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Recent progress in generating entangled spin states of neutral atoms provides opportunities to advance
quantum sensing technology. In particular, entanglement can enhance the performance of accelerome-
ters and gravimeters based on light-pulse atom interferometry. We study the effects of error sources that
may limit the sensitivity of such devices, including errors in the preparation of the initial entangled state,
imperfections in the laser pulses, momentum spread of the initial atomic wave packet, measurement errors,
spontaneous emission, and atom loss. We determine that, for each of these errors, the expectation value
of the parity operator � has the general form 〈�〉 = �0 cos(Nφ), where φ is the interferometer phase
and N is the number of atoms prepared in the maximally entangled Greenberger-Horne-Zeilinger state.
Correspondingly, the minimum phase uncertainty has the general form �φ = (�0N )−1. Each error man-
ifests itself through a reduction of the amplitude of the parity oscillations, �0, below the ideal value of
�0 = 1. For each of the errors, we derive an analytic result that expresses the dependence of �0 on error
parameter(s) and N , and also obtain a simplified approximate expression valid when the error is small.
Based on the performed analysis, entanglement-enhanced atom interferometry appears to be feasible with
existing experimental capabilities.
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I. INTRODUCTION

Neutral atoms are used in some of the most precise,
state-of-the-art quantum sensors, including atomic clocks
[1–4], optical atomic magnetometers [5–7], and atom inter-
ferometers (AIs) [8–11]. Looking forward, an ambitious
goal is to harness the power of quantum entanglement
to decrease the phase uncertainty in these atomic sen-
sors [12], first, beyond the standard quantum limit (SQL),
N−1/2, which arises in measurements with independent
atoms, and, ultimately, as close as possible to the Heisen-
berg limit (HL), N−1, where N is the number of atoms used
in the measurement.

There are two main approaches to generating metro-
logically useful entanglement in atomic systems. One
approach utilizes spin squeezing [13–15] generated in an
ensemble of ultracold neutral atoms [16–19]. It has been
shown that spin squeezing makes it possible to surpass
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the SQL in atomic clocks [18,20] and atomic magnetome-
ters [21,22]. In these experiments, spin-squeezed states
were generated in large ensembles of atoms (105–106), but
only a small fraction of the atoms (approximately 0.1%)
have been actually entangled [18]. In addition, strong spin
squeezing is generated via an optical cavity–based mea-
surement, and releasing the atoms from the cavity into free
space (which is typically required in order to use them in
an AI) results in a fast degradation of squeezing [23].

An alternative approach is to produce maximally entan-
gled atomic spin states such as the Greenberger-Horne-
Zeilinger (GHZ) state [24], which are known to achieve
the HL under ideal conditions [25]. The most promis-
ing method for generating high-fidelity entangled states of
atomic spins is by using Rydberg-mediated interactions in
arrays of ultracold, optically trapped neutral atoms [26].
In particular, this method was used in a number of exper-
iments [27–31] to generate maximally entangled two-spin
states (i.e., Bell states [32]), with fidelity as high as 0.97
[29]. This method, combined with optimal control [33],
also produced GHZ spin states in arrays of 4 to 20 atoms
with fidelities of 0.85 to 0.54, respectively [34]. Additional
proposed advances such as the use of rapid adiabatic Ryd-
berg dressing [35] and in situ adaptive optimal control [36],
along with various technical improvements [34], are likely
to further increase the number of entangled atoms and
enhance fidelities in these systems. Although maintaining
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a high fidelity as the number of entangled atoms increases
is an outstanding challenge, the possibility of producing
highly entangled spin states of ultracold neutral atoms is a
promising avenue for quantum sensing.

One of the most prominent sensing techniques for
neutral atoms is light-pulse atom interferometry [37–
40]. Inertially sensitive AIs have many important prac-
tical applications [8,9,11], including accelerometers and
gyroscopes [41–45], and gravimeters [46–49]. Promising
advances also demonstrate gravity measurements using
spatially separated atomic wave packets suspended in a lat-
tice [50–52] and most recently with ultralong interrogation
times [53].

Feeding atoms prepared in a highly entangled spin state
into an AI [54–56] opens up an exciting path towards
inertially sensitive measurements with a phase uncertainty
beyond the SQL or even close to the HL. The unparalleled
control achieved in ultracold neutral atom experiments
[26,34] makes them an ideal platform to both reach the
fundamental limits of AI-based sensors and understand key
errors that affect their performance.

In this paper, we provide a detailed analysis of a light-
pulse AI utilizing ultracold atoms that have been prepared
in the GHZ spin state. We devise a protocol for the oper-
ation of the entanglement-enhanced AI and discuss the
relevant physical parameters that affect its performance.
In the ideal case of an AI without any errors, the maxi-
mally entangled GHZ state achieves a phase uncertainty at
the HL, similarly to the analogous result in spectroscopy
[25]. Of course, in any physical implementation of the AI,
there will be many sources of noise that reduce its sensi-
tivity from the ideal case. Our main goal is to characterize
the nonnegligible sources of noise and develop mitiga-
tion strategies for them if necessary. First, we consider the
effect of imperfections in the initial many-atom GHZ state.
Next, we investigate how various types of noise affect the
operation of the AI after the GHZ state has been prepared
with a given fidelity. We characterize the relevant noise
sources in terms of error parameters and analyze how the
phase uncertainty scales as a function of the number of
entangled atoms N in the initial GHZ state. We use the
error parameters and the scaling laws we derive to learn
about the fundamental limitations of this type of sensor.

The nonnegligible errors we consider come from noise
in the initial state preparation, laser intensity fluctuations,
laser phase noise, the initial momentum spread of the
atoms, measurement errors, spontaneous emission dur-
ing Raman pulses, and atom loss. The initial momentum
spread leads to a detuning error in the light pulses of
the AI, and we find that this error is dominant for AI
operation. This error grows linearly with the atom’s vibra-
tional energy in the trap and decreases with the square of
the effective Rabi frequency for the two-photon Raman
transition. Consequently, the effect of the initial momen-
tum spread can be reduced by cooling the atom to the

ground state of the trap [57], by decreasing the trap fre-
quency through adiabatic lowering of the trap depth [58],
and by increasing the Rabi frequency through the use of a
high-intensity laser with tight focusing. We forecast that a
realistic implementation of an entanglement-enhanced AI
can achieve inertial sensing near the HL for approximately
100 atoms.

We also develop a detection scheme that allows for a
measurement of the interferometric phase φ, with a number
of measurements that scales linearly with N , in contrast to
the exponential scaling of the Hilbert space dimension for
a system of N entangled atoms. This is possible because
a measurement of the parity of the final N -atom spin
state, which provides a sufficient amount of information to
determine φ, can be performed via a state-selective detec-
tion [59–61] with only N + 1 possible outcomes, instead
of needing to distinguish between the 2N possible final
states. We estimate the effect of measurement error for this
detection scheme.

Finally, we quantify the effect of atom loss. By using
the capability of detecting whether an atom is lost, we
can postselect only lossless outcomes, which will result
in a reduced data-acquisition rate. If the total number of
experiments (AI cycles) is fixed, a decrease in the number
of lossless experiments can be interpreted as an effective
deterioration of phase uncertainty per one experiment.

II. BACKGROUND

Precision AI experiments [38–40] typically employ the
clock transition between the ground-state hyperfine levels
with mF = 0 (this transition is magnetic field insensitive).
In particular, for 133Cs atoms, the electronic ground state
is 6S1/2, and the clock transition is between the hyper-
fine levels |g〉 = |F = 3, mF = 0〉 and |e〉 = |F = 4, mF =
0〉. The standard experimental approach [38,39] is based
on driving the two-photon stimulated Raman transition
between these levels, via an intermediate level |i〉, as
schematically shown in Fig. 1. The model of the atom-
field interaction during this transition is based on the
Hamiltonian [40]

H = − �2

2m
∇2 + �ωg|g〉〈g| + �ωe|e〉〈e| + �ωi|i〉〈i| − d · E,

(1)

where m is the atom’s mass, �ωg , �ωe, and �ωi are the
energies of the three atomic levels, d is the atom’s dipole
operator, and E is the electric field of two Raman beams:

E = E1 cos(k1 · x −ω1t +φ1)+ E2 cos(k2 · x −ω2t +φ2).
(2)

Here, x is the atom’s position, and each Raman field
is characterized by its amplitude Ej , wave vector kj ,
frequency ωj , and phase φj (j = 1, 2).
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FIG. 1. A scheme of a two-photon stimulated Raman transi-
tion in a three-level atom. Two light fields with frequencies ω1
and ω2 couple states |g〉 and |e〉 via the intermediate state |i〉. The
one-photon and two-photon detunings are � = ω1 − (ωi − ωg)

and δ = ω1 − ω2 − ωeg , respectively.

A solution to the Schrödinger equation governed by the
Hamiltonian of Eq. (1) can be generally expressed as a
superposition:

|ψ(t)〉 =
∫

d3p
∑
α

cα,p(t)|α, p〉(t), (3)

|α, p〉(t) = e−i(ωα+p2/2m�)t|α, p〉. (4)

Here the basis state |α, p〉 = |α〉 ⊗ |p〉 corresponds to an
atom in its internal state |α〉 (α = {g, e, i}) and in its
momentum eigenstate |p〉, whose position-space represen-
tation is ψp(x) = eip·x/�. The time dependence in Eq. (4)
captures the field-free evolution. Owing to momentum
conservation, for a given p, the Hamiltonian of Eq. (1)
only couples the states |g, p〉, |i, p + �k1〉, and |e, p + �K〉,
where K = k1 − k2. The momentum kick �K is max-
imized by using counterpropagating Raman beams, for
which K ≈ 2k1.

Adiabatic elimination of the intermediate level |i〉 results
in a model for an effective two-level system, whose

Hamiltonian couples the states |g, p〉 and |e, p + �K〉. In
the field-free evolving basis {|g, p〉(t), |e, p + �K〉(t)}, this
effective Hamiltonian is [40]

Heff = �

[
	ac

g (	eff/2)ei(δ12t+φ12)

(	eff/2)e−i(δ12t+φ12) 	ac
e

]
, (5)

where

	ac
g = |	g|2

4�
, 	ac

e = |	e|2
4�

, (6)

	g = −〈i|d · E1|g〉/�, 	e = −〈i|d · E2|e〉/�, (7)

δ12 = ω12 −
(
ωeg + p · K

m
+ �|K|2

2m

)
, (8)

	eff = 	∗
e	g

2�
eiφ12 , φ12 = φ1 − φ2. (9)

Here, ω12 = ω1 − ω2 is the frequency difference between
the two Raman fields, ωeg = ωe − ωg is the frequency dif-
ference between the hyperfine levels, and� = ω1 − (ωi −
ωg) is the detuning from the optical resonance, as shown
in Fig. 1. The diagonal elements of the Hamiltonian in Eq.
(5) are the ac Stark shifts of levels |g〉 and |e〉, and the rel-
ative ac Stark shift of the two levels is δac ≡ 	ac

e −	ac
g .

The effective detuning from the Raman resonance, δ12 in
Eq. (8), includes the two-photon detuning, δ = ω12 − ωeg ,
the detuning due to the Doppler shift, −p · K/m, and the
detuning due to the atom’s recoil energy, −�|K|2/2m. The
phase φ12 is chosen to make the effective Rabi frequency
	eff a positive real number.

