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Noise that exhibits significant temporal and spatial correlations across multiple qubits can be espe-
cially harmful to both fault-tolerant quantum computation and quantum-enhanced metrology. However,
a complete spectral characterization of the noise environment of even a two-qubit system has not been
reported thus far. We propose and experimentally demonstrate a protocol for two-qubit dephasing noise
spectroscopy based on continuous-control modulation. By combining ideas from spin-locking relaxom-
etry with a statistically motivated robust estimation approach, our protocol allows for the simultaneous
reconstruction of all the single-qubit and two-qubit cross-correlation spectra, including access to their
distinctive nonclassical features. Only single-qubit control manipulations and state-tomography measure-
ments are employed, with no need for entangled-state preparation or readout of two-qubit observables.
While our experimental demonstration uses two superconducting qubits coupled to a shared, colored engi-
neered noise source, our methodology is portable to a variety of dephasing-dominated qubit architectures.
By pushing quantum noise spectroscopy beyond the single-qubit setting, our work heralds the charac-
terization of spatiotemporal correlations in both engineered and naturally occurring noise environments.
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I. INTRODUCTION

Quantum information science is poised to deliver
unprecedented opportunities in terms of both fundamen-
tal physics and device technologies, by pushing existing
boundaries in areas as diverse as quantum computation and
simulation [1–3], secure communication [1,4], quantum-
enhanced sensing and metrology [5,6], and beyond [7].
Notably, advances in quantum control and systems engi-
neering are enabling access to intermediate-scale quan-
tum processors whose capabilities are beyond what may
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be tractable classically [8], with impressive achievements
having recently been reported [9–12]. Ultimately, how-
ever, realizing the full potential of these technologies
will crucially depend on sustained progress in character-
izing and overcoming the effects of noise that limit qubit
performance.

In the context of entanglement-assisted quantum metrol-
ogy, spatial and temporal correlations of the noise dic-
tate the extent by which the standard quantum limit on
precision may be overcome in the estimation of physi-
cal parameters [13,14], in particular when the quantum-
mechanical nature of the environment must be explicitly
accounted for [15]. Once characterized, spatial noise cor-
relations may be exploited for augmenting the performance
of quantum sensors via tailored quantum encoding [16]
or error correction [17]. Likewise, quantitative knowledge
about noise properties and their correlations may prove
instrumental in designing optimized quantum-control or
error-mitigation strategies that can be substantially more
efficient than general-purpose schemes [18,19], as well
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as in determining optimal parameter regimes for “specta-
tor qubits” to be useful in improving control performance
of proximal data qubits [20]. Ultimately, noise correla-
tions will play a key role in determining the feasibility
of large-scale fault-tolerant quantum computation: estab-
lishing that noise correlations decay sufficiently rapidly in
space and time is central for validating the locality assump-
tions under which the existence of an accuracy threshold
may be rigorously derived beyond the idealized regime
of independent, “Markovian” errors [21,22]. In turn, the
structure of the noise, including the relevance of corre-
lated error processes, is expected to strongly influence the
value of the error threshold itself and inform ways in which
resource-optimized architectures may be designed [23,24].
As a result, developing viable methodologies to detect and
simultaneously characterize both spatial and temporal cor-
relations present in realistic multiqubit noise environments
is an imperative next step.

In a single-qubit setting, temporal correlations of
dephasing noise that may be assumed to be stationary
and sufficiently weak are characterized in the frequency
domain by a single noise spectrum—namely, the Fourier
transform of the two-point correlation function of the
noise operator with respect to the time lag [25]. Esti-
mation of the spectrum from experimental data may be
achieved through various “quantum noise spectroscopy”
protocols, which employ either pulsed or continuous-
control modulation of the qubit sensor to suitably shape
its spectral response. To date, measurements of the noise
spectrum have been reported across a wide variety of
experimental qubit platforms, including nuclear magnetic
resonance [26–28], superconducting quantum circuits [29–
32], nitrogen-vacancy centers [33,34], spin donors in semi-
conductors [35], and trapped ions [36,37].

In a multiqubit setting in a weak-coupling regime, com-
plete characterization of dephasing noise necessitates esti-
mation of the full set of spectra {Sjk(ω)}, defined by the
Fourier transform of the correlation functions of noise
operators acting on each possible combination of qubits j
and k. While temporal noise correlations that affect qubits
individually are now described in terms of self-spectra
Sjj (ω), coexisting spatial and temporal correlations are
captured by the two-qubit cross-spectra {Sjk(ω)}, with j �=
k. Spatial noise correlations have been probed and their
strength upper bounded in recent experiments using super-
conducting fluxonium qubits [38], nitrogen-vacancy (N-V)
centers in diamond [39], and spin qubits in semiconductors
[40]. However, all the protocols implemented thus far lack
the frequency sensitivity needed for full-fledged multiqubit
spectroscopy of noise that may be in general spatiotem-
porally correlated and nonclassical. Despite promising
theoretical proposals [41–44] as well as an experimental
approach using a specific correlation measure [45], mea-
surements of a two-qubit cross-spectrum remain yet to be
reported.

In this paper, we theoretically develop a quantum-
control protocol for two-qubit spectral estimation, and
demonstrate it experimentally in a circuit quantum elec-
trodynamics (cQED) system using engineered photon shot
noise. Building on continuous-control modulation spin-
locking techniques previously implemented in a single-
qubit setting [30,32], we formulate the problem in the
framework of “robust estimation theory” [46] and demon-
strate the simultaneous reconstruction of all the two-qubit
self-spectra and cross-spectra that characterize our engi-
neered noise source. In contrast to existing proposals
employing dynamical-decoupling comb-based noise spec-
troscopy [41–43], our approach does not require the design
and application of long sequences of nearly instantaneous
pulses. As an additional advantage, for instance, with
respect to methods exploiting decoherence-free subspaces
[40], no entangled states nor two-qubit gates are needed.
Instead, our protocol relies on continuous driving of the
individual qubits followed by simultaneous single-qubit
readout. We thus anticipate this protocol to be compati-
ble with any multiqubit architecture in which these basic
resources are available.

In Fig. 1, we illustrate the methodology underlying
our two-qubit spectroscopy approach. To appreciate the
underlying physical principles, it is useful to compare and
contrast our method with single-qubit noise spectroscopy
via spin-locking relaxometry [30,32]: there, a microwave
tone is applied on the sensor qubit to effectively create a

Two qubits + shared noise bath

Model: master
equation Nonlinear

regression

Data: decay curves

Parameters: noise
spectra

FIG. 1. Concept of the two-qubit quantum noise spectroscopy
experiment. Two qubits are coupled to a common bath, lead-
ing to spatiotemporally correlated noise. The dynamics of the
qubit system are modeled through a generic, broadly applicable
master equation that accommodates unspecified noise self- and
cross-spectra. Using spin-locking control sequences, we measure
decay curves of different observables. These measured data are
used to determine the noise spectra through nonlinear regres-
sion, by minimizing the deviation from the evolution of the
same observables as predicted by the master equation. While
our methodology is device independent, we use superconducting
qubits for experimental demonstration.
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“dressed qubit,” whose level splitting equals the frequency
of the Rabi oscillations induced by the drive. Since this
dressed qubit is predominantly sensitive to the noise spec-
trum at its transition frequency, the (self-) spectrum may
then be sampled, point by point, by measuring the deco-
herence rate the dressed qubit experiences as a function
of the applied Rabi frequency. In our generalized two-
qubit spin-locking protocol, we simultaneously drive two
sensor qubits with amplitudes set to give identical Rabi
frequencies (under ideal conditions). This effectively pro-
duces two dressed qubits, which are now sensing the same
frequency component of the noise through the self- and
cross-spectra that enter the master equation governing their
dynamics. These spectra are then reconstructed at each
Rabi frequency of interest by fitting the numerical solution
of the master equation to experimentally measured decay
curves.

The paper is organized as follows. In Sec. II, we pro-
vide the theoretical foundation of the reconstruction pro-
tocol we qualitatively described above. While Sec. II A
presents the derivation of a generic, broadly applicable
master equation (ME) for the two-qubit driven dynam-
ics, Sec. II B is devoted to a robust statistical procedure
for extracting spectra from fits of theoretically predicted
time-dependent expectation values to experimental data. In
order to set the stage for the experimental demonstration
of our protocol, Sec. III is devoted to the implementation
of engineered correlated photon shot noise in the cQED
test bed we employ (see Fig. 3). This is not the actual
noise spectroscopy experiment, but rather the calibration
of the engineered noise source at the device. After address-
ing certain nonidealities specific to our cQED platform in
Sec. IV A, we report the main results in Sec. IV B: namely,
the experimental noise spectroscopy and reconstruction of
the two-qubit self- and cross-spectra that characterize our
qubits in the presence of the engineering noise. Before
concluding, we address in Sec. V possible extensions of
our protocol, in particular to situations where dephasing
and relaxation occur on comparable time scales or where
higher-order (non-Gaussian) spectra may be relevant. Full
detail about the derivation of the MEs used to model
the qubit dynamics in both the ideal and experimentally
relevant parameter regimes is included in Appendix A,
whereas in Appendices B and C we discuss various aspects
pertinent to the robust statistical estimation procedure we
employ.

II. METHODOLOGY FOR TWO-QUBIT NOISE
SPECTROSCOPY

A. Spin-locking dynamics under dephasing noise

We summarize here the basic ideas of spin-locking
relaxometry [30,32] and generalize them to the two-qubit
setting. To describe the driven evolution of two qubits

under a noisy environment, we consider the Hamiltonian

H(t) = HS(t)+ HSB + HB, (1)

where HS(t) is the time-dependent Hamiltonian of the two-
qubit system S, HB is the Hamiltonian of the bath B, and
HSB describes system-bath coupling. We assume the two
qubits to be characterized by angular-frequency splittings
ωqj , and each to be coherently driven at frequency ωdj
with a drive strength�j , j ∈ {1, 2}. Setting � ≡ 1, we thus
consider the system Hamiltonian

HS(t) =
∑

j ∈{1,2}

[
ωqj

2
σ z

j +�j cos(ωdj t)σ x
j

]
, (2)

where σ x
j and σ z

j are the Pauli matrices for qubit j .
Throughout this paper, the +1 and −1 eigenstates of σ z

j
will be denoted by |1〉j and |0〉j , respectively. While we
leave HB unspecified, we specialize to single-axis system-
bath couplings of the form

HSB =
∑

j

Bj σ
z
j , (3)

where Bj is the bath operator that couples to qubit j .
In the absence of coherent drives (�j = 0, j = 1, 2),

HSB generates pure-dephasing evolution. However, in an
appropriate rotating frame, the coherent drive “tilts” the
quantization axis of each qubit by a π/2 angle, thus turn-
ing dephasing noise into a source of energy absorption
and emission at rates that probe the two-qubit spectra at
frequencies �j . To describe this phenomenon and exploit
it for noise-spectroscopy applications, we apply the uni-
tary transformation R(t) = exp[−i

∑
j ωdj tσ z

j /2] to move
to a reference frame that rotates at the drive frequencies,
and in which the Hamiltonian is HR(t) ≡ R†(t)H(t)R(t)−
iR(t)†Ṙ(t). By effecting the frame transformation and
invoking the rotating-wave approximation (RWA) to drop
counter-rotating terms oscillating at frequency 2ωdj , the
rotating-frame Hamiltonian is then

HR ≈ H ′
S + HSB + HB, (4)

where H ′
S ≡ ∑

j (�qj σ
z
j +�j σ

x
j )/2 and �qj ≡ ωqj − ωdj

is the detuning of drive j from ωqj .
The time-independent Hamiltonian H ′

S can be diago-
nalized by transforming to a rotated spin-locking basis,
spanned by |+x〉j ≡ cos(ϑj /2)|1〉j + sin(ϑj /2)|0〉j and
|−x〉j ≡ − sin(ϑj /2)|1〉j + cos(ϑj /2)|0〉j , where ϑj ≡
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arctan(�j /�qj ) is the angle by which the qubit quantiza-
tion axis is rotated under the drives. In this basis,

H ′
S =

∑
j

1
2

√
�2

qj +�2
j τ

z
j , (5)

HSB =
∑

j

Bj (cosϑj τ
z
j − sinϑj τ

x
j ), (6)

where we have introduced the Pauli matrices τ x
j ≡

|+x〉〈−x|j + |−x〉〈+x|j and τ z
j ≡ | + x〉〈+x|j − | − x〉

〈−x|j . Setting �qj = 0 for all j leads to ϑj = π/2 for all
j , which further simplifies the above Hamiltonians to

