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Trapped-ion quantum computers have demonstrated high-performance gate operations in registers of
about ten qubits. However, scaling up and parallelizing quantum computations with long one-dimensional
(1D) ion strings is an outstanding challenge due to the global nature of the motional modes of the ions,
which mediate qubit-qubit couplings. Here, we devise methods to implement scalable and parallel entan-
gling gates by using engineered localized phonon modes. We propose to tailor such localized modes by
tuning the local potential of individual ions with programmable optical tweezers. Localized modes of
small subsets of qubits form the basis to perform entangling gates on these subsets in parallel. We demon-
strate the inherent scalability of this approach by presenting analytical and numerical results for long 1D
ion chains and even for infinite chains of uniformly spaced ions. Furthermore, we show that combining
our methods with optimal coherent control techniques allows realization of maximally dense universal
parallelized quantum circuits.
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I. INTRODUCTION

Trapped atomic ions are a leading platform for quantum-
information processing [1–9]. High-fidelity gate opera-
tions, qubit initialization and readout, as well as long
coherence times have been demonstrated in trapped-ion
quantum computers, which consist of tens of individually
addressable qubits [10–14]. However, while state-of-the-
art ion traps can sustain one-dimensional (1D) chains of
more than a hundred ions, scaling up and, in particu-
lar, parallelizing gate operations is challenging due to the
increasing complexity of the spectrum of phonon modes,
which serve as data buses for the transmission of quantum
information [1,15].

The spectrum of phonon modes becomes dense for long
ion crystals [16,17], and, consequently, gate operations that
rely on using a single phonon mode become slow due
to the necessity to spectrally resolve this mode. In con-
trast, implementing gates that use multiple modes, requires
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solving optimal control problems [18–26], which become
exceedingly complex, in particular, when gates should be
performed on many qubits in parallel [23,24]. This addi-
tional complication to implement parallel gates is due to
the collective and thus nonlocal nature of phonon modes,
which stands in contrast to the goal of effecting two-qubit
entangling operations that locally address individual pairs
of ions.

An alternative approach is provided by segmented traps,
in which small ion crystals are shuttled between different
zones that are dedicated to qubit storage and manipulation,
respectively [27]. Shuttling operations are comparatively
time consuming, and form a bottleneck for fast quan-
tum computations. This disadvantage is mitigated by the
fact that in traps with several interaction zones, gates can
be performed in parallel. Although the fabrication and
operation of segmented traps is technologically challeng-
ing, quantum-information processing, which relies heavily
on ion shuttling, has been demonstrated experimentally
[28–30].

In this paper, we address the challenge of scaling up
and parallelizing quantum computations with long 1D ion
strings by combining well-developed conventional linear
Paul traps [31] with programmable optical tweezer arrays,
which are commonly utilized as a powerful tool in quan-
tum simulation with neutral Rydberg atoms [32,33]. Here,
instead, we consider using programmable optical tweezer
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FIG. 1. Schematic setup and circuits. (a) Specific ions in a long 1D chain are pinned by optical tweezers. This leads to the formation
of localized phonon modes, e.g., for the subregister formed by the three ions that are marked by cyan shading, and for the pair of
distant qubits that are marked by pink shading and are pinned by equally strong optical potentials. (b) The localized phonon modes
can be utilized to implement multiqubit entangling gates. Buffer ions at the ends of the chain are not used as qubits. Addressed lasers,
which are required to perform entangling gates, are indicated schematically in (a) as blue and red beams. (c) In this work, we focus
on implementing parallel two-qubit entangling gates, which use the localized phonon modes of pairs of neighboring pinned ions. (d)
After a first layer of the circuit, which corresponds to the product of gates U1U2U3 that act on distinct qubits, the tweezers are focused
on different ions to perform the second layer corresponding to the gate operation U4U5.

arrays to pin specific ions in a linear trap [34], and thereby
engineer localized phonon modes [35–37]. These designer
phonon modes form the basis to implement scalable and
parallel entangling gates. The required capabilities to opti-
cally address individual ions are available in current exper-
iments [38,39]. By dynamically reconfiguring the tweezer
array, the designer phonon modes can be adjusted during
running quantum computations, and thus offer great flexi-
bility to achieve an effective “optical segmentation” of the
ion chain.

Possible quantum circuits provided by optical segmen-
tation are illustrated schematically in Figs. 1(a) and 1(b):
in the first example, a subregister formed by three con-
secutive qubits, which are marked by cyan shading, is
decoupled from the other qubits by “optical tweezer walls”
[34] that consist of pairs of optically pinned ions. By
using the phonon modes that are localized in between the
tweezer walls, a multiqubit gate can be performed on the
subregister. The second example relies on the long-range
connectivity in chains of trapped ions to implement an
entangling gate between the two qubits marked by pink
shading and which are both pinned by optical tweezers.

In this work, we focus on the implementation of quan-
tum circuits, which are composed of parallel gates between
pairs of nearest-neighboring qubits. Pinning pairs of neigh-
boring ions with optical tweezers, as illustrated in Fig. 1(c),
gives rise to localized phonon modes, which correspond
to center-of-mass (COM) and stretch oscillations of the
pinned pairs. In microtraps with segmented electrodes, an
analogous local mode structure arises for two ions, which
are shuttled to an interaction zone of the trap. The optical
segmentation enables performing entangling gates on all
pairs of pinned ions in parallel, which corresponds to the
first layer of the quantum circuit shown in Fig. 1(d).

Due to the emergence of a local phonon-mode structure
with only two relevant localized phonon modes per pinned

pair, high-fidelity scalable and parallel gates can be per-
formed in long ion chains without resorting to optimal
coherent control techniques [18–26]. Further, the gate
duration is determined by the splitting of the localized
phonon modes, and is thus independent of the total num-
ber of ions in the chain. Indeed, as we show analytically
and numerically, tweezer gates can be performed even in
infinitely long chains [23].

Finally, we discuss different ways to minimize crosstalk
between parallel two-qubit entangling gates based on opti-
mal control of time-modulated laser-pulse amplitudes as
developed by Duan et al. [17]. This enables the implemen-
tation of dense “brick-wall circuits.” Such dense circuits
have a wide range of applications, for example, in digi-
tal quantum simulation [40–42] of spin models with local
interactions, or to realize random circuits [43], which are
models for strongly chaotic quantum dynamics [44–48].

The paper is structured as follows: we start in Sec. II
with a short review of some aspects of quantum gates
with trapped ions. In Sec. III, we discuss how to design
localized phonon modes for quantum computing. Subse-
quently, in Secs. IV and V, we show how these localized
modes can be used to implement scalable and parallel
tweezer gates with and without optimal control, respec-
tively. We give an outlook in Sec. VI.

II. ENTANGLING QUANTUM GATES WITH
TRAPPED IONS

For reference, we find it convenient to summarize some
fundamentals of quantum computing with trapped ions.
Based on this, we state the decomposition of quantum
circuits into single-qubit and nearest-neighbor entangling
gates and discuss how one can quantify the performance
of a two-qubit quantum gate.
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A. Quantum computing with trapped ions

We consider an implementation of quantum logic gates
in 1D chains of laser-cooled trapped ions that relies on the
laser-induced coupling between long-lived internal states
of the ions, which encode the qubits, and the phonon
modes of the ion chain, which serve as quantum data buses.
Entanglement between qubits is established through the
exchange of real [1] or virtual [49–52] phonons. The latter
approach is realized by geometric phase gates, which offer
the advantage of being insensitive to finite temperatures of
the phonon modes. We employ a particular type of geomet-
ric phase gate, which is known as the Mølmer-Sørensen
gate [51]. In a suitable rotating frame, the corresponding
qubit-phonon coupling Hamiltonian for N ions with 3N
motional modes reads

H =
∑

α∈{x,y,z}

N∑

i,n=1

ηn
α,i��i(t) sin(μit)

× (a†
α,neiωα,nt + H.c.

)
σ x

i , (1)

where the first sum is over the spatial directions α of
the three-dimensional (3D) motion of the ions. As illus-
trated in Fig. 1(a), we choose the coordinate system such
that x and y directions are transverse to the weak trap
axis, which is along the z direction. In the form given
above, the Hamiltonian is valid in the Lamb-Dicke limit,
in which the amplitudes of oscillations of the ions around
their equilibrium positions are small in comparison to opti-
cal wavelengths. This justifies an expansion to first order
in the Lamb-Dicke parameter matrix, which we define as

ηn
α,i = kL,α

√
�

2mωα,n
M n

α,i, (2)

with the effective laser wave vector with components kL,α
that are assumed to be equal for all ions [22]. Here m is the
mass of a single ion, ωα,n is the frequency of the phonon
mode n ∈ {1, . . . , N } in spatial direction α, and the element
M n

α,i of the phonon-mode matrix is given by the amplitude
of the phonon-mode vector n on ion i ∈ {1, . . . , N }. The
phonon-mode matrix is derived in Appendix A.

Hamiltonian (1) results from addressing the ions with
pairs of laser beams, which are detuned by ±μi from the
qubit transition [49–52]. We assume that the detuning μi
and the laser pulse shape as described by a time-modulated
Rabi frequency �i(t) can be chosen for each ion i individ-
ually. The annihilation and creation operators of phonons
with frequency ωα,n are denoted by aα,n and a†

α,n, respec-
tively, and σ x

i is the Pauli matrix, which acts in the Hilbert
space of the qubit that is encoded in ion i. We assume in
the following that the lasers dominantly excite transverse
x modes, which is justified if the detuning from the excited
transverse x modes is much smaller than the frequency

difference between the transverse x modes and the trans-
verse y and longitudinal z modes, respectively [17]. To
simplify the notation, from now on we mostly omit the
subscript α = x.

The time evolution that is generated by the time-
dependent qubit-phonon Hamiltonian (1) is described by
the unitary [17,18,22,53–55]

U = exp

(
N∑

i=1

φiσ
x
i + i

N∑

i<i′=1

χi,i′σ
x
i σ x

i′

)
. (3)

The first term in the exponent with the operator

φi =
N∑

n=1

(
αn

i a†
n + H.c.

)
, (4)

induces qubit-state-dependent displacements of the phonon
modes where

αn
i = −iηn

i

∫ τ

0
dt �i(t) sin(μit)eiωnt. (5)

If φi �= 0 for a given qubit i, unwanted entanglement is cre-
ated between that qubit and the phonon modes. This can
be prevented by carefully choosing the detuning and gate
duration depending on the phonon spectrum. The desired
qubit-qubit coupling term is given by

χi,i′ =
N∑

n=1

ηn
i η

n
i′

∫ τ

0
dt
∫ t

0
dt′ sin[ωn

(
t − t′

)
]

× [�i(t)�i′(t′) sin(μit) sin(μi′ t′)

+ �i(t′)�i′(t) sin(μit′) sin(μi′ t)
]

. (6)

We focus in the following on the implementation, based
on Eq. (3), of quantum circuits with entangling operations
between only neighboring qubits as illustrated in Fig. 1(d).
Such circuits can be arranged in consecutive layers where
gates within each layer are executed in parallel. A single
layer can be written as

U0 =
∏

(i,i′)∈I

Ui,i′ , (7)

where I is the set of all pairs of neighboring qubits
on which gates are to be performed in the layer under
consideration. Since any entangling two-qubit gate can
be decomposed into single-qubit rotations and entangling
operations, which are generated by σ x

i σ x
i′ [56], we can

assume without loss of generality that Ui,i′ is an xx gate,

Ui,i′ = eiχ0
i,i′σ

x
i σ x

i′ , (8)

with couplings χ0
i,i′ for different pairs

(
i, i′
)

all having the

same positive or negative sign and
∣∣∣χ0

i,i′
∣∣∣ ∈ [0, π/4] [56].
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Throughout this work we consider maximally entangling
gates with χ0

i,i′ = ±π/4 as a benchmark case. This bench-
mark is particularly relevant since the unitary, Eq. (8),
with χ0

i,i′ = ±π/4 is up to single-qubit rotations equiva-
lent to the CNOT gate [21], which forms a universal gate
set together with single-qubit rotations [57].

B. Gate imperfections

Any experimental implementation of quantum logic
gates with trapped ions is affected by various sources of
imperfections, which are not captured by the model Hamil-
tonian (1) [22]. However, even within this model, the
unitary U, Eq. (3), deviates in general from the target gate
unitary U0, Eq. (7). We distinguish three types of such
intrinsic gate imperfections: Residual qubit-phonon entan-
glement, over- and under-rotation errors, and crosstalk. To
formalize this distinction, we factorize the gate unitary as
U = UαUχ , where

Uα = e
∑N

i=1 φiσ
x
i , Uχ = ei

∑N
i<i′=1 χi,i′σ x

i σ x
i′ . (9)

Deviations of Uα from the identity, Uα �= 1, imply that
qubits and phonons are entangled at the end of the gate
operation. Over- and under-rotation errors as well as
crosstalk occur for Uχ �= U0.