The Schrödinger equation governed by the Hamiltonian
of Eq. (5) can be solved analytically to obtain the evolution
operator for a single atom [40]. If the Raman fields are
turned on at time t and act for duration τ , the resulting
evolution operator, denoted as Ut(τ ), is represented in the
basis {|g, p〉(t), |e, p + �K〉(t)} as

Ut(τ ) =

⎡
⎢⎢⎣

eiδ12τ/2
[

cos
(
	rτ

2

)
+ i cos� sin

(
	rτ

2

)]
−ieiδ12τ/2ei(φt+φ12) sin� sin

(
	rτ

2

)

−ie−iδ12τ/2e−i(φt+φ12) sin� sin
(
	rτ

2

)
e−iδ12τ/2

[
cos

(
	rτ

2

)
− i cos� sin

(
	rτ

2

)]
⎤
⎥⎥⎦ , (10)

where we omitted a global phase factor e−i(	ac
g +	ac

e )τ/2 and
defined

	r ≡
√
	2

eff + (δ12 − δac)2,

sin� ≡ 	eff/	r, cos� ≡ −(δ12 − δac)/	r,

with 0 ≤ � ≤ π , and

φt ≡
∫ t

0
δ12(t′)dt′. (11)
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If the atom moves at a constant velocity then δ12 is con-
stant, and φt = δ12t. However, if the atom accelerates, δ12
is time dependent, and Eq. (11) should be used. Note
that Eq. (10) neglects the time dependence of δ12 dur-
ing the pulse, assuming that the pulse duration τ is very
short compared to periods of free evolution. Since the time
dependence for the field-free evolution is included in Eq.
(4), the evolution operator for a period of field-free evolu-
tion is represented in the basis {|g, p〉(t), |e, p + �K〉(t)} by
the two-by-two identity matrix.

We use the general form (10) in Sec. VII where we
explicitly take into account the effect of the initial momen-
tum spread of the atoms, which leads to a detuning uncer-
tainty via the Doppler shift term in Eq. (8). However, in
Secs. III–VI we assume that the Raman detuning is much
smaller than the effective Rabi frequency, |δ12| � 	eff.
This assumption is satisfied if three conditions are met: (1)
short, intense driving fields are used to make 	eff large,
(2) the momentum distribution of the atoms is sufficiently
narrow to make |δ12| small for all relevant momentum
components, and (3) laser frequency chirping is used to
compensate for the evolving Doppler shift due to the accel-
eration of the atom (see Refs. [39,40] for more details).
Under this assumption, we neglect terms on the order of
|δ12 − δac|/	eff and |δ12|τ in Eq. (10) to obtain

Ut(A) =
[

cos A
2 −iei(φt+φ12) sin A

2
−ie−i(φt+φ12) sin A

2 cos A
2

]
, (12)

where A ≡ 	effτ is the pulse area and, since τ enters only
via A, we changed the notation from Ut(τ ) to Ut(A). We
use this approximation for the pulse evolution operator
throughout this paper, except for Sec. VII and Appendix
B.

Since atoms interact independently with light fields, the
evolution operator for N atoms is

Ut(A) =
N⊗

k=1

U(k)
t (A), (13)

where U(k)
t (A) is the evolution operator for the kth atom.

A typical AI operation includes three pulses: π/2–π–
π/2, with two periods of field-free evolution, each of dura-
tion T, between the pulses. The evolution operator for one
entire cycle of the AI operation is

Utot = Ut3(π/2)Ut2(π)Ut1(π/2), (14)

where t1 is the starting time of the first π/2 pulse and, cor-
respondingly, t2 = t1 + τ/2 + T and t3 = t1 + 3τ/2 + 2T,
assuming that the π pulse has a duration τ and each of the
π/2 pulses has a duration τ/2. In what follows, without
loss of generality, we set t1 = 0. We also assume that the
duration of each pulse (typically, τ ∼ 1 μs) is negligible

compared to the duration of the free evolution (typically,
T ∼ 1 ms). Under this assumption, we neglect terms on the
order of |δ12|τ [which is consistent with the approximation
we made in deriving Eq. (12)] and obtain

Utot = U2T(π/2)UT(π)U0(π/2). (15)

Immediately after the final pulse, a state-dependent detec-
tion of the atoms is used to measure the interference.
Specifically, we assume that one measures the expectation
value of the parity operator,

� =
N⊗

k=1

σ (k)z , (16)

where σ (k)z = |g〉k k〈g| − |e〉k k〈e| is the Pauli z matrix for
the kth atom’s spin. Since the parity operator (or any
operator corresponding to a measurement of the popula-
tions of the atomic levels and hence diagonal in the basis
{|g〉k, |e〉k}) is invariant under the field-free evolution, its
expectation value at the final time t = 2T is given by

〈�〉 = 〈�(0)|U†
tot(�⊗ 1p)Utot|�(0)〉, (17)

where 1p = ⊗N
k=1

∫
d3pk|pk〉〈pk| is the identity operator

for the motional degrees of freedom and |�(0)〉 is the
initial state of the system of N atoms.

III. THE IDEAL CASE

As a reference point, we first consider the case of an
AI without errors. In this ideal case, we ignore all physi-
cal errors in the Raman pulses, which means that both A
and φ12 in the evolution operator of Eq. (12) are precisely
known.

The evolution operator Ut(A) of Eq. (12) represents the
rotation by an angle A about the axis x̂ cos(φt + φ12)−
ŷ sin(φt + φ12). The parity expectation value is indepen-
dent of the specific choice of φ12, so, for the sake of
simplicity, we use φ12 = −π/2 throughout the rest of this
paper. With this choice, the evolution operator of Eq. (12)
becomes

Ut(A) =

⎡
⎢⎣ cos

A
2

−eiφt sin
A
2

e−iφt sin
A
2

cos
A
2

⎤
⎥⎦ . (18)

Specifically, the evolution operators for the three AI pulses
are

U0

(
π

2

)
= 1√

2

[
1 −1
1 1

]
, (19)

UT(π) =
[

0 −eiφT

e−iφT 0

]
, (20)
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U2T

(
π

2

)
= 1√

2

[
1 −eiφ2T

e−iφ2T 1

]
. (21)

Note that in Eq. (19) we used the fact that φt=0 = 0.

A. Ideal interferometer with independent atoms

For an AI with N independent atoms, each atom inter-
feres with itself [44]. Let us first consider one atom that is
initially in the state

|ψ〉in ≡ |ψ(0)〉 = |g, p̄〉 = |g〉 ⊗ |p̄〉, (22)

where

|p̄〉 =
∫

d3pψ̃p̄(p)|p〉 (23)

denotes a motional state of the atom with the average
momentum p̄ = ∫

d3p|ψ̃p̄(p)|2p. The AI operation with
the pulse sequence π/2–π–π/2 acting on the initial state
|g, p̄〉 is shown schematically in Fig. 2. Since this initial
state is a linear superposition of the basis states |g, p〉, we
first calculate the evolution for a basis state with a given p
and integrate over the momentum distribution only at the
final step when computing the parity expectation value via
Eq. (17).

Using Eqs. (19)–(21), we find that the evolution operator
Utot of Eq. (15) has the matrix form

Utot = 1
2

[−eiφT(1 + eiφ) −eiφT(1 − eiφ)

e−iφT(1 − e−iφ) −e−iφT(1 + e−iφ)

]
(24)

and

Utot|g, p〉 = 1
2

[
e−iφT

(
1 − e−iφ)|e, p + �K〉

− eiφT
(
1 + eiφ)|g, p〉], (25)

where

φ ≡ φ2T − 2φT. (26)

FIG. 2. A scheme of an AI with the π/2–π–π/2 sequence
of pulses acting on the initial state |g, p̄〉. Trajectories of the
wavefunction components that differ by the momentum �K are
indicated.

By noting that

φ =
∫ 2T

T
δ12(t′)dt′ −

∫ T

0
δ12(t′)dt′, (27)

we see that φ is the difference between the phases accu-
mulated via the Raman detuning in the second and first
halves of the atom’s trajectory. The phase φ is zero if the
atom moves at a constant velocity. If the atom moves with
a constant acceleration a then δ12 depends linearly on time.
In the laboratory frame, the atom’s momentum changes
with time as p(t) = p(0)+ mat. In the frame that accel-
erates with the atom, the momentum p is constant, but the
Raman frequency experiences a time-dependent Doppler
shift: ω12(t) = ω12(0)− K · at. Regardless of which frame
is used, the time-dependent part of the Raman detuning is
−K · at, which yields

φ = −K · aT2. (28)

Since φ is independent of p, we do not need to know
the specific momentum distribution |ψ̃p̄(p)|2 of the initial
state |ψ(0)〉 to compute the expectation value of the parity
operator via Eq. (17). Using Eqs. (17) and (25), we obtain

〈�〉 = 1
4 (|1 + eiφ|2 − |1 − e−iφ|2) = cosφ. (29)

This result holds for any momentum distribution of the
initial state as long as it is sufficiently narrow for the
approximation used for Eq. (12) to be valid.

For the AI with N independent atoms, the initial state is

|�〉in =
N⊗

k=1

|g, p̄k〉k =
N⊗

k=1

∫
d3pkψ̃p̄k (pk)|g, pk〉k. (30)

Note that, for the sake of generality, we assume that
the wavefunctions ψ̃p̄k can be different for different k,
although, as we will see below, this assumption does not
affect the result for the parity expectation value. The evolu-
tion operator for one atom is given by Eq. (24) or, explicitly
for the kth atom, by Eq. (A7), where

φk ≡ φ
(k)
2T − 2φ(k)T . (31)

For the kth atom, the phases φ(k)T and φ(k)2T depend on the
momentum pk through the Doppler term −pk · K/m in the
Raman detuning δ(k)12 . However, if the kth atom moves with
a constant acceleration ak then, analogously to Eq. (28),
φk = −K · akT2 is independent of pk. Therefore, we once
again do not need to know the specific momentum distri-
butions |ψ̃p̄k (pk)|2 to compute the expectation value of the
parity operator via Eq. (17). It also does not matter whether
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ψ̃p̄k is the same for all k or not. The derivation of the par-
ity expectation value is described in detail in Appendix A.
Specifically, for the initial state of Eq. (30), we obtain

〈�〉 =
N∏

k=1

cosφk. (32)

If all atoms experience the same constant acceleration ak =
a then φk = φ = −K · aT2, and we find that

〈�〉 = cosN φ. (33)

The uncertainty of the measured φ value is

�φ = ��

|∂ 〈�〉 /∂φ| , (34)

where �� =
√

〈�2〉 − 〈�〉2 =
√

1 − 〈�〉2. Using Eq.
(33), we obtain

�φ =
√

1 − cos2N φ

N | cosN−1 φ sinφ| . (35)

It is easy to verify that the phase uncertainty of Eq. (35)
is minimized for φ = nπ , where n = 0, ±1, ±2, . . .. Then
we obtain

�φ = 1√
N

. (36)

As expected for the AI with independent atoms, this phase
uncertainty scales according to the SQL.

B. Ideal interferometer with entangled atoms

In order to surpass the SQL, we propose an AI using
an entangled state of atoms. Specifically, we consider a
collection of N atoms in the GHZ state [24],

|�〉in = |GHZN 〉

= 1√
2

(
N⊗

k=1

|g, p̄k〉k +
N⊗

k=1

|e, p̄k + �K〉k

)
, (37)

where

|α, p̄k + �Kα〉k =
∫

d3pk ψ̃p̄k (pk)|α, pk + �Kα〉k (38)

for α = {g, e} with Kg = 0 and Ke = K.
Normally, the term “GHZ state” is used only for N ≥

3; however, the state of Eq. (37) is defined for any
integer N ≥ 1. For N = 1, this is the single-atom state
U0(π/2)|g, p̄〉 = (1/

√
2)(|g, p̄〉 + |e, p̄ + �K〉). For N =

2, this is the two-atom Bell state |�+〉 [32].

FIG. 3. A scheme of an entanglement-enhanced AI, where
the generation of the GHZ state replaces the first π/2 pulse.
Trajectories of the wavefunction components that differ by the
momentum �K are indicated.

As shown in Fig. 3, the proposed entanglement-
enhanced AI scheme differs from the standard operation
described in Sec. III A by the replacement of the first
π/2 pulse at time t = 0 by a process that generates the
GHZ input state of Eq. (37). The rest of the AI oper-
ation, including the π pulse at time t = T and the π/2
pulse at time t = 2T, remains the same. Correspondingly,
U(k)

tot = U(k)
2T (π/2)U

(k)
T (π), and, using Eqs. (20) and (21),

we obtain

U(k)
tot = 1√

2

[
−e−iφ(k)T eiφ(k)2T −eiφ(k)T

e−iφ(k)T −eiφ(k)T e−iφ(k)2T

]
. (39)

The derivation of the parity expectation value is
described in detail in Appendix A. Specifically, for the ini-
tial GHZ state of Eq. (37) and the evolution operator of Eq.
(39), we obtain

〈�〉 = cos

(
N∑

k=1

φk

)
, (40)

where φk is given by Eq. (31). Since φk is independent of
p̄k, the result of Eq. (40) holds for any momentum distri-
bution of the initial state as long as it is sufficiently narrow
for the approximation of Eq. (12) to be valid.

