

]
, (50)

where λj �u, r�u, and s�u are real numbers. The number of free
parameters characterizing Eq. (50) can be further reduced
by exploiting the remaining degrees of freedom in the
parties’ local reference frames [34]. Indeed, although we
identify the plane containing the measurement directions

to be the (x, y) plane for every party, they can still choose
the orientation of the axes by applying rotations R(θ) along
the z direction. Consequently, the state distributed by Eve
without loss of generality is given by

ρ̄+ =
N⊗

i=1

Ri(θi)ρ̄

N⊗
i=1

R†
i (θi), (51)

where the rotation Ri(θi) acts on the Hilbert space of party
number i and reads

Ri(θi) = cos
θi

2
id + i sin

θi

2
Zi, (52)

where “id” is the identity operator. Similarly to ρ̄, even
the global rotation operator is block diagonal in the GHZ
basis:

N⊗
i=1

Ri(θi) =
⊕

�u∈{0,1}N−1

⎡
⎢⎢⎣

cos
β(�θ , �u)

2
i sin

β(�θ , �u)
2

i sin
β(�θ , �u)

2
cos

β(�θ , �u)
2

⎤
⎥⎥⎦ ,

(53)

where �θ is the vector defined by the rotation angles
{θ1, . . . , θN } and β is a function of �θ and �u defined as

β(�θ , �u) = θ1 +
N−1∑
j=1

(−1)uj θj+1. (54)

This fact greatly simplifies the calculation in Eq. (51), as it
allows to multiply the matrices, Eqs. (50) and (53), block
by block. The resulting block-diagonal matrix representing
the state distributed by Eve reads

ρ̄+ =
⊕

�u∈{0,1}N−1

[
λ′0�u r�u + is′�u

r�u − is′�u λ′1�u

]
, (55)

where the new matrix coefficients are given by

λ′0�u =
1
2

[
λ0�u + λ1�u + (λ0�u − λ1�u) cosβ(�θ , �u)

+ 2s�u sinβ(�θ , �u)
]

(56)

s′�u = s�u cosβ(�θ , �u)− 1
2
(λ0�u − λ1�u) sinβ(�θ , �u) (57)

λ′1�u =
1
2

[
λ0�u + λ1�u − (λ0�u − λ1�u) cosβ(�θ , �u)

− 2s�u sinβ(�θ , �u)
]

. (58)

From Eq. (57) we deduce that choosing the rotation angles
θ1, . . . , θN such that the following linear constraint is
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verified:

θ1 +
N−1∑
j=1

(−1)uj θj+1 = arctan
2s�u

λ0�u − λ1�u
, (59)

sets the corresponding imaginary part in Eq. (55) to zero:
s′�u = 0. However, we can only impose N constraints like
Eq. (59) on the N rotation angles, thus we are able to arbi-
trarily set to zero N terms like s�u in Eq. (55). Moreover,
by applying further rotations (note that the composition of
rotations is still a rotation) such that

θ̃1 +
N−1∑
j=1

(−1)uj θ̃j+1 = π , (60)

we can exchange the diagonal terms in Eq. (55): λ′0�u = λ1�u
and λ′1�u = λ0�u. This allows us to order up to N pairs
(λ0�u, λ1�u), for the same argument as above. Note that the
blocks with ordered pairs must be the same blocks with
null imaginary parts. Indeed, if a block identified by �u
with null imaginary part undergoes a rotation such that
β(�θ , �u) 	= {0,±π}, it will acquire a nonzero imaginary part
s′�u = −(1/2)(λ0�u − λ1�u) sinβ(�θ , �u), (see Eq. (57)).

Finally, we construct the state ρ̄− starting from ρ̄+ given
in Eq. (55) by replacing r�u with −r�u:

ρ̄− =
⊕

�u∈{0,1}N−1

[
λ′0�u −r�u + is′�u−r�u − is′�u λ′1�u

]
. (61)

We observe that the two states ρ̄± yield the same
measurement statistics and provide Eve with the same
information—i.e., their conditional entropies coincide.
Additionally, it is not disadvantageous for Eve to prepare
a balanced mixture of ρ̄+ and ρ̄− given by (ρ̄+ + ρ̄−)/2,
rather than preparing one of the two states with cer-
tainty. A detailed proof of these observations is given in
Appendix C.

We conclude that it is not restrictive to assume that Eve
distributes to the parties a mixture of N -qubit states ρα
together with an ancillary system fixing the parties’ mea-
surements. Each state ρα is represented by the following
block diagonal matrix in the GHZ basis:

ρα = ρ̄+ + ρ̄−
2

=
⊕

�u∈{0,1}N−1

[
λ0�u is�u
−is�u λ1�u

]
, (62)

where the diagonal elements of N arbitrary blocks are
ordered and the corresponding off-diagonal elements are
zero. This concludes the proof. �

B. Proof of Theorem 2

We present the proof of Theorem 2, which general-
izes the analogous result valid in the bipartite case for
the CHSH inequality [60]. This is the only existing upper
bound on the violation of the N -partite MABK inequal-
ity by rank-one projective measurements on an arbitrary
N -qubit state, expressed as a function of the state’s param-
eters. Note that an analogous upper bound on the violation
of the tripartite MABK inequality was recently derived
in Ref. [63]. However, here we show that our bound is
tight on a broader class of states and valid for an arbi-
trary number of parties. In order to prove Theorem 2 we
make use of the following Lemma 2, which generalizes
an analogous result in Ref. [60] to rectangular matrices of
arbitrary dimensions. The proof of Lemma 2 is reported in
Appendix D.

Lemma 2. Let Q be an m × n real matrix and let ‖�v‖
be the Euclidean norm of vectors �v ∈ Rk, for k = m, n.
Finally, let “·” indicate both the scalar product and the
matrix-vector multiplication. Then

max
�c⊥�c ′ such that
‖�c‖=‖�c′‖=1

[
‖Q · �c‖2 + ∥∥Q · �c ′∥∥2

]
= u1 + u2, (63)

where u1 and u2 are the largest and second-to-the-largest
eigenvalues of U ≡ QTQ, respectively.

For illustration purposes, here we report the proof of
Theorem 2 for the case of N = 3 parties. The full proof
is given in Appendix D.

Proof. By assumption we restrict the description of the
parties’ observables to rank-one projective measurements
on their respective qubit [56]. Hence they can be repre-
sented as follows:

Ax = �ax · �σ , By = �by · �σ , and Cz = �cz · �σ , (64)

where �ax, �by , �cz are unit vectors in R3 and where σ1 =
X , σ2 = Y, and σ3 = Z. We can then express the tripartite
MABK operator, Eq. (8), as follows:

M3 =
3∑

i,j ,k=1

Mijkσi ⊗ σj ⊗ σk, (65)

where we define

Mijk ≡ a0ib0j c1k + a0ib1j c0k + a1ib0j c0k − a1ib1j c1k.
(66)

A generic three-qubit state can be expressed in the Pauli
basis as follows:

ρ = 1
8

3∑
μ,ν,γ=0

�μνγ σμ ⊗ σν ⊗ σγ , (67)
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with �μνγ = Tr[ρσμ ⊗ σν ⊗ σγ ] and σ0 = id. With the
MABK operator in Eq. (65), the MABK expectation value
on the generic three-qubit state in Eq. (67) is given by

〈M3〉ρ = Tr(M3ρ)

= 1
8

3∑
i,j ,k=1

3∑
μ,ν,γ=0

Mijk�μνγ Tr
(
σiσμ ⊗ σj σν ⊗ σkσγ

)
︸ ︷︷ ︸

8δi,μδj ,νδk,γ

=
3∑

i,j ,k=1

Mijk�ijk. (68)

By recalling the correlation matrix of a tripartite state (cf.
Definition 3), the MABK expectation value in Eq. (68) can
be recast as follows:

〈M3〉ρ = (�a0 ⊗ �b1 + �a1 ⊗ �b0)
T · Tρ · �c0

+ (�a0 ⊗ �b0 − �a1 ⊗ �b1)
T · Tρ · �c1. (69)

Finally, the maximum violation Mρ of the MABK
inequality achieved by an arbitrary three-qubit state is
obtained by optimizing Eq. (69) over all possible observ-
ables that the parties can choose to measure:

Mρ = max
�ai,�bi,�ci such that

‖�ai‖=
∥∥∥�bi

∥∥∥=‖�ci‖=1

(�a0 ⊗ �b1 + �a1 ⊗ �b0)
T · Tρ · �c0

+ (�a0 ⊗ �b0 − �a1 ⊗ �b1)
T · Tρ · �c1. (70)

Let us now evaluate the norm of the composite vectors in
Eq. (70):
∥∥∥�a0 ⊗ �b1 + �a1 ⊗ �b0

∥∥∥
2
= 2 + 2 cos θa cos θb︸ ︷︷ ︸

≡cos θab

= 4 cos2
(
θab

2

)
, (71)

where θa (θb) is the angle between vectors �a0 and �a1 (�b0

and �b1). Similarly,

∥∥∥�a0 ⊗ �b0 − �a1 ⊗ �b1

∥∥∥
2
= 4 sin2

(
θab

2

)
. (72)

We then define normalized vectors �v0 and �v1 such that

�a0 ⊗ �b1 + �a1 ⊗ �b0 = 2 cos
(
θab

2

)
�v0, (73)

�a0 ⊗ �b0 − �a1 ⊗ �b1 = 2 sin
(
θab

2

)
�v1. (74)

It can be easily checked that the normalized vectors �v0
and �v1 are orthogonal. By substituting the definitions,

Eqs. (73) and (74), into the maximal violation of the
MABK inequality, Eq. (70), we can upper bound the latter
as follows:

Mρ ≤ max
�ci,�vi,θab such that

‖�ci‖=‖�vi‖=1∧�v0⊥�v1

2 cos
(
θab

2

)
�vT

0 · Tρ · �c0

+ 2 sin
(
θab

2

)
�vT

1 · Tρ · �c1. (75)

The inequality in Eq. (75) is due to the fact that now the
optimization is over arbitrary orthonormal vectors �v0, �v1
and angle θab, while originally the optimization was over
variables satisfying the structure imposed by Eqs. (73)
and (74). We now simplify the rhs of Eq. (75) to obtain
the theorem claim. In particular, we optimize over the
unit vectors �c0 and �c1 by choosing them in the directions
of TT

ρ · �v0 and TT
ρ · �v1, respectively, and we also optimize

over θab by exploiting the fact that the general expres-
sion A cos θ + B sin θ is maximized to

√
A2 + B2 for θ =

arctan B/A:

Mρ ≤ max
�vi,θab such that
‖�vi‖=1∧�v0⊥�v1

2
[

cos
(
θab

2

)∥∥TT
ρ · �v0
∥∥

+ sin
(
θab

2

)∥∥TT
ρ · �v1
∥∥
]

= max
�vi such that

‖�vi‖=1∧�v0⊥�v1

2
√∥∥TT

ρ · �v0
∥∥2 + ∥∥TT

ρ · �v1
∥∥2. (76)

Finally, by applying the result of Lemma 2, we know that
the maximum in Eq. (76) is achieved when �v0 and �v1 are
chosen in the direction of the eigenstates of TρTT

ρ corre-
sponding to the two largest eigenvalues. This concludes
the proof for the N = 3 case:

Mρ ≤ 2
√

t0 + t1, (77)

where t0 and t1 are the two largest eigenvalues of
TρTT

ρ . �

1. Tightness conditions

The bound, Eq. (10), is tight if the correlation matrix Tρ
of the considered state satisfies certain conditions, i.e., for
certain classes of states. Here we report the tightness con-
ditions valid in the N = 3 case, while the ones for general
N and their derivation are given in Appendix D.

The upper bound, Eq. (10), on the maximal violation of
the tripartite MABK inequality by a given state ρ is tight,
that is there exists a quantum implementation achieving
the bound, if there exist unit vectors �a0, �a1, �b0, and �b1 in
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R3 such that the following identities are satisfied:

�a0 ⊗ �b1 + �a1 ⊗ �b0 = 2
√

t0
t0 + t1

�t0,

�a0 ⊗ �b0 − �a1 ⊗ �b1 = 2
√

t1
t0 + t1

�t1,

(78)

where �t0 and �t1 are the normalized eigenvectors of TρTT
ρ

corresponding to the two largest eigenvalues t0 and t1. The
tightness conditions in Eq. (78) are sufficient conditions
such that the equality sign holds in Eq. (77) and can be
directly deduced from the theorem’s proof.