The adverse effect of residual qubit-phonon entangle-
ment can be quantified in terms of the average fidelity [58]
per gate, which we define as

F =
[∫

d� 〈�| U†
χ trph

(
U |�〉 〈�| ⊗ ρthU†)Uχ |�〉

]1/G

,

(10)

where the trace is over the motional degrees of freedom, ρth
denotes a thermal state of phonons, and the integration is
over the Fubini-Study measure [59]. We note that usually
the fidelity is defined with respect to the ideal target gate,
i.e., with Uχ replaced by U0, to explicitly include over-
and under-rotation errors as well as crosstalk. In contrast,
we quantify these types of errors separately as detailed
below. To account for the exponential dependence of the
total fidelity Ftot on the number G of gates, which are being
performed in parallel—which in the cases of interest to us
scales with the number of qubits G ∼ N—we include an
exponent 1/G in the definition of the fidelity per gate.

The expression for the average fidelity per gate in
Eq. (10) can be made more explicit in two steps: the
first step is to perform the trace over phonon modes of
the thermal density matrix ρth, multiplied with qubit-state-
dependent displacement operators, which are contained in
U and U† and correspond to the first term in the exponent
in Eq. (3) [22]. Second, the integral over random initial
qubit states |�〉 can be evaluated explicitly by replacing it
by a sum over a discrete basis of unitary operators [58].

This procedure yields an expression for the infidelity per
gate δF = 1 − F , which, in the limit of high fidelity, takes
the form

δF = 4
5G

N∑

i,n=1

∣∣αn
i

∣∣2 [2nth(ωn) + 1] , (11)

where αn
i is the qubit-phonon coupling defined in Eq. (5),

and nth(ωn) = 1/(e�ωn/T − 1) is the average thermal occu-
pation of phonons in the mode with frequency ωn at
temperature T. For simplicity, we assume in the following
that nth(ωn) = 0.5 for all phonon modes.

Over- and under-rotation errors of the gate U corre-
spond to deviations of the qubit-qubit coupling χi,i′ from
the desired value χ0

i,i′ for pairs of qubits
(
i, i′
)
, which are

contained in I in Eq. (7), i.e., which are affected by the
ideal gate U0. In contrast, crosstalk is due to unwanted
nonzero qubit-qubit couplings for pairs of qubits that are
not contained in I . To separate these types of errors, we
factorize the qubit-qubit coupling in Eq. (3) as Uχ = U1UC
where

U1 =
∏

(i,i′)∈I

eiχi,i′σ x
i σ x

i′ , UC =
∏

(i,i′)∈I ′
eiχi,i′σ x

i σ x
i′ , (12)

and where I ′ contains all ordered pairs of qubits that are not
included in I . We quantify these gate errors in terms of the
diamond norm of the error superoperators E1 = U1 − U0

and EC = UC − I , where Ub(ρ) = UbρU†
b for b = 0, 1, C,

and I(ρ) = ρ [23,60,61]. Bounds on the errors per gate
are given by [62]

1
G

‖E1‖
 ≤ δχ = 2
G

∑

(i,i′)∈I

∣∣χi,i′ − χ0
i,i′
∣∣ , (13)

1
G

‖EC‖
 ≤ C = 2
G

∑

(i,i′)∈I ′

∣∣χi,i′
∣∣ , (14)

where we defined the over- and under-rotation error δχ and
the crosstalk C.

III. OPTICAL DESIGN OF LOCALIZED PHONON
MODES

Our goal is to design localized phonon modes in long
laser-cooled ion strings, which, as we go on to show in
Secs. IV and V, enable the implementation of scalable and
parallel entangling quantum gates. In particular, we engi-
neer specific types of mode matrices M n

α,i by using optical
tweezers that are focused on the equilibrium positions of
specific ions and thus pin these ions as we describe in
Appendix A. The tweezers are realized by Gaussian laser
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beams along the y direction as illustrated in Fig. 1(a). In the
vicinity of the focuses of the tweezers, the optical poten-
tial can be approximated as harmonic. The optical trapping
frequency along the beam axis is negligible. In contrast,
the optical trapping frequency ω0,i along the transverse
x and the longitudinal z directions is determined by the
beam intensity and waist at the position of ion i, and we
assume that ω0,i does not depend on the internal state of
the ions and can take on values up to ω0,i � 0.4ωx for typ-
ical transverse trapping frequencies ωx = 2π × 3 MHz. In
Appendix B, we discuss experimental requirements to real-
ize such strong qubit-state-independent optical potentials
for different ionic species.

In the following, we first consider localized phonon
modes of a single pair of pinned, neighboring ions in a
long chain. This allows us to delimit the regime of strong
pinning in which the phonon modes of the pinned ions
decouple from the modes of the spectator ions. We then
illustrate these ideas with concrete examples of finite and
infinite chains.

A. Pinning a single ion pair in a long chain

To engineer transverse x phonon modes that are local-
ized on a pair of neighboring ions i and i + 1 and which
can thus be used to perform an entangling gate on this
pair, we consider a situation in which the pinning on the
ions forming the pair is the same, ω0,i = ω0,i+1, whereas
the remaining spectator ions are not pinned. The residual
Coulomb interaction (see Appendix A for details) has two
effects: First, the interaction between the pinned ions leads
to the formation of localized COM and stretch modes given
by

M COM
x,i′ ≈ (δi′,i + δi′,i+1)/

√
2,

M stretch
x,i′ ≈ (δi′,i − δi′,i+1)/

√
2.

(15)

These are the desired modes to implement two-qubit entan-
gling gates. The frequency splitting of these modes is
determined by the Coulomb interaction, ωCOM − ωstretch ≈
e2/(4πε0d3

i,i+1mωx), where di,i′ = ∣∣zi,0 − zi′,0
∣∣ is the dis-

tance between the equilibrium positions zi,0 of the ions
along the trap z axis, e is the elementary charge and ε0 is
the vacuum permittivity. Second, the interaction between
pinned and spectator ions slightly admixes oscillations of
the spectator ions to the localized modes, i.e., the mode
vectors Eq. (15) acquire nonzero amplitudes on ions i′ /∈
{i, i + 1}. This unwanted effect is strongly suppressed if
the difference between the squares of the local oscillation
frequencies of the pinned and spectator ions, as given in
Eq. (A3), is large in comparison to their residual Coulomb
interaction.

More generally, for transverse x phonon modes of a
chain of ions with mean spacing d, the regime of strong
pinning in which localized phonon modes emerge can be

conveniently characterized in terms of two dimensionless
parameters:

ε =
√

e2

4πε0d3mω2
x

, ν0 = ω0

ωx
, (16)

where for simplicity we assume that all ions are pinned
with the same optical trapping frequency ω0. As detailed
in Appendix A, localized COM and stretch modes of a pair
of pinned ions decouple from the motion of spectator ions
if ν2

0/ε
2 � 1. While we focus here on pairs of neighboring

ions, we note that the same criterion applies for pairs of
pinned ions at a larger distance.

In experiments, ε is typically a small parameter. For
example, we obtain ε ≈ 0.07 for a spacing of d = 10 μm
in a chain of 24Mg+ ions with a transverse trapping
frequency of ωx = 2π × 5.5 MHz, or 40Ca+ ions with
ωx = 2π × 4.2 MHz. The ratio ν2

0/ε
2 can be increased by

either increasing the tweezer trapping frequency ω0 or by
increasing the spacing of the ions d.

B. Localized phonon modes in a finite chain

As an example, we consider a chain of N = 60 ions as
depicted in Fig. 2(a). We assume harmonic confinement
along the trap z axis with trapping frequency ωz. Start-
ing from the sixth ion, optical tweezers are arranged to
divide the chain into groups of p = 6 ions. The resulting
mode matrix M n

x,i for i, n ∈ {1, . . . , N } for oscillations in
the transverse x direction is shown in Fig. 2(b). Orange
boxes mark pinned ions, and gray boxes indicate buffer
ions at the ends of the chain. The spacing of these ions
deviates strongly from the approximately uniform spacing
in the center of the chain, and we exclude them from gate
operations. As explained above, the residual Coulomb cou-
pling leads to the formation of localized COM and stretch
modes of the pinned pairs. In the figure, COM and stretch
modes are distinguished by the same color of M n

x,i and
M n

x,i+1 for two neighboring ions that oscillate in phase and
different colors for oscillations with opposite phase. As an
additional effect, which is due to the long-range character
of the residual Coulomb interaction, the localized modes
of distinct pinned pairs hybridize, where the number of
ions in pinned pairs, which is 18 for this example, deter-
mines the number of hybridized modes. These modes are
highlighted by blue shading in the figure.

To perform entangling gates on pairs of pinned ions, the
hybridization of localized phonon modes is in principle not
desirable. However, as long as the frequency splitting of
the localized modes due to the hybridization is so small
that it cannot be resolved on the time scale of the gate oper-
ation, the hybridization has only a small effect on the gate
performance. This picture generalizes the concept of local
oscillation modes from single ions [63] to pairs of ions.
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(a)

(b) (c)

FIG. 2. (a) N = 60 ions in an array of optical tweezers, which
subdivides the chain into groups of p = 6 six ions. The first and
last five buffer ions are not used as qubits. (b) Mode matrix
M n

x,i for transverse x modes. Orange and gray shading indi-
cates pinned and buffer ions, respectively. Blue shading marks
modes that are superpositions of localized COM and stretch
modes of pairs of pinned ions. (c) Phonon-mode spectrum for
ν0 = 0.4 and, for comparison, without tweezers, i.e., for ν0 = 0.
Transverse x and y modes and longitudinal z modes are shown,
respectively, in blue, green, and orange. We assume that the ratio
of transverse trapping frequencies is given by ωy/ωx = 0.8.

The order of mode indices n in Fig. 2(b) reflects the
mode frequency, with n = 1 corresponding to the mode
with the highest frequency. For transverse oscillations, this
is a COM-like mode, which is given here by the in-phase
oscillation of local COM modes of the outermost pairs.
The second-highest frequency mode with n = 2, in turn,
corresponds to a superposition of the local COM modes of
the outermost pairs with opposite phase. For this example,
due to the reflection symmetry with regard to the center of
the trap, these hybridized modes are equal superpositions
of oscillations of pairs to the left and right of the trap cen-
ter. Superpositions of local COM modes are followed at
lower frequencies by superpositions of local stretch modes.

The phonon-mode spectrum of the chain, both with and
without tweezers, is shown in Fig. 2(c). The spectra of
oscillations in the longitudinal z and transverse x direc-
tion, which are shown in orange and blue, respectively, are
strongly modified in the presence of tweezers with strength
ν0 = ω0/ωx = 0.4: the spectrum of oscillations along the
trap z axis is gapped [34], and the almost dense set of fre-
quencies splits up into several subsets. Most prominently,
both for the z and x modes, a subset of modes, which corre-
spond to hybridized COM and stretch modes of the pinned

pairs, appear shifted above the remaining mode frequen-
cies. For the transverse x direction, the assignment between
mode frequencies and mode vectors is indicated with blue
and green shading. The spectrum of transverse y modes,
which is shown in green in Fig. 2(c), is not affected by
the tweezers because we neglect the trapping along the
direction of the tweezer beam.

C. Phonon band structure for infinite chains

To demonstrate the inherent scalability of our approach,
we also present theoretical results for tweezer gates in
infinite ion chains as illustrated in Fig. 3(a). In the simul-
taneous limit N → ∞ and ωz → 0, the system acquires
discrete translational invariance under the transformation
i �→ i + p , where p is the size of the unit cell of the
spatially periodic arrangement of tweezers. We note that
discrete translational symmetry is also realized in ring traps
[64]. To account for this translational invariance, it is con-
venient to label the positions of ions as (l, i) with unit-cell
index l ∈ Z and position i ∈ {1, . . . , p} within a unit cell.
The ions at positions i ∈ {1, 2} are pinned whereas the
remaining ions at i ∈ {3, . . . , p} are not pinned.