H ′
S =

∑
j

�j

2
τ z

j , HSB = −
∑

j

Bj τ
x
j . (7)

In this spin-locking basis, the coherent drives then define
two effective “dressed” qubits quantized along τ z

j , with
angular-frequency splittings equal to the Rabi frequencies
�j , and subject to purely transverse noise along τ x

j .
We may describe the evolution of the dressed qubits in

the spin-locking basis by tracing out the bath and deriv-
ing a ME for the density operator ρ(t) ≡ TrB[ρtot(t)].
As detailed in Appendix A 1, to do so we employ a
standard time-convolutionless (TCL) ME approach [47].
We assume an initially separable initial state ρtot(0) ≡
ρ(0)⊗ ρB, where ρ(0) and ρB are the initial density
operators of S and B, respectively. In addition, we con-
sider stationary noise with zero mean, so that 〈Bj (t)〉 =
0 and 〈Bj (t)Bk(s)〉 = 〈Bj (t − s)Bk(0)〉 ≡ 〈Bj (τ )Bk(0)〉 for
all t, s, j , k, where Bj (t) ≡ eiHBtBj e−iHBt is the time-
dependent noise operator for qubit j in the interaction
picture associated to the free bath Hamiltonian, the time
lag τ ≡ t − s, and 〈·〉 denotes expectation with respect to
the initial bath state ρB. We also assume that the coupling
between the system and the bath is weak enough to trun-
cate the TCL generator at second order, and employ a
secular approximation to drop terms oscillating with fre-
quency �1 +�2. Setting �1 = �2 ≡ �, the two dressed
qubits are most sensitive to the noise spectra in a frequency
window of width approximately 1/tevol around their split-
ting ±�. This enables us to simplify the ME in the limit of
a sufficiently long evolution time tevol. For spectra Sjk(ω)

that vary sufficiently slowly with frequency about ω =
±�, we consider only the contribution of the spectra at
ω = ±�, and finally arrive at

ρ̇(t) = −i[H ′
S, ρ(t)] +

∑
jk

Ljkρ(t), (8)

where the superoperators Ljk are defined by

Ljkρ ≡ Sjk(−�)
[
τ−

k ρτ
+
j − 1

2 {τ+
j τ

−
k , ρ}]

+ Sjk(�)
[
τ+

k ρτ
−
j − 1

2 {τ−
j τ

+
k , ρ}], (9)

with {A, B} ≡ AB + BA denoting the anticommutator of A
and B. The superoperators introduced in Eq. (9) describe
correlated decay and absorption processes with strength
proportional to the two-qubit spectra at frequencies ω =
±�. These spectra are given by

Sjk(ω) ≡
∫ ∞

−∞
dτe−iωτ 〈Bj (τ )Bk(0)〉. (10)

The ME defined by Eqs. (8)–(9) involves all the spectra
that are needed to characterize stationary “colored” noise
that may in general be nonclassical (in the sense that the
commutator [Bj (t), Bk(s)] �= 0 for t �= s), and display arbi-
trary temporal and spatial correlations in a two-qubit sys-
tem. This ME is generic in the sense that its derivation does
not rely on any microscopic knowledge of the spatiotem-
poral correlations of the bath and is applicable provided
that the noise is sufficiently weak and acting only along
the σ z

j axes (purely dephasing) in the laboratory frame.
As the spectra entering the ME are related to two-point
correlation functions of the bath, they completely char-
acterize the dynamics of the qubits when the bath obeys
Gaussian statistics. The Gaussian assumption may be sat-
isfied exactly, for example for bosonic baths at equilibrium
[48], or in an approximate sense when a large number of
independent bath degrees of freedom are involved [49],
or in any case the coupling is sufficiently weak for any
higher-order cumulants to be negligible. It is worth not-
ing that, from a rigorous spectral estimation standpoint, the
assumptions of single-axis noise and Gaussianity cannot
be expected to be valid a priori, and should always be ver-
ified experimentally through spectroscopic means [50–52].
While full characterization of a non-Gaussian noise source
also requires higher-order spectral analogs of Eq. (10),
these terms do not enter the dynamics when the coupling
between the qubits and the bath is weak enough to justify
truncating the TCL generator at second order. Therefore,
the ME in Eqs. (8)–(9) is applicable to both Gaussian and
non-Gaussian noise sources in a suitable weak-coupling
limit.

B. Robust estimation of two-qubit spectra

Since Eqs. (8)–(9) contain all the spectra of interest for
the present two-qubit problem, an appropriate choice of
experimental observations can enable us to infer Sjk(�)

for arbitrary j , k ∈ {1, 2}. For notational convenience, for
a given Rabi frequency�, we collect the two-qubit spectra
that we aim to estimate into a spectrum vector,

S(�) ≡ {S11(�), S22(�), Re[S12(�)], Im[S12(�)],

S11(−�), S22(−�), Re[S12(−�)], Im[S12(−�)]}�.

To devise a protocol for estimation of S, we adopt an
inverse-problems perspective and infer S by performing
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a nonlinear regression that fits numerical solutions of the
generic ME to experimental data.

In Fig. 2(a), we illustrate the control and measure-
ment cycle employed to gather experimental data from
which S(�) is reconstructed at a given frequency �. At
time t = 0, the system is prepared in ρ(0) = ρs, where
s ∈ {1, 2, . . . , Nstates} labels elements of an arbitrary set
{ρs} of two-qubit initial states. Continuous drives res-
onant with each qubit are then applied with Rabi fre-
quency �, so that the evolution of the two-qubit system
is approximately given by the solution to Eq. (8). Mul-
tiple evolution times t ∈ {tq} with q ∈ {1, 2, . . . , Ntimes}
are considered, after which projective measurements of
a system’s observable O ∈ {Or}, r ∈ {1, 2, . . . , Nobs}, are
performed. In the experiment presented here, we consider
initial product states in the spin-locking basis, namely,
ρs = |ψs〉 〈ψs| with |ψs〉 ∈ {|+x, +x〉, |+x, −x〉, |−x, +x〉,
|−x, −x〉}, and measurements of products of Pauli oper-
ators of the form Or ∈ {τ z

1 ⊗ I2, I1 ⊗ τ z
2 , τ �1

1 ⊗ τ
�2
2 } with

�1, �2 ∈ {x, y, z}, and where Ij is the identity operator for
qubit j . These initial states and observables are accessi-
ble through simultaneous preparation and measurement of
each qubit, and thus using purely local resources.

In Fig. 2(b), we illustrate the procedure by which exper-
imental observations resulting from the control and mea-
surement cycle described above are used to reconstruct
the spectrum vector S(�). To simplify the notation, we
label all combinations of initial states ρs, evolution times
tq, and observables Or using a single collective index α ∈
{1, 2, . . . , d}, where d = Nstates × Ntimes × Nobs. In addi-
tion, for each α, we consider sample means Oα of all out-
comes O(m)

α of projective measurements m ∈ {1, 2, . . . , M }.
These sample means are defined by

Oα ≡ 1
M

M∑
m=1

O(m)
α , (11)

where M is the total number of projective measurements,
which we take to be the same for each α for simplicity. It
will also be convenient to collect all such sample means
measured experimentally for a given Rabi frequency into a
single observation vector, O ≡ (O1, O2, . . . , Od)

�.
In the asymptotic limit of a large number of projective

measurements, M → ∞, the sample means Oα converge
to their expectation values 〈Oα〉S by the weak law of
large numbers, Oα → 〈Oα〉S. These expectation values are
determined by S through

〈Oα〉S ≡ Tr[Orα ρ(tqα )
∣∣
S,sα

], (12)

where ρ(tqα )
∣∣
S,sα

is the solution of Eq. (8) for noise spec-
tra S and initial state ρsα at time tqα . Hence, for finite
M , we estimate the spectra by finding the value of S

(a)

(b) Nonlinear regression

FIG. 2. Protocol for spectroscopy of spatiotemporally corre-
lated noise. (a) Control and measurement cycle. The qubit system
S is initialized in state ρ(0) ∈ {ρs}, where s ∈ {1, 2, . . . , Nstates}
(step 1). Continuous drives (shown as orange waves) with equal
Rabi frequency�1 = �2 = � are then applied on the two qubits
for time tevol ∈ {tq} with q ∈ {1, 2, . . . , Ntimes}, during which S
evolves under the influence of the noise spectra evaluated at ±�,
{Sjk(±�)} with j , k ∈ {1, 2} (step 2). After this evolution time, a
projective measurement of a two-qubit observable O ∈ {Or} with
r ∈ {1, 2, . . . , Nobs} is performed (step 3). For a given combina-
tion α of initial state ρs, evolution time tq, and observable Or,
this cycle is repeated M times, and a sample mean Oα of all
outcomes O(m)

α is obtained [Eq. (11)], where m labels the out-
come of the projective measurement for each cycle. The Rabi
frequency � is swept to gather experimental observations for all
frequencies at which Sjk(±�) will be sampled. (b) Schematic of
the reconstruction procedure of the two-qubit spectra from the
data produced in (a). An initial value of � is chosen, for which
an initial guess of the spectrum vector S(�) is assumed. This
guess is fed into a nonlinear regression algorithm to find the
value of S(�) that globally minimizes the discrepancy between
the measured sample means Oα (blue circles with error bars;
note, in the first plot, the occurrence of an “outlier”) and the
corresponding expectation values 〈Oα〉S obtained by numerically
solving Eq. (8) for all chosen combinations α of the initial state,
evolution time, and observable. An estimate Ŝ(�n) of S(�n)

at the nth Rabi frequency �n is obtained following Eq. (13)
(solid red lines). The latter is then used as the initial guess for
the reconstruction at the next frequency �n+1. The procedure
is repeated until S(�) is reconstructed over all frequencies of
interest.

010305-5



UWE VON LÜPKE et al. PRX QUANTUM 1, 010305 (2020)

that minimizes the deviation between the data Oα and the
predictions of the model 〈Oα〉S. Formally, we define our
estimator of S for a particular Rabi frequency � as

Ŝ ≡ argmin
S

d∑
α=1

λ(zS,α). (13)

Here, λ(z) is a loss function that penalizes deviations
between the model and the data, which are quantified by
the normalized residuals zS,α ≡ (Oα − 〈Oα〉S)/σα , where
σ 2
α ≡ var(Oα). Throughout this text, we use hats to denote

estimators. Estimators like Eq. (13), which minimize a
total cost function, are called M-estimators [46].

The most natural choice of loss function is arguably the
quadratic function λ(z) = z2/2, since Eq. (13) then reduces
to a simple weighted least-squares estimation. In addi-
tion to being well suited for numerical optimization, the
weighted least-squares estimate is statistically well moti-
vated when the probability distribution of O is Gaussian.
Indeed, in this case, weighted least-squares optimization
can be derived from maximum-likelihood estimation of S,
and can be shown to be asymptotically efficient, that is, the
variance of Ŝ achieves the Cramér-Rao bound on precision
[53].

In practice, however, the statistics of sample means O
may not be perfectly described by the expected Gaussian
probability distribution, compromising the asymptotic effi-
ciency of Ŝ under weighted least-squares estimation. In
particular, experimental data are often contaminated by
outliers: data points that do not follow the probability dis-
tribution of the majority, for example because of isolated
experimental errors. Because of its quadratic dependence
on the residuals, weighted least-squares estimation noto-
riously gives excessive weight to outliers that are distant
from normal observations, namely, for which zS,α 
 1.
This can make weighted least-square estimators ineffi-
cient, causing estimates to wander very far away from
their expected behavior (as will be seen experimentally
in Sec. IV and Appendix C), or, in the worst case, lead-
ing to catastrophic divergent behavior of the variance of
the estimator. Overcoming these limitations motivates the
use of robust estimators, whose performance is not sig-
nificantly impaired by the presence of outliers [46,53]. A
prevalent way to achieve robust estimation is to employ the
Huber loss function, a mixture of weighted least-squares
estimation with mean absolute error minimization defined
by

λ(z) ≡

⎧⎪⎨
⎪⎩

1
2

z2 if |z| ≤ δ0,

δ0

(
|z| − 1

2
δ0

)
otherwise,

(14)

with δ0 ≥ 0 a finite tuning parameter that controls the mix-
ing. Note that λ(z) is constructed to be continuous with a

continuous derivative. For |z| ≤ δ0, the Huber loss func-
tion provides the statistical and numerical efficiency of
weighted least squares, while residuals with |z| > δ0 only
contribute to the total cost through their absolute value.
This avoids overweighting outliers in the observations and
favors robustness of the estimator, as desired.