We point out that by repeating the proof with different
definitions of correlation matrix, one can potentially end
up with alternative MABK violation upper bounds together
with their own set of tightness conditions. This depends on
the symmetries of the state ρ.

More concretely, the correlation matrix of a tripartite
state ρ used in the proof above is a 9 × 3 matrix expressed
as follows (cf. Definition 3):

[Tρ]ij = Tr[ρ(σ i
3 � ⊗ σi−3( i

3 �−1) ⊗ σj )], (79)

where i ∈ {1, . . . , 9} and j ∈ {1, 2, 3}. With the definition,
Eq. (79), we express the MABK expectation value as
in Eq. (69). This leads to the MABK violation upper
bound, Eq. (77), and to the tightness conditions, Eq. (78).
However, nothing prevents us from defining the tripartite
correlation matrix as

[T ′
ρ]ij = Tr[ρ(σ i

3 � ⊗ σj ⊗ σi−3( i
3 �−1))], (80)

or as

[T′′ρ]ij = Tr
[
ρ

(
σj ⊗ σ i

3 � ⊗ σi−3
(
 i

3 �−1
)
) ]

. (81)

The alternative definitions of the correlation matrix lead
to similar proofs of the MABK violation upper bound.
In particular, we obtain an analogous MABK violation
upper bound, Eq. (77), and analogous tightness conditions,
Eq. (78), except that the eigenvalues t0, t1 and eigenvectors
�t0, �t1 of TρTT

ρ are replaced by the corresponding eigenval-
ues and eigenvectors of T ′

ρT ′T
ρ or T ′′

ρT ′′T
ρ , depending on

the chosen correlation matrix.
An example showing the importance of this remark is

given by the family of states τ(ν) defined in Eq. (25).
Indeed, the MABK violation upper bound obtained for
τ(ν) by using the correlation matrices Tρ , T ′

ρ , and T ′′
ρ

reads the same and is given in Eq. (26). However, the
tightness conditions related to Tρ and T′ρ are satisfied,
while those related to T′′ρ are not. Thus, the use of dif-
ferent correlation matrices in the above proof can lead to
tighter MABK violation upper bounds or to a successful
verification of their tightness.

It is interesting to compare the tightness of our bound
with the bound derived in Ref. [63]. The major difference
is that our bound can be saturated even when the matrix
TρTT

ρ has no degenerate eigenvalues, opposed to Ref. [63],
which requires the degeneracy of the largest eigenvalue of
TρTT

ρ . When the matrix TρTT
ρ is degenerate in its largest

eigenvalue (i.e., t0 = t1), we recover the same tightness
conditions of Ref. [63]. For this reason, our bound is tight
on a larger set of states compared to the bound in Ref. [63].
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APPENDIX A: REDUCTION TO RANK-ONE
PROJECTIVE MEASUREMENTS

Here we provide a detailed proof of Lemma 1, by build-
ing on a result proved in Ref. [75]. We report the lemma’s
statement for clarity.

Lemma 1. Let {P0, P1} and {Q0, Q1} be two projective
measurements acting on a Hilbert space H, such that
P0, P1, Q0, and Q1 are projectors, P0 + P1 = id and Q0 +
Q1 = id. There exists an orthonormal basis in an enlarged
Hilbert space H∗ such that the four projectors are simulta-
neously block diagonal, in blocks of size 2 × 2. Moreover,
within a 2 × 2 block, each projector has rank one.

Proof. Let us consider the following three positive oper-
ators P0, P0Q0P0, and P0Q1P0. One can check that they
commute and therefore can be simultaneously diagonal-
ized. Let |v〉 be one of their simultaneous eigenvector.
Since P1 · P0 = 0, then P1 |v〉 = 0. So |v〉 is also an eigen-
vector of P1 with eigenvalue zero. Now, because Q0 +
Q1 = I , we cannot have that Q0 |v〉 = 0 and Q1 |v〉 = 0.
Therefore, one of the following cases hold.

(a) If Q0 |v〉 = 0, then Q1 |v〉 = |v〉, and the span of |v〉
corresponds to a 1 × 1 block in which P0, P1, Q0, Q1 have
|v〉 as a common eigenvector with respective eigenvalues
1, 0, 0, 1.

(b) If Q1 |v〉 = 0, then similarly we have a 1 × 1 block
in which P0, P1, Q0, Q1 have |v〉 as a common eigenvector
with respective eigenvalues 1, 0, 1, 0.
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(c) If Q0 |v〉 	= 0 and Q1 |v〉 	= 0, then we define the
orthogonal vectors |u0〉 = Q0 |v〉 and |u1〉 = Q1 |v〉 and the
two-dimensional subspace Ev = {c0 |u0〉 + c1 |u1〉 : c0,
c1 ∈ C}. We have that |v〉 ∈ Ev since |v〉 = |u0〉 +
|u1〉. Because |v〉 is also an eigenvector of P0Q0P0
and P0Q1P0, then P0 |u0〉 = P0Q0 |v〉 = P0Q0P0 |v〉 ∝
|v〉, similarly P0 |u1〉 ∝ |v〉. Therefore, ∃ |w〉 ∈ Ev such
that P0 |w〉 = 0 and then P1 |w〉 = |w〉. So the vectors
|u0〉 , |u1〉 ∈ Ev are simultaneous eigenvectors of Q0 and
Q1, and the vectors |v〉 , |w〉 ∈ Ev are simultaneous eigen-
vectors of P0 and P1. And the subspace Ev corresponds to
a 2 × 2 simultaneous diagonal block for the measurements
operators P0, P1, Q0, Q1.

This procedure can be performed on all the simultaneous
eigenvectors of P0, P0Q0P0, and P0Q1P0, and similarly on
the remaining simultaneous eigenvectors of P1, P1Q0P1,
and P1Q1P1.

Now, if we restrict to a 2 × 2 subspace Ev with �v

being the projector on the subspace Ev , the projectors
�vP0�v,�vP1�v ,�vQ0�v ,�vQ1�v are given by

�vP0�v = |v〉〈v|
〈v|v〉 ,

�vP1�v = |w〉〈w|
〈w|w〉 ,

�vQ0�v = |u0〉〈u0|
〈u0|u0〉 ,

�vQ1�v = |u1〉〈u1|
〈u1|u1〉 ,

(A1)

i.e., they are all rank-one projectors.
Within a 1 × 1 block, the two measurements defined

by {P0, P1}, and {Q0, Q1} have fixed outputs. Let |ṽ〉 be
a normalized simultaneous eigenvector of P0, P0Q0P0,
and P0Q1P0 and consider the case Q0 |ṽ〉 = 0, which
leads to a block of size 1 × 1 formed by the span
of the vector |ṽ〉. We can now artificially enlarge
the system dimension by embedding this block into a
block of size 2 × 2. Let |w̃〉〈w̃| be a projector on the
extra artificial dimension, with |w̃〉 a normalized vector.
Then we can define the two-dimensional subspace Eṽ =
{c0 |ṽ〉 + c1 |w̃〉 : c0, c1 ∈ C}, and we define the projectors
within this subspace to be given by �ṽP0�ṽ = |ṽ〉〈ṽ|,
�ṽP1�ṽ = |w̃〉〈w̃|, �ṽQ0�ṽ = |w̃〉〈w̃|, and �vQ1�v =
|ṽ〉〈ṽ|. One can perform a similar embedding for the other
case that leads to a 1 × 1 block, that is Q1 |ṽ〉 = 0. Note
that the new projective measurements defined on H∗, when
applied to a quantum state ρ on H that has no components
in the artificial dimensions, have still fixed outcomes in the
enlarged subspaces like Eṽ .

With this artificial construction, the representation of
the four projectors P0, P1, Q0, and Q1 in the artificially

enlarged Hilbert space H∗ is only composed of 2 × 2 diag-
onal blocks. Moreover, if we restrict to one of these blocks,
the two measurements defined by {P0, P1} and {Q0, Q1} are
rank-one projective measurements. �

APPENDIX B: EVE’S UNCERTAINTY IS
NONINCREASING UNDER SYMMETRIZATION

OF THE OUTCOMES

In proving Theorem 1, we argue that all the marginals
are random without loss of generality. This can be enforced
by assuming that Eve flips the classical outcomes of the
measurements in specific combinations. Otherwise, Eve
could also provide the parties with a state that inherently
leads to the symmetrized marginals, which is the mixture
ρ̄ given in Eq. (45). However, Eve would provide such a
state in place of the original (unknown) state ρ only if her
uncertainty on the parties’ outcomes does not increase.

We quantify Eve’s uncertainty via the von Neumann
entropy of the classical outcomes conditioned on Eve’s
quantum side information E. The specific outcomes that
we consider depend on the cryptographic application that
is being addressed. For instance, in the main text we
employ Theorem 1 to tightly estimate Eve’s uncertainty on
Alice’s random outcome X by computing H(X |E), when
Alice, Bob, and Charlie test the MABK inequality. This
result finds potential application in DICKA and DIRG pro-
tocols. Indeed, in a DICKA scheme Bob and Charlie would
correct their raw-key bits to match Alice’s bits represented
by X , while in a DIRG protocol the goal is to ensure that
Alice’s random outcome X is unknown to Eve. Addition-
ally, we employ Theorem 1 to estimate Eve’s uncertainty
on the outcomes of Alice (X ) and Bob (Y) jointly, by
computing H(XY|E).

For illustration purposes, here we provide the full proof
that Eve’s uncertainty of Alice’s outcome X is nonincreas-
ing if she distributes the state ρ̄ in place of ρ to N =
3 parties. However, we remark that an analogous proof
would hold for any number of parties and any number
of outcomes. Therefore, we must verify that the following
condition is met:

H(X |E)ρ ≥ H(X |Etot)ρ̄ , (B1)

where Eve’s quantum system Etot = ETT′ contains the
quantum side information E, the outcome of the random
variable T indicating to Eve which of the four states in
the mixture ρ̄ to distribute, and the purifying system T′.
Indeed, Eve preparing ρ̄ can be interpreted as she preparing
one of the four states:

ρ, (Z ⊗ Z ⊗ id)ρ(Z ⊗ Z ⊗ id),

(Z ⊗ id ⊗ Z)ρ(Z ⊗ id ⊗ Z),

(id ⊗ Z ⊗ Z)ρ(id ⊗ Z ⊗ Z), (B2)
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depending on the outcome t of a random variable stored
in the register T. Since Eve holds the purification of every
state in Eq. (B2): {|φt

ABCE〉}4t=1, the global state prepared by
Eve is

ρ̄ABCET = 1
4

∑
t

|φt
ABCE〉 〈φt

ABCE| ⊗ |t〉〈t|T. (B3)

Finally, we assume that Eve holds the purifying system of
the global state, thus the state she prepares is

|φ̄ABCETT′ 〉 = 1
2

∑
t

|φt
ABCE〉 ⊗ |t〉T ⊗ |t〉T′ , (B4)

which is a purification of Eq. (B3), where both registers T
and T′ are held by Eve and thus appear in Etot.