(b)

(a) (c)

FIG. 3. (a) Infinite ion chain with optical tweezers forming a
periodic array with unit cell size p = 6. (b) Mode matrix M k,n,λ

x,l,i
for l = k = 0 and λ = 1. COM and stretch modes of the pinned
ions are clearly decoupled from the ions that are not pinned. (c)
Phonon-mode spectra for an infinite chain without and with opti-
cal tweezers, for ν0 = 0 and ν0 = 0.4, respectively. Transverse x
and y modes and longitudinal z modes are shown, respectively,
in blue, green, and orange. The spatial periodicity imposed by
tweezers causes the dense bands of the x and z modes in the infi-
nite system to split up into p = 6 bands, where the highest two
bands correspond to COM and stretch modes of pinned pairs.
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The normal modes of a periodic ion crystal can be found
by using concepts from band theory of electrons in solids
as detailed in Appendix A 2. In particular, translational
invariance with respect to the unit-cell index l can be
accounted for by representing the phonon modes as plane
waves proportional to eikl with quasimomentum k. Because
the phonon-mode vectors are real, the quasimomentum
can be restricted to the interval k ∈ [0, π ]. We note that
the plane-wave representation implies that phonon modes
are stretched out over the entire chain. In other words,
the localized COM and stretch modes of pinned pairs in
different unit cells hybridize uniformly.

The phonon-mode structure for infinite systems is illus-
trated in terms of the mode matrix M k,n,λ

α,l,i (see Appendix
A 2) in Fig. 3(b) for α = x, l = 0, k = 0, and λ = 1. Within
a unit cell, there is a clear separation between modes n = 1
and n = 2, which correspond, respectively, to COM and
stretch oscillations of the pinned ions, and the modes with
n ∈ {3, . . . , p}, which involve the ions that are not pinned.

As shown in Fig. 3(c), modifications of the mode fre-
quencies due to tweezers are particularly clear in infinite
systems: The bands, which are formed by z and x modes,
split up into p = 6 bands in the presence of tweezers. In
particular, COM and stretch modes of the pinned pairs
hybridize between unit cells to form bands. The widths of
these bands are vanishingly small on the scale of the figure.
Moreover, close inspection reveals that the width of the
stretch band is smaller than the width of the COM band
by one order of magnitude. These features of the COM
and stretch bands can be understood in terms of pertur-
bation theory in the small parameter ε2/ν2

0 as we show in
Appendix A 2. The perturbative treatment shows that the
widths of the COM and stretch bands are proportional to
ε2ωx/p3 and proportional to ε2ωx/p5, respectively. That
is, the widths are suppressed with the size of the unit cell
p , with an even stronger suppression for the stretch band.

IV. ENTANGLING TWEEZER GATES

The optical design of phonon modes as described above
forms the basis to implement parallel two-qubit entangling
gates. In the following, we discuss the requirements for and
performance of tweezer gates in infinite as well as finite ion
chains.

A. Infinite chains

We consider a periodic array of pinned pairs of ions,
which are separated by p − 2 spectator ions, and we aim
at performing two-qubit entangling gates on all pairs of
pinned ions in parallel. As illustrated in Fig. 3(b), the spec-
trum of transverse x phonon modes comprises p bands with
mean frequencies ωn and bandwidths �n.

We aim at implementing gates using dominantly the
COM or stretch bands with mean frequencies ω1 = ωCOM
and ω2 = ωstretch, respectively. This can be achieved if the

resolved-sideband condition

|μ − ωn| � μ, ωn, (17)

is met where μ > ω1 for the COM band with n = 1, and
μ < ω2 for the stretch band with n = 2. The choice of
tuning above the COM or below the stretch band ensures
that the detuning μ is as far away as possible from the
respective other band, which should not be excited.

Note that contributions from higher bands with n ∈
{3, . . . , p} to the qubit-phonon coupling [Eq. (5)] and
qubit-qubit coupling [Eq. (6)] are strongly suppressed:
first, these bands are far detuned with μ − ωn � ω0 with
the frequency of the optical potential ω0; second, the con-
tribution of these bands to the couplings [Eqs. (5) and (6)]
is proportional to |ηk,n,λ

l,i �i|/ω0, which is suppressed in the
limit of strong pinning by a factor of η

k,n,λ
l,i ∼ ε2/ν2

0 for
pinned ions at positions (l, i) as follows from the pertur-
bative treatment presented in Appendix A 2. Moreover, as
detailed below we find that typically �i is smaller than ω0
by an order of magnitude. We note that due to the pro-
portionality to �i, by setting �i = 0 for the ions that are
not pinned, these do not contribute to the infidelity and the
crosstalk.

The precise values of μ and, in particular, τ , follow from
the condition of minimal infidelity. For an isolated pair of
ions with COM and stretch-mode frequencies ω1 and ω2,
respectively, this can be achieved for [18,52]

(μ − ωn) τ = 2π ln, (18)

where ln is an integer. Particular choices for gates that
use dominantly the COM and stretch modes are given by,
respectively, l1 = 1 and l2 = 2, and l1 = −2 and l2 = −1.
The resulting detunings are

μCOM = 2ω1 − ω2, μstretch = 2ω2 − ω1, (19)

and in both cases the gate duration τ = 2π/(ω1 − ω2) is
set by the mode splitting. These choices of detunings and
gate duration ensure that the displacement of the phonon
modes due to the qubit-phonon coupling [Eq. (5)], when
considered as a function of the upper limit of integration
τ ′ ∈ [0, τ ], performs a closed loop in phase space [49–52].

In the present case of an infinite chain, Eq. (18) remains
valid in the case of two narrow bands, if the bandwidths �n
are sufficiently small in the sense that �nτ � 1. However,
clearly this condition cannot be met for all frequencies ωk,n
which form a band and correspond to different quasimo-
menta k. For the results we show below, we first fix τ

according to Eq. (18) for either the COM or the stretch
band by setting either l1 = 1 or l2 = −1 and by choos-
ing ωn as the mean frequency of the respective band, and
we then determine numerically the value of μ that yields
the lowest infidelity, which typically deviates only slightly
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from the values given in Eq. (19). The Rabi frequency
�l,i = �0 on the pinned ions is chosen according to the
condition χ

l,l′
i,i′ = ±π/4 if (l, i) and

(
l′, i′
)

are neighboring
pinned ions, i.e., l′ = l and i′ = i + 1. For the remaining
ions, which are not pinned, we set �l,i = 0.

We first consider the implementation of parallel gates
that use the stretch band in an ion chain with p = 6,
ε = 0.07, and ν0 = 0.4. To minimize the infidelity we
choose μ/ωx ≈ 1.065 and ωxτ ≈ 1.37 × 103 as described
above. The required Rabi frequency to perform a maxi-
mally entangling gate is given by η0�0/ωx ≈ 4.75 × 10−3,
where the dimensionless factor

η0 = kL,x

√
�/(2mωx) (20)

contains all parameters in the definition of the Lamb-Dicke
parameter matrix, Eq. (2), which are specific to different
ionic species.

In Fig. 4(a), we show the qubit-phonon coupling,
Eq. (5), as a function of the upper limit of integration
τ ′ ∈ [0, τ ] and for l = i = 1, n = 1, 2, and k ≈ 1.55, which
corresponds to the mean frequency ω2 of the stretch band.
According to Eq. (3), the actual displacement depends on
the state of the qubit at position (l, i), and is opposite
for the states |±〉i with σ x

i |±〉i = ±|±〉i. The values of n
and k shown in Fig. 4(a) yield the largest values of the
qubit-phonon coupling, i.e., the corresponding modes con-
tribute most to the gate. On the scale of the figure, the
qubit-phonon coupling for bands with n ≥ 3 is not visible.
The physical picture described below Eq. (19) is clearly
reflected in the figure: the phase-space trajectories for both
the stretch and the COM modes shown in the figure are
closed, where the trajectory of the COM mode is traversed
twice. However, closer inspection of the vicinity of the ori-
gin reveals that the trajectories of modes that belong to the
COM band and have different values of the quasimomen-
tum k, do not close perfectly. In Fig. 4(b) we show the
qubit-phonon coupling at the end of the gate operation as
a function of k for both the stretch and the COM bands.
According to Eq. (11), the area under these curves deter-
mines the infidelity, and the figure shows that the dominant
contribution to the infidelity is indeed due to the COM
modes. We find δF = 5.7 × 10−4.

The infidelity is higher for gates that use predominantly
the COM band. This is because the width of the COM
band is much larger than the width of the stretch band
and, therefore, the phase-space trajectories for different k
deviate more strongly from perfect closure. In particular,
for μ/ωx ≈ 1.079 slightly below the COM band, ωxτ ≈
1.37 × 103, and η0�0/ωx ≈ 4.77 × 10−3, we obtain δF =
2.1 × 10−3, which is higher than the value we obtain for
the stretch band by an order of magnitude.

We next analyze over- and under-rotation errors and
crosstalk as defined in Eqs. (13) and (14), respectively. For
the implementation of gates we discuss in this section, the

(a)

(b)

FIG. 4. Phase-space trajectories for parallel entangling gates
in an infinite chain. (a) Contribution to the displacement of the
phonon mode k, n, λ due to its coupling, Eq. (5), to the qubit at
position l = i = 1, which is assumed to be in the +1 eigenstate
of σ x

l,i. For the chosen detuning close to μstretch in Eq. (19), the
stretch mode with n = λ = 2 and k ≈ 1.55 such that ωk,2 = ω2
equals the mean frequency of the stretch band experiences the
strongest displacement. The phase-space trajectory of the COM
mode with the same values of k and λ forms a smaller cir-
cle, which is traversed twice. Trajectories of modes with n ≥ 3
are not visible on the scale of the figure. (b) Closer inspection
reveals that the phase-space curves for different values of k are
not perfectly closed. The area under the squared modulus of the
qubit-phonon coupling at the end of the gate operation, shown
here for n = λ = 2, determines the infidelity (11). Parameters of
the ion chain are p = 6, ν0 = 0.4, and ε = 0.07.

Rabi frequency is chosen such that χi,i′ = χ0
i,i′ for

(
i, i′
) ∈

I , i.e., the over- and under-rotation error vanishes exactly,
δχ = 0.

However, there is unwanted crosstalk corresponding to
nonzero qubit-qubit couplings between ions that belong to
distinct pairs. The dominant contributions to crosstalk are
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due to (i) unwanted excitation of the stretch or COM band,
and (ii) the finite width of these bands. Concerning (i), we
note that for a given detuning, say μ > ω1, the COM and
stretch bands induce ferromagnetic and antiferromagnetic
couplings. In other words, they yield contributions to χ

l,l′
i,i′

with opposite sign, which thus partially cancel each other.
This partial cancellation has to be compensated by increas-
ing the Rabi frequency �0 to achieve χ

l,l′
i,i′ = ±π/4 on the

target ions, which then, however, also increases unwanted
couplings, which contribute to the crosstalk, Eq. (14). This
effect is suppressed by tuning close to a sideband Eq. (17),
i.e., by dominantly exciting either the COM or the stretch
band.

With regard to (ii), the fact that a finite bandwidth leads
to crosstalk can be understood intuitively from the fact that
the effective coupling between local (within single unit
cells) COM or stretch modes determines the bandwidth.
Crosstalk is negligible if the effective coupling and thus the
bandwidth is much smaller than all other relevant scales.
In particular, the finite bandwidth can be neglected and
ωk,n for the COM and stretch bands can be replaced by the
respective central frequencies ωn in Eq. (6) if

|μ − ωn| � �n. (21)

We note that by Eq. (17) this also implies that μ, ωn �
�n. If we combine this condition with Eq. (18) for
the gate duration, we find the intuitive criterion that to
minimize crosstalk the gate should be performed fast
on the timescale that is set by the effective coupling
between pinned pairs. This picture generalizes the con-
cept of local oscillation modes from single ions [63] to
pairs of ions. We note that the mentioned condition can
always be met efficiently by increasing the size of the unit
cell p .

For the gate shown in Fig. 4, we find C = 4.1 × 10−2.
The crosstalk for a gate using the COM band and with
p = 6 is C = 1.7 × 10−1, i.e., again one order of magni-
tude higher than for the stretch band. The crosstalk can be
reduced by increasing the unit-cell size p . In particular, for
gates that use the stretch band and for p ≥ 9, we obtain
C < 10−2 such that C/χi,i′ < 1% for

(
i, i′
) ∈ I .

Finally, we note that while the long-range character of
the residual Coulomb interaction has the adverse effect of
leading to crosstalk between distant qubits, it can also be
utilized to implement gates between qubits that are not
nearest neighbors. This can be achieved, for example, by
pinning the ions at positions 1 and q, where 2 < q � p
within each unit cell. This leads to a reduction of the
splitting between the COM and stretch bands by a factor
proportional to 1/(q − 1)3, and the gate duration increases
correspondingly according to Eq. (18).