III. EXPERIMENTAL PLATFORM AND
CORRELATED NOISE ENGINEERING

In the experiment we will present, we employ the super-
conducting circuit shown in Fig. 3(a) as a test bed for
two-qubit spectroscopy based on the spin-locking tech-
nique described in Sec. II. The two qubits are encoded
by the lowest energy levels of a pair of transmons disper-
sively coupled to a common bath formed by a mode of a
common resonator, which is brought to a steady-state pop-
ulation under the competing action of a constant applied
microwave drive and photon emission into an external
environment. When the coupling between the qubits and
this common bath is sufficiently weak, and the evolution

D

(b)

(a)

FIG. 3. Details of the experimental cQED device. (a) Optical
micrograph of the sample. The two qubits (blue, red) are capac-
itively coupled to a common λ/4 resonator (green) that we use
to create a shared noise source. Each qubit is also coupled to an
individual resonator that we use for readout. (b) Simplified circuit
diagram of our setup.
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time is sufficiently long, the bath may be traced out follow-
ing the derivation presented in Appendix A 2. Evolution of
the two-qubit system in the spin-locking experiment may
then be described by the generic ME [Eq. (8)], in which we
substitute the photon shot-noise spectra [25,32]:

Sjk(ω) = χjχkn
κ

(ω +�c)2 + (κ/2)2
(15)

with j , k ∈ {1, 2}. Here, χj is the strength of the dispersive
coupling for qubit j , κ quantifies the resonator damp-
ing rate, �c ≡ ωc − ωd is the detuning between the drive
frequency ωd and the bare frequency of the common res-
onator ωc, and n is the average photon number in the
steady state of the resonator. While the parameters κ , χ1,
and χ2 are set by design during device fabrication, both
the amplitude and asymmetry of the spectra around zero
frequency may be tuned in situ via n and �c by vary-
ing the strength and detuning of the drive applied onto
the common resonator, granting us the capability to pro-
duce spatiotemporally correlated noise with an engineered
spectrum.

To validate this capability, and as a first step before
our full demonstration of two-qubit spectroscopy, in this
section we experimentally verify the presence of noise cor-
relations consistent with photon shot noise. We first use a
Ramsey interferometry technique to witness spatial corre-
lations by measuring a two-qubit correlation function in a
free-evolution setting and use the results to measure the
parameters χ1, χ2, and κ entering Eq. (15). We then use
the spin-locking technique to measure noise correlations
in a frequency-sensitive fashion and demonstrate experi-
mental control over the amplitude and asymmetry of the
engineered noise spectra through both n and �c. Engi-
neered noise parameters obtained here will determine ideal
spectra against which reconstructions from the two-qubit
spectroscopy protocol introduced in Sec. II will later be
compared.

A. Ramsey interferometry

As mentioned, we create a source of correlated photon
shot noise by applying a coherent signal to the com-
mon resonator. We then perform simultaneous Ramsey
sequences by applying a pair of π/2 pulses on each
qubit [Fig. 4(a)]. The qubit drives are detuned from the
qubit frequencies by �qj = ωqj − ωdj , with �q1/2π =
−1.26 MHz and �q2/2π = 0.3 MHz. To observe Ramsey
fringes, we vary the wait time t between the pulses applied
on each qubit, as well as the injected photon number n in
the common resonator, which is calibrated in advance by
varying the power of the noise drive and observing the fre-
quency shift of the qubit due to the increasing resonator
population [54]. After each Ramsey sequence, we per-
form simultaneous single-shot dispersive readout of both

qubits in the σ z
j eigenbasis through their individual res-

onators, and reinitialize the qubits in the ground state by
letting them relax for 500 μs, a time much longer than
the observed qubit relaxation time T1. During the read-
out we turn off the otherwise continuous noise drive to
improve the single-shot readout fidelity. Taking the sample
means σ z

1 and σ z
2 of the resulting readout outcomes for each

qubit [Eq. (11)], we obtain the Ramsey fringes shown by
the color schemes in Figs. 4(b) and 4(c), respectively. To
access the correlation induced by the shared noise source,
we then calculate the sample mean of measurement out-
comes of the two-qubit observable Czz ≡ σ z

1σ
z
2 − σ z

1 σ
z
2 ,

where we subtract the product of the single-qubit sam-
ple means to remove any potential systematic bias in the
readout outcomes.

The nonzero values of Czz shown in Fig. 4(d) clearly
indicate the presence of correlated noise in our two-qubit
system. To demonstrate that this correlated noise indeed
comes from the photons injected in the cavity, we com-
pare experimental results with the numerical solution of
the quantum-optical ME [55]:

ρ̇QC(t) = −i
[
HR, ρQC(t)

] + κD[a]ρQC(t)

+ LR
x ρQC(t)+ LR

z ρQC(t). (16)

Here, ρQC(t) denotes the joint density matrix for the two
qubits plus the resonator mode, which evolves under a
dispersive Hamiltonian of the form [56,57]

HR =
∑

j

�qj

2
σ z

j +�ca†a + ε(a + a†)+
∑

j

χj a†aσ z
j

with ε being the amplitude of the drive applied on the res-
onator. In Eq. (16), the Lindblad superoperators LR

x and LR
z

are defined by

LR
x ρ ≡

∑
j

�1,jD[σ−
j ]ρ, LR

z ρ ≡
∑

j

γφj

2
D[σ z

j ]ρ,

(17)

where, for a generic operator O, we use the standard nota-
tion D[O]ρ ≡ OρO† − 1

2 {O†O, ρ}. Thus, LR
x(z) describes

the effect of noise coupling to qubit j through σ x
j and σ z

j ,

leading to relaxation and dephasing at rates �1,j = 1/T(j )1
and γφj , respectively. In Eq. (16), LR

z phenomenologically
describes any uncorrelated source of noise that may cou-
ple to σ z

j in addition to photon shot noise. In contrast
with the generic ME [Eq. (8)], Eq. (16) fully specifies the
dynamical model of engineered noise; this knowledge will
be exploited here to determine noise parameters indepen-
dently from the spectroscopy protocol later demonstrated
in Sec. IV.

Solving Eq. (16) using standard numerical packages
[58], we calculate the time-dependent expectation value
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(a)

(b) (c)

(d)

(e)

(f) (g)

FIG. 4. Ramsey interferometry experiments. (a) Ramsey sequence applied simultaneously to the two qubits, with π/2 pulses around
the y axis (blue boxes). A coherent drive (the “noise” tone, shown in green) is turned on well before the first pair of π/2 pulses, to
bring the common resonator into a steady state with finite population, thus implementing a stationary source of engineered correlated
noise. We readout both qubits simultaneously through their individual resonators, using drives at frequencies ωr1 and ωr2 (red box),
thus acquiring a series of ±1 outcomes for each qubit. (b),(c) Sample mean of measured single-qubit observables σ z

1,2 for different
wait times t and different injected photon numbers n in the common cavity. The frequency of the observed Ramsey fringes varies with
increasing n due to the dispersive shift 2χj n of the qubit frequencies (tilt of the vertical red and blue lines). For higher n, we see a rapid
dephasing of the qubit states due to the added photon shot noise (blurring of the features in the top right corners). (d) Measurement
of the correlation Czz = σ z

1σ
z
2 − σ z

1 σ
z
2 . (e) Solution of the ME describing the qubits coupled to the common resonator [Eq. (16)], in

which parameters κ , χj ,�qj , and γφj (see Table I) are obtained by nonlinear regression of the simulation outcomes to the experimental
data. (f) Linecuts of (b) and (c) at n ∈ {0, 0.56, 1.18} with measured (�) and simulated (—) values of σ z

1 and σ z
2 using fitted parameters.

(g) Linecuts of (d) and (e) at n ∈ {0, 0.56, 1.18}.

〈σ z
1σ

z
2 (t)〉 − 〈σ z

1 (t)〉〈σ z
2 (t)〉 after two instantaneous Ram-

sey pulses, and estimate relevant physical parameters by
fitting to the measurements of Czz displayed in Fig. 4(d).
Through this procedure, we obtain the values of κ , χ1, χ2,
�q1,�q2, γφ1, and γφ2 collected in Table I. Throughout the
simulations, we take �c = 0, and use �1,j measured inde-
pendently from relaxation experiments in the absence of
injected photons. The results of the simulations using the

fitted parameters are displayed in Fig. 4(e). The remarkable
quantitative agreement between simulation and experiment
obtained here [see also the linecuts in Fig. 4(f) for rep-
resentative n values] provides strong evidence that the
measured correlations arise from our engineered source of
photon shot noise.

Several important features of this Ramsey interferome-
try experiment may be understood qualitatively. First, Czz
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TABLE I. Sample parameters. The qubit and resonator fre-
quencies are measured spectroscopically, and the reported relax-
ation and coherence times are averages of repeated T1-decay and
echo measurements over 24 h, with T2 < 2T1 indicating native
sources of dephasing. The coupling constants κ and χj , the qubit
detunings �qj , and the native dephasing rates γφj are results
of the fits to the Ramsey measurements (Fig. 4). These values
are found to agree within error bars with those obtained from
independent measurements.

Qubit 1 Qubit 2 Common resonator

ω/2π (GHz) 3.483 4.600 7.471
T1 (μs) 87 54
Techo

2 (μs) 54 68
κ/2π (kHz) 198
χj /2π (kHz) −29.1 −59.5
�qj /2π (kHz) −1265 299
γφj (×103 rad/s) 87.7 31.0

vanishes when the noise drive is off (n = 0). That is, hav-
ing (approximately) no photons entering or leaving the
common microwave cavity turns off the interaction respon-
sible for a nonzero correlation between the two qubits,
as desired. Second, Czz becomes “blurry” in the top-right
corner of Fig. 4(d) for high n and t. As we increase the
amplitude of the photon shot noise, we induce correlated
dephasing, implying that more photons enter and leave the
common resonator, each one causing the qubits to simulta-
neously dephase as it takes with it information about the
phase of the qubits. At a high enough photon number,
the dephasing rate is the dominant source of decoher-
ence, causing the signal to decrease significantly within the
wait time of 10 μs between the Ramsey pulses. Further-
more, we observe oscillations of Czz at frequencies |�q1 −
�q2|/2π = 1.56 MHz and |�q1 +�q2|/2π = 0.96 MHz.
These two overlapping signals cause a beating pattern at
their difference frequency 0.6 MHz, which corresponds to
the blurry white lines that appear to enter Figs. 4(d)–4(e)
from the bottom left (indicated by dashed arrows).

B. Demonstration of frequency selectivity from
measurements of correlated noise

In the previous subsection, we observed the signature
of a spatially correlated noise source on two qubits. How-
ever, spectral estimation requires the ability to select the
frequency at which the noise spectrum is probed. To this
end, we use the generalized spin-locking technique we
described in Sec. II.

Specifically, our protocol is illustrated in Figs. 5(a)
and 5(b). Two sets of simultaneous π/2 pulses are applied
along the y axis and separated by a time t, during which
the qubits are driven by constant, resonant drives. The
first pair of pulses initializes both qubits in state |−x〉.
As explained in Sec. II A, the drives define dressed qubits

whose eigenstates |±x〉j are split by the Rabi frequen-
cies �j . During the time t, these dressed qubits undergo
a nonunitary evolution due (predominantly) to noise cou-
pling to σ z

j at angular frequencies �j . The second pair of
π/2 pulses returns the qubits back to the z axis, where they
are immediately measured by dispersive readout. We use
this sequence to probe correlations in qubit dephasing by
sweeping the Rabi frequency �1 across the fixed Rabi fre-
quency �2. The peak frequency of our engineered noise
being at −�c [Eq. (15)], we set�2 = |�c| to maximize the
contribution of shot noise in qubit dynamics. We expect
to see a nonzero correlation, Kzz ≡ τ z

1τ
z
2 − τ z

1 τ
z
2 , only if

both dressed qubits are sensing the same frequency compo-
nent of a nonvanishing spectrum (�1 ≈ �2). This insight
is confirmed by the experimental data shown in Fig. 5(c),
in which Kzz is only significant around �1 = �2 = |�c|,
in a frequency region that narrows with the duration t
over which the spin-locking drive is applied. This follows
from a key feature of the qubit evolution during the spin-
locking drive, namely, the terms in the ME that contain
the cross-spectra oscillate at ±|�1 −�2| [see Eq. (A11)]
and average out for times � 1/|�1 −�2|. Thus, setting
�1 = �2 lets us isolate the influence of the cross-spectra
in a specific frequency region.