In order to prove Eq. (B1), we start by using the strong
subadditivity property:

H(X |Etot)ρ̄ ≤ H(X |ET)ρ̄ , (B5)

where the rhs entropy is computed on the following state:

ρ̄XET = (EX ⊗ idET)TrBC [ρ̄ABCET]

= 1
4
(EX ⊗ idET)TrBC

[∑
t

|φt
ABCE〉 〈φt

ABCE| ⊗ |t〉〈t|T
]

≡ 1
4

∑
t

ρ t
XE ⊗ |t〉〈t|T, (B6)

where the quantum map

EX (σ ) =
1∑

a=0

|a〉〈a| 〈a| σ |a〉

represents the projective measurement performed by Alice.
Being the state in Eq. (B6) a c.q. state, its entropy simpli-
fies to

H(X |ET)ρ̄ = 1
4

∑
t

H(X |E)ρt . (B7)

The last part of the proof shows that H(X |E)ρt is actu-
ally independent of t and equal to conditional entropy of
the original state H(X |E)ρ . This is clear if the state ρ t

XE is
made explicit. From Eq. (B6) we have that

ρ t
XE = (EX ⊗ idET)TrBC

[|φt
ABCE〉 〈φt

ABCE|
]

, (B8)

where |φt
ABCE〉 is the purification of one of the four states

in Eq. (B2) prepared by Eve according to the random
variable T. For definiteness, let us fix that state to be

(Z ⊗ Z ⊗ id)ρ(Z ⊗ Z ⊗ id), although an analogous rea-
soning holds for any other state in Eq. (B2). By writing
ρ in its spectral decomposition:

ρ =
∑
λ

λ|λ〉〈λ|, (B9)

we can immediately explicit |φt
ABCE〉 as follows:

|φt
ABCE〉 =

∑
λ

√
λ |λt〉ABC ⊗ |eλ〉E , (B10)

where the eigenstates of the operator (Z ⊗ Z ⊗ id)ρ(Z ⊗
Z ⊗ id) read |λt〉 = (Z ⊗ Z ⊗ id) |λ〉. By substituting
Eq. (B10) into Eq. (B8) and by expliciting the map EX we
obtain the following expression:

ρ t
XE =

1∑
a=0

|a〉〈a| ⊗
∑
λ,σ

√
λσ TrBC

[〈a| |λt〉 〈σ t| |a〉] |eλ〉〈eσ |

=
1∑

a=0

|a〉〈a| ⊗
∑
λ,σ

√
λσ TrBC [〈ā| |λ〉 〈σ | |ā〉] |eλ〉〈eσ |

=
1∑

a=0

|ā〉〈ā| ⊗
∑
λ,σ

√
λσ TrBC [〈a| |λ〉 〈σ | |a〉] |eλ〉〈eσ |

≡
1∑

a=0

|ā〉〈ā| ⊗ ρa
E , (B11)

where in the second equality we use the fact that Alice’s
measurement lies in the (x, y) plane hence the Z opera-
tor flips its outcome (a → ā) and the cyclic property of
the trace. In the third equality we relabel the classical out-
comes: a ↔ ā. Finally, by comparing Eq. (B11) with the
analogous state ρXE obtained from the original state ρ [i.e.,
in the case where Eve does not prepare the mixture of states
in Eq. (B2)]:

ρXE =
1∑

a=0

|a〉〈a| ⊗ ρa
E , (B12)

we observe that ρ t
XE and ρXE are the same state up to a per-

mutation of the classical outcomes, thus their conditional
entropies coincide:

H(X |E)ρt = H(X |E)ρ ∀ t. (B13)

In conclusion, by combining Eqs. (B13), (B7), and (B5),
we obtain the claim given in Eq. (B1). This concludes the
proof.
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APPENDIX C: EQUIVALENCE OF ρ̄+ AND ρ̄−
In the proof of Theorem 1 we claim that it is not

restrictive to assume that Eve distributes the following
mixture:

ρα = ρ̄+ + ρ̄−
2

, (C1)

in place of the state ρ̄+ given in Eq. (51). For illus-
tration purposes we prove the claim in the case where
three parties, Alice, Bob, and Charlie, test a (3, 2, 2) full-
correlator Bell inequality and are interested in bounding
Eve’s uncertainty about Alice’s outcome X , quantified by
the conditional von Neumann entropy H(X |E). Neverthe-
less, an analogous proof would hold for any number of
parties and joint entropies.

In the first part of the proof, we verify that the states
ρ̄+ and ρ̄− are equivalent from the viewpoint of the pro-
tocol. Precisely, the statistics generated by the two states
coincides, as well as Eve’s uncertainty about Alice’s out-
come, quantified by the conditional entropy H(X |E). In
the second part we show that Eve’s uncertainty does not
increase if she prepares a balanced mixture of the two
states, Eq. (C1), instead of preparing one of the two states
singularly.

We start by computing the statistics generated by the
states ρ̄+ in Eq. (55) and ρ̄−, which read as follows for
N = 3:

ρ̄± =
1∑

i,j ,k=0

λijk |ψi,j ,k〉 〈ψi,j ,k|

±
1∑

j ,k=0

rjk
(|ψ0,j ,k〉 〈ψ1,j ,k| + h.c.

)

+ is
(|ψ0,1,1〉 〈ψ1,1,1| − h.c.

)
, (C2)

where h.c. indicates the Hermitian conjugate of the term
appearing alongside it. Note that we arbitrarily assume
three out of four off-diagonal elements to be purely real,
according to the prescription characterizing ρ̄+ and ρ̄−.

Since we fix the parties’ measurements to be in the (x, y)
plane, their observables and the relative eigenstates can be
written as follows:

A = cos(ϕA)X + sin(ϕA)Y,

|a〉A =
1√
2

[|0〉 + (−1)aeiϕA |1〉],

B = cos(ϕB)X + sin(ϕB)Y,

|b〉B =
1√
2

[|0〉 + (−1)beiϕB |1〉],

C = cos(ϕC)X + sin(ϕC)Y,

|c〉C =
1√
2

[|0〉 + (−1)ceiϕC |1〉], (C3)

where X , Y, and Z are the Pauli operators, A, B, and C are
the observables of Alice, Bob, and Charlie, respectively,
and the measurement outcomes are defined to be a, b, c ∈
{0, 1} (where a = 0 corresponds to eigenvalue +1 and a =
1 to eigenvalue −1). Then, the statistics generated by the
states ρ̄+ and ρ̄− read

Pr[A = a, B = b, C = c]ρ̄±

=
1∑

i,j ,k=0

λijk 〈ψi,j ,k| |a, b, c〉〈a, b, c| |ψi,j ,k〉

± 2
1∑

j ,k=0

rjkRe[〈ψ0,j ,k| |a, b, c〉〈a, b, c| |ψ1,j ,k〉]

− 2s Im[〈ψ1,1,1| |a, b, c〉〈a, b, c| |ψ0,1,1〉]. (C4)

Therefore, the two statistics coincide if and only if the
coefficients of the terms rjk are all identically null:

Re[〈ψ0,j ,k| |a, b, c〉〈a, b, c| |ψ1,j ,k〉] = 0 ∀ j , k, a, b, c.
(C5)

A straightforward calculation of the coefficients of rjk,
by using the expressions in Eq. (C3) and the GHZ-basis
definition, leads to the following result:

〈ψ0,j ,k| |a, b, c〉〈a, b, c| |ψ1,j ,k〉

= i
2(−1)a+b+cIm[eiϕAeiϕB(−1)j eiϕC(−1)k ]

16
, (C6)

which is indeed purely imaginary. This proves the condi-
tion, Eq. (C5), and thus that the statistics of ρ̄+ and ρ̄− are
identical.

The next step of the proof consists in showing that Eve’s
uncertainty about Alice’s outcome is unchanged if she dis-
tributes ρ̄+ or ρ̄−, i.e., the following condition must be
verified:

H(X |E)ρ̄+ = H(X |E)ρ̄− . (C7)

In order to show Eq. (C7), we compute the conditional
entropy produced by each state as follows:

H(X |E) = H(E|X )+ H(X )− H(E) (C8)

and verify that each term in Eq. (C8) is identical for the
two states ρ̄+ and ρ̄−. To begin with, we know that the
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Shannon entropy H(X ) is given by

H(X ) = h(Pr[A = 0]), (C9)

where h(·) is the binary entropy, defined as h(p) =
−p log2 p − (1 − p) log2(1 − p). Since we prove that the
statistics generated by ρ̄+ and ρ̄− are the same, it follows
that

H(X )ρ̄+ = H(X )ρ̄− . (C10)

In order to compute the other two terms in Eq. (C8), we
write ρ̄+ and ρ̄− in their spectral decomposition:

ρ̄±
1∑

i,j ,k=0

ρijk|ρ±ijk〉〈ρ±ijk|, (C11)

where ρijk are the states’ eigenvalues, which one can easily
verify to be identical for the two states, while |ρ±ijk〉 are the
normalized eigenvectors, expressed for simplicity in terms
of the following non-normalized eigenvectors:

|ρ̃±ijk〉 =
λ0jk − λ1jk − (−1)i

√
4r2

jk + (λ0jk − λ1jk)2

±2rjk
|ψ0,j ,k〉 + |ψ1,j ,k〉

≡ ±f i
jk |ψ0,j ,k〉 + |ψ1,j ,k〉 (j , k) 	= (1, 1) (C12)

|ρ̃±i11〉 = (±r11 + is)
λ011 − λ111 − (−1)i

√
4r2

11 + 4s2 + (λ011 − λ111)2

2(r2
11 + s2)

|ψ0,1,1〉 + |ψ1,1,1〉

≡ (±gi
11 + ihi

11) |ψ0,1,1〉 + |ψ1,1,1〉 . (C13)

Since ρ̄+ and ρ̄− have the same eigenvalues, it holds that

H(ABC)ρ̄+ = H(ABC)ρ̄− . (C14)

Assuming that Eve holds the purification

|φ̄±ABCE〉 =
1∑

i,j ,k=0

√
ρijk |ρ±ijk〉 ⊗ |eijk〉 (C15)

of the parties’ state, where {|eijk〉} is an orthonormal basis
in E, it follows that

H(E)ρ̄+ = H(E)ρ̄− . (C16)

The remaining term in Eq. (C8) is H(E|X ), which is
computed on the c.q. state:

ρ̄±XE =
1∑

a=0

|a〉〈a| ⊗
1∑

i,j ,k=0
l,m,n=0

√
ρijkρlmn TrBC

[
〈a| |ρ±ijk〉 〈ρ±lmn| |a〉

]
|eijk〉〈elmn|

≡
1∑

a=0

Pr[A = a]|a〉〈a| ⊗ ρa,±
E , (C17)

where ρ
a,±
E is the conditional state of Eve, given that

Alice obtained outcome a. By employing the expressions
in Eqs. (C12) and (C13), one can verify that the operators
ρ

a,±
E are one the transpose of the other: ρa,+

E = (ρ
a,−
E )T.

Thus ρa,+
E and ρ

a,−
E have the same eigenvalues, which

implies that

H(ρa,+
E ) = H(ρa,−

E ). (C18)
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Finally, since the conditional entropy H(E|X ) is computed
as follows on the classical quantum states in Eq. (C17):

H(E|X )ρ̄± =
1∑

a=0

Pr[A = a]H(ρa,±
E ), (C19)

we conclude that

H(E|X )ρ̄+ = H(E|X )ρ̄− . (C20)

By combining the results in Eqs. (C10), (C16), and (C20)
into (C7), we verify that the states ρ̄+ and ρ̄− lead to the
same conditional entropy.

The final part of the proof shows that Eve’s uncertainty
in preparing the mixture ρα , Eq. (C1), does not increase
with respect to preparing one of the two states ρ̄±:

H(X |Etot)ρα ≤ H(X |E)ρ̄+ . (C21)

In this way we can guarantee that it is not restrictive to
assume that Eve prepares the mixture, Eq. (C1). In giv-
ing Eve maximum power, we assume that she prepares the
following global pure state (similarly to Appendix B):

|φABCEMM ′ 〉 1√
2

∑
m=+,−

|φ̄m
ABCE〉 ⊗ |m〉M ⊗ |m〉M ′ , (C22)

where |φ̄±ABCE〉 are the purifications of the individual states
ρ̄± defined in Eq. (C15), while M is an ancillary sys-
tem informing Eve on which of the two purified states
she prepared and M ′ is the purifying system of the global
state. Therefore, Eve has maximum power and her quan-
tum system comprises Etot = EMM ′. Naturally, it holds
that

ρα = TrEtot [|φABCEMM ′ 〉〈φABCEMM ′ |] . (C23)

For the strong subadditivity property, we have that

H(X |Etot)ρα = H(X |EMM ′)ρα ≤ H(X |EM )ρα

= 1
2

∑
m=+,−

H(X |E)ρ̄m , (C24)

where the last equality is due to the fact that the state
TrM ′[|φABCEMM ′ 〉 〈φABCEMM ′ |] is classical on M . Finally, by
employing the result, Eq. (C7) into Eq. (C24), we obtain
the claim in Eq. (C21). This concludes the proof. The same
argument can be used to generalize the proof for the case
of N parties and for the conditional entropy of the joint
outcome of more than one party.