If all atoms experience the same constant acceleration a
then φk = φ = K · aT2, and we obtain

〈�〉 = cos(Nφ). (41)

The phase uncertainty is obtained by substituting Eq. (41)
into Eq. (34), which yields, for any value of φ,

�φ = 1
N

. (42)

This is the HL, the ultimate scaling of the phase uncertainty
with respect to the number of particles allowed by the laws
of quantum mechanics.
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IV. EFFECT OF IMPERFECT PREPARATION OF
THE INITIAL ENTANGLED STATE

In practice, inevitable noise and imperfections can pre-
clude the achievement of the HL. Our goal is to quantify
the deviation from the HL due to these practically relevant
errors.

First, we investigate the effect of imperfections in the
GHZ state at the input to the AI. We consider two types of
state imperfections: a random relative phase between the
two components of the GHZ state and the admixture of a
noise state [62]. This input state can be represented by the
density matrix

ρin = (1 − qζ )|�(β)〉〈�(β)| + qζ |ζ 〉〈ζ |, (43)

|�(β)〉 = 1√
2

(
N⊗

k=1

|g, p̄k〉k + eiβ
N⊗

k=1

|e, p̄k + �K〉k

)
,

(44)

|ζ 〉 =
N⊗

k=1

(
cos

ϑk

2
|g, p̄k〉k + eiϕk sin

ϑk

2
|e, p̄k + �K〉k

)
.

(45)

Here, |�(β)〉 is the GHZ state with a random relative phase
β between the two components, and |ζ 〉 is a noise state
admixed with probability qζ (0 ≤ qζ ≤ 1). With the initial
state of Eq. (43) and the same AI operation as described in
Sec. III B, i.e., the evolution operator U(k)

tot of Eq. (39), the
expectation value of the parity operator is (see Appendix
A for details of the derivation)

〈�〉 = (1 − qζ ) cos

(
N∑

k=1

φk − β

)

+ qζ
N∏

k=1

sinϑk cos(φk − ϕk), (46)

where φk is given by Eq. (31). If we assume, as we
have done previously, that all atoms experience the same
constant acceleration ak = a, then φk = φ = K · aT2, and∑N

k=1 φk = Nφ in Eq. (46). We also assume that {ϑk,ϕk}
and β are independent random phase variables. Therefore,
we are interested in the expectation value of the parity
operator averaged over these random variables, 〈�〉. If |ζ 〉
represents a contribution from completely random noise,
each ϑk has a uniform distribution with the probability
density function P(ϑk) = 1/π on [0,π ], and each ϕk has
a uniform distribution with P(ϕk) = 1/(2π) on [0, 2π ].
Since

∫ 2π
0 cos(φ − ϕk)dϕk = 0 for any value of φ, the

contribution from the second term in Eq. (46) is zero. With

these assumptions, we obtain

〈�〉 = �0 cos(Nφ), (47)

and the amplitude of parity oscillations, �0, is given by

�0 = (1 − qζ )cosβ = (1 − qζ )
∫ π

−π
P(β) cosβdβ, (48)

where P(β) is the probability density function of a distribu-
tion for the random relative phase β. We assume that β has
the wrapped normal distribution [63] with zero mean and
variance σ 2

β , whose probability density function is given
by

P(β) = fWN(β; 0, σ 2
β )

= 1√
2πσβ

∞∑
j =−∞

e−(β+2π j )2/2σ 2
β

= 1
2π

∞∑
n=−∞

einβ−n2σ 2
β/2. (49)

Consequently, we obtain

�0 = (1 − qζ )e
−σ 2

β /2. (50)

If the variance of the relative phase is small, σ 2
β � 1,

then Eq. (50) can be approximated as �0 ≈ (1 − qζ )(1 −
σ 2
β /2), and if both errors are small, i.e., σ 2

β � 1 and qζ �
1, then

�0 ≈ 1 − (qζ + σ 2
β /2). (51)

A set of numerical simulations we performed for N = 2
confirms the accuracy of the approximate result in Eq. (51).

The fidelity of the initial state is

F = 〈GHZN |ρin|GHZN 〉. (52)

For the initial state of Eq. (43) and using the same averag-
ing over the random variables as in the derivation of 〈�〉
above, we obtain the average fidelity

F = (1 +�0)/2. (53)

Accordingly, the amplitude of parity oscillations can be
expressed in terms of the initial state fidelity: �0 = 2F −
1 or �0 = 1 − 2εprep, where εprep ≡ 1 − F is the initial
state preparation error. It follows from Eq. (51) that εprep ≈
1
2 (qζ + σ 2

β /2) when the errors are small.
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The phase uncertainty is obtained by substituting Eq.
(47) into Eq. (34), which yields

�φ =
√

1 + (1 −�2
0) cot2(Nφ)

�0N
. (54)

This uncertainty is minimized for the measurement at a
dark fringe, where cos(Nφ) = 0. Then we obtain

�φ = 1
�0N

. (55)

In terms of the initial state preparation error, the phase
uncertainty can be expressed as

�φ = 1
(1 − 2εprep)N

≈ 1
[1 − (qζ + σ 2

β /2)]N
, (56)

where the approximate result is valid when the errors qζ
and σ 2

β are small.
Recent experiments reported the fidelity of the generated

two-atom Bell state ranging from 0.89 to 0.97 [28–31].
This corresponds to �0 values from 0.78 to 0.94, respec-
tively. As reported in Ref. [34], the fidelity of the generated
GHZ state decreases as N increases (specifically, inferred
fidelity values are 0.852 for 4 atoms, 0.745 for 8 atoms,
0.643 for 12 atoms, 0.582 for 16 atoms, and 0.542 for 20
atoms). It is expected that the GHZ state fidelity can be
increased and generation of even larger GHZ states should
be feasible with additional proposed advances [35,36] and
technical improvements [34]. However, at this point, it is
too early to speculate about how the fidelity will scale with
N for very large (100 atoms or more) GHZ states. In any
case, the fundamental value of the result of Eq. (56) is the
demonstration that, as long as the state preparation errors
are small, the deviation from the HL is also small.

V. EFFECT OF LASER INTENSITY
FLUCTUATIONS

Random fluctuations in the laser intensity will produce
an error in the pulse area:

A =
∫ t+τ

t
	eff(t′)dt′ = A0 + δA. (57)

Here A0 is the nominal (errorless) pulse area and δA
is the pulse-area error. We assume that δA is a random
variable that has the wrapped normal distribution with
zero mean, whose probability density function is P(δA) =
fWN(δA; 0, σ 2

A). We denote the errors in the π pulse and
the π/2 pulse as w and v, respectively. Using Eq. (18), we
obtain the matrices that represent the evolution operators

for these pulses

U(k)
T (π + w) =

[
−S −eiφ(k)T C

e−iφ(k)T C −S

]
, (58)

U(k)
2T

(
π

2
+ v

)
= 1√

2

[
Q− −eiφ(k)2T Q+

e−iφ(k)2T Q+ Q−

]
, (59)

where we used the notation C ≡ cos(w/2), S ≡ sin(w/2),
and Q± ≡ cos(v/2)± sin(v/2). Using Eqs. (58) and (59),
we obtain the following matrix elements of the evolution
operator U(k)

tot = U(k)
2T (π/2 + v)U(k)

T (π + w):

U(k)
gg = − 1√

2
(Q−S + eiφ(k)2T −iφ(k)T Q+C), (60a)

U(k)
ge = − 1√

2
(eiφ(k)T Q−C − eiφ(k)2T Q+S), (60b)

U(k)
eg = 1√

2
(e−iφ(k)T Q−C − eiφ(k)2T Q+S), (60c)

U(k)
ee = − 1√

2
(Q−S + eiφ(k)T −iφ(k)2T Q+C). (60d)

With the initial GHZ state of Eq. (37) and the evolu-
tion operator matrix elements of Eqs. (60), the expectation
value of the parity operator is (see Appendix A for details
of the derivation)

〈�〉 = cosN v cos2N
(

w
2

)
cos

( N∑
k=1

φk

)
. (61)

Under the usual assumption of a constant uniform accel-
eration, we set φk = φ = K · aT2 and

∑N
k=1 φk = Nφ in

Eq. (61). It then follows from Eq. (61) that the expectation
value of the parity operator averaged over the pulse-area
error variables, 〈�〉, has the general form of Eq. (47),
i.e., 〈�〉 = �0 cos(Nφ), where the amplitude of parity
oscillations, �0, is given by

�0 = cosN vcos2N (w/2). (62)

The averages in Eq. (62) are over the wrapped normal dis-
tributions with the probability density functions P(v) =
fWN(v; 0, σ 2

v ) and P(w) = fWN(w; 0, σ 2
w), which results in

cosN v = 1
2N

N∑
m=0

(
N
m

)
e−(N−2m)2σ 2

v /2, (63a)

cos2N w
2

= 1
22N

2N∑
m=0

(
2N
m

)
e−(N−m)2σ 2

w/2. (63b)
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The sums in Eqs. (63) are difficult to compute numeri-
cally for large N . However, we can approximate them ana-
lytically by using an asymptotic formula for the binomial
coefficients [64],

(
n
m

)
∼ 2n

√
nπ/2

e−(n−2m)2/2n, (64)

which is valid when n is large and m is linear in n. By
substituting the asymptotic formula (64) into Eqs. (63) and
approximating the sums by respective integrals, we obtain
the following approximate expression for �0, which is
valid for N � 1:

�0 ≈ [(1 + Nσ 2
v )(1 + Nσ 2

w/2)]
−1/2. (65)

For the important case of small pulse-area errors such that
Nσ 2

v � 1 and Nσ 2
w � 1, we expand the exponentials in

Eqs. (63) to derive

cosN v ≈ 1 − Nσ 2
v

2
, cos2N w

2
≈ 1 − Nσ 2

w

4
, (66)

which yields another approximation for �0:

�0 ≈ 1 − N
(
σ 2
v

2
+ σ 2

w

4

)
. (67)

Analogous to the case of a one-dimensional random walk,
the variance σ 2

A is proportional to the pulse duration τ and,
correspondingly, to the nominal pulse area A0. Specifically,
σ 2
v = ξ 2π/2 and σ 2

w = ξ 2π , where the parameter ξ is on
the order of 10−3 or better in state-of-the-art experiments.
Therefore, Eq. (65) is transformed into

�0 ≈ (1 + Nξ 2π/2)−1, (68)

which is valid for N � 1. Similarly, Eq. (67) is trans-
formed into

�0 ≈ 1 − Nξ 2π/2, (69)

which is valid for Nξ 2π/2 � 1 (this condition is satisfied
for N � 105 when ξ = 10−3).

The phase uncertainty has the general form of Eq. (54)
and, for the measurement at a dark fringe, of Eq. (55). The
explicit form of the phase uncertainty is, for N � 1,

�φ ≈ 1 + Nξ 2π/2
N

, (70)

and, for small pulse-area errors (Nξ 2π/2 � 1),

�φ ≈ 1
(1 − Nξ 2π/2)N

. (71)

In Fig. 4 we show the phase uncertainty as a function of
the number of entangled atoms, N , for various values of
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FIG. 4. The phase uncertainty �φ as a function of the number
of entangled atoms in the GHZ state, N , for various values of the
pulse-area error parameter ξ . Solid lines show �φ of Eq. (70),
which is valid for N � 1. Dashed lines show �φ of Eq. (71),
which is valid for small pulse-area errors; these curves are only
shown for values of N such that Nξ 2π/2 ≤ 0.3. The HL �φ =
1/N is also shown for comparison.

ξ , with solid lines for �φ of Eq. (70) and dashed lines
for �φ of Eq. (71). The term responsible for the devi-
ation from the HL, Nξ 2π/2, increases linearly with N .
Fortunately, due to the parameter ξ being so small in state-
of-the-art experimental conditions, the deviation from the
HL is insignificant for at least N � 105.