To verify compatibility of the observed correlation with
photon shot noise, we derive the quantum-optical ME
for the two qubits and the resonator in the spin-locking
frame. This leads to an expression formally identical to
Eq. (16), but in which we replace HR → HSL, LR

x → LSL
x ,

and LR
z → LSL

z , where, taking �qj = −2χj n,

HSL =
∑

j

�j

2
τ z

j +�ca†a + ε(a + a†)

−
∑

j

χj (a†a − n)τ x
j , (18)

LSL
x ρ = 1

4

∑
j

�1,j {D[τ z
j ] + D[τ+

j ] + D[τ−
j ]}ρ, (19)

LSL
z ρ =

∑
j

{γ ↓
j D[τ−

j ] + γ
↑
j D[τ+

j ]}ρ. (20)

Above, LSL
z phenomenologically describes uncorrelated

sources of noise coupling to σ z
j in addition to photon shot

noise, in the spin-locking frame. In the ME simulations,
we take values of χj and �1,j = 1/T(j )1 given in Table I.
In addition, we take the bare cavity drive detuning to be
�c = �(00)

c + χ1 + χ2, where �(00)
c /2π = −1.95 MHz is

the cavity drive detuning obtained from experimental mea-
surements of the Stark-shifted resonator transmission peak
when both qubits are in their ground state. This yields
�c/2π ≈ −2.03 MHz; the remaining parameters are then
obtained by fitting the solution of the ME to the experi-
mental data shown in Fig. 5(c), leading to n ≈ 0.154, γ ↑

1 ≈
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(a)

(b)

(c) (d)

(e)

Decay

Decay

r1 r2

t

FIG. 5. Spin-locking experiments. (a) Spin-locking sequence applied simultaneously on two qubits with a shared source of engi-
neered noise. (b) Bloch sphere sketch of the sequence in (a) for qubit 1 and qubit 2. The initial π/2 pulse rotates the qubits from the
ground state to |−x〉. The spin-locking drive effectively creates a dressed two-qubit system, with each level splitting being equal to
�j . Because of dephasing noise (from both the injected photon shot noise and from weaker native sources), the dressed qubits decay
to their steady-state values along the x axis. The final π/2 pulse turns the qubits back to the initial (σ z

j ) quantization axis to be mea-
sured. (c) Measured correlation Kzz ≡ τ z

1τ
z
2 − τ z

1 τ
z
2 , where the Pauli matrix τ z

j is diagonal in the spin-locking basis {|+x〉j, |−x〉j }. The
coherent drive creating photon shot noise is detuned by �c/2π = −2.03 MHz away from the common resonator. The Rabi frequency
�2 of the spin-locking drive of qubit 2 is held constant at �2 = |�c|, while �1 is swept (y axis). The correlation is significant in
the region indicated by the solid black line, with width approximately 2/t. (d) Numerical solution of the quantum-optical ME [see
Eqs. (18)–(20)]. Inset: Qualitative shape of the cross-spectrum S12 [Eq. (15)]. (e) Comparison of measured values (�) and numerical
simulation (−) using fitted parameters. The subplots show (from left to right) τ z

1, τ z
2, and Kzz for�1/2π ∈ {1.83, 2.03} MHz [indicated

by black arrows in (c) and (d)]. Since �2 is unchanged through the experiment, the decay curves for τ z
2 are roughly the same for

both linecuts. The decay curve for τ z
1 , however, is steeper for �1 closer to the center of the photon shot-noise spectrum (top-left plot),

demonstrating sensitivity to the noise frequency. The correlation Kzz roughly equals zero for �1 �= �2 = |�c| (bottom-right plot) and
shows a clear peak for �1 = �2 = |�c| (top-right plot). Note the negative steady-state value of the correlation for long spin-locking
durations. Here, one of the dressed qubits acts as an effective decay channel for the other, with the coupling between them mediated
by the noise.

2 × 103 rad/s, γ ↓
1 ≈ 7 × 103 rad/s, γ ↑

2 ≈ 9 × 103 rad/s,
and γ ↓

2 ≈ 14 × 103 rad/s. The resulting correlation, shown
in Fig. 5(d), displays strong quantitative agreement with
experimental observations. Though the phenomenological
decay rates γ ↑

j and γ ↓
j are not entirely negligible, they

lead to decay on a timescale � 100 μs, while the dynam-
ics due to photon shot noise occur on a shorter timescale,
� 50 μs. This confirms that our engineered noise source
predominantly drives the dynamics in this experiment, as
intended.

We finally discuss an additional intriguing feature in the
results of the experiment. While the correlation starts out
at zero [see Fig. 5(e)] when we initiate the spin-locking
drive, and then quickly rises to a maximum of about 0.13,
Kzz ultimately decays over several tens of microseconds
to a negative value of about −0.03. Numerical simulations

predict that, despite the presence of intrinsic qubit decay
sources (nonzero �1,j , γ ↑

j , and γ
↓
j ), the system subse-

quently reaches a steady state with Kzz ≈ −0.025. While
this negative correlation value may seem puzzling at
first, it may be readily understood from the steady state
obtained numerically, which contains significant coher-
ences between |+x, −x〉 and |−x, +x〉: in turn, this is due
to the exchange of dressed qubit excitations mediated by
the common source of photon noise.

IV. DEMONSTRATION OF TWO-QUBIT
QUANTUM NOISE SPECTROSCOPY

In Sec. III, we experimentally verified the presence of
correlated photon shot noise and measured its parame-
ters, enabling us to calibrate the qubits’ engineered noise
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environment. We now discuss the realization of our key
objective: demonstrating the experimental noise spec-
troscopy and reconstruction of the two-qubit noise spectra
in the presence of this engineered noise. For the purposes
of this section, both the functional form of the engineered
noise spectra and the noise strength are presumed to be
unknown. We use the noise spectroscopy protocol to deter-
mine the self- and cross-spectra that determine our qubits’
dynamics in the presence of this “unknown” noise, and
then compare our measured results with the known spectra
to see how well our protocol performs.

A. Experimental nonidealities

To produce engineered noise with known spectra, we
use a microwave tone to give n = 0.127. Setting the
Stark-shifted resonator-drive detuning with both qubits in
their ground state to �(00)

c /2π = 2.05 MHz results in a
Lorentzian spectrum peaked at angular frequency −�c,
with �c/2π = �(00)

c + χ1 + χ2 = 2π × 1.961 MHz. To
produce the experimental data needed to reconstruct these
spectra, we apply the two-qubit spin-locking sequence
illustrated in Fig. 2(a) and Figs. 5(a) and 5(b), by letting
�1 ≈ �2 ≈ � ≡ (�1 +�2)/2 to have both qubits sample
the spectrum at ω = �, thereby maximizing the sensitiv-
ity to the noise spatial correlations. We perform a total
of 26 spin-locking experiments, between which the Rabi
frequency�/2π is swept through 26 values uniformly dis-
tributed to probe the Lorentzian peak from −2.2 to −1.8
MHz, along with the corresponding positive frequencies
from 1.8 to 2.2 MHz. In the spin-locking experiments,
we use the 4 initial states, 11 observables, and 26 evolu-
tion times given in Table II. To obtain the sample means
of the observables, we average over M = 104 simulta-
neous projective measurements of all nine combinations
of Pauli matrices τ �1

1 and τ �2
2 , �1, �2 ∈ {x, y, z}, thus per-

forming two-qubit state tomography for each data point
[59].

After completing all the spin-locking experiments, we
condense the tomography data into sample means of pro-
jective measurements of single-qubit observables τ z

j , j ∈
{1, 2}, and two-qubit observables of the form K�1�2 ≡ τ

�1
1

τ
�2
2 − τ

�1
1 τ

�2
2 , �1, �2 ∈ {x, y, z}, along with corresponding

TABLE II. Spin-locking control and measurement settings for
noise spectroscopy. The two-qubit observables are given by
K�1�2 = τ

�1
1 τ

�2
2 − τ

�1
1 τ

�2
2 , where {τ �j }, � ∈ {x, y, z}, is the set of

Pauli matrices for the dressed qubit j and the bar indicates a
sample mean over M = 104 projective measurements.

Initial states |ψs〉 |+x, +x〉, |+x, −x〉,
|−x, +x〉, |−x, −x〉

Observables Or τ z
1 , τ z

2 , {K�1�2}, �1, �2 ∈ {x, y, z}
Evolution times tq (μs) 1, 3, 5, . . . , 11, 16, 21, 26, . . . ,

71, 81, . . . , 151

standard deviations. To accurately reconstruct the engi-
neered noise spectra, we find that the ME derived in
Sec. II A under pure-dephasing noise (in the lab frame) and
used for nonlinear regression in the procedure described in
Sec. II B must be adapted to two types of nonidealities in
our cQED setting.

(i) Finite Rabi-frequency difference.—In Sec. II A, we
assumed that�1 = �2 to arrive at the reduced ME, Eq. (8).
Experimentally, however, we observe that the amplitude
of the spin-locking drives can drift over a timescale of
a few hours, most plausibly due to drifts in electronics,
thus making δ� ≡ �1 −�2 �= 0. As a consequence, in
the interaction picture with respect to H ′

S [explicitly given
below Eq. (4)], terms involving cross-spectra in Eq. (8)
oscillate at frequency δ�, which significantly suppresses
their influence over times � 1/δ� (see Appendix A 3).
This biases any estimate of the spectra based on Eq. (8).

(ii) Relaxation noise.—Although the engineered dephas-
ing mechanism used in this experiment is made dominant
by applying a sufficiently strong resonator drive so that n
is large, superconducting qubits always suffer from sig-
nificant intrinsic noise coupling to σ x

j . This leads to T1
relaxation (e.g., from Purcell decay [60]) in the lab frame.
Such noise has distinct dynamical effects that are not cap-
tured by Eq. (8), and thus biases any estimates of Sjk(ω)

based on Eq. (8) with respect to their true physical value.

It is possible to simultaneously account for both types of
nonidealities by suitably modifying the generic ME in the
following way (see Appendix A 3 for a derivation):

ρ̇(t) = − i
2

[(�+ δ�/2)τ z
1 + (�− δ�/2)τ z

2 , ρ(t)]

+
∑

jk

Ljkρ(t)+ 1
4

∑
j

�1,j (D[τ z
j ] + D[τ+

j ]

+ D[τ−
j ]) ρ(t). (21)

Here � is now defined as the average Rabi frequency,
� ≡ (�1 +�2)/2, and, in addition to the superoperators
for correlated dephasing noise we previously introduced
[Eq. (9)], we have �1,j ≡ 1/T(j )1 with T(j )1 being the longi-
tudinal relaxation time of qubit j in the lab frame (without
spin-locking drives). We then apply the spectral recon-
struction procedure described in Sec. II B, with the excep-
tion that Eq. (21) is used in lieu of Eq. (8) in the calculation
of expectation values involved in the nonlinear regression
procedure, Eq. (12).

In comparison with Eq. (8), the modified ME in Eq. (21)
involves three additional parameters: T(1)1 , T(2)1 , and δ�.
While the longitudinal relaxation times are known from
prior characterization of the qubits in the lab frame (Table
I), the Rabi-frequency differences are due to slow random
drifts, and cannot be known in advance. However, δ�
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can be accounted for as an additional unknown parame-
ter in the estimation scheme; formally, we simply replace
S → θ ≡ [S, δ�] in Eq. (13) and simultaneously estimate
S and δ�. In this approach, we thus assume that δ� is a
constant parameter for a given reconstruction at target Rabi
frequency �, but allow δ� to vary between spin-locking
experiments aiming to reconstruct spectra about distinct
target Rabi frequencies, thus modeling slow, quasistatic
Rabi-frequency drifts.