APPENDIX D: MAXIMAL MABK VIOLATION BY
AN N -QUBIT STATE: PROOF

Here we provide the full proof of Theorem 2 and of
Lemma 2, which combined provide an analytical upper
bound on the maximal violation of the N -partite MABK
inequality by an arbitrary N -qubit state, for rank-one pro-
jective measurements. This is the only existing upper
bound on the violation of an N -partite Bell inequality by an
N -qubit state, expressed as a function of the state’s param-
eters. In Ref. [63], the authors only conjectured a bound for
the N -party case based on their result valid for three par-
ties. Analogously to the three-party case (see Sec. VIII),
our N -partite bound is tight on a broader class of states
than the bound conjectured in Ref. [63].

We start by proving Lemma 2, which plays an impor-
tant role in the proof of Theorem 2. We report the lemma’s
statement for clarity.

Lemma 2. Let Q be an m × n real matrix and let ‖�v‖
be the Euclidean norm of vectors �v ∈ Rk, for k = m, n.
Finally, let “·” indicate both the scalar product and the
matrix-vector multiplication. Then

max
�c⊥�c ′ such that
‖�c‖=‖�c ′‖=1

[
‖Q · �c‖2 + ∥∥Q · �c ′∥∥2

]
= u1 + u2, (D1)

where u1 and u2 are the largest and second-to-the-largest
eigenvalues of U ≡ QTQ, respectively.

Proof. Note that U is a symmetric n × n real matrix, thus it
can be diagonalized. The eigenvalue equation for U reads

U · �ui = ui �ui i = 1, . . . , n, (D2)

where the set of eigenvectors forms an orthonormal basis
of Rn: �uT

i · �uj = δi,j and without loss of generality we
order the eigenvalues as u1 ≥ u2 ≥ · · · ≥ un ≥ 0. Note that
every eigenvalue is non-negative:

ui = �uT
i · U · �ui = �uT

i · QTQ · �ui = ‖Q · �ui‖2 ≥ 0.

By considering that ‖Q · �c‖2 = �cT · QTQ · �c = �cT · U · �c
and by expressing the vectors �c and �c ′ in the eigenbasis
of U:

�c =
n∑

i=1

ci�ui.

�c′ =
n∑

i=1

c′i�ui,
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we can recast the claim in Eq. (D1) as follows:

max
�c⊥�c′ such that
‖�c‖=‖�c ′‖=1

n∑
i=1

ui(c2
i + c′i

2
) = u1 + u2. (D3)

Let us consider the most general scenario in which
some of the eigenvalues of U are degenerate: u1 ≥ u2 =
u3 = · · · = ud > ud+1 ≥ · · · un ≥ 0, where d = 2, . . . , n.
Note that we also account for the possibility that
u1 = u2.

We are now going to prove Eq. (D3) by showing that for
any couple of mutually orthogonal unit vectors �c and �c′ the
lhs of Eq. (D3) is upper bounded by u1 + u2 and that the
bound is tight.

We start by considering two unit vectors in Rn:
{
�cT = (c1, . . . , cn) such that ‖�c‖2 = 1
�c ′T = (c′1, . . . , c′n) such that

∥∥�c′∥∥2 = 1,
(D4)

and we define two unit vectors �v, �w ∈ Rd−1 along the
directions individuated by (c2, . . . , cd) and (c′2, . . . , c′d),
i.e.,

cv �vT ≡ (c2, . . . , cd),

c′w �wT ≡ (c′2, . . . , c′d),
(D5)

where cv and c′w are the norms of (c2, . . . , cd) and
(c′2, . . . , c′d), respectively. For d = 2 we simply have that
cv �vT = c2 and c′w �wT = c′2.

With an abuse of notation, we can rewrite Eq. (D4) as

{
�cT = (c1, cv �vT, cd+1, . . . , cn) such that c2

1 + c2
v + r = 1

�c ′T = (c′1, c′w �wT, c′d+1, . . . , c′n) such that c′1
2 + c′w

2 + r′ = 1,
(D6)

where r ≡∑n
i=d+1 c2

i and r′ ≡∑n
i=d+1 c′i

2 and for both it
holds that 0 ≤ r ≤ 1 and 0 ≤ r′ ≤ 1. From the orthogonal-
ity condition �cT · �c ′ = 0 we get that

∣∣c1c′1
∣∣ =
∣∣∣∣∣

n∑
i=2

cic′i

∣∣∣∣∣ , (D7)

and from the Cauchy-Schwarz inequality we deduce that
∣∣∣∣∣

n∑
i=2

cic′i

∣∣∣∣∣ ≤
√
(c2
v + r)(c′w

2 + r′). (D8)

By employing Eqs. (D7), (D8) and the normalization
conditions in Eq. (D6), we show that c2

1 + c′1
2 ≤ 1 holds:

(
c2

1 + c′1
2
)2
= c4

1 + c′1
4 + 2c2

1c′1
2

≤ c4
1 + c′1

4 + 2
(
1 − c2

1

) (
1 − c′1

2
)

= 2 − 2
(

c2
1 + c′1

2
)
+
(

c2
1 + c′1

2
)2

. (D9)

By comparing the lhs with the rhs one gets the desired
result:

c2
1 + c′1

2 ≤ 1. (D10)

We now prove the claim in Eq. (D3) through the following chain of equalities and inequalities:

n∑
i=1

ui(c2
i + c′i

2
) = u1(c2

1 + c′1
2
)+ u2(c2

v + c′w
2
)+

n∑
i=d+1

ui(c2
i + c′i

2
)

≤ u1(c2
1 + c′1

2
)+ u2(1 − r − c2

1 + 1 − r′ − c′1
2
)+ ud+1(r + r′)

= u2 + (u1 − u2)(c2
1 + c′1

2
)+ u2 − (r + r′)(u2 − ud+1)

≤ u1 + u2, (D11)
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where we use the normalization conditions and the fact that
the eigenvalues are ordered in descending order for the first
inequality, and we use Eq. (D10) together with the fact that
r, r′ ≥ 0 for the second inequality.

We are left to show that Eq. (D11) is tight, that is there
exist unit vectors �c and �c′ for which the equality sign holds.
If u1 = u2, the upper bound is attained when r = r′ = 0.
Thus the most general pair of vectors satisfying Eq. (D3)
is given by

{�cT = (�VT, 0, . . . , 0)
�c ′T = ( �WT, 0, . . . , 0)

, (D12)

with �V, �W ∈ Rd such that
∥∥�V∥∥ = ∥∥ �W∥∥ = 1 and �V · �W = 0.

If instead u1 > u2, the upper bound is attained when r =
r′ = 0 and c2

1 + c′1
2 = 1. The second condition is verified

when the equality holds in Eq. (D8), which in turn happens
when the unit vectors �v and �w are parallel. Thus the most
general pair of vectors satisfying Eq. (D3) is given by
{�cT = (c1, cv �vT, 0, . . . , 0)
�c ′T = (c′1, c′w�vT, 0, . . . , 0), �v ∈ Rd−1 ∧ c2

1 + c′1
2 = 1,

(D13)

and where the orthogonality and normalization condi-
tions hold: c1c′1 + cvc′w = 0, c2

1 + c2
v = 1 and c′1

2 + c′w
2 =

1. Such solutions can always be parametrized as follows:
{�cT = (cosα, sinα �vT, 0, . . . , 0)
�c ′T = (− sinα, cosα �vT, 0, . . . , 0)

, α ∈ R. (D14)

This concludes the proof. �
We are now ready to prove Theorem 2.

Proof. Firstly, we present closed expressions for the N -
partite MABK operator, defined recursively in Definition
2. In particular, in Ref. [72] the explicit expression of the
N -partite MABK operator when N is odd is given:

M odd
N = 1

2(N−3)/2

∑
x∈LN

(−1)(1/2)[(N−1)/2−ω(x)]
N⊗

i=1

A(i)xi
,

(D15)

where A(i)0 and A(i)1 are the two binary observables of Alicei,
while x = (x1, . . . , xN ) is a bit string with Hamming weight
given by

ω(x) = |{1 ≤ i ≤ N |xi = 1}|, (D16)

and the set LN is defined as follows:

LN =
{

x ∈ {0, 1}N
∣∣∣ω(x) = N − 1

2
mod 2
}

. (D17)

By applying once the MABK recursive formula of
Definition 2 on Eq. (D15), one obtains an explicit expres-
sion of the N -partite MABK operator for N even. We

distinguish the case N/2 even:

M even
N = 1

2(N−2)/2

∑

x∈{0,1}N
(−1)N/4−ω(x)/2�

N⊗
i=1

A(i)xi
, (D18)

and the case N/2 odd:

M even
N = 1

2(N−2)/2

∑

x∈{0,1}N
(−1)(N−2)/4−�ω(x)/2�

N⊗
i=1

A(i)xi
,

(D19)

where a� and �a� are the ceiling and floor functions,
respectively.

We now derive an explicit expression of the MABK
expectation value for a generic N -qubit state. As shown
above, the N -party MABK operator can be written in
explicit form as follows:

MN = 1
NN

∑
x∈SN

(−1)ξN (x)
N⊗

i=1

A(i)xi
, (D20)

where the normalization factor NN , the set of N -bit strings
SN and the exponent ξN (x) depend on the parity of N
(e.g., SN = {0, 1}N for N even and SN = LN for N odd).
By assumption we restrict to rank-one projective measure-
ments, hence every observable A(i)xi

can be individuated by
a unit vector �ai

xi
∈ R3 such that

A(i)xi
= �ai

xi
· �σ =

3∑
νi=1

ai
xi,νi
σνi , (D21)

where �σ = (X , Y, Z)T. By substituting Eq. (D21) into
Eq. (D20) and by rearranging the terms we get

MN = 1
NN

3∑
ν1,...,νN=1

⎡
⎣∑

x∈SN

(−1)ξN (x)
N∏

i=1

ai
xi,νi

⎤
⎦

σν1 ⊗ · · · ⊗ σνN

≡ 1
NN

3∑
ν1,...,νN=1

Mν1,...,νN σν1 ⊗ · · · ⊗ σνN . (D22)

We now employ Eq. (D22) and the expression for a generic
N -qubit state:

ρ = 1
2N

3∑
μ1···μN=0

�μ1···μN σμ1 ⊗ · · · ⊗ σμN , (D23)
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to derive an explicit expression for the MABK expectation value as follows:

〈MN 〉ρ = Tr[MNρ] = 1
NN

3∑
ν1,...,νN=1

Mν1,...,νN�ν1···νN

= 1
NN

3∑
ν1,...,νN=1

⎡
⎣∑

x∈SN

(−1)ξN (x) a1
x1,ν1

· · · aN
xN ,νN

�ν1···νN

⎤
⎦ , (D24)

where we use the fact that Tr[σiσj ] = 2δi,j .
We now specify the expressions for NN ,SN , and ξN (x) when N/2 is even and prove the theorem’s statement in this

particular case. However, a similar procedure applies to the N/2 odd and N odd cases and leads to the same final result.
We thus have the following expression for the MABK expectation value:

〈MN 〉ρ =
1

2(N−2)/2

3∑
ν1,...,νN=1

⎡
⎣ ∑

x∈{0,1}N
(−1)N/4−ω(x)/2� a1

x1,ν1
· · · aN

xN ,νN
�ν1···νN

⎤
⎦ , (D25)

and we rearrange it as follows:

〈MN 〉ρ =
1

2(N−2)/2

3∑
ν1,...,νN=1

⎡
⎣ ∑

x∈{0,1}N/2

∑

y∈{0,1}N/2
(−1)N/4−[ω(x)+ω(y)]/2�a1

x1,ν1
· · · aN/2

xN/2,νN/2
�ν1···νN aN/2

y1,νN/2
· · · aN

yN/2,νN

⎤
⎦

= 1
2(N−2)/2

3∑
ν1,...,νN=1

⎡
⎣ ∑

x∈EN/2

∑

y∈{0,1}N/2
(−1)N/4−[ω(x)+ω(y)]/2�a1

x1,ν1
· · · aN/2

xN/2,νN/2
�ν1...νN aN/2

y1,νN/2
· · · aN

yN/2,νN

+
∑

x∈ON/2

∑

y∈{0,1}N/2
(−1)N/4−ω(x)+ω(y)/2�a1

x1,ν1
· · · aN/2

xN/2,νN/2
�ν1...νN aN/2

y1,νN/2
· · · aN

yN/2,νN

⎤
⎦ , (D26)

where the sets EN/2 and ON/2 are defined as follows:

EN/2 =
{
x ∈ {0, 1}N/2∣∣ω(x) mod 2 = 0

}
(D27)

ON/2 =
{
x ∈ {0, 1}N/2∣∣ω(x) mod 2 = 1

}
. (D28)

We basically split the bit strings x into those with an even Hamming weight and those with an odd Hamming weight. Now
considering that the following identity holds:

⌈
ω(x)+ ω(y)

2

⌉
=
⎧⎨
⎩
ω(x) even: �ω(x)/2� + �ω(y)/2� + [ω(y) mod 2]

ω(x) odd:
⌊
ω(x)

2

⌋
+
⌊
ω(y)

2

⌋
+ 1,

(D29)

we can recast the MABK expectation value in Eq. (D26) as follows:

〈MN 〉ρ =
1

2(N−2)/2

3∑
ν1,...,νN=1

⎧⎨
⎩

⎡
⎣ ∑

x∈EN/2

(−1)N/4−�ω(x)/2� a1
x1,ν1

· · · aN/2
xN/2,νN/2

⎤
⎦

�ν1···νN

⎡
⎣ ∑

y∈{0,1}N/2
(−1)�ω(y)/2�+(ω(y) mod 2) aN/2

y1,νN/2
· · · aN

yN/2,νN

⎤
⎦
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+
⎡
⎣ ∑

x∈ON/2

(−1)N/4−�ω(x)/2� a1
x1,ν1

· · · aN/2
xN/2,νN/2

⎤
⎦�ν1···νN

⎡
⎣ ∑

y∈{0,1}N/2
(−1)�ω(y)/2�+1 aN/2

y1,νN/2
· · · aN

yN/2,νN

⎤
⎦
⎫
⎬
⎭

≡ 1
2(N−2)/2

[�vT
0 · Tρ · �u0 + �vT

1 · Tρ · �u1
]

. (D30)

In the expression, Eq. (D30), we define the vectors

�v0 =
∑

x∈EN/2

(−1)N/4−�ω(x)/2�
N/2⊗
i=1

�ai
xi

, (D31)

�v1 =
∑

x∈ON/2

(−1)N/4−�ω(x)/2�
N/2⊗
i=1

�ai
xi

, (D32)

�u0 =
∑

y∈{0,1}N/2
(−1)�ω(y)/2�+[ω(y) mod 2]

N/2⊗
i=1

�aN/2+i
yi

, (D33)

�u1 =
∑

y∈{0,1}N/2
(−1)�ω(y)/2�+1

N/2⊗
i=1

�aN/2+i
yi

, (D34)

and we use Definition 3 of the correlation matrix
of an N -qubit state. The 3N/2-dimensional vectors in
Eqs. (D31)–(D34) are heavily constrained by their tensor-
product structure and satisfy the following
properties:

Prop. 1: ‖�v0‖2 + ‖�v1‖2 = 2N/2, (D35)

Prop. 2: ‖�u0‖2 = ‖�u1‖2 = 2N/2, (D36)

Prop. 3: �v0 · �v1 = 0. (D37)

These properties play a fundamental role in deriving a
meaningful upper bound on the MABK expectation value.

We prove the first property, Eq. (D35), by directly
computing the lhs:

‖�v0‖2 + ‖�v1‖2 = �v0 · �v0 + �v1 · �v1

=
∑

x,y∈EN/2

(−1)N/2−�ω(x)/2�−�ω(y)/2�
N/2∏
i=1

(cos θi)
xi⊕yi

+
∑

x,y∈ON/2

(−1)N/2−�ω(x)/2�−�ω(y)/2�
N/2∏
i=1

(cos θi)
xi⊕yi ,

(D38)

where we use the fact that �ai
xi

are unit vectors and we call
θi the angle between the two measurement directions of
party number i: cos θi = �ai

0 · �ai
1. Note that the symbol ⊕ is

the binary operation XOR. We now define the bit string:
r = x ⊕ y, whose Hamming weight can be computed as

ω(r) = ω(x ⊕ y) = ω(x)+ ω(y)− 2ω(x ∧ y), (D39)

where ∧ is the binary operation AND. From Eq. (D39) it
follows immediately that the Hamming weight of the string
r is always even, since the Hamming weights of x and y
are either both even or both odd in Eq. (D38). With this
information, we can recast Eq. (D38) as follows:

‖�v0‖2 + ‖�v1‖2 =
∑

r∈EN/2

⎡
⎣ ∑

y∈EN/2

(−1)�ω(r⊕y)/2�+�ω(y)/2� +
∑

y∈ON/2

(−1)�ω(r⊕y)/2�+�ω(y)/2�

⎤
⎦

N/2∏
i=1

(cos θi)
ri , (D40)

where we use the fact that N/2 is even and where the string x is completely fixed once r and y are fixed: x = r ⊕ y.
Now we employ the relation, Eq. (D39), in Eq. (D40) and we make use of the information on the parity of the
Hamming weights appearing in the two sums:

‖�v0‖2 + ‖�v1‖2 =
∑

r∈EN/2

{ ∑
y∈EN/2

(−1)ω(r)/2+ω(y)−ω(r∧y) +
∑

y∈ON/2

(−1)[ω(r)+ω(y)−2ω(r∧y)−1]/2+ω(y)−1
2

} N/2∏
i=1

(cos θi)
ri .

(D41)
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Note that �a/2� = (a − 1)/2 if a is an odd number. The expression in Eq. (D41) can be further simplified by considering
that even addends in the exponents of (−1) can be ignored:

‖�v0‖2 + ‖�v1‖2 =
∑

r∈EN/2

⎡
⎣ ∑

y∈EN/2

(−1)ω(r)/2−ω(r∧y) +
∑

y∈ON/2

(−1)ω(r)/2−ω(r∧y)

⎤
⎦

N/2∏
i=1

(cos θi)
ri

=
∑

r∈EN/2

(−1)ω(r)/2

⎡
⎣ ∑

y∈{0,1}N/2
(−1)ω(r∧y)

⎤
⎦

N/2∏
i=1

(cos θi)
ri

= 2N/2 +
∑

r∈EN/2
r 	=0

(−1)ω(r)/2

⎡
⎣ ∑

y∈{0,1}N/2
(−1)ω(r∧y)

⎤
⎦

N/2∏
i=1

(cos θi)
ri , (D42)

where we extract the term r = 0 from the sum in the last
equality.

The last step to prove the first property, Eq. (D35), is to
show that every term in the remaining sum in Eq. (D42) is
identically zero, i.e., we want to show that

∑

y∈{0,1}N/2
(−1)ω(r∧y) = 0 ∀ r 	= 0. (D43)

In order for Eq. (D43) to be verified, there must be as many
(−1) terms as +1 terms, and since there are in total 2N/2

terms, there must be exactly 2N/2−1 terms (half of the total)
that are (−1). We can count the number of (−1) terms in
Eq. (D43) as follows:

∑

y∈{0,1}N/2
[ω(r ∧ y) mod 2], (D44)

and check whether it equals 2N/2−1, as claimed. Note that
ω(r ∧ y) represents the number of ones in r that are also
in y. The parity of this number is then summed over all the
possible bit strings y of length N/2. We can thus recast the
sum, as a sum over the number of ones that r and y have in
common (k), times the number of bit strings y that share k
ones with r:

∑

y∈{0,1}N/2
[ω(r ∧ y) mod 2]

=
ω(r)∑
k=0

(k mod 2)
(
ω(r)

k

)
2N/2−ω(r). (D45)

Note that the number of bit strings y that have k ones
in common with a fixed string r, is given by the num-
ber of possible combinations of k ones from the total
number of ones [ω(r)] populating the string r, times the
number of possibilities (2N/2−ω(r)) that we have to fill

the remaining bits of y that are not part of the k ones in
common with r.

We can now adjust the rhs of Eq. (D45) to the following
computable form:

2N/2−ω(r)
ω(r)∑
k=0
k odd

(
ω(r)

k

)
= 2N/2−ω(r)2ω(r)−1

= 2N/2−1, (D46)

where the first equality is obtained by combining two
known facts about the binomial coefficient, namely,

n∑
k=0

(
n
k

)
= 2n (D47)

n∑
k=0

(−1)k
(

n
k

)
= 0. (D48)

Indeed, by subtracting Eq. (D48) from Eq. (D47) one gets
that

∑
k odd

(
n
k

)
= 2n−1, (D49)

which is used in the first equality in Eq. (D46).
Combining Eqs. (D45) and (D46) we conclude that

Eq. (D43) is verified. We thus show the validity of the first
property, Eq. (D35).

We move on to prove the second property, Eq. (D36).
We start from Eq. (D33) and use the fact that �ω(x)/2� +
[ω(x) mod 2] = {ω(x)+ [ω(x) mod 2]}/2. We obtain
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‖�u0‖2 =
∑

x,y∈{0,1}N/2
(−1){ω(x)+[ω(x) mod 2]}/2+{ω(y)+[ω(y) mod 2]}/2

N/2∏
i=1

[cos(θN/2+i)]xi⊕yi

=
∑

r∈{0,1}N/2

⎡
⎣ ∑

y∈{0,1}N/2
(−1){ω(r)+ω(y)−2ω(r∧y)+[ω(r)+ω(y) mod 2]}/2+ω(y)+[ω(y) mod 2]

2

⎤
⎦

N/2∏
i=1

[cos(θN/2+i)]ri , (D50)

where we define r = x ⊕ y and we use the relation, Eq. (D39). We proceed to simplify Eq. (D50) by splitting the sum
over y over the strings with even and odd Hamming weight:

‖�u0‖2 =
∑

r∈{0,1}N/2

⎡
⎣ ∑

y∈EN/2

(−1){ω(r)+[ω(r) mod 2]}/2−ω(r∧y) +
∑

y∈ON/2

(−1){ω(r)+1+[ω(r)+1 mod 2]}/2−ω(r∧y)+ω(y)

⎤
⎦

×
N/2∏
i=1

[cos(θN/2+i)]ri . (D51)

By employing the following identities:

ω(r)+ [ω(r) mod 2]
2

=
⌈
ω(r)

2

⌉
(D52)

(−1)a = (−1)1 a odd (D53)

ω(r)+ 1 + [ω(r)+ 1 mod 2]
2

=
⌈
ω(r)+ 1

2

⌉
=
⌈
ω(r)

2

⌉
+ 1 − [ω(r) mod 2] (D54)

into Eq. (D51) we obtain

‖�u0‖2 =
∑

r∈{0,1}N/2
(−1)ω(r)/2�

{ ∑
y∈EN/2

(−1)ω(r∧y) +
∑

y∈ON/2

(−1)ω(r∧y)+[ω(r) mod 2]
} N/2∏

i=1

[cos(θN/2+i)]ri

= 2N/2 +
∑

r∈{0,1}N/2r 	=0

(−1)ω(r)/2�
{ ∑

y∈EN/2

(−1)ω(r∧y) +
∑

y∈ON/2

(−1)ω(r∧y)+[ω(r) mod 2]
} N/2∏

i=1

[cos(θN/2+i)]ri

= 2N/2 +
∑

r∈EN/2
r 	=0

(−1)ω(r)/2�

⎡
⎣ ∑

y∈{0,1}N/2
(−1)ω(r∧y)

⎤
⎦

N/2∏
i=1

[cos(θN/2+i)]ri

+
∑

r∈ON/2

(−1)ω(r)/2�

⎡
⎣ ∑

y∈EN/2

(−1)ω(r∧y) −
∑

y∈ON/2

(−1)ω(r∧y)

⎤
⎦

N/2∏
i=1

[cos(θN/2+i)]ri , (D55)

where we isolate the r = 0 term in the second equality and we split the sum over r in two sums over the strings with even
and odd Hamming weights in the third equality.