VI. EFFECT OF LASER PHASE NOISE

As shown in Sec. II, the phases of the two Raman fields
affect the atomic dynamics only through their difference
φ12 = φ1 − φ2. If the two Raman fields are produced by
splitting the light from a single laser, the laser phase noise
will mostly cancel out in φ12, and the only remaining
contribution will be from spurious noise due to technical
imperfections, e.g., vibrations and noise in active optical
elements such as modulators. While this phase noise could
be very small (especially when the two optical paths are
well balanced), its effect on the AI performance warrants
consideration.

Our analysis is based on using the form (12) for the evo-
lution operator Ut(A) and assuming that φ12 = −π/2 + ϑ ,
where ϑ is a random phase variable that represents the
phase noise. Correspondingly, the evolution operators for
the two AI pulses have the matrix forms

U(k)
T (π) =

[
0 −ei(φ(k)T +ϑπ )

e−i(φ(k)T +ϑπ ) 0

]
, (72)

U(k)
2T

(
π

2

)
= 1√

2

[
1 −ei(φ(k)2T +ϑπ/2)

e−i(φ(k)2T +ϑπ/2) 1

]
, (73)
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where ϑπ and ϑπ/2 denote the random phases in the π
and π/2 pulses, respectively. Consequently, the evolution
operator U(k)

tot = U(k)
2T (π/2)U

(k)
T (π) has the form of Eq. (39)

with replacements: φ(k)T → φ
(k)
T + ϑπ and φ

(k)
2T → φ

(k)
2T +

ϑπ/2. Therefore, with the initial GHZ state of Eq. (37), the
expectation value of the parity operator has the form of Eq.
(40) with the replacement φk → φk − ϑ̃ , i.e.,

〈�〉 = cos

[
N∑

k=1

(φk − ϑ̃)

]
= cos

(
N∑

k=1

φk − N ϑ̃

)
, (74)

where ϑ̃ ≡ 2ϑπ − ϑπ/2. Assuming, as usual, a constant
uniform acceleration, resulting in φk = φ = K · aT2, we
obtain

〈�〉 = cos[N (φ − ϑ̃)]. (75)

Under a general assumption that ϑπ and ϑπ/2 are symmet-
rically distributed around zero, the expectation value of the
parity operator in Eq. (75) averaged over the random phase
variables has the general form 〈�〉 = �0 cos(Nφ), where

�0 = cos(N ϑ̃). (76)

Next, we assume that each of the random phase vari-
ables ϑπ and ϑπ/2 has the same distribution, which is
the wrapped normal distribution with zero mean and vari-
ance σ 2

ϑ , whose probability density function is P(ϑμ) =
fWN(ϑμ; 0, σ 2

ϑ), where μ = {π ,π/2}. Then ϑ̃ is also a
random phase variable that has the wrapped normal distri-
bution with P(ϑ̃) = fWN(ϑ̃ ; 0, rcorrσ

2
ϑ), where the value of

the numerical factor rcorr depends on the degree of corre-
lation between ϑπ and ϑπ/2. This correlation is determined
by the ratio between the characteristic time scale of the
spurious noise and the time separation T between the π
and π/2 pulses. If ϑπ and ϑπ/2 are completely correlated
then rcorr = 1, if ϑπ and ϑπ/2 are completely indepen-
dent then rcorr = 5, and in general 1 ≤ rcorr ≤ 5. With this
assumption, we obtain

�0 = exp(−N 2σ 2
ϑrcorr/2) ≈ 1 − N 2σ 2

ϑrcorr/2, (77)

where the approximate expression is valid for small phase
errors such that N 2σ 2

ϑ � 1.
Once again, the phase uncertainty has the general form

of Eq. (54) and, for the measurement at a dark fringe, of
Eq. (55). The explicit form of the phase uncertainty is

�φ = 1
exp(−N 2σ 2

ϑrcorr/2)N
(78)

≈ 1
(1 − N 2σ 2

ϑrcorr/2)N
, (79)

where the approximation in Eq. (79) is valid for small
phase errors (N 2σ 2

ϑ � 1). In Fig. 5 we show the phase
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FIG. 5. The phase uncertainty �φ as a function of the number
of entangled atoms in the GHZ state, N , for various values of
the standard deviation of the phase error, σϑ , and rcorr = 5. Solid
lines show �φ of Eq. (78), which is the exact result. Dashed
lines show �φ of Eq. (79), which is an approximation valid for
small phase errors; these curves are only shown for values of N
such that N 2σ 2

ϑ rcorr/2 ≤ 0.3. The HL �φ = 1/N is also shown
for comparison.

uncertainty as a function of the number of entangled atoms,
N , for various values of σϑ and rcorr = 5, with solid lines
for �φ of Eq. (78) and dashed lines for �φ of Eq.
(79). The term responsible for the deviation from the HL,
N 2σ 2

ϑrcorr/2, increases quadratically with N . While we do
not know the exact value of σϑ , it should be very small
based on considerations described above, which ensures
that the deviation from the HL is insignificant even for
large values of N .

VII. EFFECT OF INITIAL MOMENTUM
DISTRIBUTION

In this section we investigate the effect that the momen-
tum uncertainty of the atoms has on the phase uncertainty
of the AI. This momentum uncertainty arises because each
atom is initially trapped in individual optical tweezers. In
the anticipated AI protocol, the tweezers are extinguished,
and short pulses of the Raman and Rydberg lasers generate
the GHZ spin state, while also imparting a state-dependent
momentum kick to the atoms. The GHZ state prepara-
tion time can be made as short as approximately 1 μs
using optimally shaped pulses [34]. Hence, we can neglect
atomic motion during this step. After the GHZ state has
been prepared, the first free evolution step of the AI oper-
ation begins, and we assume that the atoms are in the
same motional state in which they existed in the traps, plus
the state-dependent momentum kick from the entangling
procedure.

A. Description of the trapped atoms

The trapped atoms are confined in three dimensions
and have three components of vibrational motion, but the
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only motion relevant to the interferometer is that along
the direction of the momentum kick �K from the two-
photon stimulated Raman transition. This is clear because
the atomic momentum p always appears in the dot product
p · K in the effective Hamiltonian for the Raman transition,
as shown in Eq. (8). Therefore, we consider motion of the
atoms in only one dimension, along the coordinate paral-
lel to K. We denote the position and momentum of the kth
atom along this coordinate as xk and pk, respectively.

We assume that each atom is initially in its own
harmonic trap with energy eigenstates |nk〉, Enk = (nk +
1
2 )�ωtrap, nk = {0, 1, 2, . . .}, where ωtrap = 2πνtrap is the
trap frequency which is assumed to be identical for all
traps. The position-space and momentum-space represen-
tations of the state |nk〉 are respectively given by

ψnk (xk) =
(

2nk nk!
√
πσ 2

x

)−1/2

e−x2
k /2σ

2
x Hnk (xk/σx),

(80a)

ψ̃nk (pk) = ink
(

2nk nk!
√
πσ 2

p

)−1/2
e−p2

k /2σ
2
p Hnk (pk/σp),

(80b)

where Hnk is the Hermite polynomial of degree nk. The
parameter σx = √

�/mωtrap is the length scale of the trap,
and σp = �/σx = √

�mωtrap, where m is the atom’s mass.
In this paper, we consider 133Cs atoms for which m ≈
132.905 45 u. The position and momentum uncertainties
of the ground vibrational state (for one atom) are (�x)0 =
σx/

√
2 and (�p)0 = σp/

√
2.

The vibrational motion of the trapped atoms is decou-
pled from their spin state. As a result, the total density
matrix of the atoms has the form

ρ = ρspin ⊗ ρvib. (81)

We assume that each atom is in a thermal vibrational state,
with temperature T , identical for all atoms. The thermal
vibrational state of N atoms has the form

ρvib =
N⊗

k=1

ρ
(k)
vib =

N⊗
k=1

∞∑
nk=0

znk

1 + 〈n〉 |nk〉 〈nk| , (82)

where 〈n〉 = [exp(�ωtrap/kBT )− 1]−1 is the average
vibrational excitation number, which is identical for all
atoms, z ≡ 〈n〉 /(1 + 〈n〉) = exp(−�ωtrap/kBT ), and kB is
the Boltzmann constant.

As the spins of the atoms can be entangled, we express
the spin density matrix in terms of the general N -atom

spinor X�α:

ρspin =
∑
�α,�α′

X�αX�α′ |�α〉 〈�α′| . (83)

Here �α stands for the set of indices {α1,α2, . . . ,αN } and
αk = {g, e}.

Immediately after the traps are switched off, the atoms
undergo an entangling process that prepares them in the
GHZ spin state and, due to the use of counterpropagating
Raman beams, provides a momentum kick of �K , where
K = |K| ≈ 4π/λD2 ≈ 1.4743 × 107 m−1, to the excited
spin state only. In the GHZ state, the components of X�α
acquire the following values: X�α = 1/

√
2 if αk = g for all

k, X�α = 1/
√

2 if αk = e for all k, and X�α = 0 otherwise.
The spin-dependent momentum kick for the kth atom is
denoted as �Kαk , where Ke = K and Kg = 0.

To represent the effect of this entangling procedure, we
modify the density matrix ρvib in Eq. (82) by expanding the
energy eigenstates |nk〉 in the basis of momentum eigen-
states and shifting their momenta by �Kαk . Hence, we can
express the total density matrix at t = 0 as

ρ(0) =
∑
�α,�α′

X�αX�α′
N⊗

k=1

∫ ∞

−∞
dpk

∫ ∞

−∞
dp ′

k P(pk, p ′
k)

× |αk, pk + �Kαk 〉 〈α′
k, p ′

k + �Kα′
k
| , (84)

where P(pk, p ′
k) ≡ 〈pk| ρ(k)vib |p ′

k〉 is given by

P(pk, p ′
k) =

∞∑
nk=0

znk

1 + 〈n〉 ψ̃nk (pk)ψ̃
∗
nk
(p ′

k). (85)

The sum in Eq. (85) can be evaluated analytically. Using
Eq. (80b), we rewrite P(pk, p ′

k) as

P(pk, p ′
k) = e−(p2

k +p ′
k

2
)/2σ 2

p

(1 + 〈n〉)√πσp
G(pk, p ′

k; z), (86)

where

G(pk, p ′
k; z) =

∞∑
nk=0

(z/2)nk

nk!
Hnk

(
pk

σp

)
Hnk

(
p ′

k

σp

)

= e[2pkp ′
kz−(p2

k +p ′
k

2
)z2]/[σ 2

p (1−z2)]

√
1 − z2

(87)

is the generating function for the Hermite polynomials
[65]. Substituting Eq. (87) into Eq. (86), we derive the
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following expression for P(pk, p ′
k):

P(pk, p ′
k) = e[4pkp ′

kz−(p2
k +p ′

k
2
)(1+z2)]/[2σ 2

p (1−z2)]

√
(2 〈n〉 + 1)πσp

. (88)

Note that 2 〈n〉 + 1 = (1 + z)/(1 − z) = coth(�ωtrap/2kBT )
and (1 + z2)/(1 − z2) = coth(�ωtrap/kBT ).

B. Parity expectation value

Analogously to Eq. (17), the expectation value of the
parity operator is

〈�〉 = Tr[Utotρ(0)U
†
tot(�⊗ 1p)], (89)

where ρ(0) is the initial density matrix, given by Eq. (84),
and Utot = ⊗N

k=1 U(k)
tot is the evolution operator for the AI

operation. With the initial GHZ state, the AI performs the
π–π/2 pulse sequence, and therefore U(k)

tot is given by

U(k)
tot = U(k)

2T (τπ/2)U
(k)
T (τπ), (90)

where the evolution operator for each of the pulses,
U(k)

t (τ ), is given by Eq. (10), where t = T, τ = τπ for the
π pulse and t = 2T, τ = τπ/2 for the π/2 pulse.