B. Gate performance

We study how infidelity, crosstalk, and gate duration
depend on the tweezer pinning strength as measured by
the dimensionless optical trapping frequency ν0, and the
strength of the residual Coulomb coupling ε in Fig. 5. The
main panel of this figure shows the infidelity δF for p = 6
and for optimized choices of gate duration and detuning as
discussed above. For large values of ε in the white region,
the gap that separates the COM and stretch bands is more
than half of the gap that separates the stretch band from
the bands of the ions that are not pinned and, therefore, the
pinned ions are not sufficiently decoupled from the ions
that are not pinned. In this region, gates cannot be per-
formed with reasonable infidelity. High-fidelity gates can
be performed for values of ε below the black diagonal line,
which corresponds to a threshold value of δF = 10−3.

We next analyze how the gate speed and crosstalk are
affected by the optical trapping frequency ν0 for a fixed
value of the infidelity δF = 10−3, i.e., for ε on the black
diagonal line in Fig. 5. The inset in the upper left corner
of the figure shows the gate duration for various values of
the unit-cell size p . The gate duration is set by the split-
ting between COM and stretch bands, which according
to Eq. (A16) is proportional to ε2 for ε � 1. The result-
ing analytical prediction of the scaling τ ∼ 1/ε2 ∼ 1/ν2

0
on the line δF = 10−3 is shown as a dashed gray line in
the inset and agrees well with the numerical data. (The
vertical offset between the gray line and the numerical
data is introduced to improve the visibility.) For ν0 in the
range from 0.1 to 0.4, we obtain gate durations between
ωxτ = 0.05 × 104 and 104. For a typical value of ωx =

FIG. 5. Gate performance for an infinite chain. The main panel
shows the dependence of the infidelity on the parameters ν0 and
ε. δF = 10−3 on the black line across the diagonal. In the white
region, the optical potential is insufficient to decouple the pinned
ions from the other ions in the chain. The insets show the gate
duration τ and the crosstalk C for fixed infidelity δF = 10−3.
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TABLE I. Tweezer parameters and scattering-induced infi-
delity for ground-state qubit encoding in different ionic species.
The parameters ε = 0.07, ν0 = 0.4, and ωx = 2π × 3 MHz are
fixed for all species, and the numerical aperture is assumed to be
0.7 (see Appendix B for details). The tweezer wavelength is cho-
sen to result in a close-to-optimal scattering infidelity while being
experimentally accessible in terms of both power per tweezer
spot in the second column and available laser sources.

Wavelength
(nm)

Optical
power
(mW)

Scattering
infidelity

×103

Interion
distance

(μm)
24Mg+ 400 6.4 4.9 15
40Ca+ 532 14.5 12.0 12.6
88Sr+ 580 40.2 30.2 9.7
171Yb+ 532 202.2 38.2 7.8
138Ba+ 675 90.0 55.0 8.3

2π × 3 MHz, this corresponds to gate durations ranging
from 27 to 531 μs.

The crosstalk for fixed infidelity δF = 10−3 is shown
in the inset in the lower right corner in Fig. 5. While the
crosstalk remains approximately constant as a function of
ν0, it can be suppressed by increasing the unit-cell size p .
As already stated above, we find C < 10−2 for p ≥ 9.

In an experimental implementation, an important contri-
bution to the infidelity is due to spontaneous scattering of
photons of the tweezer beams. As discussed in Appendix
B, promising candidates to implement tweezer gates are
24Mg+ ions, for which the infidelity due to scattering of
photons is on the order of 10−3 for reasonable dimen-
sionless parameters ε and ν0. Tweezer parameters and
scattering infidelities for several ionic species are sum-
marized in Table I. The infidelity due to scattering can
be decreased further by decreasing the tweezer intensity
and thus the dimensionless optical trapping frequency ν0.
As illustrated in Fig. 5, this results in an increase of
the gate infidelity, which, however, can be compensated
by employing optimal coherent control as described in
Appendix E.

C. Finite chains

Here we show how the methods for implementing paral-
lel tweezer gates can be applied in finite 1D ion strings. For
concreteness, we assume harmonic trapping along the trap
z axis. In contrast to before the Hamiltonian in question is
no longer invariant under discrete translations, which leads
to stark changes in the mode spectrum as well as the mode
functions themselves (see the discussion around Fig. 2). As
we point out further below this is not necessarily a negative
aspect and indeed further improves the gate performance.
For this, the detunings μi, the Rabi frequencies �i(t) in
Eq. (1), and the gate duration have to be controlled for each
ion pair. This is due to the fact that for each pair of tar-
get ions and in order to fulfill Eq. (18) one has to identify

the corresponding COM and stretch mode and choose the
detuning and the gate duration accordingly. These devia-
tions are strongest for ions at the ends of the chain where
the interion distances are considerably larger than for the
rest of the chain. Therefore, we introduce several buffer
ions on each end, which are not used for quantum com-
putation. We choose the number of buffer ions such that
the relative standard deviation for the interion distances of
the other ions lies below 10%. Furthermore, we choose the
axial trapping frequency ωz such that the mean interion dis-
tance of the nonbuffer ions corresponds to ε = 0.07, i.e.,
the value that we choose for the infinite system.

In Fig. 6 we show numerical results for a system of 130
ions, 15 of which on each end of the chain are used as
buffer ions. We choose p = 6 to implement a total num-
ber of 17 maximally entangling gates in parallel, where
the leftmost and the rightmost gates are performed on the
ions at positions i = 16, 17 and i = 112, 113, respectively.
This configuration of gates is not symmetric with respect
to the center of the trap. However, this asymmetry does not
affect the gate performance: indeed, the performance of the
parallel gates for the asymmetric configuration, which we
discuss in detail below, is comparable to the gate perfor-
mance for the symmetric configuration that can be realized
by shifting all tweezers by one ion to the right while
keeping the total number of gates at 17.

(a)

(b)

FIG. 6. Tweezer gates in finite chains. We show individual
detunings and Rabi frequencies for 17 maximally entangling
tweezer gates targeting the stretch mode along a chain of 130
ions with 15 buffer ions on each side (p = 6, ε ≈ 0.07). Optical
tweezers generate a trapping frequency that is uniform ν0 = 0.4
and alternating between ν01 = 0.4 and ν02 = 0.36 for (a) and (b),
respectively. For comparison, we also show the detuning μ∞
and Rabi frequency �∞ for an infinite chain with ε = 0.07 and
ν0 = 0.4.
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The two panels in Fig. 6 correspond to different schemes
of optical pinning by the tweezers: in (a), each pair of tar-
get ions is pinned with the same tweezer strength ν0 = 0.4,
whereas in (b), tweezer strengths alternate between the val-
ues ν01 = 0.4 and ν02 = 0.36. For both cases we show the
detuning and the required Rabi frequency for each gate
along the chain. As for the infinite chain, the detunings are
optimized with regard to optimal infidelity around the esti-
mate given by Eq. (19) for the stretch mode of each pair.
The required detunings lie around the value obtained in the
infinite case (blue dashed line in Fig. 6) but are lower in the
center and higher at the edge of the chain. This is due to the
disparity in the mode frequencies: as indicated in Fig. 2,
modes that are localized at the edge of the ion chain have
higher frequencies and smaller gaps compared to those at
the center. The maximal gate duration ωxτ = 2670 is the
same for Figs. 6(a) and 6(b) and occurs at the edge of
the ion chain. This can be attributed to the difference in
the interion distances that influence the gap between the
COM and the stretch mode of a given ion pair: larger dis-
tances implicate weaker interactions and hence a smaller
gap leading to slower gates and vice versa [see Eq. (18)].
Furthermore, since the gate duration is larger at the edge,
the Rabi frequency, which is also shown in Fig. 6, has to
be lower in order to realize a maximally entangling gate.

We note that while the choice of Rabi frequencies shown
in Fig. 6 leads to maximally entangling gates with χi,i+1 =
−π/4 for all pairs of qubits, different and independent val-
ues of χi,i+1 can be achieved by lowering the individual
Rabi frequencies.

As before we quantify the performance of the gate
through average infidelity, Eq. (11), and average crosstalk,
Eq. (14). For (a) and (b) in Fig. 6 we get δFa =
9 × 10−4, Ca = 2.8 × 10−2 and δFb = 1.7 × 10−3, Cb =
6.5 × 10−3, respectively. If we compare these values with
those obtained in the infinite chain, i.e., δF∞ = 5.7 × 10−4

and C∞ = 4.1 × 10−2, we find that while the infidelity is
slightly worse, crosstalk is slightly better in the finite case.
The former is due to rare outliers with infidelities of order
10−2 in the middle of the chain whereas the latter stems
from the variation in mode frequency (and hence detuning)
and the tighter localization of the COM and stretch modes
for the different gates. The alternating tweezer frequencies
in Fig. 6(b) amplify the latter effect, which leads to further
suppression of crosstalk.

D. Infidelity and over- and under-rotation errors from
tweezer misadjustments

An important question for the experimental implemen-
tation of tweezer gates concerns the sensitivity of the
gate performance to misadjustments of the optical tweezer
array. To address this question, we consider three dis-
tinct types of misadjustments: deviations of the focuses
of the tweezers from the equilibrium positions of the ions,

variations in the optical trapping frequencies due to inten-
sity fluctuations of the tweezers, and misalignment of the
tweezers with the y direction. As figures of merit, we study
how these imperfections affect the infidelity as well as the
over- and under-rotation error.

Including tweezer misadjustments in the optical poten-
tial, Eq. (A4), for ion i ∈ {1, . . . , N } yields

Vtwz
i (ri) = m

2
(
ω0,i + δωi

)2 |�(θi, φi) (δri − δi)|2 . (22)

Here, δωi is a shift of the optical trapping frequency, δi is
the deviation of the focus of the tweezer from the equilib-
rium position of the ion ri,0 in the absence of an optical
potential, and δri = ri − ri,0 is the displacement of the
ion from ri,0. In Appendix C, we explain how the shift
of the equilibrium position of the ion due to deviations
of the focus of the tweezer from ri,0 can be calculated
perturbatively. Finally, the angles θi and φi describe the
misalignment of the tweezer beam with the y axis, and
�(θi, φi) is the projector onto the plane orthogonal to
the tweezer beam axis. We assume that fluctuations of
the parameters δωi, δi, θi, and φi are normally distributed
around zero, independent for each ion, and constant on the
timescale of gate operations.

Figure 7 shows the infidelity and over- and under-
rotation error as a function of the strength of misadjust-
ments. In particular, to generate the data shown in the
figure, 40 samples of each of the dimensionless parame-
ters 50δωi/ω0,i, δi/l0 where l0 = (e2/4πε0mω2

x)
1/3, θi, and

φi are drawn from a Gaussian distribution with width σ .

FIG. 7. Tweezer misadjustments. We show the infidelity
Eq. (11) (blue) and the over- and under-rotation error Eq. (13)
(orange) as a function of the strength of fluctuations σ for three
types of misadjustments and for their combination. For each type
of misadjustment, the infidelity and the over- and under-rotation
error are averaged over 40 realizations. We consider here a chain
of 130 ions with 15 buffer ions on each side, and parameters
p = 6, ε ≈ 0.07, and ν0 = 0.4.
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The factor of 50 for shifts of the optical trapping fre-
quency is introduced so that the infidelities and over- and
under-rotation errors are comparable for all types of misad-
justments on the range of values of σ shown in Fig. 7. The
assumption of those misadjustments being constant dur-
ing the execution of a gate is motivated by the observation
that beam pointing instabilities as well as laser intensity
noise typically fall off rapidly above tens to hundreds of
Hz [65,66]. If we require δF � 10−2 and δχ � 4 × 10−2,
this allows for standard deviations σ of approximately 0.04
to 0.05 (the combination of all three types of misadjust-
ments leads to the slightly more stringent requirement σ �
0.02 to 0.03), which can be related to misadjustments of
70 nm for the tweezer focuses, 2◦ for the incidence angles,
and 10 kHz for the pinning frequencies, corresponding to
relative intensity errors of 3 × 10−3 in a typical experi-
ment with d = 10 μm and ωx = 2π × 3 MHz. All three
conditions can be satisfied in state-of-the-art experiments.

E. Dynamical reconfiguration of tweezer arrays

To perform consecutive layers of the quantum circuit
shown in Fig. 1(d) the tweezer array has to be reconfigured
dynamically. In particular, the second layer in the circuit in
Fig. 1(d) can be implemented by switching off the tweezers
that are focused on the ions that are affected by the gates
U1, U2, and U3, and by subsequently switching on optical
tweezers focused on the equilibrium positions of the ions
that are affected by the gates U4 and U5.