B. Spectral estimation results

In Fig. 6, we summarize the results of the spectral
reconstruction procedure described above, using a spec-
trum vector that is uniform across its components, S� =
1 kHz for all � and δ� = 0, respectively, as initial guesses
for the nonlinear regression technique we employ. In
Figs. 6(a)–6(c), we show examples of experimentally

measured decay curves with the dressed qubits initial-
ized in state |+x, +x〉 for �/2π = 2.184 MHz (blue cir-
cles) and �/2π = 1.976 MHz (orange circles) for three
of the eleven observables given in Table II. The fitted
decay curves are shown by solid lines of correspond-
ing color, and display reasonable agreement with data.
The spectra that follow from this robust estimation pro-
cedure are shown in Fig. 6(d), in which the gray error
bars indicate the 95% confidence intervals derived from the
asymptotic statistics of M -estimators (Appendix B). These
reconstructions are compared with shaded orange areas
representing 95% confidence intervals for the theoretical
shot-noise spectra [Eq. (15)], using estimates for χ1, χ2,
n, and κ obtained as explained in Sec. III. The four exper-
imental reconstructions clearly capture the asymmetry of
the two-qubit spectra arising from the noncommuting
nature of the noise operator, and qualitatively reproduce
the Lorentzian shape associated with photon shot noise.

(a)

(d)

(b) (c)

FIG. 6. Two-qubit quantum noise spectroscopy. (a)–(c) Representative decay curves from experimental data (circles) and the corre-
sponding solution of the reduced ME (solid lines), Eq. (21), with estimates for the spectra Sjk(±�), j , k ∈ {1, 2}, and Rabi-frequency
difference δ� = �1 −�2 obtained by nonlinear regression. The sample means are obtained with the two dressed qubits initially pre-
pared in state |+x, +x〉, and driven at the average Rabi frequency � = (�1 +�2)/2 = 2π × 2.184 MHz (blue circles) or 1.976 MHz
(orange circles). Using the Huber loss function [Eq. (14)] makes the fitting procedure robust to outliers visible in the data [e.g., the
seventh orange data point in (a)]. (d) Reconstructed two-qubit spectra. Error bars indicate 95% confidence intervals for the experi-
mental reconstructions. Shaded orange areas indicate 95% confidence intervals associated with the ideal spectra for engineered photon
shot noise obtained from Eq. (15), with parameters taken from fits described in Sec. III: κ/2π = 198 kHz, χ1/2π = −29.1 kHz,
χ2/2π = −59.5 kHz,�c/2π = 1.961 MHz, n = 0.127. Blue circles indicate numerical simulation of the spectroscopy protocol using
the quantum-optical ME in Eqs. (18)–(20). Inset of the bottom-right panel: Rabi-frequency difference δ�.
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Remarkably, this includes a reconstruction of the cross-
spectrum S12(ω) that characterizes spatial correlations of
the noise.

To produce the reconstructions shown in Fig. 6, we con-
sidered all initial states, evolution times, and observables
given in Table II in a global fit defined by the M -estimator
given by Eq. (13) with S replaced by θ . To minimize the
total cost function in Eq. (13) numerically, we employed
the least-squares optimization routine of the SciPy pack-
age, which implements a trust-region reflective algorithm
that allows the use of arbitrary loss functions [61]. While
the quadratic loss function is the most standard in non-
linear regression, we find that, owing to the significant
presence of outliers in the experimental data, quadratic
loss leads to fitted decay curves that can deviate from the
large majority of experimental observations. To mitigate
this adverse behavior, we thus perform robust estimation
using the Huber loss function, Eq. (14), in which we set
the tuning parameter δ0 = 1, leading to less noisy recon-
structions and significantly better agreement between fitted
decay curves and experimental data (see Appendix C for
further discussion). This result showcases the advantage of
robust estimation strategies over traditional weighted least-
square estimates in a quantum noise spectroscopy context.
Indeed, for each of the 26 Rabi frequencies considered
here, the current approach involves, as mentioned, 4 initial
states, 11 observables, and 26 evolution times, for a total
of 29 744 data points. For such a large dataset, systemati-
cally identifying, explaining, and eliminating outliers in an
experimental setting would represent, at best, an extremely
tedious and impractical task.

Though the reconstructed and predicted spectra agree
within error bars for several frequency values, statisti-
cally significant deviations are also observed. In particular,
the reconstructed spectra are larger than predicted by an
amount � 10 kHz for wide ranges of frequencies. To
investigate the physical origin of this discrepancy, we
first simulate the spectroscopy procedure by solving the
coupled evolution of the two qubits and the driven res-
onator mode using the full quantum-optical ME defined by
Eqs. (18)–(20), setting γ ↑

j = γ
↓
j = 0 for all j and �1 =

�2 = �. We then employ the resulting density matrix
to calculate the probabilities of all relevant measurement
outcomes, and use these probabilities to produce 10 000
simulated projective measurements for each data point
measured experimentally. The resulting decay curves are
then fitted using the approach presented in Sec. II, produc-
ing the spectrum estimates illustrated by the blue circles
in Fig. 6. A small discrepancy with the ideal spectra for
the same shot-noise parameters then arises because the
assumptions used to arrive at the reduced ME for two-qubit
evolution are only valid in an approximate sense. In par-
ticular, noise may not be sufficiently weak, and the filters
for finite evolution time may not be sufficiently narrow for
Eq. (21) to hold exactly. Nevertheless, this discrepancy

remains too small to explain the excess noise measured
experimentally.

To attempt to explain the observed discrepancies, we
invoke nonidealities that, taken together, may help to better
understand our experimental results. First, native dephas-
ing noise sources (in addition to engineered shot noise)
may couple to the qubits via σ z

j . We expect the spectrum
of this excess noise to add up with engineered noise in
the spectra Sjk(ω) appearing in Eq. (9); such noise would
thus also be measured by our protocol. The presence of
intrinsic noise would be consistent with the numerical fits
performed in Sec. III B, which yielded decay rates between
2 × 103 and 14 × 103 rad/s, phenomenologically account-
ing for spatially uncorrelated noise along σ z

j . In addition,
characterization of the qubits without engineered noise led
to T2 values significantly shorter than 2T1 (see Table I).
Native dephasing noise may arise from a combination of
residual thermal photons in the readout resonators [32]
with sources of noise intrinsic to transmon qubits, such as
two-level fluctuators. In particular, the EJ /EC ratios in our
sample, which determine the sensitivity of the transmon
frequency to charge noise, are 28 for qubit 1 and 45 for
qubit 2. These are well below the value of 50 normally
associated with transmon devices [62,63].

We also observe that Rabi frequencies significantly drift
during the 24 h needed to complete all the spin-locking
experiments. Indeed, the inset of the bottom-right panel of
Fig. 6 shows that a Rabi-frequency difference δ�/2π ∼
50 kHz builds up as the target value of �/2π is swept
from 1.8 to 2.2 MHz, most plausibly due to drifts in
electronics. It is thus very likely that the average Rabi
frequency �/2π ≡ (�1 +�2)/2 defining the frequency
at which the spectrum is reconstructed drifts by a similar
quantity. In addition, both T1 and T2 are known to fluctu-
ate significantly under noise processes that naturally occur
in superconducting qubits [64,65]. These combined effects
may thus explain the apparent shift of some reconstructed
spectrum values away from the predicted Lorentzians.

Finally, the two reconstructed values of S22(ω) at fre-
quencies nearest to ω/2π = −1.8 MHz deviate signifi-
cantly from predictions. For these Rabi frequencies, we
find that the nonlinear regression fails to produce a good fit
to the experimental decay curves. We attribute this effect to
the weakness of the engineered noise source at these fre-
quencies, leading to a poor signal-to-noise ratio in the mea-
sured dynamics that prevents convergence of the nonlinear
regression to the correct spectrum values. By artificially
down-weighting the residuals associated with two-qubit
observables in the loss function, we are able to achieve a
more accurate reconstruction of the self-spectra for these
frequencies; however, this comes at the expense of an inac-
curate reconstruction of the cross-spectrum. To achieve
simultaneously accurate reconstructions of all spectra far
from the peak frequency, it is possible in principle to
perform more projective measurements to increase signal
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to noise and thus ease the convergence of the nonlinear
regression procedure into a physically meaningful global
minimum.

V. BROADER APPLICABILITY

A. Extensions to different two-qubit settings

In addition to different types of superconducting-qubit
circuits, the spectroscopy protocol introduced here is appli-
cable to virtually every other qubit platform that can
support continuous driving and simultaneous single-qubit
readout—in particular, trapped ions, N-V centers, and spin
qubits in semiconductors. Indeed, we may expect smaller
footprint and higher qubit proximity to naturally expose
nearby spin qubits in N-V centers, donor impurities, or
quantum dots to shared, highly correlated noise sources
(e.g., due to nuclear spins or two-level fluctuators), as indi-
cated by recent experiments [39,40]. In particular, for spin
qubits in semiconductors, T1 is typically many orders of
magnitude larger than T2 (Chan et al. [35], for instance,
reported T1 ≈ 1 s and T∗

2 = 33 μs), so that the protocol
presented in Sec. II may be directly applied to investi-
gate correlated noise sources in the megahertz frequency
scale, which is inaccessible to pulsed noise spectroscopy
methods previously applied in these systems [35,66].

In addition, the numerical approach taken here, in which
the solution of a ME that depends upon the spectra of
interest is fitted to experimental data, offers substantial
flexibility in terms of both accommodating system-specific
features and of further extending the approach. This flexi-
bility enabled us to quantitatively account for nonidealities
of our experimental platform in a straightforward man-
ner, by simply modifying the original ME to include T1
effects and Rabi-frequency drifts. While, as remarked, the
present approach is developed under a rather generic set
of assumptions on the target noise (i.e., that the latter is
sufficiently weak, stationary, and predominantly dephasing
in nature), generalized spin-locking protocols may also be
anticipated under even less restrictive noise assumptions.
In particular, in situations where T1 and T2 are compara-
ble, the spectra of noise contributing to both dephasing
and relaxation effects may be simultaneously reconstructed
by leveraging a representation of the noise process in
terms of its “spherical components” [52] and by fitting
the solution of an appropriate ME to expectation val-
ues measured in a set of spin-locking experiments [67].
Likewise, by pushing the derivation of the TCL ME we
present in Appendix A 1 to a higher order, it may be possi-
ble to extend the spin-locking technique to characterizing
non-Gaussian noise (e.g., by reconstructing the noise bis-
pectrum [50,51])—including nonclassical noise regimes
that are attracting increasing attention [68]. Altogether,
the simplicity of the continuous-wave approach compared
with existing pulsed schemes, combined with the ease of
application of our robust estimation technique in situations

where only numerical solutions of qubit dynamics are
available, would also facilitate extension to multiqubit
scenarios.

B. Scalability considerations

In the current era of “noisy intermediate-scale quantum”
devices [8], extensibility of methods for characterizing
realistic noise effects—at both the circuit and, as in noise
spectroscopy, the physical level—to systems containing
tens of qubits (or more) is a key issue and, as yet, a
major outstanding challenge. While scalable gate-based
randomized techniques exist for efficiently characteriz-
ing Markovian noise (notably, cycle benchmarking [69]),
no similar method is presently known for colored, non-
Markovian correlated noise as we consider here, and a
detailed discussion of this (open) problem is well beyond
our present scope.

We stress, however, that the ability to characterize
(single- and) two-qubit spectra and, from there, two-
point noise correlation functions, can be seen as a
“primitive”—both for testing fundamental aspects of quan-
tum fault-tolerance theory, as noted in the Introduction, but
also for tackling the characterization of correlated, non-
Markovian errors in larger arrays of physical or, eventu-
ally, logical qubits. Clearly, as the system size grows, a full
characterization of all possible noise correlations is neither
feasible nor useful to begin with. In view of that, develop-
ing scalable approaches will necessarily entail identifying
reduced-complexity models for the noise, for instance by
use of statistical learning approaches [70,71]. Crucially, in
addition to detecting and characterizing correlated errors
due to environmental, background noise, a complete char-
acterization suite should also characterize control noise
and various forms of cross-talk errors—e.g., arising from
“pulse spillover” or spurious qubit couplings [72–74]—so
as to ultimately include all sources of correlated errors that
may impact quantum fault tolerance.