By substituting the initial density matrix ρ(0) of Eq. (84)
into Eq. (89), we obtain

〈�〉 =
∑
�α,�α′

X�αX�α′
N⊗

k=1

∫ ∞

−∞
dpkP(pk)

× 〈α′
k, pk + �Kα′

k
| U(k)†

tot �U(k)
tot |αk, pk + �Kαk 〉 ,

(91)

where P(pk) = P(pk, pk) = 〈pk| ρ(k)vib |pk〉 is the momentum
distribution for the thermal vibrational state of one atom.
Using Eq. (88), we obtain

P(pk) = e−p2
k /2σ

2
th√

2πσth
, (92)

which is the probability density function of the normal
distribution for variable pk, with zero mean and variance
σ 2

th, where σth ≡ (�p)th =
√

〈p2〉 = σp
√〈n〉 + 1/2 is the

momentum uncertainty of the thermal state for one atom.
In contrast to the analysis in Secs. III–VI, in this section

we do not enforce the approximation used to obtain Eq.
(12), i.e., we do not neglect terms on the order of |δ12 −
δac|/	eff and |δ12|τ in Eq. (10). As mentioned above, in
practice, laser frequency chirping is used to compensate
the evolving Doppler shift due to the acceleration of the
atom, and thereby keep |δ12| small enough for this approx-
imation to be valid [39,40]. However, if the momentum

spread of the initial state ρ(0) is significant then it might
be impossible to make the aforementioned terms negli-
gible for all momentum components of the atomic wave
packet simultaneously. As mentioned above, in the frame
that accelerates with the atom, the Raman frequency expe-
riences a time-dependent Doppler shift: ω12(t) = ω12(0)−
Kakt, where ak = ak · K/K is the component of ak par-
allel to K. If one also implements a linear chirp bt of
the Raman frequency ω12(t), the full time dependence
is ω12(t) = ω12(0)+ (b − Kak)t [39]. Correspondingly, an
expression for the Raman detuning that explicitly takes
into account the time dependence is

δ
(k)
12 (t) = ω12(0)− ωeg − pkK

m
− �K2

2m
+ (b − Kak)t.

(93)

It is customary to set the Raman frequency at t = 0 to be
at the resonance for pk = 0, i.e.,

ω12(0) = ωeg + �K2

2m
+ δac, (94)

which yields

δ′(k)
12 (t) ≡ δ

(k)
12 (t)− δac = −pkK

m
+ (b − Kak)t. (95)

The relative ac Stark shift δac can be tuned to zero by
adjusting the intensities and polarizations of the Raman
fields [66], but we include it in Eqs. (94) and (95) for
the sake of generality. In this section, we assume that the
value of the frequency chirp rate b is chosen such that the
term (b − Kak)t is much smaller than σthK/m at the times
when the pulses are applied (i.e., for t = T and t = 2T),
and therefore we set

δ′(k)
12 = δ

(k)
12 − δac = −pkK

m
. (96)

We consider the effect of the relatively small corrections to
the detuning, (b − Kak)T and 2(b − Kak)T, in Appendix B.
We also make the choice φ12 + δacτ/2 = −π/2 for each of
the pulses.

By using the evolution operator of Eq. (90) in Eq.
(91), the expectation value of the parity operator is (see
Appendix A for details of the derivation)

〈�〉 = (1 − η)N cos

(
N∑

k=1

φk

)
, (97)

where

η ≡ 1 −
∫ ∞

−∞
dpP(p)

sin3 2λ
(1 + r2)3/2

[
cosπr + r tan λ sinπr√

1 + r2

]

(98)
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and

r ≡ δ′
12

	eff
= − pK

m	eff
, λ ≡ π

4

√
1 + r2. (99)

Under the usual assumption of a constant uniform acceler-
ation, i.e., φk = φ = (b − K · a)T2, the parity expectation
value of Eq. (97) has the general form 〈�〉 = �0 cos(Nφ),
where �0 = (1 − η)N . In the regime where Nη � 1, we
can use the approximation �0 ≈ 1 − Nη.

The value of η can be easily computed via numerical
integration in Eq. (98). However, it is instructive to obtain
an approximate expression for η, which is valid when the
uncertainty of the Doppler shift term, (�δ′

12)th = Kσth/m,
is small compared to 	eff. We expand the integrand in Eq.
(98) in the powers of r2 and neglect all terms on the order
of r4 or smaller, to obtain

η ≈ κ 〈r2〉 = κ

(
K

m	eff

)2

〈p2〉 = κ

(
Kσth

m	eff

)2

, (100)

where κ = 1
2 (π

2 + 3 − 2π) ≈ 3.2932 is a numerical fac-
tor. Using the explicit form σ 2

th = �mωtrap(〈n〉 + 1
2 ), we

rewrite Eq. (100) as

η ≈ κ
K2 〈Evib〉

m	2
eff

, (101)

where

〈Evib〉 = �ωtrap
(〈n〉 + 1

2

)
(102)

is the average vibrational energy of the atom in the trap.
In the limit of high temperature, �ωtrap � kBT , we have
〈Evib〉 ≈ kBT , and η is independent of the trap frequency.
In the limit of low temperature, �ωtrap � kBT , we have
〈Evib〉 ≈ �ωtrap/2 (the ground state energy), and η scales
linearly with the trap frequency.

The phase uncertainty has the general form of Eq. (54)
and, for the measurement at a dark fringe, of Eq. (55). The
explicit form of the phase uncertainty is

�φ = 1
(1 − η)N N

(103a)

≈ 1
(1 − κK2 〈Evib〉 /m	2

eff)
N N

. (103b)

From Eq. (101), the strategy to minimize the error
associated with the momentum uncertainty is very straight-
forward: minimize the vibrational energy by cooling the
atoms as close as possible to the ground state and lower-
ing the trap frequency, and increase the Rabi frequency
for the Raman transition by using a high-intensity laser

with tight focusing. Ideally, we would prefer the regime
in which atoms are cooled to submicrokelvin tempera-
tures, the trap frequency is lowered to νtrap < 10 kHz,
and the Rabi frequency is increased to 	eff > 2π × 500
kHz. A recent experiment [31] reported a Rabi frequency
of 	eff ≈ 2π × 250 kHz for a two-photon Raman transi-
tion driven by a laser field tuned near the D1 (52S1/2 −→
52P1/2) transition of 87Rb. Since the dipole moment for
the D2 (62S1/2 −→ 62P3/2) transition of 133Cs is about 1.5
times larger than that for the D1 transition of 87Rb, one
can expect that a laser system with the same intensity
and focusing as that used in Ref. [31] would produce a
Rabi frequency of 	eff ≈ 2π × 560 kHz for a two-photon
Raman transition driven by a laser field tuned near the D2
transition of 133Cs.

C. Numerical results

To differentiate between exact (numerical) and approx-
imate (analytical) results, we denote the values of η
obtained via numerical integration in Eq. (98) as ηnum
and the values calculated using the approximate analyt-
ical formula in Eq. (101) as ηapprox. The relative error
of the approximate value of η is |ηapprox − ηnum|/ηnum.
Similarly, we denote the values of the phase uncertainty
obtained by substituting ηnum into Eq. (103a) as (�φ)num

(a)

(b)

FIG. 6. (a) The value ηnum and (b) the relative error |ηapprox −
ηnum|/ηnum as functions of the Rabi frequency 	eff/2π for var-
ious values of the atom temperature T and a fixed value of the
trap frequency (νtrap = 10 kHz).
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(a)

(b)

FIG. 7. (a) The value ηnum and (b) the relative error |ηapprox −
ηnum|/ηnum as functions of the trap frequency νtrap for various
values of the atom temperature T and a fixed value of the Rabi
frequency (	eff/2π = 300 kHz).

and the values calculated using the approximate analyt-
ical formula in Eq. (103b) as (�φ)approx. The relative
error of the approximate value of the phase uncertainty is
|(�φ)approx − (�φ)num|/(�φ)num.

In Fig. 6 we show ηnum and |ηapprox − ηnum|/ηnum as
functions of the Rabi frequency 	eff/2π for various val-
ues of the atom temperature T and a fixed value of the trap
frequency (νtrap = 10 kHz). As expected from Eq. (101),
the scaling is η ∝ 1/	2

eff. In Fig. 7 we show ηnum and
|ηapprox − ηnum|/ηnum as functions of the trap frequency
νtrap for various values of the atom temperature T and a
fixed value of the Rabi frequency (	eff/2π = 300 kHz).
As expected from Eq. (101), η is independent of the trap
frequency in the high-temperature regime (�ωtrap � kBT )
and scales linearly with νtrap in the low-temperature regime
(�ωtrap � kBT ). We observe that the value of the relative
error is very close to the value of ηnum and scales in exactly
the same way. This is not surprising, since the leading
term in |ηapprox − ηnum| is on the order of 〈r4〉 and, hence,
|ηapprox − ηnum|/ηnum ∼ 〈r4〉 / 〈r2〉 ∼ 〈r2〉 ∼ ηnum.

In Fig. 8 we show the phase uncertainty (�φ)num and the
relative error |(�φ)approx − (�φ)num|/(�φ)num as func-
tions of the number of entangled atoms, N , for three dif-
ferent parameter combinations that are described in Table
I. These three parameter combinations correspond to η ≈

(a)

(b)

Number of entangled atoms

FIG. 8. (a) The phase uncertainty (�φ)num and (b) the rela-
tive error |(�φ)approx − (�φ)num|/(�φ)num as functions of the
number of entangled atoms in the GHZ state, N , for three param-
eter combinations (described in Table I) with various values of
η. In (a), the HL �φ = 1/N and the SQL �φ = 1/N 1/2 are also
shown for comparison.

5.0 × 10−3 (yellow curve), η ≈ 2.0 × 10−3 (red curve),
and η ≈ 5.0 × 10−4 (blue curve). From Fig. 8(b) we see
that the difference between the numeric and approximate
values of�φ is comfortably small for all considered values
of N .

To quantify how close a phase uncertainty curve is to the
HL, we use the number N∗, which is defined as the number
of atoms for which the deviation from the HL is less than
10%, i.e., N∗ is the largest N for which (1 − η)N ≥ 0.9.
The values of N∗ for the curves in Fig. 8 are reported in
Table I. We see that, with optimistic parameter values, the
deviation from the HL is small for N ∼ 100.

TABLE I. Parameter values for the curves in Fig. 8.

Curve 	eff/2π νtrap T η N∗

(kHz) (kHz) (μK)
Yellow 400 14.5 0.65 5.0 × 10−3 20
Red 450 10.0 0.30 2.0 × 10−3 52
Blue 600 5.9 0.10 5.0 × 10−4 209

010306-14



CHARACTERIZATION OF ERRORS IN INTERFEROMETRY. . . PRX QUANTUM 1, 010306 (2020)

Note that the relative ac Stark shift δac in Eq. (96) has
its own uncertainty, �δac, which arises due to laser inten-
sity fluctuations. Now we can justify why we neglected this
uncertainty in the analysis above. This uncertainty can be
upper bounded by using the fact that |δac| ≤ 	eff. There-
fore, for a pulse of duration τ and area A = 	effτ , we
obtain

(�δac)2 ≤ (�	eff)
2 = σ 2

A

τ 2 = ξ 2	2
eff

A
, (104)

where σ 2
A is the variance of the probability distribution for

the error in A, and ξ 2 is the proportionality factor in the
relationship σ 2

A = ξ 2A, as described in Sec. V. Since ξ �
10−3, the ratio

(�δac)2

(�δ′
12)

2
th

≤ ξ 2

A 〈r2〉 ≈ ξ 2

η
(105)

is very small. Even for η ∼ 10−4, which is smaller than
any of the values in Table I, the ratio in Eq. (105) is
upper bounded by approximately 10−2. Therefore, the
uncertainty in the relative ac Stark shift due to laser inten-
sity fluctuations can be safely neglected compared to the
uncertainty in the Doppler shift term due to the initial
momentum spread of the atoms.

VIII. EFFECT OF MEASUREMENT ERROR

A. Parity measurement protocol

The analysis of the AI performance in this paper is based
on the assumption that the expectation value of the par-
ity operator � of Eq. (16) is measured for a system of N
atoms. Therefore, an important question is how the num-
ber of measurements required to evaluate 〈�〉 scales with
N . We present here a protocol for parity measurement that
scales linearly with N despite the fact that the Hilbert space
dimension grows exponentially.