The dynamical reconfiguration of the optical tweezer
array can cause heating by exciting phonon modes. Cru-
cially, throughout the switching process, the phonon spec-
trum remains gapped, i.e., the smallest phonon frequency
is larger than zero as in the right panel in Fig. 3(c), and
heating is suppressed if the switching is performed adiabat-
ically with respect to the phonon gap. Based on adiabatic
perturbation theory, we derive conditions for adiabatic-
ity for the worst-case scenario of an infinite ion chain in
Appendix D. In this derivation, we assume for simplicity
that all phonon modes are cooled to their ground state. We
consider a switching protocol in which initially the first
two ions within each unit cell of size p are pinned, and
at the end of the protocol the second and third ion are
pinned. That is, during a time τs, optical tweezers on the
first and third ion are simultaneously switched off and on,
respectively.

This process is adiabatic, i.e., the excitation of phonon
modes is suppressed, if ωxτs � 8 for p = 4 and ωxτs � 11
for p = 6, for ε = 0.07 and ν0 = 0.4. Consequently, the
switching time can be much shorter than the gate duration,
which is ωxτ ≈ 1400 for gates for the same values of ε and
ν0. Therefore, the total time it takes to execute a quantum
circuit is dominated by the time for gate operations. Even
shorter switching times are permissible for smaller values
of ν0 and larger values of ε.

V. OPTIMIZED TWEEZER GATES

The optimal choice of detunings and gate durations
described above enables the implementation of parallel
entangling tweezer gates in finite and infinite ion chains
with a simple laser pulse. However, the density of the
resulting quantum circuits is restricted by crosstalk. This
limitation can be overcome and dense circuits as shown in
Fig. 8 can be realized with techniques of optimal coher-
ent control where gate operations are decomposed into
multiple laser pulses.

A. Infinite chains

To optimize the operation of parallel entangling gates,
we consider here the temporal modulation of the ampli-
tudes of the laser pulses that drive the gates [18–25]. Orig-
inally, optimization of the amplitude shape was devised to
implement fast gates with high fidelity. Our focus is on
suppressing crosstalk in order to implement circuits with
high density and fidelity. The control problem to be solved
can be stated in terms of two conditions: the first condition
reads χi,i′ = χ0

i,i′ , where we set χ0
i,i′ = −π/4 for

(
i, i′
) ∈ I

and χ0
i,i′ = 0 for

(
i, i′
) ∈ I ′, and where the sets of pairs of

ions I and I ′ are defined as in Eqs. (7) and (12). The second
condition, αn

i = 0, ensures that there is no infidelity due to
residual entanglement between qubits and phonon modes.
To meet these conditions, we introduce as independent
control parameters a variable number S of pulse amplitudes
�s

i and detunings μi for ions i ∈ {1, . . . , N }. Specifically,
the laser pulse, which affects ion i with detuning μi, is
divided into S segments of equal duration with constant
pulse amplitude �s

i within a segment such that �i(t) =
�s

i for (s − 1) τ/S ≤ t < sτ/S. If both of the above con-
ditions are satisfied exactly, the implemented gate U in
Eq. (3) is identical to the ideal gate U0 in Eq. (7). In prac-
tice, however, it is not possible to find exact solutions of

(a)

(b)

FIG. 8. Schematic setup for dense circuits. (a) In a setup in
which pairs of ions that are pinned and not pinned alternate,
gates can be performed on all ions in parallel. This leads to
the realization of dense circuits as illustrated in (b). Maintaining
high fidelity and low crosstalk in such circuits requires optimal
coherent control techniques.
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this control problem. Instead, we search for approximate
solutions by formulating the above conditions as an uncon-
strained optimization problem, i.e., we formulate a cost
function L, which has to be minimized with respect to
�i = (�1

i , . . . , �S
i

)
and μi for given τ . A minimum with

L = 0 would correspond to an exact solution of the control
problem.

The definition of a cost function L is not unique and we
work with the choice L = Lχ + Lα , where

Lα =
N∑

i=1

(
N∑

n=1

αn
i

)2

, Lχ =
∑

(i,i′)∈J

(
χi,i′ − χ0

i,i′
)2

, (23)

and J is a set of ion pairs, which is specified below. Lχ

corresponds to the simplest polynomial in Rabi frequencies
that has a minimum with Lχ = 0 at χi,i′ = χ0

i,i′ . The square
in the definition of Lα ensures that Lα is a polynomial of
Rabi frequencies of the same order as Lχ . More details can
be found in Appendix B.

We consider now an infinite chain, which is subdivided
by optical tweezers into unit cells of size p = 4. Our goal is
to perform entangling gates on both the set of pinned ions
as well as the set of ions that are not pinned to realize a
maximally dense quantum circuit as illustrated in Fig. 9.
Crosstalk between these two sets of ions is suppressed
through the small spatial overlap of the respective phonon

modes. Therefore, we minimize the cost function for both
sets independently, and we calculate the infidelity and
crosstalk, which result from performing the independently
optimized gates simultaneously a posteriori.

To suppress crosstalk within each set of ions, it is suffi-
cient to allow for only a small number G of independent
sequences of Rabi frequencies �i: first, we choose the
sequences of Rabi frequencies to be the same for two
neighboring pinned or not pinned ions, i.e., we set �2i−1 =
�2i. Second, since crosstalk is negligible for sufficiently
distant pairs of ions, we limit the “active” suppression of
crosstalk through the minimazition of L to a group of G
neighboring pairs of ions within each subset. The result-
ing G independent sequences �i are applied periodically in
space, that is, we set �i = �i+4G. Thus, for gates on pinned
ions, the set J in Eq. (23) contains pairs

(
i, i′
)

for which
the first is any one of the pinned ions up to unit cell G, i ∈
{1, 2, 5, 6, . . . , 4G − 3, 4G − 2} and i′ runs over all ions to
the right of i. For gates on ions that are not pinned, the first
ion i in

(
i, i′
)

is in the set i ∈ {3, 4, 7, 8, . . . , 4G − 1, 4G}
and again i′ runs over all ions to the right of i.

The gate optimization for infinite systems is illustrated
in Fig. 9 for ωxτ = 1500, S = 8, and G = 4. Figure 9(a)
shows the mode spectrum for p = 4 with COM and stretch
bands both for the set of pinned and not pinned ions.
We minimize L independently for both sets of ions for
detunings μ in ranges indicated by blue shaded areas.

(a) (b) (c)

FIG. 9. Pulse optimization in an infinite chain. (a) Phonon-mode spectrum for p = 4, ν0 = 0.4, and ε = 0.07. (b) The minimization
of the cost function L is performed independently for pinned and not pinned ions. The upper and lower panels show the cost function
for optimal sequences of Rabi frequencies for a range of detunings around the COM and stretch bands of pinned and not pinned ions,
respectively. (c) For the optimal detunings we show the corresponding G = 4 independent sequences of S = 8 Rabi frequencies both
in the time domain and in discrete Fourier space. Purple and green correspond to positive and negative Rabi frequencies, respectively.
The Fourier representations are dominated by few modes, which belong to subspaces of Fourier space that alternate along the chain:
a pulse sequence that contains only odd Fourier components is followed by a sequence that is composed of even Fourier components
and vice versa.
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Figure 9(b) shows the corresponding values of the cost
function as the detuning is varied. The optimal detuning
for each set is determined by the global minimum of L.
Figure 9(c) shows the optimal sequences of Rabi frequen-
cies both in the time domain and in discrete Fourier space.
The Fourier representation is defined as

�̃ = F�, Fs,s′ = 1√
S

sin[πs
(
s′ − 1/2

)
/S], (24)

which corresponds to a discrete sine transform. Interest-
ingly, the Fourier representations of the optimal pulse
sequences are first of all dominated by few Fourier modes.
Moreover, the dominant Fourier modes alternate along the
ion chain, with a pulse sequence, which contains only odd
Fourier components being followed by a sequence that is
composed of even Fourier components and vice versa. This
observation hints at a mechanism to suppress crosstalk,
which is akin to refocusing circuits [67,68]. We stress
that this mechanism is “discovered” here by an unbiased
optimization algorithm.

If the independently optimized sets of gates are per-
formed simultaneously, we find an average over- and
under-rotation error and crosstalk per gate of δχ ≈ 2.3 ×
10−7 and C ≈ 2.2 × 10−3, respectively, and an average
infidelity of δF ≈ 3.3 × 10−4. While the infidelity is com-
parable to the results presented in Sec. IV A, crosstalk is
significantly lower even though we consider here entan-
gling gates acting on all ions in parallel. The values of
the infidelity and crosstalk as well as the gate speed can
be improved further by increasing the number of seg-
ments S and the number of independent gates G. However,
this leads to an increase of the required maximum Rabi
frequency, which sets a limit on the achievable gate perfor-
mance. At the same time, the complexity of the optimiza-
tion problem as determined by the number of independent
parameters grows linearly both with S and G.

B. Finite chains

The results of the previous section show that optimal
control can successfully be employed in order to imple-
ment dense and parallel tweezer gates in a periodic chain
of equidistant ions. For this the periodicity of the system
is a crucial requirement since then a small number of opti-
mized pulse sequences can be repeated along the chain.
We now introduce a method for finite chains that does not
require periodicity. The central idea is to employ optimal
control techniques given in Ref. [22] in order to indepen-
dently optimize the infidelities for each tweezer gate and
subsequently suppress crosstalk through the choice of laser
detunings.

As in the previous section we divide the gate duration
into S segments with different but constant Rabi frequen-
cies �s

i for s ∈ {1 . . . S} and ions i ∈ {1 . . . N }. The authors
of Ref. [22] describe how to choose such a sequence of

Rabi frequencies in order to implement a single two-qubit
gate for given gate duration and laser detuning and with
minimal infidelity. Below we extend their ideas to dense
quantum circuits of parallel tweezer gates as shown in
Fig. 8(b). Our method works as follows: in a first step for
each target ion pair (i, i′) ∈ I we determine a set of detun-
ings μ in the vicinity of the corresponding localized modes
for which an optimized pulse sequence yields an infidelity
below a certain threshold value δFthresh. Secondly we apply
an iterative optimization algorithm to choose a detuning
μ(i,i′) from each of these sets such that the total crosstalk
becomes small for μ = (μ(i,i′))(i,i′)∈I . This is done by loop-
ing through the target pairs I from the left end of the chain
to the right end while applying the following routine: for
the first pair, as well as in the case that for a given pair there
is no detuning for which δF < δFthresh, select the detuning
that yields the lowest infidelity. Else select the detuning
that minimizes crosstalk with all other pairs for which the
detuning has already been fixed. Below we choose to iter-
ate the optimization 5 times, which is sufficient to achieve
convergence.

In Fig. 10 we show numerical results for a system of
130 ions with 15 buffer ions on each side. As in the infinite
case we choose p = 4 in order to implement a dense circuit
consisting of 50 maximally entangling tweezer gates in

FIG. 10. Pulse optimization in a finite chain. We show the cho-
sen detunings (see main text) to implement a dense circuit of
50 parallel, maximally entangling tweezer gates in a chain of
130 ions with 15 buffer ions on each side (p = 4, ν0 = 0.4, ε ≈
0.07). The horizontal lines mark the mode frequencies. We allow
S = 8 segments and set the gate duration to ωxτ = 1500, which
requires a maximal Rabi frequency of η0�/ωx = 0.007. We get
average infidelity δF = 10−5 and crosstalk C = 2.77 × 10−4.
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parallel, using individual optimal control and the iterative
optimization as described above, where we set δFthresh =
10−3. As in the previous section we allow S = 8 segments
for each pulse sequence and we choose a gate duration
of ωxτ = 1500. This yields an infidelity δF = 10−5 and a
crosstalk C = 2.77 × 10−4 for a maximal Rabi frequency
of η0�/ωx = 0.007. If higher Rabi frequencies are avail-
able one could increase the number of segments for the
pulse sequences in order to further improve infidelity or to
speed up the gate [22].

VI. OUTLOOK

In this work, we develop the implementation of scal-
able parallel gate operations using localized transverse
phonon modes generated by optical tweezers. To be con-
crete, we consider quantum circuits with spatially recurring
structures of nearest-neighbor two-qubit gates as illus-
trated in Figs. 1(d) and 8(b). The dynamical reconfigura-
bility of programmable tweezer arrays enables reshaping
phonon modes on the fly. This is a key feature of opti-
cal segmentation of ion chains and facilitates the efficient
implementation of universal parallelized quantum circuits.

Immediate extensions of the methods developed in this
paper are illustrated schematically in Fig. 1(a). First, mul-
tiqubit gates can be performed on subregisters, which are
separated by “optical tweezer walls” [34]; second, the
COM and stretch modes of pairs of distant ions can be
used to implement entangling gates for qubits, which are
not nearest neighbors. Combining these capabilities leads
to the realization of 1D quantum networks, which connect
nodes that correspond to subregisters of long 1D chains.