The first sum in Eq. (D55) is zero thanks to Eq. (D43). From Eq. (D43) we also deduce that

∑
y∈EN/2

(−1)ω(r∧y) +
∑

y∈ON/2

(−1)ω(r∧y) = 0, (D56)
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which means that the term in square brackets in the second
sum can be reduced to

2
∑

y∈EN/2

(−1)ω(r∧y) = 0. (D57)

The proof that Eq. (D57) holds is analogous to that of
Eq. (D43). In particular, Eq. (D57) is verified if the num-
ber of (−1) terms is exactly half the total number of terms,
that is 2N/2−2. We show that this is true by computing the
number of (−1) terms as follows:

∑
y∈EN/2

[ω(r ∧ y) mod 2]

=
ω(r)∑
k=0

(k mod 2)
(
ω(r)

k

)
2N/2−ω(r)−1

= 2N/2−ω(r)−1
ω(r)∑
k=0
k odd

(
ω(r)

k

)
. (D58)

Note that this time, compared to Eq. (D45), the number of
possibilities [2N/2−ω(r)−1] to fill the nonfixed bits of y is
halved. The reason is that in this case y is constrained to
have an even number of ones, thus after fixing N/2 − 1 of
its bits, no degree of freedom is left.

By employing again the result on binomial distributions,
Eq. (D49), in Eq. (D58), we obtain

∑
y∈EN/2

[ω(r ∧ y) mod 2] = 2N/2−2, (D59)

which proves Eq. (D57).
We thus show that both the sums in Eq. (D55) are zero,

thus proving the second property, Eq. (D36), for �u0. The
proof of Eq. (D36) for �u1 is analogous and we omit it.

Finally, we show that the third property, Eq. (D37), is
satisfied by direct computation:

�v0 · �v1 =
∑

x∈EN/2
y∈ON/2

(−1)�ω(x)/2�+�ω(y)/2�
N/2∏
i=1

(cos θi)
xi⊕yi

=
∑

x∈EN/2
y∈ON/2

(−1)ω(x)/2+[ω(y)−1]/2
N/2∏
i=1

(cos θi)
xi⊕yi

=
∑

r∈ON/2

{ ∑
x∈EN/2

(−1)[ω(x)−1+ω(x)+ω(r)−2ω(r∧x)]/2
}

N/2∏
i=1

(cos θi)
ri (D60)

where we define r = x ⊕ y and use Eq. (D39). By simpli-
fying the last expression we get

�v0 · �v1 =
∑

r∈ON/2

(−1)[ω(r)−1]/2

⎡
⎣ ∑

x∈EN/2

(−1)ω(r∧x)

⎤
⎦

×
N/2∏
i=1

(cos θi)
ri = 0, (D61)

where we use Eq. (D57) to prove the final equality.
Thanks to the properties, Eqs. (D35)–(D37), we can

express the vectors �vk and �uk (k = 0, 1) as follows:

�v0 = 2N/4 cos θ v̂0, (D62)

�v1 = 2N/4 sin θ v̂1, (D63)

�uk = 2N/4ûk, (D64)

where v̂k and ûk are unit vectors in the directions of �vk and
�uk, respectively, and where θ is a real number. With the
expressions, Eqs. (D62), (D63), and (D64), we recast the
MABK expectation value, Eq. (D30), as follows:

〈MN 〉ρ =
2N/2

2(N−2)/2

[
cos θ v̂T

0 · Tρ · û0 + sin θ v̂T
1 · Tρ · û1

]

= 2
[
cos θ v̂T

0 · Tρ · û0 + sin θ v̂T
1 · Tρ · û1

]
.

(D65)

The maximal violation Mρ of the N -partite MABK
inequality is then obtained by maximizing Eq. (D65) over
all the parties’ measurements directions �ai

0 and �ai
1 (for i =

1, . . . , N ). A valid upper bound on the maximal violation
Mρ is thus given by

Mρ ≤ max
v̂k ,ûk ,θ
v̂0⊥v̂1

2
[
cos θ v̂T

0 · Tρ · û0 + sin θ v̂T
1 · Tρ · û1

]
,

(D66)

where the inequality is due to the fact that we are now
optimizing the expectation value over all the possible unit
vectors v̂k (such that v̂0 · v̂1 = 0) and ûk, and freely over θ ,
ignoring the more stringent structures, Eqs. (D31)–(D34),
characterizing these vectors and their relation to θ . By
choosing û0 and û1 in the direction of v̂T

0 · Tρ and v̂T
1 · Tρ ,

respectively, and by fixing θ such that

tan θ =
∥∥TT

ρ · v̂1
∥∥

∥∥TT
ρ · v̂0
∥∥ , (D67)
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we can simplify the maximization in Eq. (D66) as follows:

Mρ ≤ max
v̂k ,ûk ,θ
v̂0⊥v̂1

2
[
cos θ v̂T

0 · Tρ · û0 + sin θ v̂T
1 · Tρ · û1

]

= max
v̂k ,θ
v̂0⊥v̂1

2
[
cos θ
∥∥TT

ρ · v̂0
∥∥+ sin θ

∥∥TT
ρ · v̂1
∥∥]

= max
v̂k

v̂0⊥v̂1

2
√∥∥TT

ρ · v̂0
∥∥2 + ∥∥TT

ρ · v̂1
∥∥2. (D68)

Finally, by employing the result of Lemma 2 in Eq. (D68),
we obtain the statement, Eq. (10), of the theorem:

Mρ ≤
√

t0 + t1, (D69)

where t0 and t1 are the two largest eigenvalues of TρTT
ρ .

This concludes the proof. �

1. Tightness conditions

Here we derive the conditions for which the upper bound
on the MABK violation given in Eq. (10) is tight. That
is, there exist observables for the N parties such that the
violation achieved on the state ρ is exactly given by the
rhs of Eq. (10). We first address the case N/2 even since it
is the one explicitly derived in the proof, then we present
the tightness conditions valid in the other cases.

The bound is tight when equality holds in Eq. (D66).
Considering that we made specific choices for the unit vec-
tors v̂i and ûi and for θ , the vectors in Eqs. (D31)–(D34)
should comply with these specific choices. In particular,
consider the eigenvalue equation for TρTT

ρ with normal-
ized eigenvectors and where t0 and t1 are the two largest
eigenvalues:

TρTT
ρ t̂k = tk t̂k. (D70)

In order to use Lemma 2 in Eq. (D68), it must hold that

v̂k = �vk

‖�vk‖ = t̂k k = 0, 1, (D71)

where �vk (k = 0, 1) are defined in Eqs. (D31) and (D32).
Employing Eq. (D71) into the relation, Eq. (D67), that
fixes θ we get

‖�v1‖
‖�v0‖ = tan θ =

∥∥TT
ρ · t̂1
∥∥

∥∥TT
ρ · t̂0
∥∥ =
√

t1
t0

, (D72)

where the last equality is due to Eq. (D70). Combining
Eq. (D72) with property Eq. (D35) we completely fix
the norms of vectors �v0 and �v1, while their direction is
already fixed by Eq. (D71). In conclusion we get the fol-
lowing tightness conditions for �v0 and �v1, which we recall

being specific combinations, Eqs. (D31) and (D32), of the
parties’ measurement directions:

�vk = 2N/4
√

tk
t0 + t1

t̂k k = 0, 1. (D73)

In addition to this, we also fix the directions û0 and û1 to
those of TT

ρ · v̂0 and TT
ρ · v̂1, respectively. Due to Eq. (D71)

and recalling property, Eq. (D36), we derive the following
tightness conditions on �u0 and �u1:

�uk = 2N/4

√
tk

TT
ρ t̂k k = 0, 1. (D74)

One can verify that upon substituting the tightness condi-
tions, Eqs. (D73) and (D74), into the MABK expectation
value, Eq. (D30), the theorem claim is obtained.

Here we recapitulate the tightness conditions of
Theorem 2 for the two cases N even and N odd. The bound
in Eq. (10) is tight if there exist unit vectors �ai

0, �ai
1 (with

i = 1, . . . , N ) such that

(a) N even:

�vk = 2N/4
√

tk
t0 + t1

t̂k, �uk = 2N/4

√
tk

TT
ρ t̂k (k = 0, 1),

(D75)

where vectors �vk and �uk are defined in Eqs. (D31)–(D34) if
N/2 is even, or as follows if N/2 is odd:

�v0 =
∑

x∈EN/2

(−1)(N−2)/4−�ω(x)/2�
N/2⊗
i=1

�ai
xi

, (D76)

�v1 =
∑

x∈ON/2

(−1)(N−2)/4−�ω(x)/2�
N/2⊗
i=1

�ai
xi

, (D77)

�u0 =
∑

y∈{0,1}N/2
(−1)�ω(y)/2�

N/2⊗
i=1

�aN/2+i
yi

, (D78)

�u1 =
∑

y∈{0,1}N/2
(−1)ω(y)/2�

N/2⊗
i=1

�aN/2+i
yi

, (D79)

where the sets EN/2 and ON/2 are defined in Eqs. (D27)
and (D28), respectively.

(b) N odd:

�vk = 2(N+1)/4
√

tk
t0 + t1

t̂k, �uk = 2(N−3)/4

√
tk

TT
ρ t̂k (k = 0, 1),

(D80)
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where vectors �vk and �uk are defined as follows:

�v0 =
∑

x∈E(N+1)/2

(−1)�(N−1)/4�−�ω(x)/2�
(N+1)/2⊗

i=1

�ai
xi

, (D81)

�v1 =
∑

x∈O(N+1)/2

(−1)�(N−1)/4�−�ω(x)/2�
(N+1)/2⊗

i=1

�ai
xi

, (D82)

�u0 =
∑

y∈J(N−1)/2

(−1)�ω(y)/2�
(N−1)/2⊗

i=1

�a(N+1)/2+i
yi

, (D83)

�u1 =
∑

y∈J (N−1)/2

(−1)ω(y)/2�
(N−1)/2⊗

i=1

�a(N+1)/2+i
yi

, (D84)

with the sets J(N−1)/2 and J (N−1)/2 fixed as

J(N−1)/2 =
{

x ∈ {0, 1}(N−1)/2
∣∣∣ω(x) = N − 1

2
mod 2
}

(D85)

J (N−1)/2 =
{

x ∈ {0, 1}(N−1)/2
∣∣∣ω(x)+ 1= N − 1

2
mod 2
}

.

(D86)

Note that, similarly to the N = 3 case discussed in
Sec. VIII, one can potentially obtain tighter MABK vio-
lation upper bounds accompanied by the corresponding
tightness conditions if one employs variations (in terms of
row and column definitions) of the correlation matrix given
in Definition 3.

APPENDIX E: ANALYTICAL PROOF OF THE
LOWER BOUND ON H (X |E)ρα

In this appendix we derive the analytical solution of the
optimization problem in Eq. (24), which we report here for
clarity:

H(X |E)↓ρα (m) = min
{ρijk}

1 − H({ρijk})+ H({ρijk + ρij̄ k̄})

subject to M↑
α ≥ m; ρ0jk ≥ ρ1jk;
∑
ijk

ρijk = 1; ρijk ≥ 0,

(E1)

where the upper bound on the MABK violation is given
in Corollary 1, where the second constraint is given in
Eq. (19) and where m ≥ 2

√
2, otherwise the conditional

entropy is null (see Fig. 2). For ease of notation, we drop
the subscript α in the observed violation and we indi-
cate the objective function of the optimization problem as
H(X |E)ρα .

Because of the symmetry of the problem, we can assume
without loss of generality that the largest element in {ρijk}
is ρ000. Then, a necessary condition such that M↑

α ≥ 2
√

2
is given by ρ000 ≥ 1/2. Indeed, the following upper bound
on M↑

α:

M↑
α = 4

√√√√
1∑

j ,k=0

(ρ0jk − ρ1jk)2 ≤ 4

√√√√
1∑

j ,k=0

ρ2
0jk

≤ 4

√√√√
1∑

j ,k=0

ρ000 · ρ0jk = 4

√√√√√ρ000

⎛
⎝

1∑
j ,k=0

ρ0jk

⎞
⎠

≤ 4
√
ρ000, (E2)

is greater than or equal to 2
√

2 when ρ000 ≥ 1/2.
Note that, by definition, the minimal entropy H(X |E)↓ρα

(m) in Eq. (E1) is monotonically nondecreasing in m.
The upper bound on the maximal MABK violation,

Eq. (12), is tight on the following class of states (the
tightness conditions are verified):

τ(ν) = ν|ψ0,0,0〉〈ψ0,0,0| + (1 − ν)|ψ0,1,1〉〈ψ0,1,1|, (E3)

and reads in this case

Mτ (ν) =M↑
τ (ν) = 4

√
ν2 + (1 − ν)2. (E4)

It is straightforward to verify that

Mτ (ρ000) ≥M↑
α ∀ {ρijk}. (E5)

Moreover, the objective function of the minimization,
when evaluated on the states, Eq. (E3), reads

H(X |E)τ(ν) = 1 − h(ν), (E6)

where we use the binary entropy h(p) = −p log p − (1 −
p) log(1 − p). Here and in the following, “log” represents
the logarithm in base 2.