The Hilbert space of a system of N two-level atoms is
spanned by the set S of 2N basis states,

S = {|j 〉|j = 0, 1, . . . , 2N − 1}, (106)

which are defined in Table II.
Let Mj denote the number of atoms in the |e〉 level for

the state |j 〉. From Table II, it is easy to see that the entire
set S consists of N + 1 subsets SM such that

SM = {|j 〉|Mj = M }, M = 0, 1, . . . , N , (107)

i.e., all states |j 〉 in SM have a fixed value of Mj = M and,
consequently, they all have the same expectation value
〈j |�|j 〉 = (−1)M . The subset SM includes

(N
M

)
states.

For an arbitrary state

|ψ〉 =
2N −1∑
j =0

cj |j 〉, (108)

the expectation value of the parity operator is

〈�〉 =
2N −1∑
j =0

|cj |2〈j |�|j 〉. (109)

Using the partition of the basis states |j 〉 into the subsets
{SM | M = 0, 1, . . . , N }, we obtain

〈�〉 =
N∑

M=0

PM (−1)M , (110)

where

PM =
∑

|j 〉∈SM

|cj |2 (111)

is the probability that the system is in the subset SM of
states.

Consider now a state-selective measurement, for exam-
ple, via state-dependent fluorescence imaging (SFI) [59,
60] or via coherent spatial splitting (CSS) in a state-
dependent optical lattice [61], which detects whether an
atom is in the |e〉 level or in the |g〉 level. For example, in
SFI, by driving a resonant cycling transition, fluorescence
is produced if the atom is in the |e〉 level and no fluores-
cence is produced if the atom is in the |g〉 level. Similarly,
in CSS, by applying a sequence of pulses and lattice trans-
formations, atoms in the |e〉 level will be shifted to the
left and atoms in the |g〉 level will be shifted to the right.
Hence, for a system of N atoms, any state in the subset
SM will produce M fluorescence images (in SFI) or M

TABLE II. Basis states for a system of N two-level atoms.

|j 〉 Mj 〈j |�|j 〉
|0〉 = |g . . . g〉 0 +1
|1〉 = |gg . . . ge〉 1 −1
|2〉 = |gg . . . eg〉 1 −1
...

...
...

|N 〉 = |eg . . . gg〉 1 −1
|N + 1〉 = |ggg . . . gee〉 2 +1
|N + 2〉 = |ggg . . . ege〉 2 +1
...

...
...

|N (N + 1)/2〉 = |eeg . . . ggg〉 2 +1
...

...
...

|2N − 1〉 = |e . . . e〉 N (−1)N
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atoms shifted to the left (in CSS). Correspondingly, for an
arbitrary state |ψ〉, the probability to detect M fluorescence
images (in SFI) or M atoms shifted to the left (in CSS) is
PM . Therefore, the measurement of the N + 1 probabili-
ties {PM } directly yields the parity expectation value via
Eq. (110).

B. Measurement error

For this measurement protocol, a conservative estimate
of the effect of measurement error is based on assuming
that a random wrong value of 〈�〉 is obtained if at least one
atom is detected in a wrong level (|g〉 instead of |e〉 or |e〉
instead of |g〉). By averaging over all these error outcomes,
we obtain

〈�〉 ≈ (1 − qdet)
N cos(Nφ), (112)

where qdet is the probability of erroneous state detec-
tion for one atom. Correspondingly, the phase uncertainty,
minimized for the measurement at a dark fringe, where
cos(Nφ) = 0, is

�φ ≈ 1
(1 − qdet)N N

. (113)

Equations (112) and (113) respectively comply with the
general forms 〈�〉 = �0 cos(Nφ) and �φ = (�0N )−1,
with �0 ≈ (1 − qdet)

N . A further approximation �0 ≈
1 − Nqdet holds when Nqdet � 1.

In a SFI experiment with ten atoms, an average state
detection fidelity of 0.987 was reported [60], which corre-
sponds to (1 − qdet)

N ≈ 0.877 for N = 10. While fidelity
scaling to a much larger N is not yet known in SFI exper-
iments, the same fidelity for N = 100 would result in
(1 − qdet)

N ≈ 0.27. In a CSS experiment with 160 atoms,
an average state detection fidelity of 0.9994 was reported
[61], which corresponds to (1 − qdet)

N ≈ 0.94 for N =
100. Furthermore, in CSS, fidelity is essentially indepen-
dent of the number of atoms measured, and the measure-
ment causes negligible atom loss. However, in order to
perform a CSS experiment, atoms need to be loaded into a
three-dimensional optical lattice.

In Fig. 9 we show the phase uncertainty�φ of Eq. (113)
as a function of the number of entangled atoms in the GHZ
state, N , for qdet = 1.3 × 10−2 (corresponding to the aver-
age state detection fidelity of 0.987 reported in the SFI
experiment [60]), qdet = 5.0 × 10−3 (a hypothetical value),
and qdet = 6.0 × 10−4 (corresponding to the average state
detection fidelity of 0.9994 reported in the CSS experiment
[61]). If the state detection error is sufficiently small (one
per cent or lower), the phase uncertainty surpasses the SQL
for N ∼ 100.

Number of entangled atoms
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FIG. 9. The phase uncertainty�φ of Eq. (113) as a function of
the number of entangled atoms in the GHZ state, N , for various
values of the state detection error probability for one atom, qdet.
The HL �φ = 1/N and the SQL �φ = 1/N 1/2 are also shown
for comparison.

IX. EFFECT OF SPONTANEOUS EMISSION

In deriving the effective two-level model of Eq. (5),
spontaneous emission from the intermediate level |i〉 has
been neglected. This process (which is also referred to as
spontaneous photon scattering) has been thoroughly ana-
lyzed in the context of high-fidelity quantum operations
on trapped-ion hyperfine qubits [66–68]. In general, the
spontaneous emission rate, RSE, depends on intensities of
the Raman fields, detunings from the 2P levels, and their
decay rates (natural line widths). In AI experiments with
133Cs atoms, the detuning from the 62P3/2 level, �/2π , is
typically in the range of 20–200 GHz, while the fine struc-
ture splitting (the separation between the 62P1/2 and 62P3/2
levels) is ωF/2π = 16.61 THz. In this regime (� � ωF ),
we can safely neglect the contribution to spontaneous
emission from the 62P1/2 level, and obtain

RSE ≈ γiPi ≈ γi	eff

2�
, (114)

where Pi is the probability that the intermediate state |i〉 =
|62P3/2〉 is occupied, and γi/2π = 5.234 MHz is its decay
rate. For a pulse of duration τ and area A = 	effτ , the
probability of spontaneous emission is

PSE(A) = RSEτ ≈ A
2
γi

�
. (115)

Similarly to the case of measurement errors discussed in
Sec. VIII B, a conservative estimate of the effect of spon-
taneous emission is based on assuming that a random
wrong value of 〈�〉 is obtained if at least one atom under-
goes spontaneous emission from the intermediate level. By
averaging over all these erroneous outcomes, we obtain
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〈�〉 = �0 cos(Nφ) and �φ = (�0N )−1, with

�0 ≈ (1 − qSE)
N , (116)

where

qSE ≈ PSE(π)+ PSE

(
π

2

)
≈ 3π

4
γi

�
(117)

is the probability of spontaneous emission for one atom
in one AI experiment. A further approximation �0 ≈ 1 −
NqSE holds when NqSE � 1. With �/2π ranging from
20 to 200 GHz for 133Cs atoms, we find qSE ranging
from 6.2 × 10−4 to 6.2 × 10−5, respectively. The devia-
tion from the HL due to spontaneous emission would be
less that 10% (i.e., �0 ≥ 0.9) for N ≤ 170 and N ≤ 1708,
respectively.

X. EFFECT OF ATOM LOSS

The loss of an atom during the AI operation can be
detected, and the outcomes of the respective experiments
can be eliminated from the data. Hence, the possibility of
losing an atom leads to a reduced data-acquisition rate. At
the end of our AI protocol, each atom is imaged individu-
ally by SFI [59,60], and the number of atoms in the bright
state is recorded. Atom loss is then detected by transferring
the dark-state atoms to the bright state, repeating the SFI
measurement, and comparing the total number of atoms
detected with the initial number of atoms. Therefore, post-
selecting for the measurement outcomes without atom loss
eliminates the error introduced by counting a lost atom as
a dark-state measurement.

This method of postselection of lossless outcomes is not
always possible in other systems. For example, in optical
interferometry the loss of a single photon transforms the
maximally entangled NOON state into an incoherent mix-
ture [12,69]. Without the ability to discriminate between
lossless and lossy operations, the outcomes of measure-
ments corresponding to incoherent mixture states add to
the phase uncertainty of an optical interferometer.

The effect of a reduced data-acquisition rate due to atom
loss on the phase uncertainty can be quantified as follows.
If an AI experiment with the N -atom GHZ state is repeated
M times then, in the ideal case, the phase uncertainty after
M experiments is

(�φ)M = �φ√
M

= 1√
MN

. (118)

If the loss probability for one atom in one AI experiment
is qloss then the number of postselected lossless outcomes
is M (1 − qloss)

N . The resulting phase uncertainty after M

experiments is

(�φ)M = 1√
M (1 − qloss)N N

. (119)

From Eq. (119), the scaling of the phase uncertainty per
one experiment, �φ, with N can be interpreted differently
depending on the type of application, for which the AI is
used. For example, in a stationary gravity measurement,
it might be possible to repeat the experiment as many
times as needed to achieve the desired number of loss-
less outcomes. This can be interpreted as if the atom loss
prolonged the effective time that it takes to perform one
lossless experiment but did not affect the scaling of �φ.
However, in many cases (in particular, when the AI is used
in an inertial navigation system), the total measurement
time and hence the total number of experiments (AI cycles)
are fixed. In such a case the result of Eq. (119) can be
effectively interpreted as the phase uncertainty for M loss-
less experiments with the uncertainty per one experiment
given by

�φ = 1
(1 − qloss)N/2N

. (120)

This result has the general form �φ = (�0N )−1, where
�0 = (1 − qloss)

N/2. A further approximation �0 ≈ 1 −
Nqloss/2 holds when Nqloss/2 � 1. For example, with 2%
atom loss, we obtain (1 − qloss)

N/2 ≈ 0.90 for N = 10 and
(1 − qloss)

N/2 ≈ 0.36 for N = 100.
In Fig. 10 we show the phase uncertainty �φ of Eq.

(120) as a function of the number of entangled atoms in the
GHZ state, N , for qloss = 2.0 × 10−2, qloss = 1.0 × 10−2,
and qloss = 0.5 × 10−2. We see that if atom loss is suffi-
ciently low (two per cent or smaller), the phase uncertainty
surpasses the SQL for N ∼ 100.

XI. SUMMARY AND CONCLUSIONS

Within the protocol for AI operation that we describe,
nonnegligible errors come from the imperfect initial state
preparation, intensity, and phase fluctuations of the Raman
beams, the initial momentum spread of the atoms in the
optical traps, imperfect measurement, spontaneous emis-
sion during Raman pulses, and atom loss. A key finding
is that each of these errors preserves the general forms
for the parity oscillations, 〈�〉 = �0 cos(Nφ), and for the
minimum phase uncertainty, �φ = (�0N )−1, and mani-
fests itself through a reduction of the amplitude �0 below
the ideal value of�0 = 1. We derive analytical results that
express the dependence of �0 on error parameters and N
for all of these error sources. When an error is small, �0 is
close to 1 and can be approximated as �0 ≈ 1 − ε, where
ε � 1.
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FIG. 10. The phase uncertainty �φ of Eq. (120) as a function
of the number of entangled atoms in the GHZ state, N , for various
values of the loss probability for one atom in one AI experiment,
qloss. The HL �φ = 1/N and the SQL �φ = 1/N 1/2 are also
shown for comparison.