Beyond these opportunities for quantum algorithms and
gate-based digital quantum simulation, designer phonon
modes, which are shaped through optical potentials open
up new possibilities for analog quantum simulation, which
can be realized through virtual far off-resonant excitation
of phonon modes.

In addition to the applications of optical tweezers in the
implementation of quantum gates and the design of Hamil-
tonians for analog quantum simulation, they also provide
new possibilities to tackle challenges on a more funda-
mental level of quantum hardware design. For example,
while we focus here on programming the phonon-mode
structure for a given configuration of the ion chain, where
the equilibrium positions of the ions are fixed by the trap-
ping potential and Coulomb interactions, and tweezers are
focused on the equilibrium positions, also the equilibrium
positions themselves can be shifted by using optical forces.
This enables, e.g., to achieve uniform ion spacings along
the chain to facilitate individual control by addressed laser
beams for gate operations, and thus provides an alternative
to anharmonic potentials [22,69]. Further, laser cooling of
phonon modes can be carried out more efficiently in an ion
chain that is divided into subregisters [34].

An interesting question concerns the extension of the
methods developed in this paper to two-dimensional and
3D structures [70–72]. Further studies are required to elu-
cidate the interplay between micromotion [73,74], which is
not negligible in specific spatial directions, and the local-
ization properties of phonon modes in higher dimensions.
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APPENDIX A: PHONON MODES IN 1D ION
CHAINS WITH OPTICAL TWEEZERS

In the following, we derive phonon-mode matrices M n
α,i

and mode frequencies ωα,n for finite and infinite 1D chains
of trapped ions, which are subject to programmable arrays
of optical tweezers.

1. Phonon modes of finite chains

The Hamiltonian for the classical 3D motion of N ions
in a harmonic trap reads

H0 =
N∑

i=1

[
p2

i

2m
+ V(ri)

]
+ e2

4πε0

N∑

i<i′=1

1
|ri − ri′ | , (A1)

where ri = (rx,i, ry,i, rz,i
)T = (xi, yi, zi)

T and pi = (px,i, py,i,

pz,i
)T are, respectively, the position and momentum of

ion i, and the electronic trapping potential is given by
V(r) =∑α∈{x,y,z}

1
2 mωαr2

α . We assume tight confinement
in the transverse x and y directions, such that the equi-
librium positions ri,0 of the ions are along the z axis,
ri,0 = (0, 0, zi,0

)T, and form a linear 1D chain. If the num-
ber of ions N is increased, the axial trapping frequency ωz
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has to be reduced for the linear configuration of the ion
chain to remain stable [75–77].

Phonon modes of the ion chain correspond to quan-
tized small-amplitude oscillations of the ions around their
equilibrium positions. An expansion of the Hamiltonian
Eq. (A1) to second order in δri = ri − ri,0 leads to H0 =∑

α∈{x,y,z} H0,α where

H0,α =
N∑

i=1

(
p2

α,i

2m
+ 1

2
mω2

α,iδr2
α,i

)

+ e2sα

4πε0

N∑

i<i′=1

δrα,iδrα,i′

|zi,0 − zi′,0|3 , (A2)

with sx = sy = 1 and sz = −2. To this order of the expan-
sion, oscillations of the ions in the transverse x and y direc-
tions and the longitudinal z direction decouple. The ions
perform harmonic oscillations around their equilibrium
positions with local trapping frequencies

ω2
α,i = ω2

α − e2sα

4πε0m

N∑

i′=1
i′ �=i

1
|zi,0 − zi′,0|3 . (A3)

These oscillations are coupled by the residual Coulomb
interaction described by the last term in Eq. (A2). To
design phonon modes, we consider adjusting the local
trapping frequencies by focusing optical tweezers on the
equilibrium positions of the ions as detailed in Sec. III. The
optical potential, which is generated by the tweezers, is
described by an additional contribution to the Hamiltonian
that reads H1 =∑N

i=1 Vtwz
i (ri), where

Vtwz
i (ri) = 1

2
mω2

0,i

(
δr2

x,i + δr2
z,i

)
. (A4)

Normal-mode coordinates ξα,n are introduced via the lin-
ear transformation δrα,i =∑N

n=1 M n
α,iξi, where M n

α,i is the
mode matrix, which diagonalizes the phonon Hamiltonian
Hph = H0 + H1, i.e., which brings the Hamiltonian to a
form that corresponds to decoupled harmonic oscillators
with frequencies ωα,n. The normal-mode oscillations of the
ion chain can be quantized by introducing annihilation and
creation operators for phonons, aα,n and a†

α,n, respectively.
In terms of these operators, the deviation of ion i from its
equilibrium position can be expressed as

δrα,i =
√

�

2m

N∑

n=1

M n
α,i√

ωα,n

(
aα,n + a†

α,n

)
. (A5)

The qubit-phonon Hamiltonian Eq. (1) couples the qubits,
which are encoded in individual ions, to the quantized
normal-mode oscillations of the ion chain.

2. Phononic band structure of infinite chains

We proceed to derive the phononic band structure for
an infinitely long 1D ion chain with uniform spacing d.
The ions are subject to a spatially periodic array of opti-
cal tweezers, which subdivides the ion chain into unit cells
of size p . Within each unit cell, the first two ions are
pinned by optical tweezers with trapping frequency ω0, and
the remaining p − 2 ions are not pinned as illustrated in
Fig. 3(a).

We label the ions by their unit cell l ∈ Z and their posi-
tion i = 1, . . . , p within the unit cell, where the pinned
ions correspond to the positions i = 1, 2. The classical
Hamiltonian for small-amplitude oscillations of the ions
around their respective equilibrium positions can be writ-
ten as Hph =∑α∈{x,y,z} Hα , where Hα is given by the sum
of Eq. (A2) and the optical potential in Eq. (A4) in the
simultaneous limit N → ∞ and ωz → 0:

Hα =
∑

l∈Z

p∑

i=1

(
p2

α,l,i

2m
+ 1

2
mω̃2

α,iδr2
α,l,i

)

+ 1
2

sα

∑

l,l′∈Z

p∑

i,i′=1

δrα,l,iCl−l′
i−i′δrα,l′,i′ . (A6)

The local trapping frequency, which the ions at position i
within each unit cell experience, is given by

ω̃2
α,i = ω2

α − sαe2ζ(3)

2πε0d3m
+ ω2

α,0

(
δi,1 + δi,2

)
, (A7)

where, according to Eq. (A4), ωx,0 = ωz,0 = ω0 and ωy,0 =
0, and ζ(s) is the Riemann zeta function. The translation-
ally invariant coupling coefficient Cl

i reads

Cl
i =
{

0 for l = 0 and i = 0,
e2

4πε0d3
1

|pl+i|3 else.
(A8)

a. Phononic band structure for periodic tweezer arrays

We seek the normal-mode matrix, which diagonalizes
the potential energy contribution to Eq. (A6). It is conve-
nient to write the latter as Hpot,α = 1

2 mω2
x Vα , where Vα is

dimensionless. For concreteness and to simplify the nota-
tion, we focus in the following on oscillations in the x
direction, and we omit the subscript α = x. The normal
modes of oscillations in the y and z directions can be found
analogously.

To account for the translational invariance of the phonon
Hamiltonian (A6) in the unit-cell index l, we interpret the
coordinates δxl,i as coefficients of a Fourier series, ck,i =∑

l∈Z
e−iklδxl,i, where k is analogous to the quasimomen-

tum of an electron in a solid. In terms of the new complex

020316-16



SCALABLE AND PARALLEL TWEEZER GATES FOR QUANTUM... PRX QUANTUM 1, 020316 (2020)

coordinates ck,i, the potential energy reads

V =
∫ π

−π

dk
2π

p∑

i,i′=1

vk
i,i′c

∗
k,ick,i′ , (A9)

where

vk
i,i′ = Viδi,i′ + J k

i−i′ , J k
i =

∑

l∈Z

J l
i e−ikl, (A10)

with Vi = 1 − 2ε2ζ(3) + ν2
0

(
δi,1 + δi,2

)
and J l

i = Cl
i/

(mω2
x). We next introduce new coordinates bk,n =∑p

i=1 Bk,n∗
i ck,i, where Bk,n

i is the unitary matrix that diag-
onalizes vk

i,i′ with eigenvalues νk,n = ωk,n/ωx. While V is
diagonal in terms of the coordinates bk,n, they cannot be
interpreted as proper normal-mode coordinates because
they are complex and not independent: since δxl,i are real,
it follows that b∗

k,n = b−k,n. Therefore, we restrict the range
of values of the quasimomentum to k ∈ [0, π ], and we
decompose bk,n and Bk,n

i into real and imaginary parts,
bk,n = 1/

√
2
(
ξk,n,1 + iξk,n,2

)
and Bk,n

i = �
k,n,1
i + i�k,n,2

i , to
obtain

δxl,i =
∫ π

0

dk
2π

p∑

n=1

2∑

λ=1

M k,n,λ
l,i ξk,n,λ. (A11)

ξk,n,λ are the desired real and independent normal-mode
coordinates, and the normal-mode transformation matrices
are given by

M k,n,1
l,i =

√
2
[
cos(kl)�k,n,1

i − sin(kl)�k,n,2
i

]
,

M k,n,2
l,i = −

√
2
[
cos(kl)�k,n,2

i + sin(kl)�k,n,1
i

]
.

(A12)

b. Perturbative expansion for strong pinning

For strong pinning ν0 � ε, the matrix vk can be diag-
onalized perturbatively in J k

i ∝ ε2. To zeroth order, we
obtain two degenerate subspaces, which correspond to the
ions that are pinned and not pinned. The respective eigen-
values are 1 − 2ε2ζ(3) + ν2

0 and 1 − 2ε2ζ(3), and have
degeneracy 2 and p − 2. To obtain the leading corrections
to the eigenvalues in degenerate perturbation theory, we
omit the elements of vk that couple the degenerate sub-
spaces, whereupon vk becomes block diagonal. The matrix
Bk that diagonalizes the 2 × 2 block of vk that describes
the pinned ions, reads

Bk ∼ �1 = 1√
2

(
1 1
1 −1

)
, (A13)

where we omit corrections proportional to 1/p4, which
are small for p � 4. Evidently, for p → ∞, the modes

that form the highest two bands, are indeed COM and
stretch modes of pairs of pinned ions within each unit
cell. The corresponding 2 × 2 blocks of mode matri-
ces in Eq. (A12) are given by M k,1

l = √
2 cos(kl)�1 and

M k,2
l = −√

2 sin(kl)�1. Perturbative corrections to the
mode matrices are of order O(ε2/ν2

0). The mode frequen-
cies of the COM and stretch bands are

νk,n =
√

1 − 2ε2ζ(3) + ν2
0 + J k

0 ± ∣∣J k
1

∣∣, (A14)

where n = 1 for the COM band and n = 2 for the stretch
band. The width of these bands is determined by terms in
Eq. (A14), which depend on the quasimomentum k, i.e., by
J k

0 ± ∣∣J k
1

∣∣. For p � 4, we find

J k
0 + ∣∣J k

1

∣∣ ∼ ε2
{

1 + 4
p3 Re

[
Li3

(
eik)]

}
,

J k
0 − ∣∣J k

1

∣∣ ∼ −ε2
{

1 + 12
p5 Re

[
Li5
(
eik)]

}
,

(A15)

where Liα(z) =∑∞
n=1

zn

nα denotes the polylogarithm. That
is, the widths of the COM and the stretch bands are sup-
pressed as 1/p3 and 1/p5, respectively. For p → ∞, these
bands become flat with frequencies

νn =
√

1 − 2ε2ζ(3) + ν2
0 ± ε2. (A16)

In this limit, pairs of pinned ions are completely decoupled,
and the corresponding modes are strictly local within unit
cells.

APPENDIX B: EXPERIMENTAL FEASIBILITY
STUDY

Here we study the experimental feasibility of the pro-
posed scheme to perform parallel tweezer gates in a
trapped-ion quantum device. We discuss various sources of
experimental imperfections, both for optical and ground-
state qubit encodings, and for realizations with different
ionic species.

1. Spontaneous scattering

A significant contribution to the infidelity of tweezer
gates is due to scattering of photons of the optical tweezers.
In the following, we discuss how the choice of qubit encod-
ing and wavelength of the optical tweezer lasers effects the
spontaneous scattering rate and therefore the infidelity of
the gate.