By definition, the entropy minimized over all the states
with M↑

α ≥ m, Eq. (E1), is upper bounded by the entropy
of any particular state with M↑

α = m:

H(X |E)↓ρα (m) ≤ H(X |E)τ(νm), (E7)

where νm is fixed such that the maximal violation of the
state τ(νm) is given by m:

M↑
τ (νm) = 4

√
ν2

m + (1 − νm)2 = m. (E8)

On the other hand, in the following we prove that

H(X |E)ρα ≥ H(X |E)τ(ρ000) ∀ {ρijk}, (E9)

where ρ000 ≥ 1/2 is the largest element in {ρijk}. In partic-
ular, the last expression holds for the state ρ∗α , which is the
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solution of the minimization in Eq. (E1):

H(X |E)↓ρα (m) = H(X |E)ρ∗α ≥ H(X |E)τ(ρ∗000)

≥ H(X |E)τ(νm). (E10)

The last inequality in Eq. (E10) is due to a couple of
observations. Firstly, by applying Eq. (E5) to the state ρ∗α
we obtain Mτ (ρ

∗
000) ≥ m, which combined with Eq. (E8)

implies that ρ∗000 ≥ νm (in the interval of interest ρ∗000, νm ≥
1/2). Then, we observe that the entropy of the states
τ in Eq. (E6) is monotonically increasing in the inter-
val ν ∈ [1/2, 1]. The two observations lead to the second
inequality in Eq. (E10).

By combining Eq. (E10) with Eq. (E7), we obtain the
desired lower bound:

H(X |E)↓ρα (m) = H(X |E)τ(νm). (E11)

Note that the family of states τ(ν) in Eq. (E3) minimizes
the entropy for every observed violation m. The bound in
Eq. (E11) can be expressed in terms of the violation m
by reverting Eq. (E8) and by using it in Eq. (E6), thus
obtaining Eq. (28).

We are thus left to prove the inequality in Eq. (E9),
which can be recast as follows:

h(ρ000)+ H({ρijk + ρij̄ k̄})− H({ρijk}) ≥ 0. (E12)

To start with, we simplify the difference of the following
entropies:

h(ρ000)− H({ρijk}) = −(1 − ρ000) log(1 − ρ000)

+
∑

(i,j ,k) 	=(0,0,0)

ρijk log ρijk. (E13)

By substituting Eq. (E13) into the lhs of Eq. (E12), we get

H(X |E)ρα − H(X |E)τ(ρ000) = H({ρijk + ρij̄ k̄})
+
∑

(i,j ,k) 	=(0,0,0)

ρijk log ρijk − (1 − ρ000) log(1 − ρ000).

(E14)

We then apply Jensen’s inequality

f (x + y) ≥ f (2x)+ f (2y)
2

, (E15)

where f (x) = −x log x is a concave function, to the last
three terms of the first entropy in Eq. (E14):

H({ρijk + ρij̄ k̄}) = −(ρ000 + ρ011) log(ρ000 + ρ011)

− (ρ001 + ρ010) log(ρ001 + ρ010)

− (ρ100 + ρ111) log(ρ100 + ρ111)

− (ρ101 + ρ110) log(ρ101 + ρ110), (E16)

such that we get

H({ρijk + ρij̄ k̄})
≥ −(ρ000 + ρ011) log(ρ000 + ρ011)

+
∑

(i,j ,k) 	= (0,0,0)
(0,1,1)

−ρijk log(2ρijk)

= −(ρ000 + ρ011) log(ρ000 + ρ011)− (1 − ρ000 − ρ011)

+
∑

(i,j ,k) 	= (0,0,0)
(0,1,1)

−ρijk log ρijk. (E17)

With this result, the difference of entropies in Eq. (E14) can
be estimated by

H(X |E)ρα − H(X |E)τ(ρ000)

≥ −(ρ000 + ρ011) log(ρ000 + ρ011)

− (1 − ρ000) log[2(1 − ρ000)]

+ ρ011 log(2ρ011)

=: g(ρ000, ρ011). (E18)

In the function g the first two terms are positive and the
last is negative. We further analyze and estimate the func-
tion g(x, y) in the range of interest, i.e., 1/2 ≤ x ≤ 1, 0 ≤
y ≤ 1 − x. In this range g(x, y) is concave in x because its
second derivative is always negative:

∂2 g(x, y)
∂ x2 = − 1

ln(2)

[
1

(1 − x)
+ 1
(x + y)

]
< 0. (E19)

Consider the boundary x + y = 1 of g(x, y) for which we
get g(1 − y, y) = 0. Due to the concavity it holds for 0 ≤
p ≤ 1 that

g
[

p
1
2
+ (1 − p)(1 − y), y

]

≥ pg
(

1
2

, y
)
+ (1 − p)g(1 − y, y)

or equivalently that

g(x, y) ≥
(

1 − x − y
1
2 − y

)
g
(

1
2

, y
)

. (E20)

Note that from the parameter regimes of x and y it follows
that

0 ≤
(

1 − x − y
1
2 − y

)
≤ 1. (E21)
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We finally analyze the properties of g
( 1

2 , y
)
, which is

convex in y as its second derivative is always positive:

∂2 g( 1
2 , y)

∂ y2 = 1
y ln(2)+ y2 ln(4)

> 0. (E22)

A convex function has a unique minimum if it exists in the
parameter regime. In our case this is given by

∂ g
( 1

2 , y
)

∂ y
= log(2y)− log

(
1
2
+ y
)
= 0 ⇔ y = 1

2
(E23)

for which g
( 1

2 , 1
2

) = 0 holds. Thus in general it holds

g
(

1
2

, y
)
≥ 0. (E24)

By combining these considerations we obtain the desired
inequality (E9):

H(X |E)ρα − H(X |E)τ(ρ000)

(E18)≥ g(ρ000, ρ011)

(E20)≥
(

1 − ρ000 − ρ011
1
2 − ρ011

)
g
(

1
2

, ρ011

)

≥ 0, (E25)

where in the last inequality we use the fact that the pref-
actor is positive, Eq. (E21) and that g

( 1
2 , ρ011
)

is lower
bounded by zero, Eq. (E24).

APPENDIX F: ANALYTICAL PROOF OF THE
LOWER BOUND ON H (XY|E)ρα

In order to derive an analytical lower bound on
H(XY|E)ρα , we solve the simplified optimization problem
in Eq. (35), where we can independently minimize the
entropy over t,ϕX and ϕY without affecting the MABK
violation. We report Eq. (35) for clarity:

H(XY|E)↓ρα (m) = min
{ρijk ,t,ϕX ,ϕY}

H(XY|E)ρα

subject to M↑
α ≥ m; ρ0jk ≥ ρ1jk;

∑
ijk

ρijk = 1; ρijk ≥ 0, (F1)

where M↑
α is the upper bound on the MABK violation

derived in Corollary 1, while ϕX and ϕY are the measure-
ment directions of the outcomes X and Y in the (x, y) plane.
We drop the subscript in mα for ease of notation.

Eve is assumed to hold the purifying system E of the
state ρα shared by Alice, Bob, and Charlie. The purification
of ρα can thus be written as follows:

|φαABCE〉 =
∑
ijk

√
ρijk |ρijk〉 ⊗ |eijk〉 , (F2)

where |ρijk〉 are the eigenstates of ρα defined in Eq. (17),
while {|eijk〉} is an orthonormal basis of Eve’s eight-
dimensional Hilbert space HE .

We restrict our proof to states ρα with a non-negative
off-diagonal term s ≥ 0, which corresponds to t ≥ 0 [see
Eq. (18)]. Since t ∈ [−π/2,π/2] by definition, this means
that we restrict ourselves to the region where sin t ≥ 0
and cos t ≥ 0. The complementary case corresponds to
states ρ∗α , which would lead to the same result. For this,
we employ a parametrization of the eigenstates slightly
different from Eq. (17), which reads as follows:

|ρijk〉 = |ψi,j ,k〉 , for (j , k) 	= (1, 1)

|ρ011〉 =
√
(1 − p) |ψ0,1,1〉 − i

√
p |ψ1,1,1〉

|ρ111〉 = √
p |ψ0,1,1〉 + i

√
(1 − p) |ψ1,1,1〉 ,

(F3)

where |ψi,j ,k〉 are the GHZ basis states (Definition 1) and
where p is completely fixed by t through the relation:

p = (tan t)2

1 + (tan t)2
, (F4)

from which we deduce that 0 ≤ p ≤ 1 and that p = 0 when
t = 0.

From now on, we omit the subscript ρα in the entropy
symbol for ease of notation. We thus have that the condi-
tional entropy H(XY|E) can be expressed as

H(XY|E) = H(XY)+ H(E|XY)− H(E)

= 2 + H(E|XY)− H({ρijk}), (F5)

where the last equation follows from the fact that all
marginals have been symmetrized and from the fact
that the state on ABCE is pure, Eq. (F2), thus H(E) =
H(ABC) = H({ρijk}).

The proof of the analytical lower bound on H(XY|E)
as a function of the MABK violation is subdivided in
three parts: (i) we first derive an analytical expression for
H(E|XY); (ii) we minimize H(E|XY) with respect to t,ϕX
and ϕY; (iii) we proceed minimizing the resulting expres-
sion of Eq. (F5) given a fixed MABK violation. Note that
we are allowed to minimize H(E|XY) over t,ϕX and ϕY
independently of H(E), since the latter is independent of
the mentioned optimization variables.

Step 1. Analytical expression for H (E|XY).
In order to derive the analytical expression for H(E|XY),

we use the following lemma.
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Lemma 3. The following equality holds:

H(E|XY) = H(C|XY). (F6)

Proof. The proof follows from the fact that the state shared
by Charlie and Eve conditioned on the outcomes X = a of
Alice and Y = b of Bob, is a pure state. Indeed, if projec-
tive measurements are applied to a pure state, the resulting
state, conditioned on a specific outcome, remains pure.
Moreover, for a pure state, the entropies of its subsystems
are equal, which implies

H(E|X = a, Y = b) = H(C|X = a, Y = b). (F7)

Therefore,

H(E|XY) =
∑
a,b

Pr(a, b)H(E|X = a, Y = b) (F8)

=
∑
a,b

Pr(a, b)H(C|X = a, Y = b) (F9)

= H(C|XY). (F10)

�
Lemma 3 is of great use as Eve’s system is described

by an eight-dimensional Hilbert space, whereas Charlie is
only in possession of a single qubit. So the computation of
H(C|XY) is significantly simpler.