If we use an index � to enumerate different uncorre-
lated error sources then the total effect of all errors on the
amplitude of parity oscillations is given by

�total
0 =

∏
�

�
(�)

0 . (121)

When all of these errors are small (ε� � 1 for all �), the
total error is simply a sum of all the individual errors:
εtotal ≈ ∑

� ε�.
In Table III we provide a summary of all the nonnegligi-

ble error sources considered in this work. In this table we
list exact and approximate (valid for small error) expres-
sions for �0 for each error source, along with descriptions
of respective error parameters. Currently, error in the ini-
tial state preparation is not prohibitive for N � 20. For
this error, an explicit scaling with N is not available, and
generating larger high-fidelity entangled states is an active
field of study. Errors arising from intensity and phase fluc-
tuations of the Raman beams are insignificant for large
numbers of atoms (N � 104), assuming state-of-the-art
optical technology. The error due to the initial momentum
distribution of the atoms scales linearly with the average
vibrational energy of the atom in the trap and inversely
proportional to the square of the effective Rabi frequency
for the two-photon Raman transition. For optimistic (yet
still realistic) parameter values (atoms cooled to submi-
crokelvin temperatures in shallow traps and driven with
very intense Raman fields), this error can be made insignif-
icant for N � 100. Optimal shaping of Raman fields is
potentially useful for mitigating this error [70,71]. Mea-
surement error and the effect of atom loss can also be
significant for large numbers of atoms, but attaining a
phase uncertainty near the HL still appears to be feasible

TABLE III. Summary of error sources that affect interferometry with entangled atoms. Each error source results in a reduction of
the parity oscillation amplitude, �0, below the ideal value of �0 = 1. Here N is the number of atoms in the initial GHZ state and
fWN(θ ; 0, σ 2) is the probability density function of the wrapped normal distribution for variable θ , with zero mean and variance σ 2.

Approximate �0
Error source �0 for small error Error parameters

Initial state (1 − qζ )e
−σ 2

β /2 1 − (qζ + σ 2
β /2) qζ , probability of admixed noise state |ζ 〉 〈ζ |

preparation β, random phase between two components of the initial GHZ state
P(β) = fWN(β; 0, σ 2

β )

�0 = 2F − 1, where F is the average fidelity of the initial GHZ state
Laser intensity (1 + Nξ 2π/2)−1 1 − Nξ 2π/2 v, error in the π/2 pulse, P(v) = fWN(v; 0, σ 2

v )

fluctuations (valid for N � 1) w, error in the π pulse, P(w) = fWN(w; 0, σ 2
w)

ξ 2, proportionality factor, σ 2
v = ξ 2π/2, σ 2

w = ξ 2π

Laser phase exp(−N 2σ 2
ϑ rcorr/2) 1 − N 2σ 2

ϑ rcorr/2 ϑπ , random phase in the π pulse, P(ϑπ) = fWN(ϑπ ; 0, σ 2
ϑ )

fluctuations ϑπ/2, random phase in the π/2 pulse, P(ϑπ/2) = fWN(ϑπ/2; 0, σ 2
ϑ )

ϑ̃ , effective random phase, ϑ̃ = 2ϑπ − ϑπ/2, P(ϑ̃) = fWN(ϑ̃ ; 0, rcorrσ
2
ϑ )

rcorr, correlation factor, 1 ≤ rcorr ≤ 5
Initial (1 − η)N 1 − Nη η, parameter that quantifies the error due to the initial momentum
momentum spread of trapped atoms; the exact expression for η is given by
spread Eq. (98) and an approximate expression (valid for small errors) is

given by Eq. (101)
Measurement (1 − qdet)

N 1 − Nqdet qdet, probability of erroneous state detection for one atom in a
state-selective measurement

Spontaneous (1 − qSE)
N 1 − NqSE qSE, probability of spontaneous emission for one atom in one AI

emission experiment; qSE ≈ (3π/4)γi/�, where � is the detuning from
the intermediate level |i〉 and γi is its decay rate (natural line width)

Atom loss (1 − qloss)
N/2 1 − Nqloss/2 qloss, loss probability for one atom in one AI experiment
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for N ∼ 100. The CSS method of state-selective measure-
ment, while challenging in an AI setup, promises superior
scaling with the number of atoms [61].

The obtained results indicate that an entanglement-
enhanced AI with a phase uncertainty close to the HL
is feasible for N ∼ 100 with state-of-the-art experimental
capabilities. This would be equivalent to a phase uncer-
tainty of an AI with approximately 104 independent atoms,
operated at the SQL. Therefore, it is important to under-
stand which technology advances are needed to make
interferometry with entangled atoms preferable over the
possibility of simply increasing the number of independent
atoms. Based on the presented analysis, achieving a phase
uncertainty close to the HL for N ∼ 1000 would require
significant improvements in four key areas: (1) generation
of the GHZ state with a high fidelity (F � 0.95) for such
a large N , (2) better atom cooling, improvements in laser
intensity and focusing, and optimal shaping of Raman
fields to decrease the momentum spread error to the level
of η � 10−4, (3) improvements in state-selective measure-
ments (e.g., via further refinement of the CSS method) to
reduce the error probability to the level of qdet � 10−4,
and (4) improvements in atom manipulation and con-
trol to reduce the atom loss probability to the level of
qloss � 2 × 10−4. With these potential advancements, an
entanglement-enhanced AI could achieve a phase uncer-
tainty equivalent to that of an AI with approximately
106 independent atoms, which is near the limit posed by
miniaturization requirements for some applications.

Interferometers with highly entangled atomic spin states
show great promise as inertial sensors, and an array of
single-atom optical tweezers provides a suitable platform
for these sensors. When the atoms are cooled to ultracold
temperatures and initiated in the GHZ state, only a few
error sources stand in the way of reaching a phase uncer-
tainty near the HL. We show how these errors scale with
the number of entangled atoms and identify parameters
that quantify these errors for a realistic system of entangled
Cs atoms.
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APPENDIX A: DERIVATION OF THE PARITY
EXPECTATION VALUE FOR VARIOUS INITIAL

STATES AND PULSE SEQUENCES

Consider the evolution operator U(k)
tot for an entire

sequence of the AI pulses acting on the kth atom, in the
basis {|g, pk〉k, |e, pk + �K〉k}. Note that we omitted the
time dependence from the basis states, since, according to
Eq. (17), the field-free evolution has no effect on the parity
expectation value. In this basis, U(k)

tot has the general matrix
form

U(k)
tot =

[
U(k)

gg U(k)
ge

U(k)
eg U(k)

ee

]
. (A1)

In general, the matrix elements in Eq. (A1) depend on
the phases φ(k)T and φ(k)2T that, in their turn, depend on the
momentum pk through the Doppler term −pk · K/m in the
Raman detuning δ(k)12 experienced by the kth atom. Fol-
lowing Eq. (13), the evolution operator for the system of
N atoms is given by the tensor product of all one-atom
evolution operators: Utot = ⊗N

k=1 U(k)
tot .

First consider an initial state for N atoms that are not
entangled. The general form for an unentangled state is

|�〉in =
N⊗

k=1

[c(k)g |g, p̄k〉k + c(k)e |e, p̄k + �K〉k], (A2)

where c(k)g and c(k)e are complex coefficients (subject to the
normalization condition |c(k)g |2 + |c(k)e |2 = 1), and each of
the component states is a linear superposition of the basis
states:

|α, p̄k + �Kα〉k =
∫

d3pk ψ̃p̄k (pk)|α, pk + �Kα〉k (A3)

for α = {g, e} with Kg = 0 and Ke = K. The output state
|�〉out = Utot|�〉in is given by

|�〉out =
N⊗

k=1

∫
d3pk ψ̃p̄k (pk)

× [(c(k)g U(k)
gg + c(k)e U(k)

ge )|g, pk〉k

+ (c(k)g U(k)
eg + c(k)e U(k)

ee )|e, pk + �K〉k].
(A4)
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By substituting this result into Eq. (17) and using the
unitarity of the matrix U(k)

tot , we obtain

〈�〉 =
N∏

k=1

[2Re (c(k)∗g c(k)e 〈2U(k)∗
gg U(k)

ge 〉)

+ (|c(k)g |2 − |c(k)e |2)〈|U(k)
gg |2 − |U(k)

eg |2〉], (A5)

where we introduced the notation

〈f (k)〉 ≡
∫

d3pk |ψ̃p̄k (pk)|2f (k)(pk) (A6)

for averaging over the momentum distribution of the kth
atom.

For the three-pulse sequence π/2–π–π/2, the evolution
operator for one atom is given by Eq. (24) or, explicitly,
for the kth atom,

U(k)
tot = 1

2

[
−eiφ(k)T (1 + eiφk ) −eiφ(k)T (1 − eiφk )

e−iφ(k)T (1 − e−iφk ) −e−iφ(k)T (1 + e−iφk )

]
,

(A7)

where

φk ≡ φ
(k)
2T − 2φ(k)T = −K · akT2. (A8)

Using the matrix elements from Eq. (A7), we obtain

2U(k)∗
gg U(k)

ge = −i sinφk, (A9a)

|U(k)
gg |2 − |U(k)

eg |2 = cosφk. (A9b)

Since these terms depend only on φk, and φk is indepen-
dent of pk, each of the averages in Eq. (A5) is equivalent
to multiplication by 1, regardless of the specific forms
of the momentum distributions |ψ̃p̄k (pk)|2. Therefore, by
substituting Eqs. (A9) into Eq. (A5), we obtain

〈�〉 =
N∏

k=1

[2Im (c(k)∗g c(k)e ) sinφk

+ (|c(k)g |2 − |c(k)e |2) cosφk]. (A10)

In particular, if all atoms are initially prepared in the
ground state, c(k)g = 1 and c(k)e = 0 for all k, then Eq. (A10)
yields

〈�〉 =
N∏

k=1

cosφk. (A11)

For the two-pulse sequence π–π/2, the evolution oper-
ator acting on the kth atom is given by Eq. (39). Using the

matrix elements from Eq. (39), we obtain

2U(k)∗
gg U(k)

ge = e−iφk , (A12a)

|U(k)
gg |2 − |U(k)

eg |2 = 0. (A12b)

Once again, these terms are independent of pk, and each of
the averages in Eq. (A5) is equivalent to multiplication by
1, which produces

〈�〉 =
N∏

k=1

2Re(c(k)∗g c(k)e e−iφk ). (A13)

In particular, for the state |ζ 〉 of Eq. (45), the coefficients
are c(k)g = cos(ϑk/2) and c(k)e = eiϕk sin(ϑk/2). With these
coefficients, Eq. (A13) yields

〈�〉 =
N∏

k=1

sinϑk cos(φk − ϕk). (A14)

Next, consider an initial entangled state of the form

|�〉in = cg

N⊗
k=1

|g, p̄k〉k + ce

N⊗
k=1

|e, p̄k + �K〉k, (A15)

where cg and ce are complex coefficients (subject to
the normalization condition |cg|2 + |ce|2 = 1). The output
state |�〉out = Utot|�〉in is given by

|�〉out = cg

N⊗
k=1

∫
d3pk ψ̃p̄k (pk)

× (U(k)
gg |g, pk〉k + U(k)

eg |e, pk + �K〉k)

+ ce

N⊗
k=1

∫
d3pk ψ̃p̄k (pk)

× (U(k)
ge |g, pk〉k + U(k)

ee |e, pk + �K〉k).
(A16)

By substituting this result into Eq. (17) and using the
unitarity of the matrix U(k)

tot , we obtain

〈�〉 = 2Re

[
c∗

gce

N∏
k=1

〈2U(k)∗
gg U(k)

ge 〉
]

+ [|cg|2 + (−1)N |ce|2]
N∏

k=1

〈|U(k)
gg |2 − |U(k)

eg |2〉.

(A17)
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For the two-pulse sequence π–π/2, we use the terms in
Eqs. (A12) and substitute them into Eq. (A17) to obtain

〈�〉 = 2Re

[
c∗

gce exp

(
−i

N∑
k=1

φk

)]
. (A18)

In particular, for the GHZ state of Eq. (37), cg = ce =
1/

√
2, which yields 〈�〉 = cos(

∑N
k=1 φk). Similarly, for

the state |�(β)〉 of Eq. (44), cg = 1/
√

2 and ce = eiβ/
√

2,
which yields 〈�〉 = cos(

∑N
k=1 φk − β).