Our discussion is based on the following model for
the interaction of an optical tweezer beam with a trapped
ion: The dipole potential induced by the optical tweezer is
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given by [78]

Udip(r) = − 1
2ε0c

Re(α)I(r), (B1)

where ε0 is the vacuum permittivity, c is the speed of light,
I(r) is the intensity of the tweezer beam at position r, and
α is the polarizability of the internal state of the ion. In
general, the polarizability is different for the two states that
encode the qubit. Therefore, a question we have to address
below is how to ensure that both qubit states experience
the same optical potential.

The scattering rate in the center of the Gaussian tweezer
beam with frequency ω, for a transition with resonance
frequency ω0 and linewidth �, is [78]

�sc(ω) = 3c2

�ω3
0

(
ω

ω0

)3 (
�

ω0 − ω
+ �

ω0 + ω

)2 P
W2

0
, (B2)

with the total light power P and the beam waist W0. For a
tightly focused beam with wavelength λ, the beam waist is
approximately given by [79]

W0 ≈ 0.41 × λ

NA
, (B3)

where NA is the numerical aperture of the focusing optics.
All following estimations are carried out assuming NA =
0.7, as shown in Ref. [80] in an ion-trapping experiment.
Scattering rates from different transitions are summed up,
whereas their trap potential partially cancels if the the sign
of the detuning ω0 − ω is opposite.

For a given spontaneous scattering rate �sc and gate
duration τ , the infidelity of the gate due to scattering of
light can be estimated as [81]

δFsc = 3
2
�scτ . (B4)

a. Ground-state qubit encoding

A first approach to ensure that both qubit states expe-
rience the same optical potential is to encode both of
them in the ground state of the ion [4]. In this case, the
ac Stark shift for π -polarized light is not state depen-
dent, and the tweezer wavelength can be varied over
a broad range. We consider the species 24Mg+, 40Ca+,
88Sr+, 138Ba+, and 171Yb+, which are used in experiments
targeting quantum-information processing [4].

For all investigated ionic species, we only consider
contributions to the optical trapping and to spontaneous
scattering from the S to P transitions with linewidths of
several MHz [82]. In Fig. 11, we show the infidelity δFsc
as a function of the tweezer wavelength. The infidelity
exhibits a single minimum, which lies in between a regime
at short wavelengths near the resonance and a regime at

FIG. 11. Infidelity due to spontaneous scattering for ε = 0.07,
ν0 = 0.4, and ωx = 2π × 3 MHz for different atomic species.
The steep slope at short wavelengths is caused by the excessive
scattering close to the resonance of the S ⇔ P transition. At long
wavelengths, the infidelity increases due to an enlarged spot size
for a diffraction limited spot for the assumed numerical aperture.

long wavelengths, for which the beam waist Eq. (B3) and,
therefore, the required power to reach the strong pinning
regime increases. Here we set ε = 0.07 and ν0 = 0.4 as
in the examples considered in the main text. This results
in ν2

0/ε
2 ≈ 32, deeply in the regime of strong pinning.

The gate duration is estimated according to Eqs. (A16)
and (18).

The lowest infidelities can be achieved for 24Mg+ fol-
lowed by 40Ca+. For 24Mg+ ions in a trap with trans-
verse trapping frequency ωx = 2π × 3 MHz and a tweezer
wavelength of 400 nm, the contribution of spontaneous
scattering to the infidelity is δFsc ≈ 4.9 × 10−3. The cor-
responding interion distance is d = 15 μm. The infidelity
caused by spontaneous scattering can be reduced by either
increasing d and decreasing ωx (see Fig. 12), with the
downside of increased heating rates [83], or by relaxing
the condition on being in the strong trapping regime, which
leads to higher infidelities from other sources (see Fig. 5).
For ε = 0.07 and ν0 = 0.2, a scattering-induced infidelity
of δFsc ≈ 1.2 × 10−3 can be achieved. For the same values
of ωx, ε and ν0, the infidelity for 40Ca+ ions is 2.8 × 10−3

with d = 12.6 μm and a tweezer wavelength of 532 nm.
The required power of the optical tweezers is on the order
of a couple of mW for both species.

b. Optical qubit encoding

For an optical qubit, the qubit levels are encoded in two
different electronic states. An apparent approach to ensure
equal optical trapping potentials for both qubit states is
to choose the tweezer wavelength as a magic wavelength
with respect to the transition between the two qubit states.
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FIG. 12. Spontaneous scattering infidelity for parallel gates
performed on 24Mg+ ground-state qubits with 400-nm tweezer
wavelength for varying ion distance d and radial trap frequency
ωx. By choosing d and ωx, ε is fixed, and ν0 is determined in
order to reach the strong pinning regime. The gray region marks
parameter combinations that lead to a zigzag configuration of the
ion string.

However, the polarizabities of 40Ca+, 88Sr+, and 138Ba+,
which are commonly used species for optical qubits [4], are
low at the respective magic wavelengths [84] and, there-
fore, high light intensities are required to achieve sizeable
optical trapping potentials. Unfortunately, the concomitant
increase of spontaneous scattering rates leads to relatively
high infidelities.

In particular, magic wavelengths in between the S1/2 ⇔
P1/2 and the S1/2 ⇔ P3/2 transitions have small detunings
from broad transitions, which leads to scattering rates in
the regime of hundreds of kHz. Performing gates with typ-
ical gate durations τ on the order of tens to hundreds of μs
is therefore rendered impossible.

For the abovementioned species, there also exists a set
of magic wavelengths that is red detuned from all rel-
evant transitions [84]. For 40Ca+, this wavelength is at
1271 nm and therefore has a detuning of over 400 nm to
the nearest relevant transition. Using tweezers at this magic
wavelength yields lower scattering rates of hundreds of
Hz. However, the resulting infidelities are still in the 10−1

regime.
An alternative way to reduce the infidelity due to scatter-

ing is to use two superimposed tweezer beams at different
wavelengths to trap each of the two qubit states individ-
ually. On the one hand, the gained flexibility with regard
to the choice of wavelength could allow for low scattering
rates while keeping the required power reasonable, but on
the other hand additional experimental challenges would
come into play. In particular, to avoid gate errors due to

decoherence of the qubit induced by differential trapping
potential fluctuations of the two qubit states, precise con-
trol over both the power in the tweezer beams as well as
the positioning of the tweezers is required.

2. Other experimental imperfections

a. Motional heating and cooling

Another source of errors in entangling gates is a nonzero
occupation of the phonon modes, which mediate the entan-
gling interaction, as can be seen in Eq. (11). The occupa-
tion of phonon modes increases over time due to electric
field noise. For N ions in a single ion trap, the largest heat-
ing rate is proportional to N for the COM mode where
all ions oscillate in phase [83,85]. Ions that are pinned
with optical tweezers, have localized phonon modes and,
therefore, we expect that the heating rates for the two
modes of each pinned pair are independent of the crystal
size. We further expect that this holds also for the case
where multiple gates are performed in parallel, since, due
to the harmonic trapping potential, the localized modes
have different mode frequencies as illustrated in Fig. 2,
and thus the motion of distant pinned ions is not in
phase.

For the proposed tweezer gates in long ion chains, the
axial trapping frequency is kept very low to allow for
interion distances of 10–15 μm. Without additional opti-
cal trapping, the spectrum of axial phonon modes reaches
down to the axial trapping frequency. Since the motional
heating rate is inversely proportional to the frequency, this
low axial trapping frequency would result in a high phonon
occupation in the axial modes of motion, leading to errors
in entangling- and also single-qubit gates [86]. However,
this effect is suppressed if several ions in the chain are
pinned with optical tweezers, and, consequently, the lowest
axial phonon frequency is shifted up as illustrated in Figs. 2
and 3. Moreover, since the oscillations of optically pinned
and spectator ions decouple, gates on the pinned ions are
only weakly affected by motional heating of phonon modes
that are localized on spectator ions. Finally, the ability to
split the ion chain into multiple subsets using the tweezer
array can facilitate efficient cooling [34].

b. Excess micromotion

A trapped ion, which is not located in the rf null, gives
rise to excess micromotion [87]. If the amplitude of this
micromotion is comparable to the dimension of the optical
tweezer, additional gate errors due to rf heating [88] and
modulation of the optical potential are induced. The posi-
tion of the ion and the rf null [89] can be overlapped much
more precisely than the wavelength of the tweezer light
and thus micromotion should not have an influence on the
tweezer potential.
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c. Differential ac Stark shift

In Appendix B 1 a, we mention that for π -polarized
light, the two qubit states encoded in ground states of an
ion experience the same optical potential. If there is a con-
tribution of circular polarization, a differential ac Stark
shift between the two qubit states occurs. A temporal vari-
ation of this differential shift leads to dephasing of the
qubit. Careful alignment and usage of high-quality polar-
ization optics allow for a ratio of 10−5 of σ - to π -polarized
light. For a typical optical trap depth of 10 mK and rel-
ative intensity fluctuation of the optical tweezer of 3 ×
10−3, as assumed in Sec. IV D, this results in differential
ac-Stark-shift fluctuations of a couple of Hz. This should
allow a gate fidelity of better than 99.5% [90].

APPENDIX C: TWEEZER MISADJUSTMENTS

In Sec. IV D in Eq. (22) we state the optical potential
that is generated by a misadjusted optical tweezer. Here
we describe how we calculate the effect of the shifts of
the tweezer focuses. First note that since the optical poten-
tial is at most quadratic in the shifts of the tweezers, these
shifts affect the modes of the ions only through the cor-
responding shifts in the equilibrium positions of the ions.
We determine these shifts numerically up to second order
in the shifts of the tweezers before averaging over several
Gaussian realizations as before. To this end we expand the
gradient of the total potential for a total number of N ions

∇ξ V =
∑

m

δm
(
∂δm∇ξ V

) |ξ0

︸ ︷︷ ︸
D

+ 1
2

∑

m,n

δmδn
(
∂δm∂δn∇ξ V

) |ξ0

︸ ︷︷ ︸
W

(C1)

where ξ = ξ 0 + X1δ +
⎛
⎝

δTX21δ

δTX22δ

...

⎞
⎠ with ξ 0 = [x(0)

1 , x(0)

2 , . . .

y(0)

1 , . . . z(0)
N ] the equilibrium positions of the ions without

tweezers, δ = (δx,1, δx,2, . . . δz,N ) the shifts of the tweezer
focuses and 3N × 3N matrices X1, {X2m}3N

m=1 that deter-
mine the new equilibrium positions from the shifts. From
the condition ∇ξ V = 0 to all orders we obtain

D = 0 ⇔ X1 = H−1P, (C2)

where Hij = (∂ξi∂ξj V)|ξ0 and Pij = (∂ξi∂δj V)|ξ0 . The sec-
ond order yields

W = 0 ⇔ X2 = H−1b, (C3)

where X 2 = (X2n)n and b = (− 1
2 X T

1 HnX1)n are vectors
whose elements are matrices with Hr = ∂ξrH . Hence the

multiplication with H−1 gives a linear combination of
matrices for each element of X 2.

APPENDIX D: ADIABATIC SWITCHING OF
TWEEZER ARRAYS

Here we derive an estimate, based on adiabatic pertur-
bation theory, for the excitation of phonons due to the
switching of optical tweezers. We consider the switching
protocol described by the phonon Hamiltonian (A6) with
time-dependent local oscillation frequencies,

ω̃2
α,i = ω2

α − sαe2ζ(3)

2πε0d3m
+ ω2

α,0

[
(1 − s) δi,1 + δi,2 + sδi,3

]
,

(D1)

which depend linearly on the parameter s = t/τs that varies
between zero and one, and where τs denotes the switching
time. At the beginning of the protocol at s = 0, the ions at
positions i = 1, 2 are pinned. At the end of the protocol,
the optical potential on the ion at site i = 1 is switched off,
and the ions at positions i = 2, 3 are pinned.