We obtain Charlie’s state, conditioned on the outcomes
X = a and Y = b, by partially tracing over Eve’s degrees
of freedom

ραCab
= TrE

(
|φαCEab

〉〈φαCEab
|
)

, (F11)

where |φαCEab
〉 is the state of Charlie and Eve given that

Alice and Bob obtain outcomes X = a and Y = b, respec-
tively, which is determined by

(P|a〉 ⊗ P|b〉 ⊗ idCE)|φαABCE〉〈φαABCE|(P|a〉 ⊗ P|b〉 ⊗ idCE)

= 1
4

P|a〉 ⊗ P|b〉 ⊗ |φαCEab
〉〈φαCEab

|, (F12)

where P|a〉 = |a〉〈a| and P|b〉 = |b〉〈b|. The projected state
|φαCEab

〉 can be computed using the definition of the purifi-
cation given in Eq. (F2), the definition of the eigenstates in
Eq. (F3), and the fact that the measurements performed by
Alice and Bob are restricted to the (x, y) plane. Indeed, the
measurements are defined by the following projectors:

|a〉X = 1√
2

[|0〉 + (−1)aeiϕX |1〉] a ∈ {0, 1},

|b〉Y =
1√
2

[|0〉 + (−1)beiϕY |1〉] b ∈ {0, 1}.
(F13)

In the following we abbreviate ξa = (−1)aeiϕX and ξb =
(−1)beiϕY . We then have that

|φαCEab
〉 =
∑

ljk
jk 	=11

1√
2

[
(δ0j + δ1j ξb) |k〉 + (δ0j̄ ξa + δ1j̄ ξaξb)(−1)l |k̄〉]⊗ |eljk〉√ρljk

+
{ [√

(1 − p)− i
√

p
]
ξb |1〉 +

[√
(1 − p)+ i

√
p
]
ξa |0〉
}
⊗ |e011〉√ρ011

+
{ [√

p + i
√
(1 − p)

]
ξb |1〉 +

[√
p − i
√
(1 − p)

]
ξa |0〉
}
⊗ |e111〉√ρ111. (F14)

Finally, the partial trace over Eve results in

ραCab
= TrE

(
|φαCEab

〉〈φαCEab
|
)

(F15)

=
{ ∑

ljk
jk 	=11

1√
2

[
(δ0j + δ1j ξb) |k〉 + (δ0j̄ ξa + δ1j̄ ξaξb)(−1)l |k̄〉]

}
· (h.c.) ρljk

+
{ [√

(1 − p)− i
√

p
]
ξb |1〉 +

[√
(1 − p)+ i

√
p
]
ξa |0〉
}
· (h.c.) ρ011

+
{ [√

p + i
√
(1 − p)

]
ξb |1〉 +

[√
p − i
√
(1 − p)

]
ξa |0〉
}
· (h.c.) ρ111. (F16)
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As ραCab
is a qubit state, we can now analytically calculate its eigenvalues, which can be reduced to

λ1,2(ρ
α
Cab
) = 1

2
(1 ± |C|) , (F17)

where

C = (ρ000 − ρ100) ξ
2
a + (ρ001 − ρ101)

(
ξ 2

b

)∗ + (ρ010 − ρ110) ξ
2
a

(
ξ 2

b

)∗ + (ρ011 − ρ111)
[
1 − 2p − 2i

√
p(1 − p)

]

= (ρ000 − ρ100) ei2ϕX + (ρ001 − ρ101) e−i2ϕY + (ρ010 − ρ110) ei2(ϕX −ϕY) + (ρ011 − ρ111) eiϕ3 , (F18)

where ϕ3 is a function of the parameter p . We see that the
eigenvalues do not depend on the measurement outcomes
a and b of Alice and Bob. The entropy is then given by

H(E|XY) = H(C|XY) = h
[

1
2
(1 + |C|)

]
, (F19)

where h(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy.

Step 2. Minimization of H (E|XY)

Minimizing the binary entropy in Eq. (F19), with respect
to the measurement directions and the parameter p , is
equivalent to maximizing the largest eigenvalue of ραCab

.
The optimum can directly be deduced from Eq. (F17).
Since it holds that (ρ0jk − ρ1jk) ≥ 0∀ j , k, the largest
eigenvalue is maximized if

ei2ϕX = e−i2ϕY = ei2(ϕX −ϕY) = eiϕ3 , (F20)

which holds, e.g., for ϕX = ϕY = ϕ3 = 0. Since ϕ3 =
0 implies p = t = 0, we verify that in the minimiza-
tion of the conditional entropy of two parties’ outcomes,
H(XY|E), it would be optimal for Eve to distribute a GHZ-
diagonal state, which Alice and Bob measure in the X
basis. The largest eigenvalue of ραCab

is then given by

λ̄ :=
∑

jk

ρ0jk, (F21)

where we use the normalization of the eigenvalues to elim-
inate the terms ρ1jk. The lower bound on the conditional
entropy H(E|XY) is thus given by

H(E|XY) ≥ h(λ̄). (F22)

Step 3. Minimization of H (XY|E) with given MABK
violation

By using Eq. (F22) in Eq. (F5), we can concentrate on
minimizing the following expression:

H(E|XY)− H(E) ≥ h(λ̄)− H({ρijk})
= −λ̄ log λ̄− (1 − λ̄) log(1 − λ̄)
+
∑
ijk

ρijk log ρijk

= λ̄
∑

jk

ρ0jk

λ̄
log

ρ0jk

λ̄
+ (1 − λ̄)

∑
jk

ρ1jk

(1 − λ̄) log
ρ1jk

(1 − λ̄)

= −λ̄H
({

ρ0jk

λ̄

})
− (1 − λ̄)H

({
ρ1jk

(1 − λ̄)
})

, (F23)

where we use the definition of λ̄ in Eq. (F21). We now
use the concavity of the Shannon entropy over probability
distributions �u and �v, i.e.,

λ̄H(�u)+ (1 − λ̄)H(�v) ≤ H [λ̄�u + (1 − λ̄)�v], (F24)

in Eq. (F23) and obtain

H(E|XY)− H(E) ≥ −H
({
ρ0jk + ρ1jk

})
. (F25)

With the lower bound obtained in Eq. (F25), the optimiza-
tion problem we have to solve is now the following:

max
{ρijk}

H
({
ρ0jk + ρ1jk

})

subject to
m2

16
≤
∑

jk

(ρ0jk − ρ1jk)
2;

∑
ijk

ρijk = 1; ρijk ≥ 0,

(F26)

where m is the observed MABK violation. Now notice that
for every solution {ρ0jk, ρ1jk} of the maximization prob-
lem, there exists another equivalent solution—i.e., that
leads to the same value for H

({
ρ0jk + ρ1jk

})
—of the form

{ρ ′0jk = ρ0jk + ρ1jk, ρ ′1jk = 0}. Therefore, we can restrict
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the optimization to the solutions of that form:

max
{ρ0jk}

H
({
ρ0jk
})

subject to
m2

16
≤
∑

jk

ρ2
0jk

∑
jk

ρ0jk = 1

ρ000 ≥ ρ001 ≥ ρ010 ≥ ρ011 ≥ 0,

(F27)

where we impose the ordering of the four remaining
eigenvalues {ρ0jk} without loss of generality, since the
optimization problem is symmetric with respect to their
permutations.

We thus reduce the problem to the constrained maxi-
mization of H

({
ρ0jk
})

, as described in Eq. (F27). In the
following calculations, we rescale the function H

({
ρ0jk
})

by ln 2, so that it is expressed in terms of natural logarithms
instead of the logarithm in base 2. This simplifies the nota-
tion when computing its derivatives but does not change
the solution of the optimization problem.

We use the Karush-Kuhn-Tucker multipliers method
[76,77] to identify necessary conditions for extremal points
of the optimization problem in Eq. (F27). The Lagrangian
for our maximization problem is then given by

L(ρ000, ρ001, ρ010, ρ011, u, v) = H (ρ000, ρ001, ρ010, ρ011)

+ u
(
ρ2

000 + ρ2
001 + ρ2

010 + ρ2
011 −

m2

16

)

+ v (ρ000 + ρ001 + ρ010 + ρ011 − 1) .

The necessary conditions to have an extremal point are
given by the solution of the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ρ0jkL = 0

ρ2
000 + ρ2

001 + ρ2
010 + ρ2

011 ≥
m2

16
ρ000 + ρ001 + ρ010 + ρ011 = 1
u ≥ 0

u
(
ρ2

000 + ρ2
001 + ρ2

010 + ρ2
011 −

m2

16

)
= 0.

(F28)

The last equation in Eq. (F28) implies that either u = 0
or the inequality constraint holds with the equal sign.
Let us first consider the case that u = 0 and compute the
derivative of L with respect to ρ0jk in the first equation of
Eq. (F28):

∂L
∂ρ0jk

= − ln ρ0jk + v − 1 = 0 ∀ ρ0jk. (F29)

Since the logarithm is a monotonic function, the set of
equations in the last expression imply one of the following
cases:

(a) ρ000 = ρ001 = ρ010 = ρ011,
(b) ρ000 = ρ001 = ρ010 and ρ011 = 0,
(c) ρ000 = ρ001 and ρ010 = ρ011 = 0,
(d) ρ001 = ρ010 = ρ011 = 0,

where we account for the border conditions, i.e., when one
or more ρ0jk are equal to zero.

By combining the equality conditions with the constraint
that ρ0jk sum to one, we can easily obtain the solution of the
system, Eq. (F28), for each of the above cases. Note that
the inequality constraint is still valid, therefore the derived
solutions will only hold for certain values of m:

(a) H({ρ0jk}) = 2, valid for m ≤ 2,
(b) H({ρ0jk}) = log 3, valid for m ≤ 4/

√
3,

(c) H({ρ0jk}) = 1, valid for m ≤ 2
√

2,
(d) H({ρ0jk}) = 0, valid for m ≤ 4.

Cases (a) and (d) are useless since the former is never
valid in the range of interest for the observed violation
(i.e., above the classical bound), while the latter leads to
zero entropy, which is definitely not the solution of our
maximization problem.

Let us consider now the case u > 0, which implies that
the inequality constraint becomes an equality [the last
equation in Eq. (F28) must be satisfied]. We compute the
derivatives in the first equation of Eq. (F28):

∂L
∂ρ0jk

= 2ρ0jku − ln ρ0jk + v − 1 = 0 ∀ ρ0jk. (F30)

Notice that the function g(x) = ax − ln x + b can have at
most two roots (zero points), because

g′(x) = a − 1
x

, (F31)

has at most a single root (zero point), corresponding to one
extremum for g(x). It follows that there can be at most
a single y 	= x such that g(x) = g(y) = 0. The potential
critical points of the Lagrangian L are hence restricted to
the following cases (remember we use the ordering ρ000 ≥
ρ001 ≥ ρ010 ≥ ρ011 ≥ 0)

(i) ρ000 = ρ001 = ρ010 = ρ011,
(ii) ρ000 = ρ001 = ρ010 > ρ011,
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(iii) ρ000 > ρ001 = ρ010 = ρ011,
(iv) ρ000 = ρ001 > ρ010 = ρ011.

We again account for the border conditions, and analog
conditions directly follow in case some ρ0jk are zero:

(v) ρ000 = ρ001 = ρ010 and ρ011 = 0,
(vi) ρ000 = ρ001 > ρ010 and ρ011 = 0,

(vii) ρ000 > ρ001 = ρ010 and ρ011 = 0,
(viii) ρ000 > ρ001 and ρ010 = ρ011 = 0,

(ix) ρ000 = ρ001 and ρ010 = ρ011 = 0,
(x) ρ001 = ρ010 = ρ011 = 0.

Note that in all the listed cases there are a maximum of
two distinct eigenvalues, which are thus completely fixed
by the two equality constraints. Moreover, we observe that
the cases (i), (v), (ix), and (x) correspond to the already
investigated cases (a), (b), (c), and (d), respectively.

Analyzing the resulting entropy H as a function of the
MABK violation m for each of the ten possible extremal
points, we conclude that the maximum is achieved for the
case (iii) for every value of m. In this case, the eigenvalues
are fixed to

ρ000 = 1
8

(
2 +

√
3
√

m2 − 4
)
=: νm (F32)

ρ0jk = (1 − νm)

3
(j , k) 	= (0, 0). (F33)

The solution of the optimization problem in Eq. (F27) then
reads

H
({
ρ0jk
}) = H

({
νm,

1 − νm

3
,

1 − νm

3
,

1 − νm

3

})
.

(F34)

The lower bound on the entropy difference (F25) is thus
given by

H(E|XY)− H(E)

≥ −H
({
νm,

1 − νm

3
,

1 − νm

3
,

1 − νm

3

})
. (F35)

Finally, we can lower bound the entropy of Alice and
Bob’s outcomes given Eve’s quantum side information by

H(XY|E) = 2 + H(E|XY)− H(E)

≥ 2 − H
({
νm,

1 − νm

3
,

1 − νm

3
,

1 − νm

3

})
,

(F36)

with

νm = 1
4
+
√

3
8

√
m2 − 4. (F37)

The rhs of Eq. (F36) is the bound reported in Eq. (36).
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