Next, we consider the two-pulse sequence π–π/2 in the
presence of pulse-area errors due to laser intensity fluc-
tuations. In this case, U(k)

tot = U(k)
2T (π/2 + v)U(k)

T (π + w),
where v and w are the respective pulse-area errors. Using
the matrix elements of U(k)

tot , given by Eqs. (60), we obtain

2U(k)∗
gg U(k)

ge = − cos v sin2(w/2)eiφ(k)2T − sin v sin weiφ(k)T

+ cos v cos2(w/2)e−iφk , (A19a)

|U(k)
gg |2 − |U(k)

eg |2 = cos v sin w cos(φ(k)2T − φ
(k)
T )

+ sin v cos w. (A19b)

Substituting these terms into Eq. (A17), we encounter
factors

〈ei(φ(k)2T −φ(k)T )〉 ∝ 〈e−ipk ·KT/m〉, (A20a)

〈eiφ(k)T 〉 ∝ 〈e−ipk ·KT/m〉, (A20b)

〈eiφ(k)2T 〉 ∝ 〈e−2ipk ·KT/m〉. (A20c)

These averages are integrals over very rapidly oscillating
functions and therefore they are extremely small. Specifi-
cally, for an atom in a harmonic trap, the averages in Eqs.
(A20a) and (A20b) scale as e−γ and the one in Eq. (A20c)
scales as e−4γ , where γ = (KT�p/m)2 and �p is the
atom’s momentum uncertainty. Even with the minimum
uncertainty, (�p)0 = √

�mωtrap/2, we find that γ ∼ 103

for typical values of T (approximately 1 ms) and νtrap
(approximately 10 kHz). After neglecting all terms that
include these extremely small factors, we obtain

〈�〉 = 2 cosN v cos2N (w/2)Re [c∗
gcee−i

∑N
k=1 φk ]

+ [|cg|2 + (−1)N |ce|2] sinN v cosN w. (A21)

Since the pulse-area error v is small, v � 1, the second
term in Eq. (A21) includes a factor that scales as vN . This

factor is extremely small in the regime of large atom num-
bers, N � 1, in which we are interested, and therefore the
second term in Eq. (A21) can be safely neglected. Then we
find that

〈�〉 = 2 cosN v cos2N (w/2)Re [c∗
gcee−i

∑N
k=1 φk ]. (A22)

In particular, for the GHZ state of Eq. (37), cg = ce =
1/

√
2, which yields

〈�〉 = cosN v cos2N
(

w
2

)
cos

(
N∑

k=1

φk

)
. (A23)

Finally, we consider the case where the pulse detuning
error due to the initial momentum uncertainty of the atoms
is taken into account, as described in Sec. VII. In this case,
the initial state of the system is described by the density
matrix ρ(0) of Eq. (84), and the parity expectation value is
given by Eq. (91). With the coefficients X�α = cg if αk = g
for all k, X�α = ce if αk = e for all k, and X�α = 0 otherwise,
Eq. (91) takes the form of Eq. (A17), but now the average
over the momentum distribution of the kth atom is

〈f (k)〉 =
∫ ∞

−∞
dpkP(pk)f (k)(pk), (A24)

where P(pk) = 〈pk| ρ(k)vib |pk〉 is the momentum distribution
for the thermal vibrational state of one atom, given by Eq.
(92). Since this momentum distribution is the same for all
atoms, in what follows we rename the integration variable
from pk to p in the averages of the form (A24), to simplify
the notation.

When the momentum spread is taken into account, the
evolution operator for the two-pulse sequence π–π/2 is
given by Eq. (90), and the evolution operator for each of
the pulses in Eq. (90), U(k)

t (τ ), is given by Eq. (10), where
t = T, τ = τπ for the π pulse and t = 2T, τ = τπ/2 for the
π/2 pulse. Consequently, we obtain

〈2U(k)∗
gg U(k)

ge 〉 =
〈

sin3 2λ
(1 + r2)3/2

[
1 − ir tan λ√

1 + r2

]
eiπr

〉
e−iφk ,

(A25a)

〈|U(k)
gg |2 − |U(k)

eg |2〉 =
〈(

1 − r2

1 + r2 sin2 2λ− cos2 2λ
)

×
(

1 − r2

1 + r2 sin2 λ− cos2 λ

)〉
,

(A25b)

where 	effτπ = π and we used the notation

r ≡ δ′
12

	eff
= − pK

m	eff
, λ ≡ π

4

√
1 + r2. (A26)
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In deriving Eqs. (A25), we neglected all terms that include
the factors shown in Eqs. (A20) since, as we showed
above, these averages are integrals over very rapidly oscil-
lating functions and therefore they are essentially zero.

It is easy to see that, for small r, the average in Eq.
(A25b) scales as 〈|U(k)

gg |2 − |U(k)
eg |2〉 ≈ −(1 − π/4)〈r2〉,

where 〈r2〉 = (Kσth/m	eff)
2, and its contribution to 〈�〉

[i.e., the second term in Eq. (A17)] scales as (1 −
π/4)N 〈r2〉N . Since we are interested in the parameter
regime in which 〈r2〉 � 1 and N � 1, the contribution of
this term to 〈�〉 can be safely neglected. Also, the imagi-
nary part of the average in Eq. (A25a) is an integral over
an odd function of p and therefore it is equal to zero. Using
these facts, we obtain

〈�〉 = (1 − η)N Re[2c∗
gcee−i

∑N
k=1 φk ], (A27)

where

η ≡ 1 −
〈

sin3 2λ
(1 + r2)3/2

[
cosπr + r tan λ sinπr√

1 + r2

]〉
. (A28)

In particular, for cg = ce = 1/
√

2, Eq. (A27) yields

〈�〉 = (1 − η)N cos

(
N∑

k=1

φk

)
. (A29)

APPENDIX B: EFFECT OF CORRECTIONS TO
THE DETUNING

As described in Sec. VII, if laser frequency chirping
is used to compensate the evolving Doppler shift due to
the acceleration of the atom, the time-dependent Raman
detuning for the kth atom is given by Eq. (95), where
b is the frequency chirp rate and we assumed that the
Raman frequency at t = 0 is at the resonance for pk = 0,
as given by Eq. (94). While in Sec. VII we neglected the
terms (b − Kak)T and 2(b − Kak)T compared to σthK/m,
in this appendix we take these relatively small corrections
to the detuning into account. As usual, we assume that all
atoms experience the same constant acceleration: ak = a
for all k. Correspondingly, φk = φ = (b − Ka)T2 for all k.
We also define b = (1 + ε)Ka, so that b − Ka = εKa and
φ = εKaT2.

Similarly to the derivation in Appendix A, the expec-
tation value of the parity operator is given by Eq. (A17),
where the average is over the momentum distribution of
the thermal state, given by Eq. (A24). Also, the evolu-
tion operator for the two-pulse sequence π–π/2 is given
by Eq. (90), and the evolution operator for each of the
pulses in Eq. (90), U(k)

t (τ ), is given by Eq. (10), where
t = T, τ = τπ for the π pulse and t = 2T, τ = τπ/2 for
the π/2 pulse. However, now we take into account the fact
that the Raman detuning has a different value for each of

the two pulses: δ′
1 ≡ δ′

12(T) = −pK/m + εKaT for the π
pulse and δ′

2 ≡ δ′
12(2T) = −pK/m + 2εKaT for the π/2

pulse. Consequently, we obtain

〈2U(k)∗
gg U(k)

ge 〉 =
〈
S(r1, r2)

[
1 − ir2 tan λ2√

1 + r2
2

]
eiπr1

〉
e−iφ ,

(B1a)

〈|U(k)
gg |2 − |U(k)

eg |2〉 =
〈(

1 − r2
1

1 + r2
1

sin2 2λ1 − cos2 2λ1

)

×
(

1 − r2
2

1 + r2
2

sin2 λ2 − cos2 λ2

)〉
,

(B1b)

where

S(r1, r2) ≡ sin2 2λ1

1 + r2
1

sin 2λ2√
1 + r2

2

, (B2)

	effτπ = π , and we used the notation

rn ≡ δ′
n

	eff
= − pK

m	eff
+ nεKaT

	eff
, λn ≡ π

4

√
1 + r2

n,

(B3)

for n = 1, 2.
Once again, it is easy to see that, for small rn, the

average in Eq. (B1b) scales as 〈|U(k)
gg |2 − |U(k)

eg |2〉 ≈ −(1 −
π/4)〈r2

2〉, where 〈r2
2〉 = (Kσth/m	eff)

2 + (2εKaT/	eff)
2,

and its contribution to 〈�〉 [i.e., the second term in Eq.
(A17)] scales as (1 − π/4)N 〈r2

2〉N . Since we are interested
in the parameter regime in which 〈r2

2〉 � 1 and N � 1, the
contribution of this term to 〈�〉 can be safely neglected.

The average in Eq. (B1a) can be rewritten as

〈2U(k)∗
gg U(k)

ge 〉 = (BR + iBI )e−iφ = |B|ei(θ−φ), (B4)

where

BR =
〈
S(r1, r2)

[
cosπr1 + r2 tan λ2√

1 + r2
2

sinπr1

]〉
, (B5a)

BI =
〈
S(r1, r2)

[
sinπr1 − r2 tan λ2√

1 + r2
2

cosπr1

]〉
, (B5b)

|B| =
√

B2
R + B2

I , and θ = tan−1(BI/BR). Consequently,

with cg = ce = 1/
√

2, the parity expectation value is

〈�〉 = (1 − ηtot)
N cos[N (φ − θ)], (B6)

where ηtot = 1 − |B|.
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The values of ηtot and θ can be easily evaluated via
numerical integration in Eqs. (B5). However, it is instruc-
tive to obtain approximate expressions that are valid when
the detuning errors are small. We expand the integrands in
Eqs. (B5) in the powers of r1 and r2 up to the second order,
to obtain

ηtot = η + ηε ≈ κ

(
Kσth

m	eff

)2

+
(
εKaT
	eff

)2

, (B7)

θ ≈ (π − 2)
√
ηε ≈ (π − 2)

εKaT
	eff

. (B8)

We have verified that these approximate expressions are
in excellent agreement with results obtained via numerical
integration in Eqs. (B5) for parameter ranges relevant for
typical experimental conditions with 133Cs atoms.

The first term in Eq. (B7), η, is the parameter that quan-
tifies the error due to the initial momentum spread, given
by Eq. (98) and, approximately, by Eq. (100). The second
term in Eq. (B7), ηε , is the parameter that quantifies the
error due to the time-dependent correction to the detuning.
The ratio of these two error parameters is, approximately,

ηε

η
≈ ε2

κ

(
maT
σth

)2

= ε2 Ekin

2κ 〈Evib〉 , (B9)

where 〈Evib〉 is the average vibrational energy of the atom
in the trap, given by Eq. (102), and Ekin = 2ma2T2 is the
kinetic energy acquired by the atom from t = 0 to t = 2T
(i.e., during the interferometer operation) due to the action
of the constant force ma. For a 133Cs atom initially trapped
in a harmonic potential with frequency νtrap = 10 kHz at
temperature 0.1 μK, which subsequently moves in the
gravitational field with a = 9.8 m/s2 and T = 1 ms, we
find that ηε/η ≈ 1.91ε2. This ratio can be made very small
by choosing ε � 1, which will result in ηε being just a
small correction to η. Note that the interferometer phase
scales as φ ∝ εT2, while ηε ∝ ε2T2, so, for any value of
T, it is possible to choose a value of ε such that ηε/η � 1
without reducing φ too much.

The appearance of the phase θ in Eq. (B6) results in a
shift of the interference fringes, which needs to be taken
into account for an accurate measurement of φ. The ratio

θ

φ
≈ π − 2
	effT

(B10)

is independent of ε. Typically, θ � φ, for example, with
	eff ∼ 2π × 105 Hz and T ∼ 10−3 s, we find that θ/φ ∼
10−3. This ratio can be further reduced by increasing 	eff
(which is also useful for reducing η and ηε) and/or T.
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