Finally, another important consideration when scaling
up to larger qubit systems is efficiency: each spectroscopy
protocol should be designed to require as few experi-
mental steps as possible. To this end, numerical exper-
iments on two-qubit noise spectroscopy with simulated
noise (not presented here) showed that the full two-qubit
state tomography we performed in the experiment for
each data point is not needed in principle. Although more
extensive investigation and systematic analysis would be
desirable to identify a minimal set of observables and ini-
tial states needed for spectral reconstructions, as few as
eight combinations of initial states and observables suf-
ficed in simulations, a significant improvement over the
44 such combinations that are used in the experiment.
In addition, when available, entangled initial states may
help to further improve efficiency by boosting signal to
noise in measurements of the two-qubit observables used
to reconstruct the self- and cross-spectra [42].

010305-14



TWO-QUBIT SPECTROSCOPY OF SPATIOTEMPORALLY... PRX QUANTUM 1, 010305 (2020)

VI. CONCLUSION

We propose a protocol for two-qubit spectroscopy of
spatially and temporally correlated dephasing noise and
demonstrate it with an engineered source of photon shot
noise in a superconducting-qubit architecture. Despite the
complexity of the two-qubit dynamics and the resulting
estimation problem in the presence of both nonclassical
self- and cross-correlation spectra, we are able to success-
fully extend the spin-locking technique previously used on
a single qubit to the two-qubit setting. This enables us to
demonstrate an experimental reconstruction of a two-qubit
noise cross-spectrum.

Our approach offers several advantages over avail-
able proposals for two-qubit spectroscopy. Indeed, our
continuous-wave protocol avoids the experimental issues
arising from long tailored sequences of nearly instan-
taneous pulses that are typically required in comb-
based dynamical-decoupling spectroscopy [41]; it does not
require two-qubit gates or entangled initial qubit states;
and it allows one to probe noise in a megahertz frequency
scale that is difficult to access with pulsed techniques. In
addition, as we argued above, our work has significant
potential for further extensions beyond the present setting.
In particular, since the engineered noise source we inves-
tigate here, photon shot noise, is genuinely non-Gaussian,
increasing its strength should enable one to use high-order
spectral estimation techniques [50,51] to investigate a non-
Gaussian quantum environment and probe distinctive non-
classical features [68]. As noise spectroscopy methods will
continue to grow in complexity and generality, more elab-
orate measurements and larger experimental data sets will
also be more likely to contain outliers. We thus envision
that robust estimation strategies based on M -estimators, as
we demonstrate here, will become increasingly needed and
prove useful for quantum sensing applications.
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APPENDIX A: DERIVATION OF THE GENERIC
MASTER EQUATIONS

In order for our presentation to be self-contained, in
this appendix we derive the generic MEs presented in
the main text, Eqs. (8) and (21), using a standard TCL

approach [47]. We first derive the ME in the ideal setting in
which noise only couples to σ z

j , j ∈ {1, 2}. We then eval-
uate the relevant spectra for the cQED system considered
in the main text. Finally, we derive a modified ME that
accounts for nonidealities that are particularly relevant to
our experimental setting.

1. Master equation for noise along σ z
j only

The TCL formalism enables the systematic derivation of
a ME for a system of interest S coupled to a bath B by trac-
ing out the bath’s degrees of freedom. Though the method
presented here is more general, to apply the TCL formal-
ism to the cQED system studied experimentally in Secs. III
and IV, we assume that the bath B may be separated into
two components: a central bath labeled by C, correspond-
ing to a mode of the microwave resonator shared by the
two qubits in the main text, and a larger external bath
labeled by E, corresponding to the environment of the
resonator mode in the main text. While the central bath
couples to the system, the external bath only couples to
the central bath; its effect is to allow nonunitary evolution
of the central bath even in the absence of coupling to the
system. In our cQED context, this allows us to describe
damping of the microwave resonator. While this damping
is modeled as Markovian, no Markovian approximation
is invoked in describing the coupling between the qubits
to the resonator itself. Beyond the current setting, such
“structured environments” can naturally arise, for instance,
for qubits coupled to two-level charge fluctuators undergo-
ing incoherent transitions due to an electronic or phononic
reservoir [49,75].

More formally, let the system-bath Hamiltonian be

H = HS + HSB + HC + HCE + HE︸ ︷︷ ︸
≡HB

, (A1)

where HSB ≡ HSC ≡ ∑
j Bj Qj describes coupling between

qubit j and C through the qubit operator Qj and the central-
bath operator Bj . Moving to the interaction picture with
respect to HS + HB, we have

H̃SB(t) =
∑

j

B̃j (t)Q̃j (t), (A2)

where the transformed operators B̃j (t) ≡ eiHBtBj e−iHBt and
Q̃j (t) ≡ eiHStQj e−iHSt. To derive a TCL ME describing the
reduced evolution of the qubit system only, we introduce
the projection superoperator P that projects any density
matrix ρ onto the relevant (system) part of the Hilbert
space; that is, Pρ ≡ TrB[ρ] ⊗ ρB, where the trace is taken
over both central and external baths and ρB is the joint
initial state of C and E. A complementary projection super-
operator Q on the irrelevant part of the density matrix is
then also defined by Q ≡ I − P , where I is the identity
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superoperator, Iρ ≡ ρ. As customary, we assume that the
density matrix ρtot(0) describing the joint initial state of
the system and the bath is of the form ρtot(0) = ρ(0)⊗ ρB,
where ρ(0) is the initial density matrix of S. Further assum-
ing that coupling between the system and the central bath is
sufficiently weak, the TCL ME may be truncated at second
order, leading to

∂

∂t
P ρ̃tot(t) = K(t)P ρ̃tot(t). (A3)

Here, ρ̃tot(t) denotes the joint interaction-picture density
matrix of the system, central and external baths at time t,
and K(t) is the second-order TCL generator given by

K(t) =
∫ t

0
dsPL(t)QL(s)P (A4)

with L(t)ρ ≡ −i[H̃SB(t), ρ] defining the Liouvillian super-
operator associated with H̃SB(t). Importantly, Eqs. (A3)
and (A4) are valid when PL(t)P = 0 for all t, a property
that is satisfied when TrB[B̃j (t)ρB] = 0, i.e., for noise with
vanishing mean in state ρB.

Under the above assumption, substituting Eq. (A2) into
Eq. (A4) and tracing over both central and external baths
produces the integro-differential equation

˙̃ρ(t) =
∑

jk

∫ t

0
ds{Cjk(t, s)[Q̃k(s)ρ̃(t)Q̃j (t)

− Q̃j (t)Q̃k(s)ρ̃(t)] + Ckj (s, t)[Q̃j (t)ρ̃(t)Q̃k(s)

− ρ̃(t)Q̃k(s)Q̃j (t)]}, (A5)

which describes evolution of the reduced density matrix of
S, ρ̃(t) ≡ TrBρ̃tot(t), in terms of the two-point correlation
functions

Cjk(t, s) ≡ 〈B̃j (t)B̃k(s)〉B ≡ TrB[B̃j (t)B̃k(s)ρB] (A6)

= TrB[B̃j (t − s)B̃k(0)ρB] ≡ Cjk(t − s). (A7)

Equality between Eqs. (A6) and (A7) is only respected
when noise arising from the central and external baths

is stationary, so that correlation functions are invariant
under time translations. Noting that B̃j (t) = eiHBtBj e−iHBt

is formally equivalent to the Heisenberg-picture evolu-
tion of Bj under the Hamiltonian HB of the bath only,
Cjk(t, s) is independent of the evolution of the system. Sta-
tionarity then arises in the following two situations, the
second situation being the most relevant to this paper.
(i) The initial density matrix of the bath commutes with
HB, [HB, ρB] = 0. (ii) Evolution of the reduced density
matrix of the central bath in the absence of the system,
namely,

ρC(t) ≡ TrE[ρB(t)] ≡ TrE[e−iHBtρBeiHBt],

is accurately described by a ME of the form ρ̇C(t) =
LCρC(t), where LC is a Markovian (Lindblad) superoper-
ator acting on C only. This is the case, for example, when
the central and external baths are initially in a product state,
ρB = ρC(0)⊗ ρE(0), and C is sufficiently weakly coupled
to an external bath containing enough degrees of freedom
for the Born-Markov approximation to hold. The desired
correlation function Cjk(t, s) is then given by the follow-
ing expression of multitime averages for evolution under a
Markovian ME [76]:

Cjk(t, s) =
{

TrC[Bj eLC(t−s)BkeLCsρC(0)], t ≥ s,
TrC[BkeLC(s−t){eLCtρC(0)}Bj ], t < s.

(A8)

Further assuming that the initial state of the central bath is
a steady state of the ME, LCρC(0) = 0, then directly leads
to a correlation function respecting Eq. (A7), and thus to
stationary noise.

For stationary noise, Eq. (A5) can be rewritten in the
frequency domain as

˙̃ρ(t) = 1
2π

∑
jk

∫ ∞

−∞
dω ϒ̃jk(ω, t)ρ̃(t), (A9)

where the integration kernel ϒ̃jk(ω, t) is given by

ϒ̃jk(ω, t)ρ ≡
∫ t

0
dτeiωτ {Sjk(ω)[Q̃k(t − τ)ρQ̃j (t)− Q̃j (t)Q̃k(t − τ)ρ] + Skj (−ω)[Q̃j (t)ρQ̃k(t − τ)− ρQ̃k(t − τ)Q̃j (t)]}.

(A10)

To describe spin locking, we replace HS → H ′
S and Qj → −τ x

j in Q̃j (t) = eiHStQj e−iHSt with H ′
S given by Eq. (7), lead-

ing to Q̃j (t) = −(ei�j tτ+
j + H.c.). Substituting this into Eq. (A10), we obtain terms oscillating at angular frequencies

|�j −�k| and �j +�k. Assuming that (�j +�k)tD 
 1 for all j , k, where tD is the typical timescale over which qubit
observables decay, we neglect terms oscillating with �j +�k by invoking a secular approximation [47]. This leads to the
simplified expression
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ϒ̃jk(ω, t)ρ ≈ ei�jk t{[Sjk(ω)F(ω +�k)+ Sjk(−ω)F(ω −�j )]τ−
k ρτ

+
j − Sjk(ω)F(ω +�k)τ

+
j τ

−
k ρ

− Sjk(−ω)F(ω −�j )ρτ
+
j τ

−
k } + e−i�jk t{[Sjk(ω)F(ω −�k)+ Sjk(−ω)F(ω +�j )]τ+

k ρτ
−
j

− Sjk(ω)F(ω −�k)τ
−
j τ

+
k ρ − Sjk(−ω)F(ω +�j )ρτ

−
j τ

+
k }, (A11)

where �jk ≡ �j −�k and F(ω) ≡ ∫ t
0 ds eiωs is the first-

order fundamental filter function for free-induction decay
[77]. Crucially, for finite time, F(ω ±�j ) is peaked
around ω = ∓�j with a width of approximately 1/t and
thus acts as a bandpass filter for the noise spectra in
the integral over frequencies, Eq. (A9). Assuming that
all spectra vary negligibly over this passband, we replace
F(ω) by its infinite-time limit in the sense of distributions,
limt→∞ F(ω) = πδ(ω), which gives

˙̃ρ(t) ≈
∑

jk

(ei�jk tL−
jk + e−i�jk tL+

jk)ρ̃(t), (A12)

L±
jkρ ≡ 1

2
{[Sjk(±�k)+ Sjk(±�j )]τ±

k ρτ
∓
j

− Sjk(±�k)τ
∓
j τ

±
k ρ − Sjk(±�j )ρτ

∓
j τ

±
k }. (A13)

Moving back to the spin-locking reference frame, which
rotates at the qubit drive frequencies [see the discussion
above Eq. (4)], and taking �1 = �2 then results in Eq. (8)
in the main text, which provides the theoretical basis of the
spectroscopy method we presented.