The instantaneous eigenstates and energies of the
phonon Hamiltonian obey Hph(s) |n(s)〉 = En(s) |n(s)〉,
where for simplicity we label the states with a single index
n ∈ N0. To obtain an estimate of the excitation of phonons,
we assume that all phonon modes are initially cooled to
their ground state. The transition probability to an excited
state n > 0 is given by [91]

P0→n ∼ 1
τ 2

s

[
〈n|∂sHph|0〉2

(En − E0)
4

∣∣∣∣∣
s=0

+ 〈n|∂sHph|0〉2

(En − E0)
4

∣∣∣∣∣
s=1

]
,

(D2)

and the total probability to excite phonon modes is P =∑
n�=0 P0→n. By evaluating the matrix elements of the

phonon Hamiltonian explicitly, we find

P= 1
2 (ωxτs)

2 ×
∑

α∈{x,z}

∫ π

0

dk
2π

p∑

n,n′=1

(
An,n′

α,k

∣∣∣
s=0

+ An,n′
α,k

∣∣∣
s=1

)
,

(D3)

where, for α ∈ {x, z},

An,n′
α,k = ω2

x(
ωα,k,n + ωα,k,n′

)4
2∑

λ,λ′=1

(
ck,n,n′
α,λ,λ′

)2
, (D4)

and

ck,n,n′
α,λ,λ′ = ω2

0

2√
ωα,k,nωα,k,n′

(
Wλ,λ′,k,n,n′

α,3 − Wλ,λ′,k,n,n′
α,1

)
, (D5)
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with

Wλ,λ,k,n,n′
α,i = �

k,n,1
α,i �

k,n′,1
α,i + �

k,n,2
α,i �

k,n′,2
α,i ,

W1,2,k,n,n′
α,i = −W2,1,k,n,n′

α,i

= −�
k,n,1
α,i �

k,n′,2
α,i + �

k,n,2
α,i �

k,n′,1
α,i . (D6)

These expressions yield the estimates stated in the main
text in Sec. IV E.

APPENDIX E: ENTANGLING GATES WITH
TIME-MODULATED RABI FREQUENCIES

Here we specialize Eqs. (5) and (6), which determine the
entangling gate Eq. (3) to time-modulated Rabi frequen-
cies [22].

1. Finite chains

The qubit-phonon coupling, Eq. (5), can be written as
αn

i = An
i · Ri, where the dimensionless Rabi frequency is

given by Ri = η0�i/ωx = (R1
i , . . . , RS

i

)
with the parameter

η0 defined in Eq. (20), and where An
i,s = −i

√
ωx/ωnM n

i gn,s
i

with gn,s
i = ωx

∫ sτ/S
(s−1)τ/S dt sin(μit)eiωnt. Further, the qubit-

qubit coupling, Eq. (6), can be written as χi,i′ = RT
i Xi,i′Ri′ ,

where Xi,i′ =∑N
n=1

(
ηn

i η
n
i′/η

2
0

)
f n
i,i′ . f n

i,i′ is an S × S matrix
with elements

f n,s,s′
i,i′ = ω2

x

∫ sτ/S

(s−1)τ/S
dt
∫ s′τ/S

(s′−1)τ/S
dt′ sin(μit) sin(μi′ t′)

× sin[ωn
(
t − t′

)
] for s > s′, (E1)

f n,s,s′
i,i′ = ω2

x

∫ sτ/S

(s−1)τ/S
dt
∫ t

(s−1)τ/S
dt′
[
sin(μit) sin(μi′ t′)

+ sin(μit′) sin(μi′ t)
]

sin[ωn
(
t − t′

)
] for s = s′,

(E2)

f n,s,s′
i,i′ = ω2

x

∫ s′τ/S

(s′−1)τ/S
dt
∫ sτ/S

(s−1)τ/S
dt′ sin(μit′) sin(μi′ t)

× sin[ωn
(
t − t′

)
] for s < s′. (E3)

In terms of the vectors An
i , the infidelity per gate Eq. (11)

can be written as δF = 1
G

∑N
i=1 RT

i �iRi where �
s,s′
i =

8
5

∑N
n=1 Re

[(
An

i,s

)∗ An
i,s′
]

.

2. Infinite chains

In infinite ion chains, the qubit-qubit coupling can be
written as χ

l,l′
i,i′ = RT

l,iX
l,l′

i,i′ Rl′,i′ , where

X l,l′
i,i′ = 2

∫ π

0

dk
2π

p∑

n=1

√
ωx

ωk,n

×
{

cos[k
(
l − l′

)
]
[
�

k,n,1
i �

k,n,1
i′ + �

k,n,2
i �

k,n,2
i′
]

+ sin[k
(
l − l′

)
]
[
�

k,n,1
i �

k,n,2
i′ − �

k,n,2
i �

k,n,1
i′
]}

f k,n
l,i,l′,i′ .

(E4)

To obtain X l,l′
i,i′ , we approximate the integral over k ∈ [0, π ]

by a discrete Riemann sum, and we calculate the matrices
�

k,n,λ
i and the phonon-mode frequencies ωk,n for each dis-

crete value of k numerically as described in Appendix A.
Similarly, for the matrix �l,i, which determines the

infidelity per gate, we find

�
s,s′
l,i = 32

5

∫ π

0

dk
2π

p∑

n=1

√
ωx

ωk,n

2∑

λ=1

(
�

k,n,λ
i

)2

× Re
[(

gk,n,s
l,i

)∗
gk,n,s′

l,i

]
. (E5)
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D. Lukin, Generation and manipulation of schrödinger cat
states in rydberg atom arrays, Science 365, 570 (2019).

[33] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
Browaeys, Synthetic three-dimensional atomic structures
assembled atom by atom, Nature 561, 79 (2018).

[34] Y.-C. Shen and G.-D. Lin, Scalable quantum computing sta-
bilised by optical tweezers on an ion crystal, New J. Phys.
22, 053032 (2020).

[35] J. Loye, J. Lages, and D. L. Shepelyansky, Properties of
phonon modes of an ion-trap quantum computer in the
Aubry phase, Phys. Rev. A 101, 032349 (2020).

[36] P. A. Ivanov, S. S. Ivanov, N. V. Vitanov, A. Mering, M.
Fleischhauer, and K. Singer, Simulation of a quantum phase
transition of polaritons with trapped ions, Phys. Rev. A 80,
060301(R) (2009).

[37] A. Abdelrahman, O. Khosravani, M. Gessner, A. Buchleit-
ner, H. P. Breuer, D. Gorman, R. Masuda, T. Pruttivarasin,
M. Ramm, P. Schindler, and H. Häffner, Local probe of sin-
gle phonon dynamics in warm ion crystals, Nat. Commun.
8, 1 (2017).

[38] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T.
Boulier, A. Browaeys, and T. Lahaye, Three-Dimensional
Trapping of Individual Rydberg Atoms in Ponderomo-
tive Bottle Beam Traps, Phys. Rev. Lett. 124, 023201
(2020).

[39] C. Schneider, M. Enderlein, T. Huber, and T. Schaetz,
Optical trapping of an ion, Nat. Photon. 4, 772 (2010).

[40] E. A. Martinez, C. A. Muschik, P. Schindler, D. Nigg, A.
Erhard, M. Heyl, P. Hauke, M. Dalmonte, T. Monz, P.
Zoller, and R. Blatt, Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature 534,
516 (2016).

[41] J. T. Barreiro, M. Möller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.

020316-22

https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1126/sciadv.aaw9918
https://doi.org/10.1126/science.aaw9415
https://doi.org/10.1007/s003400050373
https://doi.org/10.1103/PhysRevLett.70.818
https://doi.org/10.1103/PhysRevLett.97.050505
https://doi.org/10.1209/epl/i2005-10424-4
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1103/PhysRevLett.112.190502
https://doi.org/10.1038/nature18648
https://doi.org/10.1103/PhysRevA.97.062325
https://doi.org/10.1103/PhysRevA.100.022332
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1103/PhysRevLett.120.020501
https://doi.org/10.1038/nature00784
https://doi.org/10.1103/PhysRevLett.119.150503
https://doi.org/10.1103/PhysRevLett.102.153002
https://arxiv.org/abs/2003.01293
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1126/science.aax9743
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1088/1367-2630/ab84b6
https://doi.org/10.1103/PhysRevA.101.032349
https://doi.org/10.1103/PhysRevA.80.060301
https://doi.org/10.1038/ncomms15712
https://doi.org/10.1103/PhysRevLett.124.023201
https://doi.org/10.1038/nphoton.2010.236
https://doi.org/10.1038/nature18318


SCALABLE AND PARALLEL TWEEZER GATES FOR QUANTUM... PRX QUANTUM 1, 020316 (2020)

Blatt, An open-system quantum simulator with trapped
ions, Nature 470, 486 (2011).

[42] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Ger-
ritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Ram-
bach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C.
F. Roos, Universal digital quantum simulation with trapped
ions, Science 334, 57 (2011).

[43] F. Arute et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[44] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
Entanglement Growth under Random Unitary Dynamics,
Phys. Rev. X 7, 031016 (2017).

[45] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in
Random Unitary Circuits, Phys. Rev. X 8, 21014 (2018).

[46] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S.
L. Sondhi, Operator Hydrodynamics, OTOCs, and Entan-
glement Growth in Systems Without Conservation Laws,
Phys. Rev. X 8, 21013 (2018).

[47] T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk,
Diffusive Hydrodynamics of Out-Of-Time-Ordered Corre-
lators with Charge Conservation, Phys. Rev. X 8, 31058
(2018).

[48] V. Khemani, A. Vishwanath, and D. A. Huse, Operator
Spreading and the Emergence of Dissipative Hydrodynam-
ics under Unitary Evolution with Conservation Laws, Phys.
Rev. X 8, 031057 (2018).

[49] G. J. Milburn, Simulating nonlinear spin models in an ion
trap, arXiv:quant-ph/9908037 (1999).

[50] K. Mølmer and A. Sørensen, Multiparticle Entanglement of
Hot Trapped Ions, Phys. Rev. Lett. 82, 1835 (1999).

[51] A. Sørensen and K. Mølmer, Quantum Computation with
Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971 (1999).

[52] A. Sørensen and K. Mølmer, Entanglement and quantum
computation with ions in thermal motion, Phys. Rev. A 62,
022311 (2000).

[53] S.-L. Zhu and Z. D. Wang, Unconventional Geometric
Quantum Computation, Phys. Rev. Lett. 91, 187902 (2003).

[54] J. J. García-Ripoll, P. Zoller, and J. I. Cirac, Coherent con-
trol of trapped ions using off-resonant lasers, Phys. Rev. A
71, 062309 (2005).

[55] C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong,
A. V. Gorshkov, P. Hess, R. Islam, K. Kim, G. Pagano,
P. Richerme, C. Senko, and N. Y. Yao, Programmable
Quantum Simulations of Spin Systems with Trapped Ions,
arXiv:1912.07845 (2019).

[56] B. Kraus and J. I. Cirac, Optimal creation of entanglement
using a two-qubit gate, Phys. Rev. A 63, 062309 (2001).

[57] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, 2011), 10th ed.

[58] M. A. Nielsen, A simple formula for the average gate
fidelity of a quantum dynamical operation, Phys. Lett. A
303, 249 (2002).

[59] I. Bengtsson and K. Zyczkowski, Geometry of Quantum
States (Cambridge University Press, Cambridge, 2006).

[60] Y. R. Sanders, J. J. Wallman, and B. C. Sanders, Bounding
quantum gate error rate based on reported average fidelity,
New J. Phys. 18, 012002 (2015).

[61] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia,
Comparing Experiments to the Fault-Tolerance Threshold,
Phys. Rev. Lett. 117, 170502 (2016).

[62] D. Aharonov, A. Kitaev, and N. Nisan, in Proc. thirtieth
Annu. ACM Symp. Theory Comput. - STOC ’98 (ACM
Press, New York, New York, USA, 1998), Vol. 1, p. 20.

[63] L. M. Duan, Scaling ion Trap Quantum Computation
through Fast Quantum Gates, Phys. Rev. Lett. 93, 100502
(2004).

[64] H.-K. Li, E. Urban, C. Noel, A. Chuang, Y. Xia, A. Rans-
ford, B. Hemmerling, Y. Wang, T. Li, H. Häffner, and X.
Zhang, Realization of Translational Symmetry in Trapped
Cold ion Rings, Phys. Rev. Lett. 118, 053001 (2017).

[65] T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and
K. Midorikawa, Pointing stabilization of a high-repetition-
rate high-power femtosecond laser for intense few-cycle
pulse generation, Appl. Phys. Lett. 92, 061106 (2008).

[66] F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann,
Laser power stabilization for second-generation gravita-
tional wave detectors, Opt. Lett. 31, 2000 (2006).

[67] V. Nebendahl, H. Häffner, and C. F. Roos, Optimal control
of entangling operations for trapped-ion quantum comput-
ing, Phys. Rev. A 79, 012312 (2009).

[68] M. Müller, K. Hammerer, Y. L. Zhou, C. F. Roos, and
P. Zoller, Simulating open quantum systems: From many-
body interactions to stabilizer pumping, New J. Phys. 13,
085007 (2011).

[69] G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang,
S. Korenblit, C. Monroe, and L.-M. Duan, Large-scale
quantum computation in an anharmonic linear ion trap,
Europhys. Lett. 86, 60004 (2009).

[70] W. M. Itano, J. J. Bollinger, J. N. Tan, B. Jelenković,
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