2. Photon shot-noise spectra

We now apply the theory described in Appendix A 1 to
the cQED experimental setting considered in the main text
(see Fig. 3). In this setting, S comprises a pair of qubits
encoded by the two lowest energy levels of transmons.
The two qubits are coupled to a central bath consisting
of a microwave resonator mode, which is itself subject
to damping due to an external environment. We manipu-
late the qubits and the central bath by irradiating the input
port of the common resonator with microwave drives.
A continuous microwave drive with strength ε is first
applied at frequency ωd near the fundamental resonator
mode frequency ωc, in order to bring the mode into a
coherent steady state. An additional pair of drives is then
employed to initialize the qubits and measure their final
state using the dispersive readout. Most importantly for
this work, between initialization and readout, continuous
spin-locking drives are also applied on each qubit j with
constant strength �j at frequency ωdj near the bare qubit
frequency ω0

qj .
To describe the above experiment theoretically, we con-

sider the sample parameters given in Table I, enabling us
to make several simplifying assumptions. First, we assume
that the qubit-resonator detunings�j ≡ ω0

qj − ωc are large

compared with: (i) ε and �j , enabling us to neglect any
cross-talk effect of the resonator drive on the qubits and
of the qubit drives on the resonator; and (ii) the qubit-
resonator coupling strengths gj , such that the two-qubit
dispersive Hamiltonian can be employed [56]. Second,
we also assume that the qubit-qubit detuning ωq1 − ωq2 is
much larger than the strength of any interaction between
the qubits, for example mediated by virtual transitions with
the resonator [78]. We then model the two qubits, the
resonator mode, and its environment with the Hamiltonian

HQCE(t) =
∑
j =1,2

[
ωqj

2
σ z

j +�j cos(ωdj t)σ x
j + χj a†aσ z

j

]

+ ωca†a + 2ε cos(ωdt)(a + a†)+ HCE + HE ,
(A14)

where χj ≡ g2
j /�j is the dispersive coupling strength

between qubit j and the resonator mode with annihila-
tion and creation operators a and a†, and ωqj = ω0

qj + χj
is the Lamb-shifted qubit frequency. In Eq. (A14), HCE is
the Hamiltonian that describes coupling of the resonator
mode with an external environment with free Hamiltonian
HE . Typically, this environment is modeled by an ensem-
ble of harmonic oscillators corresponding to the modes
of the free electromagnetic field or phonons by taking
HE = ∑

k ωkb†
kbk and HCE = ∑

k vka†bk + H.c., where ωk
and vk are the frequency and coupling strength of the envi-
ronmental mode k, whose excitations are annihilated by the
bosonic operator bk [55].

We next move to the frame that rotates at the drive
frequencies using the unitary transformation

Rd(t) = exp
[

− iωdt a†a − i
∑

j

ωdj t
2
σ z

j

]
. (A15)

This transformation produces terms oscillating at frequen-
cies 2ωd and 2ωdj , which we neglect under the RWA,
assuming that ε � ωd and �j � ωdj . In the rotating
frame, the total Hamiltonian for the qubits, resonator, and
environment is then given by Eq. (A1), in which

HS → H ′
S = 1

2

∑
j

(�′
qj σ

z
j +�j σ

x
j ), (A16)
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HSB → H ′
SB =

∑
j

Bj σ
z
j , (A17)

HB → H ′
B(t) = �ca†a + ε(a + a†)+ H ′

CE(t)+ HE ,
(A18)

and where we have taken

�′
qj ≡ �qj + 2χj n, Bj ≡ χj (a†a − n). (A19)

In Eq. (A18), �qj ≡ ωqj − ωdj and �c ≡ ωc − ωd are the
detunings of the qubit and resonator drives, respectively,
and H ′

CE(t) ≡ R†
d(t)HCERd(t) = ∑

k vka†bkeiωdt + H.c. is
the interaction-picture coupling between the resonator and
its external environment. In addition, to arrive at a noise
operator Bj that has zero mean in the initial state, we
have added and subtracted the term

∑
j χj nσ z

j in H ′
S and

H ′
SB, respectively, where n ≡ 〈a†a(0)〉 is the average pho-

ton number in the initial state of the resonator. In this
approach, the mean of the noise is captured by the Stark
shift 2χj n of each qubit j in Eq. (A19) for �′

qj . Assuming
that this shift is measured with sufficient accuracy, we set
�qj = −2χj n, leading to �′

qj = 0 for all j in Eq. (A16).
In the spin-locking basis, Eqs. (A16) and (A17) then take
the form of Eq. (7) we have taken in the derivations of
Appendix A 1.

We now follow the steps laid down in Appendix A 1
to obtain the generic ME for the qubits. In Eq. (A2),
we consider the interaction-picture bath operator B̃j (t) =
R†

B(t)Bj RB(t), where RB(t) = T exp[−i
∫ t

0 ds H ′
B(s)] is the

evolution operator under H ′
B(t) given in Eq. (A18), with

T denoting time ordering. For weak coupling between
the resonator mode and an environment consisting of a
large number of degrees of freedom, the Born-Markov
approximation may be invoked, following which reduced
evolution of any central bath (resonator) operator under
RB(t) is approximated by solving the Lindblad ME [55,79],

ρ̇C(t) = LCρC(t), (A20)

LCρ ≡ −i[�ca†a + ε(a + a†), ρ] + κD[a]ρ. (A21)

Assuming that the resonator couples to a continuum of
environmental modes, the resonator damping rate appear-
ing in Eq. (A21) is given by κ = 2πD(ωc)|v(ωc)|2, where
D(ω) and v(ω) are the frequency-dependent density of
modes and coupling strength of the external environment,
respectively. We also assume that the resonator drive is
applied since time t0 � −1/κ so that, at t = 0, the res-
onator mode has reached a steady state defined by ρ̇C(t) =
0, in which noise is stationary. In this limit, Eq. (A20)
is easily solved to give n = 〈a†a(0)〉 = ε2/[(κ/2)2 +�2

c].
Substituting Eq. (A20) into Eq. (A8), we may evaluate the
central bath correlation functions Cjk(t, s). In practice, to

evaluate these correlators, we find that it is easier to use the
equivalent quantum regression theorem [76]. This results
in [25,56]

Cjk(t) = χjχk[〈a†a(t)a†a(0)〉 − n2]

= χjχkne−κ|t|/2−i�ct. (A22)

Fourier transforming this correlation function then yields
the shot-noise spectra given by Eq. (15).

3. Rabi-frequency difference and qubit relaxation

In Sec. II A and Appendix A 1, we considered an ideal
setting in which noise only couples to σ z

j , j ∈ {1, 2}. In
addition, we took the Rabi frequencies for the two spin-
locking drives to be exactly equal, �1 = �2 ≡ �. Here,
we derive Eq. (21), which accounts for both a finite
Rabi-frequency difference (�1 �= �2) and noise coupling
to the qubits off-axis, via σ x

j , j ∈ {1, 2}. Throughout this
appendix, we assume that the Rabi frequencies �1 and �2
are approximately time independent within any measure-
ment of decay curves for a given target Rabi frequency �,
even though �1 and �2 are allowed to undergo small ran-
dom fluctuations between distinct sets of measurements at
different target values of �.

To derive the ME, we follow the same steps as in
Appendix A 1, but replace HSB by H x

SB(t) ≡ ∑
j [Bj Qj +

Bx
j Qx

j (t)] in the definition of the system-bath Hamilto-
nian, below Eq. (A1). In contrast with HSB, H x

SB includes
an additional central-bath operator Bx

j that couples to the
system through Qx

j (t). To describe T1 effects, we take
Qx

j (t) to be σ x
j in the frame corotating with the qubit

drives, Qx
j (t) ≡ σ+

j eiωdj t + H.c. Moving to the interaction
picture with respect to HS + HB as above, Eq. (A2) is then
replaced by

H̃ x
SB(t) =

∑
j

[B̃j (t)Q̃j (t)+ B̃x
j (t)Q̃

x
j (t)]. (A23)

Taking HS → H ′
S, with H ′

S given by Eq. (7), Q̃x
j (t) ≡

eiHStQx
j (t)e

−iHSt becomes, in the spin-locking basis,

Q̃x
j (t) = 1

2
[ei(�j +ωqj )t − ei(�j −ωqj )t]τ+

j + H.c.

+ cos(ωqj t)τ z
j , (A24)

where we have taken ωdj = ωqj for all j . We assume that
〈B̃x

j (t)〉 = TrB[B̃x
j (t)ρB(0)] = 0 for all t and that all cross-

correlations involving any B̃x
j (t) vanish: 〈B̃x

1(t1)B̃
x
2(t2)〉 =

〈B̃x
j (t1)B̃k(t2)〉 = 0 for all j , k, t1, t2. We also assume that

noise due to B̃x
j (t) is stationary, and derive a TCL ME

for H̃ x
SB(t) similar to Eqs. (A9) and (A10), but in which

several additional terms due to B̃x
j (t) and Q̃x

j (t) arise.
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Among these terms, some oscillate with angular frequen-
cies �j and ωqj ±�j . Since we must have �j � ωqj
for all j (which we assumed in Sec. II A to arrive at
Eq. (5) within the RWA), we may neglect these fast oscil-
lating terms within a secular approximation, as done below
Eq. (A10), without further loss of generality compared
with Eq. (8). In addition, analogously to Eq. (A11), in
the additional terms due to noise along x, noise spectra
Sxx,j (ω) ≡ ∫ ∞

−∞ dτ e−iωτ 〈B̃x
j (τ )B̃

x
j (0)〉 are probed by filter

functions in passbands of width approximately 1/t about
frequencies ±ωqj , ωqj ±�j , and −ωqj ±�j . Assuming
that the noise spectra vary negligibly within these pass-
bands, we take the infinite-time limit as in Appendix A 1,
and move back to the spin-locking reference frame rotating
at the qubit drive frequencies. We then arrive at the ME

ρ̇(t) = −i
∑

j

�j

2
[τ z

j , ρ(t)] +
∑

jk

(L−
jk + L+

jk)ρ(t)

+
∑

j

(
γ z

j

2
D[τ z

j ] + γ−
j D[τ−

j ] + γ+
j D[τ+

j ]
)
ρ(t),

(A25)

where the L±
jk are introduced in Eq. (A13) and

γ z
j ≡ 1

2
[Sxx,j (ωqj )+ Sxx,j (−ωqj )], (A26)

γ±
j ≡ 1

4
[Sxx,j (ωqj ±�j )+ Sxx,j (−ωqj ±�j )]. (A27)

Allowing for �1 and �2 to be distinct, we introduce the
Rabi-frequency difference δ� ≡ �1 −�2 and the aver-
age Rabi frequency � ≡ (�1 +�2)/2, so that �1 = �+
δ�/2 and �2 = �− δ�/2. We then assume that Sjk(ω)

varies negligibly around ω = � over the range of val-
ues taken by δ�, allowing us to approximate Sjk(±�1) ≈
Sjk(±�2) ≈ Sjk(±�) for all j , k. For the shot-noise spec-
tra produced experimentally, this amounts to assuming
that δ� is negligible in comparison with the width κ

of the peak, δ� � κ . This enables us to approximate
L−

jk + L+
jk ≈ Ljk in Eq. (A25), with Ljk given by Eq. (9).

Likewise, as in Ref. [30], we assume that Sxx,j (ω) varies
negligibly over the small (typically, approximately 1–100
MHz) frequency ranges between ±ωqj −�j and ±ωqj +
�j for all j , and thus take Sxx,j (ωqj ±�j ) ≈ Sxx,j (ωqj ) and
Sxx,j (−ωqj ±�j ) ≈ Sxx,j (−ωqj ) in Eq. (A27). Under these
approximations, Eq. (A25) then reduces to Eq. (21), in
which the damping rates due to noise along x are given
by

�1,j ≡ Sxx,j (ωqj )+ Sxx,j (−ωqj ) = 1

T(j )1

, (A28)

with T(j )1 the longitudinal relaxation time of qubit j in a
free-evolution experiment. The effects of noise along x

are then accounted for phenomenologically in the nonlin-
ear regression approach, by using the average T(j )1 values
measured in independent free-evolution experiments.

Though a simultaneous characterization of all noise
spectra Sjk(ω) and Sxx,j (ω) for all qubit axes would be
much preferable in principle [52], the above approach, in
which the effect of Sxx,j (ω) is captured by a single param-
eter T(j )1 , has been successfully employed in a single-qubit
context [32]. For sufficiently strong photon shot noise, lon-
gitudinal qubit relaxation effects are a significant, but weak
correction that need only be taken into account at Rabi fre-
quencies for which Sjk(ω) is the weakest, i.e., at the tails
of the Lorentzian spectra. Though not accounting for T(j )1
would make the reconstructed Sjk(ω) to be significantly off
at the tails, we do not expect the details of the additional
noise spectra Sxx,j (ω) to lead to significant effects beyond
corrections obtained with Eq. (21).

APPENDIX B: CONFIDENCE INTERVALS FOR
SPECTRUM ESTIMATES

M -estimators were introduced in the 1960s for robust
estimation of a parameter using data whose distribution
function is only approximately known: for example, the
observations may follow a normal distribution, except for
a fraction of them which is affected by experimental error
[80]. Following the steps of Ref. [81], in this appendix we
discuss the asymptotic normality of these estimators when
the number of observations tends to infinity. This will lead
us to the approximate confidence intervals for the spectrum
values presented in the main text. No excessive empha-
sis is put on mathematical rigor; the following steps are
valid under suitable regularity conditions that an interested
reader may find in Ref. [81].

Given a loss function λ(z) that penalizes deviation
between a model and experimental observations, the gen-
eral form of an M -estimator θ̂ for a p-dimensional param-
eter vector θ is

θ̂ = argmin
θ

d∑
α=1

λ(zα), (B1)

where zα is the αth realization of a random variable
Z associated with experimental observations, and whose
probability distribution is parameterized by θ . In Sec. II B,
the parameter θ is the spectrum vector, θ = S, while in
Sec. IV, θ is the spectrum vector supplemented by the
Rabi-frequency difference δ� between the qubit drives.
Throughout the main text, zα quantifies the relative devi-
ation of observations from their expected value 〈Oα〉θ via
zα = (Oα − 〈Oα〉θ )/σα , where Oα is the sample mean of
M projective measurements performed on the two-qubit
system and σ 2

α = var(Oα). Throughout this appendix, we
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assume that all realizations zα are independent and iden-
tically distributed (i.i.d.). For example, under ideal con-
ditions (in the absence of any experimental error), and
in the asymptotic limit in which each Oα is obtained
from M → ∞ projective measurements, the central limit
theorem implies that each zα is sampled from the standard
normal distribution N (0, 1).

Since one may find the value of θ that minimizes the
right-hand side of Eq. (B1) by setting derivatives with
respect to θ� to zero, M -estimators are often alternatively
defined by the solution of a set of p estimating equations

d∑
α=1

ψ�(zα) = 0, � ∈ {1, 2, . . . , p}. (B2)

To describe the minimization problem of Eq. (B1), we
set ψ�(zα) ≡ ∂λ(zα)/∂θ�. It is also convenient to intro-
duce the d-dimensional column vectors ψ(zα) and �(θ),
whose components � are defined as ψ�(zα) and ��(θ) ≡∑d

α=1 ψ�(zα), respectively. With this notation, the estimat-
ing equations for the M -estimator of θ may be written
succinctly as

�(θ̂) = 0. (B3)

To discuss the asymptotic behavior of θ̂ , we Taylor expand
Eq. (B3) about θ̂ = θ∗, where θ∗ is the true value of θ , and
truncate to the first order. This gives

�(θ̂) ≈ �(θ∗)+ �̇(θ∗)(θ̂ − θ∗), (B4)

where �̇(θ∗) is the p × p matrix of derivatives of �(θ) at
θ = θ∗, namely,

�̇k�(θ
∗) ≡ ∂�k(θ)

∂θ�

∣∣∣∣
θ=θ∗

=
d∑
α=1

∂ψk(zα)
∂θ �

∣∣∣∣
θ=θ∗

. (B5)

By definition of M -estimators, Eq. (B3), the left-hand side
of Eq. (B4) must vanish, �(θ̂) = 0. Assuming that �̇(θ∗)
is invertible then gives

θ̂ − θ∗ ≈ −�̇(θ∗)−1�(θ∗). (B6)

Recall that �̇(θ∗) and �(θ∗) are ultimately functions
of the realizations zα of the random variable describing
the deviation of an experimental observation Oα from
its expected value. We thus investigate the asymptotic
behavior of �̇(θ∗) and �(θ∗) as the number of observa-
tions tend to infinity, d → ∞, assuming that the zα are
i.i.d. Since, by definition,��(θ∗) = ∑d

α=1 ψ�(zα), the cen-
tral limit theorem implies the following convergence in

distribution:

�(θ∗) =
d∑
α=1

ψ(zα) →
√

dNp (0, cov(ψ)), (B7)

where Np(μ,�) is the p-dimensional multivariate normal
distribution with mean μ and covariance matrix �. To
arrive at Eq. (B7), we have used the fact that E[ψ] = 0
at θ = θ∗, where E(ψ) is the expectation value of ψ over
realizations of the random variable Z. This property must
be satisfied for any M -estimator since, by the weak law of
large numbers, E[ψ] = limd→∞(1/d)

∑d
α=1 ψ(zα), where∑d

α=1 ψ(zα) = 0 at θ = θ̂ by Eq. (B3), and limd→∞ θ̂ =
θ∗ due to asymptotic consistency of M -estimators [81].
Because E[ψ] = 0, the covariance matrix in Eq. (B7) is
simply given by cov(ψ) = E(ψψ�).

In addition, applying the weak law of large numbers to
the last expression in Eq. (B5) leads to the convergence in
probability

�̇(θ∗) → dE(ψ̇), (B8)

where we have introduced the matrix ψ̇(zα), whose com-
ponents are ψ̇k�(zα) ≡ ∂ψk(zα)/∂θ�|θ=θ∗ .

Substituting Eqs. (B7) and (B8) into Eq. (B6), applying
Slutsky’s theorem [53], and using the linear transforma-
tion property cov(Bx) = Bcov(x)B�, where x is a random
column vector and B a constant matrix, then implies that
θ̂ − θ∗ converges in distribution to

θ̂ − θ∗ → Np(0, �θ ), (B9)

with the covariance matrix

�θ = 1
d

E(ψ̇)−1
E(ψψ�)[E(ψ̇)−1]�, (B10)

where θ is evaluated at θ∗.
We may now use the definition ψ�(zα) ≡ ∂λ(zα)/∂θ �

to approximate the covariance matrix of θ̂ − θ∗ in terms
of derivatives of loss functions for d 
 1. Evaluating the
derivatives using the chain rule and approximating expec-
tation values of functions of observations f (Z) by E(f ) ≈
(1/d)

∑d
α=1 f (zα) for M 
 1 then gives

E[ψψ�] ≈ 1
d

J�D2J, (B11)

E[ψ̇]k� ≈ 1
d
(J��J)k� + 1

d

∑
α

Dαα

∂2zα
∂θk∂θ�

∣∣∣∣
θ=θ∗

, (B12)

where we have introduced the Jacobian matrix with
elements Jα� ≡ ∂zα/∂θ�|θ=θ∗ , and where � and D are
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diagonal matrices whose nonzero elements are Dαα =
∂λ/∂z|z=zα and �αα = ∂2λ/∂z2

∣∣
z=zα

, respectively. These
derivatives are readily obtained for simple loss func-
tions. In particular, for quadratic loss, λ(z) = z2/2, we
have Dαα = zα and �αα = 1, whereas for Huber loss, the
following hold:

Dαα =
{

zα , |zα| ≤ δ0,
δ0sign(zα), otherwise,

�αα =
{

1, |zα| ≤ δ0,
0, otherwise.

(B13)

Substituting Eqs. (B11) and (B12) into Eq. (B10) gives
an approximation of the covariance matrix �θ of θ̂ − θ∗

for d 
 1. We then estimate 95% confidence intervals
presented in the main text from

θ̂� ± 1.96
√
�θ
��.

For a sufficiently weakly nonlinear relationship between zα
and the parameters, the term proportional to second-order
derivatives in Eq. (B12) may be neglected, leading to the
compact expression

�θ ≈ (J��J)−1(J�D2J)(J��J)−1. (B14)

Though we do account for the term containing second-
order derivatives in all confidence-interval calculations
presented in the main text for completeness, in all cases
studied here, we find this term ‘to be negligible. Since
it avoids the computation of second-order derivatives of
zα with respect to all possible pairs of θk and θ�, evalua-
tion of the confidence intervals through Eq. (B14) is much
more efficient numerically, leading to significant savings in
computation time.

APPENDIX C: COMPARISON OF
RECONSTRUCTIONS WITH WEIGHTED LEAST
SQUARES VERSUS HUBER LOSS FUNCTIONS

Spectral estimation based on weighted least squares
is particularly vulnerable to outliers in experimental
data, thus motivating robust estimation strategies such as
M -estimation. In this appendix, we further illustrate the
adverse effect of outliers by comparing two-qubit spec-
trum reconstructions obtained with the robust Huber loss
function with estimates based on weighted least squares,
considering both experimental and simulated data.

In Fig. 7, we display estimates of the two-qubit spectra
obtained from Eq. (13) using the Huber loss function (top
row) with the tuning parameter δ0 = 1, along with esti-
mates obtained using weighted least squares (bottom row).
In Figs. 7(a) and 7(b), we show reconstructions using the

experimental data discussed in Sec. IV. A close inspection
of these figures reveals that reconstructions obtained by
using weighted least squares are significantly more noisy,
an effect that is particularly visible in S22(ω) between
ω/2π = −2.0 MHz and ω/2π = −1.8 MHz. To verify
that this effect stems from the fitting procedure, we plot
an example of the decay curve—here, τ z

2 —as a function
of evolution time for �/2π = 1.848 MHz as an inset in
Fig. 7(b). This inset reveals that while the fit using Huber
loss closely follows the bulk of the data points, the fit using
weighted least squares goes astray, most plausibly due to
the influence of outliers in the many decay curves involved
in the global regression procedure. As indicated by the
dashed vertical lines in Figs. 7(a) and 7(b), the recon-
structed spectra at the corresponding frequencies ω/2π =
±1.848 MHz lie closer to the theoretical value using Huber
loss than with weighted least squares, in particular for
S22(ω).

To verify that such a failure of weighted least squares
can indeed arise from outliers, we reproduce the effect
with simulated data in Figs. 7(c) and 7(d). To produce
the simulated data used in the spectral estimation, we first
calculate the two-qubit density matrix ρ(t) by substitut-
ing the spectra given by Eq. (15) into the ME defined by
Eqs. (8) and (9), which we solve numerically for the shot-
noise parameters measured in the experiment (caption of
Fig. 6). From the resulting ρ(t), we evaluate probabilities
associated with binary outcomes (±1) of projective mea-
surements, and generate M = 2000 simulated outcomes
for each observable Or by sampling a Bernoulli distribu-
tion. We then evaluate the sample means Oα of projective
measurement outcomes for each combination of initial
state, observable, and evolution time given in Table II, and
their corresponding standard deviations. Finally, to emu-
late experimental error, we use a δ-contaminated model
[53], in which each value of Oα is assigned a probability
0.1 to be replaced by an outlier, which we model by sam-
pling a uniform probability distribution between −1 and
+1.

After constructing this simulated data set, we per-
form the reconstructions using the procedure explained
in Sec. II B. Despite the presence of numerous outliers,
Fig. 7(c) shows that our procedure successfully recon-
structs all the spectra when using Huber loss. However,
in Fig. 7(d), the equivalent reconstructions using weighted
least squares are remarkably more noisy, and even involve
a spurious positive-frequency component. The discrepancy
between outcomes of the two loss functions is signifi-
cantly more pronounced than in the experiment, as may
be expected for the rather pessimistic model of outliers
employed here. The inset of Fig. 7(d) displays the out-
come of the fitting procedure for a pair of frequencies at
which weighted least squares failed to produce accurate
spectrum estimates [�/2π = 2.120 MHz, dashed vertical
lines in Figs. 7(c) and 7(d)]. Again, while the decay curve
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(c)

(d)

(a)

(b)

FIG. 7. Robust estimation approach. Comparison of spectral reconstructions using Huber loss (top row) and weighted least squares
(bottom row). (a) Reconstructions of the spectra from experimental data using the Huber loss function. (b) Same reconstructions
using weighted least squares. (c) Reconstructions from simulated data using the Huber loss function. (d) Same reconstructions using
weighted least squares. Solid lines indicate ideal spectra given by Eq. (15). Gray, green, yellow, and brown curves correspond to
S11(ω), S22(ω), Re[S12(ω)], and Im[S12(ω)], respectively. Inset of (b): Decay curve for the sample mean τ z

2 as a function of evolution
time with �/2π = 1.848 MHz. Inset of (d): Decay curve for simulated sample means of τ z

1 with �/2π = 2.120 MHz. Blue circles
represent experimental data [inset of (b)] or simulated data [inset of (d)]. Solid lines represent nonlinear regression with Huber loss
(red) and weighted least squares (green). In both insets, the initial qubit state is |+x, +x〉. Dashed lines in the main plots indicate
spectrum frequencies ω/2π = ±�/2π corresponding to the insets.

fitted using weighted least squares wanders away, Huber
loss produces a decay curve that closely follows the bulk
of the data.
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